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Abstract. Mixed-Integer Second-Order Cone Programs (MISOCPs) form a nice class of mixed-

inter convex programs, which can be solved very efficiently due to the recent advances in 

optimization solvers. Our paper bridges the gap between modeling a class of optimization 

problems and using MISOCP solvers. It is shown how various performance metrics of M/G/1 

queues can be molded by different MISOCPs. To motivate our method practically, it is first 

applied to a challenging stochastic location problem with congestion, which is broadly used to 

design socially optimal service networks. Four different MISOCPs are developed and compared 

on sets of benchmark test problems. The new formulations efficiently solve large-size test 

problems, which cannot be solved by the best existing method. Then, the general applicability 

of our method is shown for similar optimization problems that use queue-theoretic 

performance measures to address customer satisfaction and service quality. 
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1 Introduction 

Second-order cone programming, also known as conic quadratic optimization, is a very 

promising branch of convex optimization from both theoretical and practical perspectives. Over 

recent years, different polynomial-time algorithms have been developed to solve Second-Order 

Cone Programs (SOCPs). The most popular solution methods for SOCPs are interior-point 

methods; which were initially proposed by Nemirovski and Scheinberg (1996), and then have 

been extended by many researchers because of their polynomial-time theoretical convergence 

and efficient computational performance; see Alizadeh and Goldfarb (2003) for a review. Ben-

Tal and Nemirovski (2001a) also show that there is a polynomial-size polyhedral approximation 

for any second order cone, which pave the way to use linear programming to approximately 

solve SOCPs. For more technical details on these solution algorithms and new progresses, see, 

for example, Ben-Tal and Nemirovski (2001b), Boyd and Vandenberghe (2004), Benson and 

Saglam (2013), Kitahara and Tsuchiya (2016), Pena and Soheili (2017) and references therein. 

Most of these algorithms have also been implemented in powerful optimization solvers, which 

can solve large-scale problem instances in reasonable times. MATLAB toolboxes for 

optimization, such as SeDuMi and SDPT3, MOSEK, or CPLEX are some examples of well-known 

solvers for SOCPs. 

Many classic decision problems can be modeled as SOCPs (Lobo, et al., 1998, Alizadeh and 

Goldfarb, 2003, and Nemirovski, 2006). Recent studies show that SOCPs can be used in various 

emerging application areas. Shivaswamy et al. (2006) present SOCPs for handling missing and 

uncertain data in machine learning. Maggioni et al. (2009) propose a two-stage stochastic SOCP 

in mobile ad-hoc networks. See and Sim (2010) consider a multi-period inventory control 

problem using robust optimization approach and find the policy by solving a tractable SOCP. 

Mak et al. (2014) consider an appointment scheduling problem and model it as an SOCP in a 

special case. Kocuk et al. (2016) consider an AC optimal power flow problem and propose three 

different relaxation models in format of SOCPs. Coutinho et al. (2016) apply SOCPs in a branch-

and-bound algorithm to solve close-enough traveling salesman problem. Vu et al. (2016) 

developed SOCPs for wireless communications design. Chen and Zhu (2017) propose an SOCP 

model for a two-stage network data envelopment analysis. 
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The promising achievements in solving SOCPs and Linear Programs (LPs) have recently been 

used to make Mixed-Integer SOCP (MISOCP) as a tractable class of mixed-integer convex 

programming to solve nice discrete decision problems in industrial sizes. There are two major 

groups of algorithms for solving MISOCPs. The first one is based on branch-and-bound (B&B) 

method where solving an SOCP in each node is required. The second one is to use outer-

approximation branch-and-cut (B&C) method. CPLEX can apply both approaches, as well as an 

additional option where the best approach is cleverly selected. For more details and 

comparisons see Drewes, 2009, Drewes and Ulbrich (2012), and Bonami and Tramontani 

(2015). Moreover, several kinds of cuts have been developed for MISOCPs; many of them are 

applied in the existing solvers to empower them to efficiently solve large-scale MISOCPs 

(Atamtürk & Narayanan, 2010, 2011; Bonami, 2011; Dadush, 2011; Andersen & Jensen, 2013; 

Belotti et al., 2013, 2015; Goez, 2013; Kılınç-Karzan & Yıldız, 2015; Kılınç-Karzan, 2015; Modaresi 

et al., 2015, 2016; Pattanayak & Narayanan, 2017; Kılınç et al., 2017). 

Based on the recent progress on developing solution algorithms for MISOCPs, nowadays 

these optimization problems are efficiently solvable in many practical cases. Recently, MISOCPs 

have been used to model and solve many challenging applied problems. Some of the interesting 

applications, reviewed by Benson and Saglam (2013), are portfolio optimization (Vielma et al., 

2008; Bonami & Lejeune, 2009), option pricing (Pinar, 2013), telecommunication network 

design (Hijazi et al., 2013), transmission in cellular networks (Cheng et al., 2012), power 

distribution (Taylor & Hover, 2012), battery swapping stations on freeway networks (Mak et al., 

2013), Euclidean k-centering (Brandenberg & Roth, 2009), location-inventory planning (Ahmadi-

Javid & Azad, 2010; Atamtürk et al., 2012), and scheduling and logistics (Du et al., 2011). More 

recently, Pinar (2013) develop an MISOCP for lower hedging of American contingent claims. 

Miyashiro and Takano (2015) propose an MISOCP for explanatory variable selection in a 

multiple linear regression model. Borraz-Sánchez et al. (2016) present an MISOCP relaxation for 

a gas expansion-planning problem under steady-state conditions. Han et al. (2016) use an 

MISOCP to develop an approximation algorithm for optimal learning in linear regression. He et 

al. (2017) propose an MISOCP as an approximate model for designing urban electronic-car 

sharing system. Tanaka and Kobayashi (2017) present an MISOCP for optimal fuel route 
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problem in which the shipping route and its speed are found to minimize the total fuel 

consumption between two ports. 

This paper addresses a class of discrete optimization problems that deal with performance 

metrics of M/G/1 queues. These metrics are the expected waiting times in the queue and 

system, or the total congestion in the queue and system. They may appear in the objective 

functions or constraints to control the congestion level, or provide a specific service level 

(Boffey et al. 2007). We show that important metrics of an M/G/1 queue can be represented by 

different SOCP formulations in a flexible setting. 

To simply present our idea and show its practical advantages, we start by examining a 

traditional and challenging location problem, studied by several papers for three decades. We 

present different MISOCPs for this location problem, and then we compare the MISOCPs with 

each other, as well as the best known exact solution method for this problem. Then, we discuss 

how our reformulation idea can be applied in a general setting. 

The remainder of the paper is organized as follows. Section 2 provides some required 

backgrounds on queue systems and SOCPs. Section 3 introduces the classic location problem 

with congestion and provides the basic non-convex integer programing model of this problem. 

Section 4 presents different MISOCP reformulations for this problem, and Section 5 carries out 

a comprehensive numerical study to assess the performance of these MISOCPs. Section 6 

demonstrates how our method can be used in other similar problems. Section 7 provides an 

outlook. 

2 Preliminaries 

This section presents some preliminaries needed throughout the paper. Section  2.1 presents an 

overview on M/G/1 queue systems. Section  0 provides a brief introduction to MISOCPs. 

Section  2.3 discusses those forms of MISOCPs that are acceptable by CPLEX. 

2.1 An overview on M/G/1 queue systems 

Using Kendall’s notation (Kendall, 1953), an M/G/1 queue system is a single server queue 

system, which can be modeled as a continuous-time stochastic process. The arrival of 

customers occurs based on a Poisson process with intensity  . The service times           of 



5 

the customers are independent and generally distributed with finite mean  ( ) and variance 

   ( ); the departure rate is denoted by      ( ). For stability of the queue status, it is 

assumed that         ( )   . 

The stationary queue-length distribution is equal to the distribution of the number of 

customers in the system on departure instants, for which, using Pollaczek–Khinchine formula 

(Gross, 2008), the probability generating function can be calculated as follows: 

 ( )  
(   )   (    )(   )

   (    )   
         | |     (1) 

where     is the Laplace-Stieltjes transform of the distribution of the service time  . Using (1), 

the expected numbers of people in the queue and in the system; denoted by    and  , 

respectively, can be calculated as 

   
       

 (   )
 (2) 

         
       

 (   )
  (3) 

where       ( ) is the variance of the service-time distribution. Hence, the mean times that 

a customer spends in the queue and in the system; denoted by    and  , respectively, are 

given by 

   
      

 (   )
 (4) 

         
      

 (   )
      (5) 

which follow from (2), (3), and Little’s law, stating that        and     . For more 

details on computing the waiting-time distributions of M/G/1 queues and other recent related 

developments, see e.g., Shortle et al. (2004, 2007), Connor & Kendall (2015), Sigman, K. (2016), 

Baron & Kerner (2016), Li et al. (2017), and references therein. 

One should note that the expected total waiting times in the queue and in the system, 

denoted by     and   , respectively, are nothing but    and  , respectively. These metrics 

are used to express the overall congestion in a service center. Hence, we have 

           (6) 
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         (7) 

These metrics are usually used to express the overall congestion in a service center. 

2.2 Mixed-integer second-order cone programming 

Let      be a proper cone, i.e., a pointed and closed convex cone with a nonempty interior. 

Then, this cone induces a partial ordering on   , denoted by   , where we have 

                 . 

The optimization problem 

   
    
    

                   

      

is called a conic program where              is an        matrix,     
           

are proper cones, and   is a polyhedron in   . Actually, a conic program is a linear optimization 

problem with generalized linear inequalities 

                  . 

A second-order cone is a proper cone defined by 

   

{
 

 
          √∑   

 

   

   
}
 

 
  

for    . This cone is also called a Lorentz, quadratic, or ice-cream cone. An SOCP (Second-

Order Conic program), also called a Conic Quadratic Program (CQP), is a conic program for 

which all the cones   ,          are Second-Order Cones (SOCs). Therefore, by defining 

[     ]  [
    
  
   
] the above conic form of an SOCP can simply be rewritten as follows: 

   
    
    

‖      ‖    
                 

     

This form is here called the primary form of an SOCP. When all    and   ,        , are 

zeroes, the SOCP reduces to an LP. If all              are zeroes the SCOP becomes a convex 
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quadratically-constrained linear program. SOCPs are important convex optimization problems 

which are polynomially solvable. 

Each constraint ‖      ‖    
       is called an SOC constraint. A set of constraints (or 

any subset of   ) is called SOC representable if it can equivalently be expressed by a finite set 

of SOC constraints. A mathematical program is called an MISOCP (Mixed-Integer SOCPs) when 

some of decision variables            are restricted to be integer. 

2.3 MISOCP forms acceptable by CPLEX  

Using CPLEX, we are able to exactly solve mixed-integer programs with quadratic constraints, in 

the form of   ⁄             , where   must be checked to be a positive semi-definite 

matrix, i.e.,    . Moreover, to handle MISOCPs, CPLEX accepts the following two forms of 

constraints for a given semi-definite matrix    : 

I)         where     

II)         where      . 

The variable   (or  ) can be replaced by a positive affine transformation of some non-

negative variables, i.e.,   ∑         where     ,    , are decision variables, and     , 

   , are positive constants. However, carefully note that the variable   (or  ) cannot be 

replaced by an affine transformation that is not independently non-negative, even if it always 

non-negative by considering the other constraints of the problem. Also, note that 

∑   
 

 

   
    

with     is a special case of the first from with    . 

Our computational experiment indicate that CPLEX can handle the form-I constraints more 

efficiently. Thus, a form-II constraint is suggested to be replaced by the following alternative 

            (   )  where      , 

which is a form-I constraint because     is always non-negative for any      . See IBM 

(2017) for more details. 

When all SOC constraints of an SOCP are transformed to form-I and form-II constraints, the 

resulting formulation is here called the secondary form of the SOCP. 
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The above points are very important to solve MISOCPs by a solver such as CPLEX. In fact, 

one should make some further changes to a given MISOCP to make it acceptable for an MISOCP 

solver. This consideration results in introducing new variables and constraints. In Section 4, it 

will be seen that MISOCPs with the same primary-form formulations but different secondary-

form formulations may have very dissimilar performance. 

3 Stochastic location problem with congestion 

This section introduces a congested location-allocation problem considered by many studies 

under differences that slightly affect the structures of the resulting optimization problems 

(refer to the comprehensive review by Berman and Krass, 2015). The problem establishes 

facilities, determines the capacities of the established facilities, and determines the established 

facility that provides service to each customer (demand zone) in order to minimize a 

performance metric that compromises between the cost of the service network and the clients’ 

congestion and traveling costs. Each customer makes a demand stream evolving according to a 

Poisson process, and each facility can be molded as an M/G/1 queue system (see Section  2.1). 

To have a formal definition of the problem, first let us define our notation. Suppose that    , 

and   denote the sets of available facilities, customers, and service-capacity levels, 

respectively. The following parameters and decision variables are considered throughout the 

modeling: 

Parameters: 

    The fixed cost for establishing facility     with service-capacity level      

    The traveling cost from the location of customer     to facility     per service. 

   The demand rate of customer    . 

    The service rate facility     with service-capacity level    . 

    The service-time standard deviation at facility     with service-capacity level      

   The congestion (waiting) cost per unit time at facility    . 

Decision variables: 

    A binary variable that takes 1 if facility     is established with service-capacity level 
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   , and 0 otherwise. 

     A binary variable that takes 1 if customer     is served by facility     with service-

capacity level    , and 0 otherwise. 

Next, our service network design problem can be formulated as follows: 

   ∑∑      
   

 ∑∑      (∑      
   

        )

      

 ∑∑∑         
            

 

s.t. 

(8) 

∑∑    
      

        (9) 

                      (10) 

∑   
   

       (11) 

∑      
   

             (12) 

    {   }         (13) 

     {   }              (14) 

where     ( ) is the total waiting at facility     with service-capacity level    , which by 

(3) becomes as follows: 

    (∑      
   

        )  
(∑          )

 
(     

    
 )

    (    ∑          )
 
∑          

   
  (15) 

The first term in objective function (8) is the annual cost of establishing facilities. The 

second term is the yearly total congestion cost at facilities, while the third term is the yearly 

total accessing cost of customers. Constraint set (9) ensures that each customer is assigned to 

only one established facility. Constraint set (10) forbids assigning a customer to a non-

established facility. Constraint set (11) forces that at most one service-capacity level is selected 

for each established facility. Constraint set (12) ensures the required steady-state condition at 

each established facility. Constraint sets (13) and (14) guarantee that all decision variables are 

binary. 
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The model (8)-(15) is an integer non-convex minimization problem, which cannot be 

optimally solved in practical scales using existing general-purpose solvers. The problem is 

recently solved in Vidyarthi and Jayaswal (2014) by an efficient exact constraint-generation 

method, which is an extension of the method used by Elhedhli (2006) for the M/M/1 case. In 

fact, before 2006, only Lagrangian heuristics were available to tackle this problem for the 

special case where facilities are represented by M/M/1 queues (Berman and Krass, 2015). 

In the next section, it is shown that the model (8)-(15) can be cast as different MISOCPs, 

which are efficiently solvable using MISOPC-solvers such as CPLEX. In Section  5, their 

performance is assessed and compared with the best exiting algorithm given by Vidyarthi and 

Jayaswal (2014). 

4 MISOCP reformulations for location problem 

The first part of this section provides four secondary-form MISOCP reformulations for the 

model (8)-(15), as well as their corresponding primary-form formulations. The second part 

structurally compares the formulations. 

The nonlinear terms in (4) that represent the congestion costs are the only complicating 

factors. Thus, in the sequel, our focus is to demonstrate how these nonlinear terms are SOC 

representable and how they can be rewritten by secondary-form MISOCP reformulations, 

which can be solved using existing solvers such as CPLEX (see Section  2.3). In each subsection, 

the associated primary-form formulation is also presented. 

4.1 The first MISOCP reformulation 

The model (8)-(14) can be rewritten as the following secondary-form MISOPC: 

   ∑∑      
   

 ∑∑
  (     

    
 )   

    
 
  ∑          

   
      

 ∑∑∑         
            

 

s.t. 

(16) 

 (∑      
   

)

 

    
     

  (       )
          (17) 
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        ∑      
   

         (18) 

              (19) 

              (20) 

(9)-(14).   

To show this, for each         let us introduce the auxiliary variables     and the new 

constraint       
(∑          )

 

    ∑          
. Using these, the model (8)-(14) can be transformed to 

   ∑∑      
   

 ∑∑
  (     

    
 )   

    
 
  ∑          

   
      

 ∑∑∑         
            

 

s.t. 

(16) 

(∑      
   

)

 

     (    ∑      
   

)         (21) 

(9)-(14), (20).   

Constraints (21) are hyperbolic constraints, and can be transformed to the following form-II 

constraints: 

(∑      
   

)

 

                        

if constraints         ∑          ,        , are added, where variables     are non-

negative by (12). As it is stated in Section  2.3, to improve computational performance, it is 

better to replace these constraints by form-I constraints. Therefore, to make (21) acceptable for 

MISOCP solvers, they can be rewritten as (17)-(19). The equivalent primary-form SOC 

constraints are given by 

‖
‖

 ∑      
   

        ∑      
   

‖
‖          ∑      
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4.2 The second MISOCP reformulation 

The model (8)-(14) can be transformed to the following secondary-form MISOCP 

formulation: 

   ∑∑      
   

 ∑∑
  (     

    
 )   

 
 
  (     

    
 )∑          

    
         

 ∑∑∑         
         

 

s.t. 

(22) 

 ∑      
 

   

    
     

  (       )
          (23) 

        (24) 

(9)-(14), (18)-(19).   

To accept this, new constraints      
∑          

    ∑          
,        , should be considered to 

obtain 

   ∑∑      
   

 ∑∑
  (     

    
 )   

 
 
  (     

    
 )∑          

    
         

 ∑∑∑         
         

 

s.t. 

(22) 

∑      
   

     (    ∑      
   

)         (25) 

(9)-(14), (24).   

Then, Constraints (25) can be transformed to the constraints below considering the fact that 

variables                   , are 0-1 valued and can be replaced by     
 . Therefore, one 

can use the following set of constraints instead of (25): 

∑      
 

   

     (    ∑      
   

)                    
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which are equivalent to (18), (19), (23). The corresponding primary-form SOC constraints are 

given by 

‖

‖

√       
 

√  | |  | | 

        ∑      
   

‖

‖

         ∑      
   

                  

Note that this formulation is not applicable for the case that variables      are not binary. 

4.3 The third MISOCP reformulation  

The third secondary-form MISOCP formulation for the model (8)-(14) can be given by 

   ∑∑      
   

 ∑∑
  (     

    
 )   

 
 
  (     

    
 )∑          

    
         

 ∑∑∑         
         

 

s.t. 

(22) 

 (∑      
   

)

 

    
     

         . (26) 

           ∑      
   

     ∑      
   

         (27) 

           ∑      
   

     ∑      
   

         (28) 

                  (29) 

(9)-(14), (24).   

To obtain this formulation, by a direct calculation one can see that (25) is representable as 

(∑      
   

)

 

 (       ∑      
   

)(    ∑      
   

)        , (30) 

which are hyperbolic constraints. Salimian and Gürel (2013) use the above representation to 

model a problem in a make-to-order supply chain with cross-docking terminals studied by 

Vidyarthi et al. (2009). They rewrote the above constraints as (26)-(29) to make them 
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acceptable for CPLEX. Note that here we have improved their secondary-form formulation by 

eliminating unnecessary variables and linear constraints that they used to present the first term 

in (26). The constraints (26)-(29) can be represented by the following primary-form SOC 

constraints: 

‖
‖

 ∑      
   

       ∑      
   

     ∑      
   

‖
‖

        ∑      
   

     ∑      
   

                                  

4.4 The fourth MISOCP reformulation 

The fourth secondary-form MISOCP for the model (8)-(14) can be given by 

   ∑∑      
   

 ∑∑
  (     

    
 )   

 
 
  (     

    
 )∑          

    
         

 ∑∑∑         
         

 

s.t. 

(22) 

 (∑      
   

)

 

    
     

  (       )
         . (31) 

           ∑      
   

         (32) 

              (33) 

(9)-(14), (18)-(19), (24).   

This is directly obtained by reformulating form-II Constraints (30) as from-I Constraints (31) 

using the method explained in Section 2.3. The primary-form formulation of this MISOCP is the 

same as the one presented for the third secondary-form MISOCP given in Section 4.1.3. 
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4.5 Comparison of MISOCPs 

Considering that the proposed MISOCP formulations are here solved using CPLEX, their 

secondary-form formulations should be compared. The characteristics of these formulations 

are summarized in Table 1. From this table, it may be expected that 1-MISOCP and 2-MISOCP 

have better computational performance than 3-MISOCP and 4-MISOCP because they have less 

real additional variables and less additional constraints. However, note that CPLEX solver is 

empowered by a pre-solving step, in which the models are first intelligently examined for 

reduction opportunities before solving; such as ignoring repeated or redundant constraints. In 

addition, probing techniques is applied; e.g., tentatively fixing some binary variable 

(Savelsbergh, 1994). Our computational results show that the integer-relaxation bounds of 1-

MISOCP and 4-MISOCP are the same, and they are better (larger) than those of 2-MISOCP and 

3-MISOCP. This can help 1-MISOCP and 4-MISOCP to reach small gaps much faster. Our 

computational results indicate that 1-MISOCP is much more efficient than 4-MISOCP in large 

scales. Moreover, the integer-relaxation bound of 4-MISOCP is often better than 3-MISOCP. 

Table 1. Comparison of proposed MISOCPs. 

Secondary-

form MISOCP 
Objective Constraints 

Number of 

additional 

real variables 

Number of 

additional 

constraints 

Number of 

form-I 

constraints 

1-MISOCP (16) (9)-(14), (17)-(20) 2| |  | | | |  | | | |  | | 

2-MISOCP (22) (9)-(14), (18)-(19), (23)-(24) 2| |  | | | |  | | | |  | | 

3-MISOCP (22) (9)-(14), (24), (26)-(29) 3| |  | |  | |  | | | |  | | 

4-MISOCP (22) (9)-(14), (18)-(19), (24), (31)-(33) 3| |  | |  | |  | | | |  | | 

5 Computational results 

In this section, the proposed MISOCPs are solved by IBM ILOG CPLEX Optimization Studio 

12.6.1. We use a PC with a dual-core 2.9 GHz processor and 30GB RAM, operating Windows 7, 

64-bit. 

Table 2 compares the four secondary-form MISOCPs presented in Section Error! Reference 

source not found. on large-size test problems used in Vidyarthi and Jayaswal (2014), with 25 

facilities, 5 service-capacity levels, and 400 customers. To solve MISOCPs, we allow the CPLEX 

solver to intelligently choose between SOCP B&B and outer-approximation B&C by setting 

parameter             . This table shows that 1-MISOCP and 4-MISOCP perform better than 
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2-MISOCP and 3-MISOCP in finding optimal solutions in less run times as well as less memory 

usage. One can also see that the integer-relaxation bounds of 1-MISOCP and 4-MISOCP are 

always the same, and are better than those of the other two models. The integer-relaxation 

bound of 3-MISOCP is always better than that of 3-MISOCP expecting for test problem I12. 

For the same instances given in Table 2, Table 3 compares the run times of solving our two 

selected models 1-MISOCP and 4-MISOCP with those required by the cutting-plane algorithm 

given by Vidyarthi and Jayaswal (2014) to achieve optimality-gap limit 0.001%. Table 3 also 

reports the total cost and the percentages of its components for each instance to make sure 

that the instances have sensibly balanced objective functions. As shown, our proposed models 

are successful in reaching the exact optimal solution in reasonable run times for all instances, 

while the cutting-plane method cannot optimally solve the instance I12 within 3 run-time 

hours. In four instances I02, I05, I06, and I07, the cutting-plane method has smaller run times 

compared to the two MISOCPs. To see what will happen in a larger scale, we test three 

alternatives on larger sizes. 

Table 4 considers test problems that are initially used by Holmberg et al. (1999) for a 

capacitated facility location problem. Medium-size instances of these test problems were used 

later by Elhedhli (2006) for designing a service system where the service-capacity levels are set 

to be 3. Here, we consider the instances of these test problems with the largest sizes, and with 

10 service-capacity levels. First, we generate all of our parameters in the same way considered 

by Elhedhli (2006). In order to generate the fixed cost of establishing facilities,    , we similarly 

use the following formula to reflect the economy of scale: 

    (
  
  
)

| |  
| |      

      

where       are the facility cost and capacity in the original test problems given in Holmberg et 

al. (1999), respectively. Moreover, as our queue systems at facilities are M/G/1 instead of 

M/M/1, which is used in Elhedhli (2006), the new parameters     are needed to be generated. 

They are randomly generated from the interval [            ].  

Table 4 summarizes the computational results on above-mentioned test problems 

generated based on Holmberg et al. (1999). In most of the cases, 1-MISOCP and 4-MISOCP 
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reach to the optimality very efficiently, even within a few minutes for some test problems. 

However, the cutting-plane algorithm fails to reach its pre-defined optimality gap 0.001% in 3 

hours for most of the test problems (expecting for three instances P64, P68, and P69). For test 

problems P57, P58, P62, and P66, none of the two MISOCPs and the cutting-plane method can 

find the optimal solutions within 3 hours, but the optimality gaps of the solutions found by the 

two MISOCPs are significantly better than those provided by the cutting-plane algorithm. This 

numerical analysis clearly indicates that our selected MISOCPs are both efficient and stable in 

solving large-size instances and significantly outperform the cutting-plane method. In other 

words, on the test problems of Table 4, the cutting plane method is completely dominated, 

while 1-MISOCP competes with 4-MISOCP. 

To determine the best formulations between 1-MISOCP and 4-MISOCP, Table 5 carries out 

an additional analysis on test problems with larger sizes. These test problems are generated by 

combining each pair of consecutive test problems given in Table 4, which results in instances 

with 60 facilities, 10 service-capacity levels, and 400 customers. The comparison indicates that 

1-MISOCP outperforms 4-MISOCP in all cases under each one of the two different run-time 

limits. Hence, 1-MISOCP seems to be the best candidate for solving the proposed congested 

location problem in a large scale. 

6 MISCOPs for queueing formulas in a general setting 

This section demonstrates our results in a general setting such that they can be used in other 

problems involving one of the performance metrics of an M/G/1 queue system. Let us consider 

the case that the service rate  , the variance of the service time   , the arrival rate   can be 

represented by  

  ∑    
   

 

   ∑  
   

   

 

  ∑∑      
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where   ,   
 , and    are given constants and   ,     and     ,         are decision 

variables that satisfy the following conditions: 

∑∑      
      

 ∑    
   

  (34) 

∑  
   

    (35) 

   {   }     (36) 

                      (37) 

for some given constant upper bounds     ,        . Then, we show how the constraint 

  (   )      (38) 

is SOC representable where   (   ) is one of the performance metrics:          , 

      , presented by (2)-(7), and    can be a constant, variable, or any affine function of 

the problem’s decision variables (  and   are vectors including all variables   ,     and 

            , respectively). 

We only deliberate the procedure for two cases   and   , as the other cases can be 

managed by slight modifications (recall that       ,             , and      

   ). Our unified results are now given in the following two theorems. 

Theorem 1. Let   (   ) be the expected number of people in the system  , (3), or, 

equivalently, the expected total waiting times in the system   , (7). Then, considering 

Constraints (34)-(37), Constraint (38) can be represented by (39)-(41), 

∑
(    

   
 )  

   
 
∑          

  
   

     (39) 

(∑      
   

)

 

    (   ∑      
   

)     (40) 

         (41) 

or equivalently by (42)-(44), 

∑
(    

   
 )  

   
 
(    

   
 )∑          

   
   

     (42) 



19 

(∑      
   

)

 

 (     ∑      
   

)(   ∑      
   

)     (43) 

               (44) 

Moreover, in the case that     ,         are binary variables, one can also use (45)-(47) for 

reformulating (38) as 

∑
(    

   
 )  

   
 
(    

   
 )∑          

   
   

     (45) 

∑      
 

   

    (   ∑      
   

)     (46) 

        . (47) 

Proof. The proof straightforwardly follows from our arguments given in Section  3, which is not 

given here for the sake of brevity.                                                                                                             ■ 

Remark 1. We have the following simplifications: 

 If the queue is M/M/1, then   
      

  and Constraints (39) and (42) (or (45)) can be 

simplified as 

∑
   ∑          

  
   

    

∑
  

  
   

     

 If the queue is M/D/1, then   
    and Constraints (39) and (42) (or (45)) are given by 

∑
    ∑          

   
   

    

∑
   ∑          

   
   

     

Theorem 2. Let   (   ) be the expected waiting time in the system  , (5). Then, considering 

(34)-(37), Constraint (38) can be represented by (48)-(50) given below 
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∑
(    

   
 )  

   
 
  

  
   

     (48) 

(∑      
   

)

 

 (     ∑      
   

)(   ∑      
   

)     (49) 

          (50) 

Moreover, in the case that     ,         are binary variables one can alternatively use (51)-

(53): 

∑
(    

   
 )  

   
 
  

  
   

     (51) 

∑      
 

   

    (   ∑      
   

)     (52) 

        . (53) 

Proof. Let us define     
∑          

   ∑          
,    , then, considering (5), Constraint (38) can be 

represented as follows: 

∑
(    

   
 )  

   
 
  

  
   

     

In the case that     ,          are binary variables, the constraint ∑           

  (   ∑          ) is equivalent to the hyperbolic Constraint (52). However, for the general 

case where variables     ,         are real-valued, one can show that the constraint can be 

rewritten as Constraint (49) by multiplying both sides by    and adding (∑          )
 
 . This 

completes the proof.                                                                                                                                    ■ 

Remark 2. Consider the following special cases: 

 If the queue is M/M/1, then (48) (or (51)) is given by 

∑
     

  
   

     

 If the queue is M/D/1, then (48) (or (51)) can be written as 
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∑
      

   
   

     

The above theorems show that for different queue metrics   (   ), Constraint (38) can 

be reformulated as a set of hyperbolic constrains, which are SOC representable. One can 

express these constraints in different primary or secondary forms. One should carefully note 

that an MISOCP solver may be very sensitive to the secondary-form reformulations. 

For our specific decision problem when the MISOCP solver is CPLEX, our numerical 

experiments show that type-I secondary-form constraints mostly perform better. Moreover, 

the performance of different type-I secondary-form constraints may significantly differ (see 3-

MISOCP and 4-MISOCP). 

In Remarks 1 and 2, it is shown that the above formulations can be simplified for specific 

queues such as M/D/1 and M/M/1, but these simplifications do not necessarily improve the 

computational performance, as it was observed for our location problem. 

7 Outlook 

An important step towards publicizing MISOCP solvers is to reveal how different problems can 

be molded by MISOCPs. This paper shows that nonlinear M/G/1 queueing formulas 

incorporated into a decision problem can be cast as MISOCPs when the service rate is 

represented by a discrete variable and the demand rate depends affinely on some variables. 

The advantage of using this method is completely demonstrated for a general stochastic 

location problem in a congested service network. 

In future studies, the MISOCP reformulation method can be used in other application areas 

where the congestion arising in M/D/1, M/M/1 or M/G/1 queues should be controlled. Another 

open area is investigating the case that the service-capacity is considered an arbitrary decision 

variable. In this case, the queueing formulas become very complex as the variance term 

typically depends on the service rate nonlinearly. Extending similar results for G/G/1 queues 

may be a challenging future research because there are only approximate closed-form formulas 

available for their performance metrics, and because we no longer have the superposition 

property of Poisson processes used here to simply analyze the aggregated arrival demand 

process in M/G/1 queues. 
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Table 2. Comparison of MISOCPs on test problems used by Vidyarthi and Jayaswal (2014) with 25 facilities, 5 service-capacity levels, and 400 customers; run-time limit is set to 3 hours. 

Test 

problem 

Coefficient 

of variation* 

Average 

waiting 

cost per 

time 

unit 

1-MISOCP 2-MISOCP 3-MISOCP 4-MISOCP 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

Integer-

relaxation 

bound 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

Integer-

relaxation 

bound 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

Integer-

relaxation 

bound 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

Integer-

relaxation 

bound 

I01 0.5 1 <19k 571, 0.00 132057 <44k 1665, 0.00 117474 <99k 3457, 0.00 132041 <16k 513, 0.00 132057 

I02 0.5 50 <10k 232, 0.00 137982 <206k 10800, 0.20 121442 <215k 10800, 3.78 137818 <7k 235, 0.00 137982 

I03 0.5 500 <4k 191, 0.00 154740 <2k 10800, 1.70 134723 <184k 10800, 10.08 153670 <2k 133, 0.00 154740 

I04 0.5 5000 <1k 52, 0.00 229005 <1k 10800, 7.26 191406 <196k 10800, 19.42 214691 <1k 47, 0.00 229005 

I05 1.5 1 <24k 530, 0.00 132638 <50k 1545, 0.00 117772 <237k 10800, 0.36 132612 <38k 920, 0.00 132638 

I06 1.5 50 <5k 272, 0.00 141465 <1k 10800, 0.99 123094 <239k 10800, 4.82 141102 <3k 180, 0.00 141465 

I07 1.5 500 <5k 246, 0.00 165181 <2k 10800, 2.10 137686 <203k 10800, 18.75 162379 <7k 296, 0.00 165181 

I08 1.5 5000 <5k 82, 0.00 267109 <1k 10800, 27.80 200954 <222k 10800, 31.07 211431 <5k 70, 0.00 267109 

I09 2.5 1 <15k 373, 0.00 133368 <94k 2665, 0.00 118176 <315k 10800, 0.61 133329 <30k 715, 0.00 133368 

I10 2.5 50 <4k 206, 0.00 146152 <2k 10800, 0.99 125105 <202k 10800, 7.76 145405 <7k 273, 0.00 146152 

I11 2.5 500 <5k 205, 0.00 179103 <1k 10800, 4.55 141338 <204k 10800, 22.55 172030 <5k 170, 0.00 179103 

I12 2.5 5000 <18k 127, 0.00 321830 <1k 10800, 80.78 215537 <182k 10800, 44.35 116822 <32k 164, 0.00 321830 

* Coefficient of variation:     
The best run time is highlighted. 
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Table 3. Comparison of 1-MISOCP, 4-MISOCP, and the existing cutting plane method on test problems used by Vidyarthi and Jayaswal (2014), with 25 facilities, 5 service-capacity 
levels, and 400 customers; run-time limit is set to 3 hours. 

Test 

problem 

coefficient 

of variation 

Average 

waiting cost 

per time 

unit  

Total cost 
Establishing 

cost % 

Waiting 

cost % 

Traveling 

cost % 
1-MISOCP 
Run time (second), Best gap (%) 

4-MISOCP 
Run time (second), Best gap (%) 

Cutting-plane method 
Run time (second), Best gap (%) (NO. of iterations) 

I01 0.5 1 132360 38.57 0.36 61.07 571, 0.00 513, 0.00 324, 0.00 (2) 

I02 0.5 50 138262 37.10 2.80 60.10 232, 0.00 235, 0.00 196, 0.00 (3) 

I03 0.5 500 154964 37.99 8.38 53.63 191, 0.00 133, 0.00 156, 0.00 (3) 

I04 0.5 5000 229095 34.98 30.13 34.89 52, 0.00 47, 0.00 89, 0.00 (3) 

I05 1.5 1 132955 38.75 0.64 60.61 530, 0.00 920, 0.00 146, 0.00 (2) 

I06 1.5 50 141662 37.73 3.84 58.43 272, 0.00 180, 0.00 172, 0.00 (2) 

I07 1.5 500 165672 39.19 10.76 50.05 246, 0.00 296, 0.00 174, 0.00 (3) 

I08 1.5 5000 267439 35.62 34.77 29.61 82, 0.00 70, 0.00 424, 0.00 (5) 

I09 2.5 1 133700 39.05 0.83 60.12 373, 0.00 715, 0.00 385, 0.00 (3) 

I10 2.5 50 146409 38.08 5.26 56.66 206, 0.00 273, 0.00 238, 0.00 (3) 

I11 2.5 500 179565 41.99 14.16 43.86 205, 0.00 170, 0.00 239, 0.00 (3) 

I12 2.5 5000 322098 35.48 40.40 24.11 127, 0.00 164, 0.00 10800, 0.25 (1) 

The best run time is highlighted. 
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Table 4. Computational results for test problems constructed based on Holmberg et al. (1999), with 30 facilities, 10 service-capacity levels, and 200 
customers; run-time limit is set to 3 hours. 

Test 

problem 

Total 

cost 

Establishing 

cost % 

Waiting 

cost % 

Traveling 

cost % 
1-MISOCP 
Run time (second), Best gap (%) 

4-MISOCP 
Run time (second), Best gap (%) 

Cutting-plane method 
Run time (second), Best gap (%) (NO. of iterations) 

P56 2338409 47.53 16.20 27.27 6573, 0.00 5570, 0.00 10800, 3.02 (1) 

P57 2766230 48.50 12.39 39.11 10800, 3.09 10800, 2.92 10800, 6.22 (1) 

P58 3307104 45.34 6.89 47.78 10800, 3.26 10800, 2.75 10800, 3.58 (1) 

P59 2690092 42.08 9.50 48.43 639, 0.00 646, 0.00 10800, 0.04 (2) 

P60 2037424 40.44 16.71 42.85 549, 0.00 526, 0.00 10800, 0.83 (1) 

P61 2423741 47.43 16.57 35.99 2541, 0.00 9147 , 0.00 10800, 2.88 (1) 

P62 3107270 48.92 9.99 41.10 10800, 2.96 10800, 3.19 10800, 7.04 (1) 

P63 2408120 39.42 15.64 44.94 438, 0.00 486, 0.00 10800, 0.02 (3) 

P64 1834676 37.00 18.03 44.97 240, 0.00 291, 0.00 10019, 0.00 (4) 

P65 2173829 44.16 15.73 40.11 533, 0.00 610, 0.00 10800, 3.02 (2) 

P66 2856688 47.83 12.44 39.73 10800, 2.46 10800, 2.85 10800, 4.50 (1) 

P67 2429892 41.28 14.99 43.73 509, 0.00 440, 0.00 10800, 0.01 (2) 

P68 1935118 38.03 16.23 45.74 273, 0.00 247, 0.00 2962, 0.00 (4) 

P69 2279064 41.61 16.25 42.14 459, 0.00 440, 0.00 5249, 0.00 (4) 

P70 2908670 50.23 12.18 37.5 755, 0.00 835, 0.00 10800, 0.06 (2) 

P71 2604820 41.82 13.04 45.14 4776, 0.00 3608, 0.00 10800, 4.73 (1) 

The best run time (or the best gap) is highlighted. 
 

  



25 

Table 5. Comparison of 1-MISOCP and 4-MISOCP on test problems that are constructed by combining each pair of two consecutive test problems given in Table 4, with 60 facilities, 
10 service-capacity levels, and 400 customers. 

Test 

problem 

Total 

cost 

Establishing 

cost % 

Waiting 

cost % 

Traveling 

cost % 

1-MISOCP 

5-hour time limit 

4-MISOCP 

5-hour time limit 

1-MISOCP 

10-hour time limit 

4-MISOCP 

10-hour time limit 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

NO. of 

nodes 

Run time 

(second), Best 

gap (%) 

P56 + P57 4143267 45.30 12.90 41.80 -- 18000, - --  18000, - <4k 29650, 0.00 <2k 30593, 0.00 

P58 + P59 4793767 44.35 10.90 44.75 -- 18000, - -- 18000, - <1k 18330, 0.00 <1k 24563, 0.00 

P60 + P61 3653233 44.04 17.36 38.60 <2k 9029, 0.00 <1k 9893, 0.00 <2k 9029, 0.00 <1k 9893, 0.00 

P62 + P63 4375508 39.94 11.10 48.96 <1k 9870, 0.00 <1k 10103, 0.00 <1k 9870, 0.00 <1k 10103, 0.00 

P64 + P65 3283009 40.47 19.08 40.45 <11k 12181, 0.00 <9k 13349, 0.00 <11k 12181, 0.00 <9k 13349, 0.00 

P66 + P67 4382131 44.79 14.81 40.39 <2k 13324, 0.00 -- 18000, - <2k 13324, 0.00 <2k 23129, 0.00 

P68 + P69 3502339 42.08 17.84 40.08 <5k 7891, 0.00 <9k 10261, 0.00 <5k 7891, 0.00 <9k 10261, 0.00 

P70 + P71* 4664334 47.16 11.93 40.92 0 18000, 1.68 0 18000, 20.25 <21k 36000, 1.32 <7k 36000, 1.80 

--: No feasible solution is found 
The best run time (or the best gap) is highlighted. 
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