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A notorious problem in queueing theory is to compute the worst possible performance of the GI/G/1

queue under mean-dispersion constraints for the interarrival and service time distributions. We address this

extremal queue problem by measuring dispersion in terms of Mean Absolute Deviation (MAD) instead of

variance, making available recently developed techniques from Distributionally Robust Optimization (DRO).

Combined with classical random walk theory, we obtain explicit expressions for the extremal interarrival

time and service time distributions, and hence the best possible upper bounds, for all moments of the waiting

time. We also apply the DRO techniques to obtain tight lower bounds that together with the upper bounds

provide robust performance intervals. We show that all bounds are computationally tractable and remain

sharp, also when the mean and MAD are not known precisely, but estimated based on available data instead.

Key words : extremal queue problem, GI/G/1 queue, random walk theory, tight bounds, distributionally

robust optimization

1. Introduction

Queueing theory exists for more than a century with throughout a central role for the GI/G/1

queue with i.i.d. interarrival times {Un} distributed as U and i.i.d. service times {Vn} distributed as

V . The waiting times in the GI/G/1 queue can be expressed as the maxima of a random walk with

step size X = V −U , the subject of an enormous literature: Chung (2001), Feller (1971), Asmussen

(2003). For all moments of the maxima (i.e., waiting times), general expressions are available that

involve convolutions of the distribution of X. To use these general expressions, one thus needs to

specify the precise distribution of X, and in the case of the GI/G/1 queue the distributions of both

U and V .

Special cases of the GI/G/1 queue can be studied with dedicated techniques for Markov chains.

For instance, the M/G/1 queue with Poisson arrivals and the GI/M/1 queue with exponential

services have explicit solutions that are more insightful than the general random walk results:

Asmussen (2003), Cohen (1982). Another large, somewhat opposite branch of queueing theory
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concerns finding approximations and bounds. For the steady-state waiting time W in the GI/G/1

queue, the arguably most famous upper bound for E[W ] was obtained by Kingman (1962) in terms

of the first two moments of both U and V . While Kingman’s bound is sharp in situations of

heavy traffic, when E[U ]/E[V ] approaches 1, it leaves room for improvement for all other values of

E[U ]/E[V ].

In search for that sharpest possible (tight) upper bound under the first two moments constraints,

foundational work was done by Rolski (1972), Eckberg Jr (1977), and Whitt (1984) in the context of

the GI/M/1 queue. Whitt (1984) considered the GI/M/1 queue with given mean and variance of U ,

and showed that E[W ] is maximized when the interarrivals follow a specific two-point distribution.

It also led to the conjecture that the overall worst case behavior (in terms of E[W ]) would be

caused by two-point distributions, for both U and V . That conjecture was proved invalid by

counterexamples in Whitt (1984) when fixing either U or V , but the conjecture remained standing

for the case when both U and V are unspecified, except for their first two moments. After that

it remained silent for a while, until Chen and Whitt (2019) showed recently, for distributions

with finite support, that the extremal distributions of U and V both have supports on at most

three points. While existence is thus proved, the exact form of the extremal three-or-fewer-points

distributions can only be determined numerically, as the solution of a hard non-convex nonlinear

optimization problem. Extensive numerical experiments led Chen and Whitt to conjecture that

the worst case is formed by two-point distributions for both U and V , in line with the conjecture

postulated several decades ago. Finding the extremal queue for given mean-variance information is

therefore one of the longest standing problems in the field. That problem remains open, also after

publication of the present paper.

We do consider the same problem of finding the sharpest possible bounds for GI/G/1 queue

performance measures, but take a radical turn by quantifying dispersion in terms of mean absolute

deviation (MAD) instead of variance. That may appear a bold decision, because MAD is hardly

used in queueing theory, or random walk theory for that matter. We can only speculate about the

historical reasons for variance preference, but the random walk and GI/G/1 queue are intrinsically

linked with i.i.d. sums of random variables, and variance then enters naturally (e.g., variance of the

sum, central limit theorem). The variance and MAD, however, are equally adequate descriptors of

dispersion, and are both easily calibrated on data using basic statistical estimators.

The MAD perspective offered in this paper departs from the variance-based formulations of

the past (see Rolski (1972), Eckberg Jr (1977), Whitt (1984), Chen and Whitt (2019) and the

references therein), and brings to bear the rich theory of robust optimization, in particular the

rapidly expanding theory of distributionally robust optimization (DRO). The exact expressions for

the random walk maxima form a crucial ingredient for our proof methodology. These expressions
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are convex functions of the driving random variables, a prerequisite for the mean-MAD approach.

Indeed, recent advances in DRO, see Postek et al. (2018), show that knowledge on the support,

mean and MAD can lead to closed-form expressions for stochastic quantities such as the minimum

and maximum expectation of a convex function.

Using the MAD instead of the variance as dispersion measure has several important advantages

for, e.g., analyzing the waiting times in GI/G/1 queues. First, not only simple explicit expressions

for the worst-case distributions can be obtained, but also for the best-case ones. Hence, a sharp

upper bound and a sharp lower bound for the expected waiting time can be obtained. Second, our

approach is for i.i.d. sums of random variables, while existing DRO approaches have to tolerate

possible dependence structures between the random variables. Third, our approach is suitable

for analyzing both transient behavior and the steady state. Fourth, because of its computational

tractability our approach can also be extended to many optimization variants.

The contributions of this paper can be summarized as follows:

1. We suggest to use MAD instead of variance, and obtain by concise mathematical proof the

worst-case three-point distribution for a rich class of extremal problems. This proof for MAD

gives insight into why the traditional moment constraints, although a popular choice, may not

necessarily yield tractable counterparts.

2. We leverage this result to obtain tight upper and lower bounds for performance measures,

including transient and steady-state queue length moments. Under mean-MAD constraints,

these bounds are the sharpest possible (and thus cannot be improved). The mean-MAD approach

in this paper is a new quantitative method applicable to random walks, queues and related

stochastic processes. This generic approach is a computationally tractable way to analyze key

performance measures of such processes.

3. We present guidelines that describe how to compute the novel tight bounds efficiently. Moreover,

we demonstrate our approach when the mean and MAD are not known precisely and need to

be estimated from data. Also in these more realistic settings, the bounds remain sharp.

Outline. The remainder of the paper is organized as follows. Section 2 presents the MAD perspec-

tive. Section 3 discusses methods to obtain upper and lower bounds for both best and worst-case

performance. Section 4 presents a full solution of the extremal queue problem with mean-MAD

constraints, and draws a comparison with the traditional mean-variance setting. We conclude in

Section 5, also mentioning possibilities for follow-up research.

Notation. Boldfaced characters represent vectors, and xi denotes the i-th element of vector x.

For a random variable X, we use X ∼ P ∈ P to say that X is a random variable with probability

distribution P from the set of probability distributions P. We denote EP[·] as the expectation over

the probability distribution P. When we consider EP[f(X)] with X = (X1, . . . ,Xn), it is tacitly

assumed that f(·) is a measurable function from Rn to R, and such that EP[f(X)] exists.
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2. Extremal random walk

Consider the partial sums Sn :=X1 + · · ·+Xn (S0 := 0) of i.i.d. random variables X1,X2, . . . dis-

tributed as X. The random walk (Sn, n≥ 0) arises in many application domains, including queueing

theory, inventory management and risk theory. If (Sn, n≥ 0) indeed models congestion, shortfall

or capital position, large values of Sn are of particular interest, and it is natural to consider the

maxima sequence Mn := max{S0, S1, . . . , Sn}. The random walk and its maxima can be studied

with mathematical techniques for sums of random variables, covered in many standard texts on

probability theory, e.g., Asmussen (2003), Chung (2001), Cohen (1982), Feller (1971). For the dis-

tribution and moments of Mn there exist general formulas in terms of finitely many convolutions.

However, applying these exact formula requires full specification of the distribution of X. This

paper searches for the sharpest possible bounds on E[Mn] and related quantities, when only infor-

mation is available on the mean and dispersion of X. We now present such bounds when the partial

information consists of the mean, range and MAD of X.

2.1. Extremal distribution

Notice that Mn can be expressed as hn(X1, . . . ,Xn), with

hn(x1, . . . , xn) = max{0, x1, . . . , x1 + · · ·+xn}, (1)

and the expected maximum can be expressed as E[Mn] =E[hn(X)] with X = (X1, . . . ,Xn). For now

assume that X1, . . . ,Xn are independent, but that each Xi can have a different distribution. Assum-

ing we only have partial information consisting of means and dispersion measures of the random

variables X1, . . . ,Xn, the first question we ask and answer in this paper is: What extremal distri-

butions of Xi result in the worst-case expected maxima? Extremal distributions have been studied

in many contexts, and in the literature variance is predominantly used as the dispersion measure.

Here we shall use the MAD. To describe all considered distributions we define an ambiguity set that

consists of all distributions of componentwise independent X with known supports, means, and

MADs. The partial information for (X1, . . . ,Xn) consists of (i) Xi has support supp(Xi) = [ai, bi]

with −∞ < ai ≤ bi <∞, i = 1, . . . , n, (ii) EP(Xi) = µi and (iii) EP|Xi − µi| = di. This defines the

ambiguity set

P(µ,d) = {P : supp(Xi)⊆ [ai, bi], EP(Xi) = µi, EP |Xi−µi|= di, ∀i, Xi ⊥⊥Xj, ∀i 6= j} , (2)

where Xi ⊥⊥ Xj, ∀i 6= j, denotes stochastic independence of the components X1, . . . ,Xn. In what

follows, X is a vector of random variables whose distribution P belongs to the set P(µ,d).

As the title says, with MAD as dispersion measure, the extremal problem becomes simple.

Observe that the function hn is convex in the vector (x1, . . . , xn). We can thus apply the gen-

eral upper bound in Ben-Tal and Hochman (1972) on the expectation of a convex function of

independent random variables with mean-MAD ambiguity, which gives the following result:
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Theorem 1. The extremal distribution that solves

max
P∈P(µ,d)

EP[hn(X)] (3)

consists for each Xi of a three-point distribution with values τ
(i)
1 = ai, τ

(i)
2 = µi, τ

(i)
3 = bi and

probabilities

p
(i)
1 =

di
2(µi− ai)

, p
(i)
2 = 1− di

2(µi− ai)
− di

2(bi−µi)
, p

(i)
3 =

di
2(bi−µi)

. (4)

Ben-Tal and Hochman (1972) prove Theorem 1 (for general convex functions) by introducing a

piecewise linear function on the interval [a, b] that intersects the convex function in a, µ and b, and

then applying the classic Jensen bound to the subintervals [a,µ] and [µ, b]. In the next section, we

give another proof of Theorem 1 that also gives insight into why using as dispersion measure MAD

instead of variance makes the analysis so simple.

2.2. Novel primal-dual proof of Theorem 1

Our proof will crucially rely on the fact that the univariate case of Theorem 1 is tractable, and

can be straightforwardly extended to the multivariate case. We thus start by considering some

univariate measurable function f(x) (with the univariate function h1(x1) as an example) that has

finite values on [a, b], the support of the distribution P(x). Under mean-MAD ambiguity of one

random variable X we thus need to solve

max
P(x)≥0

∫
x

f(x)dP(x)

s.t.

∫
x

|x−µ|dP(x) = d,

∫
x

xdP(x) = µ,

∫
x

dP(x) = 1,

(5)

a semi-infinite linear program (LP) with three equality constraints. A perhaps surprising, yet

classical fact, is that the semi-infinite LP (5) can be reduced to an equivalent finite LP that yields

the same optimal value. Indeed, the Richter-Rogosinski Theorem (e.g., Rogosinski (1958), Shapiro

et al. (2009), Han et al. (2015)) states that there exists an extremal distribution for problem (5)

with at most three support points. While finding these points in closed form is typically not possible

(for general semi-infinite problems), we next show that this is possible for the problem at hand,

by resorting to the dual problem and exploiting both the specific shape of the MAD constraint∫
x
|x−µ|dP(x) = d and convexity of f .

Consider the dual of (5),

min
λ1,λ2,λ3

λ1d+λ2µ+λ3

s.t. f(x)−λ1|x−µ| −λ2x−λ3 ≤ 0, ∀x∈ [a, b].
(6)

Define F (x) = λ1|x−µ|+λ2x+λ3. Then the inequality in (6) can be written as f(x)≤ F (x), ∀x,

i.e. F (x) majorizes f(x). Note that F (x) has a ‘kink’ at x= µ. Since the dual problem (6) has three
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variables, the tightest majorant F (x) touches f(x) at three points: x= a, µ and b, as illustrated in

Figure 1. The optimal probabilities of (5) can now easily be obtained by solving the linear system

resulting from the equations of (5). This is a linear system of three unknown probabilities and

three equations, with a solution as stated in Theorem 1.

To deal with the multivariate case, we recursively apply the univariate result. Suppose we first

apply this result to x1, then the worst-case distribution is as in Theorem 1, independent of the

values for x2, . . . , xn. Moreover, the worst-case expectation becomes a convex function in x2, . . . , xn,

since the worst-case probabilities for x1 are nonnegative. Hence, we can apply the result above for

the univariate case to x2, etc. This completes the proof. Note that for multiperiod problems that

involve multivariate optimization, such as the waiting time in the GI/G/1 queue, determining the

extremal distribution for period n is unaffected by all previous periods.

To the best of our knowledge, our proof is the first to exploit the specific shape of the kink-

majorant to find an analytic solution for the semi-infinite LP. While the dual problems are often

solvable as semi-definite or second-order conic programs, analytic solutions as in our case are

typically hard to attain, and require special structural properties of the LP’s objective function or

its constraints. Notice that in the univariate case, this proof method does not require convexity of

f(x) and in fact could work for an arbitrary measurable function f . Convexity is needed, however,

in the proof of Theorem 1 to extend the univariate case to the multivariate case. The proof method

is of independent interest, and can for instance be applied to study the mean-MAD counterparts of

the mean-variance analyses in e.g. Xin and Goldberg (2013), Natarajan and Zhou (2007), Perakis

and Roels (2008), Natarajan et al. (2017), and Das et al. (2018).

x

f(x)

F (x)

µa b

Figure 1 Some convex function f(x) and its piecewise linear majorant F (x).
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2.3. Why is MAD computationally easier than variance?

Now that we fully grasp why and how the proof of Theorem 1 relies on the specific structural

properties of the mean-MAD constraints, and in particular the univariate result seamlessly passes

into the multivariate counterpart, we can also explain why the comparable challenge with mean-

variance constraints becomes much more difficult if not impossible. Observe that for the univariate

case, the same proof argument works when σ2 is given instead of d, i.e., when |x− µ| in (5) is

replaced by (x−µ)2. Hence, irrespective of whether MAD or variance is used as dispersion measure,

for determining the tight upper bound of f(x), it suffices to consider distributions with support on

at most three points. There is however a crucial complication when extending to the multivariate

case.

To see this, observe that when σ2 is used as dispersion measure, the end points and kink point

do not necessarily span the support of the extremal distribution. That is, upon replacing |x− µ|

with (x−µ)2, the tightest majorant F (x) does not necessarily touch f(x) in a, b and µ.

Hence, if the variance is used as dispersion measure, then the worst-case distribution depends

on the function f(x). This has severe consequences for the multivariate case, i.e., when we con-

sider hn(x1, . . . , xn). In that case, the worst-case distribution depends on the values of x2, . . . , xn,

and calculating (in closed form) the worst-case distribution as a function of x2, . . . , xn seems to be

impossible. Moreover, even if we would be able to derive such a worst-case distribution, substitut-

ing this distribution in the worst-case expectation would result in an extremely difficult function in

x2, . . . , xn that is likely non-convex, and hence applying the univariate result to x2 is no longer pos-

sible. Our duality proof thus reveals that the complicating feature of the mean-variance framework

applied to multiperiod problems is the fact that the extremal distribution in period n is affected

by all previous periods.

3. Sharpest possible bounds

A direct consequence of Theorem 1 is that the worst-case expectation of hn(X) is obtained by

enumerating over all 3n permutations of outcomes ai, µi, bi of components Xi.

Corollary 1.

max
P∈P(µ,d)

EP[hn(X)] =
∑

α∈{1,2,3}n
hn(τ (1)

α1
, . . . , τ (n)

αn
)
n∏
i=1

p(i)
αi
. (7)

Thus, under the partial information contained in P(µ,d), (7) is an upper bound on E[Mn] that

cannot be improved. We next specialize to the random walk setting with X1,X2, . . . independent

and distributed as X, obtain representations for the tight upper bound that are computationally

less cumbersome than (7), and extend to all moments of the all-time maximum (when n→∞).
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3.1. Random walk upper bounds

We recall that Spitzer (1956) used combinatorial arguments to establish for E[Mn] the alternative

expression (which strictly requires i.i.d. increments)

E[Mn] =
n∑
k=1

1

k
E[S+

k ], (8)

with x+ = max{0, x}. This can be written as E[Mn] =E[fn(X)] with

fn(x1, . . . , xn) =
n∑
k=1

1

k
max{0, x1 + . . .+xk}. (9)

A first usage of Spitzer’s formula (8) is a considerable improvement, in terms of computational

complexity, of the tight bound for E[Mn] in (7). To state the result and for later reference, let

Ω(µ,d, a, b) denote a three-point distribution on the values {a,µ, b} with probabilities

p1 =
d

2(µ− a)
, p2 = 1− d

2(µ− a)
− d

2(b−µ)
, p3 =

d

2(b−µ)
. (10)

Let X(3) denote the random variable with the extremal three-point distribution, identified in The-

orem 1 for the special case when X1,X2, . . . are i.i.d., hence X(3) ∼Ω(µ,d, a, b).

Corollary 2.

max
P∈P(µ,d)

EP[fn(X)] =
n∑
k=1

1

k

∑
∑
i ki=k

max{0, k1a+ k2µ+ k3b} ·
k!

k1!k2!k3!
pk11 p

k2
2 p

k3
3 . (11)

Note that for each fixed k, (11) contains a multinomial distribution with support set {(k1, k2, k3)∈

N3 : k1 +k2 +k3 = k} with cardinality
(
k+2

2

)
. This implies that the sum over k in (11) is over roughly

n3 terms, which is way better than the 3n terms in (7).

For E[X]< 0 the all-time maximum M := limn→∞Mn is a proper random variable (Mn converges

in distribution to M , which will be finite with probability one if E[X] < 0). Let cm(M) denote

the m-th cumulant of M . Recall that c1(M) is the mean, c2(M) is the variance, and c3(M) is the

central moment E[(M −E[M ])3]. From general random walk theory we know that (see e.g., Abate

et al. (1993))

cm(M) =
∞∑
k=1

1

k
E[(S+

k )m]. (12)

We can now prove results similar as for E[Mn], regarding the extremal distribution and tight upper

bound.

Theorem 2. Consider the random walk with generic step size X contained in the ambiguity

set P(µ,d). The tight upper bounds for all cumulants cm(M) of the all-time maximum M are the

cumulants of the random walk with extremal step size X(3).
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Proof. Consider the function

fmn (x1, . . . , xn) =
n∑
k=1

1

k
(max{0, x1 + . . .+xk})m , (13)

which is convex in the vector (x1, . . . , xn). Hence, for i.i.d. increments with generic X,

max
P∈P(µ,d)

EP[fmn (X)] (14)

is solved by the extremal random variable X(3). This gives the bound, with X∗1 ,X
∗
2 , . . . i.i.d. as X(3),

ln :=
n∑
k=1

1

k
E[(S+

k )m]≤Efmn (X∗1 , . . . ,X
∗
n) =: un. (15)

The result follows by observing that the sequences {ln} and {un} are both monotone, and converg-

ing to well-defined limits. �

We conclude that the extremal three-point distribution for E[Mn] in Theorem 1 is also the

extremal distribution for all cumulants of M . When calculating the associate tight upper bounds

for cm(M), (12) shows that we are confronted with an infinite summation of increasingly complex

summands. Here, another line of classical random walk theory can help, which transforms such

infinite sums into complex contour integrals.

Consider the random walk with generic step size X. It is known that formal solutions of the

distribution of Mn and M can be expressed in terms of complex contour integrals (see Abate

et al. (1993), Janssen et al. (2015) for the algorithmic aspects of these contour integrals). Assume

that φX(s) = E[esX ] is analytic for complex s in the strip |Re(s)|< δ for some δ > 0. A sufficient

condition is that the moment generating function φX(s) is finite in a neighborhood of the origin,

and hence all moments of X exist. Then

E[e−sM ] = exp

{
−1

2πi

∫
C

s

u(s−u)
log(1−φX(−u))du

}
, (16)

where s is a complex number with Re(s) ≥ 0, C is a contour to the left of, and parallel to, the

imaginary axis, and to the right of any singularities of log(1−φX(−u)) in the left half plane. From

(16) contour integral expressions for the cumulants follow by differentiation:

cm(M) =
(−1)m

2πi

∫
C

log(1−φX(−u))

um+1
du. (17)

Consider X =X(3) with a three-point distribution on values {a, b, c} with probabilities pa, pb, pc

and moment generating function

φX(3)
(s) = pae

sa + pbe
sb + pce

sc. (18)

Notice that all moments of X(3) exist, and hence φX(3)
(s) satisfies the assumption required for

representation (16) to hold. Since X(3) follows the extremal three-point distribution associated with

the tight upper bounds for cm(M), we obtain the following result:
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Corollary 3. Let φX(3)
(s) :=E[esX(3) ] = p1esa+p2esµ+p3esb. The tight upper bounds on cm(M)

identified in Theorem 2 are given by

(−1)m

2πi

∫
C

log(1−φX(3)
(−u))

um+1
du, m= 1,2, . . . , (19)

where C is a contour to the left of, and parallel to, the imaginary axis, and to the right of any

singularities of log(1−φX(3)
(−u)) in the left half plane.

Observe that (19) bypasses the cumbersome calculations with convolutions in (12). In EC.3 we

demonstrate that this is a numerically efficient way of computing the tight bounds.

3.2. Random walk lower bounds

The tight upper bounds correspond to worst-case scenarios. We next show how the same MAD

approach can identify best-case scenarios and hence tight lower bounds. For each Xi, define a

second ambiguity set, which is a subset of P(µ,d):

P(µ,d,β) =
{
P : P∈P(µ,d), P(Xi ≥ µi) = βi, ∀i

}
. (20)

Hence, for obtaining a lower bound, we include the additional information P(Xi ≥ µi) = βi in the

ambiguity set. Now, instead of finding the worst-case distribution, we want to identify the best-case

distribution and corresponding tight lower bound. The following result is a direct consequence of

the general lower bound in Ben-Tal and Hochman (1972) on the expectation of a convex function

of independent random variables with P(µ,d,β) ambiguity. In Section EC.2 we present a novel proof

using the primal-dual method developed earlier for proving Theorem 1.

Theorem 3.

min
P∈P(µ,d,β)

EP[hn(X)] =
∑

α∈{1,2}n
hn(υ(1)

α1
, . . . , υ(n)

αn
)
n∏
i=1

q(i)
αi
, (21)

where

q
(i)
1 = βi, q

(i)
2 = 1−βi, υ

(i)
1 = µi + di/2βi, υ

(i)
2 = µi− di/2(1−βi). (22)

Again specialize to the i.i.d. setting, and denote by Y the random variable with two-point

distribution on values

v1 = µ+
d

2β
, v2 = µ− d

2(1−β)
,

with probabilities β and 1− β, respectively. Using similar reasonings as for the upper bound, we

obtain for the tight lower bound for E[Mn] an expression that sums over O(n2) terms:

n∑
k=1

1

k

∑
k1+k2=k

k!

k1!k2!
βk1(1−β)k2 max{0, k1v1 + k2v2}. (23)
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Figure 2 Expected random walk maximum E[Mn] for U(−b, b) and b= 2 distributed step sizes with MAD b/2

(middle curve, obtained by simulation). The upper curve corresponds to the extremal three-point distribution

within the ambiguity set with µ= 0, d= b/2 and range [−b, b], and the lower curve is the bound (23) from the

two-point distribution with β = 1/2.

The tight lower bound for cm(M) can be expressed in terms of the integral

(−1)m

2πi

∫
C

log(1−φY (−u))

um+1
du, (24)

where φY (s) = βesv1 + (1−β)esv2 , C is a contour to the left of, and parallel to, the imaginary axis,

and to the right of any singularities of log(1−φY (−u)) in the left half plane.

We illustrate the lower bound (21) (calculated using (23)) in Figure 2 for the random walk with

step size X having a uniform distribution on [a, b]. Here we assume a specific distribution just

for illustration purposes. The MAD of X can be shown to be (b− a)/4. In Figure 2 we choose

b=−a= 2 so that µ= 0 and d= 1. Observe that upper and lower bound together provide a tight

interval for all possible distributions in the ambiguity set P(0,1,1/2).

Figure 3 shows the tight upper bound (19) and the lower bound (24) for E[W ] with ambiguity

set with µ=−1, d= b/2 and range [−b−2, b]. Observe that the bounds increase with the range and

the MAD (which can be shown to hold in general). For a point of reference, we also plot the exact

results for one member of the ambiguity set, when generic increment having a uniform distribution

on [−b− 2, b].

3.3. Comparison with mean-variance ambiguity

As explained earlier, mean-variance ambiguity appears less computationally tractable than mean-

MAD ambiguity. We now show how the key result for mean-MAD ambiguity, Theorem 1, can

be used to obtain results for mean-variance ambiguity. Let P∗(µ,σ) denote the ambiguity set that

contains all distributions with known range, mean and variance, i.e.

P∗(µ,σ) =
{
P : supp(Xi)⊆ [ai, bi], EP(Xi) = µ, EP(Xi−µ)2 = σ2, ∀i, Xi ⊥⊥Xj, ∀i 6= j

}
. (25)
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Figure 3 Expected all-time maximum E[M ] for U(−b− 2, b) and b∈ (1,10) (middle curve, obtained by

simulation). The upper curve corresponds to the extremal three-point distribution within the ambiguity set with

µ=−1, d= (b+1)/2 and range [−b− 2, b], and the lower curve is the bound (23) from the two-point distribution

with β = 1/2.

Proposition 1. Let dmin = 2σ2/(b− a) and dmax = σ. Then,

max
P∈P(µ,dmin)

EP[hn(X)]≤ max
P∈P∗

(µ,σ)

EP[hn(X)]≤ max
P∈P(µ,dmax)

EP[hn(X)] (26)

Proof. From Ben-Tal and Hochman (1985), we know that

2σ2

b− a
≤ d≤ σ.

Hence, maxP∈P∗
(µ,σ)

EP[hn(X)] = maxP∈P(µ,d∗) EP[hn(X)] for some d∗ ∈ [2σ2/(b − a), σ]. Since

maxP∈P(µ,d) EP[hn(X)] is non-decreasing in d, see Postek et al. (2018), the result follows. �

Notice that Proposition 1 presents a way to delimit the upper bounds of all stationary cumulants

cm(M) and the transient mean E[Mn] under mean-variance ambiguity. The mean-MAD bounds

are specified in terms of specific three-point distributions.

We next show that the lower bound in Proposition 1 can lead to a result for infinite-support

distributions. Set b= a+ ξ(µ−a) with ξ ≥ 1, and observe that the lower bound in (26) comes with

the extremal three-point distribution

Xξ
(3) =


a w.p. σ2

(µ−a)2ξ
,

µ w.p. 1− σ2

(µ−a)2ξ
− σ2

(µ−a)2ξ(ξ−1)
,

a+ ξ(µ− a) w.p. σ2

(µ−a)2ξ(ξ−1)
.

This distribution has mean µ and variance σ2, irrespective of the range [a, b]. We can thus let ξ

grow to infinity to investigate what happens for infinite-support distributions.

For the expected all-time maximum, we can exploit an argument very similar to Chen and Whitt

(2019), Theorem EC.3. A classic result from regenerative analysis says that the expected all-time
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maximum is the expected sum of the random walk position over one cycle, denoted by E[integral],

divided by the expected length of one cycle, i.e. E[cycle length]. This cycle will consists of a period

during which the queue remains empty, corresponding of consecutive (negative) steps of size a or µ.

As ξ increases, the three-point distribution places probabilities of order O(1/ξ2) on a and a+ξ(µ−
a), and the rest of the mass on point µ. As ξ grows large, only rarely with probability O(1/ξ2), a

large positive step occurs. The impact of the very large step of size a+ ξ(µ−a) is roughly the area

of the triangle with height a+ ξ(µ− a) and width (a+ ξ(µ− a))/(−µ), and hence E[integral] =

(a+ξ(µ−a))2/(−2µ)∼ (ξ(µ−a))2/(−2µ) as ξ→∞. The cycle then consists of an empty period of

expected length (1−pb)/pb ∼ (ξ(µ−a))2/σ2 and the positive period due to the large step of expected

length (a + ξ(µ − a))/(−µ), so that E[cycle length] ∼ (ξ(µ − a))2/σ2, and the expected all-time

maximum converges to σ2/(−2µ) as ξ→∞. Since this is a lower bound for maxP∈P∗
(µ,σ)

E[M ], we

know that for the random walk with generic step size X it holds that maxP∈P∗
(µ,σ)

E[M ]≥ σ2/(−2µ).

This lower bound matches Kingman’s upper bound E[M ]≤ σ2/(−2µ), which proves that Kingman’s

upper bound is tight. Tightness of Kingman’s bound was already proven in Daley et al. (1992)

by identifying a two-point distribution with mean µ, variance σ2 such that E[M ] approaches the

upper limit as one of the two points goes to infinity.

3.4. Degenerate behavior for infinite range

Compared to variance, MAD may be more appropriate in case of real-life empirical data that

display non-Gaussian features and outliers. Indeed, unlike standard deviation, MAD does not

require existence of second moments, and is not so much affected by large deviations from the

mean. This feature, however, has major consequences when we let the range [a, b] grow large in

which case conditioning on the MAD being d thus allows for distributions with relatively heavy

tails. In particular, in the limit b→∞, this will lead to overly pessimistic scenarios as heavy-tailed

distributions with infinite second moments would still have a finite d and hence be member of the

ambiguity set. While for large but finite b a truly heavy-tailed distribution with infinite second

moment is ruled out, the dispersion allowed by the ambiguity set might become too loose for

practical purposes. An effective usage of the robust mean-MAD framework therefore requires a

careful selection of the range, for which we now present some guidelines.

Observe that the variance of X(3) is d
2
(b − a), the maximal variance for distributions in the

ambiguity set P(µ,d). Hence, for fixed d, the variance becomes unbounded when b→∞. As a

consequence, this results in fairly crude bounds:

Proposition 2. As b→∞, the bound max
P∈P(µ,d)

EP[fn(X)] converges to

n · d
2

+
n∑
k=1

1

k

∑
k1+k2=k

max{0, k1a+ k2µ} ·
k!

k1!k2!
pk11 p

k2
2 (27)
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with p1 = d
2(µ−a)

and p2 = 1− d
2(µ−a)

.

Proof. Split the inner summation in (11) into three parts. First consider the summation over∑
i ki = k : k3 ≥ 2, hence those instances for which the value b occurs multiple times. Taking the

limit b→∞ inside of the summation and recognizing the fact that the probability mass on the

third point is O( 1

bk3
) gives

lim
b→∞

∑
∑
i ki=k:k3≥2

dk3 max{0, k1a+ k2µ+ k3b}
2k3(b−µ)k3

· k!

k1!k2!k3!
pk11 p

k2
2 = 0. (28)

Next consider
∑

i ki = k : k3 = 1, describing the instances for which the extremal point b occurs

precisely once. Taking the limit b→∞ inside the sum and using that the probability mass on the

point b is O( 1
b
) gives

lim
b→∞

∑
∑
i ki=k:k3=1

dmax{0, k1a+ k2µ+ b}
2(b−µ)

· k!

k1!k2!
pk11 p

k2
2 = k · d

2
·

∑
∑
i k1+k2=k−1

(k− 1)!

k1!k2!
pk11 p

k2
2 = k · d

2
.

(29)

The third part is then
∑

i ki = k : k3 = 0, representing the instances without occurrence of the point

b. Taking the limit inside of the summation we get

lim
b→∞

∑
∑
i ki=k:k3=0

max{0, k1a+ k2µ} ·
k!

k1!k2!
pk11 p

k2
2 =

∑
k1+k2=k

max{0, k1a+ k2µ} ·
k!

k1!k2!
pk11 p

k2
2 . (30)

This completes the proof. �

The proof reflects that large running maxima are likely due to a single large step. The feature is

caused by heavy-tailed distributions, and in queueing theory dubbed the single big jump principle

(see e.g., Foss et al. (2007)). This dominance of one step sharply contrasts intuition for light-

tailed distributions, where typically all steps together lead to large sums or maxima. The bound

(27) for E[Mn] grows to infinity as n→∞, rendering the bound useless for the expected all-time

maximum E[M ]. This is indeed anticipated, and can be understood as follows. Define a sequence

of random walks indexed by b with the extremal three-point distribution. Consider the limiting

all-time maximum M as b→∞. Assume that the random walk has negative drift (i.e., E[X]< 0).

Then the associated sequence of distributions of M =M(b) will converge to a proper limit M(∞).

However, as limb→∞P(µ,d) contains distributions with infinite second moment, Asmussen (2003),

Theorem X.2.1, says that E[M(∞)] will be infinite.

3.5. Setting the range to construct adequate bounds

We now present some guidelines for setting the range, based on the observation that many distri-

butions come with a MAD and standard deviation of comparable size. For the Pearson family of
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distributions (which includes the gamma and normal distribution) with mean µ and variance σ2,

the MAD d and variance are related as

d= 2ασ2p(µ) (31)

with α a constant depending on skewness and kurtosis and p(µ) the density in µ. For the exponential

distribution this relation gives d = (2/e)σ and for the normal distribution d = (
√

2/π)σ. Other

distributions for which the ratio d/σ is constant include the uniform distribution and discrete

distributions such as the Poisson, binomial, and negative binomial distribution. With this in mind,

in a way similar to constructing confidence intervals in statistical estimation, we then choose to

set the range as the mean plus or minus a constant times the MAD:

a= µ− k · d, b= µ+ k · d. (32)

Here we regard d as the natural scale of deviation, and k as a free parameter that sets the robustness

level. So we take the mean and MAD as given, and regard the range as tunable (using common

sense or statistical evidence) by the decision maker. We should stress that, while intuitive from a

probabilistic perspective, the rule (32) is only one of many ways to choose the parameters a, b.

We demonstrate (32) for a setting where we take the M/M/1 queue as the ‘true’ model. The

increment X now becomes the difference of two exponential random variables for which we have

a closed-form MAD expression in terms of the mean value of X (see the caption of Table 1). We

thus have reference values for µ and d, and can investigate the impact of k. Observe that the

bound grows almost linearly with k, in particular in heavy-traffic scenarios, and this underlines

the need for careful selection of the range. While the actual range of the M/M/1 queue spans all

real numbers, we see that restricting deviations to twice the MAD (k= 2) gives comparable model

performance. When reading Table 1, keep in mind that the overall goal in this paper is not to

approximate specific models (such as the M/M/1 queue), but rather to come with conservative,

robust estimates for an entire class of models that share the same mean-MAD-range properties. In

that sense, k = 2 is not better than k = 1.5 or k = 2.5, but rather expresses a different ambiguity

assessment or robustness level.

4. Extremal GI/G/1 queue

Let us now turn to the extremal GI/G/1 queue problem, as described in the introduction. Let Wn

be the waiting time of customer n. The sequence (Wn, n ≥ 0) with W0 = 0 satisfies the Lindley

recursion

Wn+1 = (Wn +Vn−Un)+, n≥ 0. (33)
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Table 1 The actual value and bounds of the expected steady-state waiting time E[W ] of the M/M/1 queue

with unit mean exponential interarrival times and exponential service times with mean ρ, where the increment X

has mean µ= ρ− 1 and MAD d= 2eρ−1

ρ+1
, with the range [a, b] set through the rule (32).

k
ρ E[W ] 1.5 1.75 2 2.25 2.5 3

0.1 0.01111 0.10497 0.16434 0.21535 0.25915 0.30116 0.40782
0.5 0.50000 0.56329 0.67919 0.79663 0.91459 1.02840 1.26462
0.6 0.90000 0.86690 1.03323 1.19770 1.36332 1.52804 1.85818
0.7 1.63333 1.41436 1.66589 1.91885 2.17142 2.42373 2.92850
0.8 3.20000 2.57273 3.01339 3.45454 3.89573 4.33672 5.21866
0.9 8.10000 6.21057 7.25250 8.29428 9.33642 10.37811 12.46184

0.99 98.01000 73.55537 85.81540 98.07540 110.33542 122.59543 147.11548

LetW be the steady-state waiting time. SinceWn
d
=Mn andW

d
=M the results for the random walk

maxima likely carry over to the waiting times. The main difference is that the step size X is now

interpreted as the difference V −U between the generic service time and generic interarrival time.

If one has mean-MAD information about both V and U this is more informative than mean-MAD

information about V −U , and this additional information should lead to even sharper bounds.

4.1. A complete picture

The GI/G/1 queue assumes that interarrival times and service times are independent, so it is

natural to assume that V has ambiguity set P(µV ,dV ) and U has ambiguity set P(µU ,dU ), where the

ambiguity sets now contain all distributions for univariate V and U , that is,

P(µV ,dV ) = {P : supp(V )⊆ [aV , bV ], EP(V ) = µV , EP |V −µV |= dV }

and

P(µU ,dU ) = {P : supp(U)⊆ [aU , bU ], EP(U) = µU , EP |U −µU |= dU} .

The extremal queue problem with mean-MAD dispersion information can then be phrased as

max
P∈P(µV ,dV )×P(µU ,dU )

E[f(X)], (34)

where E[f(X)] describes E[Wn] or cm(W ) and X is the random vector with elements

U1, V1,U2, V2, . . .. This is the classical setting of the extremal GI/G/1 queue treated in Rolski (1972),

Eckberg Jr (1977), Whitt (1984), Chen and Whitt (2019), but with MADs instead of variances

describing the ambiguity set. Let the random variables V(3) and U(3) follow the extremal three-point

distributions Ω(µV , dV , aV , bV ) and Ω(µU , dU , aU , bU), respectively.

Theorem 4. Consider the GI/G/1 queue with generic interarrival time U with ambiguity set

P(µU ,dU ) and generic service times V with ambiguity set P(µV ,dV ). Consider the tight upper bounds

for the transient mean waiting time E[Wn] and all cumulants of the steady-state waiting time W .
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(i) For given interarrival time U , the tight upper bounds follow from the service time V(3).

(ii) For given service time V , the tight upper bounds follow from the interarrival time U(3).

(iii) The overall tight upper bounds follow from interarrival time U(3) and service time V(3).

Proof. Like Theorem 1, the tight bounds for E[Wn] follow from the general upper bound in Ben-

Tal and Hochman (1972) on the expectation of a convex function of the random vector (X1, . . . ,Xn)

with mean-MAD ambiguity, but now with Xi replaced by Vi−Ui. The function describing E[Wn]

(see Theorem 1) is indeed convex in both Vi and Ui, and hence the result follows. Similarly, Spitzer’s

formula for cm(W ) (see Theorem 2) is also convex in both Vi and Ui, and hence the tight bounds

for cm(W ) follow from our proof of Theorem 2. �

Using the earlier results for the random walk, we present in EC.3 expressions that are helpful in

evaluating the tight bounds. Table 2 shows an example of the tight bound for E[W ] associated with

(U(3), V(3)), also compared with other known bounds that require variance information (see EC.4).

The variance of the extremal three-point distribution Ω(µ,d, a, b) is d
2
(b−a), the maximal variance

for distributions in the ambiguity set P(µ,d). We thus know the variances of U(3) and V(3), and can

calculate the other three bounds. In heavy traffic, Kingman’s bound is known to be asymptotically

correct, and hence the other three (sharper) bounds also converge to the heavy-traffic limit as ρ ↑ 1.

See EC.5 for more numerical results. Notice that Table 2 is not meant to compare mean-MAD

with mean-variance bounds. The displayed differences merely express different ways of dealing

with ambiguity. Also remember that the mean-MAD bounds in Theorem 4 are crucially influenced

by the choice of range, in this example set to [0,10] for both the interarrival and service time

distributions.

Table 2 Bounds for (1− ρ)E[W ]/ρ for (µU , dU , aU , bU ) = (1,1,0,10) and (µV , dV , aV , bV ) = (ρ,0.1,0,10).

ρ Thm. 4 C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 4.06613 7.00020 7.25000 27.50000
0.2 2.52306 5.27810 5.75000 13.75000
0.5 2.03141 3.63750 4.25000 5.50000
0.7 2.49160 3.17138 3.60714 3.92857
0.8 2.61932 3.00523 3.31250 3.43750
0.9 2.69802 2.86711 3.02778 3.05556

0.95 2.72609 2.80627 2.88816 2.89474
0.99 2.74547 2.76091 2.77753 2.77778

4.2. Further comparison between MAD and variance

For the variance counterpart, Chen and Whitt (2019) also formulate a semi-infinite linear opti-

mization problem. The crucial difference is that they cannot use the univariate function extension
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(as explained in Section 2), and hence should work directly with the multivariate function. This

in turn implies that the dual problem cannot be solved explicitly (like in the univariate case), let

alone that there is a zero duality gap. Another complication is that the multivariate function based

on Spitzer’s formulas (8) and (11) cannot be expressed directly in V and U , but rather in terms

of convolutions of the distributions of V and U . Chen and Whitt (2019) resolve these considerable

challenges by several ingenious arguments, a.o. exploiting the description of W as a fixed point

of the stochastic equation W
d
= (W + V −U)+, and by imposing additional regularity conditions

on V . In this way, Chen and Whitt (2019) prove a similar but weaker result than Theorem 4 for

the exact same setting, but with variance as dispersion measure. They show that the extremal

distributions of U and V both have supports on at most three points.

An important message of this paper is that with MAD the extremal distribution remains unal-

tered going from the univariate to the multivariate setting, and that with variance this reasoning

fails. In fact, one intuitively expects formidable challenges when seeking for extremal distributions

under variance constraints. This intuition is confirmed by Chen and Whitt’s formulation of the

extremal distribution as the solution of a non-convex nonlinear optimization problem. While this

optimization problem can be solved numerically, a closed-form solution and hence identification of

the extremal distribution remains out of reach.

Under variance constraints, it is conjectured that the tight bound comes from specific two-point

distributions for both U and V . In fact, the bound (EC.14) in Table 2 holds under the assumption

that this conjecture is true, and was shown by Chen and Whitt (2019) to be very close to the tight

upper bound. Theorem 4 rules out a similar conjecture in the MAD setting. The tight bounds in

Theorem 4 always involve three-point distributions.

4.3. Data-driven setting

In applications, you may only have a limited number n of observed interarrival and service times.

We consider this realistic setting where knowledge of the stochastic nature is restricted to a set of

samples generated independently and randomly according to an unknown distribution P. To apply

the mean-MAD framework in this context, we need to construct the ambiguity set that is supposed

to contain this unknown P. We will show that we can efficiently estimate the mean, MAD, and β,

and hence compute robust bounds that are useful in realistic settings.

Let µ(V )
n , d(V )

n and β(V )
n denote the consistent estimators of µV , dV and βV = P(V ≥ µV ), respec-

tively, based on n observed service times v1, ..., vn, and defined as µ(V )
n = v̄ = 1

n

∑n

i=1 vi, d
(V )
n =

1
n

∑n

i=1 |vi− v̄| and β(V )
n = 1

n

∑n

i=1 1[v̄,∞)(vi) as consistent estimators. We define similar estimators

based on n observed interarrival times. Next, we demonstrate the mean-MAD bounds in this data-

driven setting. Since statistical accuracy of the estimators increases with the number of samples,
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we expect the bounds to converge as n increases. Figure 4 illustrates two sample paths representing

the estimates for the upper and lower bound and their convergence to the tight mean-MAD bounds,

where V and U both follow a uniform distribution on the intervals [0,5] and [0,10], respectively.

Observe that convergence settles in quickly.

3-point

3-point sample

2-point sample

2-point

200 400 600 800 1000

0.5

1.0

1.5

n

max
P∈P

(µ̂,d̂)

/ min
P∈P

(µ̂,d̂,β̂)

EP[W ]

Figure 4 Estimation of the mean-MAD ambiguity upper and lower bound. The red and green line represent the

true upper and lower bound, respectively, and the dashed lines represent bound estimates which are computed

using the realizations v1, ..., vn drawn from a U(0,5) distribution and u1, ..., un sampled from a U(0,10) distribution.

We have also performed extensive simulations to investigate the error between the estimated

and true bounds for several values of the sample size n. We generate 1,000 sample paths of sample

size 10,000 and compute the corresponding mean relative error. Table 3 displays the mean absolute

percentage error (MAPE) for both the upper and lower bound estimates, where the interarrival time

is U(0,10) distributed and we differentiate between a 50% and 90% utilization level. Observe that

estimating the lower bound is slightly harder than estimating the upper bound. Indeed, the lower

bound requires estimating the additional parameters βV and βU . Also observe that the relative

error increases with the system utilization.

Table 3 MAPE of the bound estimates for n∈ {150,200,500,1000,2000,5000,10000}. The interarrival times are

U(0,10) distributed and the results differentiate between two service time distributions and the upper and lower

mean-MAD bounds. Sample paths resulting in instable systems were removed and done over.

MAPE with sample size n
Service times Bound 150 200 500 1000 2000 5000 10000

U(0,5) UB 15.44% 13.22% 8.31% 5.84% 4.28% 2.72% 1.89%
LB 25.51% 22.30% 13.86% 9.75% 7.08% 4.53% 3.16%

U(0,9) UB 33.35% 30.93% 21.93% 16.35% 13.29% 8.92% 6.41%
LB 36.27% 35.01% 28.72% 22.30% 17.35% 10.77% 7.58%
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To further highlight the role of system utilization, we perform a similar data-driven experiment,

but now with ground truth a single trace of n customers in an M/M/1 queue. The results are

shown in Figure 5. Indeed, as ρ increases, more observations are required for accurate parameter

estimates and hence accurate bounds.
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n

min
P∈P

(µ̂,d̂,β̂)

EP[W ]

Figure 5 Estimation of the mean-MAD ambiguity lower bound for the M/M/1 queue. The solid red, green,

and blue lines depict the bounds for ρ= 0.8,0.9,0.95, respectively. The dashed lines represent the corresponding

estimates of the bounds, where the Ui are sampled from a unit mean exponential distribution and the Vi are

exponentially distributed with mean ρ.

Taken together, we conclude that the robust bounds are useful for realistic data-driven settings

that require statistical estimation of the summary statistics such as the mean and MAD.

5. Conclusions

This paper explains why MAD simplifies comparable variance-based optimization problems, in a

way that is almost unreasonably effective, resulting in a full solution to the extremal queue problem

with mean-MAD constraints. When partial information is available in the form of mean, range

and MAD, we have obtained the sharpest possible bounds. Through basic statistical estimation of

this partial information, the GI/G/1 queue becomes a data-driven model that adjusts to available

training data, for which this paper presents tight performance guarantees.

The key idea of using MAD instead of variance as dispersion measure, is likely applicable to

many other queueing system. Examples are queues with dependency and correlation structures in

the series {Un} and {Vn}, the multi-server GI/G/c queue and networks of queues. Indeed, most of

the key performance measures for such systems are expectations of functions that are convex in

the random variables (see e.g., Shaked and Shanthikumar (1988)), and therefore the mean-MAD

approach can be used. The MAD perspective is of interest beyond queueing theory, because the

search for extremal distributions of convex functions is relevant in many other settings. Moreover,
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whenever a performance measure can be viewed as a convex function of i.i.d. random variables with

mean-MAD ambiguity (e.g., nested max-operators in production systems; see Glasserman (1997),

Bradley and Glynn (2002)), our approach will identify the extremal distribution and tight bounds.

The MAD approach stays close to the common practice in the stochastic field, namely to use

probability distributions to model uncertainty. The nucleus of the MAD approach consists of the

explicitly solvable dual LP described in Section 2. A simple reasoning then showed that this solution

is independent of the precise objective function (in this paper describing waiting time moments

of the GI/G/1 queue). Hence, the MAD approach is a generic, computationally tractable way to

analyze stochastic processes, such as random walks and queues.

Let us conclude with a broader robust optimization perspective. It is well-known that the use of

probability distributions in stochastic systems often leads to computationally intractability (e.g.,

calculation of high dimensional convolutions). Therefore, Bandi and Bertsimas (2012), Bandi et al.

(2015), Whitt and You (2018) suggest to use uncertainty sets instead of probability distributions.

The MAD approach described in this paper can serve in many situations as an alternative (not

per se better), bringing new opportunities. The uncertainty set approach yields a worst-case sce-

nario. Our approach yields both worst-case and best-case distributions, i.e., both upper and lower

bounds. In stochastic systems one often studies convex functions in the stochastic variables. In

the uncertainty set approach it is in general hard (in fact, NP-hard) to find worst-case scenarios

for such convex functions. Our approach can easily find worst-case distributions as shown in this

paper.
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E-Companion to “MAD dispersion measure makes extremal
queue analysis simple”

EC.1. Properties of MAD

We recall some well known properties of the MAD, see e.g. Ben-Tal and Hochman (1985). Denote

by σ2 the variance of the random variable X, whose distribution is known to belong to the set

P(µ,d). Then
d2

4β(1−β)
≤ σ2 ≤ d(b− a)

2
.

In particular, since

d2 ≤ 4β(1−β)σ2 ≤ σ2,

it holds that d ≤ σ. For a proof, we refer the reader to Ben-Tal and Hochman (1985). For some

distributions, an explicit formula for d is available:

• Uniform distribution on [a, b]:

d=
1

4
(b− a)

• Normal distribution N(µ,σ2):

d=

√
2

π
σ

• Gamma distribution with parameters λ and k (for which µ= k/λ):

d=
2kk

Γ(k) exp(k)

1

λ
.

The MAD is known to satisfy the bound

0≤ d≤ 2(b−µ)(µ− a)

b− a
. (EC.1)

Let β = P(X ≥ µ). For example, in the case of continuous symmetric distribution of X we know

that β = 0.5. This quantity is known to satisfy the bounds:

d

2(b−µ)
≤ β ≤ 1− d

2(µ− a)
. (EC.2)

EC.2. Primal-dual proof of Theorem 3

In a similar manner as for the upper bound, we will show that the best-case distribution is a

two-point distribution. We again consider the convex univariate measurable function f(x) that has

finite values on [a, b]. Under P(µ,d,β) ambiguity of the random variable X we now need to solve

min
P(x)≥0

∫
x

f(x)dP(x)

s.t.

∫
x

1{x≥µ}dP(x) = β,

∫
x

|x−µ|dP(x) = d,

∫
x

xdP(x) = µ,

∫
x

dP(x) = 1,

(EC.3)
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which is a semi-infinite linear program with four equality constraints.

Consider the dual of (EC.3),

max
λ0,λ1,λ2,λ3

λ0β+λ1d+λ2µ+λ3

s.t. f(x)−λ01{x≥µ}−λ1|x−µ| −λ2x−λ3 ≥ 0, ∀x∈ [a, b].
(EC.4)

Define F (x) = λ01{x≥µ} + λ1|x− µ|+ λ2x+ λ3. Then the inequality in (EC.4) can be written as

F (x)≤ f(x), ∀x, i.e. F (x) minorizes f(x). Note that in our new situation F (x) has both a kink and

a discontinuity at x= µ, as depicted in Figure EC.1. The dual problem boils down to finding the

tightest minorant that maximizes the dual problem’s objective value. The minorant F (x) touches

the epigraph of f(x) in at most two points on opposite sides of µ (i.e., x1 ≤ µ ≤ x2). This is a

consequence of the supporting hyperplane theorem and the jump discontinuity at x= µ. The dual

problem now becomes

max
λ0,λ1,λ2,λ3

λ0β+λ1d+λ2µ+λ3

s.t. λ0 +λ1(x1−µ) +λ2x1 +λ3 = f(x1),

−λ1(x2−µ) +λ2x2 +λ3 = f(x2).

(EC.5)

Now using Lagrange duality, we can show that the optimal solution satisfies

x1 = µ+
d

2β
, x2 = µ− d

2(1−β)
,

which corresponds to the values of v1 and v2 stated in Theorem 3. Substituting this solution and

solving for λ0, λ1, λ2, and λ3 gives

λ0 = f(v1)− f(v2) +
λ1d

(1−β)
− (λ1 +λ2)d

2β(1−β)
, λ3 = f(v2) +

(λ2−λ1)d

2(1−β)
−λ2µ,

and hence the objective value of the dual becomes βf(v1) + (1− β)f(v2). Note that we have two

free variables that can be chosen in a way that makes the solution dual feasible. The optimal

probabilities of (EC.3) are obtained by solving the linear system resulting from (EC.3), which

produces the solution stated in Theorem 3. Finally, one can verify that the primal and dual objective

values are the same and that these results can be extended to the multivariate case in a manner

analogous to that of Theorem 1.

EC.3. Representations for the tight bounds

We will now present some efficient ways of calculating the tight bounds identified in this paper.

But first we show a way to verify the contour integral representation.

ec2



x

f(x)

F (x)

µv2 v1

Figure EC.1 Some convex function f(x) and its non-continuous piecewise linear minorant F (x).

EC.3.1. Numerical experiments with contour integrals

Numerical aspects of integrals of the type (17) have been discussed in e.g., Abate et al. (1993),

Janssen et al. (2015), Chen and Whitt (2020). For distributions with support on a finite set of

points, potential numerical problems can arise, because |Re(φX(u))| does not converge to zero as

|u| →∞; see Abate and Whitt (1992), Chen and Whitt (2020). For the three-point distributions

required in this paper we have performed extensive numerical experiments with (19). These experi-

ments confirmed that the integrals can be calculated up to high accuracy with standard integration

routines in Mathematica (our code is available upon request).

For many parameter values a, b,µ, d such that (EC.1) holds, we have calculated E[M ] for generic

increment X(3) using (19), and compared this with results from extensive stochastic simulations.

We also compared the results with a third numerical procedure, known to be extremely stable and

accurate. Let us explain the third procedure, which might be of independent interest.

Choose the boundaries of the support as multiples of β = |µ| by writing that a=−sβ and b=mβ

with s,m positive integers. Denote by Mβ = M/β the normalized steady-state waiting time. We

then get

Mβ
d
= (Mβ +Xβ)+,

with Xβ =X/β a discrete random variable with support {−s,−1,m} and MAD

dβ :=E[|Xβ −E[Xβ]|] =
1

β
E[|X −E[X]|] = d.

Define Xβ =Aβ − s, so that

Mβ
d
= (Mβ +Aβ − s)+

for a discrete random variable Aβ with support {0, s−1, s+m} and probability generating function

E[zAβ ] = pa + pµz
s−1 + pbz

m+s,
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with

pa =
dβ

2(s− 1)
, pµ = 1− dβ

2(s− 1)
− dβ

2(m+ 1)
, pb =

dβ
2(m+ 1)

.

Notice that E[Aβ] = s− 1. The resulting discrete queueing system is sometimes referred to as a

bulk service queue. Let r0 be the unique zero of zs − E[zAβ ] with real z > 1. For any ε > 0 with

1 + ε < r0,

E[wMβ ] = exp
( 1

2πi

∫
|z|=1+ε

ln
(w− z

1− z

) (zs−E[zAβ ])′

zs−E[zAβ ]
dz
)

(EC.6)

holds when |w|< 1 + ε. Alternatively,

E[wMβ ] =
(s−E[Aβ])(w− 1)

ws−A(w)

s−1∏
k=1

w− zk
1− zk

(EC.7)

that holds for all w, |w|< r0, in which z1, . . . , zs−1 are the s−1 zeros of zs−E[zAβ ] in |z|< 1. Upon

differentiation, (EC.6) and (EC.7) provide expressions for all cumulants of Mβ that are known to

allow for accurate numerical evaluation, see Janssen et al. (2015). We have then performed for a

wide range of parameters, the following experiment:

1. Fix β, and then choose integers s and m. In this way we create a standard bulk service queue

with discrete-valued generic increment Aβ.

2. For ranging dβ, calculate E[Mβ] using root-finding procedures and (EC.7) or using the contour

integral (EC.6).

3. Calculate

E[M ] =
−1

2πi

∫
C

log(1− (pae
−ua + pbe

−ub + pce
−uc))

u2
du.

4. Check whether E[M ] = βE[Mβ].

EC.3.2. Numerical procedures for the GI/G/1 queue

Calculations for E[Wn] and cn(W ) in the GI/G/1 queue can be performed using similar expressions

as for the random walk. Let the random variable V(3) follow a three-point distribution on values

{s1, s2, s3} with probabilities

p1 =
dV

2(µV − aV )
, p2 = 1− dV

2(µV − aV )
− dV

2(bV −µV )
, p3 =

dV
2(bV −µV )

, (EC.8)

with 0≤ aV <µV < bV , so that V(3) has mean µV and MAD dV . Similarly, let U(3) have a three-point

distribution on values {t1, t2, t3} with probabilities

r1 =
dU

2(µU − aU)
, r2 = 1− dU

2(µU − aU)
− dU

2(bU −µU)
, r3 =

dU
2(bU −µU)

(EC.9)

and 0≤ aU <µU < bU , so that U(3) has mean µU and MAD dU .
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We then have the representation, see also Chen and Whitt (2019),

E[Wn] =
n∑
k=1

1

k

∑
∑
i ki=k,

∑
j lj=k

max{0,
3∑
i=1

kisi−
3∑
j=1

liti} ·P (k1, k2, k3) ·R(l1, l2, l3) (EC.10)

with

P (k1, k2, k3) =
k!

k1!k2!k3!
pk11 p

k2
2 p

k3
3 , R(l1, l2, l3) =

k!

l1!l2!l3!
rl11 r

l2
2 r

l3
3 ,

which requires summing O(n5) terms.

Let φV(3)(s) and φU(3)
(s) denote the moment generating functions of V(3) and U(3). The tight

upper bounds on cm(W ) are given by

cm(W )≤ (−1)m

2πi

∫
C

log(1−φV(3)(−u)φU(3)
(u))

um+1
du, (EC.11)

where C is a contour to the left of, and parallel to, the imaginary axis, and to the right of any

singularities of log(1− φV(3)(−u)φU(3)
(u)) in the left half plane. Again comparing with extensive

simulation, we have found the expression (EC.11) accurate and hence suitable for calculating the

tight bounds.

EC.4. Distribution-free upper bounds for the GI/G/1 queue

Consider the steady-state queue length W in the GI/G/1 queue, which satisfies W
d
= (W +V −U)+.

Denote by σ2
U and σ2

V the variances of U and V , respectively. Let ρ=E[V ]/E[U ]< 1. The following

bounds on E[W ] only require information about the first two moments of U and V :

• Kingman’s upper bound:

E[W ]≤ σ2
V +σ2

U

2(E[U ]−E[V ])
. (EC.12)

• Daley’s upper bound:

E[W ]≤ σ2
V + ρ(2− ρ)σ2

U

2(E[U ]−E[V ])
. (EC.13)

• Upper bound of Chen and Whitt (2019) based on the two-point conjecture:

E[W ]≤ σ2
V +κ(ρ)σ2

U

2(E[U ]−E[V ])
, (EC.14)

with κ(ρ) = 2ρ(1− ρ)/(1− δ) and δ ∈ (0,1) the solution of δ= exp(−(1− δ)/ρ).

EC.5. Further numerical results for the bounds

We now complement Table 2 with some more numerical values for the bounds on E[W ]. Table

EC.1 gives the unscaled values of E[W ] for the same parameter values as in Table 2.

The variance bounds are often reported in terms of the squared coefficient of variation (variance

divided by the square of the mean), see Chen and Whitt (2019). For the extremal distributions

with (µV , dV , aV , bV ) = (ρ, dV ,0, bV ) and (µU , dU , aU , bU) = (1, dU ,0, bU) this gives

c2
V =

σ2
V

µ2
V

=
dV bV
2ρ2

, c2
U =

σ2
U

µ2
U

=
dUbU

2
.
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Table EC.1 Bounds for E[W ] for (µU , dU , aU , bU ) = (1,1,0,10) and (µV , dV , aV , bV ) = (ρ,0.1,0,10).

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.45179 0.77780 0.80556 3.05556
0.2 0.63077 1.31953 1.43750 3.43750
0.5 2.03141 3.63750 4.25000 5.50000
0.7 5.81373 7.39989 8.41667 9.16667
0.8 10.47728 12.02090 13.25000 13.75000
0.9 24.28220 25.80400 27.25000 27.50000

0.95 51.79564 53.31910 54.87500 55.00000
0.99 271.80153 273.33100 274.97500 275.00000

Fixing the squared coefficient of variations c2
V and c2

U is equivalent with choosing the MADs as

dV =
2ρ2c2

V

bV
, dU =

2c2
U

bU
. (EC.15)

We next present in Tables EC.2-EC.7 some further numerical results, for c2
U = c2

V = 0.5 and

c2
U = c2

V = 4.

Table EC.2 Bounds for E[W ] for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10) with dV , dU

as in (EC.15) and c2U = c2V = 0.5.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.00785 0.05278 0.05555 0.28055
0.2 0.02230 0.11320 0.12500 0.32500
0.5 0.14921 0.43875 0.50000 0.62500
0.7 0.48818 1.06499 1.16667 1.24167
0.8 0.99509 1.87709 2.00000 2.05000
0.9 2.85149 4.35540 4.50000 4.52500

0.95 7.29378 9.34441 9.50000 9.51250
0.99 46.78335 49.33560 49.50000 49.50250

Table EC.3 Bounds for E[W ] for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10) with dV , dU

as in (EC.15) and c2U = c2V = 4.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.09358 0.42224 0.44444 2.24444
0.2 0.26429 0.90562 1.00000 2.60000
0.5 2.05142 3.51000 4.00000 5.00000
0.7 6.76335 8.51991 9.33333 9.93333
0.8 13.18168 15.01670 16.00000 16.40000
0.9 32.95685 34.84320 36.00000 36.20000

0.95 72.84232 74.75520 76.00000 76.10000
0.99 392.74278 394.68400 396.00000 396.02000
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Table EC.4 Bounds for E[W ] for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10) with dV , dU

as in (EC.15), c2U = 4 and c2V = 0.5.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.07003 0.40280 0.42500 2.22500
0.2 0.15280 0.81812 0.91250 2.51250
0.5 0.91273 2.63500 3.12500 4.12500
0.7 3.73777 5.66158 6.47500 7.07500
0.8 7.53710 9.41674 10.40000 10.80000
0.9 18.82048 20.66820 21.82500 22.02500

0.95 41.31986 43.16770 44.41250 44.51250
0.99 221.30939 223.16700 224.48200 224.50200

Table EC.5 Bounds for E[W ] for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10) with dV , dU

as in (EC.15), c2U = 0.5 and c2V = 4.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.02599 0.07222 0.07500 0.30000
0.2 0.10463 0.20070 0.21250 0.41250
0.5 1.00498 1.31375 1.37500 1.50000
0.7 3.39670 3.92332 4.02500 4.10000
0.8 6.81534 7.47709 7.60000 7.65000
0.9 17.72431 18.53040 18.67500 18.70000

0.95 40.05188 40.93190 41.08750 41.10000
0.99 219.91292 220.85300 221.01700 221.02000

Table EC.6 Bounds for (1− ρ)E[W ]/ρ for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10)

with dV , dU as in (EC.15) and c2U = c2V = 0.5.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.07070 0.47502 0.50000 2.52500
0.2 0.08922 0.45281 0.50000 1.30000
0.5 0.14921 0.43875 0.50000 0.62500
0.7 0.20922 0.45642 0.50000 0.53214
0.8 0.24877 0.46927 0.50000 0.51250
0.9 0.31683 0.48393 0.50000 0.50277

0.95 0.38388 0.49181 0.50000 0.50065
0.99 0.47255 0.49833 0.50000 0.50002
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Table EC.7 Bounds for (1− ρ)E[W ]/ρ for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10)

with dV , dU as in (EC.15) and c2U = c2V = 4.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.84228 3.80016 4.00000 20.20000
0.2 1.05719 3.62248 4.00000 10.40000
0.5 2.05142 3.51000 4.00000 5.00000
0.7 2.89858 3.65139 4.00000 4.25714
0.8 3.29542 3.75418 4.00000 4.10000
0.9 3.66187 3.87146 4.00000 4.02222

0.95 3.83381 3.93449 4.00000 4.00526
0.99 3.96710 3.98671 4.00000 4.00020

Table EC.8 Bounds for (1− ρ)E[W ]/ρ for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10)

with dV , dU as in (EC.15), c2U = 4 and c2V = 0.5.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.63030 3.62516 3.82500 20.02500
0.2 0.61120 3.27248 3.65000 10.05000
0.5 0.91273 2.63500 3.12500 4.12500
0.7 1.60190 2.42639 2.77500 3.03214
0.8 1.88427 2.35418 2.60000 2.70000
0.9 2.09116 2.29646 2.42500 2.44722

0.95 2.17473 2.27199 2.33750 2.34276
0.99 2.23545 2.25421 2.26750 2.26770

Table EC.9 Bounds for (1− ρ)E[W ]/ρ for (µV , dV , aV , bV ) = (ρ, dV ,0,10) and (µU , dU , aU , bU ) = (1, dU ,0,10)

with dV , dU as in (EC.15), c2U = 0.5 and c2V = 4.

ρ Tight
(Thm. 4)

C & W
(EC.14)

Daley
(EC.13)

Kingman
(EC.12)

0.1 0.23392 0.65002 0.67500 2.70000
0.2 0.41852 0.80281 0.85000 1.65000
0.5 1.00498 1.31375 1.37500 1.50000
0.7 1.45573 1.68142 1.72500 1.75714
0.8 1.70384 1.86927 1.90000 1.91250
0.9 1.96937 2.05893 2.07500 2.07778

0.95 2.10799 2.15431 2.16250 2.16316
0.99 2.22134 2.23084 2.23250 2.23253
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