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Abstract. The subgame perfect equilibrium in stationary strategies (SSPE) is the most
important solution concept in applications of stochastic games, making it imperative to
develop efficient methods to compute an SSPE. For this purpose, this paper develops an
interior-point differentiable path-following method (IPM), which establishes a connection
between an artificial logarithmic barrier game and the stochastic game of interest by add-
ing a homotopy variable. IPM brings several advantages over the existing methods for
stochastic games. On the one hand, IPM provides a bridge between differentiable path-
following methods and interior-point methods and remedies several issues of an existing
homotopy method called the stochastic linear tracing procedure (SLTP). First, the starting
stationary strategy profile can be arbitrarily chosen. Second, IPM does not need switching
between different systems of equations. Third, the use of a perturbation term makes IPM
applicable to all stochastic games rather than generic games only. Moreover, a well-chosen
transformation of variables reduces the number of equations and variables by roughly one
half. Numerical results show that the proposedmethod is more than three times as efficient
as SLTP. On the other hand, the stochastic game can be reformulated as a mixed comple-
mentarity problem and solved by the PATH solver. We employ the proposed IPM and the
PATH solver to compute SSPEs. Numerical results evince that for some stochastic games
the PATH solver may fail to find an SSPE, whereas IPM is successful in doing so for all
stochastic games, which confirms the reliability and stability of the proposed method.
Summary of Contribution: This paper incorporates the interior-point methods into a
differentiable path-following method for computing stationary equilibria for stochastic
games. This novel method brings excellent computational advantages and remedies
several issues with the existing methods for stochastic games. We prove the global conver-
gence of the proposed method and employ this method to solve numerous randomly
generated stochastic games with different scales. Numerical results further confirm the
high efficiency, stability, and universality of this method for stochastic games.

History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms—
Continuous.

Funding: This work was partially supported by a grant from Research Grants Council of the Hong
Kong Special Administrative Region Government [GRF: CityU 11304620].

Supplemental Material: The software that supports the findings of this study is available within the paper
and its Supplementary Information [https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.
1139] or is available from the IJOC GitHub software repository (https://github.com/INFORMSJoC)
at [http://dx.doi.org/10.5281/zenodo.5381196].
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1. Introduction
The concept of stochastic game was coined by Shapley
(1953). As a cornerstone in the area of game theory, a
stochastic game enriches the model of repeated games
and has been extensively applied in a large body of
situations of interest such as economics and inventory
and supply chain management; see, for example,
Chatterjee et al. (1993), Karatzas and Sudderth (1994),
Ericson and Pakes (1995), Banks and Duggan (2000),

Cachon and Netessine (2004), and Olsen and Parker
(2014). A stochastic game of interest models a dynam-
ic process played by a finite number of players in a se-
quence of stages, which vary with some observable
states. Specifically, at the beginning of the first stage,
all players are in the same initial state. They select
their own actions independently and simultaneously,
and they get their instantaneous payoffs immedi-
ately. Each player is subsequently informed about the
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actions of the other players at this stage, and the game
moves to the second stage. The new state is selected
with a probability that is based on the outcome of a
chance experiment, which is determined by the previ-
ous state and action profile. The procedure is repeated
over an infinite number of stages, and a series of such
repetitive stage games gives rise to a stochastic game.

Subgame perfection is broadly considered a desir-
able property of an equilibrium. Therefore, as men-
tioned in Fudenberg and Tirole (1991), a subgame
perfect equilibrium in stationary strategies (SSPE) is
one of the most important concepts in stochastic
games. A stationary strategy depends only on the cur-
rent state rather than the entire history of states and ac-
tion profiles, which is consistent with the principle of
“letting bygones be bygones”. The existence of station-
ary equilibria in stochastic games has been studied ex-
tensively in earlier papers; see He and Sun (2017) and
Jaśkiewicz and Nowak (2018) for wonderful reviews.
Shapley (1953) proved the existence of stationary equi-
libria for zero-sum games with finite action and state
spaces. Fink (1964) and Sobel (1971) extended Shapley’s
model to general n-person cases. For the model with a fi-
nite state and action space, they showed the existence of
an SSPE. Solan (1998) gave proof to the existence of an
SSPE for an n-player discounted stochastic game with
measurable action and state spaces. Maitra and Sudderth
(1998) discussed several sufficient conditions for the exis-
tence of an SSPE under a Borel state space and compact
metric action spaces. Moreover, another related work
proposed by Nowak and Raghavan (1992) demonstrated
that every non-zero-sum discounted stochastic game
with measurable state space and compact metric action
spaces admits a stationary correlated equilibrium with
symmetric information.

The computation of SSPEs is very significant in
applications of stochastic games, as stated in McKelvey
and McLennan (1996), Pakes and McGuire (2001), and
Herings and Peeters (2004). However, this computation
remains a challenging problem because the structure of
stochastic games is very complicated. Homotopy meth-
ods as proposed by Scarf (1967) Eaves (1972) and are a
class of powerful methods for solving problems that can
be formulated as a fixed point problem; see Saigal (1983).
Examples of such problems are computing competitive
equilibria in general equilibrium models (see, for in-
stance, Den Elzen et al. (1994) and Zhan and Dang
(2018)), computing equilibria in noncooperative game
theory (see Herings and Peeters 2010 and Chen and
Dang 2021),finding a solution to the variational inequali-
ty problem (see Zhao and Li 2001 and Zhan et al. 2020),
and solving the piecewise linear approximation of
mixed complementarity problems (MCPs) (see Ferris
et al. 2000).

So far, there have been several homotopy-based path-
following methods to compute SSPEs for stochastic

games. For instance, a stochastic linear tracing procedure
(SLTP) was developed in Herings and Peeters (2004),
which extended a reasoningprocess inHarsanyi and Sel-
ten (1988) for equilibrium selection in normal-form
games to the class of stochastic games and constructed a
differentiable path converging to an SSPE for a generic
finite discounted stochastic game. SLTP is the first glob-
ally convergent algorithm to solve for an SSPE in a sto-
chastic game, indicating that homotopy methods can be
applied to stochastic games as well. Govindan and
Wilson (2009) extended the global Newton method to
stochastic games, which induced a piecewise smooth
homotopy path for finding SSPEs for any generic
stochastic game. Eibelshäuser and Poensgen (2019) de-
fined a Markov quantal response equilibrium with re-
gard to a precision parameter and developed a logit
homotopy path-following method to approach an
SSPE for any stochastic game as the precision parame-
ter goes to infinity. More recently, Li and Dang (2020)
developed a modified version of SLTP with arbitrary
starting point to compute an SSPE for any finite
discounted stochastic game.

SLTP as developed by Herings and Peeters (2004) is
based on game-theoretic arguments to select a particular
SSPE. However, SLTP has not been designed to achieve
the highest numerical efficiency. The starting stationary
strategy profile of SLTP cannot be arbitrarily chosen but
is a combination of solutions to several Markov decision
problems, which have to be computed explicitly. Be-
sides, the homotopy path of the classic SLTP is only
piecewise differentiable, and one has to switch between
several different systems of equations to follow it, which
leads to additional computational burden. In Herings
and Peeters (2004), it is shown that the switching be-
tween different systems can be avoided by a suitably
chosen transformation of variables, a smoothing tech-
nique used in other works as well (see Herings and Pee-
ters (2001) and Herings and Schmedders (2006)), but this
approach also leads to an increase in computation time.

Through Karush-Kuhn-Tucker conditions, one can re-
formulate the problem of computing an SSPE as an
equivalent problem of finding a solution to an MCP,
which is a commonplace for describing applications in
operations research, engineering, economics, and their
related fields. Excellent reviews on these applications
can be found in Murphy et al. (2016), Gutierrez et al.
(2017), and the references therein. A number of ap-
proaches have been proposed for providing numerical
solutions to MCPs such as a nonmonotone stabilized
Newton method developed in Dirkse and Ferris (1995)
and a semismooth algorithm introduced inMunson et al.
(2001). Interior-point methods were first proposed for
nonlinear programming in Fiacco andMcCormick (1968,
1990) and have been substantially developed in the liter-
ature to solve large-scale convex optimization problems;
see, for instance, Ye (1991, 1992, 2011). The key idea of

Dang, Herings, and Li: An Interior-Point Differentiable Path-Following Method
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the interior-point technique is to restrict the points on
the “path” to the interior of the feasible set, thereby by-
passing many boundary points. The application of
interior-point methods to complementarity problems
has attracted much attention in the literature. Simantira-
ki and Shanno (1997) introduced an infeasible interior-
point method to compute a solution to the linear
complementarity problem. Huang and Mehrotra (2017)
developed a modified potential reduction interior-point
method to solve monotone complementarity problems.
An interior-point algorithm based on a modification of
Newton’s method was employed by Gutierrez et al.
(2017) to solve mixed nonlinear complementarity prob-
lems. Although some of the mentioned methods have
an excellent numerical performance for MCPs, the con-
vergence or stability of these methods very much de-
pends on the structure of the original problems. Hence,
the existing methods to solve MCPs may fail to find
SSPEs for stochastic games.

In the past decade, the idea of interior-point meth-
ods has been incorporated with homotopy methods
and applied in market equilibrium problems and
norm-form games, which presents satisfactory conver-
gence properties and numerical performance. Some
wonderful reviews about applications of homotopy-
based interior-point methods can be found in Dang
et al. (2011), Zhu et al. (2012), and Chen and Dang
(2016). It is therefore natural to ask whether one can
extend the “homotopy-based interior-point” idea to
stochastic games and if the nice performance of the
interior-point technique and good convergence prop-
erties of the homotopy methods are simultaneously
preserved in this complicated class of games.

In this paper, we develop an interior-point differen-
tiable path-following method (IPM) to compute SSPEs

for finite discounted stochastic games. We achieve this
by the incorporation of a logarithmic barrier term into
the original payoff function and formulate an artificial
barrier game, which deforms continuously from a
trivial game to the stochastic game of interest. With
this barrier game, a homotopy system is developed
whose solutions induce an everywhere smooth path.
Following the path, an SSPE for the stochastic game of
interest is approximated as t descends to 0.

An advantage of IPM is that the starting point can
be arbitrarily chosen, without the need to solve any
optimization problem. Different starting points may
lead to different SSPEs, and therefore repeated app-
lications of IPM with randomly generated starting
points may find various SSPEs. IPM introduces several
advantages over SLTP and the PATH solver, a widely
used method for solving general MCPs. First, IPM
retains the nice property of global convergence the
homotopy method possesses, and therefore the stabili-
ty of IPM can be guaranteed. Second, the barrier term
in IPM forces the points on the homotopy path to stay
in the interior of its domain and never touch any
boundary before t vanishes—that is, for any given t
larger than 0, the equilibria of the artificial game are in
totally mixed strategies. The switching between differ-
ent systems of equations in SLTP can be therefore
avoided by IPM; see Figure 1 for an illustration. Third,
IPM makes use of a well-chosen perturbation term,
which enables us to find an SSPE for every stochastic
game. Finally, a well-chosen transformation of varia-
bles is used in IPM, which reduces the number of
equations and unknowns by about one half and en-
sures a high numerical efficiency of IPM.

The remainder of this paper is organized as follows.
In Section 2, we introduce some preliminaries about

Figure 1. Different Trajectories of the TwoMethods
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finite stochastic games and reformulate the concept of
SSPE as the solution to a suitably chosen system of
equations. In Section 3, we construct an artificial
barrier stochastic game and propose our interior-point
differentiable path-following method. We prove that
our method is effective for computing an SSPE for any
stochastic game. Extensive numerical results are re-
ported in Section 4, where we develop a well-chosen
transformation of variables to reduce the number of
equations and variables in IPM by about one half. We
compute SSPEs for stochastic games with different
numbers of actions and players. We also compare the
performance of IPM with SLTP and a widely used
tool for MCPs called the PATH solver to further illus-
trate the efficiency and stability of IPM. Finally, this
paper is concluded in Section 5.

2. Stationary Equilibria in
Stochastic Games

2.1. Some Preliminaries
In this subsection, we introduce some basic notations
and describe a finite discounted stochastic game as
Γ � 〈N,Ω, {Siω}(i,ω)∈N×Ω, {ui}i∈N,π,δ〉, where

•Denote byN � {1, 2, : : : ,n} the set of players;
•Denote byΩ � {ω1,ω2, : : : ,ωd} the state space;
•Denote by Siω � {siωj | j ∈Mi

ω} the set of actions of
player i ∈N in state ω ∈Ω, where Mi

ω � {1, 2, : : : ,mi
ω} is

the index set of actions of player i in stateω; and
• Denote by Sω �∏n

i�1 Siω the set of action profiles in
state ω.

• Let S−iω �∏
k∈N\{i}Skω. Then, sω � (s1ωj1 , s2ωj2 , : : : , snωjn) ∈

Sω can be written as sω � (siωji , s−iω )with s−iω ∈ S−iω .

•Denote by Xi
ω � {xiω ∈ R

mi
ω+ | ∑j∈Mi

ω
xiωj � 1} the set of

mixed actions of player i in state ω. For xiω ∈ Xi
ω, the

probability assigned to siωj ∈ Siω equals xiωj.
• Denote by Xω �∏n

i�1Xi
ω the set of mixed action

profiles in state ω. If xω ∈ Xω is played, then the proba-
bility that an action profile sω � (s1ωj1 , s2ωj2 , : : : , snωjn) ∈ Sω
occurs is equal to

∏n
i�1 xiωji .

• Let X−i
ω �∏

k∈N\{i}Xk
ω. Then, xω � (x1ωj1 ,x2ωj2 , : : : ,xnωjn)

∈ Xω can bewritten as xω � (xiωji ,x−iω )with x−iω ∈ X−i
ω .

• Let D � {(ω, sω) | ω ∈Ω, sω ∈ Sω}. A history up to
stage κ ≥ 0 is a sequence hκ � ((ω0, sω0), (ω1, sω1),
: : : , (ωκ−1, sωκ−1),ωκ): Then, the set of possible histories
up to stage κ equalsHκ �Dκ ×Ω.

• Let ui :D→ R be the instantaneous payoff function
of player i. We have

ui(ω,xω) �
∑
sω∈Sω

ui(ω, sω)
∏n
i�1

xiωji �
∑
j∈Mi

ω

xiωju
i(ω, siωj,x−iω ):

• The term δ is the discount factor with 0 < δ < 1.

• Let π(ω | ω, sω) be the probability that the system
jumps from state ω to state ω when the action profile
sω is chosen, where π(ω | ω, sω) ≥ 0 and

∑
ω∈Ω

π(ω | ω, sω) � 1.
• Denote by π(ω, sω) � (π(ω1 | ω, sω),π(ω2 | ω, sω),

: : : ,π(ωd | ω, sω)) the state transition probability map.
• Let X �∏

i∈NXi with Xi �∏
ω∈ΩXi

ω. An element of
X hasm �∑

i∈N
∑

ω∈Ωmi
ω components.

2.2. Equilibrium System
A strategy of player i ∈N is a function that assigns a
feasible mixed action after each possible history. A
strategy profile is a Nash equilibrium if no player
has a profitable deviation from it (i.e., can choose a
strategy that gives strictly higher payoffs given the
strategies of the other players). Each history h ∈⋃∞

κ�0Hκ induces a subgame of Γ: A strategy profile is
a subgame perfect equilibrium if it induces a Nash
equilibrium in every subgame of Γ:

The strategy of player i is stationary if it de-
pends only on the current state, so the player choo-
ses the same mixed action at histories with the
same current state. A stationary strategy of player
i ∈N can therefore be represented by an element
xi ∈ Xi and a stationary strategy profile by an ele-
ment x ∈ X: The most important solution concept
that has been used in applications of stochastic
games is the SSPE. An SSPE is a stationary strategy
profile that induces a Nash equilibrium in every
subgame of Γ: No player has a profitable deviation
from an SSPE, even when deviations are not re-
quired to be stationary themselves.

We now reformulate the concept of SSPE as the
solution to a suitably chosen system of equations.
Given a stationary strategy profile x ∈ X, we denote
the present value of player i ∈N at state ω ∈Ω of the
expected payoff of the next k stages by μi

ω(k): The
value of μi

ω(k) follows from the following system
of recursive equations, μi

ω(k+ 1) � ui(ω,xω) + δ
∑

ω∈Ω
π(ω | ω,xω)μi

ω(k): For any initial state ω ∈Ω, let μi
ω �

limk→∞μi
ω(k) be the total expected payoff for player i.

Without loss of generality, we assume μi
ω(k) is in-

creasing in k.1 Because μi
ω(k) is a uniformly bounded

function of k, μi
ω always exists. It is the unique solu-

tion to the linear system of equations:

μi
ω � ui(ω,xω) + δ

∑
ω∈Ω

π(ω | ω,xω)μi
ω : (1)

For simplicity, for any given stationary strategy pro-
file x ∈ X, we define

φi(ω, siωj,x−iω ,μi(x))� ui(ω, siωj,x−iω )
+δ

∑
ω∈Ω

π(ω | ω, siωj,x−iω )μi
ω(x),

Dang, Herings, and Li: An Interior-Point Differentiable Path-Following Method
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where μi(x) � (μi
ω(x))ω∈Ω is the unique solution to the

linear system (1). Then, for any stationary strategy
profile x ∈ X, given a state ω ∈Ω, the optimal mixed
action of a player i ∈N who can only deviate once
from xi in state ω can be found as the solution to the
optimization problem:

max
x̂ iω∈Xi

ω

∑
j∈Mi

ω

x̂iωjφ
i(ω, siωj,x−iω ,μi(x))

s:t: x̂iωj ≥ 0, j ∈Mi
ω,∑

j∈Mi
ω

x̂iωj � 1: (2)

A direct application of the optimality conditions yields

φi(ω, siωj, x−iω ,μi(x)) + λ̂
i
ωj − β̂

i
ω � 0,ω ∈ Ω, i ∈ N, j ∈ Mi

ω,

λ̂
i
ωjx̂

i
ωj � 0, λ̂

i
ωj ≥ 0, x̂iωj ≥ 0, ω ∈ Ω, i ∈ N, j ∈ Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈ Ω, i ∈ N: (3)

We multiply both sides of the first group of equa-
tions in (3) with x̂iωj, sum each side over j ∈Mi

ω, and

obtain β̂
i
ω �∑

j∈Mi
ω
x̂iωjφ

i(ω, siωj,x−iω ,μi(x)) � ui(ω, x̂iω,x−iω )
+∑

ω∈Ωπ(ω | ω, x̂iω,x−iω )μi
ω(x): The set of solutions to

(3), which is denoted by B(x), consists of best re-
sponses to the given stationary strategy profile x. It
follows from the one-stage deviation principle that x̂
is an SSPE if and only if it is a fixed point of the best re-
sponse correspondence (i.e., x̂ ∈ B(x̂)); see Fudenberg
and Tirole (1991). Then, letting x, x̂ and μ̂i � μi(x̂), we
get

φi(ω, siωj, x̂−iω , μ̂i) + λ̂
i
ωj − β̂

i
ω � 0,ω ∈Ω, i ∈N, j ∈Mi

ω,

λ̂
i
ωjx̂

i
ωj � 0, λ̂

i
ωj ≥ 0, x̂iωj ≥ 0, ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈Ω, i ∈N:

It follows from (1) that β̂
i
ω � μ̂i

ω. From the preceding
discussion, a stationary strategy profile x̂ ∈ X is an
SSPE if and only if x̂ together with some (λ̂, µ̂) ∈ R

m ×
R

nd satisfies

ui(ω, siωj, x̂−iω ) + δ
∑
ω∈Ω

π(ω | ω, siωj, x̂−iω )μ̂i
ω + λ̂

i
ωj − μ̂i

ω � 0,

ω ∈Ω, i ∈N, j ∈Mi
ω,

λ̂
i
ωjx̂

i
ωj � 0, λ̂

i
ωj ≥ 0, x̂iωj ≥ 0, ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈Ω, i ∈N: (4)

Thus far, we have reformulated the problem to find
an SSPE as the equivalent problem of solving the

nonlinear system of equations (4). To be more pre-
cise, (4) is actually an MCP, which is a generation
of the nonlinear complementarity problem and
provides a broad unifying setting for the study of
equilibrium problems; see Ferris et al. (2013). In the
remainder of this paper, we aim to explore an effec-
tive and efficient algorithm to compute a solution to
System (4).

3. An Interior-Point Differentiable Path-
Following Method

In general, it is difficult to solve System (4) directly.
Herings and Peeters (2004) extended the linear trac-
ing procedure of Harsanyi and Selten (1988) to the
class of stochastic games. We refer to the resulting
method as the stochastic linear tracing procedure
(SLTP). SLTP is a homotopy method, which starts
from an artificial game where all players optimize
against given prior beliefs. The homotopy variable t
corresponds to the weight that is put on the artificial
game. It is shown in Herings and Peeters (2004) that
SLTP converges to an SSPE for almost every stochas-
tic game. The homotopy path of SLTP is piecewise
differentiable. To follow it, one either has to switch
between different systems of equations or use a
transformation of variables, which makes the homo-
topy path smooth. The latter operation comes at the
expense of computational speed.

To avoid switching between different systems of
equations, we propose an interior-point differentia-
ble path-following method to find an SSPE. By intro-
ducing a homotopy variable t ranging from 1 to 0,
we incorporate a logarithmic barrier term into the
payoff functions and formulate an artificial barrier
stochastic game, which continuously deforms from a
trivial stochastic game with a unique solution to the
stochastic game of interest as t descends from 1 to 0.
With this artificial game, we develop a smooth path,
which is constructed as the collection of equilibria
for the artificial game at different levels of the homo-
topy variable t. As t decreases to 0, an SSPE for the
stochastic game of interest is obtained. Additionally,
because of the existence of the barrier term, each
point on the path is restricted to the interior before t
vanishes.

Consider a player i ∈N: For any given t ∈ [0, 1] and
any given stationary strategy profile x ∈ X, μi � μi(x) �
(μi

ω(x))ω∈Ω is defined to be the unique solution to the
following linear system:

μi
ω � (1− t)(ui(ω,xω) + δ

∑
ω∈Ω

π(ω | ω,xω)μi
ω ) + t2, ω ∈Ω:

(5)

Then, for any stationary strategy profile x ∈ X, for
every ω ∈Ω, player i ∈N solves the optimization

Dang, Herings, and Li: An Interior-Point Differentiable Path-Following Method
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problem:

max
x̂ iω∈Xi

ω

(1− t)∑
j∈Mi

ω

x̂iωjφ
i(ω, siωj,x−iω ,μi(x)) + t2

∑
j∈Mi

ω

x0,iωj lnx̂
i
ωj

s:t:
∑
j∈Mi

ω

x̂iωj � 1, (6)

where x0,iω is an arbitrary totally mixed stationary strat-
egy profile with

∑
j∈Mi

ω
x0,iωj � 1.

The term in front of the logarithmic part is equal to t2

rather than t: The reason will become clear at the end of
this section, where a transformation of variables is in-
troduced to reduce the number of equations and un-
knowns. To guarantee differentiability of the system of
equations after the transformation of variables, the term t2

is needed rather than t:When t is equal to 0, the logarith-
mic part is not taken into account. For t positive, we only
maximize overmixed actionswithout zero components.

The optimality conditions of problem (6) read as

(1− t)φi(ω,siωj,x−iω ,μi(x)) + λ̂
i
ωj − β̂

i
ω � 0,ω ∈Ω, i ∈N, j ∈Mi

ω,

λ̂
i
ωjx̂

i
ωj − t2x0,iωj � 0, ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈Ω, i ∈N: (7)

Multiplying both sides of the first group of equations
in System (7) by x̂iωj and summing over j, we obtain

that β̂
i
ω � (1− t)[ui(ω, x̂iω,x−iω ) + δ

∑
ω∈Ωπ(ω | ω, x̂iω,x−iω )

μi
ω(x)] + t2. From a fixed point argument and (5), let-

ting x � x̂, we obtain that β̂
i
ω � μ̂i

ω: The equilibrium
system of the artificial stochastic barrier game is there-
fore given by

(1− t)(ui(ω, siωj, x̂−iω ) + δ
∑
ω∈Ω

π(ω | ω, siωj, x̂−iω )μ̂i
ω)

+λ̂i
ωj − μ̂i

ω � 0, ω ∈Ω, i ∈N, j ∈Mi
ω,

λ̂
i
ωjx̂

i
ωj − t2x0,iωj � 0, ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈Ω, i ∈N: (8)

As t � 1, System (8) becomes a system that is very
easy to solve:

λ̂
i
ωj − μ̂i

ω � 0, ω ∈ Ω, i ∈ N, j ∈ Mi
ω,

λ̂
i
ωjx̂

i
ωj − x0,iωj � 0,ω ∈ Ω, i ∈ N, j ∈ Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈ Ω, i ∈ N: (9)

Theorem 1. As t � 1, System (8) has a unique solution,

(x̂(1), λ̂(1), µ̂(1)), with x̂iωj(1) � x0,iωj, λ̂
i
ωj(1) � 1, and μ̂i

ω(1)
� 1, where ω ∈Ω, i ∈N, and j ∈Mi

ω:

Proof. By Problem (6), we know that as t � 1, for every
i ∈N, for every ω ∈Ω, System (8) corresponds to the
necessary and sufficient conditions of the following
optimization problem:

max
x̂ iω∈Xi

ω

∑
j∈Mi

ω

x0,iωj ln(x̂iωj)

s:t:
∑
j∈Mi

ω

x̂iωj � 1, (10)

which is a strictly convex optimization problem with
a unique solution. The solution of Problem (10) is
given by x̂iωj � x0,iωj. From the system of equations (9),

we obtain that for all ω ∈Ω, i ∈N, and j ∈Mi
ω, (λ̂i

ωj,

μ̂i
ω) � (1, 1). Q.E.D.

At t � 0, the definition of m in (5) is the same as that
in (1), and System (8) reduces to (4), the equilibrium
system of the stochastic game of interest.

Next, we prove that the set of solutions to the sys-
tem of equations (8) generates an everywhere smooth
path from the arbitrarily chosen starting point x0 to an
SSPE of the stochastic game of interest.

For the analysis that follows next, we needMas-Colell’s
fixed point theorem, proposed byMas-Colell (1974).

Theorem 2 (Mas-Colell’s Fixed Point Theorem). Let S be
a nonempty, compact, and convex subset of Rℓ, and let f :
S × [0, 1] → S be an upper hemicontinuous correspondence
such that for every (s, t) ∈ S × [0, 1], f(s, t) is contractible.
Then the set F � {(s, t) ∈ S × [0, 1] | s ∈ f (s, t)} contains a
connected subset Fc such that (S × {1}) ∩ Fc ≠ ∅ and
(S × {0}) ∩ Fc ≠ ∅.

For i ∈N, ω ∈Ω, and any strategy profile x ∈ X, let
σiω(x, t) be all x̂iω ∈ Xi

ω that solve

max
x̂ i
ω∈Xi

ω

(1− t)∑
j∈Mi

ω

x̂iωj(ui(ω,siωj,x−iω )+δ
∑
ω∈Ω

π(ω |ω,siωj,x−iω )μi
ω (x))

+t2
∑
j∈Mi

ω

x0,iωj ln(x̂iωj)− t(1− t)∑
j∈Mi

ω

αi
ωjx̂

i
ωj

s:t:
∑
j∈Mi

ω

x̂iωj � 1, (11)

where α ∈ R
m :

For any given (x, t) ∈ X × [0, 1], H(x, t) is defined as
the set of all x̂ ∈ X satisfying the system of equations
(12), which corresponds to the optimality conditions
of Problem (11):

(1− t)(ui(ω, siωj,x−iω ) + δ
∑
ω∈Ω

π(ω | ω, siωj,x−iω )μi
ω(x))

+λ̂i
ωj − β̂

i
ω − t(1− t)αi

ωj � 0,ω ∈Ω, i ∈N, j ∈Mi
ω,

λ̂
i
ωjx̂

i
ωj − t2x0,iωj � 0, ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

x̂iωj � 1, ω ∈Ω, i ∈N: (12)
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Compared with Problem (6), Problem (11) contains
an additional term, −t(1− t)∑j∈Mi

ω
αi
ωjx̂

i
ωj. When t � 0

or t � 1, this term disappears, and the two systems
are completely the same. We use α as a perturbation
term to avoid degeneracies. In the numerical imple-
mentation of our algorithm, perturbations were not
needed, and we could always choose α equal to the
zero vector.

We argue next that σiω : X × [0, 1] → Xi
ω is an upper

hemicontinuous correspondence. This follows from
the fact that the limit of any convergent sequence of
solutions to (12) is a solution to (12), so the graph of
σiω is closed, which is equivalent to σiω being an upper
hemicontinuous correspondence. Note that σiω is a
continuous function on X × (0, 1] because the logarith-
mic term in the objective function of Problem (11) is
strictly concave. Therefore, for any t ∈ (0, 1], Problem
(11) is a strictly convex optimization model with a
unique solution; that is, σiω is single valued.

From the preceding discussion, H(x, t) is obtained
as a product of σiω for ω ∈Ω and i ∈N. Then, H(x, t) is
also an upper hemicontinuous correspondence.

Lemma 1. For any (x, t) ∈ X × [0, 1], H(x, t) is a convex
subset of the convex strategy space X.

Proof. Recall that σiω is the set of solutions to Problem
(11). Obviously, for any (x, t) ∈ Xi

ω × (0, 1], Problem
(11) is a strictly concave optimization problem and σiω
is single valued. That is, σiω is a convex subset of Xi

ω

for any (x, t) ∈ Xi
ω × (0, 1]. As t � 0, Problem (11) re-

duces to a linear optimization problem in x̂iω ∈ Xi
ω.

Suppose x̂1,iω ∈ σiω(x, 0) and x̂2,iω ∈ σiω(x, 0). Then, for any
constant a ∈ [0, 1], ax̂1,iω + (1− a)x̂2,iω also optimizes the
objective function of Problem (11), and

∑
j∈Mi

ω
(ax̂1,iωj +

(1− a)x̂2,iωj) � a+ 1− a � 1. Then, ax̂1,iω + (1− a)x̂2,iω ∈ σiω
(x, 0). That is, σiω(x, t) is a convex-valued mapping on
Xi

ω × {0}. Recall that H(x, t) is obtained as a product of
σiω for ω ∈Ω and i ∈N. Therefore, H(x, t) is a convex
subset of X for any (x, t) ∈ X × [0, 1]. Q.E.D.

Let Φ be all (x̂, t) ∈ X × [0, 1] satisfying the following
system of equations:

(1− t)(ui(ω, siωj, x̂−iω ) + δ
∑
ω∈Ω

π(ω | ω, siωj, x̂−iω )μ̂i
ω)

+λ̂i
ωj − μ̂i

ω − t(1− t)αi
ωj � 0,ω ∈Ω, i ∈N, j ∈Mi

ω,

λ̂
i
ωjx̂

i
ωj − t2x0,iωj � 0, ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

x̂iωj − 1 � 0, ω ∈Ω, i ∈N, (13)

which is essentially the same as System (8) regardless
of the perturbation term. Then the following corollary
is established.

Corollary 1. The set Φ has a connected subset Φc such that
(Rm × {1}) ∩Φc ≠ ∅ and (Rm × {0}) ∩Φc ≠ ∅.
Proof. Comparing Systems (12) and (13), we find that
when x � x̂, System (12) is identical to (13). Then, Φ
can be rewritten as

Φ � {(x̂, t) ∈ R
m × [0, 1] | x̂ �H(x̂, t)}:

The upper hemicontinuity of H, together with the fact
that a convex set is contractible and a direct applica-
tion of Mas-Colell’s fixed point theorem, leads to the
conclusion of our corollary. Q.E.D.

All equations in (13) are polynomial. The set Φ is
therefore a semialgebraic set, so all its components are
also path connected—that is, any two points in a com-
ponent can be joined by a path; see Schanuel et al.
(1991). We obtain the following corollary.

Corollary 2. The set Φ has a path-connected subset Φc

such that (Rm × {1}) ∩ Φc ≠ ∅ and (Rm × {0}) ∩Φc ≠ ∅.
Denote the left side of System (13) as p(x,λ,µ, t;α),

and for any given α ∈ R
m , let

pα(x,λ,µ, t) � p(x,λ,µ, t;α):
Fix some α ∈ R

m : The set of all (x,λ,µ, t) ∈ R
m × R

m ×
R

nd × [0, 1] satisfying the system of Equations (13) is
denoted by Δ: The following theorem states that our
method is globally convergent.

Theorem 3. For a generic choice of α ∈ R
m , there exists a

smooth path in Δ, which starts from the totally mixed sta-
tionary strategy profile x0 ∈ X at t � 1 and ends at an
SSPE for the stochastic game of interest at t � 0.

Proof. As proved in Corollary 2, Φ contains a path-
connected subset Φc that intersects both the sets
R

m × {1} and R
m × {0}. Now, we prove that Φc forms

an everywhere smooth path. The second group of
equations in (13) determines a unique value for λ ∈
R

m for each (x, t) ∈ R
m × R: Next, the first group of

linear equations in (13) pins down a unique value
for µ ∈ R

nd: Thus Δ has a path-connected subset that
intersects both the sets R

m × R
m × R

nd × {1} and
R

m × R
m × R

nd × {0}. By Theorem 1, there is a unique
starting point at t � 1. We prove in Appendix A of
the online supplement that the Jacobian matrix of
p0(x,λ,µ, 1) is of full rank. For every α ∈ R

m ,
pα(x,λ,µ, 1) � p0(x,λ,µ, 1), so it follows that 0 is a reg-
ular value of pα(x,λ,µ, 1) on R

m × R
m × R

nd × {1}.
Similarly, 0 is also a regular value of p(x,λ,µ, t;α)
because the Jacobian matrix of p(x,λ,µ, t;α) is of
full-row rank for all (x,λ,µ, t;α) ∈ R

m × R
m × R

nd ×
(0, 1) × R

m ; see Appendix A of the online supple-
ment. By a direct application of the well-known

Dang, Herings, and Li: An Interior-Point Differentiable Path-Following Method
INFORMS Journal on Computing, 2022, vol. 34, no. 3, pp. 1403–1418, © 2022 INFORMS 1409

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

12
7.

25
2]

 o
n 

13
 M

ar
ch

 2
02

4,
 a

t 0
4:

48
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



transversality theorem (see Eaves and Schmedders
1999), 0 is a regular value of pα(x,λ,µ, t) for almost all
α ∈ R

m . Then it follows that Φc is a smooth one-
dimensional manifold with a boundary, which starts
from the unique solution at t � 1 and ends at an SSPE
of the stochastic game of interest at t � 0. Q.E.D.

Theorem 3 illustrates that the solutions to the sys-
tem of equations (13) together with the associated
Lagrangian multipliers form a smooth path. Clearly,
the systems of equations (13) and (8) coincide at t � 1
and t � 0. When ||α || is sufficiently small, the solu-
tions to Systems (13) and (8) are nearly the same, as
is illustrated in Figure 2. Points on the smooth path 1
are approximate equilibria for the artificial stochastic
game (6) on path 2. As t � 0, System (13) corresponds
to the stochastic game of interest. Thus, the end
point of path 1 is an exact SSPE of the stochastic
game of interest. We introduce a into the equilibri-
um system to avoid degeneracies. In fact, for a ge-
neric choice of α, our method finds an SSPE for
every stochastic game. SLTP does not use an a
to perturb the system and only computes an SSPE
for almost every stochastic game. In numerical ex-
periments, we have always obtained convergence
for a � 0.

Finally, we use a suitably chosen transformation of
variables to reduce the number of equations and un-
knowns by roughly one half, which improves the effi-
ciency of the method. For every ω ∈Ω, i ∈N, and j ∈
Mi

ω, we write xiωj and λi
ωj as a function of a variable

yiωj and the homotopy variable t,

xiωj(y, t) �
���������������
(yi

ωj)2 + 4t
���
x0,i
ωj

√√
+ yiωj

2

( )2
,

λi
ωj(y, t) �

���������������
(yi

ωj)2 + 4t
���
x0,i
ωj

√√
− yiωj

2

( )2
:

Clearly, x(y, t) and λ(y, t) are continuously differentia-
ble functions for all y ∈ R

m and t ∈ (0, 1], and it holds
that for every ω ∈Ω, i ∈N, and j ∈Mi

ω, λi
ωj(y, t)xiωj

(y, t) � t2x0,iωj:We substitute these functions into System
(13) and obtain the following homotopy system:

(1− t)(ui(ω, siωj,x−iω (ŷ, t)) + δ
∑
ω∈Ω

π(ω | ω, siωj,x−iω (ŷ, t))μ̂i
ω)

+λi
ωj(ŷ, t) − μ̂i

ω − t(1− t)αi
ωj � 0,ω ∈Ω, i ∈N, j ∈Mi

ω,∑
j∈Mi

ω

xiωj(ŷ, t) − 1 � 0, ω ∈Ω, i ∈N: (14)

The system of equations (14) corresponds to the pro-
posed IPM, the interior-point differentiable path-
following method. The transformation of variables
only leads to a different parametrization of the homo-
topy path defined by (13), so it holds by Theorem 3
that IPM is globally convergent for a generic choice of
α ∈ R

m .2

4. Numerical Performance
We use a predictor-corrector algorithm (see Eaves and
Schmedders (1999) and Allgower and Georg (2012)
for details) to trace the smooth path generated by
IPM. To further illustrate the efficiency of IPM, we
compare the numerical performance of IPM with an
arbitrary starting SLTP developed by Li and Dang
(2020), which is also an effective differentiable homo-
topy method for computing SSPEs. The range of the
homotopy variable t in the arbitrary starting SLTP is
[0, 2], where the extra part for t ∈ [1, 2] is to solve the
Markov decision problems and compute the starting
point for the standard SLTP. As t descends from 2
to 1, the starting point of the standard SLTP is imme-
diately obtained. When t varies between 0 and 1, the
homotopy system of the arbitrary starting SLTP is
completely the same as that of the standard SLTP. As
t approaches 0, the solution to the homotopy system
leads to an SSPE for the stochastic game. More details
about the arbitrary starting SLTP can be found in Ap-
pendix B of the online supplement.3 All experiments
are run using MatLab software on a 2.00 GHz Win-
dows PC with CORE i7. The stopping criterion is
taken equal to t < 10−6. In each experiment, the start-
ing stationary strategy of IPM is randomly generated.
When comparing IPM with SLTP, we set the experi-
mental environment for both the methods to be
exactly the same. Each experiment is run for 10 times,

Figure 2. Paths 1 and 2 Represent the Solution Sets for
Systems (13) and (8), Respectively
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and we report the average number of iterations (AITER)
and average computation time (ATIME) in this section.
Furthermore, the computational results for all numeri-
cal instances and the source code that supports these re-
sults are available in the IJOC GitHub repository (Dang
et al. 2021).

4.1. Fundamental Cases
In this subsection, we implement IPM to solve several
fundamental stochastic games with different numbers
of players, states, and actions. The five examples pre-
liminarily illustrate that IPM is an effective and effi-
cient method to compute SSPEs. The discount factor is
always taken equal to δ � 0:95:

Example 1. Assume N � {1, 2}, Ω � {ω1,ω2}, and, for
i � 1, 2, Siω1

� {siω11, s
i
ω12} and Siω2

� {siω21}: The payoff
matrices in states ω1 and ω2 are given by

ω1 s2ω11 s2ω12
s1ω11 (1, − 1) (0, 0)
s1ω12 (0, 0) (3, − 3)

and
ω2 s2ω21
s1ω21 (0, 0) :

The transition probability matrices in states ω1 and ω2
are given by

π((ω1,ω2) | ω1) s2ω11 s2ω12

s1ω11 (1, 0) (0, 1)
s1ω12 (0, 1) (1, 0)

and

π((ω1,ω2) | ω2) s2ω21

s1ω21 (0, 1) :

From the randomly generated starting point (y1ω11,
y1ω12,y

2
ω11,y

2
ω12,y

1
ω21,y

2
ω21,μ

1
ω1
,μ2

ω1
,μ1

ω2
,μ2

ω2
, t) � (−0.2136,

−0.3823, −0.4157, −0.1885, 0, 0, 0, 0, 0, 0, 1.0000), IPM
finds the SSPE (((x1ω11,x

1
ω12), (x2ω11,x

2
ω12)), (x1ω21,x

2
ω21)) �

(((0:67,0:33), (0:67,0:33)), (1, 1)):
Figure 3 shows the development of the variables

y and t in the various iterations of IPM. The down-
ward sloping curve corresponds to t, the nonmono-
tonic curve to y1ω11, and the upward sloping curve
to y1ω12.

Example 2. Assume N � {1, 2}, Ω � {ω1,ω2,ω3,ω4},
and, for i � 1, 2, Siω1

� {siω11, s
i
ω12}, Siω2

� {siω21, s
i
ω22},

Siω3
� {siω31}, and Siω4

� {siω41}: The payoff matrices are
given by

(ωk)k�1,2 s2ωk1 s2ωk2

s1ωk1 (0, 0) (0, 0)
s1ωk2 (0, 0) (0, 0)

,
ω3 s2ω31

s1ω31 (1, − 1) , and

ω4 s2ω41

s1ω41 (−1, 1) :

The transition probability matrix in state ω1 is given
by

π((ω1,ω2,ω3,ω4) | ω1) s2ω11 s2ω12
s1ω11 (1, 0, 0, 0) (0, 0, 1, 0)
s1ω12 (0, 0, 1, 0) (0, 1, 0, 0)

,

and the transition probability matrix in state ω2 is
given by

π((ω1,ω2,ω3,ω4) | ω2) s2ω21 s2ω22
s1ω21 (1, 0, 0, 0) (0, 0, 0, 1)
s1ω22 (0, 0, 0, 1) (0, 1, 0, 0)

:

The states ω3 and ω4 are absorbing. Starting from the
point (−0.2187, −0.3759, −0.0116, −0.8479, −0.2900,
−0.2958, −0.4846, −0.1430, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1.0000), IPM obtains the SSPE ((x1ω11,x

2
ω11), (x1ω21,

x2ω21), (x1ω31,x
2
ω31), (x1ω41,x

2
ω41)) � ((0:86,0:86), (0:14,0:14),

(1, 1), (1, 1)):
Figure 4 shows the development of the variables

y and t in the various iterations of IPM. The down-
ward sloping curve corresponds to t, the nonmono-
tonic curve to y1ω11, and the upward sloping curve
to y1ω12.

Example 3. Assume N � {1, 2}, Ω � {ω1,ω2,ω3}, and,
for i � 1, 2, Siω1

� {siω11, s
i
ω12}, Siω2

� {siω21}, and Siω3
�

{siω31}: The payoff matrices are given by

ω1 s2ω11 s2ω12
s1ω11 (1, − 1) (0, 0)
s1ω12 (0, 0) (1, − 1)

,
ω2 s2ω21
s1ω21 (0, 0) , and

ω3 s2ω31
s1ω31 (1, − 1) :

The transition probability matrix in state ω1 is given
by

π((ω1,ω2,ω3) | ω1) s2ω11 s2ω12
s1ω11 (1, 0, 0) (0, 1, 0)
s1ω12 (1, 0, 0) (0, 0, 1)

:

Figure 3. (Color online) Development of the Variables t,
y1ω11, and y1ω12 Along the Homotopy Path
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The states ω2 and ω3 are absorbing. Starting from the
point (−0.2429, −0.3467, −0.3788, −0.2164, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1.0000), IPM generates the SSPE ((x1ω11,
x2ω11), (x1ω21,x

2
ω21), (x1ω31,x

2
ω31)) � ((1, 0:5), (1, 1), (1, 1)):

Example 4. Assume N � {1, 2}, Ω � {ω1,ω2,ω3}, and,
for i � 1, 2, Siω1

� {siω11, s
i
ω12}, Siω2

� {siω21}, and Siω3
�

{siω31}: The payoff matrices are given by

ω1 s2ω11 s2ω12

s1ω11 (1, 0) (0, 1)
s1ω12 (0, 2) (1, 0)

,
ω2 s2ω21

s1ω21 (0, 2) , and
ω3 s2ω31

s1ω31 (1, 0) :

The transition probability matrix in state ω1 is given
by

π((ω1,ω2,ω3) | ω1) s2ω11 s2ω12

s1ω11 (1, 0, 0) (1, 0, 0)
s1ω12 (0, 1, 0) (0, 0, 1)

:

The states ω2 and ω3 are absorbing. By choosing the
starting point (−0.2094, −0.3876, −0.3135, −0.2728, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1.0000), IPM finds the SSPE ((x1ω11,
x2ω11), (x1ω21,x

2
ω21), (x1ω31,x

2
ω31)) � ((1, 0:5), (1, 1), (1, 1)):

Example 5. Assume N � {1, 2}, Ω � {ω1,ω2}, and, for
i � 1, 2, Siω1

� {siω11, s
i
ω12, s

i
ω13} and Siω2

� {siω21}: The pay-
off matrices are given by

ω1 s2ω11 s2ω12 s2ω13

s1ω11 (1, 1) (0, 0) (−9, − 9)
s1ω12 (0, 0) (0, 0) (−7, − 7)
s1ω13 (−9, − 9) (−7, − 7) (−7, − 7)

and
ω2 s2ω21

s1ω21 (0, 0) :

Irrespective of the actions chosen, the transition prob-
ability between any two states is equal to 1=2: From
the starting point (−0.5645, −0.6302, −0.1793, −0.6422,
−0.3859, −0.2966, 0, 0, 0, 0, 0, 0, 1.0000), IPM finds the

SSPE (((x1ω11,x
1
ω12,x

1
ω13), (x2ω11,x

2
ω12,x

2
ω13)), (x1ω21,x

2
ω21)) �

(((0, 1, 0), (0, 1, 0)), (1, 1)):

4.2. Randomly Generated Cases
In this subsection, we randomly generate stochastic
games for varying n, d, and m, where m denotes the
number of actions for each player in each state. Pay-
offs are randomly drawn from the interval [−10, 10],
but are set equal to 0 with probability “pd0,” which
indicates the probability density of the payoff matrix.
Obviously, the larger the pd0, the sparser the payoff
matrix becomes. To test the efficiency and stability of
the proposed IPM, we will compare the numerical
performance of IPM with that of SLTP and the PATH
solver, which was established by Dirkse and Ferris
(1995).

4.2.1. Comparisons with SLTP. We let pd0 be equal
to 0.00, 0.25, 0.50, and 0.75 to induce several groups
of different games and test the performance of IPM
and SLTP. Note that the range of the homotopy vari-
able t is [0, 1] in IPM and [0, 2] in SLTP. To make a
fair comparison between the two methods, we also
report the computational cost for t ∈ [0, 1] in SLTP.
The discount factor is taken equal to δ � 0:95: The av-
erage computation time (in seconds) (ATIME) and
average number of iterations (AITER) for the two
methods are reported in Tables 1 and 2, respectively,
where T-ratio � ATIME of IPM

ATIME of SLTP , I-ratio � AITER of IPM
AITER of SLTP ,

SLTP-tratio � ATIME (t≤1) of SLTP
ATIME of SLTP , and SLTP-iratio

� AITER(t≤1) of SLTP
AITER of SLTP .

From the results in Tables 1 and 2, for any given n, d,
and m, it follows by inspecting each group of rows that
a smaller pd0 leads to a more difficult problem. The re-
sults for numerous randomly generated stochastic
games illustrate that IPM performs much better than
SLTP in both the number of iterations and computation
time. This advantage becomes more pronounced as the
scale of the problem gets larger. Besides this, the col-
umns of “SLTP-tratio” and “SLTP-iratio” illustrate that
the computational cost for t ∈ [1, 2] in SLTP only takes
up a very small proportion in the total computational
cost. That is, in our experiments, the computational
cost for finding the starting point of the standard SLTP
is almost ignorable. Therefore, although the range of t
in the two methods is not the same, this difference
causes no problem for a fair comparison of the two
methods.

4.2.2. Comparisons with the PATH Solver. Recall that
stochastic games can be reformulated as MCPs. The
PATH solver is an extensively used software package
to solve MCPs in industry and academy settings; see
Dirkse and Ferris (1995). Nevertheless, as shown in
Ferris et al. (2000), the PATH solver is very sensitive

Figure 4. (Color online) Development of the Variables t,
y1ω11, and y1ω12 Along the Homotopy Path
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to the structure of the original problems and may lose
effectiveness for game-theoretic problems. In the rest
of this subsection, we choose (n,m,d) � (2, 2, 5), (n,
m,d) � (3, 2, 5), (n,m,d) � (4, 2, 5), and (n,m, d) � (5, 2,
5) as 4 parameter constellations and randomly generate
10 stochastic games. Then we use the proposed IPM
and the PATH solver to solve these stochastic games
and record the feasibility and computation time of the
two methods in Table 3, where “time1” is the computa-
tion time of IPM, “time2” is the computation time of the
PATH solver, and “fail” indicates that the method fails
to find an SSPE for the stochastic game. Moreover, pd0
is set to be 0.5.

From Table 3, we find that the PATH solver is really
very efficient in some cases and even performs much
better than the proposed IPM in computation time.
However, as shown in the table, the PATH solver
sometimes may fail to find a solution, and the success
rate of the PATH solver seems to decrease when the
scale of the stochastic game increases. For instance,
among the entire 10 stochastic games with (n,d,
m) � (2, 2, 5), the PATH solver achieves 9 successes,
whereas the number of successes becomes only 4 for
the case in which (n,d,m) � (5, 2, 5). To further study
the success rates of the two methods, we randomly
generated 100 stochastic games for different triples of

(n, d, m) and record the success rates of the two meth-
ods for each triple. The developments of the success
rates in n, d, and m are plotted in Figure 5.

Figure 5 shows that the success rate of the PATH
solver decreases when n, d, and m increase. From the
three subfigures in Figure 5, it is easy to see that the
success rate is more sensitive to the change of d than
to the changes of the other two factors. When the scale
of the stochastic game becomes larger, the effective-
ness of the PATH solver to find an SSPE becomes
even lower, whereas IPM always achieves a 100% suc-
cess rate for any stochastic game. As a result, IPM is
more stable and robust to compute SSPEs in stochastic
games.

4.3. More Complicated Random Cases
It is well known that the structure of stochastic games
is very complicated, and the scale of the problem is
very sensitive to the number of players n, the number
of states d, and the number of actions m: For example,
for the case of (d,m) � (5, 5), when n increases from 5
to 6, the number of variables in the homotopy system
increases from 150 to 180. Additionally, an increase of
n, d, and m results in a data explosion in stochastic
games. For instance, in any state ω, when there are n
players and m actions, the number of utilities for each

Table 1. Numerical Performance and Comparisons

(n, d, m) pd0
IPM

SLTP

T-ratio (%)ATIME ATIME ATIME(t ≤ 1) SLTP-tratio (%)

(2,2,5) 0.00 25.37 84.87 74.00 87.19 29.89
0.25 17.28 62.98 51.83 82.30 27.44
0.50 13.05 44.20 37.08 83.89 29.51
0.75 12.94 47.66 40.18 84.31 27.15

(2,5,3) 0.00 64.59 216.41 181.65 83.97 29.84
0.25 63.59 221.15 178.57 80.74 28.75
0.50 43.28 166.28 136.94 82.35 26.01
0.75 26.72 106.41 86.47 81.26 25.11

(2,5,4) 0.00 91.27 320.56 270.23 84.30 28.47
0.25 92.06 351.45 304.49 86.63 26.19
0.50 38.62 155.60 124.76 80.18 24.81
0.75 31.60 125.02 103.53 82.81 25.28

(2,5,5) 0.00 122.41 715.40 654.54 91.49 17.11
0.25 85.50 412.11 361.38 87.69 20.74
0.50 70.23 362.89 321.18 88.51 19.35
0.75 68.73 389.65 358.15 91.92 17.64

(3,3,5) 0.00 75.80 580.83 548.76 94.48 13.05
0.25 62.46 496.86 471.02 94.80 12.57
0.50 48.24 286.69 266.45 92.94 16.82
0.75 35.31 237.67 221.82 93.33 14.86

(4,2,5) 0.00 64.72 471.89 449.32 95.22 13.72
0.25 31.28 330.65 310.25 93.83 9.46
0.50 19.38 201.66 189.99 94.21 9.61
0.75 15.87 170.88 159.21 93.30 9.29

(5,2,5) 0.00 85.23 887.29 848.85 95.69 9.61
0.25 59.05 686.32 650.41 94.77 8.06
0.50 58.35 551.41 522.77 94.80 10.58
0.75 34.46 438.17 412.46 94.13 7.41
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player is mn in this state, which becomes huge when n
is large. That is why we consider stochastic games
with a limited number of players, states, and actions.
With the existing methods such as SLTP proposed in
Herings and Peeters (2004) and Li and Dang (2020),
SSPEs can only be computed for stochastic games
with a scale no more than n � 5, d � 5, and m � 5—
that is, the number of utilities for each player in each
state is less than 55. In this subsection, we use the
proposed IPM to solve problems with a scale up to (5,
8, 8), where the number of utilities for each player in

each state reaches 85. In each experiment, we let pd0 �
0.95 and generate the payoff matrices and transition
probabilities randomly. The average computation
time (in seconds) for all experiments is recorded in
Table 4. It is left blank if the computation time exceeds
3 × 104 seconds.

It follows from Table 4 that the computation of an
SSPE becomes much more difficult as the number of
players n, states d, or actions for each player in each
state m increases by a single unit. The variable n is the
most influential factor for the number of iterations

Table 2. Numerical Performance and Comparisons

(n, d, m) pd0
IPM

SLTP

I-ratio (%)AITER AITER AITER(t ≤ 1) SLTP-iratio (%)

(2,2,5) 0.00 1,987 4,188 3,722 88.87 47.44
0.25 1,461 4,287 3,545 82.70 34.08
0.50 1,363 4,147 3,498 84.35 32.86
0.75 1,317 3,700 3,190 86.21 35.59

(2,5,3) 0.00 3,741 6,541 5,528 84.51 57.19
0.25 2,632 6,258 5,116 81.75 41.91
0.50 1,691 4,803 4,026 83.82 35.21
0.75 1,400 4,839 4,001 82.69 28.93

(2,5,4) 0.00 3,759 8,599 7,343 85.39 43.71
0.25 3,016 8,470 7,433 87.76 35.61
0.50 2,430 8,324 6,782 81.47 29.19
0.75 1,752 6,513 5,523 84.81 26.90

(2,5,5) 0.00 3,840 9,776 9,019 92.26 39.28
0.25 2,751 7,465 6,594 88.34 32.22
0.50 2,544 7,873 7,065 89.74 32.31
0.75 1,403 5,285 4,900 92.73 26.54

(3,3,5) 0.00 2,566 8,309 7,902 95.10 30.88
0.25 2,096 7,723 7,377 95.53 27.14
0.50 1,512 5,567 5,235 94.04 27.16
0.75 1,399 5,627 5,308 94.33 24.86

(4,2,5) 0.00 1,256 6,548 6,316 96.45 19.18
0.25 1,075 6,210 5,983 96.34 17.31
0.50 941 4,981 4,734 95.04 18.89
0.75 893 4,890 4,625 94.58 18.26

(5,2,5) 0.00 574 4,369 4,225 96.70 13.12
0.25 538 3,543 3,535 99.77 15.18
0.50 556 3,797 3,660 96.39 14.64
0.75 416 3,018 2,881 95.66 13.82

Table 3. Numerical Comparisons

(n,d,m) � (2, 2, 5) (n,d,m) � (3, 2, 5) (n,d,m) � (4, 2, 5) (n,d,m) � (5, 2, 5)
Problem time1 time2 Problem time1 time2 Problem time1 time2 Problem time1 time2

1 6.71 0.82 1 10.42 1.04 1 42.04 7.01 1 61.38 fail
2 3.87 0.78 2 18.84 fail 2 30.78 3.26 2 67.92 16.10
3 5.37 0.55 3 14.64 1.5 3 24.25 3.23 3 39.63 fail
4 11.11 2.38 4 26.43 2.96 4 12.70 fail 4 50.00 fail
5 10.01 0.79 5 12.71 1.29 5 16.18 5.02 5 42.89 10.55
6 22.76 fail 6 30.11 fail 6 35.48 fail 6 39.63 fail
7 5.94 1.14 7 11.76 1.42 7 25.78 3.96 7 68.06 40.72
8 3.77 0.29 8 8.04 2.16 8 11.57 fail 8 43.06 14.84
9 11.6 1.33 9 10.96 1.95 9 23.81 3.39 9 23.74 fail
10 4.06 0.34 10 11.94 2.81 10 11.01 fail 10 44.84 fail
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and computation time, which is consistent with the
observations in Herings and Peeters (2004).

As previously mentioned, stochastic games with (n,
d, m) greater than (5, 8, 8) result in a data explosion
and are not considered in this paper. Several decom-
position strategies were developed in the literature to
cope with these issues in general equilibrium models
and MCPs. Cabero et al. (2005) applied Bender’s de-
composition to address an electricity market equilibri-
um problem. A Gauss–Seidel decomposition scheme
was presented in Ban et al. (2006) to convert a con-
tinuous network design problem with equilibrium
constraints into multiple smaller-dimensional sub-
problems. Gabriel and Fuller (2010) designed a new
Bender’s decomposition approach to solve more gen-
eral stochastic complementarity problems. A matrix-
splitting decomposition method was proposed in
Shanbhag et al. (2011) to deal with stochastic MCPs.
Egging (2013) forms a decomposition-type algorithm
to solve large-scale MCPs derived from multistage

natural gas markets with market power exertion. Re-
call that a stochastic game can also be solved as an
MCP. These papers suggest that the application of a
well-designed decomposition strategy could reduce
the computational cost for finding an SSPE and ad-
dress larger-scale stochastic games. We leave the ex-
ploration of such an approach as an interesting topic
for future research.

4.4. An Application in Bargaining Models
Stochastic games have many applications to various
fields, where bargaining is one of the most popular
topics and has been extensively studied in the past
two decades; see Banks and Duggan (2006), Britz et al.
(2010), Britz (2018), and the references therein. In this
subsection, we study a legislative bargaining model
based on a stochastic game paradigm. Suppose there
are two voters who play an infinite-horizon bargain-
ing game over three policies, p1, p2, and p3. In any
stage t, one of the policies, pj, j ∈ {1, 2, 3}, will be

Figure 5. (Color online) The Developments of the Success Rates in Three Factors

Table 4. Average Computational Time (in Seconds) of IPM

d

m

5 6 7 8

n � 3

5 230.90 358.78 747.82 1,108.71
6 602.41 936.39 2,162.49 3,291.86
7 828.61 1,065.73 2,303.06 4,137.06
8 1,430.17 2,146.85 3,021.24 3,117.04

n � 4

5 539.80 1,021.91 1,203.28 2,255.70
6 1,328.68 1,554.25 2,536.31 4,761.73
7 1,440.40 2,230.62 2,413.82 6,202.49
8 1,875.36 3,681.46 4,200.69 8,576.12

n � 5

5 1,737.74 3,377.21 10,403.29 27,626.37
6 2,897.06 10,249.51 24,284.54
7 4,378.30 17,669.26
8 10,247.18
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proposed, and the voters simultaneously and inde-
pendently make an accept/reject decision. The voting
rule is that if at least one of the two voters chooses to
accept, then pj is accepted, and the two voters get their
payoffs based on the outcome in the current stage.
Otherwise, the preceding mentioned procedure will be
repeated in the next stage t + 1. We say that the bar-
gaining ends as soon as a policy is accepted, and in all
the subsequent stages, the payoffs of the voters will be
the same as those in the last stage. This bargaining
model is essentially a stochastic game with two players,
six states, and two actions for each player in each state.
More specifically, N � {1, 2} and Ω � {ω1,ω2, : : : ,ω6},
where ω1 � {p1 is proposed}, ω2 � {p2 is proposed}, and ω3

� {p3 is proposed}. The states ω4, ω5, and ω6 correspond
to states in which the bargaining has ended, where
ω4 � {p1 hasbeenaccepted}, ω5 � {p2 has been accepted},
and ω6 � {p3 has beenaccepted}. In ω1, ω2, and ω3, the
voters have two actions: that is, siωj1 � accept or siωj2

� reject with i ∈N and j ∈ {1, 2, 3}. The utility matrices
are given by

ω1 s2ω11 s2ω12

s1ω11 (1, − 1) (1, − 1)
s1ω12 (1, − 1) (0, 0)

,

ω2 s2ω21 s2ω22

s1ω21 (0, 1) (0, 1)
s1ω22 (0, 1) (0, 0)

,

ω3 s2ω31 s2ω32

s1ω31 (−1, 0) (−1, 0)
s1ω32 (−1, 0) (0, 0)

,
ω4 s2ω41

s1ω41 (1, − 1),

ω5 s2ω51

s1ω51 (0, 1) ,
ω6 s2ω61

s1ω61 (−1, 0) :

If the current state is ω1 and both voters reject the pro-
posed policy, then the whole system will jump to ω1,
ω2, and ω3 with probability 1/3. Otherwise, the sys-
tem will jump to state ω4 with probability 1. If the cur-
rent state is ω2 and both voters reject the proposed
policy, then the system will jump to ω1, ω2, and ω3

with probability 1/3. Otherwise, the system will jump
to state ω5 with probability 1. If the current state is ω3

and both voters reject the proposed policy, then the
whole system will jump to ω1, ω2, and ω3 with proba-
bility 1/3. Otherwise, the system will jump to state ω6

with probability 1. The states ω4, ω5, and ω6 are ab-
sorbing; that is, once the system reaches one of these
three states, it will never leave it.

Let 0 denote a zero vector with dimension 12. From
the randomly generated starting point, (y0,0�,1)� with
y0 � (−0.1263, −0.5135, −0.0818, −0.6038, −0.1821,
−0.4246, −0.1671, −0.4466, −0.2857, −0.3002, −0.5975,
−0.0846, 0, 0, 0, 0, 0, 0), IPM eventually ends at a solu-
tion to this problem after 584 iterations and 21.48 s.
The development of t and the mixed strategies in the
first three states for the two voters in the various itera-
tions are described in Figure 6.

5. Conclusions
In this paper, we extend the idea of interior-point
methods, which have been proven to be very efficient
for large-scale convex programming problems, to
computing an SSPE in a finite discounted stochastic
game. The basic idea of our method is to incorporate a
logarithmic barrier term into the objective function of
the stochastic game of interest and formulate an artifi-
cial barrier game. The solutions to the artificial game
at different levels of the homotopy variable generate

Figure 6. (Color online) Development of the Variables t, xiωj1 (i � 1,2; j � 1, 2, 3)Along the Homotopy Path
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an everywhere smooth path. As the homotopy vari-
able descends to 0, our path converges to an SSPE for
the stochastic game of interest.

The proposed method (IPM) has several advantages
over the existing alternative methods in the literature
to compute an SSPE. The starting point of IPM can be
arbitrarily chosen, and there is no need to solve an op-
timization problem to obtain it. The barrier function
forces the homotopy path to stay in the interior of the
strategy space, which avoids switching between dif-
ferent systems of equations or, alternatively, a compu-
tationally expensive transformation of variables. IPM
fully exploits the differentiability of the problem, and
for every stochastic game, the induced homotopy
path is everywhere smooth. Moreover, IPM is able to
find SSPEs for all stochastic games. The effectiveness
and efficiency of IPM has been confirmed by numer-
ous numerical experiments.

Endnotes
1 For each player i ∈N, one can add a constant c to the stage payoffs
ui such that they are all nonnegative. Then one obtains a new se-
quence {(μi

ω(k))′} satisfying (μi
ω(k+ 1))′ ≥ (μi

ω(k))′. Subtracting c
1−δ

from the limit of the new sequence, one gets the total expected pay-
offs μi

ω.
2 It seems impossible to analyze the rate of convergence for the pro-
posed IPM, because the problem of computing stationary equilibria
for stochastic games is actually a PPAD-complete problem. As
t ∈ (0, 1), the development of the homotopy path derived from our
method very much relies on the structure of the stochastic game. As
a result, for the proposed IPM, the computational complexity can
only be obtained in each iteration, but the total number of iterations
could not be theoretically attained.
3 For simplicity, we refer to the arbitrary starting SLTP as SLTP in
the remainder of this section.

References
Allgower EL, Georg K (2012) Numerical Continuation Methods: An In-

troduction, Springer Series in Computational Mathematics, vol.
13 (Springer-Verlag, Berlin).

Ban X, Liu HX, Lu J, Ferris MC (2006) Decomposition scheme for
continuous network design problem with asymmetric user
equilibria. Transportation Res. Record 1964(1):185–192.

Banks JS, Duggan J (2000) A bargaining model of collective choice.
Amer. Political Sci. Rev. 94(1):73–88.

Banks JS, Duggan J (2006) A bargaining model of legislative policy-
making. J. Political Sci. 1(1):49–85.

Britz V (2018) Rent-seeking and surplus destruction in unanimity
bargaining. Games Econom. Behav. 109(C):1–20.

Britz V, Herings PJJ, Predtetchinski A (2010) Non-cooperative sup-
port for the asymmetric Nash bargaining solution. J. Econom.
Theory 145(5):1951–1967.
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