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PREPRINT

Exactly solving hard permutation flowshop
scheduling problems on peta-scale GPU-accelerated

supercomputers

Jan Gmys
Inria Lille-Nord Europe

Université de Lille, CNRS/CRIStAL, jan.gmys@inria.fr,

Makespan minimization in permutation flow-shop scheduling is a well-known hard combinatorial optimization
problem. Among the 120 standard benchmark instances proposed by E. Taillard in 1993, 23 have remained
unsolved for almost three decades. In this paper, we present our attempts to solve these instances to opti-
mality using parallel Branch-and-Bound (BB) on the GPU-accelerated Jean Zay supercomputer. We report
the exact solution of 11 previously unsolved problem instances and improved upper bounds for 8 instances.
The solution of these problems requires both algorithmic improvements and leveraging the computing power
of peta-scale high-performance computing platforms. The challenge consists in efficiently performing parallel
depth-first traversal of a highly irregular and fine-grained search tree on distributed systems composed of
hundreds of massively parallel accelerator devices and multi-core processors. We present and discuss the
design and implementation of our permutation-based BB and experimentally evaluate its parallel perfor-
mance on up to 384 V100 GPUs (2 million CUDA cores) and 3840 CPU cores. The optimality proof for the
largest solved instance requires about 64 CPU-years of computation—using 256 GPUs and over 4 million
parallel search agents, the traversal of the search tree is completed in 13 hours, exploring 339× 1012 nodes.

Key words : Permutation flow-shop scheduling; Branch-and-Bound; Supercomputing; GPU computing

1. Introduction
Many combinatorial optimization problems (e.g. scheduling, assignment or routing prob-
lems) can be modeled by using permutations to represent candidate solutions. In this work,
we focus on the Permutation Flowshop Scheduling Problem (PFSP) with makespan cri-
terion. The goal is to find a scheduling order (a permutation) for processing n jobs on m
machines, such that the maximum completion time, Cmax, is minimized, given the fixed
processing times pjk ≥ 0 for job Jj on machine Mk.

The problem is NP-hard for m≥ 3 (Garey et al. 1976) and exact algorithms like Branch-
and-Bound (BB) can only solve small-sized instances within a reasonable amount of time.
BB performs an implicit enumeration of all possible solutions by dynamically construct-
ing and exploring a tree, using four operators: branching, bounding, selection and prun-
ing. For larger problem instances, the exhaustive exploration of the search space becomes
practically infeasible on a sequential computer. In this article, we present the design and
implementation of PBB@Cluster, a permutation-based BB (PBB) algorithm for hetero-
geneous clusters composed of multi-core processors and GPU accelerator devices. Scaling
PBB@Cluster on hundreds of GPUs of the Jean Zay supercomputer (#64 in the Top500
ranking, Nov. 2020), we report improved solutions and proofs of optimality for dozens of
benchmark instances, including the exact solution of 11 hard PFSP benchmark instances
that remained open for almost three decades.
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Our motivation is twofold. On the one hand, the knowledge of exact optimal solutions for
benchmark instances is highly valuable, as they provide a baseline for assessing the quality
of metaheuristics and other approximate methods. For the PFSP, the set of 120 benchmark
instances proposed by Taillard (1993) is the most frequently used. While instances defined
by less than 20 machines are relatively easy to solve (Gmys et al. 2020), most of Taillard’s
instances with m = 20 machines and n ≥ 50 jobs are very hard and optimal solutions
for 23 of them remain unknown. On the other hand, the efficient parallel design and
implementation of backtracking/BB algorithms is challenging, mainly because the pattern
of computation and communication captured by this method (named a “computational
dwarf” in (Asanovic et al. 2009)) is highly irregular. Moreover, the efficient design of
parallel BB is strongly influenced by problem-specific characteristics (search space, goal
and granularity) and the targeted compute platform (Bader et al. 2005).

The potential for exploiting parallelism in BB has been recognized as early as 1975
and research activity started to intensify ten years later, as parallel processing capabilities
became practically available (Pruul et al. 1988). Surveys on parallel BB in general and
parallel search for discrete optimization can be found in (Gendron and Crainic 1994, Grama
and Kumar 1995). Among the wide range of works in this field, two research directions
are particularly relevant for this work, as our approach can be seen as a combination of
both: the first deals with fine-grained tree search algorithms on massively parallel processor
arrays and GPUs and the second concerns more coarse-grained applications of the BB
paradigm on top of distributed memory architectures.

In the early 1990s, the design and implementation of backtracking/BB algorithms on
massively parallel single instruction, multiple data (SIMD) supercomputers (MasPar, CM-
2, Intel Hypercube, etc.) has attracted much attention (Rao and Kumar 1987, Karypis
and Kumar 1994), with research interests focusing on data-parallel load balancing strate-
gies (Fonlupt et al. 1994, Reinefeld and Schnecke 1994). Frequently used test-cases include
puzzles (e.g. 15-puzzle) and games (e.g. Othello) which are characterized by regular fine-
grained evaluation functions and highly irregular search trees. Notably, one can find many
similarities between these approaches and backtracking/DFS algorithms for modern GPUs,
including the fact that the latter are mainly targeting fine-grained applications (Pessoa
et al. 2016, Rocki and Suda 2010, Jenkins et al. 2011).

Following hardware evolution, with the emergence of cluster and grid computing,
research focus shifted towards the design of parallel BB on top of distributed, heteroge-
neous and volatile platforms, targeting more coarse-grained applications of BB (Crainic
et al. 2006). The use of large computational grids has led to breakthroughs such as the
exact solution, in 2002, of quadratic assignment problem (QAP) instances which had
remained unsolved for over three decades, including the notorious nug30 instance in 7
days, using 650 CPUs on average (Anstreicher et al. 2002). The design of a BB algorithm
using a new, stronger lower bound (LB) and its parallel implementation on a large com-
putational grid were vital in bringing about this achievement. About 15 years later, Date
and Nagi (2019) used an even stronger LB to re-solve nug30 on a GPU-powered cluster
(Blue Waters@Urbana-Champaign) in 4 days and successfully improve lower bounds of
challenging QAP instances with up to 42 facilities. Their approach uses GPUs to accelerate
the computation of tight LBs which require solving O(n4) independent linear assignment
problems.

For the PFSP, the largest attempt to exactly solve hard problem instances has been
carried out by Mezmaz et al. (2007), who designed and deployed a grid-enabled PBB algo-
rithm on more than 1000 processors. This effort led to the exact resolution of instance
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Ta056 in 25 days (22 CPU-years), exploiting 328 processors on average. Attempts of sim-
ilar scale to solve other open instances from Taillard’s benchmark remained unfruitful,
indicating that their solution requires algorithmic advances and/or much more processing
power.

Following the work of Mezmaz et al. (2007), the PFSP has been used as a test-case for
several PBB algorithms targeting heterogeneous distributed systems combining multi-core
CPUs and GPUs (Chakroun and Melab 2015, Vu and Derbel 2016, Gmys et al. 2017).
However, despite reaching speed-ups between two and three orders of magnitude over
sequential execution, no new solutions for the remaining Taillard benchmark instances
were reported.

This article shows that previously unsolved PFSP instances can be solved exactly
through a combination of both, the efficient exploitation of a peta-scale GPU-accelerated
supercomputer and the algorithmic advances presented in (Gmys et al. 2020). A crucial
aspect in the design of BB algorithms is the tradeoff between the computational com-
plexity of the lower bound (LB) and the potential of the latter to reduce the size of the
explored tree. For the PFSP, the strongest LB is the one proposed by Lageweg et al. (1978)
and it is used in almost all previous parallel BB approaches. However, we have shown
in (Gmys et al. 2020) that using a weaker, easy-to-compute LB from one of the first BB
algorithms (Ignall and Schrage 1965) allows to solve large PFSP instances more efficiently.
Although weakening the LB increases the size of the explored search tree, empirical results
indicate that a better overall tradeoff is achieved. Therefore, instead of strengthening the
LB, our approach takes a step in the opposite direction, i.e. it uses a weaker, more fine-
grained LB than previous PBB algorithms for the PFSP. To give an idea of scale, with the
LB used in this work, a single node evaluation can be performed in less than 10−6 seconds,
and trees are composed of up to ∼ 1015 nodes.

1.1. Summary of contributions

The main result of this work can be summarized as follows: 11 of 23 open PFSP instances
from Taillard’s benchmark are solved to optimality using a scalable GPU-accelerated PBB
algorithm on up to 96 quad-GPU nodes (3840 CPU cores and nearly 2 million CUDA cores)
of the Jean Zay supercomputer. Moreover, the best-known solutions for 8 open instances
are improved. For the Vallada-Ruiz-Framinan (VRF) benchmark (Vallada et al. 2015), 55
of 292 open instances are solved for the first time and 122 best-known upper bounds are
improved. Scalability experiments show that PBB@Cluster achieves a parallel efficiency of
∼ 90% on 16, 64 and 128 GPUs for problem instances requiring respectively 1, 4 and 27
hours of processing on a single GPU. The largest solved instance requires over 13 hours
of processing on 256 V100 GPUs, i.e. a total of 3400 GPU-hours—which amounts to an
estimated equivalent CPU time of 64 years.

Although, to the best of our knowledge, our work is the first to deploy fine-grained BB
on a peta-scale system, we should point out that the presented results are not “simply” a
matter of brute force. Instead, PBB@Cluster builds upon research efforts that stretch over
several years and deal with the following challenges which are mainly due to the highly
irregular nature of the algorithm.
• Especially in fine-grained parallel tree search it is essential to define an efficient data
structure for the storage and management of the “tsunami” of subproblems, dynam-
ically generated at runtime. Indeed, it is crucial to keep the overhead of search tree
management operations low as the computational cost of the latter cannot be neglected
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when using a very fine-grained LB function. Therefore, PBB@Cluster is based on
an innovative data structure, dedicated to permutation problems and called Integer-
Vector-Matrix (IVM) (Mezmaz et al. 2014). The advantage of IVM, compared to a
conventional linked-list, lies in its compact and constant memory-footprint, which is
well-suited for GPUs (Gmys et al. 2016).
• Due to its highly irregular nature, scaling parallel BB up to millions of concurrent

exploration agents requires efficient load balancing mechanisms—which in turn rely
on a suitable definition of work units. We present the design and implementation
of a hierarchical load balancing scheme (on the GPU and inter-node levels) with an
interval-based encoding of work-units that keeps millions of GPU-based BB explor-
ers busy. The encoding of work units as integer intervals based on the mixed-radix
factorial number system (also called factoradic) has been successfully used in multi-
core (Mezmaz et al. 2014), GPU (Gmys et al. 2017) and grid-based Mezmaz et al.
(2007) parallel PBB algorithms.
• The algorithm is also irregular on the level of individual exploration-agents. In particu-

lar, the node evaluation function is characterized by irregular memory access patterns
and diverging control flow. This makes it difficult to take advantage of low-level par-
allelism and impedes single instruction, multiple thread (SIMT) execution efficiency.
For the PFSP makespan and LB evaluation functions, vectorization approaches have
been proposed in (Bożejko 2009, Melab et al. 2018). Mapping strategies for reducing
thread divergence in PBB@GPU were investigated in (Gmys et al. 2016). In this work,
we revisit the vectorization of the fine-grained LB used in PBB@Cluster to speed up
node evaluation and exploit warp-level parallelism.
• PBB prunes subproblems whose LB is greater than the best found solution so far.

Therefore, it is important to discover optimal solutions quickly and thereby maxi-
mize the pruning rate. Any improvement of the incumbent solution may dramatically
accelerate the exploration process and lead to superlinear speedups (de Bruin et al.
1995, Gmys et al. 2020). As depth-first search (DFS) alone fails in general to find high-
quality solutions, we investigate the hybridization of PBB@Cluster with approximate
search methods. The proposed hybridization uses independent CPU-based heuristic
searches for the discovery of high-quality solutions in parallel to and in cooperation
with the GPU-based exhaustive search.
• Communication patterns are irregular as well: several unpredictable events (new

best solutions, local work exhaustion, checkpointing, termination detection) trigger
communications involving messages of different kinds and sizes. Moreover, a scalable
approach requires inter-node communications to be asynchronous on the worker-side,
i.e. a primary design goal is to interrupt the GPU-based tree-traversal as little as
possible. While the inter-node level of PBB@Cluster is conceptually similar to the
coordinator-worker approach in BB@Grid (Mezmaz et al. 2007), the latter is designed
for mono-core processors and uses C-based socket programming. The use of GPU-
based workers and a switch to MPI (Message Passing Interface) motivates us to revisit
the design of the coordinator process, redefining work units and enabling asynchronous
message passing.
• A reliable global checkpointing mechanism is an indispensable component of

PBB@Cluster. On the one hand, as the time required for solving a particular instance
is unpredictable, node reservations may expire before the exploration is completed.
On the other hand, the mean time between failure (MTBF) on large supercomput-
ers keeps decreasing as we’re entering the exascale era (Cappello 2009). Therefore, a
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minimum requirement is to be able to re-start the exploration process from the last
global checkpoint without impeding correctness.

1.2. Outline
We aim at making this article as self-contained as possible and to present not only the
outcome of our research, but to expose how design choices result from an interaction
between hardware and problem-dependent algorithmic constraints. First, Section 2 defines
the PFSP and presents the sequential algorithm design, the IVM data structure and work
units. Section 3 presents PBB@GPU, the GPU-based PBB algorithm at the core of worker
processes in PBB@Cluster. In Section 4 we describe the design and implementation of
PBB@Cluster’s coordinator and worker processes. Experimental results are reported in
Section 5 and finally, some conclusions are drawn in Section 6. Improved upper bounds and
new optimal schedules for benchmark instances are provided in the Online Supplement.

2. Branch-and-Bound for the PFSP
2.1. Problem formulation
The flowshop scheduling problem (FSP) can be formulated as follows. Each of n jobs
J = {J1, J2, . . . , Jn} has to be processed on m machines M1,M2, . . . ,Mm in that order. The
processing of job Jj on machine Mk, takes an uninterrupted time pjk, given by a processing
time matrix. Each machine can process at most one job at a time and jobs cannot be
processed simultaneously on different machines. A common simplification is to consider
only permutation schedules, i.e. to enforce an identical processing order on all machines,
which reduces the size of the search space from (n!)m to n!. Considering minimization of
the completion time of the last job on the last machine, called makespan, the resulting
problem is the permutation flow-shop problem (PFSP) with makespan criterion, denoted
Fm|prmu|Cmax.

Formally, denoting π = (π(1), . . . , π(n)) ∈ Sn a permutation of length n, and Cj,k the
completion time of job Jj on machine Mk, the goal is to find an optimal permutation π?

such that
Cmax(π?) = min

π∈Sn

Cmax(π)

where Cmax(π) = Cπ(n),m. For m = 2, the problem can be solved in O(n logn) steps by
sorting the jobs according to Johnson’s rule (Johnson 1954); for m≥ 3 it is shown to be
NP-hard (Garey et al. 1976). The completion times Cπ(j),k can be obtained recursively by

Cπ(j),k = max
(
Cπ(j),k−1,Cπ(j−1),k

)
+ pπ(j),k (1)

where pπ(0),k = pj,0 = 0 by convention. Thus, for a given schedule π, the makespan Cmax(π) =
Cπ(n),m can be computed in O(mn) time.

2.2. Branch-and-Bound for permutation problems
BB performs an implicit enumeration of the search space by dynamically constructing and
exploring a tree, whose root node represents the initial problem, internal nodes represent
subproblems (partial solutions) and leaves are feasible solutions (permutations). The algo-
rithm starts by initializing the best solution found so far (also called the incumbent) and
the data-structure used for storing the tree such that it contains only the root node.

Figure 1 shows an illustration of the four BB-operators, selection, branching, bounding,
and pruning, for a permutation problem of size four. At each iteration, the selection oper-
ator returns the next subproblem to explore, starting with the root node. The branching
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Figure 1 Illustration of a simple Branch-and-Bound algorithm for a permutation problem of size four.

operator decomposes the subproblem into smaller disjoint subproblems. The bounding
operator computes lower bounds (LB) on the optimal cost of these subproblems, in the
sense that no arrangement of unscheduled jobs can yield a smaller makespan than LB.
Using the LB values, the pruning operator discards subproblems from the search that
cannot lead to an improvement of the incumbent. All non-pruned subproblems are inserted
into the data structure for further exploration. In the following subsections we specify the
branching and bounding operators used in this work, as well as the data structure used
for storing subproblems. The choice of the sequential algorithm design is based on (Gmys
et al. 2020).

2.3. Branching rule

Our BB algorithm uses a position-based branching scheme, i.e. a subproblem (partial
solution) is branched by selecting one free position and assigning remaining unscheduled
jobs to that position. Alternatively one could investigate precedence-based approaches,
such as the block-based branching of (Grabowski et al. 1983) which successively adds
precedence constraints and which has been used in efficient local search algorithms for the
PFSP (Nowicki and Smutnicki 1996). However, as the latter requires maintaining critical
paths and block decompositions for each tree node, this approach is more challenging to
implement, especially on top of GPU accelerators.

In the example of Figure 1, permutations are built from left to right, meaning that a
node of depth d can be represented by a prefix partial schedule σ1 of d jobs. The forward
branching operation consists in generating n− d child subproblems as follows:

Forward-Branch : σ1 7→ {σ1j, j ∈ J \σ1}.

Backward branching prepends unscheduled jobs to a postfix partial schedule σ2, i.e.

Backward-Branch : σ2 7→ {jσ2, j ∈ J \σ2}.

Our PBB algorithm uses a dynamic branching rule (Potts 1980), which decides dynami-
cally, for each decomposed node, which of the two branching types is applied. With dynamic
branching, subproblems are represented in the form (σ1, σ2) and are decomposed as follows

Dyna-Branch : (σ1, σ2) 7→

{
{(σ1j, σ2), j ∈ J \ (σ1, σ2)} if Fwd-Branch

{(σ1, jσ2), j ∈ J \ (σ1, σ2)} if Bwd-Branch
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Figure 2 Illustration of a subproblem decomposition using dynamic branching.

Note that, to guarantee completeness of the search, all children of a subproblem are
obtained by the same branching type, either forward or backward (see the Online Supple-
ment for further details, including a proof of exhaustiveness).

To make the branching decision, both sets of children nodes are evaluated and a simple
heuristic chooses which of the two sets is retained. In this work, the branching heuristic
called MinMin (Gmys et al. 2020) is used. It chooses the set in which the minimal LB
(among both sets) is realized less often, or, in case of equality the set where the sum of
LBs is higher, and forward if the sums are equal as well. Compared to mono-directional
branching, the dynamic branching requires the computation of twice as many LBs per
node decomposition, but computational experiments show that the tree size can often be
reduced by several orders of magnitude (Gmys et al. 2020).

Figure 2 illustrates a node decomposition, involving dynamic branching, bounding and
pruning. In the example, the decomposed subproblem is (σ1, σ2) = ((J3, J1), (J2, J4)), where
jobs {J5, J6, J7} remain to be scheduled and the best makespan found so far is 18. Both chil-
dren sets are evaluated, yielding LBFwd = {19,17,17} for forward and LBBwd = {21,17,19}
for backward. The smallest LB (17) occurs less frequently in LBBwd, so the MinMin heuris-
tic chooses backward branching and the set of forward nodes is discarded. The computed
LBs are reused by the pruning operator, which, in the example, eliminates two subproblems
(instead of one in the alternative branch).

2.4. Lower Bound

The LB used in this work comes from the pioneering algorithms proposed independently
by Lomnicki (1965) and Ignall and Schrage (1965). The so-called one-machine bound (LB1),
was initially developed for BB algorithms using only forward branching, but it can be
extended to the bi-directional subproblem representation (Potts 1980).

The computation of LB1 for a subproblem (σ1, σ2) can be divided into four steps, illus-
trated in Figure 3. We denote |σ1|= d1 and |σ2|= d2 the number of jobs scheduled in the
prefix and suffix partial schedules respectively.

1. For the front, compute Cσ1(d1),k, the completion time of the last job in σ1 on each
machine, i.e. the earliest possible starting time for unscheduled jobs, given σ1.

2. For the unscheduled jobs, compute p(k) =
∑

j∈J\(σ1,σ2) pj,k, the total remaining pro-
cessing time on each machine.

3. For the back, compute C̄σ2(d2),k, the minimum time required between starting the first
job in σ2 on machine Mk and the end of operations on the last machine. These values
are obtained by scheduling σ2 in reverse order in front, using Equation (1) and the
reversibility property of the PFSP (Potts 1980).
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4. Finally, LB1 is obtained by

LB1(σ1, σ2) = max
k=1,...,m

Cσ1(d1),k + p(k) + C̄σ2(d2),k.

Clearly, LB1 has the same time complexity as a makespan evaluation, i.e. O(mn). How-
ever, reusing the quantities computed for (σ1, σ2), it is possible to deduce LB1 for a child
subproblem in O(m) steps. Therefore, the computation of LB1 for all 2× (n− d1 − d2)
children of (σ1, σ2) also requires O(mn) steps. Moreover, this incremental evaluation of the
children requires only O(1) additional memory per child.

LB1 is dominated by the two-machine bound LB2, proposed by Lageweg et al. (1978),
which relies on the exact resolution, for different machine-pairs, of two-machine problems
using Johnson’s rule. In addition to the front/back computations, the different variants
of LB2 require between m and m(m−1)/2 evaluations of (pre-sorted) two-machine Johnson
schedules for each child node. Therefore, LB2 requires between O(mn2) and O(m2n2)
time for the evaluation of all child nodes in a decomposition step. In (Gmys et al. 2020)
we found that, in combination with dynamic branching and especially for large problem
instances, LB1 provides a better tradeoff between sharpness and computational effort. To
give an approximate measure of comparison, using dynamic branching and LB1, Taillard’s
Ta56 instance can be solved in 33 hours on a dual-socket Intel Xeon node (∼ 600 CPU-
hours)—with LB2 and the same branching scheme, the required CPU-time is 22 years
(300× more) (Mezmaz et al. 2007).

2.5. Search strategy and data structure

The next node to be decomposed is chosen according to a predefined selection strategy. In
this work, we consider only depth-first search (DFS), because memory requirements of best-
first and breadth-first search grow exponentially with the problem size1. The data structure

1 For example, solving Ta058 (n= 50), the critical tree (composed of nodes with LBs smaller than the optimal cost)
contains 339× 1012 nodes, so there exists at least one level with more than 6.7× 1012 open subproblems. Assuming
that each subproblem is stored as a sequence of n= 50 32-bit integers, breadth-first exploration would require at least
6.7× 1012× 50× 4 B = 1.4 PB of memory.
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Figure 4 Tree and IVM-based representation of the search state, solving a permutation problem of size 5.

used for storing generated subproblems is closely related to the choice of the search strategy.
In this work, we use the Integer-Vector-Matrix (IVM) data structure proposed in (Mezmaz
et al. 2014). It is dedicated to permutation problems and provides a memory-efficient
alternative to stacks, which are conventionally used for DFS. The working of the IVM data
structure is best introduced with an example.

Figure 4 illustrates a pool of subproblems that could be obtained when solving a per-
mutation problem of size n= 5 with a DFS-PBB algorithm using bi-directional branching.
On the left-hand side, Figure 4 shows a tree-based representation of this pool. The parent-
child relationship between subproblems is represented by dashed gray arrows. The jobs
before the first “/” symbol represent σ1, the ones behind the second “/” symbol σ2 and
jobs between the two “/” symbols represent the set of unscheduled jobs in arbitrary order.

On the right-hand side, IVM indicates the next subproblem to be solved. The integer
I of IVM gives the level of this subproblem, using 0-based counting (at level 0 one job is
scheduled). In this example, the level of the next subproblem is 2. The vector V contains,
for each level up to I, the position of the selected subproblem among its sibling nodes
in the tree. In the example, jobs 3, 2 and 4 have been scheduled at levels 0, 1 and 2
respectively. The matrix M contains the jobs to be scheduled at each level: all the n jobs
for the first row, the n−1 remaining jobs for the second row, and so on. The data structure
is completed with a binary array of length n that indicates the branching type for each
level. In the example, job 3 is scheduled at the beginning, jobs 2 and 4 are scheduled at
the end. Thus, the IVM structure indicates that 3/15/42 is the next subproblem to be
decomposed.

The IVM-based BB operators work as follows:
• To branch a selected subproblem, the remaining unscheduled jobs are copied to the

next row of M and the current level I is incremented. The branching vector is set
according to the branching decisions.

• To prune a subproblem, the corresponding cell inM should be ignored by the selection
operator. To flag a cell of M as “pruned” its content is multiplied by −1. These flags
are removed as jobs are copied to the next row.

• To select the next subproblem, the values of I and V are modified such that they
point to the deepest leftmost non-pruned cell in M : the vector V is incremented at
position I until a non-pruned cell is found or the end of the row is reached. If the end
of the row is reached (i. e. V [I] = n−I), then the algorithm backtracks to the previous
level by decrementing I and again incrementing V .

2.6. Work units

Throughout the depth-first exploration, the vector V behaves like a counter. In the example
of Figure 4, V successively takes the values 00000, 00010, 00100, . . ., 43200, 43210 (skipping
some values due to pruning). These 120 values correspond to the lexicographic numbering
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Figure 5 Illustration of the search space encoded as the integer-interval [0,4![, for a permutation problem of
size n= 4. In this example, the search space is partitioned into three work units : [0,9[, [9,15[, [16,24[
(equivalently, in factoradic notation : [0000,1100[, [1110,2110[, [2200,3210[).

of the 5! solutions in the factorial number system (Knuth 1997). In this mixed-radix number
system, the weight of the position k= 0,1, . . . , is equal to k! and the digits allowed for the
kth position are 0,1, . . . , k.

For a problem of size n, each valid value of V corresponds uniquely to an integer in the
interval [0, n![ (half-open interval including 0, excluding n!). Converting the position-vector
V to its decimal form allows to interpret the search as an exploration, from left to right, of
the integer interval [0, n![. Moreover, an initialization procedure allows to start the search
at any position a ∈ [0, n![, and by comparing the position-vector Va to an end-vector Vb,
the search can be restricted to arbitrary intervals [a, b[⊆ [0, n![.

In PBB, work units are intervals, that can be either represented in factoradic form
[Va, Vb[⊆ [(0,0, ...,0), (n− 1, n− 2, ...,2,1,0)[ or, equivalently, in decimal form [a, b[⊆ [0, n![.
Figure 5 illustrates, for a problem of size n= 4, the partition of the search space [0,4![ into
three work units. A parallel PBB algorithm is obtained as follows. The search space [0, n![ is
partitioned into K distinct subintervals {[ai, bi[⊂ [0, n![, i= 1, . . . ,K} to be explored by K
workers. As the distribution of work in [0, n![ is highly irregular, a work stealing approach
is used (Mezmaz et al. 2014). When a worker i finishes the exploration of its interval [ai, bi[
(i.e. when ai = bi), it chooses a victim worker j and “steals” the right half [

aj+bj
2
, bj[. The

work stealing victim j continues to explore the interval [aj,
aj+bj

2
[.

2.7. Parallel models for Branch-and-Bound

The most frequently used models for the parallelization of PBB are: (1) parallel tree
exploration, (2) parallel evaluation of bounds and (3) parallelization of the bounding func-
tion (Gendron and Crainic 1994).

Model (1) consists in exploring disjoint parts of the search space in parallel using multiple
independent BB processes. For large trees this model yields a practically unlimited degree
of parallelism (DOP). It requires efficient dynamic load balancing mechanisms to deal with
the irregularity of the search tree, sharing of the best-found solution and a mechanism for
(distributed) termination detection. Model (1) can be implemented either synchronously
or asynchronously. In model (2), the children nodes generated at a given iteration are
evaluated in parallel. The DOP is variable throughout the search as it depends on the depth
of the decomposed subproblem. Model (3) strongly depends on the bounding function and
may be nested within models (1) and (2).

In this work, model (1) is used hierarchically: on the first level the search space is
distributed among asynchronous worker processes hosted on different compute nodes; on
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Figure 6 Outline of GPU-based PBB algorithm (PBB@GPU).

the second level, each worker process consists of several GPU-based, synchronous PBB
sub-workers. On both levels, the tree is dynamically balanced among workers, best-found
solutions are shared and termination conditions are handled. On the GPU-level, each
independent PBB explorer is mapped onto a CUDA warp (currently 32 threads) and warp-
level parallelism is exploited through a combination of models (2) and (3).

3. GPU-based Branch-and-Bound algorithm(PBB@GPU)
In PBB@GPU all four BB operators, including work stealing, are performed on the GPU.
This differs from other approaches that can be found in the literature, notably the offloading
of (costly) node evaluations to GPUs (Vu and Derbel 2016, Chakroun et al. 2013), and
the generation of an initial Active Set of internal nodes on the host, which are then used
as roots for concurrent GPU-based searches (Rocki and Suda 2010, Carneiro et al. 2011).
In the following, we outline PBB@GPU. We put the focus on the LB computation and
dynamic branching, as more detailed descriptions of selection and work stealing kernels
can be found in (Gmys et al. 2016) and (Gmys et al. 2017).

3.1. Outline of PBB@GPU

The IVM data structure allows to bypass a major roadbloack for GPU-based tree search
: the lack or poor performance of dynamic data structures (linked-lists, stacks, priority
queues, etc.) on GPUs. IVM has a small and constant memory footprint: thousands of IVMs
can be allocated in device memory. Moreover, the encoding of work units as factoradic
intervals allows to implement low-overhead data-parallel work-stealing mechanisms on the
GPU.

Figure 6 shows a flowchart outlining the PBB@GPU algorithm. After reading problem-
specific input data, K IVM structures are allocated in GPU memory and constant data
(matrix of processing times, n, m, . . .) is copied to the device. Then, a collection of (at
most K) intervals is initialized on the host—for instance with a single interval {[0, n![} or
an initial partitioning of the search space {[ j×n!

K
, (j+1)×n!

K
[, j = 0,1, . . . ,K − 1}. If created

in decimal form, the intervals are converted to factoradics in order be used as initial
position- and end-vectors on the device. After this operation, PBB@GPU enters the main
exploration-loop, which consists of three CUDA kernels and a few auxiliary operations.

The first kernel performs the node selection as described in Section 2.5 concurrently
on all IVMs. This kernel also decodes the IVMs, producing one subproblem of the form
[π,d1, d2] per IVM, where π is a schedule with fixed jobs at positions 1, . . . , d1 and d2, . . . , n.
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The second kernel performs the decomposition step, including dynamic branching and
bounding, as shown in Figure 2. IVM structures are modified in parallel to apply pruning
decisions.

If an improving solution is found, then a device flag newBest is set. Moreover, a global
device counter 0 ≤nbActive≤ K keeps track of the number of IVMs with non-empty
intervals. Both are copied to the host at each iteration. If the newBest flag is set, then the
candidate solution(s) is (are) copied to the host and the best solution is updated. If the
current activity level is equal to zero, then PBB@GPU returns the optimal solution and
exploration statistics, before shutting down. If the current activity level is below 0.8×K,
i.e. if more than 20% of IVMs are inactive, then a work stealing phase is triggered. The
goal of this trigger-mechanism is to keep the load balancing overhead low. In Figure 6,
some details, such as kernel configurations, have been spared out. Some details regarding
the efficient implementation of these kernels are provided in the following subsections.

3.2. Selection kernel

The main performance issue for this kernel is branch divergence, as the amount of oper-
ations to perform varies strongly between different IVMs. Mapping each IVM to exactly
one thread causes control flow divergence for threads within the same warp, leading to
serialized execution of divergent branches. Experiments have shown that it is preferable to
map IVMs to full warps (Gmys et al. 2016)—even if that means that all threads except
the warp-leader (lane 0) are mostly inactive. The selection kernel is thus launched with
K ×warpSize threads, grouped in blocks of 4 warps. Besides reducing thread divergence,
this makes more per-block shared memory available per IVM, allowing to bring parts of
the data structure closer to the ALUs. The 32 (warpSize) available threads per IVM are
used for loading data to shared memory. Moreover, despite the sequential nature of the
selection operator, some sub-operations (e.g. generating a new line in the IVM matrix)
benefit from warp-level parallelism.

3.3. Bounding kernel

Previous GPU-accelerated BB algorithms for the PFSP use the heavier LB2 bound (cf. Sec-
tion 2), which consumes about 99% of the computation time in sequential implementations.
In that situation, it is natural to focus performance optimization efforts on the bounding
kernel. For instance, to deal with the variable amount of children nodes per IVM, the LB2-
based algorithm proposed in (Gmys et al. 2016) introduces an auxiliary mapping kernel,
which uses a parallel prefix sum computation to build a compact thread-data mapping.
However, this approach is not suitable for the more fine-grained LB1 evaluation. Indeed,
the the computational cost of the incremental LB1 evaluation is too low to justify regular-
izing the workload with complex overhead operations. As for the selection kernel, using a
compact one-thread-per-IVM mapping results in low warp execution efficiency and requires
a very large number of IVMs (K) to reach acceptable device occupancy levels.

Therefore, the bounding kernel uses a warp-centric approach, like the selection kernel,
with exactly one warp per subproblem. The implementation uses the CUDA Coopera-
tive Groups API, warp-level primitives and explicit warp-synchronization ( syncwarp())
(since CUDA 9). For each parent subproblem (σ1, σ2) of depth d1 + d2 = d there are n− d
unscheduled jobs and thus 2× (n− d) child subproblems to evaluate. As explained in Sec-
tion 2, the evaluation of children nodes involves: (1) the computation of partial costs for
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Figure 7 Illustration of a parallel makespan evaluation for a four-job (partial) schedule and m= 6 machines.

the parent subproblem and (2) the incremental evaluation of LB1 for each child subprob-
lem. Despite the data dependencies in Equation 1, step (1) can be parallelized as proposed
by Bożejko (2009) for MMX vector instructions. Step (2) is embarrassingly parallel.

Figure 7 illustrates the warp-parallel evaluation of a prefix schedule of length d1 = 4 on
m = 6 machines. Each circle represents one max-add operation (as in Equation 1), and
the shades of (and labels inside) the circles indicate the lane (thread index within the
warp) performing the operation. Operations connected by dashed diagonal lines are done
in parallel. The horizontal and vertical arrows represent data dependencies of two types:
a thin dashed arrow indicates that the lane already holds the required value from the
previous iteration; a solid arrow indicates that the required value is transferred from a
neighboring lane using a warp-level shfl up (blue, vertical) or shfl down (red, horizontal)
operation. These built-in warp-synchronous functions allow to bypass shared memory and
perform the (partial) makespan evaluation using only per-thread registers. The solid arrows
on the right represent the storage of per-machine completion times in a (shared or global
memory) array of length m.

In the example shown in Figure 7, the 6×4 = 24 operations are performed in 4+6−1 = 9
iterations, so the theoretical speedup in this case is 24

9
= 2.7×. For a detailed theoretical

speedup analysis we refer the reader to (Bożejko 2009). The decomposition of a node
(σ1, σ2), as illustrated in Figure 2, is performed at the warp-level as follows:

1. Evaluate Cσ1(d1),: as illustrated in Figure 7.
2. Evaluate C̄σ2(d2),: as illustrated in Figure 7.
3. Compute n− d Forward -LBs in m

⌈
n−d
32

⌉
steps.

4. Compute n− d Backward -LBs in m
⌈
n−d
32

⌉
steps.

5. Choose branching direction (warp-parallel min-reduce and warp-vote functions).
6. Apply pruning decisions for n− d subproblems in parallel.
The remaining processing time per machine is obtained by subtracting from the per-

machine total and integrated into steps 1 and 2. The parent subproblem [π,d1, d2] and
m-element arrays representing the front, back and remaining times (see Figure 3) are
placed in shared memory. The processing time matrix is placed in constant memory.

3.4. Work Stealing kernels

As mentioned, a work stealing (WS) operation consists in taking the right half from a
non-empty interval and assigning it to an idle worker. To perform this operation on the
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GPU, device functions for elementary operations (+, −, ÷ by scalar) on factoradic numbers
are implemented. The more challenging part is to build a mapping of empty IVMs onto
exploring IVMs, such that (1) no WS victim is selected twice, (2) larger intervals are
preferred and (3) the mapping is build in parallel on the device.

In the victim selection step, the K IVM are seen as vertices of a hypercube, in which all
empty IVMs successively poll their neighbors to acquire new work units. For illustrative
purposes, let’s suppose that K = 214 = 16384. The indices of the K IVMs can be written
as (α7 . . . α1) in base 4. Connecting all IVMs whose base-4 indices differ in exactly one
digit, a 4-ary 7-cube is obtained, where each IVM has 7 × (4 − 1) = 21 neighbors. The
victim selection is carried out in 21 iterations during which each empty IVM tries to
select (α7 . . . (αi − j) (mod 4) . . . α1), i = 1, . . . ,7, j = 1,2,3 as a work stealing victim. A
non-empty IVM can be selected if and only if (1) it is not yet selected and (2) its interval
is larger than (a) the average interval-length and (b) a minimum length, fixed arbitrarily
to (8!). Prior to the victim selection phase, a helper kernel computes the average interval-
length.

4. Distributed GPU-based algorithm (PBB@cluster)
4.1. PBB@Cluster : Coordinator process

For the inter-node level of PBB@Cluster, we revisit the PBB@Grid framework of Mezmaz
et al. (2007) to enable the use of GPU-based (or multi-core) worker processes, instead
of single-threaded workers. Our algorithm is implemented with MPI and uses a static
number of worker processes (np)—contrary to PBB@Grid, which uses socket programming
for inter-node communication and shell-scripts to discover available resources and launch
worker processes via ssh.

PBB@Cluster is based on an asynchronous coordinator-worker model with worker-
initiated communications. At each point in time, the coordinator keeps a list of unassigned
work units and an active list, containing copies of the work units explored by different
workers. As each worker is composed of multiple sub-workers, a cluster-level work unit
is defined as a collection of intervals contained in [0, n![. More precisely, we define a work
unit Wi as a finite union of Ki non-overlapping intervals

Wi =

Ki⋃
j=0

[aj, bj[ , where ∀j : [aj, bj[⊆ [0, n![ and [aj, bj[∩[ak, bk[= ∅ , j 6= k (2)

In this definition, index i is the identifier of the work unit, and Ki <Kmax
i the number of

intervals, limited by a maximum capacity Kmax
i . The coordinator maintains (1) a list of

unassigned work units Wunassigned and (2) a list of active work units W = {W c
1 ,W

c
2 , . . .},

where W c
i designates the coordinator’s copy of a work unit Wi.

A pseudo-code of the PBB@Cluster coordinator is shown in Algorithm 1. After broad-
casting an initial solution (computed or read from a file), the coordinator fills Wunassigned

with the initial work, e.g. the complete interval [0, n![, an initial decomposition, or a list
of intervals read from a file (Line 3). Then, the coordinator starts listening for incom-
ing messages (Line 6). Under certain conditions, that will be detailed later, workers send
checkpoint messages to the coordinator, containing
• the number of nodes decomposed since the last checkpoint,
• Kmax

i the maximal number of intervals the worker can handle and
• a work unit Wi containing Ki intervals and tagged with a unique identifier i.
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Algorithm 1 PBB@Cluster : Coordinator
1: procedure PBB-Coordinator
2: /* not shown: allocations; initialize, build and broadcast initial solution; ...*/

3: Wunassigned←GetInitialWorks() . e.g. [0, n![, readFromFile(),...
4: nterminated← 0
5: while nterminated <nproc do
6: src, tag←MPI Probe(ANY) . wait for any message from any source
7: switch tag do . discriminate message types
8: case WORK: /* worker checkpoint */

9: Wi←ReceiveWork(src) . wrapper for MPI Recv and Unpack
10: Wtmp←WorkerCheckpoint(Wi) . pseudo-code provided below
11: if W = ∅∧Wunassigned = ∅ then
12: SendEnd(src) . no more work : send termination signal
13: else if Wtmp 6=Wi then
14: SendWork(Wtmp, src) . send new or modified Wi to worker
15: else
16: SendBest(src) . acknowledge reception / send global best
17: end if
18: case BEST: /* candidate for improved global best solution */

19: S←ReceiveSolution(src)
20: TryImproveGlobalBest(S)
21: SendBest(src)

22: case END: /* worker has left computation */

23: S←ReceiveSolution(src)
24: TryImproveGlobalBest(S)
25: nterminated++

26: end switch
27: if DoGlobalCheckpoint() then . global checkpoint interval elapsed?
28: SaveToDisk(W, Wunassigned)
29: end if
30: end while
31: end procedure
32: procedure WorkerCheckpoint(Wi)
33: W c

i ←FindCopy(Wi,W)
34: Wtmp←Intersect(Wi,W c

i )
35: if Wtmp = ∅ then
36: Wtmp←Steal(i,W)
37: end if
38: W c

i ←Wtmp

39: return Wtmp

40: end procedure

After receiving a checkpoint message, the coordinator intersects the received work unit Wi

with the copy W c
i . If the result of the intersection is empty, a new work unit of at most

Kmax
i intervals is generated by taking intervals from Wunassigned or by splitting a work unit

from W. The work unit resulting from the intersection and/or splitting operations (Wtmp

in Algorithm 1) replaces the previous copy W c
i in W. These operations are shown as the

workerCheckpoint operation in Algorithm 1 (Lines 10 and 32). Work unit intersection
and splitting procedures are described below.

If Wtmp differs from the received work unit Wi, then Wtmp is sent back to the worker
to replace Wi. If Wtmp is identical to the received Wi, then there is no need to send any
work back and the coordinator replies only by sending the best-found global upper bound
(Line 16). The remaining tasks of the coordinator, shown in Lines 18 to 29, deal with
termination detection, management of the global best solution and global checkpointing.
The sending/receiving of work units and the intersection procedure are the most time-
consuming operations of the coordinator.

4.1.1. Work unit communication. We should note that the MPI Recv and MPI Send
calls are not time-consuming per se, but the associated data marshalling is costly. A worker
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checkpoint message is of type MPI PACKED and consists of a metadata header and a list of
Ki (for ex. ≤ 16384) intervals. As these intervals are represented by a couple of integers of
the order ∼ n!, the GNU Multiple Precision Arithmetic Library (GMP) is used. While the
coordinator might as well work with factoradic numbers (i.e. integer arrays of length n),
it is more convenient and faster to perform arithmetic operations (subtraction, division,
addition, comparison) in decimal form. However, due to the lack of native MPI support
for GMP integers, packing intervals to the communication buffer requires converting them
to raw binary format and back to mpz t at the receiving end. We observed that these
conversions cause significant overhead.

4.1.2. Work unit intersection. The intersection of two intervals [a1, b1[ and [a2, b2[ is
done by considering the maximum between both start points and the minimum between
both end points, as shown in Equation 3.

[a1, b1[∩[a2, b2[= [max(a1, a2),min(b1, b2)[ (3)

The intersection of two work units W1 and W2 requires pairwise intersection of the
intervals contained in both sets, as shown in Equation 4.(

K1⋃
i=1

[a1
i , b

1
i [

)
∩

(
K2⋃
j=1

[a2
j , b

2
j [

)
=

K1⋃
i=1

K2⋃
j=1

[max(a1
i , a

2
j),min(b1

i , b
2
j)[ (4)

For arbitrary sets of intervals, K1×K2 elementary intersections are required to compute
the intersection of two interval-lists. However, using the fact that each interval in W1

intersects with at most one interval in W2, and sorting intervals in increasing order, the
operation in Equation 4 can be carried out in O(K1 +K2) time. The computational cost
of work unit intersections can be further reduced by taking advantage of the following
observation. If a copy W c

i hasn’t been stolen from since the last worker-checkpoint, then the
intersection operation becomes trivially W c

i ∩Wi =Wi. Thus, the coordinator maintains a
flag for each work unit inW to indicate whether it has been modified since the last worker
checkpoint.

4.1.3. Work unit division. When no more unassigned works are available, the coor-
dinator generates a new work unit by splitting the largest work unit from W. For that
purpose, the coordinator keeps track of the sizes of work units, defined as

‖Wi‖=

Ki∑
j=1

(bij − aij).

LetW c
v be the work unit selected for splitting andKmax

i the maximum number of intervals
the requesting worker i can handle. The new work unit is generated by taking the right
halves of the first Knew = min(Kmax

i ,Kv) intervals from W c
v . The new work unit of the

requesting worker i is

Wnew =

Knew⋃
j=1

[
ajv + bjv

2
, bjv[

and the victim’s copy of the work unit becomes

W c
v =

(
Knew⋃
j=1

[ajv,
ajv + bjv

2
[

)
∪

(
Kv⋃

j=Knew+1

[ajv, b
j
v[

)
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Figure 8 PBB GPU-Worker Process.

As mentioned above, after this operation, the victim’s work unit is flagged as “modified”
to make sure that the impacted worker performs a full intersection at the next checkpoint
and updates its work unit.

4.1.4. Global checkpointing. Periodically, the coordinator saves the complete lists of
unassigned and active work units,Wunassigned andW, to a file. For a problem instance with
n= 100 jobs, the size of a work unit of Ki = 16384 intervals is approximately

16384× 2× log2(100!)

8
B = 2.1 MB

so with np = 256 workers the size of the checkpoint file grows to ∼ 500 MB. In addition,
the global checkpoint must contain the best found solution. When restarting PBB@Cluster
from a global checkpoint, the coordinator reads the file and places the work units in
Wunassigned.

4.2. PBB@Cluster : Worker process

Figure 8 shows a flowchart of a worker process, composed of a PBB@GPU thread (control-
ling the GPU), a dedicated communication thread and multiple metaheuristic threads. The
worker process is implemented using POSIX threads (pthreads) and the different worker
components communicate through shared memory using mutexes and condition variables.
For the sake of readability, details regarding synchronization and mutual exclusion primi-
tives are spared out in Figure 8. Like PBB@GPU, the worker process starts by allocating
and initializing data structures on the CPU and GPU. The initial best-found solution is
received from the coordinator.

4.2.1. PBB@GPU thread The left part of Figure 8 corresponds to the PBB@GPU
algorithm presented in Section 3, including a few modifications. Instead of stopping when
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all work units are empty, a checkpoint communication is initiated to acquire new work.
Moreover, communications with the coordinator are triggered when:
• an improved local best solution is discovered. The latter is sent to the coordinator as

it might improve the global best.
• a fixed amount of GPU-based load balancing operations was performed. This threshold

is set to 1/5 of the sub-workers. The coordinator’s copy of the work unit should be
updated to avoid redundant exploration.
• a fixed amount of time has elapsed since the last worker-checkpoint. The purpose of

this time-limit is to ensure that the global state of the search, kept by the coordinator,
is updated regularly. We set this value to 30 seconds.

As shown in Figure 8, the PBB@GPU thread offloads all communications to a dedicated
thread (described below). The PBB@GPU and communication threads basically interact
in a producer-consumer pattern with single-item buffers. If the communicator thread is not
ready (buffers are full), then the worker checks for global termination and pending updates
before resuming to exploration work. Indeed, if no more local work is available, the worker
thread quickly returns to the point where it checks the readiness of the communicator
thread, busy-waiting for the buffer to become free. Otherwise, appropriate flags are set
for the communicator thread, intervals are copied from the GPU to a send-buffer, and
the worker returns to the PBB@GPU main-loop. The objective of this approach is that
checkpoint operations or sending a new solution do not prevent the worker from making
progress in the interval exploration.

4.2.2. Communication thread There are several reasons motivating the use of a ded-
icated communication thread:
• As mentioned in the previous section, the communicator handles intervals in decimal

form, i.e. GMP integers, and interval-lists should be sorted to simplify the inter-
section operation. Using a separate communication thread, the burden of pre- and
post-processing work unit communications is taken off the critical work path.
• It is one way to actually progress the message passing asynchronously (Vaidyanathan

et al. 2015, Hoefler and Lumsdaine 2008).
• Although quite few best solutions are discovered throughout the search, new best

solutions can be found by the PBB@GPU thread or by heuristic search threads.
Offloading all communication to a single dedicated thread allows to use the
MPI THREAD SERIALIZED thread-level instead of MPI THREAD MULTIPLE.
• Each message to the coordinator should be matched by an answer. In particular, if

no more work is available, sending multiple subsequent work requests would cause
multiple answers by the coordinator, overwriting each other. In our opinion, from a
programming point of view, assuring this constraint with conventional non-blocking
routines (e.g. MPI Isend and MPI IProbe) is at least as difficult as correctly synchro-
nizing pthreads.

The main disadvantage is that one less CPU thread is available for computations—however,
on most current systems this should be negligible. The flowchart of the communication
thread is shown in the middle of Figure 8. In its default state, the communication thread
waits on a condition variable to be triggered. If triggered, it then either sends the local
best solution or the interval-list (after converting it from factoradic to decimal and sorting
it). Then, the communicator thread waits for an answer from the coordinator.

If a WORK message is received, then the interval-list is converted to the factoradic form
and the availability of an update is signaled to the work-thread. As shown in the left part of
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Figure 8, the work-thread checks at each iteration whether an update is available. To ensure
that the buffer can be safely reused, the communication thread blocks until the work-thread
has copied the intervals to the device. Upon reception of a BEST message, which is the
default answer from the coordinator, the thread attempts to update the local best solution.
From coordinator to worker, BEST messages contain only the best makespan—not the
corresponding schedule which is not needed by workers. The third possible message type is
a termination message: it causes the communication thread to set the shared termination
flag and join with the other worker-threads. Before shutting down, each worker sends a
last message to the worker, containing the local best solution.

4.2.3. Heuristic threads The PBB@Cluster design presented up to this point leaves
the computing power of additional CPU cores unused. For instance, each GPU-accelerated
compute node on Jean Zay is composed of two 20-core CPUs and 4 GPUs, meaning that
32 additional CPU cores per node can be exploited. Preliminary experiments show that
CPU-based BB-threads running on those cores only reach a fraction of the processing speed
provided by the GPUs. PBB@Cluster therefore uses remaining CPU cores to run heuristic
search algorithms. The exact BB search and heuristic searches cooperate in the following
way. Periodically, the PBB@GPU thread promotes the current subproblems of all IVMs
to solutions (by arbitrarily fixing the unscheduled jobs), evaluates them and adds the best
resulting schedules to a fixed-size solution pool (containing up to twice as many solutions
as the number of heuristic threads). These solutions are used as starting points for local
searches that are allowed a fixed amount of time.

In principle, any kind of heuristic search can be used. However, two aspects are par-
ticularly important. Firstly, the heuristic searches should either be stochastic or strongly
dependent on the starting solution. Otherwise, the multi-start parallel searches will find
identical solutions. Secondly, for solving very hard instances, the local searches should have
the ability to find very high-quality solutions if a long enough running time is allowed—
rather than the ability to find good solutions very quickly. Investigating the performance
of different heuristic methods in this hybridization approach goes beyond the scope of this
paper.

In our attempts to solve hard problem instances, we mainly use an iterated local search
(ILS) algorithm (Ruiz and Stützle 2007) using the k-insert recursive neighborhood pro-
posed in (Deroussi et al. 2006). We also use a best-upper-bound-first BB search (truncated
with stack-size- and time-limits), that prunes on LB1 and generates upper bounds from
partial solutions by fixing unscheduled jobs in the order of appearance in the IVM-matrix.
The behavior of this approach is biased by arranging jobs the first-row of the matrix
according to the starting solution. Moreover, for each visited subproblem of a predefined
depth, the beam-search algorithm recently proposed by (Libralesso et al. 2020) is applied
on partial solutions, leaving prefix and postfix partial schedules unchanged.

Both approaches have shown good results, but no clear pattern emerged regarding the
better heuristic search to use. Moreover, different methods for extracting solutions from
the BB search should be investigated and the running time allowed for a heuristic search is
fixed at 5 minutes. The hybridization of PBB@Cluster with approximate methods is still
an experimental feature that requires more attention—we should note, however, that the
hybridization allowed to solve instances whose resolution couldn’t be achieved by the PBB
algorithm alone.
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Table 1 Instances used for single-GPU performance evaluation.

Instance initial-UB n×m tree-size Instance initial-UB n×m tree-size

Ta021 2297 20× 20 495 G Ta081 6115 100× 20 282 G
Ta056 3666 50× 20 1444 G Ta101 11156 200× 20 371 G

The search is initialized with “initial-UB” (≤C?
max) and explores a tree of “tree-size” nodes (the set of

nodes {node|LB(node)< initial-UB}.

5. Experimental evaluation
Section 5.1 provides details regarding the experimental environment. In Subsection 5.2 we
experimentally evaluate the performance of the single-GPU implementation on different
GPUs. In Subsection 5.3 we study the scalability of PBB@cluster on up to 384 GPUs.
In Subsection 5.4 we report on the attempted resolution of the remaining open Taillard
instances and discuss the results. Additional experimental results, as well as new best
known solutions and proofs of optimality are given in the Online Supplement.

5.1. Experimental platform

Large-scale experiments are carried out on the GPU-accelerated partition of the Jean Zay
supercomputer hosted at IDRIS2. The system has two partitions (accelerated and non-
accelerated), ranked #64 and #108 respectively in the Top500 (November 2020). Acceler-
ated nodes are equipped with two Intel Xeon Gold 6248 (Cascade Lake) processors and
four Nvidia V100 SMX2 (32 GB) GPUs. Each V100 GPU has 80 streaming multipro-
cessors (SMs) for a total of 5120 FP32 Cuda cores clocked at 1.53 GHz (Boost Clock
rate). Jean Zay is a HPE SGI 8600 System with Intel Omni-Path 100 GB/s interconnect.
The OS is a Red Hat 8.1 Linux distribution and the job scheduler Slurm 18.08.8. For
our experiments, we are limited to 384 GPUs (or 96 nodes) with a maximum duration
of 20 hours for a single job. For development, testing and medium-scale experiments we
also use the GPU-equipped clusters of Grid’5000, a large-scale and flexible testbed for
experiment-driven research3.

5.2. Evaluation of single-GPU performance

In this first experiment, the performance of PBB@GPU is evaluated and compared to an
equivalent CPU-based PBB@multi-core implementation. PBB is initialized with an initial
upper bound (UB) smaller than the known optimum : this ensures that the size of search
trees is fixed, and small enough to be explored in 10-60 minutes on a single CPU-core. The
selected instances, defined by m= 20 machines and n= 20, 50, 100 and 200 jobs, initial UBs
and the corresponding tree sizes are shown in Table 1. The evaluation is performed with
four different GPUs available in the Grid’5000 testbed: two gaming devices, GTX1080Ti
and RTX2080Ti, based on the Pascal and Turing microarchitectures respectively; and two
data-center GPUs (previously Tesla), the Pascal P100 and Volta V100 (PCIe versions).
For all four, version 10.1 of the CUDA toolkit is used.

Figure 9 shows the relative speed-up of multi-core and GPU-based PBB compared to
a sequential execution using a single CPU-core. The parallel multi-core version runs on
a dual-socket NUMA system composed of two Intel Gold 6126 CPUs (2x12 cores) and

2 Institute du développement et des ressources en informatique scientifique (national computing centre for the French
National Centre for Scientific Research (CNRS), https://www.idris.fr/

3 https://www.grid5000.fr/
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Figure 9 Performance of PBB@GPU compared to sequential and multi-core CPU implementations, using the
benchmark instances shown in Table 1.

uses all 48 logical cores (hyperthreading enabled). The implementation uses pthread-based
work stealing for load balancing between asynchronous exploration threads. In preliminary
experiments, we determined that K = 16384 is a suitable value for the number of IVMs per
GPU. One can see in Figure 9 that the multi-core B&B reaches speed-ups approximately
equal to the number of physical CPU cores. The dual-socket 24-core system performs better
than PBB@GPU only for the small 20× 20 instance and the weakest of the four GPUs.
In all other cases, PBB@GPU clearly outperforms PBB@multi-core, reaching speed-ups
between 41× (20× 20 instance using a P100 device) and 325× (200× 20 instance on a
V100 device) over sequential CPU execution. In other words, for instances of size 100×20
or 200× 20, over 1000 CPU cores are needed to equal the processing power provided by a
single quad-GPU node of Jean Zay.

One can notice a significant performance gap between the Pascal P100 and Volta V100
GPUs, and also between the Pascal- and Turing-based GeForce devices. To better under-
stand the reasons for this improvement, PBB@GPU executions on the four different devices
are profiled using the nvprof profiling tool: results are available in the Online Supplement.

5.3. Scalability experiments on Jean Zay

To perform a meaningful scalability analysis, we need to choose problem instances which
are small enough to be solved within a reasonable amount of time on a single device and
large enough to justify the use of multiple GPUs (single-GPU execution time between
1 hour and 1 day). Moreover, the selected benchmark instances should be associated with
different total workloads (tree sizes), but the granularity of the workload should be the
same (i.e. the number of jobs and machines defining the instances should be identical).
Taillard’s benchmark instances (except Ta056 ) are either too small or too large, so we
selected three instances from the VRF benchmark, defined by n = 30 jobs and m = 15
machines (30 15 2, 30 15 5 and 30 15 9 ).

To avoid speedup anomalies, we initialize PBB@Cluster with optimal solutions deter-
mined in preliminary runs. The sizes of explored critical trees (decomposed nodes) and
corresponding single-GPU walltimes are shown in Table 2. To simplify the presentation
of results, we refer to these instances as small, medium and large. The critical tree of the
small instance is composed of 122 billion nodes and its exploration requires 54 minutes of
processing on a single V100, which corresponds to an average processing speed of 37.6×106

nodes per second (NN/s). The large instance is 30 times larger, requiring over 27 hours
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Table 2 Summary of 30× 15 VRF instances used for scalability experiments on
Jean Zay.

shorthand name name C?
max NN T1-GPU (hh:mm) NN/s

small 30 15 2 2317 122 G 0:54 37.6 M
medium 30 15 5 2421 564 G 4:22 35.8 M
large 30 15 9 2259 3660 G 27:23 37.1 M

For each instance the table gives the optimal makespan (C?
max), size of the critical

tree (NN), exploration time on one V100 device (T1-GPU) and the corresponding

processing speed (in decomposed nodes/second).
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Figure 10 Evaluation of scalability on Jean Zay.

of processing at approximately the same speed. For each of the three instances, runs are
performed with 1,2,4, . . . ,2k quad-GPU nodes until the observed parallel efficiency drops
below 70%. Four MPI processes are mapped to each node and worker processes map to GPU
devices via MPI Rank (mod 4) and the cudaSetDevice API function. As the coordinator
process occupies one slot on node 0, the corresponding number of GPUs is respectively
3,7, . . . ,2k+2− 1.

For the three instances and an increasing number of GPUs, Figure 10a shows the elapsed
walltime (twall) with solid lines and the total active time of the coordinator (tcoord) with
dotted lines. The coordinator is considered “active” when it is not waiting on MPI Probe,
i.e. tcoord includes the time process 0 spends receiving messages, converting intervals and
processing worker requests. The linear scaling curve with respect to a single-GPU execution
(no coordinator) is represented by black solid lines. However, as Figure 10a is drawn in
log-log-scale, deviations from the ideal linear case are hard to see. Therefore, Figure 10b
shows the corresponding parallel efficiency.

Parallel efficiency of at least 90% is achieved with up to 16, 32, 64 GPUs for the small,
medium and large instances respectively; with 32, 64 and 128 GPUs, PBB@Cluster runs
with efficiencies of 84, 89 and 89% respectively. For a larger number of GPUs the parallel
efficiency drops off sharply, due to saturation of the coordinator process. Indeed, one can
notice in Figure 10a that for ≥ 32, ≥ 64 and ≥ 128 GPUs, tcoord is close to twall, meaning
that the coordinator is active nearly 100% of the time and becomes a sequential bottle-
neck. However, with 384 GPUs PBB@Cluster still reaches a speedup of 215× for the large
instance, reducing the execution time from over 27 hours (single GPU) to about 71/2 min-
utes. The results of this experiment indicate that for larger instances (> 30 hours on a
single device), PBB@Cluster can efficiently exploit several hundreds of GPUs, involving
over millions of independent tree exploration agents (K = 16384 per GPU).
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Table 3 Summary of solution attempts for benchmark instances Ta051-Ta060 (50× 20).

—solved—
Instance #GPUs telapsed GPUh NN ∼CPU-time known UB C?

max

Ta058 256 13h17 3399 339T 64 y 3691 3691
Ta053 128 7h59 1022 95T 19 y 3640 3640
Ta052 384 1h54 729.6 68T 14 y 3704 3699
Ta057 384 1h11 454.4 42T 8.5 y 3704 3704

—remain open—
Best found Comment

Ta051 3846 equal to UB from (Ravetti et al. 2012)
Ta054 3719 equal to UB from (Pan et al. 2008), (Kizilay et al. 2019)
Ta055 3610 equal to UB from (Deroussi et al. 2006)
Ta059 3741 equal to UB from (Pan et al. 2008)
Ta060 3755 improved upper bound

Exact solution of Ta056 was first reported in Mezmaz et al. (2007). Details on re-solving Ta056 are

provided in the Online Supplement.

5.4. Resolution of open PFSP instances

The largest previously solved PFSP instance is the 50× 20 instance Ta056, whose exact
solution was first obtained by a 25-day run of PBB@Grid (Mezmaz et al. 2007), exploiting
on average 328 CPUs. Over the last 5 years, we have re-solved Ta056 several times on
different platforms and with different PBB algorithms, including PBB@Cluster. Experi-
mental results obtained with Ta056 can be found in the Online Supplement.

In this subsection, we give feedback on our attempts to solve instances from the Taillard
benchmark for which optimal solutions are unknown. There are 9 such instances in the
50-job/20-machine class, 9 in the 100×20 group and 5 in the 200×20 group. For the sake
of clarity in the following presentation of results, let us briefly recall the possible outcomes
of a PBB execution:
(a) A solution π with a better cost than the initial UB is found, but the algorithm does

not terminate ⇒ no proof of optimality, improved UB
(b) A solution π with a better cost than the initial UB is found and the algorithm termi-

nates ⇒ proof of optimality and improved UB
(c) The algorithm terminates but the initial UB is not improved ⇒ the optimal solution

is larger or equal to the initial UB
(d) The algorithm does not terminate and the initial UB is not improved⇒ no information

5.4.1. 50-job, 20-machine instances (Ta051-Ta060) Table 3 summarizes the execution
statistics for the 9 unsolved instances of the 50×20 class—4 of them are solved to optimality
for the first time. In all cases, the algorithm is initialized with the best-known solution
from the literature. Clearly, even when optimal makespans for instances in this class are
available, their optimality is very hard to prove. Taking for example Ta058, proving that
no better solution than 3691 exists requires over 13 hours of processing on 256 GPUs, and
339× 1012 node decompositions. Based on the CPU-GPU comparison shown in Figure 9,
this corresponds to 64 CPU-years of sequential processing! For instances Ta057 and Ta053,
the best-known UB is also proven optimal.

In order to confirm the existence of a schedule with these optimal makespans, we solve
Ta057 a second time, finding the same optimal solution when initialized at C?

max + 1. For
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Table 4 Summary of solution attempts for benchmark instances Ta081-Ta090 (100× 20).

—solved—
Instance #GPUs telapsed GPUh NN ∼CPU-time old LB-UB C?

max

Ta083 64 0h24 25.8 2.2T 290 d 6252-6271 6252
Ta084 32 0h16 8.5 427G 95 d 6254-6269 6254
Ta090 128 78s 3 168G 31 d 6404-6434 6404

—remain open—
old LB-UB new LB-UB ∆LB ∆ UB

Ta081 6106-6202 6135-6173 +0.47% -0.47%
Ta085 6262-6314 6270-6286 +0.13% -0.44%
Ta086 6302-6364 6310-6331 +0.13% -0.52%
Ta087 6184-6268 6210-6224 +0.42% -0.70%
Ta088 6315-6401 6327-6372 +0.19% -0.45%
Ta089 6204-6247 6224-6275 +0.32% -0.44%

Avg +0.28% -0.50%

The ”old LB-UB” columns refer to the best-known lower (resp. upper) bounds in the literature, summa-

rized on E. Taillard’s website (Taillard 2015).

Ta058 and Ta053, additional explorations with the support of heuristic searches are per-
formed until an optimal schedule is discovered. For Ta052, PBB@Cluster finds an improved
schedule and proves its optimality in less than 2 hours, using 384 GPUs. Optimal permu-
tations for these instances are provided in the Online Supplement.

Instances Ta051, Ta054, Ta055, Ta59 and Ta060 remain open, despite using 3-5000
GPUh per instance in solution attempts. The initial UB provided for instance Ta060 is
improved by one unit to 3755. For the remaining instances, PBB@Cluster is restarted
with a larger initial UB and stopped when it finds the best-known UB. Enabling heuristic
searches in PBB@Cluster, these solutions are found relatively quickly (usually within less
than 1 hour). We can thus confirm the existence of the best-known solutions reported in the
literature. For the sake of completeness, corresponding permutation schedules are provided
at (Gmys 2021). Considering these observations, it seems likely that the best-known UBs
for the open 50×20 instances are optimal, but proofs of optimality are very hard to obtain.

5.4.2. 100-job, 20-machine instances (Ta081-Ta090) For the 100-job instances
Ta081 -Ta090, prior to this work the exact solution was only known for Ta082. We add
three instances to this list : Ta083, Ta084 and Ta090. Solution statistics and improved
upper bounds are summarized in Table 4. After initial, inconclusive solution attempts—
without using heuristic search threads—we try to tackle instances in this group in two
ways:

1. Using the best-known lower bound (as reported on E. Taillard’s website (Taillard
2015)) as initial UB, PBB@Cluster proves that no better solution exists, i.e. returns
without discovering a better schedule. Then, the initial UB is incremented by +1 and
the search is restarted. Iterating over runs with an increasing initial UB, the best
known lower bound is improved. This process is stopped when the algorithm finds and
proves the optimality of a solution or when a fixed amount of time is elapsed.

2. The exploration is initialized with the best-known UB and heuristic searches are used
to discover better solutions.

The first approach leads to the resolution of Ta083, for which the previously best-known
LB (6252) is optimal. Starting from one unit above the best-known LB (6253), an optimal
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schedule for Ta083 is found and proven optimal in 24 minutes using 64 GPUs. The explored
search tree is composed of 2.2× 1012 nodes, which is much smaller than the trees explored
for the 50× 20 instances. Interestingly, once the optimal solution of Ta083 is found, the
search terminates almost instantly—indeed, initialized with the optimum 6252, the search
completes within a few seconds by a sequential PBB algorithm.

The second approach provides improved solutions for all remaining instances of this
group. However, the exact PBB search alone is not able to find these solutions and best-
found solutions strongly depend on the quality of the supporting heuristic. Optimality
proofs are produced for two instances, Ta084 and Ta090, and in both cases the optimal
makespan is equal to the best-known lower bound! The solution statistics shown in Table 4
correspond only to the run that resulted in the solution of the instance. For Ta084 and
Ta090, several PBB@Cluster executions were performed prior to that final run (decreasing
the initial upper bound and restarted from previous checkpoints)—unfortunately, explo-
ration statistics were lost when restarting the algorithm from a global checkpoint.

The fact that the search completes relatively quickly (for the solved instances) once an
optimum is found, suggests that some of the remaining instances of the 100×20 class may
be solved exactly—if heuristic searches are capable of finding an optimal solution. Indeed,
contrary to the 50×20 class, the hardness of the three solved 100×20 instances stems from
the difficulty of finding an optimal solution, while the optimality of the latter is relatively
easy to prove.

For the six remaining instances, the exploration could not be completed despite using
2-10k GPUh of computation per instance. Although the required remaining time is by
nature unpredictable, we use the total remaining work and LB-UB gaps as indicators for
the hardness of an instance, and concentrate efforts on seemingly easier instances. For
all unsolved instances, improved upper and lower bounds on the optimal makespan are
reported in Table 4. One can see that for these instances, the previously best-known LBs
are not optimal (all best-known LBs are improved, on average by 0.32%). Taking for
example Ta081, we have 6135 ≤ C?

max ≤ 6173, which narrows down the previous LB-UB
interval 6106—6202. On average, best-known UBs for the remaining 100× 20 instances
are improved by −0.50%. Permutation schedules for all improved UBs are provided in the
Online Supplement.

It should be noted that for the 100× 20 class, ARPD values (with respect to previous
best-known UBs) of best-performing metaheuristics reported in the literature are in the
order of +0.5% (Dubois-Lacoste et al. 2017, Kizilay et al. 2019). Our results show that,
taking into account the improved UBs, actual optimality gaps of these methods are closer
to +1.0%.

5.4.3. 200-job, 20-machine instances (Ta101 -Ta110) In the 200× 20 class of Tail-
lard’s benchmark, 5 instances remain open, prior to this work. Four of them are solved
exactly and the UB of the remaining instance is improved by 0.38%. All four exact solu-
tions are obtained by successively running PBB@Cluster with increasing initial UBs. The
exploration statistics shown in Table 5 correspond only to the last run which results in the
instance’s solution. The largest of these instances, Ta101, is solved in 18 minutes using 32
GPUs. Compared to the 50-job instances, most 200×20 instances are thus relatively “easy”
to solve (although 18 minutes on 32 V100 GPU still correspond to an estimated computing
time of 130 CPU-days!). For two of the four solved instances the previously best-known
LB is optimal (Ta107, Ta108 ). Instance Ta102 is much harder to solve. The range of pos-
sibly optimal makespan values is narrowed down to 11154–11160 (from 11143–11203), but
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Table 5 Summary of solution attempts for benchmark instances Ta101-Ta110 (200× 20).

—solved—
Instance #GPUs telapsed GPUh NN ∼CPU-time old LB-UB C?

max

Ta101 32 0h18 9.6 225G 130 d 11152-11195 11158
Ta107 32 0h06 3 41G 41 d 11337-11360 11337
Ta109 32 100s 1 10G 4 d 11145-11192 11146
Ta108 32 28s <1 2G 80 h 11301-11334 11301

—remain open—
old LB-UB new LB-UB ∆LB ∆ UB

Ta102 11143-11203 11154-11160 +0.10% -0.38%

The ”old LB-UB” columns refer to the best-known lower (resp. upper) bounds in the literature, summarized
on E. Taillard’s website (Taillard 2015).
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Figure 11 Summary of optimally solved VRF instances.

Note. In parentheses: number of optimal solutions reported in this work. Thick dashed cell borders indicate that the
best-known solution for at least one instance in the class is improved. White: all 10 instances in the class are solved;
Gray: some instances remain open; Hatched red: optimal solutions for all 10 instances remain unknown.

multiple attempts consuming several thousands of GPU-hours were unsuccessful in further
increasing (resp. decreasing) the lower (resp. upper) bound.

5.4.4. VRF instances We also run PBB@Cluster on unsolved VRF instances (Vallada
et al. 2015). Due to the large number of open instances in the VRF benchmark (271/480),
no attempts are made to solve instances with m= 60 machines and the allocated computa-
tional budget per instance is smaller than for the Taillard benchmark. Overall, 55 instances
are solved exactly for the first time and 122 best-known solutions (Vallada et al. 2015,
Libralesso et al. 2020, Kizilay et al. 2019, Gmys et al. 2020) are improved. The largest
exactly solved instance is VRF30 20 1 (53.4× 1012 decomposed nodes, 200 GPUh)—the
previously best-known solution is optimal. Updated lists of best-known solutions and corre-
sponding schedules are provided at (Gmys 2021). Figure 11 summarizes, for each of the 48
instance classes, the number of known exact solutions and (in parentheses) the number of
optimal solutions provided in this paper. One can see that the unsolved instances with m=
20 machines are centered around n= 40-100, which is consistent with the results obtained
for Taillard’s benchmark. All instances with m≥ 40 machines remain open, although some
of the best-known solutions are improved.

6. Conclusions and future work
We have presented a Branch-and-Bound (BB) algorithm for exactly solving permutation-
based combinatorial optimization problems on GPU-accelerated supercomputers
(PBB@Cluster). The permutation flow-shop scheduling problem (PFSP) with makespan
minimization is used as a test-case. Using PBB@Cluster we solved 11 of the 23 open Taillard
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benchmark instances (1993) to optimality for the first time. Moreover, best-known upper
bounds are improved for 8 remaining instances. Instance Ta056 is solved to optimality in
less than 3 minutes on the Jean Zay supercomputer, which is a four-orders-of-magnitude
improvement over the first exact solution in 2006, which required 25 days of computation,
using a grid-enabled BB algorithm (Mezmaz et al. 2007).

Computational experiments demonstrate the efficiency of our approach. Using a sin-
gle V100 GPU, we observe speed-ups of 325× compared to a single-threaded CPU-based
implementation. The scalability of PBB@Cluster, using millions of GPU-based concurrent
tree searches on up to 384 V100 GPUs (2 million CUDA cores) has been evaluated. An
instance requiring 27 hours on a single GPU, is solved in 14 minutes on 128 GPUs, i.e.
with 90% parallel efficiency. The largest instance solved to optimality (Ta058 ) requires
an equivalent computing power of 64 CPU-years—on 256 GPUs it is solved in 13 hours,
exploring a tree composed of 340× 1012 nodes.

Although, to the best of our knowledge, this is the first deployment of fine-grained BB
on a peta-scale supercomputing system, these results could not be obtained by sheer brute-
force. Rather, they were made possible though a combination of recent algorithmic progress
in the design of sequential BB for the PFSP (Gmys et al. 2020) and a thoroughly revisited
parallel BB, specifically designed for GPUs and GPU-accelerated clusters. In this paper
we addressed in a comprehensive way several challenging and performance-critical issues
that arise at different levels of the algorithm-to-platform mapping, most of them related
to the algorithm’s highly irregular nature.

As shown in (Gmys 2017), the proposed approach can by applied to other permutation-
based optimization problems, provided that the lower bounding operation can be carried
out efficiently on the GPU. However, an extension to other solution encodings is not
straightforward as it would require revisiting the data structures used for managing the
pool of subproblems and the definition of work units.

In the short term future, we plan to investigate the hybridization of exact PBB and
approximate search methods, which has shown promising results. We will also investigate
the use of high-productivity PGAS-based parallel computing environments, such as Chapel,
that could greatly simplify the implementation of PBB@Cluster and parallel tree-search
algorithms in general.

The source code for PBB@Cluster is available at
https://github.com/jangmys/pbb
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