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We consider the problem of allocating multiple heterogeneous resources geographically and over time to meet

demands that require some subset of the available resource types simultaneously at a specified time, location,

and duration. The objective is to maximize the total reward accrued from meeting (a subset of) demands.

We model this problem as an integer program, show that it is NP-hard, and analyze the complexity of various

special cases. We introduce approximation algorithms and an extension to our problem that considers travel

costs. Finally, we test the performance of the integer programming model in an extensive computational

study.
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1. Introduction

In this paper, we introduce the heterogeneous multiple resource type allocation

problem where multiple (e.g., a subset) resource types are requested by demands

(mRmD) simultaneously at a specified time and location for a certain duration and

the goal is to maximize total reward from meeting (as subset of) demands. mRmD

has vast applications in resource allocation and scheduling. For example, hospital

operations require the coordinated scheduling of doctors, nurses, and operating
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rooms. Similarly, in the home health care setting (i.e., providing supportive care in

the home for illness, injury, or disability), patients may require visits from various

members of the home health care team (e.g., home health aides, registered nurses,

therapists, physicians, etc.). In some cases, multiple members may be needed

simultaneously; for example, home health aides may need direct supervision by a

registered nurse to perform any task for which they have not received satisfactory

training (Wright (2018)).

Resource allocation and scheduling in networks have been studied across

various applications in the operations research literature, including vehicle

routing, machine scheduling, and robotics task allocation. However, most of the

previous work considered either a single resource type (e.g., vehicle, ambulance,

commodity, etc.) (De Angelis et al. (2007); Huang et al. (2012)) or independently

scheduling/routing multiple resource types (Viswanath and Peeta (2003)). There

remains a significant gap in the literature on the efficient allocation of resources that

may require some level of collaboration or coordination when the requirements of a

certain demand cannot be met by a single resource type, i.e., resources of distinct

types may be needed simultaneously or sequentially to meet a demand. While some

studies (Rauchecker and Schryen (2019); Altay (2013); Su et al. (2016); Lee et al.

(2013)) explored the idea of collaboration between resources, the majority focused

on tasks that can be done sequentially or independently by different resources.

We model mRmD as an integer program, show that the problem and some

special cases are NP-hard while other special cases are solvable in polynomial time,

present approximation algorithms with provable bounds, and present results of a

computational study which builds on the theoretical foundation.

The remainder of this paper is structured as follows: Section 2 presents and

discusses relevant literature. Sections 3 and 4 introduce our problem and give a

description of the formulation. Theoretical results are presented in Sections 5 and
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6. In Section 7, we introduce an extension to our problem that considers travel

costs. Finally, a computational study is discussed in Section 8 before concluding in

Section 9.

2. Literature Review

Problems similar to mRmD have been studied in emergency response and disaster

management (Baxter et al. (2020)), machine and project scheduling, robotic task

allocation, and vehicle routing problems. Some of the theoretical notions of our

work also align with interval graphs (Gilmore and Hoffman (1964); Olariu (1991);

Yannakakis and Gavril (1987); Mertzios (2008); Carlisle and Lloyd (1995)) where a

demand can be represented as an interval with its start time and service duration.

Multi-task scheduling aims to schedule jobs with different tasks among multiple

machines to minimize the maximum completion time (makespan) (Mao (1995)) or

maximize utility (Fang et al. (2017)). These problems typically do not consider a

spatial component (or sequence-dependent setup times) nor multiple simultaneous

resource requirements. An exception is Chen and Lee (1999), studying the

one-job-on-multiple-machines model where several machines need to be assigned

simultaneously to process each job to minimize the completion time of all jobs.

Within the emergency/humanitarian response management and vehicle routing

streams, researchers addressed the problem of scheduling/routing single or multiple

heterogeneous resources, with some coordination or collaboration in the latter

case (Rauchecker and Schryen (2019); Altay (2013); Su et al. (2016); Lee et al.

(2013)). De Angelis et al. (2007); Viswanath and Peeta (2003); Huang et al. (2012)

studied vehicle routing and resource allocation decisions during humanitarian relief,

with a single resource type and no dependencies among multiple resource types.

Rauchecker and Schryen (2019) defined collaboration as tight (all resource units

needed by a demand must arrive simultaneously) or loose (resources may work

independently to meet demand). While most of the previous work focused on loose
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collaboration, mRmD calls for tight collaboration. Hashemi Doulabi et al. (2020);

Bredström and Rönnqvist (2008); Di Mascolo et al. (2014) focused on the vehicle

routing problem with synchronized visits (an example of tight collaboration where

customers may require multiple vehicles simultaneously) and considered objectives

including minimizing waiting time/delay in service, travel time, or costs.

The multi-robot task allocation problem is to allocate several homogeneous

or heterogeneous robots (resources) to a number of tasks (demands) under

system constraints to minimize the makespan (Xu et al. (2016); Gombolay

et al. (2018); Zheng and Koenig (2008); Liu and Kroll (2012)), maximize the

utility (Amador Nelke and Zivan (2017)), or minimize the total distance traveled

(Kartal et al. (2016)). Xu et al. (2016); Zheng and Koenig (2008); Liu and Kroll

(2012) characterize tasks by spatial constraints whereas Amador Nelke and Zivan

(2017); Gombolay et al. (2018); Kartal et al. (2016) consider both spatial and

temporal constraints. Xu et al. (2016); Amador Nelke and Zivan (2017); Zheng and

Koenig (2008) consider multi-robot tasks, which may require multiple homogeneous

(Amador Nelke and Zivan (2017); Xu et al. (2016); Zheng and Koenig (2008))

or heterogeneous (Amador Nelke and Zivan (2017)) robots to be completed. In

contrast to our study, in (Amador Nelke and Zivan (2017)) a robot can delay the

start or interrupt the service of a task for a penalty, and all tasks are eventually

completed, with the goal of maximizing the total utility.

3. Problem Description

A set of demands (D) has to be processed by a set of resource types (R). Each

resource type r ∈ R has a set of starting locations, Sr, and lrs resources at each

starting location s ∈ Sr, i.e., there are
∑
s∈Sr

lrs resources of type r ∈ R. A demand

d∈D requires a single unit of resource types Md ⊆R simultaneously at time τd for

a duration of ∆d (service time), resulting in a reward of wd only if met on time.

Travel time between any two locations x and y is denoted by fxy (e.g., fij denotes



Baxter, Keskinocak, and Singh: Heterogeneous Multi-Resource Allocation with Subset Demand Requests
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-02-OA-049 5

the travel time between the locations of demands i and j and fsd denotes the travel

time between a resource’s starting location s and the location of demand d). The

goal is to assign resources to demands to maximize the total reward of meeting (a

subset of) demands. The notation is summarized in Table 1.

Definition 1. An instance I of mRmD is defined as (i) sets D,R,Sr for all

r ∈R, and Md for all d ∈D, (ii) integer-valued parameters lrs for all s ∈ Sr, r ∈R
and τd,∆d,wd for all d ∈D, and (iii) integer-valued travel times, fxy, between any

two locations x and y.

Pre-processing: Note that an instance I of mRmD may be described as a

directed acyclic graph. Nodes represent the resource starting locations Sr, r ∈ R
and demands d ∈D. Then, we may create arcs (i, j) between two demand nodes

i and j if and only if demand j can be served immediately after demand i by a

resource, i.e., τi + ∆i + fij ≤ τj. Further, we create arcs (s, d) between a resource

starting location node s and a demand node d if and only if a resource from that

starting location can serve demand d, i.e., fsd ≤ τd. We introduce pre-processing

adjacency matrices A and B to determine the arcs (i, j) and (s, d) created in the

directed graph, respectively. That is, matrix A has a row and column for each

demand and cell Aij = 1 if and only if demand j can be served immediately after

demand i and the resource type requirements of i and j intersect. Matrix B has

a row for each resource’s starting location, a column for each demand, and cell

Bsd = 1 if and only if a resource at starting at location s can serve demand d (on

time, if d was the first demand to be served by this resource). The pre-processing

adjacency matrices are formally defined as follows:

Aij =

1, if τi + ∆i + fij ≤ τj, Mi ∩Mj 6= ∅

0, otherwise
i, j ∈D

Bsd =

1, if fsd ≤ τd, s∈ Sr, r ∈Md

0, otherwise
s∈ Sr, r ∈R,d∈D
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Note that since arcs in our directed graph were only created if demands could be

initially served by a resource, or served back-to-back by a resource, then any path

in the graph is a feasible schedule for a resource that ensures all demands are served

on time and for their service duration.

Definition 2. A feasible solution for mRmD is defined as a set of paths from

which it is easy to build in polynomial time the set of demands that is met.

4. Integer Programming Formulation

Table 1 Notation for problem description and IPM

D Set of demands
R Set of resource types
Sr Set of starting locations for r ∈R
lrs Number of resources of type r ∈R starting at location s∈ Sr
fij Travel time between i∈ {∪r∈RSr}∪D,j ∈D
Md Subset of resources required by d∈D
τd Service start time for d∈D
∆d Service duration for d∈D
wd Reward for meeting d∈D

yd=

{
1, if demand d is satisfied

0, otherwise d∈D

xr
ij

=


1, if resource type r serves demand

j after demand i

0, otherwise i, j, r :Aij = 1, r ∈Mi ∩Mj , i, j ∈D

xr
sd

=


1, if resource type r

from starting location s

initially serves demand d

0, otherwise s, d, r :Bsd = 1, s∈ Sr, r ∈Md, d∈D

xr
dt

=


1, if resource type r

serves demand d last

0, otherwise r ∈Md, d∈D

In this section, we present an integer programming model (IPM) for mRmD.

For an overview of the notation and description of the decision variables, please
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refer to Table 1. Given our description of a an instance of mRmD and its feasible

solution in Section 3, x variables describe the arcs traversed by resources and y

denotes whether or not a demand node was visited by all of its required resource

types. Note that we use t to denote a dummy sink.

max
∑
d∈D

ydwd (1)

s.t. ∑
d∈D|Bsd=1

xrsd ≤ lrs s∈ Sr, r ∈R (2)

∑
s∈Sr|Bsi=1

xrsi +
∑

h∈D|Ahi=1

xrhi =
∑

j∈D|Aij=1

xrij +xrit r ∈Mi, i∈D (3)

∑
s∈Sr|Bsi=1

xrsi +
∑

h∈D|Ahi=1

xrhi ≥ yi r ∈Mi, i∈D (4)

yd ∈ {0,1} d∈D (5)

xrsd ∈ {0,1} Bsd = 1, s∈ Sr, r ∈Md, d∈D (6)

xrij ∈ {0,1} Aij = 1, r ∈Mi ∩Mj, i, j ∈D (7)

xrdt ∈ {0,1} r ∈Md, d∈D (8)

The objective function (1) of IPM is to maximize the overall reward obtained

from satisfying demands. Constraints (2) ensure that the number of resources that

leave starting location s is less than or equal to the number of resources available at

that location. Constraints (3) maintain flow conservation, i.e., the flow of resources

arriving to and leaving a demand must be equal. Constraints (4) enforce that a

demand is satisfied only if it has been serviced by all of its required resource types.

Domain constraints for the variables are given in (5)-(8).

Another valid formulation is to consider time indices and define variables for

whether a specific resource of a certain type is at a given location at each time index



Baxter, Keskinocak, and Singh: Heterogeneous Multi-Resource Allocation with Subset Demand Requests
8 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-02-OA-049

(see Appendix A for details). However, this formulation could involve significantly

more variables and constraints than IPM and is computationally prohibitive, as

shown in Table 8 of Appendix A.

5. Complexity Results

First, we show complexity results for mRmD, including flow decomposition

techniques to determine the feasibility of serving all demands in an mRmD

instance. Then we show that mRmD cannot be approximated within a certain

order. Finally, we show complexity results for special cases of mRmD, which are

then used in later sections. Tables 2 and 3 summarize mRmD and some of its

special cases and corresponding complexity results shown in this section.

Table 2 Special Cases of the Problem

Name Description
1R1D Single resource type; this is equivalent to 1RmD.
mR1D Multiple resource types, each demand requires a single resource type.
2RmD Two resource types, each demand requires either one or both resource types.
mR{1 or all}D Multiple resource types, each demand requires either one or all resource types.
mR{1 or 2}D Multiple resource types, each demand requires either one or two resource types.
mRmD Multiple resource types, each demand requires a subset. This is the general case.

Table 3 Summary of Complexity Results

Name
Travel
Time

Service
Time

Demand
Start Time

Theorem Complexity

1R1D any any any 7 P
mR1D any any any 7 P
2RmD 0 ∞ 0 5 P
2RmD 0 1 any 6 P
2RmD any any any 1 NP-hard

mR{1 or all}D 0 ∞ 0 5 P
mR{1 or all}D 0 1 any 6 P
mR{1 or 2}D any any any 4 NP-hard

mRmD any any any 1,3 NP-hard

Theorem 1. mRmD is NP-hard, for |R| ≥ 2.

Proof. Refer to Appendix B.1 for the details.
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5.1. Flow Decomposition

In this subsection, we introduce flow decomposition techniques to determine the

feasibility of serving all demands in mRmD instances. We first define some

additional notation that is used here, as well as in Section 6. Let |R| be the number

of resource types (labeled 1,2, . . . , |R|) and Dr ⊆ D be the set of demands that

require a resource unit of type r ∈R, i.e., Dr := {i∈D|r ∈Mi}.

Theorem 2. The convex hull induced by the feasible points of IPM remains the

same when the x variables are relaxed.

Proof. Consider the convex hull induced by the feasible points of IPM. We show

that when the x variables are relaxed, the extreme points remain the same. Let the

binary y variables be fixed (i.e., the demands met are known). In the IPM, when

y variables are fixed, the objective function (1) becomes fixed, constraints (5) are

removed, and the formulation can be decomposed into |R| maximization problems

as follows

max 0 (1a)

s.t. ∑
d∈Dr|Bsd=1

xrsd ≤ lrs s∈ Sr (2a)

∑
s∈Sr|Bsi=1

xrsi +
∑

h∈Dr|Ahi=1

xrhi =
∑

j∈Dr|Aij=1

xrij +xrit i∈Dr (3a)

∑
s∈Sr|Bsi=1

xrsi +
∑

h∈Dr|Ahi=1

xrhi ≥ yi i∈Dr (4a)

xrsd ∈ {0,1} Bsd = 1, s∈ Sr, d∈Dr (6a)

xrij ∈ {0,1} Aij = 1, i, j ∈Dr (7a)

xrdt ∈ {0,1} d∈Dr (8a)

We denote this formulation as IPM-R; note that it is a feasibility problem.
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Lemma 1. IPM-R can be modeled and solved as a MCF.

Proof See Appendix B.2 for the details.

Since IPM-R can be modeled and solved as a MCF (Lemma 1), then the x

variables can be relaxed and maintain the same extreme points. �

Note that when all demands can be satisfied in an instance of mRmD, this

is equivalent to setting all the y variables to 1 and modeling the instance as |R|

feasibility problems that can be solved in polynomial time.

Corollary 1. The feasibility of serving all demands of an mRmD instance can

be determined in polynomial time.

Next we show that it is hard to even approximately solve mRmD under natural

complexity theoretic assumptions.

Theorem 3. mRmD cannot be approximated within O(min{|R| 12−ε, |D|1−ε})

unless NP ⊆ZPP (for every ε > 0), where |R| is the number of resource types and

|D| is the number of demands.

Proof. See Appendix B.3.

For the remainder of this section, we present complexity results for special cases

of mRmD showing that not only the general problem but even very special cases

remain NP-hard. Moreover, we identify other special cases that are solvable in

polynomial time.

Theorem 4. mR{1 or 2}D is NP-hard.

Proof. Refer to Appendix B.4 for the details.

Theorem 5. The special case of mR{1 or all}D where travel times are zero,

service times are infinite, and all demands have the same service start time is

solvable in polynomial time.

Proof. See Appendix B.5.
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Theorem 6. The special case of mR{1 or all}D where travel times are zero and

service times are one is solvable in polynomial time.

Proof. Since all service times are one and service start times are integral, then

we can group demands by their start times and apply Algorithm E (introduced in

Appendix B.5) to each independent group of demands. �

Theorem 7. 1R1D and mR1D are solvable in polynomial time.

Proof. 1R1D can be modeled as a minimum cost flow (MCF) problem on

a directed acyclic graph. See Appendix B.6. mR1D can be decomposed into m

independent 1R1D problems, which are solvable in polynomial time. �

MCF problems can be solved in polynomial time (Ahuja et al. (1993)). For

example, the minimum mean cycle-canceling algorithm is a strongly polynomial

algorithm which runs in O(m2n logn) time, where n,m are the number of nodes

and arcs, respectively, in the network (Gauthier et al. (2015)).

Observation 1. If the travel times are zero, then 1R1D can be formulated as a

maximum weighted coloring problem on an interval graph. See Appendix B.7.

Observation 2. If the travel times are not zero, 1R1D cannot be formulated as

a maximum weighted coloring problem on an interval graph. This can been shown

simply through the use of counterexamples and the characterizations of interval

graphs (Gilmore and Hoffman (1964)).

6. Approximation Algorithms

In this section, we present approximation algorithms for special cases of mRmD

and prove performance guarantees. Table 4 presents a summary of the results.

In the remainder of this section, we use the following notation. Let mi be the

number of resources of type i for i= 1, . . . , |R|. Without loss of generality, we assume

that m1 ≤ m2 ≤ . . . ≤ m|R|. Let sub-problem 1R1Dr refer to a 1R1D problem

instance that arises from the mRmD instance at hand by considering only the rth
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Table 4 Summary of Approximation Algorithm Results

Name Theorem Result
Resource

Starting Location

Algorithm A 8 |R|-approx. same

Algorithm B 9 χ-approx. same

Algorithm C 10 a
b
-approx. same

Bicriteria 11
(

(1− 1
k
), ( 1

1−kε)
)

-bicriteria approx. any

resource type (mr resources) and the corresponding subset of relevant demands

Dr, as defined in Section 5.1. Let OPT (I) represent the optimal objective value

for instance I of mRmD. Similarly, let χ(I) represent the objective value of the

solution produced by applying Algorithm χ to instance I of mRmD.

Definition 3. An α-approximation algorithm for mRmD, where α > 1, is an

algorithm that for every instance of mRmD, returns a feasible solution with

objective value at least 1
α

times the optimal objective. Moreover the running time

of the algorithm is polynomial in the size of the instance.

Algorithm A Description: Algorithm A iterates through the |R| resource

types and solves 1R1Dr to determine the value of each resource type. The algorithm

then picks the best resource type found and serves the optimal set of demands that

request that type.

Theorem 8. Algorithm A is an |R|-approximation algorithm for mRmD

instances with the same starting location for every resource.

Proof. First note that using Algorithm A, we may construct a feasible solution

to instance I of mRmD with an objective value of A(I). Because all resources have

the same starting location and demands Dr only request resource type r or larger

(where larger resource types have at least as many resources as type r), then all

other resource types larger than r may follow the same schedule determined by the
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Algorithm: A
Input: I

1 A(I)← 0

2 for 1≤ r≤ |R| do

3 Solve 1R1Dr; Let Ar(I) denote the objective value.

4 if Ar(I)≥ A(I) then

5 A(I)←Ar(I)

6 end

7 D←D \Dr

8 end

Output: A(I)

solution to 1R1Dr to ensure all demands are met by their requested resource types.

Thus, the feasible solution will consist of the paths from the 1R1Dr sub-problem

that produced the maximum objective value for all resource types greater than or

equal to r.

Now, we may partition the optimal objective value OPT (I) for instance I of

mRmD into values OPTr(I), r = 1, . . . , |R|, such that
∑|R|

i=1OPTr(I) = OPT (I)

and each OPTr(I) represents the objective value of all demands met whose smallest

resource type requests is r.

Lemma 2. Ar(I)≥OPTr(I) for r= 1, . . . , |R|.

Proof. Clearly, OPTr(I) is a feasible objective value for the rth iteration of

Algorithm A, as at the end of each iteration, we remove Dr from D. That is, the

sets of demands considered in each iteration of Algorithm A are also partitioned

according to the indices of their requested resource types. However, Ar(I) is

the optimal objective value of the rth iteration of Algorithm A and so Ar(I) ≥

OPTr(I). �
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Further, A(I)≥Ar(I) for r= 1, . . . , |R| and so we have

|R|∑
r=1

A(I)≥
|R|∑
r=1

Ar(I)≥
|R|∑
r=1

OPTr(I) =OPT (I).

This implies

|R| · A(I)≥OPT (I)

and so, dividing both sides by |R|, we obtain

A(I)≥ OPT (I)

|R|
. �

Remark 1. Note that Algorithm A can be solved in polynomial time as it relies

on solving |R| MCF problems.

For a problem instance I of mRmD, we create a conflict graph G = (V,E) as

follows:

Nodes

Create a node v=Mj for each unique Mj, j ∈D
Arcs

(u, v)∈E if u∩ v 6= ∅, u, v ∈ V
Let D̄v := {d∈D|Md = v} for all v ∈ V and the sub-problem 1R1D̄v refer to a 1R1D

problem instance that arises from the mRmD instance at hand by considering all

resources of type i where i is the smallest index in set v and the corresponding

subset of relevant demands D̄v.

Algorithm B Description: Given a χ-coloring of the conflict graph G,

Algorithm B iterates through the χ colors in the coloring of G and solves 1R1D̄v

for all nodes v of that color to determine the value of each color. The algorithm

then picks the best color found and serves the optimal set of demands of that color.

Theorem 9. Given a χ-coloring of the conflict graph G, Algorithm B is a

χ-approximation algorithm for mRmD instances with the same starting location

for every resource.
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Algorithm: B

1 Suppose there exists a χ-coloring of G. Label the colors 1,2, . . . , χ. Let Si be

the set of nodes that are colored i.

Input: I,G,χ, Si, i∈ {1,2, . . . , χ}

2 B(I)← 0

3 for 1≤ i≤ χ do

4 for v ∈ Si do

5 Solve 1R1D̄v; Let Bv(I) denote the objective value.

6 end

7 if
∑

v∈Si Bv(I)≥B(I) : then

8 B(I)←
∑

v∈Si Bv(I)

9 end

10 end

Output: B(I)

Proof. First note that using Algorithm B, we may construct a feasible solution

to instance I of mRmD with an objective value of B(I). Because all resources have

the same starting location and the resource type used to solve 1R1D̄v is the one

with the smallest number of resources in the subset v, then all other resource types

in v may follow the same schedule determined by the solution to 1R1D̄v to ensure

all demands are met by their requested resource types. Thus, the feasible solution

will consist of the paths from the 1R1D̄v sub-problem for all resources in v and for

all v ∈ Si, for the color i that produced the maximum objective value.

Now, we may partition the optimal objective value OPT (I) for instance I of

mRmD into values OPTv(I), v ∈ Si, i ∈ {1, . . . , χ}, where
∑χ

i=1

∑
v∈SiOPTv(I) =

OPT (I) and each OPTv(I) represents the objective value of all demands d met

whose subset request Md = v.
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Lemma 3. Bv(I)≥OPTv(I), v ∈ Si, i= 1, . . . , χ.

Proof. Clearly, OPTv(I) is a feasible objective value to 1R1D̄v. However, Bv(I)

is the optimal objective value to 1R1D̄v and so, Bv(I)≥OPTv(I). �

Further, B(I)≥
∑

v∈Si Bv(I) for i= 1, . . . , χ and so we have

χ∑
i=1

B(I)≥
χ∑
i=1

∑
v∈Si

Bv(I)≥
χ∑
i=1

∑
v∈Si

OPTv(I) =OPT (I).

This implies

χ · B(I)≥OPT (I)

and so, dividing both sides by χ, we obtain

B(I)≥ OPT (I)

χ
. �

Remark 2. Note that given a χ-coloring of the conflict graph G = (V,E),

Algorithm B can be solved in polynomial time as it relies on solving |V | MCF

problems.

Theorem 9 may be generalized to an a : b-coloring.

Definition 4. An a : b-coloring is a b-fold coloring out of a available colors,

where a b-fold coloring is an assignment of sets of size b to nodes of a graph such

that adjacent nodes receive disjoint sets.

Algorithm C Description: Given an a : b-coloring of the conflict graph G,

Algorithm C iterates through the a colors in the a : b-coloring of G and solves 1R1D̄v

for all nodes v of that color to determine the value of each color. The algorithm

then picks the best color found and serves the optimal set of demands of that color.

Theorem 10. Given an a : b-coloring of the conflict graph G, Algorithm C is an

a
b
-approximation algorithm for mRmD instances with the same starting location

for every resource.
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Algorithm: C

1 Suppose there exists an a:b-coloring of G. Label the colors 1,2, . . . , a. Let Si

be the set of nodes that are fractionally colored i.

Input: I,G,a, Si, i∈ {1,2, . . . , a}

2 C(I)← 0

3 for 1≤ i≤ a do

4 for v ∈ Si do

5 Solve 1R1D̄v; Let Cv(I) denote the objective value.

6 end

7 if
∑

v∈Si Cv(I)≥C(I) : then

8 C(I)←
∑

v∈Si Cv(I)

9 end

10 end

Output: C(I)

Proof. First note that using Algorithm C, we may construct a feasible solution

to instance I of mRmD with an objective value of C(I). Because all resources have

the same starting location and the resource type used to solve 1R1D̄v is the one

with the smallest number of resources in the subset v, then all other resource types

in v may follow the same schedule determined by the solution to 1R1D̄v to ensure

all demands are met by their requested resource types. Thus, the feasible solution

will consist of the paths from the 1R1D̄v sub-problem for all resources in v and for

all v ∈ Si, for the color i that produced the maximum objective value.

Now, we may partition the optimal objective value OPT (I) for instance I

of mRmD into values OPTj(I), j = 1, . . . , a, where b · OPT (I) =
∑a

j=1OPTj(I)

and each OPTj(I) represents the objective value of all demands met that are

fractionally colored j.
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Lemma 4.
∑

v∈Si Cv(I)≥OPTi(I) for all i= 1, . . . , a.

Proof. Clearly, OPTi(I) is a feasible objective value to the ith iteration of

Algorithm C. However,
∑

v∈Si Cv(I) is the optimal objective value to the ith iteration

and so,
∑

v∈Si Cv(I)≥OPTi(I). �

Further, C(I)≥
∑

v∈Si Cv(I) for i= 1, . . . , a and so we have

a∑
i=1

C(I)≥
a∑
i=1

∑
v∈Si

Cv(I)≥
a∑
i=1

OPTi(I) = b ·OPT (I).

This implies

a · C(I)≥ b ·OPT (I)

and so, dividing both sides by a, we obtain

C(I)≥ b

a
·OPT (I). �

Remark 3. Note that given an a : b-coloring of the conflict graph G = (V,E),

Algorithm C can be solved in polynomial time as it relies on solving b · |V | MCF

problems.

Definition 5. An (α,β)-bicriteria approximation algorithm for mRmD, (α >

1, β > 1), is an algorithm that given any instance of the problem, returns a solution

whose objective value is at least 1
α

fraction of the optimal objective and uses at

most β times more resources for every resource type. Moreover, the running time

of the algorithm is polynomial in size of the input instance.

In the following theorem, we show that there exists a good bicriteria algorithm for

instances where the optimal solution is able to satisfy nearly all the demand. The

result can be interpreted as a smooth degradation of Corollary 1 that shows the

decision problem of deciding whether all demands are satisfiable is polynomial time

solvable.
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Definition 6. Given a parameter ε > 0, an instance of mRmD is (1 −
ε)-satisfiable if the optimal solution has objective at least (1− ε) times the total

reward possible,
∑

d∈Dwd.

Theorem 11. For any 0 < ε < 1 and 1 ≤ k ≤ 1
ε
, there exists a(

k−1
k
, 1
1−kε

)
-bicriteria approximation algorithm for (1 − ε)-satisfiable instances of

mRmD.

Remark 4. Note that when we multiply the number of resources of each

resource type by ( 1
1−kε), there is a possibility that the number of resources of

each type is no longer integral. Without loss of generality, we may round up any

non-integral values.

Remark 5. As an instantiation of Theorem 11, consider the parameter ε= 0.01

and k = 5. Then, given an instance where the optimal solution satisfies at least

99% of the weighted sum of demands, Theorem 11 returns a solution that uses 25%

more resources of every resource type whose objective value is at least 94% of the

weighted sum of demands.

Proof of Theorem 11. Clearly, the objective of the linear relaxation, OPTLP (I),

of IPM (i.e., all variables are within the range [0,1]) for (1− ε)-satisfiable instances

of mRmD must also be at least (1− ε) times the total reward possible,
∑

d∈Dwd.

The algorithm uses the solution to the linear relaxation of IPM and Algorithm D
to construct an integral solution to IPM whose objective is at least (k−1

k
)OPTLP (I)

and uses no more than ( 1
1−kε) times more resources for every resource type. Let

(yLP ,xLP ) represent the optimal solution to the linear relaxation and define the

following sets:

B = {i : yLPi < 1− kε} and G=D \B.

Now, consider the solution (y′,x′) where

y′i =

1 ∀i∈G

0 else,
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xr
′

ij =
xrLPij

1− kε
r ∈Mi ∩Mj, i, j ∈D,

xr
′

sd =
xrLPsd

1− kε
s∈ Sr, r ∈Md, d∈D,

xr
′

dt =
xrLPdt

1− kε
r ∈Md, d∈D.

Note that since x variables may be relaxed (see Theorem 2), (y′,x′) is a solution

to IPM when resources of each resource type are increased by a factor of ( 1
1−kε)

that satisfies all constraints except the upper bound on the x variables.

Lemma 5. A solution (y,x) to IPM in which the x variables are unbounded

above may be transformed into a feasible solution (y, x̄) to IPM in which the x

variables are bounded above by 1.

Proof. Note that from Section 3, we may describe the solution (y,x) as a

directed acyclic graph G= (V,A) where each xrij ∈ x corresponds to the flow along

arc (i, j) ∈ A for resource type r ∈ R and i, j ∈ V . Now, the unbounded solution

(y,x) may be transformed into the bounded solution (y, x̄) by the procedure

described in Algorithm D. The number of operations in Algorithm D is finite since

at each stage, the total flow along all edges in G is decreasing as we send the same

flow value on fewer number of arcs. It is also important to note that all variables

used in Algorithm D must exist by the triangle inequality. Further, the y variable

values remain valid because for every node in which flow in and flow out is reduced,

the flow is never reduced to less than 1. �

By Lemma 5, we may transform (y′,x′) into a feasible solution to IPM when

resources are increased by ( 1
1−kε) and the x variables satisfy their bound restrictions.

Denote this solution by (y′,x′′).

Now from Theorem 2 we know that if the y′ variables are fixed, then IPM

decomposes into |R| MCF problems which can be solved in polynomial time and

produce an integral optimal solution. Therefore, we can fix the y′ variables and
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Algorithm: D
Input: (y,x)

1 x̄← x

2 while There are still x̄rij > 1 do

3 if i is a source and j is a sink then

4 Reduce flow value of x̄rij to 1.

5 end

6 if i is a source and j is not a sink then

7 Pick some x̄rjk > 0. Let δ= min{x̄rij − 1, x̄rjk}. Reduce flow value along

x̄rij − x̄rjk path by δ and increase flow value of x̄rik by δ.

8 end

9 if i is not a source and j is a sink then

10 Pick some x̄rhi > 0. Let δ = min{x̄rij − 1, x̄rhi}. Reduce flow value along

x̄rhi− x̄rij path by δ and increase flow value of x̄rhj by δ.

11 end

12 else

13 Pick some x̄rhi, x̄
r
jk > 0. Let δ= min{x̄rij − 1, x̄rhi, x̄

r
jk}. Reduce flow

value along x̄rhi− x̄rij − x̄rjk path by δ and increase flow value of x̄rhk

by δ.

14 end

15 end

Output: (y, x̄)

solve IPM optimally, letting OPT (I), (y′,x∗) represent the optimal objective value

and solution, respectively.

Lemma 6. OPT (I)≥ (k−1
k

)OPTLP (I).
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Proof. First note that∑
i∈B

yLPi wi+
∑
i∈G

wi ≥
∑
i∈B

yLPi wi+
∑
i∈G

yLPi wi =OPTLP (I)≥ (1−ε)
∑
i∈B

wi+(1−ε)
∑
i∈G

wi.

This implies that

ε
∑
i∈G

wi ≥ (1− ε)
∑
i∈B

wi−
∑
i∈B

yLPi wi (9)

> (1− ε)
∑
i∈B

wi− (1− kε)
∑
i∈B

wi (10)

= ε(k− 1)
∑
i∈B

wi (11)

where (10) comes from the fact that
∑

i∈B y
LP
i wi < (1−kε)

∑
i∈Bwi. Now, we have

that
∑

i∈Gwi ≥ (k− 1)
∑

i∈Bwi and so

OPT (I) =
∑
i∈G

wi ≥
(
k− 1

k

)(∑
i∈G

wi +
∑
i∈B

wi

)
≥
(
k− 1

k

)
OPTLP (I). �

Thus, we have shown that (y′,x∗) is an integral solution to IPM using ( 1
1−kε)

times more resources for every resource type whose objective value, OPT (I), is

greater than or equal to (k−1
k

)OPTLP (I). �

7. Extension

We present an extension to mRmD (denoted by mRmDc) that considers

integer-valued travel costs (c) between different locations (e.g., cij denotes the

travel cost between the locations of demands i and j and csd is the travel cost

between a resource’s starting location s and the location of demand d. The integer

programming model incorporating travel costs (IPM-C) is as follows:

max
∑
d∈D

ydwd−
∑
r∈R

(∑
s∈Sr

∑
d∈D

xrsdcsd +
∑
i∈D

∑
j∈D

xrijcij

)
(12)

s.t.

(2)− (8)
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Theorem 12. Assume that the travel cost between any two locations is less than

or equal to 1
2|R| times the minimum reward for a demand (wmin). Then Algorithm

A is a 2|R|-approximation algorithm for mRmDc instances with the same starting

location for every resource.

Proof. Note that we may run Algorithm A on instance I of mRmDc assuming

travel costs are zero, where A(I),DA ⊆ D are the objective value and set of

demands met in the solution produced by Algorithm A, repsectively. Let C,C∗

be the total travel costs incurred from the solutions of Algorithm A and the

optimal solution, respectively. Thus, the objective value produced by Algorithm A

is A(I)−C and the optimal objective value is OPT (I)−C∗. Then we have

A(I)−C ≥A(I)− c|DA||R| (13)

≥A(I)−
( 1

2|R|
wmin

)
|DA||R| (14)

≥ 1

2
A(I) (15)

≥ 1

2|R|
OPT (I) (16)

≥ 1

2|R|
(OPT (I)−C∗). (17)

Note that (14) follows from the assumption about travel costs and (16) is from the

results of Theorem 8. �

8. Computational Study

To test IPM, we created different problem instances using 2-7 resource types,

100-800 demands, and varied number of resources. In all cases, demand start times

are randomly chosen in the interval of [0, 1440], used to represent scheduling

a day (in minutes), with demands and resources randomly placed on a 20x20

grid structure. Adjacent nodes on the grid are 1 minute apart. Service times are

determined from a triangular distribution with a minimum of 15 minutes, maximum



Baxter, Keskinocak, and Singh: Heterogeneous Multi-Resource Allocation with Subset Demand Requests
24 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-02-OA-049

of 120 minutes, and mode of 30 minutes. All resource types have the same number of

resources (e.g., if there are 3 resource types and a total of 12 resources then there are

4 resources of each type for that instance). Rewards for demands are proportional to

their service time and the number of resource types the demand requires. Resource

requirement subsets are determined randomly, with a 50% chance that a certain

resource type will be required by a demand incident. Results presented are averages

of 10 instances. All instances were ran using Gurobi version 8.0.1.

Tables 5 and 6 present the run times (in seconds) for all instances considered,

where |R| is the number of resource types, |D| is the number of demands, and L

is the total number of resources. Note that Scaled Demands refers to results for

instances in which the reward for demand was multiplied by a factor of 100. As

expected, as the number of demands or number of resource types increases, the run

time increases. Computational experiments show that for small and medium sized

problems (less than 5 resource types), IPM can be efficiently solved by Gurobi.

However, larger sized problems are harder to solve. For example, problem instances

with 7 resource types and between 700 and 800 demands took, on average, between

12 and 50 minutes to solve. Results are similar between instances with and without

scaling. Appendix A describes an alternate formulation for mRmD and shows that

the runtimes for IPM are faster. Appendix C.1 presents a discussion on the trade-off

between resource capacity and the objective function value (i.e., demands met), as

highlighted by Theorem 11.

8.1. Computational Study with Travel Costs

We ran the same instances as above using IPM-C, where travel costs were equivalent

to travel times (i.e., demands that are 3 minutes apart have a travel cost of 3 in

the objective). Results and analysis can be found in Appendix C.2.

9. Conclusions

In this study, we formulated the heterogeneous multi-resource allocation problem

(mRmD) where each demand requests a subset of resources simultaneously at a
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Table 5 Results for number of resource types

equal to 2,3 and 4

|R| |D| L Run time
Run time

(Scaled Demands)

2 100 10 0.08 0.10

2 200 14 0.25 0.33

2 300 18 0.65 0.90

2 400 22 1.24 1.85

2 500 26 3.10 2.74

2 600 30 4.88 5.88

2 700 34 8.58 7.20

2 800 38 12.06 13.96

3 100 12 0.12 0.10

3 200 18 0.32 0.59

3 300 24 1.44 1.48

3 400 30 2.66 3.70

3 500 36 4.80 7.35

3 600 42 9.04 15.42

3 700 48 22.21 21.33

3 800 54 26.60 40.69

4 100 16 0.15 0.25

4 200 24 0.77 1.13

4 300 32 2.75 3.04

4 400 40 5.71 7.89

4 500 48 18.72 16.69

4 600 56 21.07 30.45

4 700 64 98.42 52.30

4 800 72 147.81 72.01

Table 6 Results for number of resource types

equal to 5,6 and 7

|R| |D| L Run time
Run time

(Scaled Demands)

5 100 20 0.13 0.22

5 200 30 0.92 1.60

5 300 40 5.39 6.31

5 400 50 8.08 17.57

5 500 60 43.06 44.37

5 600 70 55.82 161.77

5 700 80 145.10 100.11

5 800 90 276.00 349.65

6 100 24 0.24 0.40

6 200 36 1.31 2.41

6 300 48 7.13 9.01

6 400 60 21.74 22.78

6 500 72 87.24 76.92

6 600 84 184.65 349.21

6 700 96 474.84 313.35

6 800 108 1133.85 778.51

7 100 28 0.34 0.58

7 200 42 2.89 3.51

7 300 56 13.07 20.42

7 400 70 111.12 65.29

7 500 84 169.17 195.20

7 600 98 564.02 463.19

7 700 112 754.89 985.09

7 800 126 2965.94 2360.52

specified time, location, and duration as an integer program (IPM). Complexity

results were given for mRmD, as well as various special cases. A polyhedral result

was introduced that allowed us to relax variables in IPM. Further, we developed

approximation algorithms for variations of mRmD and proved the correctness of

their performance guarantees. Finally, we tested the performance of the model

computationally using Gurobi.

One simple extension of mRmD (labeled Extension 2) is to consider that resource

types may need to visit a destination location before moving on to meet the next

demand. For example, after meeting a demand incident, an ambulance may need

to drop the patient off at the hospital before proceeding to the next demand
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location. The problem description and formulation for Extension 2 are provided in

Appendix D. As the structure of the solution space does not change significantly, the

complexity results in Section 5 can be applied to this extension, with computational

results being very similar to those discussed in Section 8.

In this work, we have assumed that all demand requests are known ahead of

time (e.g., deterministic). While this formulation can be used to influence planning

decisions, future research could consider stochastic and dynamic versions of mRmD

(i.e., when all demand incidents may not be known ahead of time). Further, our

problem could be generalized to consider requiring multiple units of each resource

type.

Acknowledgments

This research has been supported in part by National Science Foundation (NSF) Graduate Research

Fellowship DGE-1650044, NSF grant CMMI-1538860, NSF- AF:1910423 and NSF-AF:1717947 and

the following Georgia Tech benefactors: William W. George, Andrea Laliberte, Joseph C. Mello,

Richard “Rick” E. & Charlene Zalesky, and Claudia & Paul Raines. The authors would also like

to thank the editor and reviewers for their comments and suggestions; their diligent and detailed

reviews thoroughly improved our manuscript.

Appendix A: Alternate Formulation for mRmD

We present an alternative integer programming model (IPM-Alt) for mRmD. For an overview of

the notation and description of the decision variables, please refer to Table 7.

max
∑
d∈D

ydwd (18)

s.t.

Kr∑
k=1

xk,rs0 = lrs s∈ Sr, r ∈R (19)∑
s∈Sr

xk,rs0 = 1 k ∈ {1, . . . ,Kr}, r ∈R (20)∑
i∈{∪r∈RS

r}∪D

xk,rit ≤ 1 t∈ {0, . . . , T}, k ∈ {1, . . . ,Kr}, r ∈R (21)

xk,rit +xk,rjt′ ≤ 1 t′ > t|fij > t′− t, i, j ∈ {∪r∈RSr}∪D, (22)
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Table 7 Notation for IPM-Alt

D Set of demands
R Set of resource types
Sr Set of starting locations for r ∈R
lrs Number of resources of type r ∈R starting at location s∈ Sr
Kr Number of resources of type r ∈R
fij Travel time between i, j ∈ {∪r∈RSr}∪D
Md Subset of resources required by d∈D
τd Service start time for d∈D
∆d Service duration for d∈D
wd Reward for meeting d∈D
T Last time period for demand to be served

yd=

{
1, if demand d is satisfied

0, otherwise d∈D

xk,r
it =


1, if resource k of type r is at

location i at time t

0, otherwise i, t, k, r : i∈ {∪r∈RSr}∪D, t∈ {0, . . . , T},
k ∈ {1, . . . ,Kr}, r ∈R

zk,r
d =


1, if demand d is met by resource

k of type r

0, otherwise d, k, r : k ∈ {1, . . . ,Kr}, r ∈Md, d∈D

t∈ {0, . . . , T − 1}, k ∈ {1, . . . ,Kr}, r ∈R

xk,rdt ≥ z
k,r
d t∈ {τd, . . . , τd + ∆d}, k ∈ {1, . . . ,Kr}, r ∈Md, d∈D (23)

Kr∑
k=1

zk,rd ≥ yd r ∈Md, d∈D (24)

yd ∈ {0,1} d∈D (25)

xk,rit ∈ {0,1} i∈ {∪r∈RSr}∪D, t∈ {0, . . . , T}, k ∈ {1, . . . ,Kr}, r ∈R (26)

zk,rd ∈ {0,1} k ∈ {1, . . . ,Kr}, r ∈Md, d∈D (27)

The objective function (18) of IPM-Alt is to maximize the overall reward obtained from satisfying

demands. Constraints (19) ensure that the number of resources at starting location s at time 0 is

equal to the number of resources available at that location. Constraints (20) assign each resource

to a starting location. Constraints (21) ensure that a resource can only be at at most one location

at each time index. Constraints (22) maintain that the movement of each resource from location
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to location is valid for the given time indices. Constraints (23) enforce that a demand is met by

a given resource only if that resource is at the demand’s location for its entire service duration.

Constraints (24) state that a demand can only be satisfied if it has been served by a resource of

each of its required resource types. Domain constraints for the variables are given in (25)-(27).

We test a small instance of mRmD with 10 demands, 2 resource types (with 3 resources of each

type), and demand start times randomly chosen in the interval [0,100]. All other computational

details remain the same as described in Section 8. Table 8 presents the solution times for 10 runs

of this instance using both IPM and IPM-Alt. As shown, even with this very small instance, IPM

outperforms IPM-Alt significantly. When attempting to use IPM-Alt to solve the smallest sized

instance type described in Section 8 (e.g., 2 resource types, 100 demands, 10 resources), construction

of the model did not finish in under an hour due to a large number of variables and constraints.

Table 8 Comparison of run times (in seconds)

Instance 1 2 3 4 5 6 7 8 9 10

IPM 0.044 0.04 0.083 0.027 0.045 0.032 0.044 0.036 0.045 0.051

IPM-Alt 4.47 4.15 6.33 3.57 3.58 5.82 7.22 4.20 6.19 3.19

Appendix B: Proofs of Theorems and Observations

B.1. Proof of Theorem 1

We prove that 2RmD is NP-hard by reduction using Numerical 3-Dimensional Matching (N3DM).

The construction is similar to the proof in Keskinocak and Tayur (1998).

Instance of N3DM

Integers t, d and at, bt, ct for i= 1, . . . , t, satisfying the following relations:

t∑
i=1

(ai + bi + ci) = td and 0<ai, bi, ci <d for i= 1, . . . , t

The goal is to find permutations ρ and σ of {1, . . . , t}, such that:

ai + bρ(i) + cσ(i) = d for i= 1, . . . , t

N3DM is shown to be NP-Complete in Garey and Johnson (1990). Given an instance of N3DM,

we define the following:

Ai = i for i= 1, . . . , t
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Bj = t+ j for j = 1, . . . , t

Cij = 2t+ (i− 1)t+ j for i, j = 1, . . . , t

S = t2 + 2t

T = S+ 2d+ 1

An instance of 2RmD with t2 + t resources and travel times between demands equal to zero can

be built as follows: resources 1, . . . , t are of type 1 and the remaining t2 resources are of type 0.

Let demands be of the form (uj , vj), where uj is the start time, vj is the end time, and vj − uj is

the service time of demand j. Define the reward for demand j to be the length of service times the

number of resource types required.

The following demands require resource type 0 and 1:

(0,Ai) for i= 1, . . . , t

(Ai,Cij) for i, j = 1, . . . , t

(S+ d− ck, T ) for k= 1, . . . , t

The following demands require resource type 0:

t− 1 times (0,Bj) for j = 1, . . . , t

(Bj ,Cij) for i, j = 1, . . . , t

(Cij , S+ ai + bj) for i, j = 1, . . . , t

(S+ ai + bj , T − 1) for i, j = 1, . . . , t

t2− t times (T − 1, T )

The following demands require resource type 1:

(Cij , S+ ai + bj) for i, j = 1, . . . , t

We now show that there exists a feasible solution to N3DM if and only if all resources are serving

demands during the interval [0,T] and there is no idle time.

Suppose that there exists a feasible schedule for a subset of demands, such that all resources are

busy serving demands during the interval [0,T]. Demands (0,Ai) must be scheduled to the first

t resources (since there are t of these trips and they each require resource type 1) and resources

t+ 1, . . . ,2t of type 0. These demands must be followed by some (Ai,Cij) demands. Similarly, the



Baxter, Keskinocak, and Singh: Heterogeneous Multi-Resource Allocation with Subset Demand Requests
30 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2021-02-OA-049

t2 − t demands (0,Bj) must be scheduled to the remaining t2 − t resources of type 0, followed by

some (Bj ,Cij) demands.

The first t resources of type 1 and the next t+ 1, . . . ,2t resources of type 0 have the following

schedules:

(0,Ai)(Ai,Cij)(Cij , S+ ai + bj)(S+ d− ck, T )

where each i, 1≤ i≤ t occurs exactly once.

The remaining t2− t resources of type 0 have schedules of the form

(0,Bj)(Bj ,Cij)(Cij , S+ ai + bj)(S+ ai + bj , T − 1)(T − 1, T )

where each j, 1≤ j ≤ t occurs exactly t− 1 times. Thus, among the demands (Cij , S+ai + bj) that

are served by the first t resources, each i and each j occurs exactly once.

From the schedules of the first t resources, we have S+ai+bj = S+d−ck, i.e., ai+bj +ck = d. So

we define ρ(i) = j and σ(i) = k whenever demand (Cij , S+ai+bj) is served followed by (S+d−ck, T )

by resource i, i= 1, . . . , t.

Conversely, given a feasible solution to N3DM, a feasible solution for this instance of 2RmD can

be found, which is clearly optimal, since the resources are serving demand throughout the interval

[0,T] with no idle time. �

B.2. Proof of Lemma 1

We first show that IPM-R can be modeled and solved as a MCF with node capacities. Define

G= (N,A, l,µ, c, b, v) as follows, where l, µ are the lower and upper bound functions on arc capacity,

c is the arc cost function, b is the node supplies function, and v is the node capacities function:

Nodes

N :=Dr ∪Sr ∪{s∗, t}

Arcs:

(s∗, t) at cost 0 with capacity (0,∞)

(s∗, s) at cost 0 with capacity (0, lrs) ∀s∈ Sr

(d, t) at cost 0 with capacity (0,1) ∀d∈Dr

(s, d) if Bsd = 1 at cost 0 with capacity (0,1) ∀s∈ Sr, d∈Dr

(i, j) if Aij = 1 at cost 0 with capacity (0,1) ∀i, j ∈Dr

Supplies (b):

b(i) = 0 ∀i∈ Sr ∪Dr

−b(t) = b(s∗) =
∑

s∈Sr lrs
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Node Capacities (v):

v(i) = yi if i∈Dr

To convert this MCF with node capacities into a general MCF, we can perform the following

transformation (Ciupală (2009)). We redefine G to be a MCF G′ = (N ′,A′, l′, µ′, c′, b′).

Nodes:

N ′ =N1 ∪N2 where N1 := {i′|i∈N} and N2 := {i′′|i∈Dr}.

Arcs:

A′ =A1 ∪A2 ∪A3 ∪A4 ∪A5 where

A1 := {(i′, j′)|(i, j)∈A, i, j /∈Dr}

A2 := {(j′, i′)|(j, i)∈A, j /∈Dr, i∈Dr}

A3 := {(i′′, j′)|(i, j)∈A, i, j ∈Dr}

A4 := {(i′′, j′)|(i, j)∈A, i∈Dr, j /∈Dr}

A5 := {(i′, i′′)|i∈Dr}

Note that for any arc (i, j) ∈ A1 ∪ A2 ∪ A3 ∪ A4, the cost and capacities remain the same as

previously defined for the corresponding arcs in A. The new arcs (i′, i′′) ∈ A5 have cost 0 and

capacity (v(i), v(i)).

Supplies (b’):

b′(i′) = b(i) ∀i′ ∈N1

b′(i′′) = 0 ∀i′′ ∈N2

Then we have the following MCF formulation:

min 0

s.t. ∑
j:(i,j)∈A′

xrij −
∑

j:(j,i)∈A′

xrji = b′(i) i∈N ′

l′(i, j)≤ xrij ≤ µ′(i, j) (i, j)∈A′

Thus, we have shown that IPM-R can be modeled and solved as a MCF. �

B.3. Proof of Theorem 3

We prove that mRmD cannot be approximated within O(min{|R| 12−ε, |D|1−ε}), where |R| is the

number of resource types and |D| is the number of demands, by reduction using Maximum Set

Packing.
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Instance of Maximum Set Packing

Given a universe U , a family S of subsets of U , and an integer n, is there a subfamily C ⊆ S of sets

such that all sets in C are pairwise disjoint and |C| ≥ n?

Maximum Set Packing is well known to be NP-Complete and cannot be approximated within

O(N1−ε) unless NP ⊆ZPP (H̊astad (1996)). Given an instance of Maximum Set Packing, we can

create an instance of mRmD with |U | resources and |S| demands in polynomial time as follows:

Define ru as a resource of type u ∀u∈U .

Define ds as a demand that requires resource type i if i∈ s ∀s∈ S.

Let all demands and resources be at the same location (i.e., zero travel times) and all demand

intervals be equivalent. Further, set all demand rewards equal to 1.

We now show that there exists a feasible solution to Maximum Set Packing if and only if there

exists a feasible solution to our problem with an objective value greater than or equal to n.

Suppose that we have a feasible solution to Maximum Set Packing. That is, ∃C ⊆ S such that

|C| ≥ n and all sets in C are pairwise disjoint. Then, for each x ∈ C, dx can be served by our

resources since they are disjoint in the resources that they require. Therefore, we can serve at least

n demands and since all rewards are equal to 1, our objective must be greater than or equal to n.

Conversely, suppose we have a feasible solution to our problem such that the objective is greater

than or equal to n. Since all rewards are equal to 1, this implies that we have met at least n demands.

Further, since we only have one resource of each type, these n demands must have disjoint resource

requirements. For each demand dx that was served, the corresponding set of resource requirements

x ∈ S can be added to C. Therefore, we have created a subfamily C ⊆ S of disjoint sets where

|C| ≥ n and so Maximum Set Packing is feasible.

Since the transformation of Maximum Set Packing to an instance of mRmD preserved the

objective value, then approximation results are also preserved. That is, mRmD cannot be

approximated within O(min{|R| 12−ε, |D|1−ε}) unless NP ⊆ZPP (for every ε > 0), where |R| is the

number of resource types and |D| is the number of demands. �

B.4. Proof of Theorem 4

We prove that the special case of mR{1 or 2}D where there are an arbitrary number of resource

types R, a special resource r′ ∈ R, and each demand requires either r′, r or {r′, r}, r ∈ R − r′ is

NP-hard by reduction using N3DM. The construction is similar to the proof in Keskinocak and

Tayur (1998). Given an instance of N3DM, we define the following:

Ai = i for i= 1, . . . , t
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Bj = t+ j for j = 1, . . . , t

Cij = 2t+ (i− 1)t+ j for i, j = 1, . . . , t

S = t2 + 2t

T = S+ 2d+ t+ 1

An instance of the special case of mR{1 or 2}D with t2 + t resources and travel times between

demands equal to zero can be built as follows: resources 1, . . . , t are of type i, i= 1, . . . , t and the

remaining t2 resources are of type t′. Let demands be of the form (uj , vj), where uj is the start

time, vj is the end time, and vj−uj is the service time of demand j. Define the reward for demand

j to be the length of service times the number of resource types required.

The following demands require resource type t′ and i:

(0,Ai) for i= 1, . . . , t

(Ai,Cij) for i, j = 1, . . . , t

(S+ d− ck, T − k− 1) for i, k= 1, . . . , t

The following demands require resource type t′:

t− 1 times (0,Bj) for j = 1, . . . , t

(Bj ,Cij) for i, j = 1, . . . , t

(Cij , S+ ai + bj) for i, j = 1, . . . , t

(S+ ai + bj , T − 1) for i, j = 1, . . . , t

t2− t times (T − 1, T )

(T − k− 1, T ) for k= 1, . . . , t

The following demands require resource type i:

(Cij , S+ ai + bj) for i, j = 1, . . . , t

(T − k− 1, T ) for i, k= 1, . . . , t

We now show that there exists a feasible solution to N3DM if and only if all resources are serving

demands during the interval [0,T] and there is no idle time.

Suppose that there exists a feasible schedule for a subset of demands, such that all resources

are busy serving demands during the interval [0,T]. Demands (0,Ai) must be scheduled to the
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first t resources (since there are t of these trips and they each require resource type i, i = 1, . . . t)

and resources t+ 1, . . . ,2t of type t′. These demands must be followed by some (Ai,Cij) demands.

Similarly, the t2− t demands (0,Bj) must be scheduled to the remaining t2− t resources of type t′,

followed by some (Bj ,Cij) demands.

The first t resources of type i, i= 1, . . . , t and the next t+ 1, . . . ,2t resources of type t′ have the

following schedules:

(0,Ai)(Ai,Cij)(Cij , S+ ai + bj)(S+ d− ck, T − k− 1)(T − k− 1, T )

where each i and each k, 1≤ i, k≤ t occur exactly once.

The remaining t2− t resources of type t′ have schedules of the form

(0,Bj)(Bj ,Cij)(Cij , S+ ai + bj)(S+ ai + bj , T − 1)(T − 1, T )

where each j, 1≤ j ≤ t occurs exactly t− 1 times. Thus, among the demands (Cij , S+ai + bj) that

are served by the first t resources, each i, j, and k occurs exactly once.

From the schedules of the first t resources, we have S + ai + bj = S + d− ck, i.e., ai + bj + ck =

d. So we define ρ(i) = j and σ(i) = k whenever demand (Cij , S + ai + bj) is served followed by

(S+ d− ck, T − k− 1) by resource i, i= 1, . . . , t.

Conversely, given a feasible solution to N3DM, a feasible solution for this instance of the special

case of mR{1 or 2}D can be found, which is clearly optimal, since the resources are serving demand

throughout the interval [0,T] with no idle time. �

B.5. Proof of Theorem 5

For an instance I of the special case of mR{1 or all}D, let mi be the number of resources of type i

for i= 1, . . . , |R|. Since there is zero travel time between demands (i.e., all demands are at the same

location), all demands have the same service start time, and all service times are infinite, then each

resource can only be assigned a single job.

First, divide the list of demands D into subsets D0,D1, . . . ,D|R| where subset D0 is the demands

that require all resource types and subsets Di for i= 1, . . . , |R| are the demands that only require

resource type i. Order the demands in each subset by decreasing reward. We can find the optimal

objective value OPT (I) and its corresponding solution by Algorithm E , which runs polynomially

in number of resources. Note the solution is constructed by serving all demands whose reward was

added to the objective value OPT (I). �
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Algorithm: E
Input: I, mi, i= 1,2, . . . , |R|

1 m←min{mi|i∈ {1,2, . . . , |R|}}

2 Opt(I)← 0

3 for 1≤ i≤ |R| do

4 if m<mi then

5 Increase OPT (I) by rewards of first mi−m entries of Di.

6 Remove first mi−m entries from Di.

7 end

8 end

9 for 1≤ i≤m do

10 Let r(Di[0]) = reward of first entry in Di for i= 0,1, . . . , |R|.

11 if
∑|R|

i=1 r(Di[0])≤ r(D0[0]) then

12 Increase OPT (I) by r(D0[0]).

13 Remove D0[0] from D0.

14 end

15 else

16 Increase OPT (I) by r(Di[0]) for i= 1,2, . . . , |R|.

17 Remove Di[0] from Di for i= 1,2, . . . , |R|.

18 end

19 end

Output: OPT (I)

B.6. Proof of Theorem 7

We prove that 1R1D is solvable in polynomial time. Consider m resources and n demands. Without

loss of generality, assume that each resource has its own starting location and are labeled by resource

number (i.e., s = 1, . . . ,m). This problem can be modeled as a MCF on a directed acyclic graph

with the following nodes and arcs:
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Nodes:

For each resource there is a node bi, i= 1, . . .m.

For each demand there are two nodes uj and vj , j = 1, . . . n.

There is a dummy source node s and a dummy sink node t.

Arcs:

(s, bi) and (bi, t) at cost 0, i= 1, . . . ,m.

(vj , t) at cost 0, j = 1, . . . n.

(bi, uj) if Bij = 1 at cost 0, i= 1, . . . ,m, j = 1, . . . , n.

(vj , uk) if Ajk = 1 at cost 0, j, k= 1, . . . , n.

(uj , vj) at cost −wj , j = 1, . . . , n.

All arcs have capacity 1. Let the supply at node s be m, supply at node t be −m and supply for all

other nodes be zero. Further, note that since the graph is directed and acyclic, we can transform

the arc costs to be non-negative. Because of the capacities of the arcs, each arc will have either no

flow or flow of 1 unit in the optimal solution. It is clear that there is a one-to-one correspondence

between the MCF from s to t on this constructed graph and the optimum allocation for a single

type of resource. If there is a positive flow on the arc (bi, t), this means that resource i was not

used to meet demand. If there is a positive flow on the arc (bi, uj), this means that demand j is

the first demand met by resource i. Positive flow on the arc (vj , uk) means that demand k is met

immediately after demand j by the same resource. Finally, positive flow on the arc (uj , vj) means

that demand j was met. �

B.7. Observation 1

Note that if travel times are zero, then 1R1D can be formulated as a maximum weighted coloring

problem on an interval graph. Consider m resources and n demands. We can now create an

(undirected) interval graph G= (N,A) as follows:

Nodes:

For each demand, create a node di, i= 1, . . . , n.

Arcs:

(di, dj) if τi + ∆i > τj ∀i, j ∈ {1,2, . . . , n}

Then, we can solve the maximum weighted m-coloring problem on interval graph G using the

following integer program:

max

n∑
i=1

widi
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s.t. ∑
i∈S

di ≤m ∀S s.t. S is a maximal clique of size ≥m

di ∈ {0,1} ∀i= 1, . . . , n

Since the nodes versus cliques matrix of an interval graph is totally unimodular (Mertzios (2008)),

then we can relax the above formulation to a linear program and still maintain integral optimal

solutions.

Appendix C: Computational Study

C.1. Bicriteria Results

Figures 1 and 2 present bicriteria results to compare the trade-off between increasing the number

of resources and its impact on the objective function value (i.e., demands met). These results

could provide insights for decision-makers when determining resource capacity and desired levels

of demand satisfaction. In Figure 1, we examine the mRmD problem with 3 resource types, 400

demands, and 30 resources. Each line in the graph represents an instance of this problem. Starting at

10 resources of each type, we increase this amount by 0 to 15 and record the objective function value.

As shown, there is a diminishing return as resources are increased. On average, after increasing

the resources by about 6 or 7, we reach the maximum objective function value for each instance

studied. Figure 2 looks at the 2RmD problem with 200 demands and 14 resources. In this case,

we increase the number of resources of each type separately by 0 to 11 and present the resulting

objective function value. Again, we see a diminishing return as resources are increased. It is worth

noting that jointly increasing resources (i.e., increasing both resource types) is more profitable than

only increasing one resource type. For example, increasing resource type 1 and type 2 by 3 and 4

resources, respectively, produced an objective of 13606 whereas only increasing resource type 1 by

8 led to an objective of 12844.

C.2. Travel Costs

Let BFlow and CFlow represent solutions in which the flow variables (x) are restricted to be

binary and those in which the flow variables are relaxed to be continuous, respectively. Tables 9 and

10 present a comparison of the run times (in seconds) for BFlow and CFlow under all instances

considered, where |R| is the number of resource types, |D| is the number of demands, and L is the

total number of resources. Note that Scaled Demands refers to instances where reward for demand

was multiplied by a factor of 100.
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Figure 1 Bicriteria results for mRmD

Figure 2 Bicriteria results for 2RmD

Computational experiments show that for small and medium sized problems (less than 5 resource

types), IPM-C can be efficiently solved by Gurobi and the optimal solution can be found in

reasonable time. As the size of the problem increases (i.e., greater demands or larger number of

resource types), the instances become harder to solve. For 2-4 resource types, on average, BFlow

performs better than CFlow when demands are not scaled, whereas when demands are scaled,

CFlow performs better than BFlow. For 5-7 resource types, on average, CFlow performs better

than BFlow in both scaled and unscaled demand scenarios. However, for some instances, BFlow

is drastically better than CFlow (i.e., 7 resource types and 700/800 demands for unscaled/scaled

demands, respectively). In general instances with scaled demands perform better than those in

which demands are not scaled; this could be a result of less importance given to travel costs in the

objective.

Appendix D: Extension 2

We present an extension to mRmD. In this extension, resource types have both an origin and

destination location, i.e., resources may not go directly from demand incident to demand incident.

For an overview of the additional notation needed for this formulation, please refer to Table 11.

In order to construct feasible schedules for resources, we create 0-1 matrices for each resource

type r ∈R, Ar, and a 0-1 matrix, B. Matrix Ar has a row and column for each demand incident

and Arij = 1 if and only if demand incident j can be served after demand incident i by resource type
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Table 9 Results for number of resource types

equal to 2,3 and 4

|R| |D| L
Run time

(BFlow)

Run time

(CFlow)

Run time

(BFlow)

(Scaled Demands)

Run time

(CFlow)

(Scaled Demands)

2 100 10 0.11 0.09 0.16 0.10

2 200 14 0.28 0.25 0.33 0.31

2 300 18 0.71 0.72 1.10 0.69

2 400 22 1.54 2.01 2.24 1.70

2 500 26 3.47 3.96 3.84 3.47

2 600 30 5.49 6.90 6.79 6.89

2 700 34 8.35 13.77 8.05 9.80

2 800 38 12.69 19.09 15.16 14.44

3 100 12 0.09 0.09 0.15 0.10

3 200 18 0.49 0.39 0.57 0.59

3 300 24 1.01 1.15 1.48 1.10

3 400 30 3.81 3.63 3.78 3.42

3 500 36 7.29 8.23 6.72 5.90

3 600 42 9.98 13.51 13.54 13.69

3 700 48 19.40 30.17 20.65 21.99

3 800 54 43.85 65.33 25.16 61.34

4 100 16 0.28 0.14 0.24 0.13

4 200 24 0.97 0.82 1.08 0.55

4 300 32 2.63 2.19 2.29 1.56

4 400 40 6.22 5.41 5.31 4.67

4 500 48 19.49 15.28 15.39 14.26

4 600 56 26.87 30.03 23.84 22.85

4 700 64 64.84 96.78 40.41 38.23

4 800 72 89.05 125.97 52.18 77.69

Table 10 Results for number of resource types

equal to 5,6 and 7

|R| |D| L
Run time

(BFlow)

Run time

(CFlow)

Run time

(BFlow)

(Scaled Demands)

Run time

(CFlow)

(Scaled Demands)

5 100 20 0.19 0.19 0.13 0.18

5 200 30 2.00 1.01 1.10 0.80

5 300 40 6.36 3.68 3.39 2.74

5 400 50 14.79 9.20 9.04 7.76

5 500 60 35.01 32.58 21.28 17.83

5 600 70 50.66 70.35 51.90 73.11

5 700 80 96.25 172.39 47.01 53.80

5 800 90 453.05 1014.62 134.52 202.69

6 100 24 0.44 0.22 0.29 0.26

6 200 36 2.49 1.25 1.23 1.40

6 300 48 7.08 5.43 5.44 4.44

6 400 60 18.03 15.78 11.36 10.40

6 500 72 53.19 55.05 30.33 33.52

6 600 84 134.02 107.60 137.94 145.15

6 700 96 195.10 237.03 114.26 181.08

6 800 108 537.75 1039.68 232.16 285.46

7 100 28 0.33 0.25 0.29 0.20

7 200 42 2.06 1.63 1.85 1.27

7 300 56 13.76 8.58 9.92 5.92

7 400 70 125.48 55.14 23.67 17.23

7 500 84 161.38 112.70 67.47 51.95

7 600 98 421.19 389.39 133.33 167.05

7 700 112 989.80 1629.80 306.81 279.56

7 800 126 1485.61 1398.86 359.35 534.93

r and demands i and j both require resource type r. Matrix B has a row for each resource starting

location and a column for each demand incident and Bsd = 1 if and only if a resource starting at

location s can serve demand d first. That is, we have the following pre-processing matrices:

Arij =

{
1 iff τi + ∆i + f(ari , b

r
i ) + f(bri , a

r
j)≤ τj , r ∈Mi ∩Mj

0 otherwise
i, j ∈D,r ∈R

Bsd =

{
1 iff f(s, ard)≤ τd, s∈ Sr, r ∈Md

0 otherwise
s∈ Sr, r ∈R,d∈D

The formulation is the same as IPM, where variable construction relies on matrices Ar and B.

Table 11 Additional notation for Extension 2

V Set of nodes
R Set of resource types
f(u, v) Travel time between u, v ∈ V
(ard, b

r
d) Origin-destination pair for resource type r ∈Md needed by d∈D
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