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Abstract

The objective of this research was to develop and empirically test simplex-based par-
allel algorithms for the generalized network optimization problem. Several parallel algo-
rithms were developed that utilize the multitasking capabilities of the Sequent Symmetry
581 multiprocessor. The software implementations of these parallel algorithms were em-
pirically tested on a variety of problems produced by two random problem generators and
compared with two leading state-of-the-art serial codes. Speedups on fifteen processors
ranged from 2.6 to 5.9 for a test set of fifteen randomly generated transshipment prob-
lems. A group of six generalized transportation problems yielded speedups of up to 11 using
nineteen processors. An enormous generalized transportation problem having 30,000 nodes
and 1.2 million arcs was optimized in approximately ten minutes by our parallel code. A

speedup of 13 was achieved on this problem using fifteen processors.

* This research was supported in part by NSF grant CCR-8709952, the Air Force Office
of Scientific Research under grants AFOSR-87-0199 and 89-0410 , the Department of De-
fense under contract number MDA 903-86-C0182, and the Office of Naval Research under
contract number N00014-87-1-0223.



The generalized network flow problem (also called the flow with gains model) in its

most general form is defined as follows:

min cz
T
st. Gr=b (GN)
0<z<u

where G is an ™ X n matrix having at most two nonzero entries in each column, cisa 1xn
vector of costs, bis an m x 1 vector of right-hand-sides, and u is an n x 1 vector of upper
bounds. Associated with each matrix G is a graph [V, E], where V is a set of nodes and
E is a set of pairs of nodes (edges). The nodes correspond to the rows of G and the edges
correspond to columns of G. As with the pure network flow problem, which we designate
as PN, the simplex algorithm for GN can be executed on a graph. One difference between
PN and GN is that the graph of any basis for PN consists of a single rooted spanning tree,
while the graph of a basis for GN is a forest of quasi-trees, where a quasi-tree is a tree
with exactly one additional arc (making it either a rooted tree or a tree with exactly one

cycle). Figure 1 shows a forest of quasi-trees.
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Figure 1 A Forest of Quasi-Trees




1. Survey and Overview

The generalized network model can be used to optimize network problems found in
the areas of investment planning, job scheduling, pure network optimization and others.
The applications are characterized by networks for which any arc may gain or lose flow at
a linear rate assigned to that arc. Profit from interest or dividends can be modeled by a
network with gains, and loss from evaporation or seepage can be modeled by a network
with losses. A generalized network without gains or losses is a pure network. Further
discussion of applications can be found in [Glover, et al, 78] and [Mulvey and Zenios
85]. The graphical structure of a basis for G allows the use of labeling procedures for
basis representation. Glover, Klingman, and Stutz [Glover, et al, 73] developed the first
specialized primal simplex code (NETG) which exploited this graphical structure. Many
theoretical and computational improvements have been made to this code over the last
fifteen years (see [Glover, et al, 78]) and [Elam, et al, 79]). A similar implementation
was also developed in [Langley 73]. [Adolphson and Heum 81] presented computational
results with their generalized code which used an extension of the threaded index method
of [Glover, et al 74]. Brown and McBride presented the details of their generalized network
code (GENNET) in [Brown and McBride 84]. [Tomlin 84] developed the first assembly
language code which is part of Ketron’s MPS III system. Recently, other codes have
been developed by Enquist and Chang (see [Enquist and Chang 85]), Mulvey and Zenios
(see [Mulvey and Zenios 85]), and by Ali, Charnes, and Song (see [Ali, et al, 86]). The
first parallel generalized code was developed by Chang, Enquist, Finkel, and Meyer (see
[Chang, et al, 87]) for the Wisconsin CRYSTAL Multicomputer, and the second (see [Clark
and Meyer 87]) for the Sequent 21000, also at the University of Wisconsin. The first C
language code is discussed in [Nulty and Trick 88]. Another assembly language code is
discussed in [Chang, et al, 88]. The serial codes GENFLO, a modification of GENNET,
and GRNET?2 are discussed in [Muthukrishnan 88] and [Clark and Meyer 88] respectively.
Computational results for these two codes will be given in Section 3. TPGRNET, a parallel
code that assigns distinct tasks to different processes is discussed in [Clark and Meyer 88]
and additional results for this code are given in Section 3. A summary of this prior software
may be found in Table L.

In Section 2, a brief discussion of some strategies for parallelizing the primal sim-
plex method will be given, along with detailed discussions of two codes PGRNET and
TPGRNET. PGRNET executes pivots and computes reduced costs in parallel. TPGRNET

computes reduced costs in parallel and overlaps this with the serial execution of pivots.



Table I  Survey of generalized network codes

Code Language Authors Year
NETG FORTRAN Glover, F., Klingman, D. 1973
Stutz, J.
FORTRAN Langley, W. 1973
FORTRAN Adolphson, D., Heum, L. 1981
GENNET FORTRAN Brown, G., McBride, R. 1984
GWHIZNET ASSEMBLER Tomlin, J. 1984
GRNET FORTRAN Engquist, M., Chang, M. 1985
LPNETG FORTRAN Mulvey, J., Zenios, S. 1985
FORTRAN Ali, I, Charnes, A. 1986
Song, T.
GRNET-K FORTRAN Chang, M., Engquist, M. 1987
(parallel) Finkel, R., Meyer, R.
PGRNET FORTRAN Clark, R., Meyer, R. 1987
(parallel) Chang, M.
GNO/PC C Nulty, W., Trick, M. 1988
GRNET-A  ASSEMBLER  Chang, M., Cheng, M. 1988
Chen, C.
GENFLO FORTRAN Muthukrishnan, R. 1988
GRNET2 FORTRAN Clark, R., Meyer, R. 1989
(serial) Chang, M.
TPGRNET FORTRAN Clark, R., Meyer, R. 1989

(parallel)
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The test problems discussed in Section 3 are generated by 1) NETGEN [Klingman, et
al, 74], a pure network problem generator, 2) GNETGEN, a generalized network problem
generator based on NETGEN, and 3) MAGEN [Clark and Meyer 88], a generalized network
problem generator based on GTGEN [Chang and Engquist 86].

In Section 3, it is established that the two serial codes GRNET2 and GENFLO are
competitive with GENNET, a state-of-the art generalized network code discussed in [Brown
and McBride 84]. This comparison is made by giving results for NETGEN and GNETGEN
problems. Next, results are given for TPGRNET for a group of transshipment problems




generated by GNETGEN with up to 6,000 nodes and up to 50,000 arcs. Speedups on the
Sequent Symmetry S81 range from 2.6 to 5.9. Results are then given for PGRNET and
TPGRNET for a group of transportation problems generated by MAGEN. All of these
problems have 30,000 nodes and over 320,000 arcs. Speedups on the Sequent Symmetry
S81 range from 3.8 to 11.1 for PGRNET and from 3.7 to 6.6 for TPGRNET.



2 SIMPLEX ALGORITHMS FOR GENERALIZED NETWORKS

- 2.1 Serial Primal Simplex Algorithms

In this section we briefly discuss the specialization of the primal simplex method
for generalized networks. A more detailed discussion can be found in [Kennington and

Helgason 80] and [Jensen and Barnes 80].
Input:

. A graph [V, E].
. A cost c[e] and arc capacity u[e] for each e € E.

. The generalized constraint matrix G.

> W =

. A requirement r[n] for alln € V.
Output:

1. The termination type indicator § and flow array Z[e] . (8 = 1 implies that the problem
is unbounded, f = 2 implies that the problem has no feasible solution, and § = 3

implies that the optimal solution is given in Z[e].)

The primal simplex algorithm for generalized networks can be divided into three sub-
routines, PRICE, RATIO and UPDATE. These correspond to the computation of reduced
costs, the ratio test, and the basis update in the simplex method for general LP’s. Each
of the subroutines makes use of the block diagonal (and nearly triangular) nature of the

bases for (GN), as discussed in [Adolphson 82] and [Barr, Glover and Klingman 79]. The

primal simplex algorithm can be summarized as follows:

Procedure SIMPLEX

[on
&
.
=}

B0

initialize duals ()

call module PRICE

if B8 # 0, then terminate
call module RATIO

if B # 0 terminate

call module UPDATE
goto 3.

e o

end




In module PRICE, reduced costs are computed for arcs (variables) by using the for-
mula r;; = (¢—mG);j, where r;; is the reduced cost for arc (z, 7). The expression (¢ —7G);;
has at most three terms, since G' has at most two non-zero entries in each column. The
heuristics employed by GRNET2, PGRNET and TPGRNET to determine which arcs to
price and to use as pivots will be discussed later, and involve maintaining candidate lists
of pivot eligible arcs and managing the candidate lists in different ways. In module RA-
TIO, the ratio test for a given pivot-eligible arc is performed by identifying the incident
quasi-trees (i.e. the incident basis components) and following the path from each end of
the arc to the (generalized) root of the corresponding quasi-tree(s). As this traversal is
made, the flow on the basic arcs in the path is checked, and the arc with the “minimum
ratio” is selected as the outgoing arc. In module UPDATE, flows as well as other tree data

structures are updated.

GENFLO and GRNET?2 are implementations of this algorithm, and they will be shown
to be comparable in speed. However, the two codes differ in a few ways. GENFLO is a
modification of GENNET, described in [Brown and McBride 84] and it uses the GENNET
pricing strategy. This strategy involves selecting a node and pricing out all of its incident
arcs. GRNET2, on the other hand, scans its list of arcs linearly to locate pivot eligible
arcs and doesn’t attempt to focus on the arcs that are adjacent to some node. GRNET?2 is
specialized to solve problems for which at least one of the multipliers defined for each arc
is equal to 1, while GENFLO allows each arc to have two arbitrary associated multipliers.
The latter approach is desirable in integer programming applications since scaling variables
to make one of the multipliers equal to 1 may destroy integrality. Also, reflecting an arc
to convert a negative multiplier into a 1 requires that the arcs have upper bounds. Both
GENNET and GRNET?2 use the “little m” (or “gradual penalty”) method [Grigoriadis
84] to find a feasible solution. Under this method, a moderate initial cost is given to the
artificial arcs, and the resulting problem is approximately solved. Next, the cost on the
artificial arcs is increased to create a new problem, and the optimal (or nearly optimal)
basic feasible solution from the last problem is used as a warm start for the new one. This
process of gradually increasing the cost on the artificial arcs and solving a sequence of
“easy” problems can be shown empirically to yield a vast improvement over the “big M”
method in terms of the total number of pivots required to solve a problem and in terms
of the total CPU time. Some tests with GRNET?2 have shown that the “little m” method
is 29 times faster than the “big M” method for large problems having only one quasi tree
in the optimal basis. GENFLO uses a simple closed-form expression to calculate the cost

of the artificial arcs at each iteration. (The initial cost for the GENFLO artificial arcs
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is about 200. The cost on the artificial arcs is then roughly doubled at each step in the
gradual penalty method.) The initial cost for the GRNET?2 artificial arcs is 20 (assuming
that the cost range for the regular arcs is 1-100). GRNET2 adds 5 to the cost on the
artificial arcs after each step until the cost reaches 130, then for the next two steps the
increment is by 10, and for the last two steps the increment is by 20. Finally, the cost is
increased to “big M” and the problem is solved to optimality. An empirical comparison
of these two codes with each other and with MPSX, the IBM general LP code, is given

below.

2.2  Parallel Simplex Algorithms

In [Clark and Meyer 87] an implementation of PGRNET is discussed. This code
executes in parallel both pivots and pricing. Pivots are executed in parallel only if they
involve updating separate quasi-trees (basis components). Even if the basis has only one
component at optimality, this algorithm behaves quite efficiently during the beginning
of the solution process, because the initial starting basis has as many components as
nodes. PGRNET is used in [Clark and Meyer 87] to solve problems generated randomly
by GTGEN [Chang and Engquist 86], and a code called MPGRNET is used to solve
randomly generated multiperiod problems with a block diagonal structure generated by
MPGEN [Chang 86]. MPGRNET reduces contention between processors by allocating
specific quasi-trees to specific processors and allowing processors to execute pivots involving
their quasi-trees (and only their quasi-trees) until they can find no “local” pivot eligible
arcs. Optimality is then achieved by reverting to the PGRNET algorithm. Speedups for
PGRNET in [Clark and Meyer 87] range from 4.8 to 8.8 on 7 processors, and speedups
for MPGRNET algorithm ranged from 8.8 to 36.9 on 12 processors. The superlinear
speedup for some problems led the authors to develop a serial program that was much
more efficient for the block diagonal, or “multi-period” problems. The resulting serial
timing results yielded speedup results for MPGRNET that were slightly sublinear. An
improved version of PGRNET is discussed in [Clark and Meyer 88], and in Section 2.3

below.

A number of parallel algorithms for GN are discussed in [Muthukrishnan 88]. The
“Chaotic Column Partitioning Algorithm” (CCP) is similar to PGRNET in that it allows
pivots to be executed in parallel, provided that the pivots involve updating separate quasi-
trees. Another algorithm, known as the “Column Partitioning Algorithm” (CP) is similar
to MPGRNET. The (CCP) algorithm, the (CP) algorithm and other algorithms are applied
in [Muthukrishnan 88] to problems generated randomly by GNETGEN, a modification of
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NETGEN [Klingman, et al, 74]. Speedups for the (CCP) algorithm on 8 processors range
from 1.27 to 1.73, and speedups for (CP) on 8 processors range from 1.33 to 2.48.

In Section 2.4 we discuss TPGRNET [Clark and Meyer 88], an algorithm that devotes
one processor to the task of executing pivots, and devotes all other processors to the task
of computing reduced costs and managing candidate lists. (TPGRNET denotes “Task
Parallel GRNET”.) An algorithm (the Data Partitioning Algorithm) that is similar to
TPGRNET in its partitioning of tasks is discussed in [Muthukrishnan 88] and is applied
to a set of generalized networks defined on grids. The advantage to having one processor
do all pivoting is that there is no contention between processors for shared data structures,
even when there is only one basis component in the optimal basis. This strategy yields an
algorithm that is robust in the sense that it has a behavior that does not depend heavily

on the nature of the optimal basis, and hence is applicable to general LP’s.

2.3 PGRNET (Parallel GRNET)

Figure 2 gives a flow chart for PGRNET. Parallel portions of the code are emphasized

by parallel lines. “l.t.” designates list-threshold, a candidate list parameter.

start
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Figure 2.  Flow Chart For Parallel Algorithm PGRNET



The (parallel) PGRNET algorithm can be summarized as follows:

PGRNET
INITTIALIZATION
In parallel, generate the initial flows on the artificial arcs. Divide the problem arcs

into roughly equal-sized segments for pricing in the next stage.

STAGE 1 (parallel pivoting with candidate lists)
Asynchronously and in parallel scan the segments of the arc set to develop multiple
candidate lists. Pivot arcs are selected from the candidate lists, and quasi-trees are
locked before pivots are made. When, for a particular segment of the arc set, it is
not possible to develop a candidate list with more than list_threshold entries, check
the penalty on the artificial arcs. If this penalty has reached its maximum value go to
STAGE 2. Otherwise, assign a new value to the penalty of the artificial arcs, update

the duals in parallel and continue asynchronous pivoting.

STAGE 2 (parallel verification of optimality)
Scan the segments of the arc list in parallel to locate pivot-eligible arcs. If a pivot-
eligible arc is found, lock the associated quasi-trees, and execute the pivot (if the
quasi-trees were successfully locked). If an entire sweep through the segments can be

made without finding any pivot-eligible arcs, optimality has been reached.

Arcs are divided roughly equally between segments. If there are n arcs and P segments,
then processor 1 has arcs (1) through [n/P], processor 2 gets arcs [n/P] + 1 through
[2n/P] and so forth. (A more sophisticated allocation of the non-artificial arcs might try
to guess the topology of the optimal solution, and thereby assign arcs to specific partitions.
If the optimal topology is known, lock contention can be reduced significantly by collecting
in the same subset of the partition, all of the arcs that connect nodes in a given quasi-tree
or group of quasi-trees. This idea could be used to solve perturbed problems efficiently.
Given the optimal quasi-tree structure of some solved problem, subsets of the arc set
could contain arcs that are local to certain collections of the optimal quasi-trees. A small
perturbation of the data would hopefully change the optimal topology by very little, and
therefore the initial arc allocation might improve the solution time significantly.) The dual
variables of all the nodes, the predecessor threads, the successor threads and all other
tree functions required by the generalized network simplex method are stored in shared
memory and are available to all processors. It is important to emphasize that only the

acquisition of problem data (i.e. generating data or reading data) is done serially, and the
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solution process is entirely parallel. The number of partitions is equal to the number of
processors, and all processors execute the same set of tasks. Each processor refreshes its
own candidate list, selects pivot arcs from the list, locks quasi-trees to prevent corruption
of tree structures, and executes pivots. We say that PGRNET is an example of “uniform
parallelism” . The results below show that uniform parallelism is the best solution strategy
for generalized network flow problems, as long as the number of quasi-trees in the optimal

solution is not too small.

The program that each processor executes is almost identical to GRNET2. During
a parallel pivoting stage, Stage 1, each processor makes its own candidate list of pivot-
eligible arcs. The candidate lists are made in the same way that candidate lists are made
in GRNET2. Each processor p choses its next pivot arc from its candidate list by selecting
the pivot-eligible arc with the greatest reduced cost in absolute value. If the quasi-trees
at the ends of the arc have not been locked by another processor, p locks the quasi-trees
to keep other processors from interfering with the tree update, performs the pivot and
removes the arc from the candidate list. If the quasi-trees are already locked, processor p
removes the arc from the candidate list and chooses another arc. The dual update part of
the pivot operation has also been parallelized and this parallelization is described below.
When the candidate list belonging to p has no more than list_threshold arcs, p develops a
new candidate list. If the new candidate list also has no more than list_threshold entries,
processor p sets a flag in shared memory to indicate that it is having difficulty finding
pivot-eligible arcs. This flag is checked frequently by all processors, and when it is set,
processor 1 checks to see if the penalty on the artificial arcs is big M. If the penalty is big
M, all processors enter Stage 2. If the penalty is smaller, then the processors increment
the penalty on the artificial arcs and cooperate in recomputing the dual variables. Then

all processors develop new candidate lists.

Stage 2 of PGRNET corresponds to a verification of optimality stage. The verification
of optimality is done in parallel, and all processors execute the same tasks. Optimality is
achieved by performing any remaining pivots. Processors sweep through their segments
looking for pivot-eligible arcs, but no candidate lists are developed. If processor p finds a
pivot-eligible arc, it locks the quasi-trees at either end of the arc, executes the pivot, and
indicates to the other processors that they must restart their sweep (by setting flags in a
shared array). This restart mechanism is needed because a pivot executed by processor
p might cause an arc owned by another processor to become pivot-eligible. If processor
p finds that one of the trees at the ends of a pivot-eligible arc is locked, it sets the other

processors restart flags and restarts its own sweep. Each processor checks its restart flag
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frequently during Stage 2, and when a processor finds that its flag has been set, it marks
the arc in its segment that was last priced , and continues pricing. If the processor prices
all of its arcs up to the marked arc without finding any to be pivot-eligible and without
finding its restart flag to be set, that processor informs the others that none of its arcs are
pivot-eligible. Optimality is reached when all processors make a sweep through their arcs

without finding their restart flags set, and without finding any arcs that are pivot-eligible.

2.4 TPGRNET (Task-Parallel GRNET)

This algorithm is divided into two main stages, but fewer than 1% of all pivots are
executed in Stage 2. During Stage 1, different tasks are allocated to different processors.
One processor executes all pivots, one processor selects pivot arcs for the pivoting processor,
and all other processors do pricing and place pivot eligible arcs into a shared candidate list
to be scanned by the selecting processor. If a pivot requires updating a large quasi-tree, the
pivoting processor can request the help of the pricing processors by putting the root nodes
of subtrees on a queue. When these root nodes are detected by the pricing processors,
they take them off the queue and update the duals in the corresponding subtrees. In
Stage 2, each processor scans a segment of the arc list belonging to that processor. When
a processor finds a pivot eligible arc, it locks the quasi-trees at the ends of the arc, to
temporarily exclude all other processors from modifying those quasi-trees, and executes
the pivot. No candidate lists are developed in Stage 2. More details of the algorithm are
given below. Figure 3 illustrates the flow of information during Stage 1, and Figure 4 gives
a flow chart for TPGRNET. In both of these figures, dotted arrows indicate the direction

of the flow of information.
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The (parallel) TPGRNET algorithm is:

TPGRNET
INITIALIZATION

In parallel, generate the initial flows on the artificial arcs. Divide the problem arcs

into roughly equal-sized segments for pricing during the next stage.

STAGE 1 (parallel candidate list development overlapped with serial pivoting)
A set of candidate lists is developed and prioritized in parallel. This process is con-
tinued during the pivot, which concurrently modifies some of the duals being used
in candidate list development. When the pivot is completed, the next arc to enter
the basis is selected by using the “best” arc from the candidate list (if this arc has a
sufficiently good reduced cost) or a different arc if this is not possible. The latter case
occurs very infrequently, and under conditions to be described below, may trigger an

increase in the penalty cost or an exit to Stage 2.

STAGE 2 (parallel verification of optimality)
Scan the segments of the arc list in parallel to locate pivot eligible arcs. If a pivot
eligible arc is found, lock the associated quasi-trees, and execute the pivot (if the
quasi-trees were successfully locked). If an entire sweep through the segments can be

made without finding any pivot eligible arcs, optimality has been reached.

We will now describe in detail the tasks performed by the individual processors during
Stage 1 of TPGRNET. The pricing processors have the task of computing reduced costs
and storing pivot eligible arcs in shared candidate lists of length 10. When processor p
finds a pivot eligible arc, it recomputes the reduced cost of the first element in its candidate
list to see if the new arc has a larger reduced cost in absolute value. If it does, the arc
number gets stored in the first element of the array, and the previous entry is overwritten.
Experience has shown that saving the previous entry yields no improvement in efficiency.
If the new arc has a smaller reduced cost than the first arc in the candidate list, the new
arc gets stored at a random location in the list. The pricing processors stay in a loop
that includes three operations. First, there is the pricing operation. This uses most of the
processor’s CPU time. Second, there is a check to see if the pivoting processor has put a
subtree on the dual-update queue (because of space limits this is not shown in the figures).

Third, there is a check to see if Stage 1 of the algorithm has finished.

"The pivot selecting processor has the task of scanning the candidate lists of the pricing

processors to locate the pivot eligible arc with the largest reduced cost and storing that arc
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in a single shared variable called best_cand. This processor stays in a loop that has three
operations. First, the processor checks to see if best_cand is empty. If so, the processor
looks in the first entry of each of the candidate lists to find an arc to put in best_cand.
Second, the processor traverses the candidate lists to see if there is a pivot eligible arc that
has a reduced cost larger than the arc in best_cand. Third, there is a check to see if Stage
1 of the algorithm has finished.

The pivoting processor stays in a loop in which it selects pivot arcs for itself (as
described below), executes pivots, and directs the increases in the penalty on the artificial
arcs. Whenever possible, the pivoting processor selects its pivot arc from best_cand, but
before accepting an arc from best_cand, a check is made to see that the arc is pivot eligible
and to see if the reduced cost is sufficiently large in absolute value. If the arc in best_cand
has a small reduced cost, or if there is no arc in best_cand, the pivoting processor looks at
the first entry of each of the candidate lists to find a pivot eligible arc. If a pivot eligible
arc is found, the pivot is executed. If no pivot eligible arc is found, then either the penalty
on the artificial arcs is increased, or Stage 2 is begun (if the penalty has reached big M and
cannot be increased). The pivoting processor has the task of directing the parallel update
of dual variables during the execution of pivots and after the penalty on the artificial
variables has been increased. During both of these operations, the pivoting processor can
put the root nodes of subtrees onto the dual update queue, and the pricing processors will

then assume the tasks of updating the duals on those subtrees.
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3 COMPUTATIONAL EXPERIENCE

3.1 Results for pure network problems

Pure networks are a special case of generalized networks (all multipliers have a magni-
tude of 1). In order to compare the efficiency of general versus specific codes, we consider
the relative performance of a general simplex code (MPSX), two generalized network codes,
and a pure network code on a class of pure network test problems. Table II gives results
for a collection of problems generated by NETGEN [Klingman, et al, 74]. The problem
numbers have the prefix “N”, to indicate that they were generated by NETGEN, and a
numerical suffix that indicates the standard NETGEN problem number [Klingman, et al,
74]. All times are in seconds, and all runs were made on an IBM 3081-D24. Although the
number of pivots executed by MPSX (the IBM proprietary mathematical programming
system) is roughly equal to the number of pivots executed by NETFLO [Kennington and
Helgason 80}, NETFLO is roughly 68 times faster than MPSX due to the fact that it is
designed to solve pure network problems, and it utilizes the tree structure of bases and
uses integer arithmetic. GENNET uses an improved pricing strategy that reduces the total
number of pivots by a factor of three, compared to MPSX. Overall, GENNET timings are
about 54 times faster than MPSX. The timings and the number of pivots for GENFLO
are similar to those of GENNET. GENFLO solves these problems with fewer pivots than
GENNET, but CPU times are about 25% slower, possibly due to the fact that GENFLO
allows for two arbitrary multipliers. These results clearly justify the utility of specialized
generalized network software that is only slightly slower than a pure network code.

Table II  Serial results for NETGEN problems (IBM 3081-D24)

Size MPSX GENFLO GENNET NETFLO
Problem | nodes arcs pivots secs. pivots | secs. pivots | secs. pivots | secs.

N15 400 | 4,500 2,818 30.60 1,288 1.41 1,307 1.19 2,073 0.47
N18 400 | 1,306 2,077 12.00 593 0.49 578 0.39 1,079 0.24
N19 400 | 2,443 4,229 29.40 688 0.71 765 0.53 1,305 0.23
N22 400 | 1,416 3,052 18.00 613 0.52 504 0.33 1,284 0.29
N23 400 | 2,836 7,073 57.60 492 0.47 604 0.45 1,156 0.22
N26 400 | 1,382 4,286 24.60 511 0.42 500 0.27 917 0.14
N27 400 | 2,676 | 11,829 95.40 628 0.55 826 0.46 1,730 0.28
N28 1,000 | 2,900 3,313 38.40 1,487 1.39 1,732 1.24 3,524 0.93
N29 | 1,000 | 3,400 3,744 43.80 1,889 1.59 1,996 1.18 4,570 1.12
N30 1,000 | 4,400 4,954 60.00 1,947 1.87 1,969 1.31 4,346 1.04
N31 1,000 | 4,800 6,232 81.00 2,171 2.13 2,347 1.47 4,798 1.13
N33 | 1,500 | 4,385 5,836 | 103.20 2,645 2.83 2,521 2.01 6,113 2.16
N34 | 1,500 | 5,107 6,503 | 110.40 2,498 2.50 2,943 2.10 7,640 2.37
N35 | 1,500 | 5,730 7,026 | 115.80 3,017 3.35 3,310 2.82 7,384 2.30

Total 72,972 | 820.20 | 20,467 | 20.23 | 21,902 | 15.75 | 47,919 | 12.92
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3.2 Results for GNETGEN generalized network problems

NETGEN has been modified by D. Klingman to generate generalized network flow
problems. The modified generator is called GNETGEN. Table III gives most of the GNET-
GEN input data for the small test problems G1 through G7. The prefix “G” for these
problems indicates that they were generated by GNETGEN. The numerical suffix corre-
sponds to the problem numbers in Table 2.2 in [Muthukrishnan 88]. (The random seed for
all of these problems is 13502460.)

Table III  Input data for small GNETGEN problems

Problem G1 G2 G3 G4 G5 G6 GT
Nodes 200 200 200 300 400 400 | 1,000
Ares | 1,500 | 4,000 6,000 | 4,000 | 5,000 | 7,000 | 6,000
Sources 100 ) 15 135 20 30 20
Sinks 100 195 50 165 100 50 100

Cost Range | 1-100 | 1-100 1-100 | 1-100 | 1-100 | 1-100 | 1-100
Gain Range | .5-1.5 | .5-1.5 | .25-.95 | .5-1.5 | .3-1.7 | .5-1.5 | 4-1.4
Supply 100k 100k 100k 100k 100k 100k | 200k

% Capacitated 0 100 100 0 0 100 100
Bound Range e 1-2k 1-2k e — 1-2k 4-6k

Table IV gives results for MPSX, GENNET and GENFLO for problems G1 through
G7. For these problems, GENNET is about 12 times faster than MPSX and GENFLO
about 11 times faster. GENFLO solves these problems with about 40% fewer pivots than
MPSX. Note that relaxing the assumption that one of the multipliers is unity results in

an increase in computing time of only about 10%.

‘able IV Serial results for small GNETGEN problems (IBM 3081-D24)

Size MPSX GENFLO GENNET
Prob. | nodes arcs | pivots secs. | pivots | secs. pivots | secs.
G1 200 | 1,500 1,151 7.80 533 0.95 590 0.62
G2 200 | 4,000 550 3.00 358 0.23 443 0.22

G3 200 | 6,000 2,058 18.60 954 1.53 1,448 2.07
G4 300 | 4,000 4,112 47.40 2,106 4.23 2,703 3.50
G5 400 | 5,000 1,870 26.20 897 2.23 1,229 2.06
G6 400 | 7,000 1,408 16.80 1,171 1.68 1,591 1.89
G7 | 1,000 | 6,000 2,811 40.20 2,352 3.60 3,160 3.30

Total 13,960 | 160.00 | 8,371 | 14.45 | 11,164 | 13.36
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Tables V through VII give the input data for the larger GNETGEN problems G8
through G22. These problems are generated with the same input data as problems 1
through 15 in Table 4.1a and 4.1b in [Muthukrishnan 88]. The problems are grouped
according to rectangularity (arcs/nodes).

Table V.= GNETGEN problems G8-G13

Problems
Characteristics G8 G9 G10 G11 G12 G13
Nodes 2,000 2,000 2,000 4,000 4,000 4,000
Arcs | 13,000 | 13,000 | 13,000 | 26,000 | 26,000 | 26,000
Sources 150 150 150 150 150 150
Sinks 600 600 600 600 600 600
% Capacitated 100 50 0 100 50 0
Cost Range 1-100 1-100 1-100 1-100 1-100 1-100
Bound Range 1k-2k 1k-2k — 1k-2k 1k-2k —
Mult. Range | 0.5-1.5] 0.5-1.5 | 0.5-1.5 | 0.5-1.5 | 0.5-1.5 | 0.5-1.5
Table VI GNETGEN problems G14-G16
Problems
Characteristics G114 G15 G16
Nodes 6,000 6,000 6,000
Arcs .| 39,000 | 39,000 | 39,000
Sources 150 150 150
Sinks 600 600 600
% Capacitated 100 50 0
Cost Range 1-100 1-100 1-100
Bound Range 1k-2k 1k-2k —
Bound Range | 0.5-1.5 | 0.5-1.5 | 0.5-1.5
Table VII  GNETGEN problems G17-G22
Problems
Characteristics G17 G18 G19 G20 G21 G22
Nodes 2,000 2,000 2,000 2,000 2,000 2,000
Arcs | 25,000 | 25,000 | 25,000 | 50,000 | 50,000 | 50,000
Sources 150 150 150 150 150 150
Sinks 600 600 600 600 600 600
% Capacitated 100 50 0 100 50 0
Cost Range 1-100 1-100 1-100 1-100 1-100 1-100
Bound Range 1k-2k 1k-2k — 1k-2k 1k-2k —
Mult. Range | 0.5-1.5 | 0.5-1.5 | 0.5-1.5| 0.5-1.5 | 0.5-1.5 | 0.5-1.5
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Table VIII gives a comparison of GENFLO and GRNET?2 for problems G8 through
G22. The two programs give nearly the same performance for these test problems, despite
the fact that the two codes have very different pricing strategies. The number of pivots
for GRNET?2 is about 15% less than for GENFLO, and the total time for GRNET2 on the
test problem set is about 4% less.

Table VIII  Serial results for large GNETGEN problems (Sequent S81)
Size GENFLO GRNET2

Problem | nodes arcs pivots time pivots time

G8 | 2,000 | 13,000 4,634 50.2 3,808 48.5
G9 | 2,000 | 13,000 4,454 44.2 3,998 46.8
G10 | 2,000 | 13,000 5,108 60.5 3,892 51.9

G11 | 4,000 | 26,000 9,145 99.3 7,375 | 105.2
G12 | 4,000 | 26,000 9,815 | 123.6 7460 | 115.1
G13 | 4,000 | 26,000 9,807 | 125.0 7,600 | 121.9

G14 | 6,000 | 39,000 13,653 141.0 10,456 152.0
G15 | 6,000 | 39,000 12,900 126.3 10,059 158.9
G16 | 6,000 | 39,000 13,262 145.4 10,245 142.2

G17 | 2,000 | 25,000 6,629 119.2 |- 5,440 81.3
G18 | 2,000 | 25,000 6,596 93.4 5,260 78.4
G19 | 2,000 | 25,000 6,186 89.2 6,369 98.0

G20 | 2,000 | 50,000 8,500 174.2 7,913 133.8
G21 | 2,000 | 50,000 9,208 204.5 10,343 194.9
G22 | 2,000 | 50,000 8,601 198.4 9,608 194.8

Total 128,588 | 1,794.4 | 109,916 | 1,723.7

Table IX gives CPU times for TPGRNET (run on various numbers of processors) for
problems G8 through G22. TPGRNET is faster than the parallel versions of GENFLO for
these test problems, and it is more robust in the sense that CPU times usually decrease
monotonically as the number of processors is increased. The serial times reported in
the table are taken from GRNET2 if they have the “T” prefix, and they are taken from
GENFLO if they have the “O” prefix. The serial time given is always taken from the faster
of the two codes. The time totals from the bottom of Table IX are graphed in Figure 5.
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Figure 5 Composite results for TPGRNET
Table IX TPGRNET timings for problems G8 through G22
Number of Processors (Sequent)
Prob nds arcs cap qtree 1 5 7 9 11 13 15
G8 2k 13k 100 4 T51.9 29.3 19.8 16.2 16.3 16.9 15.8
G9 2k 13k 50 1 044.2 24.6 16.7 14.0 12.6 13.1 13.8
G10 2k 13k 0 2 T48.5 25.2 17.5 14.2 12.9 13.2 13.3
Gl11 4k 26k | 100 3 | T121.9 58.3 43.8 34.3 35.6 33.8 31.8
G12 4k 26k 50 1 T115.1 61.2 41.1 36.4 33.5 31.6 31.4
G13 4k 26k 0 3 099.3 56.8 38.7 34.0 29.0 29.9 29.6
Gl4 6k 39k | 100 5 | T142.2 87.5 58.4 50.3 44.3 45.1 43.8
G15 6k 39k 50 7 | 0126.3 87.0 65.5 51.6 48.1 46.5 47.0
G16 6k 39k 0 2 | 0141.0 89.5 61.3 51.3 45.8 40.8 40.8
G17 | 2k | 25k | 100 9 | 089.2 | 39.0 | 252 | 202 | 19.2 | 181 | 168
G18 2k 25k 50 3 T78.4 41.3 29.8 22.5 22.5 21.2 19.0
G19 2k 25k 0 3 T81.3 41.8 25.7 21.9 18.4 18.1 18.2
G20 2k 50k 100 2 | Ti94.8 77.5 49.3 44.3 35.0 34.8 33.0
G21 2k 50k 50 3 T194.9 83.4 50.8 42.2 36.5 31.7 33.5
G22 2k 50k 0 1 | T133.8 64.4 44.5 37.9 32.1 32.0 27.9
Totals 1723.5 | 866.8 | 588.1 | 491.3 | 441.6 | 426.8 | 415.7
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Table X gives speedup results for problems G8 through G22, and the results are
graphed for problems G14, G15, G16 and problems G20 ,G21, and G22. Problems G14 ,
G15, and G16 have the smallest ratio of arcs to nodes, and TPGRNET yields the smallest
speedup for these problems. TPGRNET gives an average speedup of 5.4 on 15 processors
for problems G20 , G21 and G22. These are the problems for which the arcs/nodes ratio
is the largest. Since TPGRNET gets most of its parallelism from pricing arcs in parallel
and gets only limited parallelism from parallel pivoting, the dependence of the efficiency
of TPGRNET on the arcs/nodes ratio is understandable.

Table X TPGRNET speedups for problems G8 through G22

Number of Processors (Sequent)
Prob nds arcs cap qtree 1 5 7 9 11 13 15
G8 2k | 13k | 100 4 110 |17 |26 |32 |31 |30 |32
G9 2k | 13k 50 1110 {17 |26 |31 |35 |33 |32
G10 2k | 13k 0 2 |10 |19 |27 |34 |37 |36 |36
G11 4k | 26k | 100 3 110 |20 |27 |35 |34 |36 |38
G12 4k | 26k 50 1110 |18 |28 [31 |34 |36 |36
G13 4k | 26k 0 3 110 | 1.7 |25 |29 |34 |33 |33
Gl4 6k | 39k | 100 5 {10 |16 [ 24 |28 {32 |31 |32
G15 6k | 39k 50 7110 |14 |19 |24 |26 | 27 | 26
G16 6k | 39k 0 2 110 |15 |23 |27 |30 |34 |34
G17 2k | 25k | 100 9 |10 |22 |35 |44 |46 |49 |53
G18 2k | 25k 50 3 110 |18 |26 |34 |34 |36 |41
G19 2k | 25k 0 3 110 |19 |31 |37 |44 | 44 | 44
G20 2k | 50k | 100 2 |10 |25 |39 |43 |55 |55 |59
G21 2k | 50k 50 3 110 |23 |38 |46 |53 |61 |58
G22 2k | 50k 0 1 {10 (20 |30 |35 |41 | 4.1 | 47
Averages 1.0 119 |29 |35 |38 |4.0 | 4.1
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3.3 Results for MAGEN Problems

Table XI gives results for a group of large problems generated by MAGEN, the genera-
tor used in [Clark and Meyer 88]. This is a modification of GTGEN, a generator described
in [Chang and Engquist 86]. All problems have 30,000 nodes and more than 300,000 arcs.
The precise MAGEN input data for these problems, as well as optimal objective function
values are given in [Clark 89]. MAGEN generates bipartite generalized network problems
randomly, but allows the user to specify, roughly, the granularity of the generated problem,
(i.e. the user may roughly specify the number of quasi-trees in the optimal basis). Since
problems 4.00 through 4.50 have different granularities, the effect of granularity on the ef-
ficiency of TPGRNET and PGRNET can be studied by solving these problems. Problem
4.50 is by far the easiest problem in terms of CPU time. GRNET2 solves 4.50 sixteen
times faster than 4.00, even though it does only 30% fewer pivots. This means that the
pivots in 4.50 are relatively fast , probably due to the fact that quasi-trees are relatively
small. PGRNET yields an impressive speedup of 11.1 over GRNET?2 for 4.50, because the
quasi-trees are numerous in the optimal basis (and in the intermediate bases). The serial
version of GENFLO outperforms GRNET2 on problem 4.50 in terms of CPU time, but
GRNET?2 generally outperforms GENFLO for the more difficult problems in terms of both
CPU time and the number of pivots. Looking at problem 4.00, one sees that the fastest
serial algorithm is GRNET2, and the fastest parallel algorithm is TPGRNET. In all of the
other problems, PGRNET outperforms TPGRNET in terms of CPU time because it is
able to execute pivots in parallel. The shared candidate list and parallel pricing strategy
of TPGRNET makes TPGRNET outperform PGRNET in terms of the number of pivots
for all problems, but for problem 4.00, the absence of lock contention makes TPGRNET
40% faster than PGRNET.

Table XI

Results for PGRNET, TPGRNET, GENFLO, and GRNET2

Problem +# 4.00 4.01 4.03 4.05 4.10 4.50

# qtrees at optimality 1 139 459 776 1,490 7,376
# nodes 30,000 | 30,000 { 30,000 | 30,000 | 30,000 | 30,000
# arcs 322,289 | 322,428 | 322,748 | 323,065 | 323,779 | 329,665
# pivots GENFLO Hok 411,720 | 337,907 | 313,982 | 289,937 | 244,635

# pivots GRNET2 328,711 | 347,420 | 320,937 | 308,284 | 288,856 | 228,819
# pivs 19 procs PGRNET | 365,633 | 383,483 | 345,325 | 326,323 | 300,496 | 231,507
# pivs 10 procs TPGRNET | 265,774 | 305,979 | 288,279 | 272,322 | 263,411 | 221,544
CPU secs. GENFLO kakok 36,523 | 10,524 5,121 2,436 1,038
CPU secs. GRNET2 22,434 9,679 4,525 3,096 2,340 1,388
CPU: 19 procs PGRNET 5,829 1,527 589 364 223 124
CPU: 19 procs TPGRNET 3,390 2,571 1,177 721 470 211
Speedup PGRNET 3.8 6.3 7.6 5.2 10.4 11.1
Speedup TPGRNET 6.6 3.7 3.8 4.2 4.9 6.5

*** Did not finish after 14 hours.
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Speedups for PGRNET and TPGRNET for MAGEN problems

Figure 8 and Tables XII and XIII show results for two problems with more than

a million variables. The problem reported in Table XII has tighter capacity constraints

than does the Table XIII problem. Both of these problems are small grained, so they can
be solved quite efficiently by PGRNET. The best speedup was achieved on the tightly

constrained problem for which a speedup of 13 was achieved using 15 processors. Note

that the tightly constrained problem was considerably more difficult to solve with the

serial version of the code, so that there was more potential for improvement with a parallel

approach.
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Table XII PGRNET results for tightly constrained problem
program # arcs| # nodes| # qtrees| time| pivots| maj page swap
serial| 1,267,185 30,000f 14,859 8,415| 706,776 914,478
15 procs | 1,267,185| 30,000 14,859| 660| 715,168 101,866
Table XIII PGRNET results for loosely constrained problem
program # arcs| # nodes| # qtrees| time| pivots| maj page swap
serial| 1,267,185| 30,000/ 14,859| 3,305| 184,379 363,755
15 procs | 1,267,185] 30,000 14,859| 490| 186,969 45,672
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4. SUMMARY AND CONCLUSIONS

The availability of relatively inexpensive parallel computers has generated widespread
interest in the development of new optimization algorithms for such machines. Although
parallel computers come in a variety of architectures, the popularity of multiple-instruction
multiple-data (MIMD) machines can be attributed, in part, to the ease with which codes
intended for sequential computers can be ported to these machines. The algorithms and
software reported in this investigation were developed for a particular multiprocessor sys-
tem with shared memory (Sequent Symmetry S81), but they can be used with any shared
memory parallel processing systems.

In our empirical study we found that our generalized network software when applied
to pure network problems is at least forty times faster than MPSX and when applied to
generalized network problems is at least an order of magnitude faster than MPSX. It was
also shown that relaxing the restriction that at least one of the multipliers associated with
an arc be one (minus one), results in an additional computational expense of only ten
percent.

We believe that the current best sequential software for these problems is GENNET
[Brown and McBride 1984] and GRNET2 [Clark and Meyer 1988] and we began our study
of parallel algorithms with these codes. A two- multiplier version of GENNET called
GENFLO and GRNET?2 provided the best single processor times for the empirical analysis
presented in this study. For most speedup calculations, both codes were run and the smaller
of the two times was used in the numerator.

One general conclusion is that problems having only a few quasi-trees at optimality
are more difficult for our parallel codes than those with many partitions of an optimal
basis. Nevertheless, by exploiting the parallelism in the pricing operation, we still obtained
speedups of over four on a set of problems having fewer than ten quasi-trees at optimality.
For problems having hundreds of quasi-trees at optimality, the speedups ranged from five
to eleven. The best speedup was achieved on a tightly constrained problem having 30,000
nodes and over 1.2 million arcs. For this problem a speedup of thirteen was achieved using

only fifteen processors.
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