CENTER FOR
PARALLEL OPTIMIZATION

OPTIMAL BALANCED ASSIGNMENTS
AND A PARALLEL DATABASE APPLICATION

by

Shahram Ghandeharizadeh
Robert R. Meyer
Gary L. Schultz
Jonathan Yackel

Computer Sciences Technical Report #986

December 1990

Optimal Balanced Assignments and a Parallel Database Application

Shahram Ghandeharizadeh™ Robert R. Meyer Gary L. Schultz
Jonathan Yackel

Abstract

In parallel database systems, distribution of the data among the processors has a
significant impact on the response time and throughput of the system. The benefits of
parallelism (using multiple processors to execute a query) must be balanced against its
costs (communication, startup, and termination overhead). We formalize the problem
of minimizing overhead while partitioning data uniformly across the processors. We
derive lower bounds on these combinatorial problems and demonstrate how processors
may be optimally assigned so as to achieve these lower bounds for a number of problem
classes.

Acknowledgments
This research was partially supported by the Air Force Office of Scientific Research under grant
89-0410, the Defense Advanced Research Projects Agency under contract N00039-86-C-0578, and
by the National Science Foundation under grants CCR-8709952 and DCR-8512862.

1 Introduction

We first consider the application that motivated for the general combinatorial optimization
problems developed below.

1.1 A Parallel Database Application

In highly-parallel database machines (e.g., Gamma [7], Bubba [5], DBC/1012 [18], Non-Stop
SQL [17], XPRS [16] and Volcano [10]) relations are horizontally partitioned across multiple
processors. (Livny et al [14] and Ries and Epstein [15] introduced the concept of horizontal
partitioning.) This allows each processor to execute a portion of a query in parallel with
the other processors, resulting in a lower response time for the query. In these systems, the
number of processors assigned to a relation determines the degree of parallelism for a query
accessing that relation.

*Present affiliation: Computer Science Department, University of Southern California.

1 INTRODUCTION 2

Social_Security

09 10-19 20-29 30-39 40-49 50-inf

0-20 0| 0[3]|3] 6|6
g U 01 0]3|3] 6] 6
° ds-ss 1| 1| 4] 4|77
? 56 - 60 1| 1] 4] 4| 7|7
Y 6180 21215 5| 8] 8
81-inf 2121515 81 8

Figure 1: A 2-dimensional grid on the EMP relation

However, there is communication overhead associated with initiating and terminating a
query on multiple processors. Furthermore, this overhead increases as a function of the num-
ber of processors used to execute a query . In order to minimize overhead while balancing
the workload among the processors, Multi-Attribute Grld deClustering (MAGIC) introduced
by Ghandeharizadeh [9] partitions a relation by assigning ranges of several attribute values
to each processor in the system. To illustrate MAGIC declustering, consider the Employee
relation: EMP (Social Security, Name, Salary, Age, Dept). For a parallel system
consisting of 9 processors, MAGIC partitions the EMP relation by establishing ranges of
Salary and Social_Security attribute values as shown in figure 1. Fach cell of this grid corre-
sponds to a fragment of the relation and must be assigned to some processor. For example,
the cell which contains records with Salary attribute values that range from 46 to 55 and
Social_Security attribute values that range from 0 to 9 is assigned to processor 1.

Given a query on either the Social_Security or Salary attribute, the predicate of the
query maps to either a row or a column (termed a “slice”) of the grid and the corresponding
three processors are used to execute it. For example, if a query retrieves the record that
corresponds to the employee with a Social_Security attribute value five, the value of the
query predicate maps to the first column of the grid and processors 0, 1, and 2 are used to
execute it. Note that, for the assignment depicted by figure 1, every such query requires 3
processors and every processor is assigned 4 cells. (The grid in figure 1 is produced by a
“blocking” procedure, discussed in §4, that constitutes an optimal assignment in some cases
including the one above.)

1This overhead is primarily in the form of additional messages to control the execution of the query
on additional processors and, in the Gamma database machine [7], increases linearly with the number of
employed processors.

2 BASIC MATHEMATICAL PROBLEM STATEMENT 3

Although we concentrate on the limiting case in which overhead is minimized, the optimal
processor assignments that we obtain below have properties that suggest that they may
also be reasonable approximations to assignments that would minimize other response time
functions under reasonable assumptions on communications costs. For example, suppose the
response time r for an average query as a function of the number of processors v used by
the query is modeled by

r(v)=Vv+ %,
where V is the overhead per processor and () is the processing time for a query on a single
processor. In this model we assume that the overhead increases proportionally with the
number of processors, and that the processing time is inversely proportional to the number of
processors?. In the absence of any constraints, r is minimized when the number of processors
per query is v* = 1/Q/V. We shall see in (§3) that for our version of the problem, which in
some sense minimizes the number of processors used per query (subject to a load balancing
constraint), optimal assignments nevertheless have ~ /P processors assigned to each query,

where P is the number of processors in the system. If \/Q/V < VP, which is the case if
the communication overhead for using all P processors dominates the processing time for a
single query, then our optimal solution comes as close as possible (among assignments that
balance the workload among processors) to the unconstrained minimum of the alternative
objective 7.

1.2 Overview

This paper formalizes the problem of assigning the cells of a multidimensional grid to a
given number of processors, in order to minimize overhead. In §2 we present a mathematical
statement of the problem. In §3, we derive lower bounds on the maximum and on the
average number of distinct processors that must appear in the slices while evenly assigning
the cells to the processors. §4 and §5 provide optimal assignments that attain the lower
bounds in many cases. In §6 and §8, we present other variations of the problem which arise
when considering factors such as relative frequencies of access to the different attributes (or
dimensions), and relative sizes of cells. §7 presents results of a heuristic assignment procedure
applied to some standard benchmarks. Our conclusions and future research directions are
contained in §9. In an appendix, we show an integer programming formulation for our basic
problem. However the resulting integer programs are quite large, and we were unable to
solve any interesting cases using standard software. This computational experience helped
to motivate the analytical results of this paper.

2 Basic Mathematical Problem Statement

In this section we state the problem in a mathematical form, using the motivation of §1.
First we introduce some notation and state some definitions.

2The linear speedup results presented in [7] justify this assertion.

2 BASIC MATHEMATICAL PROBLEM STATEMENT 4

Suppose that we wish to assign the cells of a D-dimensional grid to P processors, and
that the dth dimension is partitioned into My ranges.

Let Z denote the integers, and ZP the set of D-tuples of integers. If M € Z” is strictly
positive, we let ZY denote the set of D-tuples of integers, with the condition that the dth
coordinate is restricted to {0,..., My — 1}. Therefore, each cell of the grid corresponds to a
point in ZE;. We shall use the shorthand

D-1 D-1
HiE:de and Zx::z:cd
d=0 d=0

for any « € Z whenever it is convenient.

When considering a single value of the dth attribute, all the data that has the given
value for the dth attribute lies in a D — 1-dimensional “slice” of the grid. This motivates the
following definition. The jth slice of ZY. in dimension d is defined to be the set

S(d’j) = {g“ = (:L’o,. . '7mD-1) € %]E\de =]}

The slices of Z;?,I are simply the D — 1-dimensional subsets obtained by fixing one coordinate.
Let S denote the collection of all slices:

S:=1{S(d,j)|d€{0,...,D—1} and j € {0,..., My —1}},

and note that |S| =3 M.
In order to assign the P processors to cells of the grid, we consider an assignment to be
a function that maps the cells of the grid to the processors, i.e.,

a: 7Y — Lp.

The problem we will consider is to find an assignment that minimizes an objective criterion
subject to satisfying a balancing condition, both of which will be defined below. We say that
acell z € Zfd is assigned to p if a(z) = p. We also say that a slice S € S contains p if
a(z) = p for some z € S.

Given an assignment a and an arbitrary slice S of ZJI\J,,, let v(a,S) denote the number
of distinct processors in the slice S; i.e. the number of elements in the image a(S). Given
a processor p € Zp, let A(a,p) denote the number of cells of ZY; assigned to p, ie. the
number of elements in the inverse image a=*(p).

In the basic problem, the objective criterion is defined using a function § that specifies
either a maximum or an average of the number of processors in the slices. Therefore, we
consider 8(a) such that

fave(a) := ave v(a,S)
0(a) = either or (1)
0max(a) := maxv(a,Ss).

Ses

2 BASIC MATHEMATICAL PROBLEM STATEMENT S

(We let the “ave” operator on a finite set of numbers be the sum of the numbers divided
by the cardinality of the set.) Note that if each slice S € § has the same frequency of
access, then the average number of distinct processors in each slice (6 = fave) represents the
average number of distinct processors used in a typical query. Therefore, if we are interested
in minimizing the average query overhead, then we should minimize fave. If, on the other
hand, we are interested in minimizing the worst case overhead incurred by any query, then
Omax should be minimized.
The first and most basic problem variation that we wish to consider is as follows:

PROBLEM VARIATION 1. Let the following data be given: a dimension D, a processor count
P € 7, the cardinality of the partitions in each dimension M. (D, P and each of the My
must be positive.) Find an assignment a : Zky — Zp that

minimizes 6(a) (where 8 is chosen as 0ave or Omax)

subject to the constraint that each processor is assigned an equal number of cells; i.e.,
A a, p) is the same for all p € Zp.

Any assignment a satisfying the constraint in problem variation 1 is called a balanced
assignment. Note that a necessary condition for a to be balanced is that P|[] M, in which
case the number of balanced assignments that exist is equal to

(I12)!

(5]
7)’
Complete enumeration is not feasible even for relatively small problems. E.g., if (D, P, M) =
(2,4,[4,4]) then there are 63,063,000 balanced assignments; while the the number of bal-
anced assignments for the instance (D, P, M) = (2,5, [5,5]) is 623,360, 743,125, 120.

A similar class of data aggregation problems was studied by Helman [12]. Suppose that
we replace our notion of “slice” by “arbitrary subset”. In symbols, let ¢/ C 2% be some

arbitrary subcollection of subsets of Z%, and let v(a,U) = |a(U)| be the number of points
in the image of U € U under a. We then let our -function be defined as

) Oave(a) := ave v(a,U)
f(a) = either or
Omax(a) = Hax v(a,U).

With the §-function so modified, our problem variation 1 becomes Helman’s K -size aggre-
gation problem (with unit frequencies), with I = [[M/P. Helman shows that the K-size
aggregation problem (with unit frequencies) is NP-complete.

3 LOWER BOUNDS FOR BALANCED ASSIGNMENTS 6

3 Lower Bounds for Balanced Assignments

In this section we will prove lower bounds on the measures fave(a) and Omax(a) defined
in (1) for balanced assignments a (which implies P|[]M). Throughout this section, the
following notation is used: o, is the number of slices containing processor p and a,4 is the
number of slices in dimension d containing processor p. In symbols:

0pa = [{ S(dj)eS | IHzeSd)} alz)=p 1
o, = I{ SeS | Hze S} alz)=p }l:gap,d.

Recall that A(a,p) is the total number of cells a assigns to the processor p; i.e., AM(a,p) :=
la='(p)I.

LEMMA 1. For any processor p and any (not necessarily balanced) assignment a,

[D[Ma,p)I?] < 0,

Proof: Fix p € Zp. Working in each dimension, successively permute the slices S(d, -)
so that
S(d,7) contains p iff j < oy 4.
(Notice that this operation does not alter any of the op4.) Then the box bounded by
(0p0,---,0pp-1) contains all A(a,p) of the cells assigned to p. Therefore the “volume”
127} 0 g of this box is at least A(a, p), i.e.,

Map) < TT ona ©)

Taking Dth roots gives

Because the arithmetic mean dominates the geometric mean (see Hardy et al [11] or Beck-
enbach and Bellman [3])
1

1 D-1 D 1 D1 op
Ma,p)? < ([T owa) <52 ope=7,
d=0 D d=0 D
whence 1
D ()‘(aap))ﬁ S Op-
Since the right-hand-side of the last inequality is integral, we may take the ceiling of the

left-hand-side, finishing the proof. |
Letting @ denote the field of rational numbers, we state a short number theoretic lemma.

LEMMA 2. If z € Z and r € Q, then 2" is either an integer or is irrational.
Proof: See theorem 16.1.2 of Keng [13]. E

3 LOWER BOUNDS FOR BALANCED ASSIGNMENTS 7

3.1 Lower Bounds on dave

We shall use the notation

M
arithmetic.mean(M) = _Z—D_

and ;
geometric.mean(M) = (H M) °

in the rest of the paper. The following two theorems give lower bounds on the #-measures
for balanced assignments.

THEOREM 3. Let Oave(:) be as defined in (1) and let the assignment a be balanced. Letting

o (12

oM ’

P

geometric.mean(M) &)

!

arithmetic.mean(M)

we have
Eave < ga,ve < eave()

Moreover, £ave = lyye iff (ITM/ P)”D' is an integer.
Proof: Given an assignment a, let x% be the characteristic function defined as

» 1 ifpea(lS
XS:{O ifggagsg.)

Recalling that v(a, S) is the number of distinct processors in the slice S, we see that

P-1
S) = Z Xa-

p=0

Also, since o, is the total number of slices containing p, we have

Op = ngv

Ses

so that
Z%— ZZXS—Z (a,5).
p=0 SES Ses

Since « is balanced, we know that AMa,p) = ([T M)/P for each p. Recalling that there are
5" M slices in total, the average number of distinct processors in a slice is expressed as

P-1
Z v(a,5) Z Ip
9ave(a) — SeS — p=0

SM S M

3 LOWER BOUNDS FOR BALANCED ASSIGNMENTS 8

P-1 L
[IM\D
Zo D(T) by lemma 1, assigning
> = i, (/\(a,p) = (II M)/P)
E cells to each processor
IM\?
o] g
P (H M) p(E5)

ZYM (Z M) /D

4
gave fave

Next notice that fave = Chve iff the quantity inside the “ceiling” brackets is an integer.

By lemma 2, this occurs iff ([] ,M/P)Tl" is an integer. As a final remark, notice that 0 <
gave—~£aye‘< f)/(Z:AJ). |

As §4 and §5 will demonstrate, there are many cases where balanced a exists so that
O ve = Oave(a). However, as proposition 10 will demonstrate, there are cases where lyye =
fave(a) is not possible for balanced a.

3.2 Lower Bounds on fmax

At this point we prove a lemma that is used in deriving lower bounds on fmax. Let

2V

ve; = v(a,S(d,j)) and Dy = avevy; = : (4)
' i My
LEMMA 4. For balanced assignments a, [[# > PP-!.
Proof: Let x% be defined as in (3). For fixed d,
Mg—-1 Mg—-1 P-1 P-1
Z Vdj = Z Z Xs(d] Z Upd- (5)
7j=0 p=0 p=0
Since a is balanced, equation (2) shows that
D-1 HM
II opa 2 Ma,p) = 25— Vp. (6)
d=0
Since the set of D-vectors (op0,...,0p0-1) that satisfy (6) is convex (see lemma 20 in

appendix Appendix C), and the average of a set of vectors is a convex combination of those
vectors, we have

P-1
ag
I
= P

P

4 BLOCKING 9

From this and (5) we have

D-1 [P-1 Mg-—-1
N (z) 1 (z)
PD___l S d=0 p==0 _ d=0 - H I;d.

[[M [IM d=0

Now we derive a lower bound on Omax.

THEOREM 5. Let Omax(-) be as defined in (1) and let the assignment a be balanced. Letting
emax = P(Qﬁl) and fIHaX [P(D 1)-|

we have
gma.x S elrna,x S Gma,x(a)-

PlOOf By lemma 4, [T[# > PP-1, so there must be at least one dimension d such that
Dg > PP5). Since 7y is an average of the number of distinct PIOCEssors per slice over all
the slices in dlmensmn d, one of these slices must have at least pEh) processors in it. Since
the number of processors in a slice is integral we have

pE) < [p(gf'l)] < fmax(a).

|

In sections 4 and 5 we shall see many cases where balanced a exist so that lpax =
Omax(a). As a negative result, however, note that there are cases where the refined lower
bound £, is not attainable. Clearly, lhyve < fave(a) < Omax(a) for all balanced a. If
M = (4,5) and P = 4 for example, then lmax = lax = 2, but lye = 20/9 ~ 2.2, which
implies that 3 is a lower bound on dmax(a) for balanced a. (Conmdenng only two dimensional

cases where balanced assignments exist, there are four such examples for P, My < 5 and 436
such examples for P, M, < 32.)

4 Blocking

This section introduces the concept of blocking to construct an assignment ay based on a
special factorization f of P. The blocking approach involves dividing the grid into P blocks
and assigning to each block its own processor. Blocking is only possible when the grid can
be divided into P identically shaped hyper-rectangular blocks. Furthermore, in order for
blocking to yield an optimal solution, P, D and M must be related in very special ways.
In particular, P must be representable as the product of D factors, and except for unusual
cases, all of these factors must be greater than 1. Therefore, in most instances we require
2P < P. To appeal to the reader’s intuition, we will first describe blocking in two dimensions
(see figure 2) and then generalize to arbitrary dimensions.

4 BLOCKING 10

rows
0 1 . fi—1 go
fo blocks
P—f P—fi+1 P-1 Jo TOWS
~ -~ -~ ~ Nu———— o —————snnu
g1 columns g¢; columns g1 columns

f1 blocks

Figure 2: Blocking in two dimensions (processor assignments shown in blocks)

4.1 Two Dimensions

Suppose P = fofy for positive integer factors fo and f;. Further assume that fogo = My
(the number of rows) and fig1 = M; (the number of columns) for integers go and g;. (This
assumes that fy|My for each dimension d.) Consider the grid as a collection of contiguous
rectangular blocks, each block having size go x g1. There are fof; = P such blocks. Based on
this factorization of P, we construct the assignment a; by assigning each block to a different
processor. Figure 1 is an example of blocking in two dimensions with fo = f; = 3 and
go = g1 = 2. Since each block is go X g1, each processor p is assigned A(as,p) = gog1 cells.
If the slice S is obtained by fixing a row index to ¢ (i.e. S = 5(0,7)), then the number
of processors in S is given by fi (i.e. v(as,S) = fi). If, on the other hand, the slice S is
obtained by fixing a column index to j (i.e. S = S(1,7)), then the number of processors in
S is given by fo (i.e. v(ay,S) = fo). This yields the f-measures

FiMo + foM
Oave(as) = aver(as, 5) = W

and
fmax(as) = max v(as,S) = max{fi, fo}.

4 BLOCKING 11

4.2 D Dimensions

Now consider the general D-dimensional case. Assume that P is factored as

D-1
P=1] f4 (7)
d=0
and that
My = fag4 for d € {0,...,D — 1} (8)
where
fa and g4 are positive integers for d € {0,...,D — 1}. (9)
(Note again that this implies fy|Mjy for all d.) Consider ZZ%; as a collection of contiguous
hyper-rectangular blocks, each block having size go X -++ X gp_1. There are [[f = P such
blocks. Based on the factorization f of P given in (7), we construct the assignment ay
by assigning each block to a different processor. Since each block is gg X -+ X ¢gp_1, each

processor p is assigned to A(ays,p) = [1g cells. If the slice S is obtained by fixing an index in
dimension d to ¢ (i.e. S = S(d,7)), then the number of processors in S is given by [Tj.q4 fi
(i-e. v(ag, S) = lxza f). This yields the f-measures

S (1wa) o

d=0 \ks#d

> M

Qave(ay) = ave v(ag,S) =

and

Omax(ays) = rglé)gcz/(af,S) = max{lgfﬂd =0,...,D — 1} .

4.3 Relative Distances from Lower Bounds for Blocking

We now compare these 6 values to the theoretical lower bounds presented in §3. Define the
relative distance from {qype for any assignment a to be

0 —
Tave(a) _ ave(a) ave'

eave

Clearly, rave is a nonnegative function of balanced a with rave(a) = 0 only if a is optimal
for problem variation 1 with 6 = fave.

PRrOPOSITION 6. Consider the blocking procedure applied to an instance of problem vari-
ation 1 satisfying (7), (8) and (9) and using 0 = 0ave. The assignment ay produced by the
above blocking procedure has relative distance from £ave

arithmetic.mean(g) — geometric.mean(g)

T‘ave(af) = geometric.mean(g)

4 BLOCKING 12

In particular, then, rave(as) = 0 iff all the g4 are the same (i.e., each block is a hypercube).
Proof: From above, we have

)

D
d=0

(27) E(fs)»
SM S M

M) (£9) _»(S9)

S M S M

From theorem 3, a lower bound on fave(ay) is

Oave(ay) =

1M 1
Cave = m_(_]:ljw) p(2sh) _ PD(?) _ PD(Hg)D |
> M S M S M

Therefore, after canceling the P/(}> M) terms, we have

o9 - Hg)fl" _ >9)/D-(9)?
D([T9)® (

as desired. Clearly, rave(ay) = 0 iff arithmetic.mean(g) = geometric.mean(g). This happens
iff all of the g4 are in fact equal to the same quantity (see Hardy et al [11] or Beckenbach
and Bellman [3]). |

Similarly we define the relative distance from the tighter lower bound rjye and state the
following:

o~

rave(as) = (10)

PROPOSITION 7. Consider the same problem instance (D, P, M) and assignment as as in
proposition 6. Then,

Oavelar) — v _ 229~ E <H] 97|
Lave [D (H g) ’5"

Tlave(af) =) (11)

satisfies
< 7 ar) <
N~ ave(f)v

A B

0

T’ave(af).

b[‘-‘

Moreover, equality in A implies that ay is optimal, and equality in B occurs iff ([]g)
integral.

4 BLOCKING 13

Proof: Theorem 3 shows that rjye is a nonnegative function of balanced «, and that
equality in A implies that a; is optimal. rjiye is dominated by rave because jye is domi-
nated by £ave. The characterization of equality in B follows from lemma 2 by considering
equations (10) and (11). |

As an example of the utility of proposition 7, consider the case in which the blocks are
“nearly hypercubes” in the sense that

fa+1 ifi<K
9=\ a fi>K

for positive integers @ and K < D. A fairly involved analysis outlined in appendix Appendix
D shows that such blockings are always optimal if D < 11. This takes care of most cases
occurring in practice.

Let us now consider the Omax case. We define the relative distance from fmax for any
assignment a to be
9max(a) — {max

Tma‘X(a) - gmax

rmax is a nonnegative function of balanced a with rmax(a) = 0 only if « is optimal for
problem variation 1 with 6 = 0max.

PROPOSITION 8. Consider the blocking procedure applied to an instance of problem varia-
tion 1 satisfying (7), (8) and (9) and using 0 = 0max. The assignment a; produced by the
above blocking procedure has relative distance from ¢max

1/<mdin fd> — geometric.mean(1/ f)

geometric.mean(1/ f)

rmax(a f) =)
where the geometric mean of 1/ f is to be understood as the geometric mean of the quantities
{1/fald = 0,...,D — 1}. In particular, rmax(ay) = 0 iff all of the fy are the same, ie.,
P = fP and fo|M, for all d. (In geometric terms, this means that the grid is subdivided
the same number of times in each dimension. This will produce P blocks with the same
proportions as the original grid.)

Proof: From above, we have

Hmax(af):1nax{ka|d=0,...,D~1} :Hf(L)

kid min fa

From theorem 5, a lower bound on fmax(ay) is

tmax = P = P ()7 =17 (-ﬁl};)—

o

4 BLOCKING 14

Therefore, canceling the [] f term gives the formula for rmax. Clearly, rmax(ay) = 0 iff the
geometric mean of the quantities 1/f, is equal to 1/(min f3) = max{1/f;}. This occurs iff
all of the 1/f; (and hence all of the f;) are the same (see Hardy et al [11] or Beckenbach

and Bellman [3]). |
Similarly we define a tighter relative distance riax and state the following:

PROPOSITION 9. Consider the same problem instance (D, P, M) and assignment a; as in
proposition 8. Then,

Omax(er) ~ fmax _ 1L [(min s, {]
Cmax [(H f '1

Tmax(af)

satisfies

Moreover, equality in A implies that a; is optimal, and equality in B occurs iff ([] f)D_f_>l is
integral.

Proof: Similar to the proof of proposition 7. E

The results of proposition 9 can be used to show that “slightly irregular” subdivisions
provide optimal solutions in certain instances. In the two-dimensional case, for example, if
fo = fi+1, then it is clear that the numerator of 7,55 (@) vanishes, implying the optimality
of the corresponding blocking. A more involved analysis shows, however, that this result does
not extend to three dimensions when fo — 1 = f; = fo is sufﬁaently lal ge.

4.4 Optimal Blocking for Elongated Grids

We say that a grid is elongated if the size of one dimension dominates the sizes of the others
by at least P, i.e., for some d, My > PM; whenever ¢ # d. This section develops a lower
bound on @ave(a) (for balanced assignments a) which is sometimes tighter than {jye and is
achievable by blocking in elongated grids.

Recall the notation defined in equation (4). Writing fave as a function of #:

D-1 Mg~1

> Z vd,; Z My,
Oave(a) = Oave(V) = 4=0_J=0 =

YoM ZM

Clearly, the 7y are within the bounds [1, P] because they are the average of integers within
that same interval. Since the inequality of lemma 4 also must be satisfied, we may deduce
that the optimal value of the nonlinear program

minimize fave(?) subjectto 1< 7 <Pl and HI/ > pb-1 (12)

4 BLOCKING 15

(with 1 = (1,...,1)7) is a lower bound on the optimal value of problem variation 1. In
appendix Appendix C we show that if any there is one dimension ¢ such that M; > PM,
for all d # i, then the optimal solution of the nonlinear program has 7; = 1, and 73 = P
for d # 4. In this case, we see that the only way this can occur is if (for all j) v;; = 1 and
ve; = P for d # i. If P|M;, then constructing an assignment that realizes this is trivial.
(Simply divide 7% into P blocks in dimension ¢ and give each block to a different processor.)
Letting ap denote this assignment, we summarize with the following:

PROPOSITION 10. A lower bound for Oave(a) where a is balanced is given by any feasible
solution to the nonlinear program (12). Moreover, if, for some ¢, M; > PMg for all d # 1,
and P|M;, then ag is well-defined and is an optimal assignment.

Proof: Given above using the results of appendix Appendix C. B
To illustrate that this result may differ significantly from the results of the preceding
section, we show a class of problems for which ag is well-defined and optimal, but rjye(ag) —
+00. Let the problem instance (P, D, M) depend on the positive integer n in the following
way:
My
nDP
(For D, P and M; all fixed, this defines a sequence of problems indexed by n.) Then propo-
sition 10 shows that ag is well-defined and optimal. However, since

=M =M;=---=Mp_;.

Dave(an) Mo+ (D -1)PM; (D —1+nP)PM,
avel\dg) — -
> M > M

and .
P\|D (M) ’ i
;o P ~ P[D (no0P)” _ nDPM,
ave ™ S M B YoM TS M
we see that
Fhvelas) = 9“6(”;21; fove _ D21 - —— oo,

even though ag is optimal.

4.5 Summary of Blocking

Blocking yields optimal solutions for some instances of problem variation 1, albeit in special
cases. Of course, from an applications perspective one could attempt to set up the grid
so that it matches one of these cases, provided that P, the number of processors, may be
written as a product of D factors. The optimal assignments discussed in the next section do
not require any factorization properties of P.

5 DIAGONAL-BASED ASSIGNMENTS IN TWO DIMENSIONS 16

5 Diagonal-Based Assignments in Two Dimensions

This section exhibits another class of problems with optimal closed-form solutions. Unlike
the blocking assignments of §4, we construct optimal assignments by successively assigning
cells on diagonals. The techniques of this section apply only to two dimensional grids.

5.1 The Case M = (P, P)

In this subsection we assume that D = 2 and M = (P, P), and we give a technique for
constructing an optimal “diagonal-based” assignment. Since D = 2, we shall call the slices
in one dimension “rows” and the slices in the other dimension “columns.” Given an integer
p € {1,..., P}, the technique produces a solution a, so that there are exactly p processors
in each row and [P/p] processors in each column. We then show that a, is optimal for this

problem if p = [\/FL i.e., Oave(a,) = love and Omax(a,) = lmax (c.f. §3) for p = [\/Iﬂ

5.1.1 A Diagonal Solution Technique
The jth diagonal of ZZ%P’P.) is defined to be the set of cells z = (i, k) that satisfy

k —1= jmodP. (13)

Note that there are exactly P cells in each diagonal. An algorithm for computing an as-
signment a, is given in figure 3. This algorithm is given inputs P and p € {1,..., P} and
assigns one diagonal at a time, using the procedure assign.single.diag. The procedure as-
sign.single.diag is given an “initial processor” p € Zp, and a column coordinate j € Zp, and
then assigns each cell in the jth diagonal to a different processor. Note that the algorithm
assign.diags takes O(P?) operations, which is optimal since Z{p py has P? cells. Figure 4
shows the portion of the assignment created by assign.diags(7,3) after the first two calls to
procedure assign.single.diag. Figure 5 shows the complete assignment.
We now prove that algorithm assign.diags is correct.

PROPOSITION 11 (FULL ASSIGNMENT). Algorithm assign.diags assigns each cell of E?RP)
exactly once.

Proof: When assign.single.diag(-,7) is called, it assigns exactly those cells z = (¢, k) €
Z?P’ py that satisfy (13). The proof follows because assign.single.diag(-, j) is called for each
j€40,...,P -1} [

PROPOSITION 12. If the assignment a, has been computed using assign.diags, then for each
(1,7) € Zip,py we have:

a,(t + hmod P,j + hmod P) = a,(%,5) + hmod P for all h.

5 DIAGONAL-BASED ASSIGNMENTS IN TWO DIMENSIONS

Procedure assign.single.diag(p, j)

q—p (initial processor index is p)
kej (initial column index is j)
Fori=0,...,P—1

ap(i, k) < ¢

k « (k+1)mod P
g+« (¢+1)mod P

Algorithm assign.diags(P, p)
For j «0,...,P -1
assign.single.diag(j mod p, 7)

Figure 3: The algorithm for computing a,

0 01
1 112
2 213
3 314
4 415

) 516
6 0 6

@) ®)

Figure 4: (a) After 1 diagonal assigned; (b) After 2 diagonals assigned

0(112(0]1[2]0
111 12(3]1]2|3
4121213141213
4153314513
415161414 (5]|6
0156|0556
0(1]6(0]|1|6]6

Figure 5: An optimal assignment of %?7,7) with 7 processors

17

5 DIAGONAL-BASED ASSIGNMENTS IN TWO DIMENSIONS 18

In a rough sense, this means that if one moves h positions along the diagonal, then the
processor that is assigned that cell also changes by hmod P. Note that “moving along the
diagonal” of Z%P,P) involves wrap-around mod P.

Proof of proposition 12: Follows directly from the procedure assign.single.diag. |

PROPOSITION 13. A call to assign.single.diag either adds one new distinct processor to every
row (column) or does not change the number of distinct processors in any row (column).

Proof: The case of columns is the same as for rows. Clearly, the number of distinct
processors in each row either stays the same or increases by one, so it suffices to show
that the number of distinct processors in one row stays the same iff the number of distinct
processors in other rows stays the same. Say (¢,) gets assigned to p during a particular call
to assign.single.diag. Then

the number of distinct processors in row ¢ stays the same
iff
p already in row 2
iff
p+ h already in row ¢ + h for all A with 0 <:4+h < P
iff
the number of distinct processors in row 7 + h stays the same for all A with 0 <74 h < P.

The middle implication follows from proposition 12. [

PROPOSITION 14 (CORRECTNESS). assign.diags(P, p) terminates with p distinct processors
in each row and [P/p] distinct processors in each column.

Proof: (Rows): The algorithm puts p distinct processors in the first row. Proposition 13
then shows that there are p distinct processors in each row.

(Columns): By proposition 13 it suffices to show that assign.diags(P,p) puts [P/p]
distinct processors in the first column (the column with index 0). For any column index
j €{0,...,P —1} we decompose j uniquely as j = kp + h where k € {0,...,[P/p] — 1}
and h € {0,...,p — 1}. The algorithm above and proposition 12 give

h = a,(0,j) = a,(—j mod P,0) + jmod P.
Therefore
a,(—jmod P,0) = h — j = —kpmod P.

The proof follows because there are exactly [P/p] such k. |
Note that we may compute a,(z,) for (z,5) € Z%P,P) in a constant number of steps by
using proposition 12 and the value of a,(0,-):

a,(t,7) = {a,(0,(s — i) mod P) + ¢} mod P
= {[(j —7)mod Plmod p + ¢} mod P.

5 DIAGONAL-BASED ASSIGNMENTS IN TWO DIMENSIONS 19

5.1.2 Optimality of the Solution

In this subsection, we look at the solutions produced by the diagonal assignment technique
of §5.1.1. We first state a lemma (proved in appendix Appendix B).

LEMMA 15. Suppose P is a positive integer. Then

round (\/}7—) = P

7

where round(z) is the function that rounds the real number z to the nearest integer, breaking
ties in an arbitrary way when the fractional part is 1/2.

3

Suppose we choose
p= VP (14)
and that we produce an assignment a, that is as advertised; with p processors in each row (i.e.
v(a,,S5(0,%)) = p for all rows ¢) and [P/p] processors in each column (i.e. v(a,,S(1,5)) =
[P/p] for all columns j). The lemma then says that the number of processors in each column
is round(+/P).

Consider the optimality of 8ave(a,) with the choice of p as in (14). Then

P
_ Pp+ P[P/p] _ {\/ﬁ] " \/1—5] N {\/ﬂ + round (\/]—3)

2P 2 B 2
In this problem, all the My = P are the same, so that the lower bound €,y given in theorem 3
is simplified to

Dave(a,)

pl2vP
e = -JH{T - % [2vP].

We claim that, in this case, fave(a,) = l4ye, which implies that a, is optimal for problem
variation 1.

Proof of the claim: We let » = round(v/P) and VP = r + ¢ so that ¢ € [-%,1]. We
have three cases:

€= i%: This case cannot happen, for VP = r + % would imply P =r? £r + 11 But P
and r are both integers.

e € (—1,0: Thenr = round(v/P) = [\/75] and fave = [\/}—7] Since r is an integer and
e € (—3,0], [2\/?} = [2r + 2¢] = 2r. Therefore lyye = 3 [2\/16} =1(2r) = !—\/—]—5} = Oave.

€ €(0,3): Thenr = round(v/P) = {\/F} —1 and fave = [\/ﬁ —1
and € € (0,3), [2\/}—7] = [2r +2¢] = 2r + 1. Therefore lyye = 3 [2\/?] = $(2r +1)
7"+%= {\/F] *%=9ave-

Next we use the choice of p in (14) to consider the optimality of fmax. Since round(v/P)

[\/—fﬂ , we have

p——

. Since r is an integer

IN e 1

Omax(a,) = maxv(a,, 5) = |VP].

5 DIAGONAL-BASED ASSIGNMENTS IN TWO DIMENSIONS 20

% = K times
/PR N/ R /A
72, 72,
u: =]{j/_f_(; = Ky times
i\ L | - | Ty

Figure 6: Pictorial representation of tiling in 2 dimensions

This is optimal because theorem 5 shows that
fmax(a,) = lmax-

5.2 Tiling

This subsection introduces the idea of tiling. Tiling is the operation of replicating an as-
signment for Z¥; to produce an assignment for Z? where My|L, for all d. (See figure 6.)
Tiling may be done in multiple dimensions, although we will only use the tiling results in
two dimensions. Tiling is to be contrasted with blocking (8§4) in that each tile contains all of
the processors, while each block contains a unique processor. The results of this subsection
are intuitively clear, even though they require a bit of work to prove.

Suppose we have strictly positive M, L € ZP with Ly = KyM, for positive integers Iy
and for all d € ZLp. We say that

ol P — Zp

is a tiling with
aM B — Wp
if
af(z) = a™(z mod M).
The first lemma shows that feasibility is maintained when tiling.

LEMMA 16. Suppose a¥ : ZP — Zp is a tiling with a™ : LY, — Zp. Then o™ is balanced
iff a¥ is balanced.

5 DIAGONAL-BASED ASSIGNMENTS IN TWO DIMENSIONS 21

Proof: The integer A(a,p) is defined as the number of things mapped to p by a. By the

definition of tiling, we have
MaP,p) = ([T K) Ma™, p).

Therefore, a” is feasible for problem variation 1 iff A(a,p) is the same for all p iff A\(aM, p)
is the same for all p iff a™ is feasible for problem variation 1. E
The following lemma describes how the function Omax is affected by tiling.

LEMMA 17. Ifa® : ZP — Zp is a tiling with a™ : AY, — Zp, then

Omax(a™) = Omax(a®).

Proof: Let S = S(d,j') be an arbitrary slice of Z2, and let j := j'mod M. Consider
the slice SM = S(d,) of ZY,. If p € a®(S™), then there is some z' € ST with a*(z') = p.
If z := ¢'mod M, then z € S™ and a™(z) = a®(2') = p, so that p € a™(SM); therefore
al(S¥) c aM(SM). Because v(-,-) is defined as the number of distinct processors in a slice,
v(a®, ST) < v(aM, SM), from which we deduce that Omax(a®) < Omax(a).

To get the other inequality, let S™ = S(d,7) be an arbitrary slice of %Y., and consider
the corresponding slice ST = S(d, j) of ZP. 1f p € aM(SM), then there is some & € SM with
aM(z) = p. But we may also regard z as being in S, so al(z) = «™(2) = p. Therefore
al(ST) D aM(§M), so that v(al, ST) > v(a™, SM), showing Imax(a®) > Omax(a™). B

5.3 The Case D =2, M = (bP,cP)

Suppose D = 2 and M = (bP, cP) for positive integers b and c. We will consider each of the
two f-functions of problem variation 1 in turn. We will obtain an exact minimum for fmax
and an approximate minimum for fave.

First suppose that we wish to minimize the #max(a) of problem variation 1 over all
balanced assignments a. We will tile a : Z?bp,cp) ~ Zp with an appropriate a, : Z(ZP' p) — Lp
as computed previously: so we define a, by

a,(7,7) = a,(imod P, j mod P).

We know from §5.1 how to compute a], such that Omax(a)) = [\/I_ﬂ = lpnax, which is
the best possible for both ZZ%P’P) and Z?bpycp) by theorem 5. By lemma 17 we know that
Omax(a,) = Bma,x(a;), which implies that a, is an optimal assignment for Z?bp’cp).

When &> cor b < c an assignment a, having [\/.—P—] processors per row and round(y/P)
processors per column, obtained from tiling, does a poor job of minimizing fave(e). This
can be seen by looking at the expression for £ave in theorem 3 and noticing that the ratio
of the means is < 1 in this case. By changing the value of the parameter p in the algorithm
of §5.1 we can improve fave(a,). It may be shown that if p = \/;Eb is an integer that
divides P, then Oave(a,) = lave, and so is optimal. Without these assumptions, the analysis
becomes much more difficult because of the need for integer variables.

6 A VARIATION WITHOUT PERFECT LOAD BALANCE 22

6 A Variation Without Perfect Load Balance

In problem variation 1 we were quite restrictive in our load balancing constraint. This section
suggests a relaxation of the load balancing constraint which generalizes problem version 1.
This more general problem variation is:

PROBLEM VARIATION 2. Given D,P € % and M € %P, all of which are positive, and a
tolerance 7 € Z. Find a : Zky — Zp that

minimizes 0(a) (from equation (1))

) P-1 P-1
subject to max Ma,p) — min Ala,p) < 1.
p: p:

Notice that if P|[] M setting 7 = 0 gives us problem variation 1. Otherwise 7 =1 is the
smallest value of 7 for which the problem has a feasible solution. For this reason we define

{ 0 if PITIM (15)

1 otherwise

T* . —

to represent the smallest 7 for which balanced assignments exist. Letting 7 be larger allows
us to relax the balancing constraint. We shall say that an assignment a is 7-balanced if it is
feasible for problem variation 2.

In this more general situation, we may seek lower bounds on fave(a) and fmax(a) for
7-balanced a. Note that, since the average number of cells assigned to p is given by [T M/ P,
any 7-balanced a has

I-HPE — T‘l < Ma, p) Vp. (16)

THEOREM 18. If a is 7-balanced, then

o
ZM < aave(a) (17)

and M N
P [:————ﬁ————“i-’- < Omax(a). (18)

TIM

6 A VARIATION WITHOUT PERFECT LOAD BALANCE 23

Moreover, if a is 7,-balanced (c.f. equation (15)) and the nonnegative integers ¢ and r < P,
are (uniquely) defined to satisfy [[M = qP +r, then

oL

U e i=
ave Z M

T

+(P—r)

< Oave(a). (19)

(Note that inequality (19) is tighter than (17) in this instance.)

Proof: The proof of (17) is the same as that of theorem 3, except that the lower bound
from (16) is used in the application of lemma 1.

The proof of (18) follows from a straightforward generalization of lemma 4: The inequal-
ity (16) is used in (6), yielding the generalized result:

p[IIM
: [HPM 71 =17

With this generalized lemma, the proof is exactly that already given for theorem 5.

To prove (19) it is first necessary to note that, in the case where P|T]M (i.e., 7. = 0),
the lhyve in (19) is equal to the 4y of theorem 3. If PfTIM (ie., 7. = 1), then we
know that exactly r processors are assigned to A(a,p) = [(II M)/P] cells, while the other
P — r processors are assigned to A(a,p) = [(ITM)/P] cells. The proof now follows that of
theorem 3 except that these values for A(a,p) are used in the application of lemma 1. |

As might be expected, techniques for generating provably optimal solutions for problem
variation 2 (for 7 > 0) are more difficult than for problem variation 1. To give the reader
the flavor of what is possible, we shall consider a two dimensional problem in which we are
seeking to “extend” a blocking.

Consider a two dimensional grid of size My x M; where we have MoM; = k*P for some
positive integer k|My for all d. Using dave as our objective, proposition 6 shows that an
optimal blocking is easily computed using the blocking technique. Now suppose we wish to
enlarge the grid to be (Mo + €) x M, i.e., we augment e > 0 rows onto the original grid.
Assume that this enlargement adds at most P cells, so that eM; < P. (If P is large relative
to Mj, this may allow a significant enlargement.) Note that if eM; < P, then a balanced
assignment is not possible and 7, = 1.

We outline a way to extend the original (optimal) blocked assignment into an assignment
that is optimal for the enlarged grid: Let a column block represent the set of columns in the
same block. In the extension, under each column block, there are ke cells; all unassigned.
The number of distinct processors assigned in the blocks directly above this is My/k. The
assumptions eM; < P and MyM; = k?P show ke < kP/M,; = My/k. Therefore, it is
possible to select ke distinct processors from the above blocks (in the original blocked grid).
These ke processors are each assigned to exactly one cell in the augmented rows. This is
then done for each of the column blocks.

7 PERFORMANCE OF A HEURISTIC 24

If a. denotes the assignment from the previous paragraph, it is possible to show that
Oave(ae) = lhye. We outline this for the case eM; < P (it remains true if eM; = P as
the reader is invited to verify): First, note that the remainder term r in (19), is given by
r = eMy. Then, considering the formula for £,ye, show the inequalities £? < (Mp+e)M;/P =
k* +eMy/P < k? +1 and 2k < 2v/k%? + 1 < 2k + 1. This leads to the conclusion that

MoM,
g _eMi@k+ 1)+ (P—edm)2k P e (@)
ave = Mo+ e+ M, T Mote+ M ~ O

the final equality following because the final e rows of the grid each have M, distinct pro-
cessors assigned in them.

7 Performance of a Heuristic

Ghandeharizadeh [9] describes a heuristic for assigning the cells of a D-dimensional grid to
the processors in the system. The heuristic creates an assignment by approximating the
blocking procedure of §4 and using fave as our measure. The results presented below show
that approximate solutions are obtainable and that the lower bound can be used as a tool
for evaluating the solution produced by a heuristic method.

If a good blocked assignment is possible, the heuristic creates the blocked assignment.
Notice that a blocked assignment implies that each processor is assigned the same number
of cells. Recall also that, roughly speaking, a “good” blocked assignment is one in which
the blocks are “nearly square” (see propositions 6 and 7). When blocking does not yield a
good assignment, the heuristic uses a divide and conquer approach similar to the one used
at the end of §6 to assign the cells. It creates a good blocked assignment on a large subgrid,
leaving the cells on the edges unassigned. The remaining cells are then assigned while trying
to satisfy the conflicting goals of keeping both fave and the imbalance 7 between processors
small. We refer the interested reader to Ghandeharizadeh [9] for the complete description of
the heuristic.

In each of the experiments on which we report, MAGIC scanned a 100,000 tuple relation
and used two attributes of this relation to construct a two-dimensional grid on the relation.
The characteristics of the relation were based on the standard Wisconsin Benchmark relations
[4].

In the first experiment, the heuristic assigned the cells of a 32 x 31 grid. Table 1 presents
a number of measurements for the problem instance and the assignment ay as a function
of the number of processors P. The rational data in the table is exact, and decimal data
is accurate to three significant digits. For this grid the heuristic created 7,-balanced assign-
ments. Therefore, we compare fave(an) with the lower bound £y from (19). (Recall that
if P|TIM, i.e., 7 = 0, then {,ye is the same as the quantity defined in theorem 3; this
occurs here for P = 8,16,32.) The last two columns show the absolute and relative gaps
between the average number of processors used by the heuristic and the lower bound. Note
that the relative gap varies between 0 and 15%. These results indicate that the heuristic
approximates the theoretical lower bound quite well.

8 MORE GENERAL VARIATIONS OF THE PROBLEM 25

Lower

Procs Bound Heuristic Absolute gap Relative gap
!
P Cave Oave(an) fave(an) — Lave Have(CZI/{) “ave
ave
8 184/63 198/63 =~ 3.14 0.222 0.0761
10 200/63 230/63 ~ 3.65 0.476 0.150
16 256/63 268/63 =~ 4.25 0.190 0.0469
20 292/63 300/63 ~ 4.76 0.127 0.0274
32 384/63 400/63 ~ 6.35 0.254 0.0417
64 512/63 536/63 ~ 8.51 0.381 0.0469
128 768/63 784/63 ~ 12.4 0.254 0.0208
256 | 1024/63 1024/63 ~ 16.3 0 0

Table 1: A 32 x 31 grid

The same experiment was conducted on a 65 x 16 grid. Table 2 presents the accuracy
of the heuristic for this case. As with the previous grid, the heuristic produced 7,-balanced
assignments, making £y a lower bound on Oave(an). We have 7, = 0 for P = §,10,16,20
and 7, = 1 otherwise. Again, the heuristic approximates the lower bound with a high
accuracy. In over half of the cases an optimal assignment was found.

8 More General Variations of the Problem

In this section we motivate and formalize other variations of our basic problem that may be
used to model our database application more accurately.

Thus far, we have assumed that each slice of a grid has the same frequency of access
as any other slice. Even if the frequency of access for each partitioning attribute is not the
same, equal slice frequency holds because the MAGIC partitioning strategy constructs a grid
based on the frequency of access to each partitioning attribute. This results in the number
of slices along each attribute (or dimension) being proportional to the frequency of access
to that attribute, resulting in the same frequency of access to each slice. To illustrate this,
recall the EMP relation. If the Social_Security attribute has an 80% frequency of access and
the Salary attribute the remaining 20%, MAGIC declustering constructs a grid with four
times as many slices in the Salary dimension as in the Social_Security dimension (see Figure
7). Thus, a grid is created in which each slice has the same frequency of access as any other
slice.

However, in some applications, a slice of a grid will have a different frequency of access
than some other slice of the same attribute. For example, the employees in the EMP relation
who earn less than $10K might be accessed more frequently than the high level mangers who
earn more than $40K because of more frequent inter-departmental changes, salary changes,

8 MORE GENERAL VARIATIONS OF THE PROBLEM

Lower

Procs Bound Heuristic Absolute gap Relative gap
Oave(an) — £,
P lave bave(on) Oavelan) — thye 20t ;) e
ave
8 184/81 200/81 = 2.47 0.198 0.0870
10 210/81 210/81 = 2.59 0 0
16 272/81 272/81 ~ 3.36 0 0
20 300/81 300/81 =~ 3.70 0 0
32 384/81 400/81 ~ 4.94 0.198 0.0417
64 528/81 528/81 =~ 6.52 0 0
128 768/81 784/81 ~ 9.68 0.198 0.0208
256 | 1040/81 1040/81 ~ 12.8 0 0
Table 2: A 65 x 16 grid
Social_Security
Salary

Figure 7: A 2-dimensional grid with 80% / 20% frequencies of access

26

8 MORE GENERAL VARIATIONS OF THE PROBLEM 27

etc. This property can be incorporated into our mathematical model by assigning frequencies
to each slice; i.e., we define a function ¢ : & — @, mapping the slices to the nonnegative
rationals. Then the following modification to the §-function is made:

Oive(a) = ave §(S)v(a,9)
0%(a) = either or (20)
Ohnax(a) = max ¢(S)v(a, S).

Furthermore, in our database application, the constraints in problem variation 2 are used
to ensure that the number of cells assigned to processor p (which is A(a, p)) differs from the
number of cells assigned to processor ¢ (which is A(a,q)) by no more than some tolerance
7. This is one method to evenly divide the cells of the database among the processors.
However, this assumes that each cell of the database contains the same number of tuples—
an inaccurate assumption in most cases. This is especially true when MAGIC partitions
a relation using two or more correlated attributes. In this case, some cells may contain
significantly more tuples than the other cells. For example, if MAGIC partitions the EMP
relation using the Salary and Age attributes, which are usually correlated with the older
employees earning higher salaries, the cells along a diagonal of the grid will contain more
tuples than the other cells. This is incorporated into our model by assigning a weight to
each cell; i.e., we are given w : %]1\7,[-+ @), , and require a nearly balanced distribution of the
weights among the processors. We recall the old definition of A(a,p) in symbols,

Aa,p) = |a~(p)],

in order to motivate a weighted definition of the load:

M(a,p) = Z w(z).

z€a~1(p)

As the original “load” A(a,p) was the number of things that mapped to p, the “weighted
load” A“(a,p) is the total “weight” of things that map to p. Therefore, we define the “load
imbalance function” 4 by
P-1 P-1
v“(a) := max A*(a, p) — min A*(a, p). (21)
p=0 p=0
Incorporating these modifications into our problem yields the following more general
version of the problem.

PROBLEM VARIATION 3. Given D,P € Z and M € %P, all of which are positive, a
tolerance T € Q, a frequency function ¢ : § — @, and a weight function w : uy — Q,.
Find a: Z]]i, — 2 p that

minimizes 0%(a) (from equation (20))

subject to v¥(a) < 7 (from equation (21)).

8 MORE GENERAL VARIATIONS OF THE PROBLEM 28

Note that if #(S) =1 for all S and w(z) =1 for all z, then problem variation 3 reduces
to problem variation 2. In this way, problem variation 3 contains problem variation 2 as
a special case. Also note that it is more difficult to choose 7 a prior: in order to make an
instance of problem variation 3 feasible for a general weight function w than it is for the
special unit weight function. (Problem variation 2 was feasible with 7 > 0 or 1, depending
on whether or not P|[]M.)

We make the observation that problem variation 3 is NP-hard, even in the case where
#(S) = 1 for each S. This is observed by reducing the partition problem to a special case
of problem variation 3. The partition problem is known to be NP-complete (see Garey and
Johnson [8]), and may be stated as follows: given a finite set X and a positive integer size
s(z) for each = € X, does there exist a subset ¥ C X such that 3 cy s(z) = X0y s(2)?
Given an instance of the partition problem (X, s(-)), we construct an instance of problem
variation 3 by setting P =2, D =1, M = |X|, 7 = 0, w(z) = s(z) for all z and ¢(5) =1
for all § € S. The partition question reduces to the question “does there exist a feasible
solution to this instance of problem variation 377

Our database application involves balancing two conflicting goals: reduce the “overhead”
involved with doing a sequence of queries while balancing the “load” of tuples across all of
the processors. Up until this time we have considered feasible solutions as those assignments
a which (approximately) balance the load, and minimized the overhead of feasible a. (In
symbols: minimize 0¢(a) subject to v“(a) < 7.) There are other ways to formulate the
problem using the same functions defined above. One problem variation involves switching
the roles of the constraint and the objective function.

PROBLEM VARIATION 4. Given D,P € Z and M € 7P, all of which are positive, a

tolerance T € Q, a frequency function ¢ : S — Q, and a weight function w : %][\),1 — Q.
Find a : 7Y, — Zp that

minimizes v*(a) (from equation (21))

subject to 0%(a) < T (from equation (20)).

Again, it may be difficult to choose 7 a priori in order to ensure that an instance of
problem variation 4 is feasible for a general frequency function ¢. However, if ¢(S) = 1 for
all § € §, then we may take some motivation from §3 (theorems 3 and 5) and choose

, .
— ave 1f 0 =0ave 99
= { Ooax if 0= Omax. (22)

This is well-motivated in the following sense:

Suppose the weight function, in addition to the frequency function, is trivial, i.e.,
w(z) = 1 for all z € Z%;. Suppose (D, P, M) is an instance of problem 1 where

9 CONCLUSIONS 29

the optimal value @%ye = fove (0T Ofnax = fmax)- Then there is an assignment
a* such that
6(a*) =1 (in the max or ave case)

and
v(a*) = 0.
Using the choice of 7 in (22) means that such a a* is optimal for problem varia-

tion 4. Moreover, any optimal assignment for problem variation 4 is an optimal
assignment for problem variation 1, because y(a) > 0.

Another problem variation is stated as a feasibility problem:

PROBLEM VARIATION 5. Given D,P € Z and M € 7ZP, all of which are positive, two
tolerances 7,7 € Q,, a frequency function ¢ : § — @, and a weight function w : Z]I\)J —
Q.. Find a: ZYy — Zp such that the following criteria are satisfied:

0%(a) < 9 and v“(a) <7y

(from equations (20) and (21), respectively).

For general frequency and weight functions ¢ and w, the previous problems present a
difficulty in choosing 7 large enough to ensure feasibility, while choosing it small enough to
yield a useful result. One way to avoid this problem is to put the effects of #¢ and of 4* into
one objective function for an unconstrained minimization problem.

PROBLEM VARIATION 6. Given D,P € Z and M € %P, all of which are positive, a

frequency function ¢ : § — O, a weight function w : uL — Q,, and an objective function
f:Q*—= M. Finda: %11\74 — Zp that minimizes

F(a) := f (0%(a),7*(a))

where 0% and ¥ are defined above.

Of course, we must choose the objective function f in such a way so that unconstrained
minimizers of F' provide a good compromise between our conflicting goals. f should also
be chosen so that F' has properties that facilitate the computational solution of problem
variation 6. The choice of such f is another topic which we shall not treat in this paper.
Due to the lack of constraints, problem variation 6 also has the benefit of yielding more
naturally to probabilistic algorithms like simulated annealing or genetic algorithms.

9 Conclusions

In this paper, we have analyzed a class of combinatorial optimization problems occurring in
parallel database design. In order to obtain the best response time and throughput from
the parallel database system, the cells must be assigned to the processors such that: 1) the

9 CONCLUSIONS 30

overhead associated with utilizing parallelism to execute a query is minimized, and 2) the
workload of a relation is evenly distributed across the processors in the system.

Analytically, we established lower bounds on the maximum and average number of pro-
cessors in the slices of a multidimensional grid. These bounds are summarized in table 3.
Using these lower bounds, we developed techniques that produce optimal assignments for
special problem classes. Table 4 summarizes the major problem classes for which we can
construct optimal solutions. The first column defines the problem class by stating the char-
acteristics of the grids in the class. The second column lists the #-measures which can be
optimized for the class. The third column describes the optimal assignment and refers to
the section in which it was developed.

The solution techniques we developed can be used in several ways. The study of blocked
(§4) and diagonal based (§5) assignments reveals characteristics of grids for which optimal
blocked solutions are easily produced. This knowledge may be used to improve the MAGIC
partitioning strategy. The grid construction phase of MAGIC declustering could attempt
to create grids with these desirable characteristics, leading to easily computable optimal or
nearly optimal assignments. These analytic solutions suggest ad hoc methods that may apply
to more general problems. The heuristic of §7 which uses the ideas of blocked assignments
(§4) is an example of this. The lower bounds of §3 were used to measure the solutions
produced by the heuristic.

9 CONCLUSIONS 31

| Type of Assignment | Bound |
- ., P[Dgv
balanced ge-ometrl.c.mea,n(M) P < [q 1 < Ouve
<q - HM) arithmetic.mean(M) > M
=45=) | e T
[P (%5 1 < Omax
T.-balanced r [D fq]%] +(P—r) [D lq] %1
(qz@andr:ﬂMmodP) ZM < bave
P [D [q — 7] D]
< fave
T-balanced Z M
B P
T [a—=71\"
P| = <4
(M) < Umax
D-1
balanced (elongated grid) Mo+ P Y My
My > PMy;d=1,2,...,D 1 d=1 < Oave
M -
Table 3: Summary of lower bounds
H Type of Grid | f-measure I Type of Optimal Solution H
M = (.P, P) Have, ema,x Diagonal (§5)
M = (bP,cP) fmax Tiling with diagonal (§5.3)
M= P%(go, ey gD-1) fmax P proportional blocks (proposition 6)
M= gf](];o:- }')’ fp-1) Oave P hypercubical blocks (proposition 8)
M = (bP, My, ..., Mp_y) .
b> Myd=1.2,....D—1 Bave P blocks of size b x My x ... x Mp_1
| (54.4)
(elongated grid)

Table 4: Summary of optimal solutions (principal cases)

APPENDIX A AN INTEGER PROGRAMMING FORMULATION 32

Appendix A An Integer Programming Formulation

Here we point out that integer linear programming (IP) techniques may be used for problem
variation 2 with 7 = 7, (equation (15)). The number of binary variables in our formulation
is PTI M. Due to this large number of binary variables, we were unable to solve the problem
with a standard IP code. This was a motivating force for the closed form solutions in §4 and
85.

We now briefly sketch the IP formulation. For the assignment a : Z%5; — Zp the con-
straints that force a to be a 7,-balanced assignment are constraints in the classical transporta-
tion problem. In addition to these transportation constraints, we must augment the system
with extra constraints and variables in order to be able to model the variables v = (vg4;) (c.f.
equation (4)). Once we have represented the variables v, fave is simply a linear function of
v, while §max can be modeled by adding one additional variable ¢, adding the constraints
€ > Vg4, and minimizing €.

The 0ave formulation has P[[M + P> M variables and [[M + P + P Y M constraints,
not including nonnegativity and integrality constraints on P[] M of the variables. The Omax
formulation has P M + P35 M + 1 variables, and [[M + P+ P35, M + > M constraints,
not including nonnegativity and integrality constraints on P[] M of the variables. The
large number of variables that must be restricted to integer values makes these formulations
difficult for the “off the shelf” techniques we tried. The largest problem of the form D = 2,
M = (P, P) that we were able to solve using the GAMS (Brooke et al [6]) ZOOM module in
less than one-half hour was the case where P = 5. Clearly, this is not a reasonable alternative
for real problems in which the M; are larger by one or two orders of magnitude.

Appendix B A Technical Lemma on Rounding

In this appendix we prove the technical lemma already stated as lemma 15. For completeness
we again state the lemma.

LEMMA 19. Suppose P is a positive integer. Then
P

round (VP) = W

where round(z) is the function that rounds the real number z to the nearest integer, breaking
ties in an arbitrary way when the fractional part is 1/2.

?

Proof: Let the positive integer 7 = round(v/P) and let € be the fractional portion so
that
VP=r+e¢ and P = (r+e¢),

where —1 < ¢ < % Ife = i% then P = r2 & r + %, which is not integral. Therefore,
. We take two cases separately.

I

|

A

™
ARY
8D j—=

APPENDIX C APPLICATION OF CONVEX PROGRAMMING 33

In the first case, suppose the round function does not round down, i.e., -—% <e<O.
Then {\/F] = r and it suffices to show the following inequality:
2
ro1< T (23)
T

because the fraction is equal to P / [\/ﬂ and r = round(v/P). The left inequality of (23)
follows by the following reasoning:

r—1<(r+e)/r

iff
rP—r<(r+e)?=r?42re+e?
iff
2 _ : 2
0<r+4+2re+te __\7;(1—#25)—!—\5/.
21 5o 20

The right inequality of (23) follows because it is equivalent with (r + &)? < r?, which is true
because ¢ < (.

In the other case, the round function rounds down, i.e., 0 < € < % Then [\/]‘ﬂ =r+1
and it suffices to show the following inequality:

(r+¢)
r+1

r—1< <r, (24)

because the fraction is equal to P / [\/F} and r = round(v/P). The left inequality of (24)

follows because it is equivalent with 72 — 1 < 72 + 2r¢ + €2, which is true because r > 1 and
¢ > 0. The right inequality of (24) follows by a more complicated argument:

2
—(Iwi-i-)v—<r iff
r4+1

We finish the proof by showing that LHS < r when P = (r 4 €)? is an integer. Since r is an
integer, LHS = 2re + ¢? = (r +¢)? —r?> = P — r? is also an integer. We know that 2re <r
by our choice of ¢, and therefore, LHS = 2re +e? < r -+ %.Since both LHS and r are integral,
we must have LHS <. | |

We note that this lemma is not true for general P € IR,, as illustrated by the example

P = (1.49)2.

r?P4+2re+e?<ri4pr if LHS:=2re +e2 <.

Appendix C Application of Convex Programming

This appendix applies the theory of convexity and convex programming to problems encoun-
tered earlier in the paper. First, we prove that that the set of D-vectors that satisfy (6) is
convex and that the nonlinear program (12) is a convex program. Then we will address the
optimality of (12) in the case of an elongated grid (cf. §4.4).

APPENDIX D “ALMOST HYPERCUBICAL” BLOCKING 34

LEMMA 20. Let C := {z € RY|[]# > K} for some constant K € R. Then C is convex.

Before giving the proof, we note that C = {z €]Rflﬁ(z) = [z > K} where A is not
concave.
Proof: If K <0, then C =]Rf, which is convex. If, on the other hand, K > 0, then

D-1
C={zc RPIh(z) = 3 In(2q) > In K}.
d=0
Since h is the sum of concave functions, h is concave and so C' is convex. E

We now consider the optimality conditions of the convex program (12) in the case where

one dimension is much larger than the others. Without loss of generality, we assume that
My > PMjy for all d > 0. Recall the convex program (12):

D-1
> Myvg
. . . d=0 . ~ ~ D1
minimize — subjectto 1 <7< Pl and p>P
peRP ZM ! - H -
where 1 = (1,...,1)". The objective function is linear in 7 and the feasible region is convex

by lemma 20. We claim that the feasible point ¥ given by
g =1 and Dg=P ford>0

satisfies the optimality conditions, implying that ¥ is an optimal solution.
Proof of claim: The gradient of the nonlinear constraint at v is

(PD——I, PD_2, PD-—Z, e, PD—2>.

Choosing the multiplier My/ (PD“l M) for the nonlinear constraint, we find that the
reduced gradient is non-positive and has first component 0. E

It is interesting to note that many of the results of §3 may be proved by considering the
optimality of similar convex programs.

Appendix D “Almost Hypercubical” Blocking

This appendix shows that “almost hypercubical” blocking yields optimal blockings in “small”
dimensions, or in any dimension if the grid is large enough. Recall that blocking is applicable
whenever we can factor P as (7) and maintain (8) and (9). We use proposition 7 and consider
the case in which blocking is applied with

(25)

[a+1 ifi<K
9= a4 ifi>K

for positive integers @ and K < D. Blockings that satisfy (25) are called almost hypercubical.

APPENDIX D “ALMOST HYPERCUBICAL” BLOCKING 35

We first state a proposition that characterizes the cases for which rj,e = 0.

PROPOSITION 21. Suppose the blocked assignment ay satisfies (25) in addition to the block-
ing equations (7), (8) and (9); i.e., as is an almost hypercubical blocking. Then r'yye(as) =0
iff

K—1\"
qD,K(C\f) = (a -+ 1)K a(D“K) — <a -+ —IT—> > 0. (26)

Proof: Equation (11) shows that rhye(as) = 0iff Y g = [D (I g)lﬂ. The arithmetic-

geometric mean inequality shows already that - ¢ > D (I] g)%, sufficing it to show that

Y9—1<D(I g)%. The result follows because "¢ = Da+ K and [Tg = (a+ 1) aP-X. B
The next result shows that, for any fixed D, almost hypercubical blocking is provably
optimal for a sufficiently large.

PROPOSITION 22. If a; is the coeflicient of o in qp k, then ap = 0 and ap_; = 1.

Proof: By the binomial theorem,

s 14D=i
~FD1] (?) itie{0,....,D—K—1)
a; ==
K K—-11°<(D\ . .
(ZMD*{"I()_[—-—I)__] (Z) ifie{D~-K,...,D}.
Soap=1—1=0and ap_y =K — [(K —1)/D]D = 1. B

The following technical lemma on polynomials will be useful for considering general a.

LEMMA 23. Given a polynomial ¢(a) = ana™ + --- + ao, where the coefficients are of the
form
an, >0, Up1y... 0 20 and ap_1,.-.,a9 < 0. (27)

Then (@a>0 and g(a)>0) = V{a>a} ¢g(a)>0.

Proof: Clearly, if we restrict ourselves to a > & > 0, g(a) > 0 iff r(a) := g(a)/a* > 0.

But, for
-1 g

r(a) = and" ™"+ + appa+ax+

s(e)

t(a)

and a > @, we have 0 < s(@) < s(a) and 0 > t(a) > t(a&). Therefore r(a) = s(a) + ai +

t(a) > s(@) + ar + t(a@) = r(a) > 0. E
We believe that gp i satisfies the hypothesis of the preceding lemma, but have been

unable to prove that result in general. Therefore we propose the following:

CONJECTURE 24. The polynomial qp i(-) defined in (26) has coefficients of the form (27).

REFERENCES 36

However, for given D, it is possible to compute gp x for each positive X < D and check
the conjecture. We have verified that it is true whenever D < 12 using the PARI calculator

(see 1], [2]).
COROLLARY 25. Suppose that conjecture 24 is true for a given pair of positive integers D

and K < D. Then rlye(as) = 0 for all blocked assignments as corresponding to the pair
D, K and all positive integers « iff gp k(1) > 0.

Proof: Follows directly from proposition 21 and lemma 23. E

Using the PARI calculator, we have verified that ¢gp (1) > 0 for 0 < K < D < 11.
This proves that almost hypercubical blocking is optimal in dimensions D < 11. However,
if D = 12, then ¢p, k(1) < 0 for K € {6,7}. Thus we are left with some interesting open
questions regarding optimal solutions for D > 12.

References

[1] C. Batut. Présentation du systéme PARI. Actes des journées Mathématique et Infor-
matique de Marseille-Luminy, pages 1-20, 1988.

[2] C. Batut, D. Bernardi, H. Cohen, and M. Oliver. User’s guide to PARI-GP. Private

communication.
[3] E.F. Beckenbach and R. Bellman. Inequalities. Springer-Verlag, Berlin, 1961.

[4] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking database systems: A systematic
approach. In Proceedings of the 1983 VLDB Conference, October 1983.

[5] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel database system.
IEEE Transactions on Knowledge and Data Engineering, 2(1), March 1990.

[6] A. Brooke, D. Kendrick, and A. Meeraus. GAMS—A User’s Guide. The Scientific
Press, 1988.

[7] D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao, and R. Rasmussen.
The Gamma database machine project. IEEE Transactions on Knowledge and Data

Engineering, 2(1), March 1990.

[8] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, pages 60-62. W.H. Freeman and Company, New York, 1979.

[9] S. Ghandeharizadeh. Physical Database Design in Multiprocessor Systems. PhD thesis,
University of Wisconsin - Madison, 1990.

[10] G. Graefe. Volcano: An extensible and parallel dataflow query processing system.
Computer science technical report, Oregon Graduate Center, Beaverton, OR, June 1989.

REFERENCES 37

[11] G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge, 1959.

[12] P. Helman. A family of NP-complete data aggregation problems. Acta Informatica,
26:485-499, 1989.

[13] H.L. Keng. Introduction to Number Theory. Springer-Verlag, 1982.

[14] M. Livny, S. Khoshafian, and H. Boral. Multi-disk management algorithms. In Pro-
ceedings of the 1987 ACM SIGMETRICS Int’l Conf. on Measurement and Modeling of
Computer Systems, May 1987.

[15] D. Ries and R. Epstein. Evaluation of distribution criteria for distributed database
systems. UCB/ERL Technical Report M78/22, UC Berkeley, May 1987.

[16] M. Stonebraker, D. Patterson, and J. Ousterhout. The design of XPRS. In Proceedings
of the 1988 VLDB Conference, Los Angeles, CA, September 1988.

[17] Tandem Performance Group. A benchmark non-stop SQL on the debit credit transac-
tion. In Proceedings of the 1988 SIGMOND Conference, Chicago, 1L, June 1988.

[18] Teradata Corp. DBC/1012 Data Base Computer System Manual, November 1985. Tere-
data Corp. Document No. C10-0001-02, Release 2.0.

