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Firms are exposed to a variety of low-probability, high-impact risks that can disrupt their operations and

supply chains. These risks are difficult to predict and quantify; therefore, they are difficult to manage. As a

result, managers may suboptimally deploy countermeasures, leaving their firms exposed to some risks while

wasting resources to mitigate other risks that would not cause significant damage. In a three-year research

engagement with Ford Motor Company, we addressed this practical need by developing a novel risk-exposure

model that assesses the impact of a disruption originating anywhere in a firm’s supply chain. Our approach

defers the need for a company to estimate the probability associated with any specific disruption risk until

after it has learned the effect such a disruption will have on its operations. As a result, the company can

make more informed decisions about where to focus its limited risk-management resources. We demonstrate

how Ford applied this model to identify previously unrecognized risk exposures, evaluate predisruption risk-

mitigation actions, and develop optimal postdisruption contingency plans, including circumstances in which

the duration of the disruption is unknown.
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Many companies face considerable operational and supply chain risks that can materially

impact company performance. Given the complexity and scope of Ford Motor Company’s

operations, this is certainly its situation. Ford maintains over 50 plants worldwide, which

annually utilize 35 billion parts to produce six million cars and trucks. It has up to 10 tiers of

suppliers between itself and its raw materials. Its Tier 1 suppliers number 1,400 companies

across 4,400 manufacturing sites. A lengthy disruption anywhere in this extended supply

chain can have significant financial repercussions for Ford. A disruption to one of its second-

tier suppliers during the 2011 Thailand floods elevated the importance of this issue. As a

result of this disruption, Ford idled global production for one of its most profitable product

lines.

Ford is one of many companies exposed to such disruptions. For example, the 2011 flood-

ing in Thailand led Intel to cut its quarterly revenue target by $1 billion (Tibken 2011).

Driven in part by greater global trade and the adoption of lean operating principles, many

companies now operate with globally dispersed manufacturing facilities and extended sup-

ply chains. Normal accident theory holds that because major disruptions are an inherent

property of such complex and tightly coupled systems, they should be considered unavoid-

able or normal (Perrow 2011). It falls to operations and supply chain managers to navigate

this new normal. Traditional operational-disruption risk-assessment methods oblige firms

to identify the probability and magnitude of disruption risks early in the analysis process

(Sampson and Smith 1982, Knemeyer et al. 2009); however, managers face a number of

challenges in implementing such a solution. First, it is difficult and often impossible for

managers to accurately estimate the likelihood of low-probability, high-impact disruptive

events (Banks 2005, Taleb 2007). Second, managers tend to misallocate resources when
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facing low-probability events (Kahneman and Tversky 1979, Johnson et al. 1993), ignore

risks regardless of their potential significance (March and Shapira 1987), and distrust or

disregard precise probability estimates (Kunreuther 1976, March and Shapira 1987). This

can lead to inaction; Mitroff and Alpaslan (2003) found that most firms do little to proac-

tively prepare for such low-probability, high-impact disruptive events.

In this paper, we apply a new model, proposed by Simchi-Levi in March 2012 (Gilmore

2012) and described in Simchi-Levi et al. (2014), for analyzing operational-disruption risk

and detail the development and implementation of this model at Ford. Throughout the

paper, we share the primary results of our analysis using masked versions of Ford’s oper-

ational and supply chain data.

Literature Review

We leverage two streams of research in our work. The first area of scholarship pertains

to supply chain network modeling and optimization, which broadly consider the optimal

network structure under steady state operations (Fisher et al. 1997, Graves and Willems

2003) or under the possibility of a disruption (Snyder et al. 2006, Peng et al. 2011, Mak

and Shen 2012). Closely related is research that evaluates coordination strategies between

buyers and suppliers in the presence of disruption risk (Tomlin 2006, Chopra et al. 2007,

Tomlin 2009). Less attention has been given to evaluating the impact of a disruption based

on the optimal response of an existing network once that disruption has occurred. A recent

exception is Schmitt (2011), which evaluates response strategies that minimize the service-

level impact when disruption occurs on a multiechelon network for a random duration.

Another is MacKenzie et al. (2014), which evaluates the interaction between the supplier

and buyer response strategies under a random-duration disruption.
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We make three important contributions to this literature. First, we develop our model

for practical applications using large-scale supply chain data from Ford. Second, we eval-

uate the optimal contingency plans for settings in which the disruption duration is either

known exactly or described by an uncertainty set. Finally, our model quantifies the disrup-

tion exposure across all the nodes in the company’s supply chain based on company-level

performance impacts.

The second stream of research seek to classify operational disruptions and quantify their

impact. Scholars and practitioners generally agree that operational disruptions materi-

ally and negatively impact company performance on average (Sheffi 2005, Hendricks and

Singhal 2005, World Economic Forum 2013). There is less agreement, however, on how

we should classify and forecast such disruptions (Kleindorfer and Saad 2005, Tang 2006,

Wagner and Bode 2006, Sodhi et al. 2012). Researchers are only beginning to understand

which disruptions have the greatest impact on firm performance. Answering this research

question is important because it informs firms on which disruptions warrant mitigation

investments. Craighead et al. (2007) propose that supply chain density, complexity, and

node criticality contribute to the severity of disruptions. Tang (2006) theorizes that a firm’s

vulnerability to disruption depends on its supply chain strategies, including postponement

strategies and inventory placement. Braunscheidel and Suresh (2009) identify that a firm’s

organizational integration practices are associated with the firm’s ability to mitigate the

consequences of disruptions. Kleindorfer and Saad (2005) provide evidence that changes

to risk-assessment and risk-mitigation practices reduce the impact of disruptions in the

chemical industry.

We contribute to this body of research by identifying the specific nodes in a firm’s

operations and supply chain that would, if disrupted, result in the greatest damage to firm



Simchi-Levi et al.: Managing Risks and Disruptions in Automotive Supply Chain
Article submitted to Interfaces; manuscript no. (Please, provide the mansucript number!) 5

performance. We believe that this result is particularly beneficial in an applied setting

because it allows firms to understand their exposures at specific operational locations and

put in place countermeasures that address the greatest sources of exposure.

Our research generally aligns with concepts applied in other disciplines, including esti-

mating maximum foreseeable loss (i.e., the maximum loss if all safeguards in a system

break) in the insurance industry and conducting failure analysis (i.e., assessing the struc-

tural resilience when a critical member of a system is removed) in structural design. Until

now, however, the field of operational risk management has not given these principles much

attention.

Limitations of the Legacy Risk-Analysis Approach

For many companies, even those that have world-class operations and supply chain man-

agement systems, proactively managing high-impact, low-probability disruption risks is

challenging. One obstacle to conducting a more insightful analysis of disruption risks is that

operational disruptions are both difficult to predict and have a highly uncertain impact

on performance. In Ford’s case, the scale and dynamic nature of its supply chain further

complicate this problem. These factors increase both the number of disruption scenarios to

consider and the frequency at which we should evaluate those scenarios. A second obsta-

cle is data availability, particularly on suppliers at lower tiers within the supply chain.

Supply chain transparency is a challenge for the entire automotive industry. Suppliers

to the industry have historically been reluctant to provide the automobile manufacturers

with detailed information about their suppliers and their suppliers’ suppliers. As a result,

although manufacturers typically have good information on Tier 1 suppliers (i.e., compa-

nies that supply directly to the manufacturer), they have considerably less information on

lower-tier suppliers in the supply chain.
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Given these limitations, legacy risk-management processes often focus on tracking the

status of only a handful of suppliers and part numbers. These tend to be suppliers that

provide major assembly components and represent a large portion of the total component

costs. Many large manufacturers recognize that material exposures are likely to be hidden

among the suppliers who are not included in this regular review process. Because of the

difficulties in predicting disruptions, the data limitations, and the size of their supply

chains, companies often cannot identify where these exposures are, much less quantify their

impact. For example, managers at Ford estimate that conducting a traditional risk analysis

for all of Ford’s more-than 4,000 Tier 1 supplier sites would likely take two or three years,

at which time the analysis would be obsolete.

Our Approach: Risk-Exposure Index

Recognizing that managers have limited ability to predict low-probability, high-impact

risks or collect detailed data on lower levels of their supply chain, our approach, initially

described in Simchi-Levi et al. (2014), advocates integrating a vulnerability-based analy-

sis into supply chain risk assessments. In such an analysis, the focus is on understanding

the impact of a disruption, regardless of its source. This defers the need to estimate the

probability associated with any specific risk and collect detailed information from subtier

suppliers until after Ford has determined the impact a disruption will have on its oper-

ations. At that point, Ford can make a more informed decision about where to focus its

limited risk-assessment resources. Our approach suits the goal of analyzing supply chain

disruptions because the impact of a disruption often does not depend on the cause of the

disruption but rather on its duration. In addition, the potential mitigation actions that

a company can practically employ in response to a supply chain disruption are often the

same regardless of the specific causes of the disruption. Finally, our approach implicitly
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recognizes that supply chains are in a continuous state of flux. In the face of such constant

change, maintaining up-to-date predictions of the likelihood of specific risks is nontriv-

ial; however, given that a disruption does occur, estimating a firm’s vulnerability is more

tractable.

Time-To-Recover Model

The model considers the supply chain as a graph representing the movements of supplier

parts from each supplier facility to each of a firm’s facilities and product lines. A node,

also referred to as a stage, in the graph is equivalent to a part or manufacturing process

at a particular supplier or Ford facility. Inputs to the model include operational and (or)

financial measures (e.g., unit profitability) and in-transit and on-site inventory levels for

each node. Our model incorporates the time-to-recover (TTR) of each node in the supply

chain network, which represents the time it takes for a node to recover to full functionality

after a disruption (Miklovic and Witty 2010, Simchi-Levi et al. 2014). This value can be

unique at each node in the firm’s supply chain.

The model iterates over each node in the graph, disrupting the node for the duration

of its TTR and calculating the corresponding impact on the firm’s performance. It deter-

mines the performance impact assuming the firm responds optimally to the disruption

scenarios, where the model simulates the optimal responses by solving an associated linear

optimization problem; see Appendix A for details. The model can accommodate differ-

ent performance measures as the objective for this optimization, including minimizing the

lost units of production, lost sales, or lost profit margin. For each disruption scenario, the

model searches on how to reallocate existing inventory, redirect supply alternatives, and

idle downstream plants such that the disruption has the smallest impact. The resulting

performance impact (PI) is the impact of that disruption scenario on the firm’s chosen
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performance measure during the TTR. To simplify cross-scenario comparisons, the model

can also calculate a risk-exposure index (REI) (Simchi-Levi et al. 2014), which normalizes

the PI for each scenario by the maximum PI over all scenarios considered in the analysis.

The model can accommodate simultaneous disruptions in multiple supply chain nodes.

This allows management to analyze complex disruption scenarios, including disruptions

that affect all the parts from one supplier plant or disruptions that affect all the same

part regardless of the supplier. We can extend the model to account for alternative sources

of supply and supplier capacity commitments. This facilitates an explicit examination of

interactive effects, which may occur when multiple firms try to adjust to supply disruptions

at the same time. For example, if a supplier fails to deliver to one firm, it may have gone

down for multiple firms. Such an event makes other potentially compensating nodes (e.g.,

backup suppliers) more congested.

Time-To-Survive Model

In many cases, accurate TTR information may not be available. More importantly, a

supplier may be optimistic when assessing its TTR; that is, a supplier may underestimate

the time required to recover and hence may underestimate Ford’s exposure to a disruption.

Therefore, Ford is interested in identifying suppliers whose disruption impact is sensitive

to the given TTR information. For this purpose, we introduce the time-to-survive (TTS)

concept, which we define as the maximum amount of time the system can function without

performance loss if a particular node is disrupted (Simchi-Levi et al. 2013). As we will show,

we determine the TTS associated with a specific node by solving an optimization problem

that takes into account the entire supply chain after, for example, node removal, inventory

levels, and alternative sources of supply; see Appendix B for the model formulation. The

firm can determine whether a more accurate measure of TTR is necessary by comparing
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the TTS value associated with a specific node with the TTR estimate of that node. If the

TTS far exceeds the TTR, it implies that a large change in TTR will have little impact

on the firm’s risk exposure; however, nodes with short TTS values require Ford to engage

these suppliers in a detailed discussion about their TTRs.

Implementation at Ford

We implemented our model as a decision support system during a three-year research

engagement between MIT and Ford. The first phase of the project included the assess-

ment of existing risk-management approaches. In the second phase, we worked with the

Ford optimization and IT teams to focus on model design and implementation, and the

integration of the optimization model and Ford’s IT system. The modeler and optimiza-

tion specialists communicated weekly, and received help from Ford’s procurement team to

validate the model’s output.

Ford’s procurement staff used the decision support system in three ways: (1) strategically,

to identify exposure to risk associated with parts and suppliers, effectively prioritize and

allocate resources, segment suppliers, and develop mitigation strategies; (2) tactically, to

track daily changes in risk exposure to alert procurement executives to changes in their

risk position; and (3) operationally, to identify effective ways to allocate resources after

a disruption. Using the model to conduct a comprehensive analysis of its risk exposures

(i.e., the strategic level), Ford identified several supply chain nodes that would have a large

impact on its operations if disrupted. These large exposures lie in unlikely places, such as

nonstrategic suppliers or parts that the company spends relatively little money to procure.

Armed with this information, Ford can make more informed decisions on how to deploy

its risk-assessment resources and mitigate the effects of a disruption to these nodes.

In this section, we describe the insights our model provides at the strategic, tactical, and

operational levels for Ford’s risk-analysis, procurement, and management teams.
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Evaluation of Node Criticality with the TTS Model

As we discussed in the previous section, TTR information is not known accurately in many

practical situations because of information uncertainty and optimistic supplier assessments.

Therefore, the first step of our risk-analysis process is to identify the disruption scenarios

that would lead to immediate performance deterioration, namely, to find nodes with small

TTS values. Nodes that represent higher exposure levels will have a TTS value that is

lower than a threshold value, for example TTR plus a safety allowance.

Figure 1 shows that the suppliers included in the analysis have a range of TTS values.

Many suppliers have TTS values of less than a week. Ford’s management can use this

information to concentrate on the PI of low-TTS suppliers and acquire corresponding TTR

information. In addition, by identifying the nodes with high TTS values, this analysis can

identify potential waste, caused by excessive protection (strategic inventory), within the

system. For such nodes, a firm may reduce (strategic) inventory, thus providing significant

cost savings.

Application to Strategic Decisions

Strategically, Ford utilizes the TTR model to identify risk exposure of parts and suppliers,

allowing it to prioritize resource allocation. Furthermore, by combining the risk exposure

of suppliers with other information, such as the total spend at various supplier sites, Ford

gains insights about possible mitigation strategies it could adopt toward various types of

suppliers. Below, we describe these applications of the model to Ford.

Figure 2 is based on the PI output (in this case, lost sales measured by the impact of

vehicle-production volume) from a model run, including all the critical suppliers and Ford

plants that support Ford’s North American assembly plants. As the figure indicates, a

significant portion of the suppliers do not expose Ford to any risk; however, more than 400

sites have very high PIs.
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Figure 1 A significant portion of the suppliers have very low TTS values, thus requiring more accurate TTR

evaluation and closer monitoring for risk-exposure assessment. In addition, some suppliers have very

high TTS values, possibly because of redundant inventory buffers.
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Figure 2 Among 4,534 sites examined, 2,773 sites have zero impact at the time of analysis and 408 have very

high impact.
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Figure 3 Impact of a disruption at a supplier site (node) on Ford’s lost profits is not correlated with the amount

Ford spends at the supplier. Each circle represents a unique supplier site.

In Figure 3, we take a closer look at these very high PI suppliers and see that some of the

largest exposures reside in unlikely places, such as the production and (or) procurement of

low-cost, commoditized parts. Therefore, some of the traditional risk-mitigation strategies

(e.g., focusing on high-spend suppliers) may lead to wasteful resource allocation at low-

exposure sites and insufficient protection at high-exposure sites.

Figure 3 suggests that Ford should reduce its exposure to risk by segmenting suppliers

into three categories depending on the supplier’s PI and total spend. Each segment presents

a different set of challenges; therefore, Ford should use different mitigation strategies,

as Figure 4 illustrates. First, suppliers on the left side of the chart have low exposure;

therefore, Ford’s primary actions in many of these cases should involve signing long-term

supply contracts and tracking inventory.
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Supplier sites with high total spend and high PI are at the top right side of the chart.

This segment includes, for example, suppliers of seats and instrument panels. These items

strongly affect the customer experience, and their prices represent a large portion of the

total manufacturing cost. We typically refer to them as strategic components and their

corresponding suppliers as strategic suppliers. For many companies, this segment repre-

sents 20 percent of their suppliers, which accounts for about 80 percent of total spend.

Typically, each of these components has a single strategic supplier. An appropriate supply

strategy for these items is to focus on long-term partnerships with suppliers and implement

effective supply contracts where Ford can share risks with suppliers and track performance.

Importantly, because of the high total spend with these suppliers, Ford may be able to

compel some of these suppliers to have backup supply sites in different regions.

The most challenging suppliers are those whose total spend is low and PI is high (i.e.,

suppliers at the bottom right side of the chart). To ensure supply, a firm may invest in

inventory, require the supplier to have dual sites in different regions, or apply a dual-

sourcing strategy. Unfortunately, each of these mitigation strategies may cause a problem.

Investing in inventory may not be consistent with the lean strategy the company is apply-

ing. Low total spend implies that the firm is not in a good position to require the supplier

to have multiple sites. In addition, some of these suppliers are associated with high-volume,

low-cost, and low-margin components. For these components, competition typically shifts

to a few manufacturers that dominate the market because of their lower costs and superior

quality; as a result, engaging in a dual-sourcing strategy is difficult. In our experience, one

possible mitigation strategy involves a new product design in which components are stan-

dardized, allowing the firm to shift more volume and more spend to the supplier; hence,

the firm would be in a good position to require dual sites.
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Figure 4 This graph suggests supplier segmentation and different risk-mitigation strategies for different groups

of suppliers.

Application to Tactical Decisions

Recall that for some components, risk exposure is directly proportional to the level of inven-

tory of that component in Ford’s supply chain. To identify risk exposure, pipeline inven-

tory information is uploaded to the system on a regular basis, and the system determines

the performance impact by component anywhere in the supply chain. When performance

impact is above a specific level, procurement specialists initiate a process to understand

the reason and take corrective action. In that respect, our system serves as a control tower

that allows the firm to monitor suppliers’ performance and inventory trends to take action

before problems occur. Because the company takes actions in anticipation of a potential

adverse event, it can minimize the financial impact if such events happen.
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Application to Operational Decisions

Operationally, Ford supply-risk specialists use the model to respond to a disruption event.

For example, a few months ago, political problems in one region motivated the procurement

department to identify the high-exposure suppliers in that region and find alternative

sources of supply for these components.

In such situations, our TTR model optimizes inventory and capacity allocation deci-

sions when a disruption occurs (Appendix A), assuming that accurate TTR information

is available immediately after a disruption occurs. Unfortunately, TTR may be different

for different modes of disruptions (e.g., process disruption versus tooling damage), and the

firm may not know the exact TTR value when a disruption occurs. Therefore, identifying

robust allocations of inventory and capacities under such uncertainty in TTR values is

important.

Figure 5 provides a stylized example that compares the impact of different resource-

allocation strategies when the length of the disruption varies. In this figure, each curve

represents the financial impact of one resource-allocation strategy. For example, the solid

curve corresponds to the optimal resource-allocation strategy for TTR=1; we evaluate

the performance of this resource allocation strategy for all TTR values between 0 and 2.

Similarly, the dotted curve is associated with the optimal resource-allocation strategy when

TTR=0.7. Figure 5 suggests that neither of the two strategies dominates; that is, neither

strategy outperforms the other on all TTR values between 0.7 and 1. This is not always

the case. Another stylized example (Figure 6) shows that the strategy associated with the

solid line outperforms the strategy associated with the dotted line. The former strategy

outperforms all other strategies for TTR values between 0 and 2 (Figure 6 does not show

other strategies); that is, the solid line either matches or dominates the performance of
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Figure 5 Each curve represents the financial impact of one resource-allocation decision. The solid curve is optimal

for TTR=1, but suboptimal for TTR=0.7; the reverse is true for the dotted line.

any other resource-allocation strategy determined by using a single TTR value between 0

and 2.

Motivated by these different cases, we developed an algorithm that can (1) find a domi-

nating strategy if it exists, or (2) find a Pareto-optimal strategy, which always exists. That

is, managers can specify the ranking of potential TTR values, and the algorithm provides

a strategy that is not dominated by any other strategy. We describe the algorithm in

Appendix A. We also refer the reader to Zhang (2014) for a more in-depth discussion.

System Architecture

To allow procurement and risk specialists to take advantage of our model, Ford developed a

decision support system that integrates various databases, the TTR and TTS models, and a

data-visualization software package. The data sources include Ford’s material requirements

planning (MRP) system, its purchasing database, and sales-volume planning information.

Figure 7 describes the system architecture in which various data sets, including bill of

material, part routing, inventory levels, and plant vehicle volumes are used to map Ford’s
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Figure 6 Each curve represents the financial impact of one resource-allocation decision. The solid curve is optimal

for all nonnegative TTR values.

supply chain. Gusikhin and Klampfl (2012) describe the basic methodology of mapping

the Ford supply chain. Our optimization engine uses the results to generate the various

performance impacts. These performance measures are then presented to the users by

Tableau data visualization, which includes a geographic mapping capability. Thus, users

can view results both in tabular form and in various graphical formats. Figure 8 provides

a screenshot of our interface; the size of the circles identifies the performance impact of

a disruption to the supplier in that geographic location. The two tables at the bottom of

Figure 8 provide detailed information on suppliers and parts. For each supplier, the table

on the left provides the vehicle affected, total spend at that supplier, financial impact, and

production-volume impact if that supplier is disrupted for the duration of its TTR. The

table on the right provides all affected parts associated with each supplier.

Procurement and risk specialists regularly use the system to track risk exposures in real

time as inventory levels fluctuate and the supply chain structure evolves. The frequency
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Figure 7 Ford’s risk-analysis framework integrates databases, our risk-exposure model, and an output visualiza-

tion tool.

of updates relies on the efficient data integration technology developed by Ford and the

computational tractability of our linear programming models (Appendices A and B).

Realized Benefits for Ford

Ford spends several million dollars per year to proactively manage its operational and

supply chain risk. Two points make clear why Ford must deploy its risk-management

resources in the most effective manner possible. First, it must spread these resources across

a huge operational footprint. Ford’s operations and supply chain include over 4,400 Tier

1 supplier sites, hundreds of thousands of lower-tier suppliers (Tier 2 and lower), over 50

Ford-owned facilities, 130,000 unique parts, 35 billion total parts annually, and over $80

billion annually in external procurement. Second, the cost of failure can be huge because
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Supplier Vehicle Impacted Total Part Cost Financial Impact Volume Impact Supplier Part Names

x11 cc1 $$$ $$$ vvv x11 y11

x12 cc2 $$$ $$$ vvv x11 y12

x13 cc3 $$$ $$$ vvv x11 y13

x14 cc4 $$$ $$$ vvv x12 y21

x15 cc5 $$$ $$$ vvv x12 y22

x16 cc6 $$$ $$$ vvv x13 y31

x17 cc7 $$$ $$$ vvv x13 y32

x18 cc8 $$$ $$$ vvv x13 y33

x19 cc9 $$$ $$$ vvv x13 y34

x20 cc10 $$$ $$$ vvv x14 y41

Figure 8 Critical suppliers are mapped to geographical location. The size of a circle indicates the magnitude of

the impact on Ford’s performance if a supplier is disrupted. The table view gives detailed information

regarding the financial and vehicle-volume impact associated with these suppliers.

supply chain disruptions can have a significant impact on Ford’s ability to match supply

with demand. Indeed, Ford estimates that the lost revenue associated with a disruption

can be significant. To illustrate this point, recall that in 2011 Toyota lost 800,000 units

of production volume as a result of the Japan earthquake and more than 240,000 units

of production volume as a result of the flood in Thailand. Honda faced similar challenges

(Schmidt and Simchi-Levi 2013).

The risk-exposure model produces important and tangible benefits for Ford to help it

effectively identify and manage its risks. First, Ford has identified supplier sites that have a

material impact if disrupted, but that it did not recognize as high-exposure sites. Based on

the model results, 2,600 Tier 1 supplier sites have nonzero vehicle-volume impact that, if
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disrupted, would adversely impact its revenue by up to $2.5 billion. Ford now classifies these

exposures as as high-priority issues that require a formal remediation analysis. Identifying

these suppliers is particularly compelling because they represent 1,500 additional supplier

sites that will now receive a larger share of Ford’s risk-management resources. Identifying

and addressing such risk exposures directly supports Ford’s corporate strategy.

A second benefit is identifying low-exposure supplier sites that are currently receiving

an excessive allocation of Ford’s risk-management resources. The model has identified

over 400 supplier sites that Ford includes in its risk-monitoring program, but which pose

insignificant exposure to the company if disrupted. This information has allowed Ford to

more efficiently allocate its supplier risk-management resources.

By reallocating these resources, Ford is better able to protect itself from the highest-

impact exposures in its operations and supply chain. For example, the lost revenue associ-

ated with a two-week disruption to the newly classified high-impact supplier sites ranges

from several hundred thousand dollars to $2.5 billion; in contrast, the lost-revenue impact

associated with a two-week disruption to each of the formerly classified high-impact sup-

plier sites is minimal. In the words of Ford manager Michael Sanders, “This has been

one of the key game changers for us. This enables us to focus on the supplier sites which

would have a high or very high impact on performance if disrupted, and lets us put all our

resources and all our knowledge into making sure we have robust plans to protect us in

the event that something happens with any one of those sites” (Simchi-Levi and Sanders

2013).

Finally, our model detects hidden risks in Ford’s supply chain. For example, it identified

a low-cost sensor that has high vehicle exposure; however, because of the low total spend,

Ford’s procurement group was not paying much attention to this component. Following the
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risk analysis, the commodity team acknowledged the sourcing concentration and associated

risk and developed a mitigation strategy.

Discussion

Firms operate in a constantly changing environment in which operational risks are increas-

ing. In the automotive industry, four factors contribute to increasing levels of operational

vulnerability. The first factor is the proliferation of global programs and the related need

to maximize the operational scale of these programs. This results in less redundancy and

more dependence on fewer suppliers, increasing the supply chain’s exposure if one of these

suppliers is disrupted. The second is the ongoing consolidation in the supply base and

the fiscal incentives to maximize the use of supplier resources. This also results in greater

supplier concentration and less slack capacity for the most critical subtier manufactur-

ing components, including electrical components, raw materials, and chemical precursors.

Third, manufacturers’ efforts to push their Tier 1 suppliers toward lower costs ultimately

drive those suppliers to pursue subtier sourcing in emerging markets. This further extends

the manufacturers’ supply chains, adding more dependencies and potential points of failure.

Finally, unlike the situation in the PC industry, in the automotive industry, no common

standards are applied across OEMs for electronic components; hence, very few suppliers

are available for these components. Any supplier disruption can shut down Ford’s ability

to match supply with demand.

The automotive industry is not alone in facing increased disruption risk. Trends toward

more extended supply chains and reduced operational buffers are gripping many indus-

tries. As a result, supply chain executives have a dual mission—to systematically address

extreme risks such as hurricanes, epidemics, earthquakes, or port closings, and to manage

operational risks, such as forecast errors, sourcing problems, and transportation break-

downs. Succeeding in this dual mission is difficult because company operations and supply
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chains are increasingly dynamic, and the occurrence and impact of disruptions are difficult

to predict.

In this paper, we provide a new approach for supply chain risk management, which

reduces the need to estimate the likelihood of low-probability, high-impact events. Our

method focuses on evaluating a firm’s vulnerability, given that a disruption could occur

anywhere across its supply chain. This approach helps Ford streamline and better target its

operational-disruption risk-assessment process, deepen its understanding of its disruption

risks across both its internal operations and extended supply chain, and rapidly and con-

sistently assess its supply chain risk-mitigation initiatives. Ford also takes advantage of the

model’s capability of running at various levels of detail. For example, in some applications,

the company runs the model by aggregating nodes within a geographic region, and then

drills down into more detail by running it using more granular representations for nodes.

Our risk-exposure model augments rather than replaces traditional risk-analysis meth-

ods. Ford incorporates the results of the model with other indicators that measure each

supplier’s financial risk, including metrics for financial health, and steady state operational

risk, including metrics for service level performance and quality control compliance. Sup-

pliers that trigger one or more risk areas (i.e., disruption, financial, or operational) are

identified for follow-up with Ford’s supplier risk-management team. By including the model

in its broader supplier risk-analysis process, Ford can more confidently and accurately iden-

tify the areas in its supply chain and operations to allocate its limited risk-management

and mitigation resources.
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Appendix A: Time-to-Recover Model

We first present a single-tier supply chain model (ST) to illustrate some of the main concepts, and then extend

it to a multiple-tier model (MT) that encompasses more components. The basic premise of both models is

that given a supply chain structure (a graph) and a disruption scenario (interrupted nodes and edges), we

determine how to allocate the firm’s remaining resources to optimize its ability to satisfy exogenous demand.

A node (or stage) in the graph is a component or manufacturing process at a particular supplier or assembly

site; an edge is a directed flow of materials from an upstream stage to a downstream stage. We formulate

both models as linear optimization programs. We summarize our notation for the single-tier model in Table

1 and for the multiple-tier model in Table 2.

In the ST model, the firm has a set of plants (A), which produce a set of products (V). The firm’s objective

for each disruption scenario is to minimize the impact of the disruption on its chosen performance metric.

We capture this through the following linear program.

minimize
∑

j∈V fjl
(n)
j

s.t.
∑

i:(i,j)∈F(n) y
(n)
ij + l

(n)
j ≥ djt

(n)− sj , ∀j ∈ V∑
j:(i,j)∈F(n) y

(n)
ij ≤ cit

(n), ∀i∈A\n

y
(n)
ij , l

(n)
j ≥ 0, ∀i∈A, j ∈ V

In this model, decision variable y
(n)
ij is the cumulative production of j at plant i in disruption scenario n.

Variable l
(n)
j is the amount of lost demand for product j in disruption scenario n. Parameter f

(n)
j refers to

the impact of one unit of loss in sales for product j, for example, the profit margin; t(n) is the TTR for this

disruption scenario. dj and sj are the demand and inventory for product j, respectively. Flexibility design

F (n) is the set of edges that are still alive during disruption scenario n.

The objective function is the minimization of the total weighted loss as a result of the disruption. The

first constraint is a lower-bound constraint for the number of units lost for product j, given the production

and inventory conditions. The second constraint is a total capacity constraint on the assembly plant i. We
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Symbol Explanation

Superscript (n) Disruption scenario n.

A Set of all suppliers sites (plants).

V Set of all final nodes (vehicles).

F (n) Set of production edges under disruption scenario n.

t(n) TTR for disruption scenario n.

ci Total production capacity of node i per unit time.

si Finished goods inventory of node i.

fj Profit margin of product j.

dj Demand for j (per time unit).

lj Lost production volume of vehicle type j.

yij Amount of product j produced at plant i.

Table 1 This table lists the parameters and variables of the single-tier model and their explanations.

can replace the linear objective function with a convex one in a more general case, for example, accounting

for lost market share if the loss exceeds a specific threshold.

Solving one instance of this linear program measures the impact of one disruption scenario. A crucial step

of using this model is the construction of the set of disruption scenarios of interest. The identification of

this set is a self-contained step that can be performed by the business executives and risk managers. For

example, when the firm aims to identify the most crucial node of the system, the disruption scenarios are

constructed as all events that relate to the removal of a single node from the graph. This is the paradigm

adopted for the analysis at Ford.

Although the ST model explicitly captures only the last tier of the production system, it can be used to

analyze a disruption at a supplier in an upstream tier. To do so, we disrupt the nodes in the final tier that
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depend on the upstream supplier and solve ST. This is reasonable if the firm has little control over the nodes

prior to the last tier and if the firm knows which final tier nodes will be affected by the disruption. These

assumptions may be too conservative, for example, in situations in which the firm has control over upstream

resource allocation and routing. We present a multiple-tier model that address this more general case.

The MT model is similar to the single-tier model. We include the concept of parts, which refers to the

set of nodes that are functionally equivalent in the manufacturing process, but potentially processed at a

different plant or supplier site.

minimize
∑

j∈V fjlj

s.t. uj −
∑

i∈Pjk
yij/rkj ≤ 0, ∀k ∈N−(j),∀j ∈D∑

j∈N+(i) yij −ui ≤ si, ∀i∈ U

uj = 0, ∀j ∈ S(n)

lj +
∑

k∈Vj
uk ≥ djt

(n), ∀j ∈ V∑
k∈Aα uk ≤ cαt

(n), ∀α∈A

lj , uj , yij ≥ 0.

The first constraint is a bill-of-materials constraint; for every node j, we limit the production of node j

(denoted by uj) by the most-scarce parent part. More specifically, for this node j (e.g., an engine), there

are multiple parent nodes (e.g., components of an engine). Variable yij represents the material flow from

node i to node j. If two parent nodes, i and i′, represent the same physical and (or) functional part (e.g.,

the same type of bolts from two different suppliers), we say that i and i′ are of the same part type. We

invoke an additional index k to denote the part type of a node, and use rkj to represent the amount of type

k parts required to produce one unit of node j. The ratio yij/rkj is then the units of node j that can be

produced with yij units of type k parts from node i. We use Pjk to represent the set of all nodes that are

(1) upstream of j, and (2) of part type k. Hence,
∑

i∈Pjk
yij/rkj represents the maximum amount of j that

can be produced given the aggregated supply of type k materials from upstream nodes in Pjk.

The second constraint is also a bill-of-materials constraint, which limits the total outflow of node i

(
∑

j∈N+(i) yij) to be less than the sum of production (ui) and inventory (si) at the current location.

The third constraint is the disruption constraint, which limits the production of disrupted node j (i.e., uj)

to be zero. The fourth and fifth constraints are similar to the first and second constraints in the ST model.
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Symbol Explanation

D Set of all but the first tier nodes.

U Set of all but the final nodes (vehicles).

S(n) Set of all disrupted nodes for disruption scenario n.

A Set of all suppliers sites (plants).

Aα Set of all nodes produced at supplier and (or) plant α.

V Set of all final nodes (vehicles).

Vj Set of all final nodes (vehicles) that are of the same type (j).

N−(i) Set of parts required to produce node i.

N+(i) Set of nodes that require node i.

Pjk Set of all nodes that are in the upstream of node j and of part type k.

t(n) TTR for disruption scenario n.

ui Total production quantity of nodes i during time t(n).

lj Lost production volume of vehicle type j.

yij Allocation of upstream node i to downstream node j during time t(n).

si Finished goods inventory of node i.

rkj Number of type k parts required to make one unit of node j.

fj Performance impact (e.g., profit margin) of one unit of product j.

dj Demand for j per time unit.

ci Production capacity of node i per unit time.

Table 2 This table lists the parameters and variables of the multiple-tier model and their explanations.
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In both the ST and MT models, we make the simplifying assumption that processing lead times are not

significant relative to the impact of the disruption. In the MT model, we also assume that the costs of

rerouting materials and manufacturing changeovers are not significant relative to the impact of the disruption.

These are often reasonable assumptions in the context of high-impact disruptions, the effect of which dwarfs

the impact of these other issues.

The ST and MT linear programs generate prescriptive contingency plans that minimize the impact of the

disruption on the firm’s chosen performance metric. Under each disruption scenario, the optimization model

generates a corresponding set of optimal values for the decision variables, denoting the best routing and

resource-allocation plans for that disruption.

Procedure for Finding Pareto Efficient Solutions Under TTR Uncertainty

Given a finite set of n TTR values and an ordering of their importance (given by a manager, for example),

we can find a resource-allocation strategy that is Pareto efficient (i.e., not dominated by any other strategy)

on this set of TTR values. This is in spirit the same as finding a lexicographically optimal solution in

multiobjective optimization (Ehrgott 2005), where the n objectives correspond to the performance impact

under these n TTR values. Using x to represent the resource-allocation strategy, and f(x, t) and {x |Ax≥

b(t)} as the objective function and feasible region of the TTR model, respectively, we provide the procedure

for finding a Pareto-efficient solution as follows:

Algorithm 1 Pareto Efficient Resource-Allocation Strategy Algorithm

1: Solve the original TTR linear optimization model with t = t1, and obtain resource-allocation strategy

x1, which minimizes f(x, t1) over the set {x|Ax≥ b,x≥ 0}.

2: Determine the strategy x2, which minimizes f(x, t2) over the set {x|f(x, t1) = f(x1, t1),Ax≥ b,x≥ 0}.

3: For 3 ≤ k ≤ n, determine the strategy xk, which minimizes f(x, tk) over the set {x|f(x, ti) =

f(xi, ti) for each 1≤ i≤ k− 1,Ax≥ b,x≥ 0}.

Appendix B: Time-To-Survive Model

We define time-to-survive to be the longest time that the firm can last without losing demand after a

disruption happens. Time-to-survive for the disruption scenario n can be calculated by solving the following

linear program. This model is a special case of the TTR model in the sense that we can find the TTS of

the network by solving a number of TTR models with different TTR values, and look for the smallest TTR
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value corresponding to the financial impact being strictly positive. This TTS formulation is more efficient

because we can find the TTS by solving a single linear program.

maximize t(n)

s.t. uj −
∑

i∈Pjk
yij/rkj ≤ 0, ∀k ∈N−(j),∀j ∈D∑

j∈N+(i) yij −ui ≤ si, ∀i∈ U

uj = 0, ∀j ∈ S(n)

∑
k∈Vj

uk ≥ djt
(n), ∀j ∈ V∑

k∈Aα uk ≤ cαt
(n), ∀α∈A

uj , yij , t
(n) ≥ 0,

where the constraints and variables are similar to the TTR models, except that (1) t(n) is now a decision

variable (TTS), and (2) we do not allow any loss (demand is strictly satisfied in the fourth constraint). The

objective value of each optimization instance reveals the TTS of the underlying disruption scenario.
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