
Copyright q 1998, Institute for Operations Research
and the Management Sciences
0092-2102/98/2802/0058/$5.00
This paper was refereed.

EDUCATION SYSTEMS—OPERATIONS
PROGRAMMING—INTEGER—ALGORITHMS

INTERFACES 28: 2 March–April 1998 (pp. 58–71)

Proctor Assignment at Carleton University

Rania M. Awad Systems and Computer Engineering
Carleton University
1125 Colonel By Drive
Ottawa, Ontario, Canada K1Y 3S1

John W. Chinneck Systems and Computer Engineering
Carleton University

Carleton University needs proctors during examination ses-
sions to oversee the students as they write their final examina-
tions. The process of assigning proctors to examinations is
quite complex because of the sheer number of examinations
and various complex constraints on allowable assignments. We
developed a computer-based system to replace an existing
manual system for assigning proctors, freeing up valuable staff
time in the overloaded scheduling office. Our system combines
some problem-specific heuristics, a genetic-algorithm frame-
work, and a simple user interface based on readily available
software tools.

About 60,000 person-examinations
take place over 12 to 15 days at the

end of the fall and winter terms at Carle-
ton University, and a smaller number at
the end of the summer term. During each
of the larger fall and winter examination
periods, the university hires about 120 sea-
sonal employees as proctors to oversee the
writing of the examinations.

The process of assigning proctors to ex-
aminations is quite complex. The proctors

are divided into various classes (mainly by
level of experience). Depending on their
class, proctors are excluded from working
in certain examination rooms and may or
may not be eligible for certain roles (such
as head proctor for a given building).
There are also restrictions on unfavorable
conditions, such as the assignment of
many consecutive examinations to a par-
ticular proctor without a period off. Other
factors include proctor preferences, such

PROCTOR ASSIGNMENT

March–April 1998 59

as carpooling requirements (some proctors
can be assigned only if others from their
carpool are assigned at the same time) and
refusal to work in certain periods (such as
evenings).

People in the scheduling office at Carle-
ton University were spending an inordi-
nate amount of time assigning the proctors
to examinations manually. To assist them,
we developed a computer-based informa-
tion system, Proctor, that carries out the
initial assignment automatically, and per-
mits its easy manual alteration. The sys-
tem is PC based and designed for easy use
by the nontechnical staff of the scheduling
office. The main ingredients are an inter-
face and a database that we created using
Microsoft Access and Visual Basic, a set of
heuristics for developing a population of
assignment schedules, and a genetic algo-
rithm for refining the original population
to arrive at the initial assignment sched-
ule. Proctor also provides various reports
and statistics needed for the analysis of as-
signment schedules and for payroll pur-
poses. It has been well received by the
scheduling office and is now in regular
use.
Related Work

The proctor-assignment problem at
Carleton is characterized by predeter-
mined and noncyclic shift requirements,
various duties (for example, supervisor or
regular) and shift characteristics (for exam-
ple, room size and examination length), re-
stricted employee availability, and hetero-
geneous employee types. In addition, it is
important to try to satisfy numerous em-
ployee preferences. Since the problem is
combinatorially explosive and the solu-
tions are restricted by many constraints

and preferences, we developed a hybrid
genetic algorithm (GA) solution for the
initial assignment problem.

The extensive literature on employee
scheduling includes previous work on
scheduling casual workers. There are nu-
merous variations of the basic problem,
generally distinguished by the types of
constraints that the scheduler must han-
dle. Examples include whether the shifts
are cyclic or nonrepeating, whether the
shifts are predetermined or generated as
part of the solution, whether employee
types (for example, skill levels or job
classes) are homogeneous or heteroge-
neous, and whether general outside con-
straints must be satisfied (for example,
employee preferences for shift types).

Levine [1996] describes a hybrid GA al-
gorithm for scheduling airline crews. This
problem is more structured than our
proctor-assignment problem and does not
deal with casual employees. Levine con-
cludes that his hybrid GA is outperformed
by special-purpose branch-and-bound and
branch-and-cut algorithms on the well-
structured airline-crew-scheduling prob-
lem. However, his work demonstrates the
utility of hybrid GAs in solving schedul-
ing problems and hints that the best use of
hybrid GAs may be in less-structured
problems.

Randhawa and Sitompul [1993] devel-
oped a heuristic-based decision support
system that solves a nurse-scheduling
problem similar to the assignment of proc-
tors. The system first generates legal pat-
terns for the nurse shifts: (1) days of the
week to be worked and (2) sequences of
shifts (day, evening, night). The two are
then combined in the next stage to pro-

AWAD, CHINNECK

INTERFACES 28:2 60

duce a schedule; penalty costs are as-
signed to undesirable schedules, and a
best-first search is used to arrive at a solu-
tion. However, the actual assignment of
nurses to this schedule is manual and is
performed interactively. The schedule re-
peats for n weeks, and each nurse has the
same schedule for the entire time, which is
different from the proctor-assignment
problem.

Love and Hoey [1990] formulated a fast-
food-restaurant crew-scheduling problem
as a two-stage network-flow problem,
which they solved using a decomposition
technique followed by the application of a
custom network-flow algorithm and a pos-
toptimality analysis. The problem is simi-
lar to proctor assignment in that employee
preferences impose numerous constraints
on the solution. The authors stress the
importance of a friendly interface in gain-
ing user acceptance of the system, men-
tioning in particular the appeal to users of
the set of reports that the system
generates.

Lauer et al. [1994] describe an interac-
tive decision support system for schedul-
ing part-time computer-lab attendants. A
linear program generates optimal daily
shifts, which are manually assigned to
crews via an interactive interface and com-
bined to form weekly schedules. All shifts
in a lab are of the same type so a solution
schedule simply specifies whether or not
an attendant is working. These authors
also stress the importance of the user in-
terface in gaining user acceptance.

Thompson [1996] describes a simulated
annealing heuristic for scheduling employ-
ees with restricted availability and homo-
geneous skill levels.

The Proctor Assignment Problem
Examinations take place over a 12- to

15-day period at the end of the fall, winter,
and summer terms. There are three exami-
nation time slots per day: morning (9:00
a.m. to noon), afternoon (2:00 p.m. to 5:00
p.m.), and evening (7:00 p.m. to 10:00
p.m.). Most exams are three hours in
length, some are two hours, and profes-
sors occasionally prescribe other lengths,
but all start at the same time in a given
time slot. Exam length affects both the as-
signment of exams to rooms and the as-
signment of proctors. Exams are assigned
to rooms throughout the university, in-
cluding the gymnasium, which houses the
larger exams. There are 10 to 55 exams
scheduled in any particular time slot, em-
ploying 30 to 70 proctors.

The requirement for proctors is estab-
lished as the fourth step of the
examination-scheduling process. First the
requirements for scheduled exams are es-
tablished by consultation with the profes-
sors. Second, based on a knowledge of the
number of students enrolled in the
courses, the rules for scheduling examina-
tions, and the available seating, schedulers
assign exams to time slots [Carter, Laporte,
and Chinneck 1994]. Third, the schedulers
assign exams to rooms while respecting
various constraints such as the require-
ment that large exams be kept in one room
and that exams of differing lengths be
placed in different rooms. Finally, once
schedulers have assigned exams to rooms,
they establish the requirements for proc-
tors based on their experience as to the
number of proctors needed to cover each
room, the need for head proctors in vari-
ous buildings, and the need for specially

PROCTOR ASSIGNMENT

March–April 1998 61

qualified proctors to handle special ar-
rangement exams (SAE), for example,
those for disabled students.

The scheduling office establishes a list of
returning proctors prior to assigning proc-
tors. The schedulers place returning proc-
tors in one of four classes: (1) part-time
rookie, (2) part-time experienced, (3) part-
time veteran, or (4) full-time. The part-
time subclassifications are based on expe-
rience, listed above from least to most
experienced. Full-time proctors are willing
to work from 9:00 a.m. to 10:00 p.m. and
are available for work during every exami-
nation period.

The university hires new proctors only
after the initial proctor assignment has
been completed. The number and pattern
of unassigned slots in the initial proctor
assignment allows the schedulers to esti-
mate the number of new proctors needed
and to establish the periods during which
they are required. An important goal of
the initial proctor assignment is to mini-
mize the number of unassigned slots so
that fewer new proctors need to be hired.
New proctors are difficult to find, and
they must be trained.

Proctoring work is seasonal and does
not pay well, so proctors can easily quit
without advance notice if they are un-
happy with their working conditions. This
has an important negative impact on the
functioning of the examination system. For
this reason, various conditions are im-
posed on the proctor-assignment process
to make the experience as pleasant as pos-
sible for the proctors and to encourage
their retention. These conditions fall into
three main classes: proctor preferences,
constraints on unfavorable schedules, and

constraints on number of shifts assigned.
Proctor Preferences

Proctor preferences are satisfied wher-
ever possible:
—Proctors are scheduled to work only
during periods in which they have indi-
cated that they are available for work.
—Proctors are not assigned to rooms in
which they have indicated that they will
not work (for example, some proctors
avoid rooms that require more standing
than others or involve working in large
teams).
—Members of carpools are always sched-
uled to work the same shifts.
Constraints on Unfavorable Schedules

Full-time proctors will accept any sched-
ule; however, part-time proctors consider
some schedules unfavorable:
—Split shifts, that is, a morning and an
evening shift on the same day;
—Two-hour exams;
—An evening shift followed by a morning
shift the next day.
The goal of the following rules is to dis-
tribute the unfavorable conditions as fairly
as possible:
—Minimize the number of unfavorable
proctor schedules.
—Distribute the unfavorable schedules
evenly among proctors of the same class.
—Assign fewer unfavorable schedules to
proctors of the more experienced classes.
Constraints on Number of Shifts
Assigned

These rules govern the number of shifts
assigned. The idea is to satisfy the wishes
of the proctors in a fair and equitable
manner:
—To assign part-time proctors a maximum
of two shifts per day,

AWAD, CHINNECK

INTERFACES 28:2 62

—To assign full-time proctors in every
shift in which they are available,
—To assign more shifts to proctors of the
more experienced classes,
—Within an experience class, to assign
more shifts to the more flexible proctors,
that is, those available for more shifts and
willing to work in more rooms.

The initial proctor assignment must also
respect obvious physical constraints:
—Do not schedule a proctor to be in two
places at once,
—Do not assign more proctors to a slot
than are needed (for example, two proc-
tors where one is required). Underassign-
ment is permitted as part of the system for
assessing the need for new proctors.
Existing Manual System for Proctor
Assignment

Before Proctor, schedulers carried out
the initial proctor assignment manually
with no computer assistance and then en-
tered it into a spreadsheet. The spread-
sheet would typically have 36 to 45 col-
umns for the examination time slots and
100 to 120 rows for the proctors. When
printed, it was six pages wide and three
pages long. The printed pages were glued
together and taped to a desk for reference.
The unmanageably large size of the
spreadsheet made entering and updating
data difficult and confusing. People ex-
tracted the information for reports by
hand, copying it from the desk copy.

The proctor schedule is very dynamic,
and it changes continually during the
course of the examinations. Updates to the
schedule used to be written on the desk
copy, which was the only up-to-date rec-
ord and which became very cluttered by
the end of the examination period. One of

the many problems associated with this
manual system was in generating the pay-
roll: at the end of the examination session,
the desk copy was so cluttered that it was
impossible to determine how many hours
each proctor had worked. The scheduling
officer was often forced to ask proctors
how many hours they had worked and to
pay them based on this figure.

The existing manual system had three
major problems:
—It took too much time to create the ini-
tial proctor schedule.
—It was very difficult to keep track of
changes in the schedule.
—It was difficult to produce accurate re-
ports (such as payroll).
Our goal was to develop an information
system that would alleviate these three
problems.
Evaluating Proctor Assignments

Creating the initial proctor assignment
automatically depends on having a mea-
sure of the quality of a proctor assign-
ment. Any assignment that would satisfy
all of the constraints simultaneously
would earn the top quality ranking; how-
ever, such an assignment is unlikely be-
cause some of the constraints conflict. For
this reason, we measure the quality of a
particular proctor assignment by assigning
penalty points for the failure to satisfy
various constraints, converting the con-
straints into an objective function to be
minimized. The proctor assignment hav-
ing the fewest penalty points is the best;
an assignment having zero penalty points
satisfies all of the constraints.

Some constraints are inviolable and so
are strictly enforced by the solution pro-
cess rather than being treated via penalty

PROCTOR ASSIGNMENT

March–April 1998 63

points. The fact that a proctor cannot be
scheduled in two places at once is en-
forced by the solution encoding scheme.
“Proctors work only in locations where
they have agreed to work” and “Proctors
work only in time slots during which they
are available” are both constraints that are
enforced through the initial population
rules.

More penalty points are assigned to vio-
lations of the more important constraints.
For example, because the part-time proc-
tors find split shifts to be more inconven-
ient than evening-followed-by-morning
shifts, split shifts are more heavily penal-
ized. The user determines the penalty as-
sociated with violating each constraint and
can easily modify penalties through the in-
formation system as priorities change (ap-
pendix). The penalty scheme does not
handle carpooling restrictions. Instead, the
information system provides a report on
carpooling errors, and they are corrected
manually. Also, there is no penalty for de-
viating from the category average for the
full-time proctors.
A Basic Genetic Algorithm for the Initial
Assignment of Proctors

The number of possible proctor assign-
ments is extremely large. In a worst case,
there are p proctors, t examination time
slots, and a possible assignments in every
time slot. Where p . a, there will be t 2

p!/(p 1 a)! possible assignments. For ex-
ample, where p 4 100, t 4 45, and a 4

30, the number of possible assignments is
3.5 2 1059. Because of the combinatorially
explosive nature of the problem, enumera-
tion and other deterministic methods fail.
What are needed are techniques that sam-
ple the solution space.

Candidate solution methods for a prob-
lem of this type include pure random
search, problem-specific heuristics, simu-
lated annealing, tabu search, and genetic
algorithms. We chose a genetic-algorithm
(GA) framework for three primary rea-
sons: (1) indications in the literature (for
example, Levine [1996]) that GAs may be
a good approach to such unstructured
scheduling problems as our proctor-
assignment problem, (2) the chromosome-
string solution format required by a ge-
netic algorithm is natural for this problem,
so implementation is straightforward, and
(3) we had had success with genetic algo-
rithm solutions to other problems. The
main drawback of GAs is that solution
times can be long; however, we use the
GA only to construct the initial proctor as-
signment, so a speedy solution is not im-
portant. Computation times on the order
of hours are acceptable.

The first step in devising the GA is to
find a meaningful way of encoding a solu-
tion (that is, a complete proctor assign-
ment that is not necessarily feasible). We
represent a solution by a matrix with ex-
amination time slots in the columns and
proctors in the rows. Each cell in the ma-
trix holds a code representing the building
assignment for a proctor during a specific
time slot (Table 1). Because there is only a
single cell for each proctor-time-slot com-
bination, proctors can be scheduled to
work in only one place at a time. A post-
processing step assigns the proctors to in-
dividual rooms.

The Parent1 matrix in Figure 1 shows
the assignment of four proctors over a pe-
riod of six time slots (S1 through S6). Proc-
tor P1 is assigned as follows: (S1) available

AWAD, CHINNECK

INTERFACES 28:2 64

Two-Hour
Shift

Three-Hour
Shift

Special * *
Gym g G
Southam Hall s S
Patterson Hall p P
Porter Hall r R
Steacie t T
Herzberg h H
Float f F
Other o O
Not available X X
Free (not scheduled) 0 0

Table 1: These codes represent proctor assign-
ments.

Figure 1: The crossover operation between
Parent1 and Parent2 produces Child1 and
Child2. Two columns are randomly selected
(S2 and S4 in this example), and all the col-
umns between and including the two selected
columns are exchanged between the two par-
ent assignments.

but unassigned, (S2) assigned to Patterson
Hall for two hours, (S3) not available to
work, (S4) assigned to the gym for three
hours, (S5) assigned to the gym for two
hours, (S6) unassigned.

The second step is to randomly generate
an initial population of solutions. We do

this using rules that reduce the number of
infeasible proctor assignments:
(1) Assign proctors only to time slots in
which they have agreed to work.
(2) Assign proctors only to rooms in
which they have agreed to work.
(3) Preserve all preassigned slots.

To accomplish (1) we write-protect the
matrix elements corresponding to periods
in which a proctor is not available. We
also write-protect slots in (3) to preassign
nonclassifiable special proctor assignments
(such as SAEs) that require a judgment
call and cannot be automated. It is difficult
to assign proctors to SAEs manually after
the initial proctor assignment, but simple
on a blank schedule.

The next step is to calculate the value of
the fitness function for each solution in the
population using the quality measure de-
scribed previously. We use these values in
a roulette-wheel selection [Goldberg 1989]
to choose the schedules that will form the
mating pool.

We then apply basic crossover and mu-
tation operators to the schedules in the
mating pool to create the next generation.
We apply both operators in a manner that
does not disturb the conditions established
by the initial population rules.

The crossover operator preserves the
following characteristics common to all
schedules in the initial population: (1) all
slots where no proctor is available for
work are blank, (2) all assignments are for
locations in which a proctor has agreed to
work, and (3) for each proctor, preas-
signed slots in all schedules contain the
same information. We maintain these char-
acteristics during crossover by swapping
cells that have identical locations in the

PROCTOR ASSIGNMENT

March–April 1998 65

two schedules, for example, we exchange
a cell corresponding to proctor 7 in period
9 only with a cell corresponding to proctor
7 in period 9 in another schedule (Figure 1).

This crossover method is effective only
when we are operating on assignments
that fully satisfy room requirements for
each period (along the columns), such as
those produced by the initial population
heuristics. Alterations within individual
columns can only worsen the fitness-
function value. This crossover procedure
keeps columns intact while altering the
proctor assignments along the rows, possi-
bly improving the proctor conditions.

The mutation operator randomly alters
the value of one element of the matrix, at
a rate on the order of one alteration per
1,000 cells. The write-protected entries in
the solution matrices are excluded from
mutation. The cycle of reproduction into
the mating pool, crossover, and mutation
is repeated for many generations. The pro-
gram retains the best solution generated so
far (the incumbent solution) as the genera-
tions pass (Figure 2).

A final solution returned by the basic
GA may provide fairly good proctor con-
ditions but it may violate room require-
ments to an unacceptable degree. Unfortu-
nately, manual correction of the solution to
satisfy the room requirements can be as te-
dious as manually creating the initial proc-
tor assignment from scratch. For this rea-
son, we developed various heuristic and
hybrid methods to improve the GA.
Heuristic and Hybrid Methods for the
Initial Proctor Assignment

Because the performance of the basic
GA was disappointing, we developed a set
of three heuristics for generating complete

proctor assignments. We can use them in
two ways: (1) to generate the initial proc-
tor assignment directly without using the
GA, or (2) to provide an improved initial
population for the GA, which then oper-
ates to improve the solution. All three
heuristics use the encoding scheme de-
scribed above and satisfy the three rules
for members of the initial population
given previously.
Stand-Alone Heuristics

The goal of the heuristics is to generate
good initial proctor assignments directly.
All three heuristics try to satisfy room re-
quirements first, while avoiding giving
part-time proctors three slots in the same

Figure 2: A typical plot of fitness of the in-
cumbent solution versus the generation num-
ber. The basic genetic algorithm had a ran-
dom initial population of 70 different proctor
assignments and required approximately 12
hours of solution time on a 33 MHz 80486-
based PC. The basic GA improved the incum-
bent solution fitness considerably over 2,500
generations, but its final incumbent solution
is still much worse than the initial incumbent
solution for the hybrid genetic algorithm.

AWAD, CHINNECK

INTERFACES 28:2 66

day and split shifts. We avoid both of
these conditions simultaneously by mask-
ing either a morning slot or an evening
slot for each part-time proctor who is
available for work during all three time
slots of a particular day. This masking is
carried out randomly during the common
Stage 1 of the heuristics.

The second stages of all three heuristics
generate proctor assignments that meet
these conditions:
—No excess assignments, although some
slots may be underassigned as part of the
system for assessing the need for new
proctors,
—Proctors are scheduled only when
available,
—Proctors are scheduled to work only in
rooms where they agree to work, and
—Few split shifts.

A common algorithm is used for the
second stages, as given in Algorithm 1; the
heuristics differ only in the way in which

they traverse the list of proctors.
Heuristic 1: We establish an initial ran-

domly ordered list of proctors. We use the
same list for each time slot, except that we
choose a new starting point in the list ran-
domly at the start of each time slot and
treat the list as a circular queue.

Heuristic 2: We order proctors from
most to least constrained based on the
length of their lists of possible assignments
(proctors having the shortest lists are the
most constrained). This has the effect of
reducing the number of unassigned slots
so that Carleton needs to hire fewer new
proctors. We traverse the proctor list from
top to bottom each time.

Heuristic 3: This variation gives higher
priority to more senior and more flexible
proctors. We order the proctor list from
most to least seniority. We then suborder
proctors with the same seniority from
longest to shortest list of available time
slots. We traverse the proctor list from top

For each time slot:
Order the list of buildings from largest number of proctors needed to smallest number of proctors

needed.
For each building needing proctors:

n 4 number of proctors needed in this building during this time slot.
Number Assigned 4 0
For each proctor:

If (proctor is available for work during the time slot) and
(time slot is not masked for this proctor) and
(proctor not already scheduled during this time slot) and
(building is on the list of possible assignments for the proctor) then:

Assign proctor to this building during this time slot.
Increment Number Assigned.
If Number Assigned 4 n, then exit the proctor loop.

End if.
Next proctor.

Next building.
Next time slot.
Algorithm 1: This Stage 2 algorithm is common to all of the heuristics, which differ only in the
ordering of the list of proctors.

PROCTOR ASSIGNMENT

March–April 1998 67

to bottom each time.
To use these heuristics in a stand-alone

manner, we generate a number of solution
instances and choose the best solution
from among those generated. The proctor
assignments are evaluated as described
previously. We would typically generate
350 proctor assignments in less than an
hour on a 33 MHz 80486 PC. A typical
proctor assignment generated this way has
only 60 to 100 unassigned slots (out of a
possible 1,550). The average number of
split shifts and evening-followed-by-
morning patterns per proctor is always
less than one. These results are typically
much better than those generated by the
basic GA in 12 hours.
The Hybrid Method

We can easily create hybrid methods by
using the three heuristics to generate an
initial population of good solutions for the
GA. The incumbent solution in the initial
population of the hybrid method is usu-
ally much better than the final solution re-
turned by the basic GA (Figure 2). While it
is certainly possible to forego the GA en-
tirely, it does provide some refinement of
the initial incumbent solution, improving
the fitness of the incumbent solution by
about 10 percent within 200 generations.
In fact, we usually needed only about 100
generations to produce an incumbent solu-
tion that satisfied the needs of the schedul-
ing office.
The Proctor Information System

The Proctor information system is key to
the successful implementation of the pro-
ject. It performs several functions: (1) it
provides users with an easy-to-use and
nontechnical interface to the hybrid GA
system so that they can obtain an initial

proctor assignment, (2) it manages and
displays the large amount of information
needed to create and modify the initial as-
signment, and (3) it generates various re-
ports the scheduling office needs.
Development Process: Prototyping

We used a prototyping approach during
development to ensure that the scheduling
office would accept the final product. We
created various preliminary versions of the
information system in consultation with
the schedulers and then demonstrated or
exercised them. This process prompted nu-
merous refinements to our initial concepts
and resulted in a system that closely
matched the users needs. We used a beta
version of the information system to as-
sign proctors during fall term 1995. Based
on this real-life test, we released a slightly
modified final version and used it for final
examinations in April 1996. It has been in
regular use since then.
Features

The information system provides simple
data-entry forms (Table 2) for the input of
proctor information and constraints and
for the preassignment of some proctors
(for example, SAE proctors). It also allows
the user to set the fitness-function penalty
weights and to choose the initial popula-
tion heuristic for the hybrid method. Once
the initial proctor assignment has been
generated, the user can view it and mod-
ify it easily. Table 2 lists the data-entry
forms of the information system.

The system can generate 10 different re-
ports describing the schedule:
—The individual proctor schedule lists the
assignments for an individual proctor.
These are sent to the proctors to notify
them of their assignments.

AWAD, CHINNECK

INTERFACES 28:2 68

Form Purpose

Individual proctor
information

Entering and modifying general proctor information, constraints and
assignments.

Proctors needed Viewing the exam list and entering the number of proctors needed
for each exam.

Daily spreadsheet view Displaying the proctor assignment for a single day at a time and
updating the proctor assignments only.

Program configuration Setting the fitness function penalties associated with violating each
constraint and choosing the initial population heuristic.

Proctor rates Entering the rate of pay for regular, SAE and head proctors.

Table 2: The information system includes various data-entry forms that so that the schedulers
can enter data or modify existing information.

—The Payroll form is a weekly report
showing the number and type of assign-
ments a proctor worked, and the amount
of money owed to each proctor.
—The proctor assignment by building by
period form lists, for each building and
each period, the proctors working. This is
used by the head proctor in each building.
—The proctor assignment by building by
day form lists, for each building and each
day, all the proctors working.
—The proctor schedule by category form
shows the schedule of all proctors, sorted
by their proctor class, and contains vari-
ous proctor category statistics and individ-
ual proctor statistics. This report is used
by the scheduling officer as a working
copy when adjusting the initial proctor
schedule.
—The proctors needed form shows the
number of proctors needed in each room
for each period.
—The proctors scheduled form shows the
number of proctors scheduled in each
room for each period.
—The carpool errors form lists violations
of the constraint that proctors who share
the same carpool should work during the
same periods.

—The proctors scheduled vs. proctors
needed report lists all the rooms and pe-
riods where the number of proctors sched-
uled does not match the number of proc-
tors required.
—The three slots same day report lists the
part-time proctors who are assigned to
three slots in the same day and shows the
day on which that happens.

Some reports are useful during the final
manual modifications of the initial proctor
assignment (for example, reports on dis-
crepancies in the schedule and statistics on
proctor conditions), and others satisfy
other management information needs (for
example, the payroll report). All reports
automatically reflect any manual modifica-
tions to the initial proctor assignment.
Users generate the reports by clicking on-
screen buttons.
User Reaction

Carleton has used Proctor during three
examination sessions so far, and the user
reaction has been very positive. The exam-
inations scheduling officer reports that
Proctor eliminates about one person-week
of work during each session, time for-
merly spent generating the initial proctor
schedule and cross-checking changes man-

PROCTOR ASSIGNMENT

March–April 1998 69

ually. She also reports that the user inter-
face is easy to use, that the various reports
are very helpful, and that the initial proc-
tor assignments are extremely good, re-
quiring little manual adjustment. In short,
the client is well satisfied with the system,
and the scheduling office has adopted it as
an essential tool.
Conclusions

Proctor proved successful in solving the
problems plaguing the existing manual
system. It greatly diminished the work-
load of the scheduling office in managing
the proctors. Two main elements contrib-
ute to this success: (1) an operations-
research-based system for generating an
initial proctor assignment, and (2) a simple
and user-friendly information system that
eases the administration of the proctors by
providing needed reports and allowing
easy modification of the proctor-
assignment schedule.

A basic genetic algorithm combined
with problem-specific heuristics for gener-
ating an initial population of solutions
provided an effective and practical solu-
tion to the combinatorially explosive prob-
lem of finding an initial proctor assign-
ment. While it is possible that a more

The process of assigning
proctors to examinations is
quite complex.

advanced GA or other algorithm may give
superior results, the trade-offs in complex-
ity of implementation and maintenance
are not likely to be worth the extra effort
in development and maintenance. The
simple method implemented more than
meets the client’s needs.

The prototyping approach we used in
developing the package is an important
reason for its success. We obtained effec-
tive feedback from the client, leading to an
improved end product; it also promoted a
feeling of project ownership in the client.

Lessons can be drawn from this project
about the relationship between the hard
mathematical tools of operations research
and the softer issues addressed in design-
ing information systems. In particular, the
client reported a great improvement in
productivity when we supplied a beta test
version that lacked the capability to gener-
ate an initial proctor assignment. In other
words, we realized a good portion of the
benefits of the project simply by organiz-
ing and managing the huge amount of
data via the information system. In con-
trast, an excellent algorithm for generating
an initial proctor assignment with a poor
and inconvenient system for inputting
data and retrieving and displaying results
would likely have had a very poor
reception.

Many operations research projects are
really nothing more than computer-based
information systems with embedded com-
plex algorithms. For project success,
operations researchers need to pay as
much attention to the information systems
design issues as to the algorithmic issues
[Chinneck 1992].
APPENDIX

We evaluate a given proctor schedule by
assigning penalty points for constraint vio-
lations and for deviation from the category
average for numbers of split shifts, num-
bers of shifts, and so forth. Refer to Table 3
for a summary of the symbols used below
and for an example penalty score
calculation.

AWAD, CHINNECK

INTERFACES 28:2 70

Type of Penalty Symbols
Example
Values

Symbol
for
Penalty
Weight

Example
Penalty
Weights
(Default
Values)

Example
Penalty
Contribution

Constraint Violations Number
of
Constraint
Violations

Example
Number of
Constraint
Violations

Under staffing under 89 C1 10 890
Three shifts same day (part-time proctors) pt3s 4 C2 9 36
Split shift: Veteran splitn 0 C3 6 0
Split shift: Experienced splite 8 C4 5 40
Split shift: Rookie splitr 0 C5 3 0
Two hour: Veteran twon 52 C6 5 260
Two hour: Experienced twoe 200 C7 4 800
Two hour: Rookie twor 28 C8 2 56
Evening followed by a.m.: Veteran eveamn 13 C9 5 65
Evening followed by a.m.: Experienced eveame 72 C10 4 288
Evening followed by a.m.: Rookie eveamr 1 C11 3 3

Deviations from Category Average Category
Standard
Deviation

Example
Standard
Deviations

Split shift: Veteran splitdn 0 C12 5 0
Split shift: Experienced splitde 4 C12 5 20
Split shift: Rookie splitdr 0 C12 5 0
Two hour: Veteran twodn 9 C13 5 45
Two hour: Experienced twode 18 C13 5 90
Two hour: Rookie twodr 5 C13 5 25
Evening followed by a.m.: Veteran eveamdn 5 C14 5 25
Evening followed by a.m.: Experienced eveamde 13 C14 5 65
Evening followed by a.m.: Rookie eveamdr 1 C14 5 5
Number of shifts: Veteran shiftsdn 68 C15 5 340
Number of shifts: Experienced shiftsde 127 C15 5 635
Number of shifts: Rookie shiftsdr 24 C15 5 120

Example Total 3,808

Table 3: This is an example of a penalty score calculation for a particular proctor schedule pro-
duced by the hybrid genetic algorithm for 74 experienced, 17 veteran, and 9 rookie part-time
proctors and 6 full-time proctors. Relevant symbols are also summarized.

In the case of constraint violations, the
system calculates a penalty score by multi-
plying the number of violations by a spec-
ified penalty weight (Ci). In the case of de-
viations from the category average, it first
calculates the standard deviation for the

category, and then multiplies this by a
penalty weight.

Equation 1 shows the calculation of the
total penalty score, including penalties for
both constraint violations and deviations
from the category average.

PROCTOR ASSIGNMENT

March–April 1998 71

Total penalty 4under 2 C ` pt3s 2 C1 2

` split 2 C ` split 2 C ` splitn 3 e 4 r

2 C ` two 2 C ` two 2 C5 n 6 e 7

` two 2 C ` eveam 2 C ` eveamr 8 n 9 e

2 C ` eveam 2 C ` (splitr (1)10 r 11 n

` splitr ` splitr) 2 C ` (twore r 12 n

` twor ` twor) 2 C ` (eveamre r 13 n

` eveamr ` eveamr) 2 C ` (shiftsre r 14 n

` shiftsr ` shiftsr) 2 C .e r 15

References
Carter, M. W.; Laporte, G.; and Chinneck, J. W.

1994, “A general examination scheduling sys-
tem,” Interfaces, Vol. 24, No. 3, pp. 109–120.

Chinneck, J. W. 1992, “Advent of the operations
analyst,” OR/MS Today, October.

Goldberg, D. E. 1989, Genetic Algorithms in
Search, Optimization and Machine Learning.
Addison-Wesley, Reading, Massachusetts.

Lauer, J.; Jacobs, L. W.; Brusco, M. J.; and
Bechtold, S. E. 1994, “An interactive,
optimization-based decision support system
for scheduling part-time, computer lab atten-
dants,” Omega, Vol. 22, No. 6, pp. 613–626.

Levine, D. 1996, “Application of a hybrid ge-
netic algorithm to airline crew scheduling,”
Computers and Operations Research, Vol. 23,
No. 6, pp. 547–558.

Love, R. R. and Hoey, J. M. 1990, “Management
science improves fast-food operations,” Inter-
faces, Vol. 20, No. 2, pp. 21–29.

Randhawa, S. U. and Sitompul, D. 1993, “A
heuristic-based computerized nurse schedul-
ing system,” Computers and Operations Re-
search, Vol. 20, No. 8, pp. 837–844.

Thompson, G. M. 1996, “A simulated
annealing-heuristic for shift scheduling using
non-continuously available employees,” Com-
puters and Operations Research, Vol. 23, No. 3,
pp. 275–288.

Helen Zaluska, Assistant Director,
Scheduling and Examination Services,
Carleton University, Ottawa, Ontario, Can-
ada K1Y 3S1, writes: “The proctor-
assignment system designed by Rania
Awad has been implemented in the Sched-
uling Office. I used a version of the pro-

gram to assign proctors for the April 1996
examination period. In 30 minutes, it did a
very good job of what would have taken
35 hours using our manual system.

“Proctors were assigned to appropriate
room types and were not assigned to over-
loads unless they were designated as full-
time. Predictably, I did have to make some
manual adjustments to correct car-pool
problems.

“The error reports produced by the pro-
gram are very useful. They have allowed
us to eliminate from the examination
operation, which is far too dependent on
manual systems, an estimated eight
person-hours of cross-checking.

“Other reports, particularly the ‘Individ-
ual Proctor Schedule’ and ‘Proctor Assign-
ments by Building and Period,’ are to my
specifications and are already a part of
Carleton’s examinations ‘culture’ even
though we’ve been using them only since
December 1995.

“The system is easy to use. It mirrors
the good parts of the manual system and
improves on the others. Data-entry for
proctor availability and proctors needed is
uncomplicated and the rest of the job gets
done by following the menus.

“I consider that my time on this project
was well spent. It was a pleasure to work
with Rania who had a good understand-
ing of the problem, was enthusiastic and
able in seeking the solution and produced
a useful system.”

