
Information Systems Research
Vol. 20, No. 3, September 2009, pp. 377–399
issn 1047-7047 �eissn 1526-5536 �09 �2003 �0377

informs ®

doi 10.1287/isre.1090.0238
©2009 INFORMS

A Control Theory Perspective on Agile Methodology
Use and Changing User Requirements

Likoebe M. Maruping, Viswanath Venkatesh
Information Systems Department, Sam M. Walton College of Business, University of Arkansas,

Fayetteville, Arkansas 72701 {lmaruping@walton.uark.edu, vvenkatesh@vvenkatesh.us}

Ritu Agarwal
Decision, Operations and Information Technologies, Robert H. Smith School of Business,

University of Maryland, College Park, Maryland 20742, ragarwal@rhsmith.umd.edu

In this paper, we draw on control theory to understand the conditions under which the use of agile practices
is most effective in improving software project quality. Although agile development methodologies offer the

potential of improving software development outcomes, limited research has examined how project managers
can structure the software development environment to maximize the benefits of agile methodology use during
a project. As a result, project managers have little guidance on how to manage teams who are using agile
methodologies. Arguing that the most effective control modes are those that provide teams with autonomy
in determining the methods for achieving project objectives, we propose hypotheses related to the interaction
between control modes, agile methodology use, and requirements change. We test the model in a field study
of 862 software developers in 110 teams. The model explains substantial variance in four objective measures of
project quality—bug severity, component complexity, coordinative complexity, and dynamic complexity. Results
largely support our hypotheses, highlighting the interplay between project control, agile methodology use, and
requirements change. The findings contribute to extant literature by integrating control theory into the growing
literature on agile methodology use and by identifying specific contingencies affecting the efficacy of different
control modes. We discuss the theoretical and practical implications of our results.

Key words : agile methodologies; agility; control theory; requirements uncertainty; software development; teams
History : Sandra Slaughter, Senior Editor and Associate Editor. This paper was received on June 6, 2007, and

was with the authors 9 months for 3 revisions. Published online in Articles in Advance August 25, 2009.

Introduction
It is almost a truism that software development is a
highly consequential activity for business and soci-
ety. However, despite over five decades of experience
with software development, the process continues to
be challenging for development teams. One aspect
of the challenge is simply that software develop-
ment is inherently a complex activity that is embed-
ded with interdependencies, requires the collective
input of multiple individuals with often nonover-
lapping knowledge sets, and entails significant coor-
dination and project management. A second and
perhaps more crucial aspect of the challenge is sim-
ply that what the software is required to do, i.e., its
functionality, is a moving target (Lee and Xia 2005,
Nidumolu 1995). Such user requirements changes
are largely fueled by continuously evolving business

needs (Cusumano and Yoffie 1999, Hoorn et al. 2007,
Iansiti and MacCormack 1997) and, in addition to
being unpredictable, they are occurring with increas-
ing frequency and speed in an ever more competitive
market environment (Iansiti and MacCormack 1997).
An inability to respond to changing user require-

ments has been implicated as one cause for major
project failures, including outcomes such as bud-
get cost overruns, poor product quality, and project
schedule overruns (Standish Group 2003). It is no
wonder that requirements change is often viewed as
a significant threat to software development project
success (Boehm 1991, Hoorn et al. 2007, Mathiassen
et al. 2007, Nidumolu 1995, Standish Group 2003).
To respond to this exigency, the design science and
software engineering communities have proposed a
set of flexible techniques, namely agile methodologies,

377

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
378 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

that empower software development teams in the face
of challenges posed by changing user requirements
(Baskerville et al. 2002, Fowler and Highsmith 2001,
Highsmith and Cockburn 2001). Fundamentally, these
methodologies are purported to imbue flexibility in
software development projects, thereby enabling soft-
ware development teams to perform more effectively.
The importance of flexibility in software develop-

ment processes—so that they can be more respon-
sive to requirements changes—is underscored in a
significant body of research (e.g., Byrd and Turner
2000, Duncan 1995, Gefen and Keil 1998, Lee and Xia
2005, MacCormack et al. 2001). It is evident that in
the presence of unpredictability, adaptation is neces-
sary (Conboy 2009). For instance, MacCormack et al.
(2001) found a positive relationship between flex-
ible development architecture and software project
performance. Likewise, Lee and Xia (2005) reported
a positive relationship between team flexibility and
end-user satisfaction with a system. However, despite
these advances in our understanding of requirements
uncertainty and software development project perfor-
mance, there remain significant gaps in the informa-
tion systems literature. Although it is accepted that
flexibility is desirable in situations where require-
ments change, flexibility is not without cost, as it
is fundamentally inimical to the degree of structure
embedded in a development process.
Previous literature has emphasized the impor-

tance of structure in software development, offered
through development methodologies (Fitzgerald
2000). Indeed, the entire methodology movement in
the 1970s and 1980s was predicated on the impor-
tance of structure in software development and the
need to limit “free-wheeling” by team members
(Boehm 1981). A review of the team literature also
suggests that autonomy, which affords individual
team members the freedom to act of their own
volition, may be detrimental for project teams (Cohen
and Bailey 1997). However, autonomy has also been
identified as an important factor in enabling teams
to respond to change (Gerwin and Moffat 1997). It is
unclear, therefore, how these seemingly polarized
notions should be reconciled in software develop-
ment teams, where elements of both are necessary
for project success. In particular, the extant literature
offers limited guidance regarding the governance of

agile software development teams,1 and how project
leaders should manage the balance between structure
and autonomy.
The purpose of this research is to examine the

management of agile software development teams.
Specifically, we draw upon control theory to inves-
tigate the complex interplay between project man-
agement, agile methodology use, and requirements
change. Research in the software and information sys-
tems development literatures has emphasized the cen-
tral role played by project management approaches
in ensuring the success of development efforts (e.g.,
Barki and Hartwick 2001, Guinan et al. 1998, Kirsch
1997, Sillince and Mouakket 1997), highlighting the
importance of project leaders in influencing software
development teams’ progress toward achieving desir-
able project outcomes (Guinan et al. 1998, Kirsch
1997). Control theory is the primary theoretical lens
through which the process of guiding teams to project
completion has been understood (Henderson and Lee
1992, Kirsch 1997).
This research contributes to the software develop-

ment literature in several ways. First, by integrat-
ing control theory, we add to the growing literature
on agile software development and shed light on
the managerial mechanisms that can best support the
use of such methods in software development teams.
Second, although prior research has studied control
mechanisms, no work we are aware of has examined
control in the context of different environmental and
internal team conditions. We extend control theory by
identifying contingencies affecting the efficacy of dif-
ferent control modes. We examine the relationships
between agile methodology use, control modes, and
requirements change in a field study of 862 software
developers in 110 teams, using objective measures
of project quality. Finally, as noted earlier, although
knowledge about how to manage traditional software
teams has accumulated over the past few decades,
the governance of agile development teams has not
received much attention. Indeed, as noted by Boehm
and Turner (2005), the incorporation of agile meth-
ods into traditional software development environ-
ments poses many new challenges, highlighting the

1 We use the term, “agile software development teams,” to refer to
teams that are using an agile methodology.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 379

need for a better understanding of people and process
issues. This research provides a granular understand-
ing and yields pragmatic guidance for project leaders
whose software development teams use agile meth-
ods to varying degrees.

Theoretical Background
Control in Software Development Projects
Although the study of the management of software
development teams using agile methodologies is in a
nascent stage, prior research provides some insights
on factors of theoretical and pragmatic importance.
A major problem that software project leaders con-
tinue to face is how to effectively manage team
work in the software development process (Barki and
Hartwick 2001). Software development has been char-
acterized as not only a technical process, but a social
process as well, requiring the effective management
of relationships to facilitate the utilization of criti-
cal skills and expertise (Beath and Orlikowski 1994).
Hence, software project leaders must make important
decisions about the appropriate methods for manag-
ing both technical and social processes. Control the-
ory, which has tended to focus on the management
of individual employees (Ouchi 1979), has provided
important insights into understanding the manage-
ment of software development teams. In the context
of software development, control is defined as man-
agement’s “attempts to ensure that individuals work-
ing on organizational projects act according to an
agreed-upon strategy to achieve desired objectives”
(Kirsch 1996, p. 1). Control is generally exercised
through the monitoring and evaluation of behaviors
or outcomes, and has been identified as an important
antecedent of project team performance in terms of
both efficiency and effectiveness (Henderson and Lee
1992, Nidumolu and Subramani 2003).
Control modes are generally categorized into two

types, formal and informal. Formal control modes are
those exercised by management through formal doc-
umentation (Kirsch 1996). They are viewed as a strat-
egy for evaluating and rewarding performance in an
organizational context (Eisenhardt 1985, Kirsch 1997).
Through formal control, management is able to set
specific standards against which software develop-
ment team performance will be evaluated, and teams

are rewarded based on how well they meet these
performance standards. It is generally expected that
formally setting performance standards encourages
software development teams to align their goals with
the outcomes desired by the organization (Kirsch
et al. 2002). Two specific forms of formal control are
outcome control and behavior control. Outcome con-
trol involves outlining a set of project goals to be
achieved; and rewards are made contingent on the
accomplishment of goals (Kirsch 1996, Ouchi 1979).
Thus, when formal control is exercised in the form of
outcome control, the emphasis is on software devel-
opment team outputs (e.g., project deadlines, defect
rates), regardless of the process used to achieve them
(Henderson and Lee 1992). In contrast, behavior con-
trol emphasizes the behaviors, processes, or proce-
dures that software development teams must follow
in order to achieve project goals (e.g., standard operat-
ing procedures, development methodologies). To the
degree that the enactment of prespecified processes
is expected to yield desired project outcomes (Kirsch
1997), rewards are, therefore, made contingent on
software development teams’ adherence to prespeci-
fied work processes (Henderson and Lee 1992, Kirsch
1996). The ability to exercise behavior control is pred-
icated on management’s ability to perfectly observe
and understand the process through which software
development teams turn inputs into outputs (Kirsch
et al. 2002).
Whereas formal control modes represent a per-

formance evaluation strategy for aligning employee
goals with organizational goals, informal control
modes are viewed as a social or people strat-
egy for regulating employee goals (Jaworski 1988).
Rather than relying on formal documentation, infor-
mal modes of control emphasize social dynamics
and self-regulation as a way of reducing employee-
organization goal incongruence. Individuals and
social collectives, such as teams, take on the respon-
sibility of ensuring that their work is geared toward
achieving organizationally espoused goals. Hence,
the monitoring function is largely delegated to
the employee rather than management (Eisenhardt
1985, Ouchi 1979); however, management can take
steps to encourage such self-monitoring behavior via
incentives.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
380 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

Two forms of informal control are clan control
and self control. Clan control is exercised by social-
izing team members into a specific set of norms
and values that are valued by the organization.
Although management espouses the desired values
and norms, members of the social collective reward
behavior that is aligned with those values and sanc-
tion behavior that is inconsistent with espoused val-
ues (Ouchi 1979). Thus through shared rituals and
experiences, acceptable behaviors are socially rein-
forced (Kirsch 1996). For example, if on-time project
delivery is valued then team members who work
overtime to ensure timely project completion are
rewarded for such behavior. The exercise of clan con-
trol grants software development teams a degree of
autonomy in identifying important project goals and
determining how those goals are attained. However,
management attempts to influence this social form of
self-regulation to ensure goal alignment.
In contrast to clan control, which emphasizes col-

lective regulation of goals and behavior, self control
is geared toward the individual and represents the
extent to which individuals have the autonomy to
“determine both what actions are required and how
to execute these activities” (Henderson and Lee 1992,
p. 760). Self control encourages individuals to set their
own goals and then self-regulate and self-monitor
their progress in achieving those goals (Henderson
and Lee 1992, Manz and Sims 1987). It is a func-
tion of the objectives and standards that individual
employees set for themselves and operates outside
the scope of formal and clan controls (Kirsch 1996,
1997). Although individuals are primarily responsible
for exercising self control, management can promote
it through the provision of incentives (Kirsch 1996)
or through the selection of self-motivated individu-
als (Ouchi 1979). Indeed, Kirsch et al. (2002) note that
self control can be enabled by establishing incentive
schemes that reward autonomy and self-regulation.
Tasks such as software development that are inher-
ently knowledge-intensive and demand creativity and
intellectual activity are particularly well-suited for the
exercise of self control (Henderson and Lee 1992).
It is important to note that, although the control

modes outlined above have been discussed in isola-
tion, they are not exercised independently and project
leaders frequently deploy different combinations of

controls in software development projects—creating
a portfolio of controls (Choudhury and Sabherwal
2003, Kirsch 1997). Such portfolios typically include
both formal and informal mechanisms and involve
the combination of primary and secondary controls
(Choudhury and Sabherwal 2003, Jaworksi et al. 1993,
Kirsch 1997). There is often a greater reliance on for-
mal modes of control, which are supplemented with
informal controls (Kirsch 1997). For example, a project
leader may specify precise project deadlines to be met
(a formal control) and also provide bonuses or special
recognition for developers who create and adhere to a
strict plan for achieving important project milestones
(an informal control). Irrespective of the specific port-
folio of controls employed in a project, however, an
important characteristic of the various control modes
discussed in the literature is the degree to which they
afford autonomy to software development teams in
managing the software development project—a factor
that we argue is critical for agile software develop-
ment teams.

Agile Software Development Teams
From structured development techniques to rapid
application development to object-oriented design,
software engineers have continually sought new
methodologies and development approaches to
address an evolving market for software. Persistent
limitations of extant approaches in effectively address-
ing requirements change have led to the emergence of
a set of software development methodologies collec-
tively referred to as agile methodologies (Fowler and
Highsmith 2001). Some well-known agile methodolo-
gies include eXtreme Programming (XP) (Beck 1999),
Scrum (Rising and Janoff 2000, Schwaber and Beedle
2002), Feature Driven Design (Coad et al. 1999), Test
Driven Development (Beck 2003), Crystal (Cockburn
2001), and Lean Programming (Poppendeick 2001).
Agile methodologies are argued to provide flexibility
in software development, thus enabling software
development teams to cope with an unpredictable
and changing environment (Beck 1999). Although
the use of agile methodologies in organizations is
still largely experimental and has not yet gained
widespread adoption (Fitzgerald et al. 2006), eXtreme
Programming is the most widely adopted approach
(Baskerville et al. 2002). As with most software

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 381

development methodologies, software development
teams have tended to use an à la carte approach in
their deployment of agile methodologies—implying
that they typically adopt a subset of practices rather
than all practices of a methodology (Fitzgerald 2000,
Fitzgerald et al. 2006).
The key value proposition of agile methodologies

is that they emphasize and facilitate flexibility in soft-
ware development (Baskerville et al. 2002, Beck 2000,
Conboy 2009, Fowler and Highsmith 2001), thereby
enabling software development teams to effectively
respond to any requirements changes that might
occur during a project. Although agile methodolo-
gies differ in the specific practices they embody, they
share common characteristics that facilitate flexibil-
ity including an iterative approach to software devel-
opment, a focus on discrete units of functionality,
and an emphasis on simple design (Fowler 2005,
Larman 2003). In XP, these characteristics are reflected
in practices such as continuous integration and refac-
toring, whereas Scrum—with its managerial focus—
embodies these characteristics in activities such as
sprints and daily scrums that a software development
team engages in over the course of a project. The prac-
tices underlying these agile methodologies recognize
that requirements changes are inevitable and thus,
attempt to make the process of adapting to chang-
ing requirements as efficient as possible. However, the
à la carte approach to agile methodology use suggests
that software development teams vary in the extent
to which they possess the flexibility afforded by such
methodologies.
Agile methodologies encourage the delegation of

authority to software development team members
including discretion over who can change existing
code, task scheduling, and the assignment of mem-
bers to various tasks (Beck 2000). In other words,
agile methodologies suggest that team members be
largely responsible for managing their own pro-
cesses, making decisions about how project goals
will be attained, and delegating task responsibil-
ity to various team members. These characteristics
are strikingly similar to the critical characteristics of
self-managing teams (Cohen et al. 1996, Hackman
1986). Self-managing teams are those where members
“manage themselves, assign jobs, plan and sched-
ule work, make production- or service-related deci-
sions, and take action on problems” (Kirkman and

Shapiro 2001, p. 557). Unlike traditional teams, self-
managing teams are largely responsible for manage-
ment and decision making; activities that are typi-
cally the purview of management (Manz and Sims
1987). Thus, autonomy is a critical factor in determin-
ing how well teams are able to self-manage (Hackman
1986, Langfred 2004). Software development teams
using agile methodologies possess many of these
characteristics as reflected by teams that were exam-
ined by Fitzgerald et al. (2006). These development
teams were responsible for management and decision
making over the course of the project conducted at
Motorola (Fitzgerald et al. 2006).
Although agile software development teams pos-

sess many of the qualities of self-managing teams, the
conditions under which they operate make them par-
ticularly unique. One key characteristic of the soft-
ware development team environment is that they
often face high levels of environmental uncertainty
as customer requirements and specifications change
over the course of a project, thus, making flexi-
bility important (Aoyama 1998, MacCormack et al.
2001, Nidumolu and Subramani 2003). In addition,
agile methodologies involve short cycle times, plac-
ing pressure on software development teams to cre-
ate functional units of software in short iterations
(Beck 2000). These conditions make it important for
project managers to strike a balance between provid-
ing the autonomy needed for enhancing team flex-
ibility and providing the structure needed to guide
software development teams to successful project
completion.
In summary, we identified formal and informal

control modes as a key governance mechanism
through which project managers can guide software
development teams in their work. We also highlighted
the emergence of agile methodologies, which have
been constructed to specifically address the challenges
posed by shifting and evolving user requirements in
the context of software products by enabling flexibil-
ity in software development. Although it is broadly
recognized that the outcomes of a software develop-
ment project will be affected by the exercise of con-
trol, the use of agile methodologies and the extent to
which project requirements change, we seek to under-
stand how these factors interact in their impacts on
software development team performance. Next we

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
382 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

develop specific hypotheses related to this interplay
between these antecedents of performance.

Hypothesis Development
Agile Methodology Use and Project Quality
Agile methodologies are not solely comprised of rou-
tines for responding to requirements changes. Rather,
the practices that underlie agile methodologies are
designed to produce high quality code—i.e., code
with few bugs and low complexity (Bieman 2002,
Darcy et al. 2005). For instance, the practice of test-
driven development emphasizes software testing over
the course of a development project (Beck 2003),
thus producing code with relatively fewer bugs, even
under conditions in which user requirements remain
stable. Likewise, the refactoring practice in XP cre-
ates simplified code and reduces errors, and the pair
programming practice enables more code to be devel-
oped with fewer errors (Beck 2000, Nosek 1998).
In sum, agile methodologies comprise practices that
serve the dual purpose of producing high quality
code and providing the ability to respond to change.
Teams that employ the practices outlined in agile
methodologies are well positioned to produce high
quality code. Thus, we hypothesize:

Hypothesis 1. Agile methodology use will have a pos-
itive influence on software project quality.

User requirements for software specification are
typically gathered at the beginning of software devel-
opment projects, and software development teams
strive to get an accurate understanding of customer
needs so that they can build software that meets those
needs. However, as noted earlier, it is quite common
for user requirements to change over the course of
a software development project (Walz et al. 1993).
Customers often do not have a clear understanding
of their needs and identify additional needs as the
project progresses, or change their minds about previ-
ously stated needs. These changing needs may require
software development teams to make changes to the
inputs into a system, the outputs from the system, the
type of data that the system can process, and the way
data are processed (Lee and Xia 2005). Because they
are unpredictable, requirements changes take signifi-
cant time and effort to respond to and can negatively

affect the quality of the software. Indeed, previous
research has found a negative relationship between
requirements changes and project quality (e.g., Curtis
et al. 1988, Nidumolu 1995).
The ability to effectively respond to requirements

changes is a key factor that differentiates high per-
forming teams from teams that do not perform as
well. (Lee and Xia 2005, MacCormack et al. 2001).
Agile software development teams anticipate that
requirements will inevitably change over the course
of a project and have processes in place for effectively
managing such changes when they do occur (Beck
1999, 2000). The ability to respond to requirements
changes is embedded within the specific processes
that make up each agile methodology (Conboy 2009,
Fowler and Highsmith 2001, Larman 2003). Flexi-
bility is not expected to be important when user
requirements remain fairly stable over the course of
a software development project because there is less
pressure on the development teams to respond to
change. However, as requirements changes increase
in their frequency, the flexibility enabled due to the
use of agile methodologies becomes a key compo-
nent for effective response (Beck 1999, MacCormack
et al. 2001). Hence, other things being equal, soft-
ware development teams using agile methodologies
should produce software of better quality than that
of teams that do not, when requirements changes are
high.
As Hypothesis 1 suggests, we expect agile method-

ology use to have a positive relationship with
software project quality. We further expect this rela-
tionship to be enhanced in the presence of require-
ments change. However, to the extent that the exercise
of control defines the context within which soft-
ware development teams operate, the relationship
between agile methodology use, requirements change,
and software quality is arguably more complex. The
exercise of control is expected to moderate the rela-
tionship between agile methodology use and soft-
ware project quality at various levels of requirements
change. In other words, the control modes that project
leaders employ should play a significant role in deter-
mining the degree to which agile methodology use
will enable software development teams to cope with
change. This is the core logic underlying our research
model shown in Figure 1. Next, we propose specific

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 383

Figure 1 Conceptual Model of Control Modes, Agile Methodology
Use, and Requirements Change

Agile methodology
use

Software project
quality

Outcome control
Self control

Requirements
change

Hypothesized relationship
Unhypothesized relationship

relationships between agile methodology use, control
modes, and requirements changes in influencing soft-
ware project quality.

Control Modes, Agile Methodology Use, and
Requirements Changes
Outcome controls provide a well-defined, unam-
biguous, and supportive context for achieving soft-
ware development project goals. Project leaders often
set performance standards related to project quality,
meeting project deadlines, and managing project bud-
gets (Humphrey 1995, Kirsch 1996), and frequently,
clients have a hand in determining performance
standards (Kirsch et al. 2002). These outcome-
focused controls constitute clear benchmarks against
which software development teams can monitor their
progress. In the complex endeavor that is software
development, it is often easier to specify outcomes
than to monitor behavior (Kirsch 1996, 1997). Because
of their emphasis on output rather than process, such
controls give software development teams the auton-
omy to determine the best way to deploy resources
in an effort to meet project goals (Nidumolu and
Subramani 2003). This autonomy becomes even more
consequential when software development teams
need to respond to requirements changes (Gerwin
and Moffat 1997, Henderson and Lee 1992).
As noted earlier, agile methodologies provide the

necessary mechanisms for team self-regulation. Task
delegation and coordination is managed through
practices such as collective ownership, coding stan-
dards, and pair programming (Beck 2000, Fitzgerald

et al. 2006). Through such practices, software develop-
ment teams can effectively prioritize important tasks
and determine the appropriate resources to deploy in
managing those tasks. Actual task execution and soft-
ware quality control are embedded in practices such
as continuous integration, refactoring, and unit test-
ing. These practices are designed to ensure software
design simplicity and high quality code (Beck 1999,
2000). The decentralized decision-making authority is
especially important when requirements are volatile
(Nidumolu and Subramani 2003). It ensures that soft-
ware development teams are able to take effective
action on problems as they arise. The exercise of out-
come control creates an environment for such auton-
omy while also providing clear performance goals
(Henderson and Lee 1992).
Outcome controls are especially important as

requirements change increases because of the need
for the development team to respond. Gerwin and
Moffat (1997) posited that a lack of autonomy would
negatively influence performance in new product
development teams, and empirically found a negative
correlation between a lack of autonomy and team per-
formance. Outcome control enables software devel-
opment teams to maintain their focus on achieving
objectives; an essential element when teams need to
be responsive to requirements changes. Because of
the flexibility inherent in agile methodologies, soft-
ware development teams are likely to consider many
alternative approaches to meeting user needs. There
is a risk, therefore, that as teams strive to identify
alternative solutions in responding to requirements
changes, they might lose sight of project objectives.
Outcome control, with its emphasis on task outcomes,
mitigates this risk and ensures that software devel-
opment teams maintain their focus on meeting objec-
tives (Kirsch 1997). Established performance criteria
provide a baseline against which modified software
can be continuously measured (Henderson and Lee
1992). For instance, Kirsch (1997) found outcome con-
trol enabled software development teams to maintain
their focus on project quality because their perfor-
mance was contingent on the quality of the system
delivered. Without outcome control, agile software
development teams may still be able to respond
to requirements changes, but without guidance they

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
384 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

may miss key objectives in the process. Thus, we
hypothesize:

Hypothesis 2. The positive relationship between agile
methodology use and software project quality is moderated
by outcome control and requirements change such that the
relationship is more positive when both outcome control
and requirements change are high than when either or both
are low.

When managers do not observe the day-to-day
activities and behaviors of developers, either because
of situational contingencies or by choice, they may
encourage the exercise of informal forms of control.
Informal controls have been found to be useful in pro-
moting effectiveness in software development projects
(Henderson and Lee 1992). In particular, self con-
trol, which emphasizes individual self-regulation, has
been found to yield positive outcomes in software
development (e.g., Bailyn 1985, Henderson and Lee
1992, Weinberg 1971). As is evident, the use of self
control as a mechanism provides developers with
autonomy and discretion with regard to how tasks
are accomplished (Henderson and Lee 1992, Kirsch
et al. 2002). For example, Henderson and Lee (1992)
suggest that through self control individual develop-
ers can reallocate their efforts and choice of methods
on tasks without consulting with the project leader.
However, the extent to which the exercise of self con-
trol is effective when requirements changes are high
is not well understood.
As desirable as autonomy is when requirements

uncertainty is high, the provision of such autonomy
through self control can have detrimental effects in a
team setting (Wageman 1995). Significant task inter-
dependencies exist in software development projects,
and the effective use of any methodology requires
coordinated effort among software development team
members (Boehm 1981). This is especially true when
requirements changes are high. Under such condi-
tions, team members need to effectively coordinate
their efforts in developing solutions while performing
continuous integration, refactoring, and pair program-
ming tasks. Because the effectiveness of these practices
in responding to change hinges on collaborative effort,
an emphasis on self-regulation is potentially inimi-
cal to deriving value from agile methodology use.
With each team member adopting their own approach

to managing interdependent tasks, there is likely to
be much disagreement among team members regard-
ing how best to respond to requirements change.
For instance, developers charged with programming
additional functionalities into software may approach
the coding process differently, resulting in incompat-
ible modules and adversely affecting project quality.
Hence, although self control ensures that develop-
ers self-regulate their behavior with regard to task
accomplishment, there may be divergent approaches
to the actual accomplishment of tasks. Consequently,
left to their devices, the goals of different developers
may be highly incongruent, in which case develop-
ment efforts might not converge to improve software
project quality. The use of agile methodologies under
such circumstances will prove ineffective. We expect
that the use of self control will undermine the bene-
fit of agile methodology use in software development
teams when requirements change is high. Thus, we
hypothesize:

Hypothesis 3. The positive relationship between agile
methodology use and software project quality is moderated
by self control and requirements change such that the rela-
tionship is less positive when self control and requirements
change are both high than when either or both are low.

In summary, the research hypotheses are con-
structed to answer the critical question: under what
contingencies is the value of agile methodology use
in influencing software project quality enhanced? We
argued that requirements change and project gover-
nance in the form of control constitute two significant
contextual conditions that exhibit important moder-
ating influences on the relationship between agile
methodology use and software development team
performance. One important assumption underlying
our theorizing is that, consistent with prior work that
has posited and found empirical evidence for the exis-
tence of portfolios of control, we are not suggesting
that formal controls and informal controls are sub-
stitutes. Rather, we expect both to be simultaneously
used to varying degrees by leaders of software devel-
opment teams. However, we leave explicit theorizing
about the relative trade-off between formal and infor-
mal control to future work and focus here solely on
the independent effects of each in conjunction with
requirements change and agile methodology use.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 385

Method
We conducted a field study of software development
teams to test the hypotheses. The study spanned a
little over three months and included three different
points of measurement. The participants, measure-
ment, data collection procedure, and analysis plan are
discussed in this section.

Participants
The participants were employees in a major
U.S.-based consulting firm. The participating firm
has over 20,000 employees and serves a broad-based
clientele spanning multiple industries including
banking, healthcare, insurance, and retail. Specifi-
cally, participants were all members of active soft-
ware development project teams. The teams that
participated in the study were launching software
development projects for a major U.S.-based client
company. In the study, 151 teams agreed to partici-
pate, and a total of 862 employees in 110 software
development project teams provided usable responses
at all three points of measurement, for an effective
response rate of 72.8%. Although it was desirable for
all teams to provide responses at all measurement
points, the study duration made this practically infea-
sible. Of the participants, 230(26.7%) were women.
The average age of the participants was 29.6 (s.d. =
5�52). On average, the participants had 5.3 years of
programming experience (s.d. = 2�25). The average
team size in the study was 7.84 (range: 7–10).

Measurement
To the extent possible, we operationalized constructs
by adapting existing scales to the context of the cur-
rent study. A few of the constructs were measured
from all team members within each team. Because
the level of analysis is the team, it is necessary to
ensure that the aggregation of individual-level scores
to form the team-level construct is appropriate (Bliese
2000). Therefore, where relevant, we report on the
within-group agreement index (rwg�j�), and intra class
correlation coefficients (ICC). The rwg�j� reflects the
extent to which individual item responses in a team
converge greater than would be expected by chance
(James et al. 1984). The ICC(1) reflects the degree to
which there is between-group variance in individ-
ual responses (Bliese 2000). The ICC(2) reflects the

stability of the group-level means across the sam-
ple (Bliese 2000). Finally, one of the key constructs
in the model—agile methodology use—did not have
an existing measure. It was, therefore, necessary to
develop a new scale to measure the construct.

Agile Methodology Use. To our knowledge, there
are no existing measures for assessing the use of
agile practices in software development teams in the
field; therefore, we developed a new scale to oper-
ationalize this construct. The six key XP practices
used to reflect agile methodology use are pair pro-
gramming, continuous integration, refactoring, unit
testing, collective ownership, and coding standards.2

Pair programming, continuous integration, refactor-
ing, and unit testing are action-oriented agile practices
(Beck 2000). These programming related practices are
guided by an agreement about collective ownership
of code and the use of coding standards (Beck 1999).
We generated item pools to capture the use of each
practice. We were careful to ensure that the items
reflected the level of analysis for which they were
developed—i.e., the team as the referent in each item
(Chan 1998). Klein et al. (1994) point out the impor-
tance of ensuring alignment between theory and mea-
surement. Content validity of the items was ensured
by basing the items on definitions and descriptions
of the XP practices (Straub 1989). Developers who
had experience with using XP also provided sug-
gestions for refining the items and adding others.
After following scale development procedures sug-
gested by DeVellis (2003), we pilot tested the scales
in a field sample of 149 developers.3 The sample
consisted of developers who had experience with
the XP methodology and were involved in ongoing
projects or recently completed software development
projects. There was adequate convergent and discrim-
inant validity in the scales.
As noted earlier, responsiveness to change is the rai-

son d’être of agile methodologies. However, as teams

2 Although we measured the use of all XP practices, we selected
these six practices that reflect activities that specifically promote
flexibility and have been identified as instrumental in enabling
software development teams to respond to requirements changes
(Larman 2003).
3 In the interest of brevity, details of the scale development process
are omitted here and are available, upon request, from the first
author.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
386 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

use agile practices to varying degrees, their develop-
ment processes exhibit different levels of flexibility. To
accurately reflect this nuance, we operationalized agile
methodology use as an additive index of the six XP
practices. As individuals within each team constituted
the respondents, it was necessary to aggregate individ-
ual responses to compute a team-level score for each
team. All six agile practices had a reliability greater
than 0.70 and the average rwg�j� value for each scale
was above 0.70. The random effects ANOVA-based
F -statistic for each scale was significant at p < 0�001,
indicating statistically significant between-team differ-
ences in individual responses to each scale. The ICC(1)
for each scale was greater than 0.14, suggesting mean-
ingful between-team variation in the measures. Fur-
ther, the team-level means for each scale demonstrated
adequate stability, with all scales yielding an ICC(2)
greater than the recommended 0.70 value (Bliese 2000).
This assessment suggested that it was appropriate to
compute team-level scores for the six XP practices
by aggregating individual within-team responses. As
anticipated, the teams varied greatly on the extent to
which they used agile methodologies.

Control Modes. Measures for the control modes
were adapted from Kirsch (1996). Each scale was mea-
sured on a seven-point Likert agreement scale. The
scale for outcome control included six items that had
a reliability of 0.82. The measures capture the degree
to which established standards were used to evalu-
ate project performance. The exercise of self control
was measured via a three-item scale that assessed the
degree to which developers were rewarded for their
individual performance on project tasks. The scale had
a reliability of 0.85. As expected, there was variation in
the degree to which these different control modes were
employed across the software development teams in
the sample.

Requirements Change. We used Nidumolu and
Subramani’s (2003) three-item scale to measure
requirements change. The scale captures the extent
to which user requirements changed over the course
of a software development project from start to fin-
ish. The scale had a reliability of 0.79. Consistent
with Nidumolu and Subramani (2003), the scale was
measured on a seven-point Likert agreement scale.
The mean value for requirements change was 5.01

with a standard deviation of 1.33. This indicates that
there was substantial variation in requirements change
across software development teams in the sample.

Project Quality. We used bug severity and soft-
ware complexity as objective measures of project
quality. Archival project data on the number of bugs
and the number of hours required to fix them were
obtained. We computed bug severity as the product
of these values: lower bug severity indicates higher
software quality. Software complexity is an appro-
priate quality measure as it has long-term implica-
tions for customer value (Banker et al. 1998, Card and
Glass 1990). A significant portion of a project’s cost
is in the maintenance, which is tied to software com-
plexity (Banker et al. 1991, Card 1992). Commenting
on software quality, Brooks (1987) notes that the best
software designers produce code that is simple and
clear. High software complexity, therefore, indicates
low project quality and vice versa. Consistent with
Banker et al. (1998), software complexity was mea-
sured in three ways: component complexity, coordina-
tive complexity, and dynamic complexity. Component
complexity reflects “the number of distinct information
cues that must be processed in the performance of a
task” (Banker et al. 1998, p. 435) and is computed as
the number of data elements that are referenced in the
software. Coordinative complexity represents the inter-
dependent relationships between information cues in
the software and is measured using McCabe’s (1976)
cyclomatic complexity metric. Finally, dynamic com-
plexity reflects changes in cue interdependencies at
runtime and is measured as the number of decision
paths that are altered at runtime. All three forms of
complexity were normalized by dividing them by the
number of lines of code (Banker et al. 1998).4

Control Variables. We controlled for additional
factors that might account for variation in project
quality. Prior research suggests that programming

4 Software complexity can also vary as a function of the specific
programming language used. This made it necessary to deter-
mine the programming language that was used in each project
in our sample. All software development teams used the same
programming language—Java. Consequently, we were comfortable
that none of the variability in the software complexity measures
could be attributed to programming language.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 387

experience is an important predictor of project qual-
ity (Banker et al. 1998, Vessey 1989). Therefore, we
computed the average number of years of program-
ming experience for each team. Team size has also been
found to affect project quality. Increasing team size
can create coordination problems, affecting the qual-
ity of team output. Team size was, thus, included as
an important control. We also controlled for two key
project characteristics: project size and project modu-
larity. Project size was measured as the number of lines
of code in the final project (Banker et al. 1998). We
measured project modularity as a count of the number
of modules in the software.

Procedure
Data were collected near the beginning, during the
middle, and at the end of the software projects in
naturally occurring conditions within the organiza-
tion. The organization launched a new enterprise-
wide project involving 151 software development
project teams. Each software development team was
responsible for developing a specific module for an
enterprise-wide system to replace a client organi-
zation’s existing legacy systems. The development
of each module, thus, represented a subproject. The
software solutions were expected to provide greater
business process support while enabling enhanced
cross-unit interoperability in the client organization.
Through interviews with the project coordinator and
subproject managers, we ascertained that there was
no interdependence across the modules (i.e., no two
subprojects were dependent upon each other for
successful completion) and the organization wanted
the teams to function autonomously as it was criti-
cal to ensure completion of the modules within the
deadline.5 To triangulate this information, we also
conducted interviews with top management in the
consulting firm as well as top management in the
client firm. All interviewees confirmed that there was
no interdependence across subprojects. The software
subprojects spanned different application domains.
For instance, one subproject involved developing a
system to support the client’s billing process. Another

5 In making the subproject assignments, the organization was care-
ful to ensure that each module could be developed as a stand-
alone product without needing input from other modules during
development.

subproject required a software solution to support the
client’s order management process. The project was
expected to last three months.
All project teams had a project manager who was

responsible for managing progress toward project
completion. Weekly meetings were held between
project managers and their respective teams to discuss
project-related issues. Project managers evaluated the
output of the team as a whole and also evaluated indi-
vidual developer performance. Prior literature has
consistently pointed out that software development
teams frequently adapt and appropriate methodolo-
gies in different ways (e.g., Fitzgerald 2000, Fitzgerald
et al. 2006). Indeed, arguably methodologies—such as
agile development—that are specifically constructed
to enable flexibility give software developers more
degrees of freedom in deciding how they want
to conduct specific software development activities.
In our empirical context, although the overall devel-
opment methodology prescribed for projects was
agile development, given that the project teams were
autonomous by design, project managers were given
discretion over how their team appropriated the
methodology. We were aware of this distinction and
purposively chose this research site as it offered
the desired variability in the use of agile practices.
In addition to having discretion over the extent to
which their teams used agile methodology practices,
each project manager also had discretion over how
control was exercised in his or her team.
All project teams began working simultaneously.

Participants were informed that the purpose of the
study was to examine software development team
processes. To organize team responses, all team mem-
bers and project managers were instructed to agree
on a single team name, which would be used to track
the questionnaires. The selection of team names was
standard practice within the organization. Further,
unique bar codes were placed on each survey so that
responses could be tracked over time, while main-
taining anonymity. One week after the start of the
projects, participants filled out the first questionnaire.
During this wave of data collection, team members
provided demographic information. Project managers
responded to questions regarding the use of outcome

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
388 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

Table 1 Correlations and Descriptive Statistics

Variables Mean SD 1 2 3 4 5 6 7 8 9 10 11

1. Outcome control 4�58 1�13
2. Self control 4�22 1�20 −0�12
3. Agile methodology use 4�98 1�42 0�15∗ 0�20∗∗∗

4. Requirements change 5�01 1�33 −0�17∗ 0�14∗ 0�14∗

5. Team size 7�84 1�15 −0�18∗∗ −0�07 −0�18∗ 0�05
6. Programming experience 5�30 2�25 −0�04 −0�13∗ −0�22∗∗ 0�15∗ 0�24∗∗∗

7. Project size 488,344 61,255 0�17∗ 0�24∗∗∗ 0�15∗ 0�23∗∗∗ 0�34∗∗∗ 0�22∗∗∗

8. Modularity 4�44 1�30 0�20∗∗∗ 0�24∗∗∗ 0�21∗∗∗ 0�15∗ 0�15∗ 0�21∗∗∗ 0�19∗∗

9. Bug severity 28�80 12�77 −0�19∗∗ 0�27∗∗∗ −0�16∗ 0�18∗ 0�11 0�04 0�02 −0�31∗∗∗

10. Component complexity 0�680 0�112 −0�24∗∗ −0�19∗∗ −0�22∗∗∗ 0�24∗∗∗ 0�19∗∗ 0�14∗ 0�29∗∗∗ −0�29∗∗∗ 0�28∗∗∗

11. Coordinative complexity 0�091 0�022 −0�19∗∗ 0�21∗∗∗ −0�19∗∗ 0�24∗∗∗ 0�20∗∗∗ 0�13∗ 0�24∗∗∗ −0�30∗∗∗ 0�21∗∗ 0�35∗∗∗

12. Dynamic complexity 0�017 0�015 −0�21∗∗ 0�15∗ −0�23∗∗∗ 0�21∗∗∗ 0�22∗∗∗ 0�09 0�30∗∗∗ −0�29∗∗∗ 0�15∗∗ 0�24∗∗∗ 0�29∗∗∗

Note. n = 110.
∗p < 0�05; ∗∗p < 0�01; ∗∗∗p < 0�001.

and self control to guide team work.6 Although the
use of controls was measured during the early stages
of the project, subsequent interviews confirmed that
project leaders did not change their choice of con-
trol during later stages of the project. Five weeks
later, when the teams were well into their software
development projects, the second questionnaire was
administered. During this second wave of data col-
lection, team members responded to questions about
their team’s use of XP practices during the project.7

The third and final questionnaire was administered
eleven weeks later. During this final wave of data
collection, project managers responded to questions
about the extent to which requirements were stable
over the course of the software project. Objective data
on the software projects were also collected after the
projects were completed but shortly before the final
product was delivered to the client.8

Analysis
The convergent and discriminant validity of variables
in the model was assessed using factor analysis with

6 To avoid hindsight bias, we decided to assess the exercise of con-
trol toward the beginning of the project.
7 We measured the use of XP practices in the middle of the projects
to get an accurate assessment of the practices in use in the software
development projects. We wanted to avoid any hindsight bias that
might occur if we asked respondents to reflect on their use of XP
practices after the projects had been completed.
8 Requirements change was measured at the end of the project to
more accurately capture the extent to which these changes occurred
over the course of the entire project.

direct oblimin rotation. All items loaded on the pre-
specified constructs with loadings greater than 0.65
and cross-loadings less than 0.30.9 The Pearson prod-
uct moment correlations, means, and standard devia-
tions of the constructs in the model are presented in
Table 1. It is interesting to note that agile methodology
use is negatively correlated with the four measures of
software project quality. Outcome control is also neg-
atively correlated with the four measures of software
project quality. In contrast, self control is positively
correlated with bug severity, coordinative complex-
ity, and dynamic complexity but negatively correlated
with component complexity. Appendix B presents a
break down of the descriptive statistics by subgroup
(e.g., by agile methodology use, by control mode). The
descriptive statistics were split into lower and upper
quartiles. We conducted other types of sample splits
and found the overall pattern of means to be similar.
In order to test the main effect and moderating

hypotheses, we use a seemingly unrelated regres-
sion equations approach (Greene 1997, Zellner 1962).
We chose this approach because previous research
has found a relationship between software complex-
ity and bug severity (Kemerer 1995). This raises the
possibility of correlated error terms among the mod-
els predicting bug severity and software complexity
resulting in biased estimates in ordinary least squares
regression. In addition, this approach helps allay con-
cerns about the projects in the sample being part of

9 Given the clean pattern of results and in the interest of space, we
have not shown the results here.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 389

a larger project. Consistent with guidelines outlined
by Baron and Kenny (1986), we used a hierarchical
approach to testing the hypotheses in the model. Con-
trol variables are entered into the first block of the
regression model. Main effect variables are entered
into the second block, followed by the interaction
terms in the third block. We scale centered the con-
trol mode, agile methodology use, and requirements
change variables to reduce multicollinearity between
the main effect variables and the interaction terms
(Aiken and West 1991).

Results
The results of the moderated regression analysis
predicting software project quality are presented in
Table 2. Model 1(a, b, c, d) presents the regression
equations with only the control variables. The results
of the main effects only models are presented in model
2(a, b, c, d). The main effects only models explain
17%, 28%, 25%, and 27% of the variance in bug sever-
ity, component complexity, coordinative complexity,
and dynamic complexity respectively. Requirements
change has a positive effect on bug severity (� =
0�14, p < 0�05), coordinative complexity (� = 0�16, p <

0�05), and dynamic complexity (� = 0�16, p < 0�05).
These findings are consistent with prior research indi-
cating that requirements change negatively influences
software project quality. However, contrary to expec-
tations, requirements change has a negative effect
on component complexity (� = −0�16, p < 0�05). The
control modes have significant effects on the four
measures of project quality. In particular, outcome con-
trol has a significant negative influence on bug sever-
ity (� = −0�12, p < 0�05), component complexity (� =
−0�17, p < 0�01), coordinative complexity (� = −0�15,
p < 0�05), and dynamic complexity (� = −0�21, p <

0�01). In contrast, self control has a positive effect on
bug severity (� = 0�14, p < 0�05), coordinative com-
plexity (� = 0�14, p < 0�05), and dynamic complexity
(� = 0�13, p < 0�05), and has a negative effect on com-
ponent complexity (� = −0�13, p < 0�05).
In Hypothesis 1, we predicted that agile method-

ology use would be positively related with software
project quality. As indicated in the main effects mod-
els, agile methodology use had a positive influence on
software project quality. Specifically, the coefficient for
agile methodology use is negative in the regression

models predicting bug severity (� = −0�19, p < 0�01),
component complexity (� = −0�26, p < 0�001), coordi-
native complexity (� = −0�22, p < 0�001), and dynamic
complexity (� = −0�24, p < 0�001).
The interaction effects model results are presented

in model 3(a, b, c, d). The interaction effects models
explain 41%, 43%, 43%, and 44% of the variance in
bug severity (�R2 = 0�24, F = 4�16, p < 0�001), com-
ponent complexity (�R2 = 0�15, F = 3�06, p < 0�001),
coordinative complexity (�R2 = 0�18, F = 3�67, p <
0�001), and dynamic complexity (�R2 = 0�17, F = 4�08,
p < 0�001) respectively. As the �R2 values indicate,
the interaction models explained statistically signifi-
cantly more variance in the predictors over and above
that explained by the main effects model, thus, pro-
viding support for Hypotheses 2 and 3 (Carte and
Russell 2003). Further, a power analysis suggested
that our sample size of 110 teams was enough to
detect medium sized effects with a power of 0.80
and � of 0.05. We examined the variance inflation
factors (VIFs) to assess multicollinearity. As indicated
in Table 2, the VIFs were all well below the recom-
mended cutoff value of 10 (Ryan 1997), thus suggest-
ing that multicollinearity was not a concern in the
results. The three-way interaction between outcome
control, agile methodology use, and requirements
change is significant in predicting bug severity (� =
0�30, p < 0�01), component complexity (� = 0�32, p <
0�001), coordinative complexity (� = 0�34, p < 0�001),
and dynamic complexity (� = 0�32, p < 0�001). Further,
the three-way interaction between self control, agile
methodology use, and requirements change has a sig-
nificant influence on bug severity (� = 0�34, p < 0�001),
component complexity (� = 0�35, p < 0�001), coordi-
native complexity (� = 0�35, p < 0�001), and dynamic
complexity (� = 0�37, p < 0�001).
To better understand the pattern of the three-way

moderation, we plotted the interactions following
guidelines by Aiken and West (1991). Interactions
were plotted at one standard deviation above and
below the mean for requirements change and each
control mode. The interactions are displayed in Fig-
ures 2 and 3. As Figure 2 shows, agile methodology
use generally has a negative effect on bug severity
and software complexity (i.e., a positive influence on
project quality). Further, as indicated in Table 2, out-
come control has a negative main effect on bug sever-
ity and software complexity. This suggests that agile

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
390 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

Ta
bl
e
2

Re
su
lts

of
Se

em
in
gl
y
Un

re
la
te
d
Re

gr
es
si
on

Eq
ua

tio
ns

M
od

el
s
Pr
ed

ic
tin

g
Bu

g
Se

ve
rit
y
an

d
So

ftw
ar
e
Co

m
pl
ex
ity

Bu
g
se
ve
rit
y

Co
m
po

ne
nt

co
m
pl
ex
ity

Co
or
di
na
tiv
e
co
m
pl
ex
ity

Dy
na
m
ic
co
m
pl
ex
ity

Va
ria
bl
es

1a
2a

3a
1b

2b
3b

1c
2c

3c
1d

2d
3d

Co
nt
ro
ls
:

Te
am

si
ze

0�
03

0�
01

0�
01

�1
�4
0�

0�
15

∗
0�
09

0�
06

�1
�2
9�

0�
15

∗
0�
04

0�
02

�1
�3
0�

0�
14

∗
0�
07

0�
01

�1
�4
4�

Pr
og

.e
xp
er
ie
nc
e

0�
03

0�
02

0�
04

�1
�1
9�

0�
08

0�
07

0�
04

�1
�2
5�

0�
04

0�
01

0�
03

�1
�3
1�

0�
04

0�
06

0�
05

�1
�3
9�

Pr
oj
ec
ts
ize

0�
04

0�
03

0�
02

�1
�2
3�

0�
12

∗
0�
05

0�
04

�1
�2
0�

0�
10

0�
02

0�
03

�1
�2
5�

0�
19

∗∗
0�
19

∗∗
0�
12

∗
�1

�3
5�

M
od

ul
ar
ity

−0
�1
7∗

∗
−0

�1
3∗

−0
�0
5

�1
�2
4�

0�
17

∗∗
0�
12

∗
0�
01

�1
�3
0�

0�
16

∗
0�
03

0�
07

�1
�2
0�

0�
07

0�
05

0�
03

�1
�2
9�

M
ai
n
ef
fe
ct
s:

Ag
ile

m
et
ho

do
lo
gy

us
e

−0
�1
9∗

∗
−0

�0
9

�2
�1
1�

−0
�2
6∗

∗∗
−0

�1
7∗

∗
�2

�0
1�

−0
�2
2∗

∗∗
−0

�1
9∗

∗
�2

�2
2�

−0
�2
4∗

∗∗
−0

�1
3∗

�2
�1
3�

Re
qu

ire
m
en
ts
ch
an
ge

0�
14

∗
0�
12

∗
�1

�8
5�

−0
�1
6∗

−0
�0
7

�1
�3
4�

0�
16

∗
0�
14

∗
�2

�5
5�

0�
16

∗
0�
12

∗
�1

�4
0�

Ou
tc
om

e
co
nt
ro
l(
OC

ON
T)

−0
�1
2∗

−0
�0
5

�1
�5
3�

−0
�1
7∗

∗
−0

�1
0

�1
�9
5�

−0
�1
5∗

−0
�1
2∗

�2
�9
0�

−0
�2
1∗

∗
−0

�1
8∗

�1
�5
7�

Se
lf
co
nt
ro
l(
SC

ON
T)

0�
14

∗
0�
07

�1
�2
2�

−0
�1
3∗

−0
�0
7

�1
�3
8�

0�
14

∗
0�
08

�3
�0
9�

0�
13

∗
0�
09

�2
�8
5�

In
te
ra
ct
io
n
ef
fe
ct
s:

Ag
ile

m
et
ho

do
lo
gy

us
e×

Re
q.

ch
an
ge

0�
06

�2
�2
1�

0�
02

�2
�5
9�

0�
09

�2
�8
8�

0�
01

�1
�2
8�

OC
ON

T
×
Ag

ile
m
et
ho

do
lo
gy

us
e

0�
09

�2
�4
0�

0�
04

�1
�8
1�

0�
08

�2
�3
5�

0�
02

�1
�5
4�

OC
ON

T
×
Re

q.
ch
an
ge

0�
07

�2
�3
1�

0�
07

�2
�5
0�

0�
10

�3
�2
2�

0�
06

�3
�2
0�

OC
ON

T
×
Ag

ile
m
et
ho

do
lo
gy

us
e×

Re
q.

ch
an
ge

0�
30

∗∗
�2

�1
5�

0�
32

∗∗
∗

�2
�8
8�

0�
34

∗∗
∗

�2
�4
4�

0�
32

∗∗
∗

�2
�3
0�

SC
ON

T
×
Ag

ile
m
et
ho

do
lo
gy

us
e

0�
10

�3
�1
2�

0�
08

�3
�0
3�

0�
06

�2
�1
0�

0�
08

�2
�9
5�

SC
ON

T
×
Re

q.
ch
an
ge

0�
10

�2
�8
0�

0�
05

�2
�0
9�

0�
10

�1
�8
9�

0�
11

�3
�0
9�

SC
ON

T
×
Ag

ile
m
et
ho

do
lo
gy

us
e×

Re
q.

ch
an
ge

0�
34

∗∗
∗

�1
�9
9�

0�
35

∗∗
∗

�1
�5
0�

0�
35

∗∗
∗

�1
�9
5�

0�
37

∗∗
∗

�2
�2
5�

R
2

0�
03

0�
17

0�
41

0�
09

0�
28

0�
43

0�
06

0�
25

0�
43

0�
05

0�
27

0�
44

F
4�
51

∗
6�
13

∗∗
∗

12
�5
8∗

∗∗
3�
91

∗
7�
91

∗∗
∗

13
�7
5∗

∗∗
4�
70

∗
9�
43

∗∗
∗

17
�6
0∗

∗∗
3�
82

∗
9�
29

∗∗
∗

14
�2
4∗

∗∗

Ad
ju
st
ed

R
2

0�
00

0�
10

0�
32

0�
05

0�
22

0�
34

0�
02

0�
19

0�
34

0�
01

0�
21

0�
37

�
R

2
0�
03

0�
14

0�
24

0�
09

0�
19

0�
15

0�
06

0�
19

0�
18

0�
05

0�
22

0�
17

�
F

2�
04

∗∗
∗

4�
16

∗∗
∗

3�
20

∗∗
∗

3�
06

∗∗
∗

3�
07

∗∗
∗

3�
67

∗∗
∗

3�
65

∗∗
∗

4�
08

∗∗
∗

No
te
s.

n
=
11

0.
Va
ria
nc
e
in
fla
tio

n
fa
ct
or
s
ar
e
sh
ow

n
in
pa
re
nt
he
se
s.

∗ p
<
0�
05

;∗
∗ p

<
0�
01

;∗
∗∗

p
<
0�
00

1.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 391

Figure 2 Three-Way Interactions: Outcome Control×Agile Methodology Use×Requirements Change

(1) High requirements change, high outcome control

(2) High requirements change, low outcome control

(3) Low requirements change, high outcome control

(4) Low requirements change, low outcome control

Low agile
methodology use

High agile
methodology use

B
ug

 s
ev

er
ity

Low agile
methodology use

High Agile
methodology use

C
om

po
ne

nt
 c

om
pl

ex
ity

Low agile
methodology use

High agile
methodology use

Low agile
methodology use

High agile
methodology use

C
oo

rd
in

at
iv

e
co

m
pl

ex
ity

D
yn

am
ic

 c
om

pl
ex

ity

methodology use and the exercise of outcome con-
trol are mutually reinforcing of higher project qual-
ity. This relationship is borne out in Figure 2. Specif-
ically, outcome control facilitates a stronger negative
relationship between agile methodology use and bug
severity and software complexity. The joint effect of
agile methodology use and outcome control yields the
lowest bug severity and software complexity, espe-
cially when requirements change is high. Thus, consis-
tent with Hypothesis 2, agile methodology use is most
important in improving project quality when outcome
control and requirements change are high.
Figure 3 presents the three-way interaction between

self control, agile methodology use, and requirements
change. As the figure illustrates, agile methodology
use is effective in reducing bug severity and software
complexity when the level of requirements change is
low and self control is high, or when requirements

change is high and self control is low. In contrast,
agile methodology use is ineffective in reducing bug
severity and software complexity when requirements
change is high and self control is high. This sug-
gests that the exercise of self control is detrimental to
agile methodology use under dynamic environmen-
tal conditions. In support of this interpretation, self
control generally has a positive main effect on bug
severity and software complexity, suggesting that it
should have a dampening effect on the influence of
agile methodology use under certain conditions. Con-
sistent with Hypothesis 3, the relationship between
agile methodology use and project quality is least posi-
tive when self control is high and requirements change
is high.
As a robustness check, we estimated a few plausible

alternative models. Given the order in which the vari-
ables in the study were collected, it is possible that the

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
392 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

Figure 3 Three-Way Interactions: Self Control×Agile Methodology Use×Requirements Change

(1) High requirements change, high self control

(2) High requirements change, low self control

(3) Low requirements change, high self control

(4) Low requirements change, low self control

C
om

po
ne

nt
 c

om
pl

ex
ity

Low agile
methodology use

High agile
methodology use

Low agile
methodology use

High agile
methodology use

Low agile
methodology use

High agile
methodology use

Low agile
methodology use

High agile
methodology use

B
ug

 s
ev

er
ity

C
oo

rd
in

at
iv

e
co

m
pl

ex
ity

D
yn

am
ic

 c
om

pl
ex

ity

choice of control mode could influence the use of XP,
which in turn could influence software project quality.
To test this alternative model, we conducted a medi-
ation test following Baron and Kenny (1986). Control
modes did not significantly influence the use of XP
in our analysis. It is also possible that the use of XP
could facilitate more requirements changes, which in
turn could affect software quality. Mediational analy-
sis did not provide support for this alternative model.
Hence, we are reasonably confident in the robustness
of the results.

Discussion
The objective of this research was to theorize and
study the complex relationship between control, agile
methodology use, and requirements change, and
their impact on software development project quality.
We sought to understand the contingencies affecting
the effectiveness of agile methodology use in soft-
ware development teams by incorporating considera-
tions of the external environment—via requirements

change—and project governance—via control modes.
We tested our hypotheses in a field study of soft-
ware development teams. Our model explained 41%,
43%, 43%, and 44% of the variance in four indicators
of project quality: bug severity, component complex-
ity, coordinative complexity, and dynamic complexity
respectively. As predicted, agile methodology use had
a significant positive influence on project quality and
there was a significant three-way interaction between
control, agile methodology use, and requirements
change in predicting project quality. Each control
mode differed in the extent to which it supported or
hindered the effectiveness of agile methodology use
in the face of requirements change. Taken together,
the findings provide insights into the management of
software development teams and present a step for-
ward in understanding the tension between the need
for structure and the need for autonomy in software
development.
Our findings contribute to the literature in sev-

eral ways. First, we extend the growing literature on

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 393

responsiveness to change in software development
teams. We noted that although previous research has
highlighted the importance of flexibility in enabling
software development teams to cope with require-
ments change (Lee and Xia 2005, MacCormack et al.
2001), less has been said about how such teams
should be managed. In this research, we theorized
how control modes affect software development
project quality by providing a context that either sup-
ports or hinders agile software development teams
in coping with requirements change. We reasoned
that, although autonomy is an important factor in
enabling agile software development teams to thrive,
the manner in which project leaders facilitate auton-
omy has implications for how effective the teams can
be in completing their assigned task. Specifically, we
found that autonomy is most supportive when (1) it is
granted to the team as whole, as opposed to individu-
als within the team; and (2) it is provided in conjunc-
tion with specific performance targets for the team.
Second, this research contributes to the control lit-

erature. Although previous research has identified
key antecedents (e.g., Kirsch 1996, Kirsch et al. 2002)
and outcomes (e.g., Henderson and Lee 1992, Nidu-
molu and Subramani 2003) of various control modes,
limited work identifies and theorizes the contingent
role that they play in guiding teams toward project
completion. We argued that the effectiveness of agile
methodology use is contingent, not only on the level
of uncertainty wrought by requirements change, but
also on the type of control that is exercised. Specif-
ically, we found that agile methodology use is most
effective for responding to requirements change when
outcome control is exercised. In the case of self
control, our results suggest that agile methodology
use is least effective in predicting project quality—
especially for teams facing high requirements change.
Thus, it appears that agile methods are more effec-
tive when paired with the exercise of outcome, rather
than self control. We reasoned that the exercise of
self control that emphasizes self-regulation would
create coordination problems in effectively execut-
ing agile methodology practices—particularly when
the level of requirements change is high. With high
levels of requirements change, carefully orchestrated
actions need to be executed in a timely manner. This
requires effective collaboration on the part of team

members, something that is difficult to achieve when
rewards are contingent on self-regulation and individ-
ual performance.

Strengths and Limitations
Our research has a few key strengths and limita-
tions that need to be highlighted. First, we used a
field sample of software development teams, thus,
increasing the external validity of the findings. How-
ever, the study was conducted within the context
of a single organization. Although this allowed us
to naturally control for contextual factors that might
arise from interfirm differences, future replications
across multiple organizations are needed to validate
the findings. Second, our study design enabled us
to minimize concerns about common method vari-
ance (Podsakoff et al. 2003). Specifically, a research
design that involved three different points of mea-
surement was used. Independent variables in the
research model were measured using survey meth-
ods and dependent variables were captured via objec-
tive software project metrics. Such a design alleviates
concerns about common method variance (Podsakoff
et al. 2003). An additional strength of the study is
that multiple respondents were used to gather data.
Whereas project managers provided responses about
control modes, team members responded to questions
about their team’s agile methodology use. The use of
multiple respondents further increases the accuracy
of the measures and is instrumental in reducing con-
cerns of common method variance (Podsakoff et al.
2003). In the empirical analysis we operationalized
agile methodology use using one specific methodol-
ogy: XP. Although our theoretical arguments are not
based on any one specific methodology, the generaliz-
ability of the findings to other agile approaches would
need to be empirically verified.

Theoretical Implications and Directions
for Future Research
A recent multiple case study by Slaughter et al. (2006)
highlights how firms align their software processes,
products, and strategies. Slaughter et al. (2006) call
for future research to examine the consequences of
alignment (or misalignment) at a micro level. This
research provides a response to that call. Our findings
on the interplay of control modes, agile methodology

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
394 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

use, and requirements change suggest the need for
alignment between management strategy and team
functioning. Whereas agile methodology use enables
software development teams to cope with require-
ments change, there needs to be a supportive context
for meeting such objectives. The modes of control
employed by project managers have emerged as an
important resource for shaping such a context. Thus,
future research needs to incorporate control consider-
ations when examining flexibility in software devel-
opment teams. In the current research, we examined
flexibility as enabled by the use of agile software
development methodologies. However, there may be
additional ways of enhancing software development
team flexibility, including resource fungibility and
team design.
Exercise of self control was found to be detri-

mental to the relationship between agile methodol-
ogy use and project quality. The use of self control
undermined the benefits of agile methodology use
in software development teams. This presents an
interesting dilemma for managers because software
developers are typically compensated for their unique
skills and abilities (Ang and Slaughter 2001). Clearly,
reward structures that emphasize individual achieve-
ment represent an incentive misalignment from a
team perspective. This is consistent with Wageman’s
(1995) finding that teams’ whose reward structures
are aligned with the level of task interdependence
performed better than teams that had incentive mis-
alignments. In software development projects, where
task complexity and interdependence are high, out-
come interdependence is critical for fostering coop-
erative behavior. As the results of this study show,
when incentives do not promote collective action and
coordination, it is difficult to realize the benefits of a
flexible development process. Future research should
investigate contingencies under which the use of self
control yields positive outcomes for project quality.
We studied the interplay between requirements

change, control modes, and agile methodology use
in the context of XP. Future research would add
value by examining how the control modes stud-
ied here affect software development teams employ-
ing other agile methodologies such as Scrum or
Crystal. Agile methodologies differ in the manner

through which they provide flexibility, thus, mak-
ing it important to understand how project manage-
ment approaches should be tailored to each. Addition-
ally, future research needs to examine these different
methodologies at the level of individual practices. It
is important to understand the extent to which indi-
vidual agile practices affect project outcomes, and
the contingencies affecting those relationships. Given
their importance for supporting interpersonal pro-
cesses (Maruping and Agarwal 2004), such research
should also incorporate the role of communication
technologies in supporting the execution of individual
agile practices, as an increasing proportion of software
development is being conducted by distributed teams.
We did not incorporate temporal considerations

into our theorizing. Temporal considerations are
another important contingency that should be con-
sidered in future research. Recent research on con-
trol in software development teams suggests that the
control modes employed by project managers can
change over the course of a project (Choudhury and
Sabherwal 2003, Kirsch 2004). It is possible that as the
choice of control mode evolves so too does the effec-
tiveness of agile methodologies in software develop-
ment teams. Alternatively, changes in control mode
might be driven by whether, and how frequently,
user requirements change over the course of a soft-
ware development project. The occurrence of user
requirements changes is difficult, if not impossible, to
predict ex ante. Therefore, project managers need to
make adjustments along the way. Research that sheds
light on the interplay between control modes, agile
methodology use, and performance over time would
make a valuable contribution to the literature. The
evolution of control mode use over time may be part
of a continuous cycle of alignment as software devel-
opment teams and project managers strive to improve
project outcomes over the course of a project.
Finally, in this research, we only focused on soft-

ware quality as the outcome measure of interest.
However, project performance encompasses a vari-
ety of dimensions including client satisfaction and
managing costs. It would be important to under-
stand whether and how agile methodology use—at
the level of individual practices—enables software
development teams to optimize their performance on
all aspects of project performance and what control

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 395

modes enable them to do so effectively. It is possible
that the agile methodology and control modes exam-
ined here are more effective for some performance
metrics than for others. Future research should exam-
ine the impact of these on a broader set of perfor-
mance metrics.

Practical Implications
A key implication for project managers is the need to
match their management approach to the contextual
needs of the project. In other words, project managers
are advised to strive to achieve alignment between
the modes of control they employ and conditions
faced by software development teams. If software
development teams are able to freeze requirements
after the requirements definition phase of a software
project, then there may be little need for the flexibil-
ity enabled by agile methodologies. Project managers
are also better off in using control modes that pro-
vide software development teams with autonomy in
determining the appropriate methods for managing
the software development process, especially when
numerous adjustments must be made over the course
of a project. This implication raises some interesting
questions related to the appropriate skill set of project
managers. In essence, our findings point to the need for
agility in project management approaches, suggesting
thatmanagers need to bewell-versed in traditional and
more agile methods of development and control.
It is paramount for software development teams to

maintain a focus on outcomes throughout a software
project. Teams that are continuously working to adapt
to evolving user needs can easily lose sight of project
objectives. Control modes that emphasize outcomes
will help to ensure that software development teams
are constantly mindful of project objectives. Project
managers can implement such controls through status
meetings and reports that track the team’s progress
toward achieving important project milestones. This
type of approach will ensure that all efforts to respond
to changing user needs remain in line with project
objectives.
Finally, simply providing software development

teams with autonomy may not yield desirable results.
Managers need to be deliberate about how they pro-
vide autonomy through control. When developers are

given carte blanche with regard to task accomplish-
ment, the results can be disastrous. Incentive mech-
anisms that emphasize individual achievement may
prompt developers to engage in one-upmanship as
they try to showcase their talents. Such behavior
may not be in the team’s best interests as the solu-
tions that individual developers create may be unduly
complex and can prove to be difficult to integrate
into existing production code. Managers are there-
fore encouraged to emphasize team outcome inter-
dependence, rather than individual achievement, in
software development project work. An emphasis on
collaborative achievement will ensure that efforts to
address changing user requirements are in the interest
of enabling the team to achieve its objectives.

Conclusions
We developed a model of the interplay between con-
trol, agile methodology use, and requirements change,
and their effects on software development project
quality. Control was argued to be an important con-
tingency affecting the ability of software teams to
respond to changing user requirements. We argued
that, under conditions of high requirements change,
agile methodology use would be important and
control modes that provide team autonomy in devel-
opment activity would be most effective in promoting
increased project quality. The hypotheses were empiri-
cally tested in a field study. This research is among the
first to empirically examine the interplay between con-
trol, agile methodology use, and requirements change.
The findings offer insights on how to manage software
development teams that use agile methodologies.

Acknowledgments
The authors thank the participating organization, which has
chosen to remain anonymous, for the generous amount of
support provided for this project. The authors gratefully
acknowledge the constructive feedback provided by the
special issue senior editors and the reviewers. The signifi-
cant input of Kate Stewart, Paul Tesluk, and Paul Hanges is
also gratefully acknowledged. Finally, this paper also bene-
fited tremendously from input by Fred Davis, participants
at the ISR special issue workshop in Limerick, Ireland, par-
ticipants at the brownbag research series at the University
of Arkansas, and participants at the research workshop at
the Hong Kong Polytechnic University.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
396 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

Appendix A. Scales10

Outcome Control
1. The performance of the team will be evaluated by

the extent to which project goals have been accomplished,
regardless of how the goals were accomplished.

2. Project goals were outlined at the beginning of the
project.

3. Significant weight will be placed upon timely project
completion.

4. Significant weight will be placed upon project quality.
5. Significant weight will be placed upon project comple-

tion to meet client requirements.
6. Preestablished targets are used as benchmarks for the

team’s performance evaluations.

Self Control
1. Tangible rewards given to the team, are (or will be)

dependent on whether individuals on the team work on
their own, without much direction from others.

2. Individuals on this team are rewarded for their indi-
vidual performance.

3. Individual task performance is rewarded on this team.

Agile Methodology Use

Pair programming
1. How often is pair programming used on this team?a

2. On this team, we do our software development using
pairs of developers.

3. To what extent is programming carried out by pairs of
developers on this team?a

Continuous integration
1. Members of this team integrate newly coded units of

software with existing code.
2. We combine new code with existing code on a contin-

ual basis.
3. Our team does not take time to combine various units

of code as they are developed.

Refactoring
1. Where necessary, members of this team try to simplify

existing code without changing its functionality.
2. We periodically identify and eliminate redundancies

in the software code.
3. We periodically simplify existing code.

Unit testing
1. We run unit tests on newly coded modules until they

run flawlessly.

10 All items are measured on a seven-point Likert agreement scale,
with “Strongly disagree” to “Strongly agree” as anchors unless oth-
erwise noted, with a representing the exception that indicates that
an item is measured using “Never” to “All the time” as anchors.

2. Members of this team actively engage in unit testing.
3. To what extent are unit tests run by this team?a

Collective ownership
1. Anyone on this team can change existing code at any

time.
2. If anyone wants to change a piece of code, they need

the permission of the individual(s) that coded it.
3. Members of this team feel comfortable changing any

part of the existing code at any time.

Coding standards
1. We have a set of agreed upon coding standards in this

team.
2. Members of this team have a shared understanding of

how code is to be written.
3. Everyone on this team uses their own standards for

coding.

Requirements Change
1. Requirements fluctuated quite a bit in early phases of

this project.
2. Requirements fluctuated quite a bit in later phases of

this project.
3. Requirements identified at the beginning of the project

were quite different from those toward the end.

Appendix B. Descriptive Statistics by Subgroups11

Table B1 Descriptive Statistics by Agile Methodology Use

High agile methodology Low agile methodology
use (n = 28) use (n = 28)

Variables Mean SD Mean SD

1. Requirements 5�03 1�30 5�01 1�28
change

2. Team size 7�79 1�14 7�86 1�18
3. Programming 5�22 2�21 5�31 2�27

experience
4. Project size 477,728 60,501 478,845 60,920
5. Modularity 4�40 1�31 4�45 1�28
6. Outcome control 4�55 1�10 4�60 1�16
7. Self control 4�21 1�23 4�28 1�18
8. Bug severity 24�21 10�45 31�22 11�02
9. Component 0�560 0�110 0�710 0�080

complexity
10. Coordinative 0�080 0�020 0�113 0�041

complexity
11. Dynamic 0�010 0�014 0�022 0�002

complexity

11Displayed descriptive statistics are based on upper and lower
quartiles in the sample of project teams. Other types of sam-
ple splits were conducted (e.g., median split, upper third versus
lower third split) by each subgrouping. A similar pattern of means
resulted for each.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 397

Table B2 Descriptive Statistics by Control Mode

Outcome control Self control
(n = 28) (n = 28)

Variables Mean SD Mean SD

1. Agile methodology use 5�01 1�40 4�95 1�43
2. Requirements change 5�04 1�35 5�00 1�30
3. Team size 7�91 1�16 7�80 1�14
4. Programming 5�33 2�29 5�27 2�18

experience
5. Project size 491,330 60,200 494,133 61,508
6. Modularity 4�49 1�31 4�42 1�28
7. Bug severity 24�20 10�90 31�04 12�50
8. Component complexity 0�761 0�101 0�610 0�089
9. Coordinative complexity 0�075 0�020 0�105 0�017
10. Dynamic complexity 0�010 0�008 0�022 0�012

Table B3 Descriptive Statistics by Requirements Change

High requirements Low requirements
change (n = 28) change (n = 28)

Variables Mean SD Mean SD

1. Agile methodology use 5�01 1�40 4�95 1�43
2. Team size 7�90 1�12 7�91 1�15
3. Programming experience 5�33 2�20 5�28 2�26
4. Project size 494,340 62,920 475,089 60,023
5. Modularity 4�40 1�34 4�45 1�29
6. Outcome control 4�48 1�10 4�59 1�13
7. Self control 4�15 1�22 4�20 1�20
8. Bug severity 33�20 11�44 26�38 12�90
9. Component complexity 0�731 0�115 0�601 0�110

10. Coordinative complexity 0�110 0�021 0�068 0�020
11. Dynamic complexity 0�029 0�010 0�010 0�010

References
Aiken, L. S., S. G. West. 1991. Multiple Regression: Testing and Inter-

preting Interactions. Sage, London.

Ang, S., S. A. Slaughter. 2001. Work outcomes and job design for
contract versus permanent information systems professionals
on software development teams. MIS Quart. 25(3) 321–350.

Aoyama, M. 1998. Web-based agile software development. IEEE
Software 15(6) 56–65.

Bailyn, L. 1985. Autonomy in the industrial R&D laboratory. Human
Resource Management 24 129–146.

Banker, R. D., S. M. Datar, C. F. Kemerer. 1991. A model to evalu-
ate variables impacting productivity on software maintenance
projects. Management Sci. 37(1) 1–18.

Banker, R. D., G. B. Davis, S. A. Slaughter. 1998. Software develop-
ment practices, software complexity, and software maintenance
performance: A field study. Management Sci. 44(4) 433–450.

Barki, H., J. Hartwick. 2001. Interpersonal conflict and its man-
agement in information system development. MIS Quart. 25(2)
195–228.

Baron, R. M., D. A. Kenny. 1986. The moderator-mediator variable
distinction in social psychological research: Conceptual, strate-
gic, and statistical considerations. J. Personality Soc. Psych. 51(6)
1173–1182.

Baskerville, R., L. Levine, J. Pries-Heje, B. Ramesh, S. A. Slaughter.
2002. Balancing quality and agility in Internet speed software
development. L. Applegate, R. Galliers, J. I. DeGross, eds. Proc.
23rd Internat. Conf. Inform. Systems, Barcelona, Spain, 859–864.

Beath, C. M., W. J. Orlikowski. 1994. The contradictory structure
of systems development methodologies: Deconstructing the
IS-user relationship in information engineering. Inform. Systems
Res. 5(4) 350–377.

Beck, K. 1999. Embracing change with extreme programming. IEEE
Comput. 32 70–77.

Beck, K. 2000. Extreme Programming Explained. Addison-Wesley,
Reading, MA.

Beck, K. 2003. Test-Driven Development by Example. Addison-Wesley,
Reading, MA.

Bieman, J. 2002. Risks to software quality. Software Quality J. 10(1)
7–9.

Bliese, P. D. 2000. Within-group agreement, non-independence, and
reliability: Implications for data aggregation and analysis. K. J.
Klein, S. W. J. Kozlowski, eds. Multilevel Theory, Research, and
Methods in Organizations. Jossey-Bass, San Fransisco, 349–381.

Boehm, B. W. 1981. Software Engineering Economics. Prentice-Hall,
Upper Saddle River, NJ.

Boehm, B. W. 1991. Software risk management: Principles and prac-
tices. IEEE Software 8(1) 32–41.

Boehm, B. W., R. Turner. 2005. Management challenges to imple-
menting agile processes in traditional development organiza-
tions. IEEE Software 22(5) 30–39.

Brooks, F. P., Jr. 1987. No silver bullet: Essence and accidents of
software engineering. Computer 20(4) 10–19.

Byrd, T. A., D. E. Turner. 2000. Measuring the flexibility of informa-
tion technology infrastructure: Exploratory analysis of a con-
struct. J. Management Inform. Systems 17(1) 167–208.

Card, D. N. 1992. Designing software for producibility. J. Systems
Software 17 219–225.

Card, D. N., R. L. Glass. 1990. Measuring Software Design Quality.
Prentice-Hall, Englewood Cliffs, NJ.

Carte. T. A., C. J. Russell. 2003. In pursuit of moderation: Nine
common errors and their solutions. MIS Quart. 27(3) 479–501.

Chan, D. 1998. Functional relations among constructs in the same
content domain at different levels of analysis: A typology of
composition models. J. Appl. Psych. 83 234–246.

Choudhury, V., R. Sabherwal. 2003. Portfolios of control in out-
sourced software development projects. Inform. Systems Res.
14(3) 291–314.

Coad, P., J. De Luca, E. Lefebre. 1999. Java Modeling in Color.
Prentice–Hall, Englewood Cliffs, NJ.

Cockburn, A. 2001. Agile Software Development. Addison-Wesley,
Reading, MA.

Cohen, S. G., D. E. Bailey. 1997. What makes teams work? Group
effectiveness research from the shop floor to the executive
suite. J. Management 23 239–290.

Cohen, S. G., G. E. Ledford, G. M. Spreitzer. 1996. A predictive
model of self-managing work team effectiveness. Human Rela-
tions 49 643–676.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
398 Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS

Conboy, K. 2009. Agility from first principles: Reconstructing the
concept of agility in information systems development. Inform.
Systems Res. 20(3) 329–354.

Curtis, B., H. Krasner, N. Iscoe. 1988. A field study of the soft-
ware design process for large systems. Comm. ACM 31(11)
1268–1287.

Cusumano, M. A., D. B. Yoffie. 1999. Software development on
Internet time. IEEE Comput. 32(10) 60–69.

Darcy, D. P., S. A. Slaughter, C. F. Kemerer, J. E. Tomayko. 2005.
The structural complexity of software: An empirical test. IEEE
Trans. Software Engrg. 31(11) 982–995.

DeVellis, R. F. 2003. Scale Development: Theory and Applications. Sage,
Thousand Oaks, CA.

Duncan, N. B. 1995. Capturing flexibility of information technol-
ogy infrastructure: A study of resource characteristics and their
measure. J. Management Inform. Systems 12(2) 37–57.

Eisenhardt, K. M. 1985. Control: Organizational and economic
approaches. Management Sci. 31(2) 134–149.

Fitzgerald, B. 2000. Systems development methodologies: The prob-
lem of tenses. Inform. Tech. People 13 13–22.

Fitzgerald, B., G. Hartnett, K. Conboy. 2006. Customising agile
methods to software practices at Intel Shannon. Eur. J. Inform.
Systems 15 200–213.

Fowler, M. 2005. The new methodology. Retrieved May 26, 2007,
http://www.martinfowler.com/articles/newMethodology.html.

Fowler, M., J. Highsmith. 2001. Agile methodologists agree on
something. Software Development 9 28–32.

Gefen, D., M. Keil. 1998. The impact of developer responsiveness on
perceptions of usefulness and ease of use: An extension of the
technology acceptance model. DATABASE Adv. Inform. Systems
29(2) 35–49.

Gerwin, D., L. Moffat. 1997. Withdrawal of team autonomy during
concurrent engineering. Management Sci. 43(9) 1275–1287.

Greene, W. H. 1997. Econometric Analysis, 3rd ed. MacMillan Pub-
lishing Company, New York.

Guinan, P. J., J. G. Cooprider, S. Faraj. 1998. Enabling software
development team performance during requirements defini-
tion: A behavioral versus technical approach. Inform. Systems
Res. 9(2) 101–125.

Hackman, J. R. 1986. The psychology of self-management in orga-
nizations. M. S. Pallack, R. O. Perloff, eds. Psychology and Work:
Productivity, Change, and Employment. American Psychological
Association, Washington, DC, 89–136.

Henderson, J. C., S. Lee. 1992. Managing I/S design teams: A con-
trol theories perspective. Management Sci. 38(6) 757–777.

Highsmith, J., A. Cockburn. 2001. Agile software development: The
business of innovation. IEEE Comput. 34(9) 120–122.

Hoorn, J. F., E. A. Konijn, H. van Vliet, G. van der Veer. 2007.
Requirements change: Fears dictate the must haves; desires the
won’t haves. J. Systems Software 80(3) 328–355.

Humphrey, W. S. 1995. A Discipline for Software Engineering.
Addison-Wesley, Reading, MA.

Iansiti, M., A. MacCormack. 1997. Developing products on Internet
time. Harvard Bus. Rev. 75(5) 108–117.

James, L. R., R. G. Demaree, G. Wolf. 1984. Estimating within group
interrater reliability with and without response bias. J. Appl.
Psych. 69 219–229.

Jaworski, B. J. 1988. Toward a theory of marketing control: Environ-
mental context, control types, and consequences. J. Marketing
52 23–39.

Kemerer, C. F. 1995. Software complexity and software mainte-
nance: A survey of empirical research. Ann. Software Engrg. 1(1)
1–22.

Kirkman, B. L., D. L. Shapiro. 2001. The impact of cultural val-
ues on job satisfaction and organizational commitment in
self-managing work teams: The mediating role of employee
resistance. Acad. Management J. 44(3) 557–569.

Kirsch, L. J. 1996. The management of complex tasks in organiza-
tions: Controlling the systems development process. Organ. Sci.
7(1) 1–21.

Kirsch, L. J. 1997. Portfolios of control modes and IS project man-
agement. Inform. Systems Res. 8(3) 215–239.

Kirsch, L. J. 2004. Deploying common systems globally: The
dynamics of control. Inform. Systems Res. 15(4) 374–395.

Kirsch, L. J., V. Sambamurthy, D.-G. Ko, R. L. Purvis. 2002. Con-
trolling information systems development projects: The view
from the client. Management Sci. 48(4) 484–498.

Klein, K. J., F. Dansereau, R. J. Hall. 1994. Levels issues in theory
development, data collection, and analysis. Acad. Management
Rev. 19(2) 195–229.

Langfred, C. W. 2004. Too much of a good thing? Negative effects
of high trust and individual autonomy in self-managing teams.
Acad. Management J. 47 358–399.

Larman, C. 2003. Agile and Iterative Development: A Manager’s Guide.
Addison-Wesley, Boston, MA.

Lee, G., W. Xia. 2005. The ability of information systems devel-
opment project teams to respond to business and technology
changes: A study of flexibility measures. Eur. J. Inform. Systems
14 75–92.

MacCormack, A., R. Verganti, M. Iansiti. 2001. Developing prod-
ucts on “Internet time”: The anatomy of a flexible development
process. Management Sci. 47(1) 133–150.

Manz, C. C., H. P. Sims, Jr. 1987. Leading workers to lead them-
selves: The external leadership of self-managing work teams.
Admin. Sci. Quart. 32 106–128.

Maruping, L. M., R. Agarwal. 2004. Managing team interpersonal
processes through technology: A task-technology fit perspec-
tive. J. Appl. Psych. 89(6) 975–990.

Mathiassen, L., T. Tuunanen, T. Saarinen, M. Rossi. 2007. A con-
tingency model for requirements development. J. AIS 8(11)
569–597.

McCabe, T. J. 1976. A complexity measure. IEEE Trans. Software
Engrg. 2(4) 308–320.

Nidumolu, S. 1995. The effect of coordination and uncertainty on
software project performance: Residual performance risk as an
intervening variable. Inform. Systems Res. 6(3) 191–219.

Nidumolu, S. R., M. Subramani. 2003. The matrix of control: Com-
bining process and structure approaches to managing software
development. J. Management Inform. Systems 20(3) 159–196.

Nosek, J. 1998. The case for collaborative programming. Comm.
ACM 41(3) 105–108.

Ouchi, W. G. 1979. A conceptual framework for the design
of organizational control mechanisms. Management Sci. 25(9)
833–848.

Podsakoff, P. M., S. B. MacKenzie, J.-Y. Lee, N. P. Podsakoff.
2003. Common method biases in behavioral research: A critical
review of the literature and recommended remedies. J. Appl.
Psych. 88(5) 879–903.

Maruping, Venkatesh, and Agarwal: Control, Agile Method Use, and Requirements Change
Information Systems Research 20(3), pp. 377–399, © 2009 INFORMS 399

Poppendeick, M. 2001. Lean programming. Software Development 9
71–75.

Rising, L., N. S. Janoff. 2000. The Scrum software development pro-
cess for small teams. IEEE Software 17(4) 26–32.

Ryan, T. Y. 1997. Modern Regression Analysis. Wiley, New York.
Schwaber, K., M. Beedle. 2002. Agile Software Development with

Scrum. Prentice-Hall, Upper Saddle River, NJ.
Sillince, J. A. A., S. Mouakket. 1997. Varieties of political process

during systems development. Inform. Systems Res. 8(4) 368–397.
Slaughter, S. A., L. Levine, R. Balasubramaniam, J. Pries-Heje,

R. Baskerville. 2006. Aligning software processes with strategy.
MIS Quart. 30(4) 891–918.

Standish Group. 2003. Chaos report. Accessed June 6, 2006, http://
www. standishgroup.com.

Straub, D. W. 1989. Validating instruments in MIS research. MIS
Quart. 13(2) 147–169.

Vessey, I. 1989. Toward a theory of computer program bugs: An
empirical test. Internat. J. Man-Machine Stud. 30(3) 23–46.

Wageman, R. 1995. Interdependence and group effectiveness.
Admin. Sci. Quart. 40 145–180.

Walz, D. B., J. J. Elam, B. Curtis. 1993. Inside a software design
team: Knowledge acquisition, sharing, and integration. Comm.
ACM 36(10) 63–77.

Weinberg, G. 1971. The Psychology of Computer Programming.
Van Nostrand Reinhold, New York.

Zellner, A. 1962. An efficient method for estimating seemingly unre-
lated regressions and tests for aggregation bias. J. Amer. Statist.
Assoc. 57 348–368.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

