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Predicting Adoption Probabilities in Social Networks 

Abstract 

In a social network, adoption probability refers to the probability that a social entity will adopt a product, 
service, or opinion in the foreseeable future. Such probabilities are central to fundamental issues in social 
network analysis, including the influence maximization problem. In practice, adoption probabilities have 
significant implications for applications ranging from social network-based target marketing to political 
campaigns; yet, predicting adoption probabilities has not received sufficient research attention. Building 
on relevant social network theories, we identify and operationalize key factors that affect adoption 
decisions: social influence, structural equivalence, entity similarity, and confounding factors. We then 
develop the locally-weighted expectation-maximization method for Naïve Bayesian learning to predict 
adoption probabilities on the basis of these factors. The principal challenge addressed in this study is how 
to predict adoption probabilities in the presence of confounding factors that are generally unobserved. 
Using data from two large-scale social networks, we demonstrate the effectiveness of the proposed 
method. The empirical results also suggest that cascade methods primarily using social influence to 
predict adoption probabilities offer limited predictive power, and that confounding factors are critical to 
adoption probability predictions.  

Key words: Adoption probability, Social network, Bayesian learning, Social influence, Structural 

equivalence, Entity similarity, Confounding factor 

 

1. Introduction 

Fostered by the ubiquitous information technology, social networks such as those facilitated by Facebook, 

Twitter, electronic mail, or mobile phone (Dodds et al. 2003, Kleinberg 2008, Eagle et al. 2009) have 

attracted increasing attention from both academia and industry that explore how to leverage such 

networks for greater business and societal benefits (Domingos and Richardson 2001, Pentland 2008, Chen 

and Zeng 2009, Weng et al. 2010, Aral et al. 2011). A salient feature of social networks is the spread of 

adoption behavior (e.g., adoption of a product, service, or opinion) from one social entity to another in a 

social network (Kleinberg 2008). This feature is central to a wide variety of applications in business (e.g., 

Domingos and Richardson 2001), public health (e.g., Chen et al. 2011), and politics (e.g., Carr 2008). 

Predicting the probability that a social entity will adopt a product, service, or opinion in the foreseeable 

future, namely adoption probability, is critical to these applications. For business organizations, such 

predictions are crucial to many important applications enabled by the growing proliferation of social 

media, such as social network-based target marketing (Hill et al. 2006), viral marketing (Domingos and 

Richardson 2001), and demand prediction (Hartmann 2010, Altshuler et al. 2012). 1 Consider viral 

marketing as an example, which targets an initial group of consumers and exploits social networks to 

                                                      
1 Social network-based target marketing aims at making good use of social interactions among consumers for 
increased sales, in addition to their characteristics (Hill et al. 2006).   
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market to a broader population. Effective viral marketing requires optimal selection of initially targeted 

consumers (Dye 2000, Domingos and Richardson 2001), which in turn depends on reliable prediction of 

adoption probabilities, because, to compare target options and search for the optimal one, one needs to 

predict how likely other consumers will adopt if initially targeted consumers adopt. 

While predicting adoption probabilities is critical for many social network-based applications enabled 

by social media, it is also an important academic research problem. Studying the spread of adoption in a 

social network has long been a fundamental area in social sciences, particularly social computing 

(Kleinberg 2007). To better understand the spread of adoption, a fundamental question is how to predict 

(future) adoption probabilities for individuals who has not adopted by now. Answer to this question is a 

precursor to solving several challenging problems in social computing, such as the influence 

maximization problem (Kempe et al. 2005). Solutions to the problem can provide methodological 

foundations to novel business applications enabled by social media such as viral marketing. Existing 

methods for influence maximization rely on adoption probabilities that typically are set arbitrarily or 

assumed as given (Kempe et al. 2005, Chen et al. 2010). In actuality, adoption probabilities often are not 

given; however, how to predict these probabilities has been mostly unexplored (Kleinberg 2007).   

Although critical from both research and practice standpoints, predicting adoption probabilities have 

not received adequate investigative attention. This motivates our work, to which previous studies of 

cascade methods (Kempe et al. 2003, Kimura and Saito 2006, Chen et al. 2009, 2010) are relevant. 

Building on the independent cascade model (Kleinberg 2007), cascade methods compute a social entity’s 

likelihood of adoption from the lens of social influence (Chen et al. 2009, 2010). Cascade methods 

assume that a social entity’s likelihood of adoption at time t+1 depends on his or her neighbors who 

become adopter at time t through their social influences (Chen et al. 2009, 2010) 2. They further assume 

that each adopter neighbor of a social entity influences the entity independently (Chen et al. 2009, 2010). 

Concretely, at time t, let v be a nonadopter and U  be v’s neighbors who become adopter at time t. With 

these two assumptions, the probability ��  of v adopting at time t+1 is then computed as (Chen et al. 2009, 

2010) 

                                                      
2 A social entity is an adopter if he or she has adopted a product, service, or opinion, and is a nonadopter otherwise. 
Social neighbors of a social entity are social entities who have direct links to the social entity. An adopter neighbor 
is a social neighbor who is also an adopter. 
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�� = 1 −��1 − ��,�
,�∈�  
(1) 

where ��,� denotes the probability that u influences v to become an adopter. Assuming that each adopter 

neighbor of a social entity has an equal probability of influencing that entity to become an adopter, ��,� is 

set to 1/k for all 
 ∈ �, where k is the number of social neighbors of v (Chen et al. 2009, 2010); or it is set 

as a constant, such as 0.1 or 0.01 (Kempe et al. 2003, Kimura and Saito 2006).  

Goyal et al. (2010) propose a method to learn influence probabilities in a social network. With the 

same assumptions that cascade methods normally make, the influence probability method also uses 

equation (1) to predict the likelihood of adoption (Goyal et al. 2010). Instead of arbitrarily setting ��,� in 

equation (1) as 1/k or a constant, the influence probability method learns ��,�, namely influence 

probability (Goyal et al. 2010), from logs of user actions. Specifically, this method learns ��,� as the ratio 

of the number of actions propagated from u to v to the total number of actions performed by u (Goyal et 

al. 2010). A review of existing methods suggests several limitations. First, these methods often depend on 

one factor (i.e., social influence) for predicting an entity’s likelihood of adoption. In addition to social 

influence, there could exist other factors that affect a social entity’s adoption decision, such as structural 

equivalence (Burt 1987), confounding factors (Van den Bulte and Lilien 2001). Methods not considering 

these additional factors may not holistically reveal the adoption decision; consequently, their adoption 

likelihood predictions could become unreliable. Second, these methods approach a social entity’s 

adoption likelihood from a rather confined scope, typically focusing on social neighbors of the entity. 

However, a social entity’s adoption decision could be influenced by other adopters that are not social 

neighbors; e.g., through structural equivalence (Burt 1987). Third, most existing methods seem to utilize 

partial social network data to predict adoption probabilities, normally social network structure data such 

as the number of social neighbors and the number of adopter neighbors. Other social network data, 

including intrinsic characteristics of individual entities as well as interaction intensities or relations among 

entities, could be important for adoption probability predictions and therefore should be considered. 

To address these limitations, we target the following research questions:  

(1) What key factors underlie a social entity’s adoption decision? How can these factors be 

operationalized with more comprehensive social network data? 
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(2) How can we better predict adoption probabilities by considering important factors underlying 

individuals’ adoption decisions? 

(3) Although confounding factors are generally considered to be unobserved (Aral et al. 2009, Aral 

2011), we cannot ignore their significance in adoption probability predictions, because they may 

constitute an important force of the adoption decision. Thus, a more challenging question is how 

to predict adoption probabilities in the presence of unobserved confounding factors. 

These questions are central to novel techniques enabled by social media, such as social network-based 

target marketing and demand prediction that are essential to social commerce and online gaming. To 

address these research questions, we develop a Bayesian learning method for predicting adoption 

probabilities, which represents an essential contribution of our study. The proposed method employs 

relevant social network theories to identify key factors underlying adoption decisions; it is developed with 

appropriate machine learning theories and techniques. The principal challenge addressed by our method is 

how to predict adoption probabilities in the presence of unobserved confounding factors. We demonstrate 

the effectiveness of our method with data from two large-scale social networks. Our empirical results 

offer two interesting observations. First, cascade methods that exclusively use social influence to predict 

adoption probabilities seem ineffective. Second, confounding factors appear to play a significant role in 

adoption probability predictions, as manifested by the substantial improvement when taking such factors 

into consideration. Overall, our findings suggest that individuals’ adoption decisions in a social network 

could be influenced by several related but distinct forces, above and beyond social influence, and that 

adoption probabilities could be better analyzed and predicted from a holistic perspective that uses more 

comprehensive social network data.  

The rest of the paper is organized as follows. We identify key factors underlying adoption decision 

and propose how to operationalize these factors with social network data in §2. The problem of predicting 

adoption probabilities is formulated and a Bayesian learning method is then proposed to solve the 

problem in §3. We evaluate the effectiveness of the proposed method with data from two large-scale 

social networks and report our evaluation results and observations in §4. The paper is concluded with 

discussions of contributions, managerial implications, and limitations in §5.   
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2. Key Factors Underlying Adoption Decision: Theoretical Foundations and Operationalization  

We review relevant social network theories that point to several key factors underlying a social entity’s 

adoption decision, and then propose ways to operationalize these factors with social network data.  

2.1 Theoretical Foundations  

The social information processing model (Salancik and Pfeffer 1978) suggests that socially 

communicated perceptions and beliefs can influence individuals’ opinions or behaviors. Specifically, 

social influences, or the impacts created through the interactions among people in a social context (Rice et 

al. 1990), represent an important force affecting individuals’ adoption behaviors in a social network 

(Ibarra and Andrews 1993, Leenders 2002, Bruyn and Lilien 2008, Shalizi and Thomas 2011). Social 

comparison theory (Festinger 1950) also suggests that people are motivated to evaluate their opinions and 

behaviors by comparing themselves with others. Furthermore, social influence network theory (Friedkin 

1998) posits that a person endowed with an initial opinion or behavioral assessment receives and responds 

to information propagated in a social network and could choose to modify an original opinion or 

assessment accordingly. These theories converge regarding the central role of the process by which 

people are influenced in communications and interactions with others, which leads to the creation of 

social influence (Leenders 2002). By communicating and interacting with one another, people create 

social influences that affect their opinions, attitudes, and behaviors (Rice et al. 1990, Leenders 2002, 

Iyengar et al. 2011). Bruyn and Lilien (2008) report that personal interactions among acquaintances 

impact not only consumption choice and purchase decision but also expectation, pre-usage attitude, and 

post-usage perception. People’s social ties, formed through communications and interactions, enable them 

to learn and reflect on others’ choices or opinions (Wellman 1997); the intensity of the resulting social 

influence reflects the strength of the social ties that connect them. In general, strong social ties entail 

substantial investments of time and reciprocity; therefore, they are more likely to trust each other for 

information sharing, opinion assessment, and decision making (Wellman 1997). As a result, people 

connected by stronger ties have greater influences on one another than those connected by weaker ties 

(Levy 1992, Levy and Nail 1993). 

The structural characteristics of a social network also may affect opinions and behaviors (Burt 1987, 

Wejnert 2002). Network theorists argue that people develop similar opinions and behaviors through 

relationship patterns in a social network (Wellman 1983, Wejnert 2002). Structural equivalence is a 



 
 

6 
 

fundamental structural characteristic of social network (Burt 1987); two social entities are structurally 

equivalent if they connect to other entities identically (Lorrain and White 1971, Wasserman and Faust 

1994). Structurally equivalent people occupy the same position in the social structure and are proximate 

to varying extents. Such structural equivalence may be crucial to social contagion; two people identically 

positioned in the flow of influential communications can use the other as a frame of reference for 

subjective judgments and they are likely to make similar judgments, even without direct communications 

(Burt 1987). Therefore, weighting social entities by both structural equivalence and communications 

could produce more accurate adoption predictions than focusing only on their direct communications 

(Wejnert 2002). 

Structural equivalence also moderates adoptions by affecting the homogeneity of adopters’ behaviors 

(Wejnert 2002). Thus, people with similar social ties in a social network exhibit similar opinions or 

behaviors. Structural equivalence can reduce the uncertainty associated with the focal adoption, as 

perceived by individual entities; it represents an important force on their adoption behaviors, even in the 

absence of social ties that connect them directly. As Burt (1987) has noted, the spread of an opinion or 

behavior in a social network probably is contingent on the way the structure of the network brings people 

together. If they connect to the same group of people, two social entities likely exhibit similarity, because 

they vicariously experience or even mimic each other through the others with which they interact in the 

network, and thus uncertainty associated with adoption decreases (Rice and Aydin 1991). In this light, 

people with highly comparable social ties exhibit similar opinions or behaviors. 

In addition, entity similarity, or the degree to which two entities in a social network are similar 

demographically and behaviorally (Jackson 2008), constitutes another important force that influences 

adoption behaviors (Salancik and Pfeffer 1978). According to Lazarsfeld and Merton (1954), major 

sociodemographic dimensions can stratify society-ascribed characteristics (e.g., ethnicity, gender, age) 

and acquired characteristics (e.g., education, occupation, behavior patterns). People with similar 

characteristics are more likely to exhibit similarity in their opinions and behaviors than otherwise (Aral et 

al. 2009). Such similarity also implies common interests and worldviews; people with highly similar 

demographic characteristics thus exhibit similar needs, wants, preferences, or tastes (Ibarra 1992). Entity 

similarity may also entail a behavioral dimension, such that people with similar behavioral profiles 

express similar opinions and prefer similar behaviors toward a new product or service (Ibarra 1992, 
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Centola 2011). All else being equal, people who have responded to products (services) similarly before 

are more likely to continue exhibiting that similarity in the future. Brown and Reingen (1987) and Centola 

(2011) also consider similarity in demographic characteristics. Finally, entity similarity can affect social 

entities’ adoption probabilities, independent of their direct interactions (McPherson et al. 2001). The 

similarity of two social entities, measured demographically and behaviorally, thus could explain their 

adoption behaviors, in that the more similar they are, the greater similarity they exhibit in their adoption 

behaviors. 

Adoption decisions in a social network may depend on factors beyond social influences, structural 

equivalence, and entity similarity though. These normally unobserved confounding factors appear 

influential in previous research (Van den Bulte and Lilien 2001, Aral et al. 2009). Aral (2011) identifies 

several sources of bias in both cross-sectional and longitudinal data that can confound the outcomes of 

social influence analyses, related to interactions and outcomes among peers, such as contextual and 

correlated effects (Manski 1993), unobserved heterogeneity (Van den Bulte and Lilien 2001); and 

marketing efforts, whose omission Iyengar et al. (2011) recognize creates upward biases in social 

contagion estimation. Despite the identification of several sources of confounding effects, many 

unobserved factors remain (Aral 2011) and may account for a significant portion of the variance in 

adoption behaviors observed in a social network. Our review of relevant theories thus sheds light on 

several important factors underlying adoption decision: social influence, structural equivalence, entity 

similarity, and unobserved confounding factors. We operationalize each, except unobserved confounding 

factors, with social network data. 

2.2 Operationalization  

Let � =	 {��, ��,⋯ , ��} be a set of social entities. Pairs of social entities are linked by social ties, which 

can be directional or nondirectional (Wasserman and Faust 1994). For example, a social network on 

Twitter consists of Twitterers (i.e., social entities) connected by directional social ties (i.e., one Twitterer 

following another) while a social network facilitated by mobile phone service consists of service users 

(i.e., social entities) connected by nondirectional social ties (i.e., two-way phone communications). The 

strength of a social tie reflects the intensity of actions through the tie (Brown and Reingen 1987). 

Considering the dynamic nature of social tie strength (Kossinets and Watts 2006), we denote ����  as the 

strength of the social tie from social entity �� ∈ � to entity �� ∈ � at time t. ����  generally differs from ����  
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for directional ties; ����  equals ����  for nondirectional ties; and ���� = 0 if there is no social tie from �� to �� 
until time t. The strength ����  of a social tie can be gauged as the aggregated intensity of actions through 

the tie by time t (Kossinets and Watts 2006). Using the abovementioned mobile phone social network as 

an example, ����  can be measured as the average communication time between �� and �� by time t and 

���� = 0 if there is no communication between the entities until time t.  

We measure social entity ��′�  power of social influence (hereafter influence power) on entity �� at 

time t, ���� , using the strength ����  of the social tie from �� to �� and we have, 

 

where � !" and � �� denote the maximum and the minimum social tie strength respectively and 

normalization helps avoid the dependence of ����  on the measurement unit of ����  (Han and Kamber 2006). 

Equation (2) is congruent with social influence theories: The stronger the tie from �� to ��, the more 

powerful ��′�  influence on ��′� adoption decision (Levy 1992, Levy and Nail 1993).  

Social entities �� ∈ � and �� ∈ � are structurally equivalent if the following condition is satisfied 

(Wasserman and Faust 1994): For each �# ∈ �\{��, ��}, whenever there is a social tie from �� to �# there 

is also a social tie from �� to �#; moreover, whenever there is a social tie from	�# to �� there is also a 

social tie from �# to ��. Perfect structural equivalence is rare in real-world social networks (Wasserman 

and Faust 1994). Therefore, structural equivalence between social entities is measured as the extent to 

which they are structurally equivalent (Wasserman and Faust 1994). A common measure of structural 

equivalence is the Euclidean distance measure (Burt 1976). Let %��� 	be the Euclidean distance of structural 

equivalence between social entities �� 	and �� at time t. According to (Burt 1976, Wasserman and Faust 

1994), for a social network with directional social ties, %��� 	is calculated as, 

                          %��� = &∑ (�)�#� − )�#� 
� + �)#�� − )#�� 
�+�,∈-\{�.,�/}  ;                              (3) 

whereas for a social network with nondirectional social ties, %��� 	is evaluated as, 

                               %��� = &∑ �)�#� − )�#� 
��,∈-\{�.,�/}  ,                                                          (4) 

where )!0� = 1 if there is a social tie from �! to �0	by	time t and )!0� = 0	otherwise. Appendix A1 

illustrates the calculation of %��� . The higher the value of %���  the less structural equivalence between �� 	and 

���� = ���� − � ��� !" − � ��, (2) 
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��  . Accordingly, we evaluate social entity ��′�  power of structural equivalence (hereafter equivalence 

power) on entity �� at time t, <��� , as the following: 

<��� = % !" − %���% !" − % ��, (5) 

where % !" and % �� denote the maximum and the minimum Euclidean distance of structural 

equivalence respectively. According to (5), the higher the structural equivalence between ��	and ��  (i.e., 

lower  %���  ), the more powerful ��′�  impact on ��′� adoption decision (through  ��′�  equivalence power 

on ��), consistent with structural equivalence theories (Burt 1987).  

Entity similarity can be assessed with the distance between entity characteristics (Hand et al. 2001). A 

social entity is described by its intrinsic characteristics, which include time-invariant characteristics such 

as gender and time-variant characteristics such as behavioral characteristics. We thus represent the 

intrinsic characteristics of a social entity �� at time t using a time-dependent vector =>?. Let @���  be the 

distance between intrinsic characteristics of �� 	and those of �� at time t. According to (Hand et al. 2001), 

we have   

   @��� = dis(=>?, =C?),                                                                            (6) 

where =>? and =C? are the respective characteristic vector of ��	and �� at time t, dis(.) is a distance function, 

and @��� ≥ 0. Intrinsic characteristics of social entities differ with applications. As a result, choice of 

distance function is application specific (Crandall et al. 2008), as some functions are appropriate for real-

valued characteristics and others are suitable for a mix of nominal and real-valued characteristics (Han 

and Kamber 2006). We describe the distance function used in our study in §4. @��� 	measures dissimilarity 

between �� 	and ��  . Hence, the higher the value of @��� 	 the less entity similarity between ��	and ��  . Like 

equivalence power, social entity ��′�  similarity power on entity ��  at time t, F��� , is measured as, 

F��� = @ !" − @���@ !" − @ ��, (7) 

where @ !" and @ �� denote the maximum and the minimum dissimilarity between social entities 

respectively. Congruent with theories concerning entity similarity (Ibarra 1992, Centola 2011), we 

formalize, in equation (7), that the higher the entity similarity between ��	and ��, the more powerful ��′�  
impact on ��′� adoption decision, through  ��′�  similarity power on ��. Because confounding factors are 
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generally unobserved, their power on adoption decision (hereafter confounding power) is hidden. 

However, considering hidden confounding power is crucial, which makes it a principal challenge for 

predicting adoption probabilities.  

 

3. Predicting Adoption Probabilities: Problem Formulation and Proposed Method   

We study the problem of predicting adoption probabilities in the context that adoption of an item is 

diffused among social entities � in a social network over a time horizon G = 0,1,2,… with 0 being the 

start of the time horizon. The adopted item (e.g., a particular product) and the unit of time (e.g., week) are 

application-dependent. Under this context, the problem is defined as follows. 

Given adoption information observed at current time J, which includes  

(1) adoption decision (i.e., adoption or not) for each social entity in � by J; 

(2) adoption time for each social entity who has adopted by J; 

predict the probability of adopting at time J + 1 for each social entity who has not adopted until J. 

To solve the problem, in §3.1, we analyze powers underlying a social entity’s adoption decision based on 

observed adoption information. A method is then proposed in §3.2 to predict adoption probabilities. 

3.1 Analysis of Powers Underlying Adoption Decision 

Let �K� denote the set of social entities who have adopted by time t and �L�  represent the set of social 

entities who have not adopted until time t. Formally, �K� = {� |� ∈ �, N ≤ G} and �L� = �\�K�, where 

N  is the adoption time of � . According to prevalent diffusion models in social networks (Granovetter 

1978, Kleinberg 2007), a social entity’s adoption decision is affected by other social entities who have 

already adopted. Hence, a social entity ��′�  adoption decision is affected by social entities in �K� through 

their influence, equivalence, and similarity powers on ��, where �� ∈ �L� . We thus have,  

��� = ∑ �����.∈-PQ ,                                                                        (8) 

                 <�� = ∑ <����.∈-PQ ,                                                                       (9) 

                        F�� = ∑ F����.∈-PQ ,                                                                     (10) 

where ��� ≥ 0, <�� ≥ 0,	and F�� ≥ 0 denote the total influence, total equivalence, and  total similarity power 

on �� at time G respectively; ���� , <��� , and F���  are given in equations (2), (5), and (7) respectively. 
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Receiving the powers defined in equations (8)-(10) and the hidden confounding power at time G, �� may 

become an adopter or still be an nonadopter at time G + 1.  

Figure 1: Constructing Training Data from Observed Adoption Information       

     Construct_train (J, �KR, {NS}, �LR) 

             J: current time   

             �KR: set of adopters by J  

             NS: adoption time of �S ∈ �KR 

             �LR: set of nonadopters by J  

 

     //Initialization 

     clock = 0.          // clock : clock time evolving from 0 to J 

     �TUS = V.         // �TUS : set of adopters with adoption time equals to clock  

     �W!XUY = V.     // �W!XUY : set of adopters with adoption time less than clock  

     Z[\�] = V.  // Z[\�] : training data  

     Sort social entities in �KR by their adoption time from the earliest to the latest. 
 

     For each �S ∈ �KR     // from the earliest adopter to the latest adopter 

         If (NS > _)`_a) 

              �W!XUY = �W!XUY ∪ �TUS. 

              �TUS = V. 

              clock = NS.   

         End if 

         �TUS = �TUS ∪ {�S}. 
   �Scde� = ∑ ��Scde��.∈-fghij .       // by (8), �Scde� : total influence power on �S at time NS − 1                                                                    

   <Scde� = ∑ <�Scde��.∈-fghij .    // by (9), <Scde� : total equivalence power on �S at time NS − 1                                                                     
   FScde� = ∑ F�Scde��.∈-fghij .    // by (10), FScde� : total similarity power on �S at time NS − 1 

   \Scd = 1.        //\Scd : �Sk � adoption decision at NS (1 – adoption; 0 – non-adoption)                                                                      

   Z[\�] = Z[\�] ∪ {<	 �Scde�, <Scde�, FScde�, \Scd >} .                                                                      	    End for 
 

     For each �� ∈ �LR  

    ��Re� = ∑ ���Re��.∈-fghij .      // by (8), ��Re� : total influence power on �� at time J − 1                         

   <�Re� = ∑ <��Re��.∈-fghij .     // by (9),	<�Re� : total equivalence power on �� at time J − 1                                                                     

   F�Re� = ∑ F��Re��.∈-fghij .     // by (10), F�Re� : total similarity power on �� at time J − 1                                                                           

   \�R = 0.        //\�R : ��k� adoption decision at J (1 – adoption; 0 – non-adoption)      

   Z[\�] = Z[\�] ∪ {<	 ��Re�, <�Re�, F�Re�, \�R >} .                                                                      	    End for 

     Return  Z[\�]. 
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We are ready to construct training data for learning adoption probabilities by analyzing the various 

powers from observed adoption information. At current time J, we observe the set �KR of social entities 

who have adopted by J and their adoption times as well as the set �LR of social entities who have not 

adopted until J. �LR consists of all social entities that have not adopted until J; that is �LR = �\�KR. The 

algorithm shown in Figure 1 is developed to construct training data from observed adoption information. 

Two for-loops constitute the algorithm. The first for-loop computes, for each adopter in �KR, the total 

influence, equivalence, and similarity power that affect the adopter’s decision of adoption. The second 

for-loop calculates, for each nonadopter in �LR, the total influence, equivalence, and similarity power 

received by the nonadopter at time J − 1, which affect the nonadopter’s decision at time J (i.e., the latest 

observable decision of the nonadopter). An illustration of the algorithm is provided in Appendix A2. 

3.2 Predicting Adoption Probabilities 

Using the algorithm shown in Figure 1, we construct training data TRAIN from adoption information 

observed at current time J. For a social entity �m, who has not adopted until J, influence �m,  equivalence 

<m, and similarity Fm   power on �m at time J can be calculated according to equations (8)-(10): 

�m = ∑ ��mR�.∈-Pn ,                                                                             

<m = ∑ <�mR�.∈-Pn ,                                                                             

Fm = ∑ F�mR�.∈-Pn .                                                                             

Our objective is to learn from TRAIN the probability o(\m = 1|�m , <m , Fm , pm) of �m adopting at time 

J + 1 (i.e., \m = 1) conditioning on influence �m,  equivalence <m, similarity Fm and hidden confounding 

pm   power on �m at time J.3 To achieve this objective, as illustrated in Figure 2, we face two major 

difficulties: (1) each record of TRAIN only consists of influence (I), equivalence (E), similarity (S) power 

and adoption decision (A) but missing hidden confounding power (H) and hence TRAIN is incomplete;   

(2) hidden confounding power pm on �m	is also missing. In this subsection, we discuss how we tackle 

these difficulties. 

 

 

                                                      
3 For simplicity, we omit time superscript for  �m , <m , Fm , pm , and \m.  
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Figure 2: Predicting Adoption Probability o(\m = 1|�m , <m , Fm , pm) 
Applying Bayes rule, we have 

o(\m = 1|�m , <m , Fm , pm) = o(\m = 1)o(�m , <m , Fm , pm|\m = 1)∑ o(\m = q)o(�m , <m , Fm , pmr\m = q
!st,� .		   (11) 

To compute o(\m = 1|�m, <m , Fm , pm), each component in the right hand side of (11) needs to be learned 

from TRAIN. Suppose we have data on confounding power, a natural way to learn these components is 

the Naïve Bayes method (Mitchell 1997), which has been shown several attractive properties such as 

computational efficiency and good classification performance (Domingos and Pazzani 1997, Friedman 

1997, Hastie et al. 2001). Note that we face the reality of not having data on confounding power in §3.2.1. 

The Naïve Bayes method makes a conditional independence assumption (Mitchell 1997); in our case, the 

method assumes that �m, <m,	Fm, and pm are independent given \m and we thus obtain 

o(\m = 1|�m , <m , Fm , pm)
= o(\m = 1)o(�mr\m = 1
o(<mr\m = 1
o(Fmr\m = 1
o(pmr\m = 1
∑ o(\m = q)o(�mr\m = q
o(<mr\m = q
o(Fmr\m = q
o(pmr\m = q
!st,� . 

 

(12) 

Let us first consider how to estimate o(�mr\m = q
 in (12), where q = 0,1. For Naïve Bayes learning, 

representing a continuous input with an exponential family distribution (e.g., normal or exponential 
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distribution) is a common approach (Mitchell 1997). Because influence power � is continuous-valued and 

� ≥ 0, we assume an exponential distribution for � given adoption decision q and estimate o(�mr\m = q
 
as the density at �m (Mitchell 1997). That is, given q, � follows an exponential distribution with density 

u(�) = vw|! exp�−vw|!�
, 	� ≥ 0, where vw|! is the density parameter and q = 0,1.  o(�mr\m = q
 can 

then be estimated as u(�m). We can estimate  o(<mr\m = q
, o(Fmr\m = q
, and  o(pmr\m = q
 in the 

same way. Therefore, to compute o(\m = 1|�m , <m , Fm , pm), we need to learn from TRAIN the following 

vector z of parameters:  

z =< ��, vw|�, v{|�, v||�, v}|�, �t, vw|t, v{|t, v||t, v}|t > 

where �! is the estimate of prior probability o(\m = q) and vw|! , v{|! , v||! , v}|! are respective density 

parameter for influence power �, equivalence power <, similarity power	F, hidden confounding power p 

given adoption decision q, q = 0,1. In §3.2.1, we show how to learn z by addressing the difficulty of 

incomplete TRAIN; we discuss in §3.2.2 how to inference adoption probability o(\m = 1|�m , <m , Fm , pm) 
by tackling the difficulty of hidden confounding power pm. 

3.2.1 Learning z 

Two obstacles arise when computing o(\m = 1|�m, <m , Fm , pm) using (12). One is associated with learning 

z. Since confounding power is hidden, we have no data in TRAIN for learning v}|! directly. How can we 

learn z especially v}|!  from incomplete TRAIN? The second is related to the strong assumption of 

conditional independence by the Naïve Bayes method. How can we preserve the nice properties of the 

Naïve Bayes method such as computational efficiency while at the same time relax its strong assumption 

of conditional independence?  To overcome these obstacles, we propose a method based on the classical 

expectation-maximization (EM) framework (Dempster et al. 1977) and the local learning theory (Atkeson 

et al. 1997), which are described in the following. The EM framework, developed by Dempster et al. 

(1977), is a widely used framework for learning from incomplete data (Bishop 2006). It is an iterative 

procedure starting from an initial paramter estimation (Bishop 2006). Each iteration of EM consists of the 

expectation step based on current paramete estimation and the maximization step, which maximizes the 

expectation and computes a revised parameter estimation (Bishop 2006). While regular learning employs 

all training data and treats each record of training data indifferently, local learning focuses on the region 

of training data close to the test record and weights each record of training data according to its distance 
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to the test record (Atkeson et al. 1997). It has been shown that violations of the conditional independence 

assumption could be mitigated by focusing on the region of training data close to the test record (Frank et 

al. 2003). It is therefore appealing to integrate local learning with the Naïve Bayes method, thereby 

preserving the method’s nice properties while relaxing the method’s strong assumption to some extent.    

While our method is built upon the EM framework and the local learning theory, there are challenges 

for which prior EM and local learning methods cannot conquer the two obstacles in our study. First, as 

Bishop (2006) points out, EM is a framework and its application to a problem under analysis requires 

problem-specific details to be defined and solved. To apply EM to our problem, we need to define the 

objective function to maximize and figure out how to maximize the objective function. Second, existing 

local learning methods are primarily developed for learning problems with observed variables. Thus, 

hidden confounding power poses a unique challenge for our problem: how to develop a locally weighted 

Naïve Bayes method in the presence of a hidden variable? Finally, how to integrate EM and local learning 

techniques to address both obstacles in one method? In response, we propose the locally-weighted EM 

method for Naïve Bayes learning.  

Our proposed method learns z using maximum likelihood estimation. Let a record in TRAIN be 

< ��, <� , F�, \� >, where ~ = 1,2,⋯ , � and n is the number of records in TRAIN. We denote hidden 

confounding power for record i as p�. Let D be complete training data and its record is                        

�� =< ��, <�, F�, p�, \� >, where ~ = 1,2,⋯ , �. We denote o(�|z) as the likelihood of D given z.  

According to (Mitchell 1997), we have, 

 o(�|z) = ∏ o(��|z)��s� . 

Maximum likelihood parameter estimate z�� maximizes o(�|z) (Mitchell 1997). It is typical to 

maximize ln	[o(�|z)] instead of o(�|z) because it is normally easier to maximize the former than the 

latter and parameter estimate maximizing the former also maximizes the latter (Mitchell 1997). We thus 

have,    

        z�� = q���q�z∑ ln	[o(��|z)]��s� .                                               (13) 

To mitigate violations of the conditional independency assumption, our method weights records in D 

differently. Let the weight of record �� be ��. Following the local learning theory (Atkeson et al. 1997), 
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we set �� higher if the distance between �� and the test record < �m , <m , Fm , pm > is smaller. Hence, we 

have, 

          �� = � − [(�� − �m)� + (<� − <m)� + (F� − Fm)� +	(p� − pm)����������������������������������|m�!XW	��	��W	{�TU���!�	����!�TW ],                            (14) 

where the distance between �� and the test record is measured as the square of the Euclidian distance 

between �� and the test record and K is a constant. We note that both p� and pm  in (14) are hidden. 

Having introduced weight ��, our objective becomes maximizing the weighted likelihood of D. That is, 

we want to find weighted maximum likelihood parameter estimate z��� such that 

             z��� = q���q�z∑ ��ln	[o(��|z)]��s� .                                                 (15) 

It is difficult to maximize (15) directly because hidden variables exist in both �� and o(��|z). 
Following the EM framework (Dempster et al. 1977, Bishop 2006), instead of maximizing the weighted 

likelihood of D, our method maximizes the expected weighted likelihood of D given current parameter 

estimate z�, where 

   z� 	=< �̅�, v̅w|�, v̅{|�, v̅||�, v̅}|�, �̅t, v̅w|t, v̅{|t, v̅||t, v̅}|t >.                           

We will discuss how to set z� after Theorem 2. Let u�pmrz�
 be probability density function of pm given z� 

and u(p�r\� , z�) be probability density function of p� given \� and z�. Given z�, the expected weighted 

likelihood of D, expected on hidden variables p� and pm, is expressed as, 

              <}.,}�|z�{∑ ��ln	[o(��|z)]��s� }	= 

��(� − �� − �p� − pm
�+����������������.
ln	[o(��|z)]u(p�r\�, z�)u�pmrz�
@}.@}� 	�

�s� ,   (16) 

where expected weight <}.,}�|z�[��] > 0 for all ~ = 1,2,⋯ , �,  

<}.,}�|z�[��] = �(� − �� − �p� − pm
�+ u(p�r\� , z�)u�pmrz�
@}.@}� ,   (17) 

                              �� = (�� − �m)� + (<� − <m)� + (F� − Fm)�.                                                   (18) 

We set K adequately such that <}.,}�|z�[��] > 0 for all ~ = 1,2,⋯ , �, and we set 

� = �� !" + 2v̅}|t� + 2v̅}|�� , 
  (19) 
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where �� !" represents the maximum among all ��, ~ = 1,2,⋯ , �, v̅}|t�  and v̅}|��  denote the square of 

v̅}|t and v̅}|� respectively. Derivation of (19) is given in Appendix B. 

We want to find z� that maximizes the expected weighted likelihood of D expressed in (16). That is, 

     z� = q���q�z<}.,}�|z�{∑ ��ln	[o(��|z)]��s� },                 (20) 

where  

z� 	=< �̂�, v w|�, v {|�, v ||�, v }|�, �̂t, v w|t, v {|t, v ||t, v }|t >.                           

To maximize (20), we show in Theorem 1 that the Hessian matrix of <}.,}�|z�{∑ ��ln	[o(��|z)]��s� } is 

negative definite, which satisfies the sufficient condition to maximize a multivariable function (Greene 

2008); we further show in Theorem 2 the necessary condition (Greene 2008) that all first-order partial 

derivatives of <}.,}�|z�{∑ ��ln	[o(��|z)]��s� } equal 0 is met and give closed form solution for each 

parameter in z�. 

Theorem 1.  The Hessian matrix of <}.,}�|z�{∑ ��ln	[o(��|z)]��s� } is negative definite. 

Proof: See Appendix C1. 

Theorem 2.  Given z�, parameters in z� that maximize the expected weighted likelihood of D are 

derived as below. 

�̂� = ∑ \�¡���s�∑ [\�¡� + (1 − \�)[�]��s� 																	   (21) 

�̂t = 1 − �̂�		   (22) 

v w|� = ∑ \�¡���s�∑ \���¡���s� 		   (23) 

v w|t = ∑ (1 − \�)[���s�∑ (1 − \�)��[���s� 			   (24) 

v {|� = ∑ \�¡���s�∑ \�<�¡���s� 				   (25) 

v {|t = ∑ (1 − \�)[���s�∑ (1 − \�)<�[���s� 			   (26) 

v ||� = ∑ \�¡���s�∑ \�F�¡���s� 												   (27) 
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v ||t = ∑ (1 − \�)[���s�∑ (1 − \�)F�[���s� 															   (28) 

v }|� = ∑ \�v̅}|�¡���s�∑ \�[[� + 2v̅}|�� + 2�̅��2v̅}|t� + v̅}|�� − 3v̅}|tv̅}|�
 − 6v̅}|t� ]��s� 										   (29) 

v }|t = ∑ (1 − \�)v̅}|t[���s�∑ (1 − \�)[¡� + 2v̅}|t� + 2�̅t�2v̅}|�� + v̅}|t� − 3v̅}|tv̅}|�
 − 6v̅}|�� ]��s� 				   (30) 

In equations (21)-(30),   

         ¡� = (� − ��)v̅}|t� v̅}|�� − 2v̅}|t� − 2�̅t(v̅}|�� − v̅}|tv̅}|�), 
                                  [� = (� − ��)v̅}|t� v̅}|�� − 2v̅}|�� − 2�̅��v̅}|t� − v̅}|tv̅}|�
. 
Proof: See Appendix C2. 

By Theorems 1 and 2, we can compute z� from z� and training data TRAIN. While TRAIN is 

constructed using the algorithm shown in Figure 1, we need to initialize z�. We set  �̅�, �̅t, v̅w|�, v̅w|t, v̅{|�,     v̅{|t, v̅||�, and v̅||t in z� as maximum likelihood estimates of these parameters from TRAIN. The estimates, 

as shown in equations (31)-(38), are standard estimates for Naïve Bayes learning and derivations of them 

can be found in (Mitchell 1997). It is more appropriate to learn the effect of confounding power on 

parameter estimates from data and adjust parameter estimates accordingly than setting the effect 

arbitrarily during the initialization of z�. Thus, parameter estimates in (31)-(38) do not consider the 

following factors: confounding power and weight, which takes confounding power as a component term 

according to (14). The effect of these factors on parameter estimates will be learned and used to adjust 

parameter estimates when computing z� from z�.  

�̅� = ∑ \���s�� 																	   (31) 

									�̅t = 1 − �̅�																												   (32) 

v̅w|� = ∑ \���s�∑ \�����s� 														   (33) 

v̅w|t = ∑ (1 − \�)��s�∑ (1 − \�)����s� 																	   (34) 

v̅{|� = ∑ \���s�∑ \�<���s� 																	   (35) 
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v̅{|t = ∑ (1 − \�)��s�∑ (1 − \�)<���s� 																   (36) 

v̅||� = ∑ \���s�∑ \�F���s� 														   (37) 

v̅||t = ∑ (1 − \�)��s�∑ (1 − \�)F���s� 															   (38) 

We consider three possible cases for v̅}|!: given adoption decision a, on average, confounding power 

is the largest, average, or smallest among all powers underlying adoption decision. These cases are 

modeled using equations (39)-(41) respectively:   

1v̅}|! = max¦ 1v̅w|! , 1v̅{|! , 1v̅||!§ × (1 + ©�),										q = 0,1				(largest	case)														   (39) 

1v̅}|! =
( �¬�­|g + �¬�®|g + �¬�¯|g)3 × (1 + ©�),															q = 0,1				(average	case)														 

 

(40) 

1v̅}|! = min¦ 1v̅w|! , 1v̅{|! , 1v̅||!§ × (1 − ©±),													q = 0,1				(smallest	case)															 
 

(41) 

where 
�¬�²|g , �¬�­|g , �¬�®|g , and	 �¬�¯|g are the mean of confounding, influence, equivalence, and similarity power 

respectively. Random terms ©�, ©�	and	©± introduce randomness into the equations; in our empirical study, 

we set ©�	and	©± uniformly distributed over (0, 0.01) and	©� uniformly distributed over (-0.005, 0.005) 

respectively. Rather than choosing a case arbitrarily, we consider all three cases and let data decide which 

case is most appropriate. Therefore, three different initializations of  z� are set: equations (31)-(38) and 

(39), equations (31)-(38) and (40), and equations (31)-(38) and (41). 

We propose the locally-weighted EM method for Naïve Bayes learning (LEMNB) in Figure 3. The 

method learns parameter estimate z� from TRAIN for a social entity receiving influence �m, equivalence  

<m, and similarity Fm power. LEMNB first creates bootstrap samples form TRAIN
4. It then loops through 

the three cases (for-loop on k). Each case consists of N trials (for-loop on h). z�³´ denotes hth  trial of 

                                                      
4 Bootstrap sampling creates a sample, which has the same number of records as TRAIN, by repeatedly sampling 
from TRAIN with replacement (Bishop 2006). 
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parameter initialization for case k. For each z�³´ , as illustrated in Figure 4, the method computes z�³´ 

iteratively through bootstrap samples. Bootstrap sampling introduces variations into training data and thus 

reduces the chance of overfitting. As a byproduct of computing z�³´, LEMNB also calculates the 

maximum expected weighted likelihood <S�. For each case, average parameter estimate z�³ and average 

likelihood <S  across N trials are calculated. The most appropriate case is determined as the one with the 

largest <S  and the parameter estimate z�³ of this case is used as the final parameter estimate. We set the 

number of bootstrap samples M and the number of trials N adequately such that z�³´ and z�³ converge. 

Figure 3: The Locally-weighted EM method for Naïve Bayes Learning (LEMNB) 

     LEMNB (M, N, �m , <m , Fm) 

             M: number of bootstrap samples  

             N: number of trials  

             �m, <m,	Fm: influence, equivalence, similarity power  
 

      Create M bootstrap samples from TRAIN: TRAIN1, TRAIN2, …,TRAINM . 

      For k = 1 to 3 step 1      

             For h = 1 to N step 1                     

              TRAIN = TRAIN1. 

          Generate random term ©�, ©�	or	©±. 

              If (k = 1) 

                      Initialize z�³´ according to equations (31)-(38) and (39). 

              Else if (k = 2) 

                      Initialize z�³´ according to equations (31)-(38) and (40). 

              Else  

                      Initialize z�³´ according to equations (31)-(38) and (41). 

              End if 

                 For j = 2 to M step 1 

                   TRAIN = TRAINj. 

                      Compute z�³´ from z�³´ and TRAIN according to equations (21)-(30). 

                               <S� = <}.,}�|z�³´µ∑ ��ln	[o���rz�³´
]��s� ¶. 
                   If  (j < M) 

                                        z�³´ = z�³´. 

                      End if 

              End for 

             End for 

  z�³ = ∑ z�³´L�s� /]. 

    <S = ∑ <S�L�s� /]. 

      End for                    

      z� = z�³ with the largest <S for k = 1,2,3. 

      Return z�. 
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Figure 4: Computing z�³´ 

3.2.2 Inference 

Having learned parameter estimate z�, inference adoption probability is a relatively easier task. Given 

parameter estimate z� 	=< �̂�, v w|�, v {|�, v ||�, v }|�, �̂t, v w|t, v {|t, v ||t, v }|t >, by (12), we have   

o(\m = 1|�m , <m , Fm , pm) = o(\m = 1)o(�mr\m = 1
o(<mr\m = 1
o(Fmr\m = 1
o(pmr\m = 1
∑ o(\m = q)o(�mr\m = q
o(<mr\m = q
o(Fmr\m = q
o(pmr\m = q
!st,�  

														= �̂�v w|�exp	(−v w|��m)v {|�exp	(−v {|�<m)v ||�exp	(−v ||�Fm)v }|�exp	(−v }|�pm)∑ �̂!v w|!exp	(−v w|!�m)v {|!exp	(−v {|!<m)v ||!exp	(−v ||!Fm)v }|!exp	(−v }|!pm)!st,� .   (42) 

To compute adoption probability using (42), the only difficulty is the hidden variable pm. However, given 

z�, probability density of pm is known and we have 

                    u�pmrz�
 = u�pmr\m = 1, z�
o�\m = 1rz�
 + u�pmr\m = 0,z�
o�\m = 0rz�
.                   (43) 

Therefore, we can approximate adoption probability o(\m = 1|�m , <m , Fm , pm) with its expectation on pm 

and compute the expectation using Monte Carlo method (Bishop 2006)5. As shown in Figure 5, the 

adoption probability inference algorithm repeatedly generates a sample of pm and calculates adoption 

probability using the sample and equation (42) until convergence. The algorithm outputs the expectation 

of the adoption probability, i.e., expected on pm.    

                                                      
5 There is no closed form representation of the expectation and Monte Carlo method is a viable approach (Bishop 
2006). 

z�³´ z�³´ z�³´ z�³´ z�³´ z�³´ 

- - - - - - 

TRAIN 

TRAIN1 TRAIN2 TRAIN3 TRAINM …… 

Bootstrap Sampling 
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Figure 5: Inferencing Adoption Probability  

4. Empirical Evaluations 

We evaluated the proposed method with data from two large-scale social networks. One is a social 

network of communications among mobile phone users. Mobile communication-based social networks 

have been used to evaluate theories, methods, or applications in social network research (Pentland 2008, 

Eagle et al. 2009, 2010). We further examined the proposed method with a virtual world social network – 

a social network of avatars6. This additional evaluation is closely related to online gaming, a fast-growing 

industry that has been transformed by social media (Zukerman and Albrecht 2001, Hemp 2006). The 

proposed method could be highly beneficial for marketing virtual items to game players, a fast-growing 

revenue source for online game service providers. According to PlaySpan (2012), game players in the 

United States purchased $2.3 billion worth of virtual items in 2011– nearly 30% growth compared with 

2009. By using our method, service providers could more effectively prioritize their marketing efforts and 

focus on consumers more likely to adopt new virtual products in the next time period. We report 

evaluation results with the mobile social network in this section. We observe similar evaluation results in 

the avatar social network and report key findings in Appendix D for space consideration.    

                                                      
6 An avatar is a user-created character in a virtual community. 

     Inference (z�, �m , <m , Fm , ¸) 

             z�: parameter estimate  

             �m, <m,	Fm: influence, equivalence, similarity power  

             ¸: predefined convergence threshold 

 

      count = 0. 

      sum = 0. 

      mean = 0. 

      Do      

  pre_mean = mean. 

      Generate a sample ℎm of pm according to its probability density in (43). 

  Calculate o(\m = 1|�m , <m , Fm , ℎm) using (42). 

  sum = sum + o(\m = 1|�m , <m , Fm , ℎm). 
     count = count + 1. 

  mean = sum/count.  

      Until (
|º»¼½e¾¿»_º»¼½|º»¼½ ≤ ¸)                    

      Return mean. 
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4.1 Data and Evaluation Procedure 

Our evaluations used data sets collected from a major mobile service provider. One data set consists of 

14.7 million records of mobile phone communications among 34,797 users over a one-year period. Each 

record contains the identifications of the two users connected by a communication, and the time and 

duration of the communication.7 Another data set contains profiles of the 34,797 users. Each user profile 

is comprised of 2 time-invariant demographic characteristics: gender and age, and 18 time-variant 

behavioral characteristics: the frequency of using each of the 18 calling modes offered by the service 

provider.8 We also collected data on week-by-week adoption of a mobile service A launched at the 

beginning of the study period, i.e., who, out of the 34,797 users, adopted the service in which week. 9  

Consistent with existing literature (Bass 1969, Iyengar et al. 2011), the week of adopting service A is the 

week of initial purchase of A. Figure 6 shows weekly adoption rates over the entire study period. 10 On 

average, 110 users adopted the service in a week, yielding an average weekly adoption rate of 0.42%.  

The unit of time in our evaluations was week because of weekly adoption data. We thus constructed from 

data 52 snapshots of the mobile social network, each of which corresponded to the social network by the 

end of week G, G = 1,2,… ,52. In each snapshot, social entities (��) corresponded to users; a social tie 

between social entities �� and �� was created if there was communication between their corresponding 

users and the strength of the social tie ����  was measured as the average weekly communication time 

between the users by week G; and the intrinsic characteristics =>? of a social entity �� by week t consisted 

of the 2 time-invariant characteristics and the 18 time-variant characteristics. 

                                                      
7 Real user identifications are replaced with unique numbers for privacy consideration.  
8 While frequencies of using calling modes change every day, gender and age do not change within the one-year 
period. 
9 Service name is not disclosed according to our agreement with the data provider. 
10 Adoption rate of a week is calculated as the ratio between the number of adopters who adopt during the week and 
the number of nonadopters at the beginning of the week. 
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Figure 6: Weekly Adoption Rate  

In an evaluation, we picked a week as current time Z. Using social network data and adoption data by 

the end of week T as training data, we applied the proposed method and eight benchmark methods to 

predict adoption probability in week Z + 1 for each social entity who has not adopted by the end of week 

Z. Specifically, we predicted adoption probabilities of social entities that will adopt in week Z + 1 as well 

as those that will not adopt in week Z + 1. Several implementation details of the proposed method 

warrant descriptions. Because intrinsic characteristics =>? involve different types of attribute, we employed 

a standard distance function for measuring the similarity between entities with a mix of nominal, real-

valued, and integer attributes (Han and Kamber 2006). For two entities with n attributes, x = (x1, x2, …,xn) 

and y = (y1, y2, …,yn), where xi is the value of the ith attribute for entity x, i = 1, 2,…n, the distance 

between x and y for each attribute is measured first. Let d(xi, yi) be the distance between x and y for the ith 

attribute. According to (Han and Kamber 2006), if the ith attribute is nominal, d(xi, yi) is given by 
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if the ith attribute is real-valued or integer, d(xi, yi) is 
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=                                                            (45) 

where maxi and mini denote the maximum value and the minimum value of the ith attribute among all 

entities, respectively. The distance between x and y then can be computed by integrating their distance on 

each attribute,  
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In equations (2), (5), and (7), � ��, % ��, and @ �� were set to 0; � !", % !", and @ !" were set to 

equal the maximum social tie strength, the maximum Euclidean distance of structural equivalence, and 

the maximum dissimilarity between social entities by the end of week Z respectively. We set M and N in 

the LEMNB method (Figure 3) to 5 and 20 respectively.  

Prior studies of cascade methods are related to our work. Therefore, three cascade methods (Chen et 

al. 2009), namely CM1, CM2, and CM3, were benchmarked. Derived from (1), a cascade method 

computes the probability ��  of v adopting in week T+1 as 

�� = 1 − (1 − �)U , (47) 

where ) is the number of v ’s neighbors who adopt in week T,  � is set to 1/k, 0.1, and 0.01 respectively by 

CM1, CM2, and CM3 (Chen et al. 2009, Kempe et al. 2003), and k is the number of neighbors of v in 

week T. We also compared the proposed method with the influence probability method (Goyal et al. 

2010), which calculates adoption probabilities with equation (1) and learns ��,�  in (1) as the ratio between 

the number of actions propagated from u to v and the total number of actions performed by u. In the 

context of this study, actions in (Goyal et al. 2010) refer to service adoptions. To implement the influence 

probability method, we gathered additional data regarding weekly adoptions of all other mobile services 

by the same group of users during the one-year study period and used the additional data to calculate   

��,�  .
11  According to Goyal et al. (2010), if v adopts service B after u’s adoption of B and there exists a 

social tie connecting u and v before u’s adoption of B, adoption of service B is considered to be 

propagated from u to v. If u adopts services B, C, and D, but only B is propagated from u to v, then 

��,� = 1/3 (Goyal et al. 2010). We also included representative classification methods as benchmarks. 

Because the proposed method is built on the Naïve Bayes method and employs local learning techniques, 

we compared it with the Naïve Bayes method (Mitchell 1997), the locally weighted Naive Bayes method 

(Frank et al. 2003) and the k-nearest neighbor method (Hand et al. 2001). We also benchmarked against 

Support Vector Machine (Burges 1998), which has been shown good predictive power among 

                                                      
11 All mobile services we studied were launched during the one-year study period. None of the mobile services we 
studied are necessities. 
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classification methods (Huang and Ling 2005). Table 1 summarizes the methods compared in the 

evaluations.  

Method Abbreviation Note 

locally-weighted EM method for Naïve Bayes Learning LEMNB Proposed method 

cascade methods CM1, CM2, CM3 Benchmark 

influence probability method IP Benchmark 

Naïve Bayes NB Benchmark 

locally weighted Naive Bayes LWNB Benchmark 

k-nearest neighbor k-NN Benchmark 

support vector machine SVM Benchmark 

Table 1: Methods Compared in the Evaluations 

4.2 Evaluation Results and Analyses 

Following the evaluation procedure, we conducted 50 evaluations to compare the proposed method and 

the benchmarks with Z ranging from 2 to 51. The performance of each method was evaluated using AUC, 

the area under the ROC curve (Fawcett 2006). AUC is a standard metric for assessing methods that 

predict classification probabilities (Huang and Ling 2005). According to Fawcett (2006), AUC is 

equivalent to the probability that a randomly chosen positive instance will be predicted to have a higher 

probability of belonging to the positive class than a randomly chosen negative instance. In our case, AUC 

is equivalent to the probability that a randomly chosen adopter will be predicted to have a higher adoption 

probability than a randomly chosen nonadopter. Therefore, a method that yields a higher AUC generally 

offers greater predictive power than a method that produces a lower AUC (Fawcett 2006).  

In Table 2, we show AUCs of the proposed method and those of the benchmark methods across 50 

evaluations. To examine whether our proposed method outperformed each benchmark method, we 

conducted the Wilcoxon signed-ranks test (Demsar 2006), which is widely used for comparing the 

performance of predictive methods on the basis of AUC (Demsar 2006). We applied the Wilcoxon test to 

the AUCs in Table 2; testing results suggested that the proposed method significantly outperformed each 

benchmark method (p < 0.001). In addition to demonstrating the superior predictive power of our method 

over each benchmark method statistically, we also observed substantial AUC improvements by our 

method over the benchmarks, as shown in Table 2. For example, across all 50 evaluations, the average 

AUC of our method is 0.8029, while that of k-NN is 0.6910. 
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  Evaluation Week  

(T+1) 
LEMNB CM1 CM2 CM3 IP NB LWNB SVM k-NN 

3 0.8722 0.5166 0.5167 0.5167 0.5295 0.5254 0.7050 0.8257 0.6675 

4 0.8299 0.5023 0.5023 0.5023 0.5196 0.8181 0.6202 0.7664 0.7113 

5 0.8505 0.5019 0.5019 0.5019 0.5131 0.7809 0.6120 0.7691 0.6555 

6 0.8666 0.5025 0.5025 0.5025 0.5169 0.8072 0.6839 0.7786 0.7489 

7 0.8643 0.5032 0.5032 0.5032 0.5218 0.8241 0.6701 0.7319 0.7713 

8 0.8286 0.5030 0.5030 0.5030 0.5258 0.8121 0.5565 0.6518 0.7516 

9 0.8083 0.5023 0.5023 0.5023 0.5300 0.7200 0.7613 0.7657 0.7087 

10 0.8011 0.5013 0.5013 0.5013 0.5339 0.7826 0.6340 0.6339 0.7245 

11 0.8643 0.5032 0.5032 0.5032 0.5381 0.8200 0.7903 0.5123 0.7901 

12 0.7974 0.5030 0.5030 0.5030 0.5313 0.7422 0.7680 0.5508 0.6769 

13 0.8339 0.5021 0.5021 0.5021 0.5256 0.7244 0.8004 0.6020 0.6446 

14 0.8223 0.5020 0.5020 0.5020 0.5291 0.7315 0.7962 0.6269 0.7369 

15 0.8654 0.5022 0.5022 0.5022 0.5132 0.8656 0.6106 0.8112 0.7103 

16 0.7240 0.5020 0.5020 0.5020 0.5292 0.7046 0.6813 0.6822 0.6718 

17 0.7270 0.5033 0.5033 0.5033 0.5293 0.7460 0.7468 0.6122 0.6814 

18 0.8276 0.5022 0.5022 0.5022 0.5272 0.7967 0.7389 0.7972 0.7359 

19 0.8323 0.5035 0.5035 0.5035 0.5262 0.8458 0.7796 0.8342 0.7333 

20 0.7221 0.5028 0.5028 0.5028 0.5103 0.7215 0.7653 0.6694 0.6439 

21 0.7852 0.5050 0.5050 0.5050 0.5195 0.7967 0.7614 0.7138 0.6604 

22 0.8497 0.5015 0.5015 0.5015 0.5267 0.8571 0.8049 0.7181 0.7329 

23 0.7905 0.5026 0.5026 0.5026 0.5295 0.7924 0.7607 0.7621 0.6871 

24 0.7982 0.5054 0.5054 0.5054 0.5228 0.7843 0.7643 0.7611 0.6854 

25 0.7838 0.5054 0.5054 0.5054 0.5117 0.7945 0.7633 0.7772 0.6414 

26 0.8302 0.5011 0.5011 0.5011 0.5165 0.8159 0.7352 0.6746 0.7355 

27 0.7832 0.5026 0.5026 0.5026 0.5184 0.7939 0.7701 0.8032 0.6695 

28 0.7165 0.5024 0.5024 0.5024 0.5134 0.7030 0.7491 0.6381 0.6305 

29 0.7825 0.5028 0.5028 0.5028 0.5333 0.7445 0.7749 0.6567 0.6026 

30 0.7650 0.5043 0.5043 0.5043 0.5179 0.7884 0.7517 0.7464 0.6623 

31 0.6681 0.5058 0.5060 0.5060 0.5152 0.6410 0.6539 0.6639 0.6328 

32 0.7232 0.5041 0.5042 0.5042 0.5004 0.6341 0.6755 0.6558 0.6327 

33 0.7121 0.5040 0.5041 0.5041 0.5106 0.6415 0.6894 0.6805 0.6691 

34 0.6840 0.5073 0.5073 0.5073 0.5085 0.6066 0.6661 0.6253 0.5930 

35 0.7289 0.5027 0.5024 0.5024 0.5351 0.6695 0.6881 0.5908 0.6446 

36 0.7413 0.5073 0.5072 0.5072 0.5219 0.6135 0.6318 0.6276 0.6802 

37 0.7577 0.5018 0.5017 0.5017 0.5072 0.5412 0.5440 0.5282 0.5606 

38 0.7414 0.5006 0.5006 0.5006 0.5106 0.5069 0.5018 0.5728 0.6174 

39 0.6999 0.5030 0.5031 0.5031 0.5118 0.5621 0.6038 0.6693 0.6367 

40 0.8505 0.5184 0.5184 0.5184 0.5122 0.6437 0.5796 0.8374 0.6690 

41 0.7509 0.5146 0.5150 0.5150 0.5240 0.5235 0.5194 0.5450 0.7320 

42 0.7528 0.5150 0.5150 0.5150 0.5266 0.5446 0.5613 0.7351 0.7171 

43 0.8218 0.5151 0.5150 0.5150 0.5029 0.5128 0.5013 0.7132 0.7110 

44 0.8392 0.5012 0.5011 0.5011 0.5102 0.6082 0.5245 0.7381 0.7201 

45 0.8542 0.5019 0.5019 0.5019 0.5231 0.7425 0.5545 0.7801 0.6911 

46 0.8633 0.5167 0.5168 0.5168 0.5102 0.7627 0.5658 0.7610 0.7356 

47 0.8864 0.5049 0.5050 0.5050 0.5241 0.8041 0.5431 0.7905 0.7625 

48 0.8777 0.5172 0.5175 0.5175 0.5214 0.8501 0.5913 0.7833 0.7563 

49 0.8847 0.5110 0.5111 0.5111 0.5120 0.8651 0.5836 0.8214 0.7278 

50 0.8942 0.5165 0.5168 0.5168 0.5358 0.8400 0.5553 0.7757 0.7390 

51 0.8922 0.5128 0.5130 0.5130 0.5111 0.8397 0.6072 0.7992 0.7251 

52 0.8990 0.5025 0.5025 0.5025 0.5180 0.8450 0.5930 0.7795 0.7243 

 Avg. 0.8029 0.5055 0.5056 0.5056 0.5203 0.7288 0.6658 0.7069 0.6910 

 Std. 0.0625 0.0053 0.0053 0.0053 0.0091 0.1072 0.0939 0.0876 0.0503 

Table 2: Comparative AUC Analyses of Proposed and Benchmark Methods 
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For k-NN in Table 2, we followed the strategy by Hand et al. (2001) to set the value of k. 

Specifically, each possible k value was evaluated with 10-fold cross validation using training data; we 

selected the k value that yielded the best average AUC across the 10 folds. The SVM method in Table 2 

used RBF kernel (Burges 1998) and was implemented with the standard software package LIBSVM 

(Chang and Lin 2011). We experimentally tuned the SVM parameters according to the commonly 

accepted guidelines (Hsu et al. 2003). We also benchmarked our method against SVM with other kernels 

including linear, polynomial, and sigmoid (Burges 1998). The Wilcoxon testing results suggest our 

method significantly outperforming SVM with any investigated kernel (p < 0.001). We do not include 

detailed AUCs of SVM with linear, polynomial, and sigmoid kernels because of space consideration.  

Several observations warrant attention. First, the AUCs of the cascade methods and the influence 

probability method are barely greater than 0.5, which suggests their predictive power only marginally 

higher than that of random guess (Fawcett 2006). The poor performance of these methods partly reflects 

their exclusive reliance on social influence for adoption probability predictions (Chen et al. 2009, Goyal 

et al. 2010). Consequently, they predict that the adoption probability of a social entity in week Z + 1 is 

zero if that entity has zero neighbors who adopt in week  Z, as in equation (47). Figure 7 shows the 

percentage of adopters (nonadopters) in week Z + 1 who has zero neighbors adopting in week Z. Across 

all 50 evaluations, on average 95.78% of adopters in week Z + 1 has zero neighbors who adopt in week Z 

and 98.51% of nonadopters in week Z + 1 has zero neighbors who adopt in week Z. Therefore, on 

average, adoption probabilities of 95.78% of adopters and 98.51% of nonadopters are predicted as zero by 

these benchmark methods; and hence these social entities cannot be differentiated by them, which 

explains their performance. Low weekly adoption rates (0.42% on average) make these high percentages 

unsurprising. We note that adoption rates in our data are not uncommon; comparable or lower adoption 

rates have been reported by prior studies (Aral et al. 2009, Iyengar et al. 2011). Furthermore, similar 

percentages of adopters (nonadopters) having zero adopter neighbors have also been noted (Aral et al. 

2009). The proposed method, on the other hand, considers more comprehensive set of factors underlying 

adoption decision; therefore, it can predict adoption probabilities more effectively.  
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Figure 7: Percentage of Zero Neighbors Adopting in Week T  

Second, the proposed method outperforms the benchmarked classification methods: NB, LWNB, 

SVM, and k-NN. The superiority of the proposed method over the benchmarked classification methods 

can be attributed to the consideration of hidden confounding power by the proposed method but not by 

the classification methods. Thus, experimental results in Table 2 also highlight the importance of hidden 

confounding power (and hence confounding factors) for predicting adoption probabilities. Both LWNB 

and the proposed method are NB-based classification methods. Methodologically, NB (Mitchell 1997) 

does not use local learning nor consider hidden confounding power; LWNB (Frank et al. 2003) employs 

local learning but does not consider hidden confounding power. Applying the Wilcoxon test to the AUCs 

of NB and LWNB, testing results suggest that NB significantly outperforms LWNB (p < 0.01). The 

performance of local learning methods depends on appropriate weights of training records (Atkeson et al. 

1997). For our study, the hidden confounding power is unobserved, and LWNB weights training records 

using only observed (partial) variables, so training records may not be properly weighted, which could 

lead to the performance differential we observed. With local learning and consideration of hidden 

confounding power, the proposed method avoids this problem associated with LWNB and therefore can 

yield better performance than both NB and LWNB. 

Third, as we report in Table 2, the ratio of the standard deviation to the mean for LEMNB is higher 

than that for cascade methods; however the ratio for LEMNB is comparable or lower than that for NB, 

LWNB, SVM, and k-NN. Note that LEMNB, NB, LWNB, SVM, and k-NN are learning-based predictive 

methods. These methods learn adoption patterns from training data and then leverage such patterns to 

predict future adoption behaviors. The deviation between prior adoption patterns and future adoption 

behaviors might affect the performance of these methods. If the deviation increases, the performance of a 
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learning-based method is likely to decline; if the deviation decreases, its performance could improve. 

Thus, for LEMNB, NB, LWNB, SVM, and k-NN, we observe their performance varying across 50 

evaluation weeks, though on average these methods (especially LEMNB) demonstrate good predictive 

performance, as suggested by their high average AUC scores. Cascade methods, on the other hand, 

predict the adoption probability of a social entity in week  T+1 based on his or her neighbors who adopt in 

week T. As we have discussed, the high percentage of adopters (nonadopters) having zero neighbors 

adopting in week T explains the poor performance of cascade methods. Thus, although the performance 

of cascade methods is relatively stable across evaluation weeks, they are stable at a very low performance 

level. In Appendix E, we plot the AUCs of each method across 50 evaluations.  

Our evaluation results with the mobile social network show that the proposed method substantially 

outperforms all benchmark methods. Similar results emerge from our comparative evaluations with the 

avatar social network, as we detail in Appendix D. This superior performance derives from our 

consideration of a more comprehensive set of factors underlying adoption decision, including unobserved 

confounding factors. Our results also indicate that the predictive power of cascade methods that consider 

social influence solely is limited and that confounding factors are critical to effective adoption probability 

predictions. 

 

5. Discussion and Conclusion 

We take a data-driven approach to study adoption behaviors in a social network by predicting individuals’ 

adoption probabilities from observed adoption data. From the lens of established social network theories, 

we identify and operationalize key factors underlying adoption decision, and then develop the locally-

weighted EM method for Naïve Bayes learning to predict adoption probabilities on the basis of these key 

factors. Our study makes several research contributions. First, we develop a method to predict adoption 

probabilities by considering a more comprehensive set of factors underlying adoption decision than do 

existing methods. An essential novelty of our method is the consideration of unobserved confounding 

factors for predicting adoption probabilities. Second, we evaluate the proposed method with real-world 

data from two large-scale social networks and produce empirical evidence that reveals greater predictive 

power of the proposed method over all benchmark methods across the two social networks we studied. 

Third, our evaluation results shed light on the significance of confounding factors in adoption probability 
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predictions; they further suggest that adoption probabilities should be predicted with factors beyond social 

influence. Our findings support and reinforce the motivation of the proposed method, i.e., better 

predicting adoption probabilities with a more comprehensive set of key factors underlying adoption 

decision, including confounding factors. 

Our findings suggest that cascade methods relying on exclusive use of social influence seems limited 

in predictive power. This is intriguing because previous research shows the important effects of social 

influence (Pan et al. 2011, Altshuler et al. 2012, Pickard et al. 2011), while pointing out the significance 

of other forces. Forces above and beyond social influence are also recognized by (Bakshy et al. 2011, 

Watts and Peretti 2007), congruent with our approach. Overall, our results shed light on potential 

limitations of cascade methods solely using social influence rather than defying the value of social 

influence for predictions. Our findings also suggest the consideration of other forces, particularly 

unobserved confounding factors, which could augment the predictive power of methods emphasizing 

social influence. In particular, our study offers a viable way to operationalize confounding factors for 

predicting individuals’ adoption probabilities in a network enabled by social media.  

Our study also has several implications for practice. First, firms can use our method to enhance their 

social network-based target marketing efforts by better promoting product (service) adoptions in a 

network enabled by social media. Different from traditional target marketing, social network-based target 

marketing leverages essential structural linkage and interactions among individuals in a social network 

(Hill et al. 2006). Supported by our method, social commerce firms and online gaming providers alike can 

predict individual adoption probabilities on the basis of their social, demographical, and behavioral 

information, and select a subset of customers to focus on in each time period. By ranking potential 

adopters by their probabilities, a firm can differentiates consumers and designs personalized incentives, in 

light of each individual’s adoption probability, rather than offering a uniform incentive. Firms could 

approach top-ranked potential adopters with strong cross- or up-selling strategies to generate more 

revenues and provide less likely potential adopters with incentives that lure them into adopting. Second, 

social commerce firms and online game providers also can use our method to estimate aggregate demand 

for their offerings over time. By summing adoption probabilities across potential adopters, a firm could 

predict the expected number of adopters in the next time period. Such prediction allows firms to gauge 

whether an offering is likely to go viral, which has crucial implications for their business decisions 
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(Altshuler et al. 2012, Bandari et al. 2012). For example, if an offering is likely to go viral, the firm could 

act proactively to leverage the anticipated viral with appropriate marketing strategies, such as bundling or 

cross-selling. In addition, with effective estimates by our method, firms could allocate their resources and 

capabilities dynamically and intelligently across different time periods to improve performance and 

utilization efficiency. For example, firms can allocate more resources for time periods in which they 

predict a greater number of consumers will adopt their services. Furthermore, our method supports viral 

marketing, which requires identifying a target set of social entities whose adoptions will trigger the 

greatest spread of adoption throughout a social network. Identifying such seeds involves effective 

adoption probability predictions. Supported by our method, firms can become more effective in seed 

selection for viral marketing and perform the selection dynamically over time.  

Our study could be extended in several directions. First, although the proposed method considers 

more comprehensive set of factors underlying individuals’ adoption decisions than existing methods, 

there could be other factors not considered by the method, such as viral product features (Aral and Walker 

2011), strength of weak ties (Granovetter 1973), and the connectedness of adopter neighbors (Backstrom 

et al. 2006). Future research should extend the proposed method by exploring and incorporating 

additional important factors and evaluate the effectiveness accordingly. In Appendix F, we provide a 

preliminary study that illustrates how to incorporate the connectedness of adopter neighbors into our 

method. Future research should also consider how to utilize useful information about hidden confounding 

power for better initialization of v̅}|!, which in turn could improve the performance of the proposed 

method. Second, while our study provides a preliminary analysis of the performance differential between 

LWNB and NB, systematic methodological analyses as well as in-depth empirical evaluations are needed 

to analyze situations in which LWNB performs differently from NB. Third, prior studies have explored 

the interaction effects of social influence and entity similarity on adoption decisions (Aral et al. 2009, 

Aral and Walker 2012). In light of these studies, future research should examine how to extend the 

proposed method by incorporating such effects. Fourth, it is interesting to investigate alternative 

operationalizations of the factors underlying adoption decision and evaluate our method accordingly. A 

preliminary exploration in this direction is given in Appendix G. Finally, the current implementation of 

our method may not be scalable to social networks with millions of nodes, primarily due to the method’s 

pairwise distance calculation, which requires )( 2nO  time under current implementation, where n is the 
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number of nodes in a social network. Toward that end, use of a hierarchical tree-based distance 

calculation algorithm can reduce the time requirement for pairwise distance calculations from )( 2nO  to 

)log( nnO  (Barnes and Hut 1986). The computational time requirements can be further reduced through 

parallel computing. Therefore, it is important to investigate how to reduce the time required by the 

proposed method for large social networks with millions of nodes. Finally, conducting a case study is 

worthy of future research attention, such as those in the form of social network-based target marketing. 
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Appendix A: Illustrative Examples 

A1. Euclidean distance of structural equivalence 

Figure A1 depicts an example social network at time t: the set of social entities � = 	 {��, ��, ⋯ , �Â} and 

nondirectional social ties connecting these social entities.  

 

Figure A1: An Example Social Network   

According to (4), the Euclidean distance of structural equivalence between ��	and �Ã at time t, %�Ã� 	is 

calculated as the following, 

           %�Ã� = &()��� − )Ã�� )� + ()�±� − )Ã±� )� + ()�Ä� − )ÃÄ� )� + ()�Â� − )ÃÂ� )� 
																			= Å(1 − 1)� + (1 − 0)� + (1 − 0)� + (0 − 1)� = 1.7321. 

 

A2. Construction of training data from observed adoption information 

Considering the set of social entities � =	 {��, ��,⋯ , �Â} in a social network, we observe the following 

adoption information at current time J = 3: adopters �K± = {��, ��, �±, �Ä},  
nonadopters �L± = {�Ã, �Â}, and adoption time for each adopter: N� = 2, N� = 1, N± = 2, NÄ = 3. 
According to adoption time, the earliest adopter is ��, followed by �� and �± and then followed by �Ä. 
Applying the algorithm in Figure 1, we show step-by-step results in Table A1.  

      Initially, training data are empty. The first for-loop computes powers from the earliest adopter to the 

latest adopter. Hence, powers on �� are computed first. Specifically,  ��cÆe� = ��t = ∑ ���t�.∈-fghij = 0 

because �W!XUY = V (i.e., no earlier adopter before ��). Similarly, <�t = 0 and F�t = 0. \�� = 1 because �� 
adopts at time 1. Thus, {< 	 ��t, <�t, F�t, \�� >} = {< 0,0,0,1 >} is added to training data. Social entity �� 
who adopts at time 1, termed as innovator by Bass (1969), receives no influence power, equivalence 

power, or similarity power; and the adoption of an innovator is driven by hidden confounding power (Van 

den Bulte and Lilien 2001).  
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Social entities �� and �± adopt at the same time and we random choose to compute powers on �� 
next. In particular, ��cÇe� = ��� = ∑ �����.∈-fghij = ∑ �����.∈{�Æ} = ����  because �� is the only earlier adopter 

before ��. Similarly, we can calculate <�� and F�� according to their respective formula in the algorithm 

and add <���,	<��,	F��,1> to training data. Computing powers on �± and �Ä is similar to computing powers 

on ��	and not discussed.  The second for-loop calculates powers on each nonadopter. Taking �Ã as an 

example, �ÃRe� = �Ã� = ∑ ��Ã� =�.∈-fghij ∑ ��Ã� =�.∈{�Ç,�È,�Æ} 	��Ã� +��Ã� + �±Ã� . We then can calculate <Ã� and FÃ� 
according to their respective formula in the algorithm and add <�Ã�,	<Ã�,	FÃ�,0> to training data.      

  clock É=Ê³ ÉËÌÍÊÎ ÏÐÑÒÓ 

Initial     0 V V V �� 1 {��} V {<0,0,0,1>} �� 2 {��} {��} {<0,0,0,1>, <���,	<��,	F��,1>} �± 2 {��, �±} {��} {<0,0,0,1>, <���,	<��,	F��,1>,<�±�,	<±�,	F±�,1>} �Ä 3 {�Ä} {��, �±, ��} {<0,0,0,1>, <���,	<��,	F��,1>,<�±�,	<±�,	F±�,1>, 

<�Ä�,	<Ä�,	FÄ�,1>} �Ã 3 {�Ä} {��, �±, ��} {<0,0,0,1>, <���,	<��,	F��,1>,<�±�,	<±�,	F±�,1>, 

<�Ä�,	<Ä�,	FÄ�,1>,<�Ã�,	<Ã�,	FÃ�,0>} �Â 3 {�Ä} {��, �±, ��} {<0,0,0,1>, <���,	<��,	F��,1>,<�±�,	<±�,	F±�,1>, 

<�Ä�,	<Ä�,	FÄ�,1>,<�Ã�,	<Ã�,	FÃ�,0>,<�Â�,	<Â�,	FÂ�,0>} 

Table A1: An Example Illustrating the Construction of Training Data 
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Appendix B: Derivation of (19) 

We need to set K such that for all ~ = 1,2,⋯ , �,  

�(� − �� − �p� − pm
�+ u(p�r\� , z�)u�pmrz�
@}.@}� > 0.	 
That is, for all ~ = 1,2,⋯ , �,  

� > �� +��p� −pm
�u(p�r\� , z�)u�pmrz�
@}.@}� . 
Given z�, densities u(p�r\�, z�) and	u�pmrz�
 are known. For example, probability density of p� given 

\� = 1 is u(p�r\� = 1,z�) = v̅}|� exp�−v̅}|�p�
.  
Applying u�pmrz�
 = u�pmr\m = 1, z�
o�\m = 1rz�
 + u�pmr\m = 0,z�
o�\m = 0rz�
 and solving 

the integral, we have, for all ~ = 1,2,⋯ , �,  

� > �� + 2v̅}|K.� − 2�̅�v̅}|K.v̅}|� +
2�̅�v̅}|�� − 2�̅tv̅}|K.v̅}|t +

2�̅tv̅}|t� . 
Considering that \� 	can only be 0 or 1, we need to set K such that for all ~ = 1,2,⋯ , �,   

� > �� + 2v̅}|t� + 2�̅�v̅}|�� − 2�̅�v̅}|tv̅}|� 							if				\� = 0, 
                   or 

� > �� +	 2v̅}|�� + 2�̅tv̅}|t� − 2�̅tv̅}|tv̅}|� 								if				\� = 1. 
It is easy to show that the above constraint is satisfied if we set K as,  

� = �� !" + 2v̅}|t� + 2v̅}|�� , 
where �� !" is the maximum among all ��, ~ = 1,2,⋯ , �. 
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Appendix C: Proofs of Theorems 

C1. Proof of Theorem 1 

Let �(z) = <}.,}�|z�{∑ ��ln	[o(��|z)]��s� }. According to (16), we have 

		�(z) =��(� − �� − �p� − pm
�+ ln[o(��|z)] u(p�r\�, z�)u�pmrz�
@}.@}��
�s�  

													= ��(� − �� − �p� − pm
�+ ln[o(��, <� , F�, p�, \�|z)] u(p�r\�, z�)u�pmrz�
@}.@}��
�s�  

													= ��(� − �� − �p� − pm
�+ {ln[o(��|\�, z)] + ln[o(<�|\�, z)] + ln[o(F�|\� , z)]�
�s� + ln[o(p�|\�, z)] + ln[o(\�|z)]}u(p�r\�, z�)u�pmrz�
@}.@}� 	 

      (by conditional independence of Naïve Bayes) 

												= �ÕÕ(� − �� − �p� − pm
�+ ln o(��|\�, z) u(p�|\�, z�) u�pmrz�
@}. @}��
�s������������������������������������������������Ö�

+ 

															�ÕÕ(� − �� − �p� − pm
�+ ln o(<�|\� , z) u(p�r\� , z�) u�pmrz�
@}. @}��
�s��������������������������������������������������Ö�

+ 

														�ÕÕ(� − �� − �p� − pm
�+ ln o(F�|\� , z) u(p�r\� , z�) u�pmrz�
@}. @}��
�s��������������������������������������������������																		Ö±

+ 

													�ÕÕ (� − �� − �p� −pm
�+ ln o(p�|\� , z) u(p�|\� , z�) u�pmrz�
@}. @}��
�s��������������������������������������������������																ÖÄ

+ 

																			�ÕÕ(� − �� − �p� −pm
�+ ln o(\�|z) u(p�|\�, z�) u�pmrz�
@}. @}��
�s������������������������������������������������ÖÃ

. 
The integrals F1, F2, F3, F4, and F5 can be further expressed as below.  

×1 =�Ø\� Ù�ln vw|� − vw|���
Ú� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§ÛÜ
�
�s�

+ (1 − \�) Ù�ln vw|t − vw|t��
Ú� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§ÛÜÝ				 
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×2 =�Ø\� Ù�ln v{|� − v{|�<�
 Ú� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§ÛÜ
�
�s�

+ (1 − \�) Ù�ln v{|t − v{|t<�
Ú� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§ÛÜÝ	 
×3 =�Ø\� Ù�ln v||� − v||�F�
Ú� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§ÛÜ

�
�s�

+ (1 − \�) Ù�ln v||t − v||tF�
Ú� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§ÛÜÝ	 
×4 =�ß\� à(� − ��) ln v}|� − 2v̅}|�� ln v}|� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§ ln v}|� − (� − ��)v̅}|� v}|��

�s�
− 2�̅�v̅}|�v̅}|t� v}|� + 4�̅�v̅}|tv̅}|�� v}|� + 6 − 2�̅�v̅}|�± v}|�á 

+(1 − \�) à(� − ��) ln v}|t − 2v̅}|t� ln v}|t − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§ ln v}|t − (� − ��)v̅}|t v}|t
− 2�̅tv̅}|tv̅}|�� v}|t + 4�̅tv̅}|�v̅}|t� v}|t + 6 − 2�̅tv̅}|t± v}|táâ 

×5 =�Ù\� ln �� Ú� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§Û
�
�s�

+ (1 − \�) ln �t Ú� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§ÛÜ			 
Recalling that z =< ��, vw|�, v{|�, v||�, v}|�, �t, vw|t, v{|t, v||t, v}|t >, the Hessian matrix of �(z)	is 

given by (Greene 2008),  

ãä
ää
ää
äå ∂

�g(ç)∂�� ∂�� ∂�g(ç)∂�� ∂vw|� … ∂�g(ç)∂�� ∂v}|t∂�g(ç)∂vw|� ∂�� ∂�g(ç)∂vw|� ∂vw|� … ∂�g(ç)∂vw|� ∂v}|t⋮ ⋮ ⋮ ⋮∂�g(ç)∂v}|t ∂�� ∂�g(ç)∂v}|t ∂vw|� … ∂�g(ç)∂v}|t ∂v}|téê
êê
êê
êë
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We first calculate first-order partial derivatives of �(z) w.r.t. each parameter in z.  

∂g(ç)∂�� =�ß\��� à� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§á
�
�s�

− (1 − \�)1 − �� à� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§áâ 
∂g(ç)∂vw|� =�\� ¦ 1vw|� − ��§ [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]

�
�s�  

∂g(ç)∂v{|� =�\� ¦ 1v{|� − <�§ [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s�  

∂g(ç)∂v||� =�\� ¦ 1v||� − F�§ [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s�  

ì�(z)ìv}|� =�\�{ 1v}|� [� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§] − � − ��v̅}|� − 2�̅�v̅}|t� v̅}|� + 4�̅�v̅}|�� v̅}|t
�
�s�

+	6 − 2�̅�v̅}|�± } 
∂g(ç)∂�t =�ß −\�1 − �t à� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§á

�
�s�

+ (1 − \�)�t à� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§áâ 
∂g(ç)∂vw|t =�(1 − \�) ¦ 1vw|t − ��§ [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]

�
�s�  

∂g(ç)∂v{|t =�(1 − \�) ¦ 1v{|t − <�§ [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s�  

∂g(ç)∂v||t =�(1 − \�) ¦ 1v||t − F�§ [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s�  

ì�(z)ìv}|t =�(1 − \�){ 1v}|t [� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§] − � − ��v̅}|t − 2�̅tv̅}|�� v̅}|t + 4�̅tv̅}|t� v̅}|�
�
�s�

+ 6 − 2�̅tv̅}|t± } 
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For any first-order partial derivative on a parameter � ∈ z, its second-order partial derivation on a 

different parameter % ∈ z, % ≠ �, yields 0 because each first-order partial derivative shown above 

involves no other parameter. That is, for �, % ∈ z ∂g(ç)∂� ∂% = 0									if	� ≠ %. 
Hence, the off-diagonal terms in the Hessian matrix are all zero.  The main diagonal terms of the Hessian 

matrix are given below. 

∂�g(ç)∂�� ∂�� =�{−\���� à� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§á
�
�s�

− (1 − \�)(1 − ��)� à� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§á} 
∂�g(ç)∂vw|� ∂vw|� =�¦−\�vw|�� § [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]

�
�s�  

∂�g(ç)∂v{|� ∂v{|� =�¦−\�v{|�� § [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s�  

∂�g(ç)∂v||� ∂v||� =�¦−\�v||�� § [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s�  

∂�g(ç)∂v}|� ∂v}|� =�(−\�v}|�� )[� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§]
�
�s�  

∂�g(ç)∂�t ∂�t =�{−(1 − \�)�t� à� − �� − 2v̅}|t� − 2�̅� ¦ 1v̅}|�� − 1v̅}|�v̅}|t§á
�
�s�

− \�(1 − �t)� à� − �� − 2v̅}|�� − 2�̅t ¦ 1v̅}|t� − 1v̅}|�v̅}|t§á} 
∂�g(ç)∂vw|t ∂vw|t =�−(1 − \�)vw|t� [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]

�
�s�  

∂�g(ç)∂v{|t ∂v{|t =�−(1 − \�)v{|t� [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s�  

∂�g(ç)∂v||t ∂v||t =�−(1 − \�)v||t� [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s�  

∂�g(ç)∂v}|t ∂v}|t =�−(1 − \�)v}|t� [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s�  
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By (19), both � − �� − �¬�²|ÇÆ − 2�̅t î �¬�²|ïÆ − �¬�²|Ç¬�²|ïð and � − �� − �¬�²|ïÆ − 2�̅� î �¬�²|ÇÆ − �¬�²|Ç¬�²|ïð are 

positive. Hence, the above second-order partial derivatives are all negative.  Therefore, the kth principal 

minor of the Hessian matrix is negative when k is odd and positive when k is even; and thus the Hessian 

matrix is negative definite (Dowling 1980).  This completes the proof. 

 

C2. Proof of Theorem 2 

Let �(z) = <}.,}�|z�{∑ ��ln	[o(��|z)]��s� }. Taking first-order partial differentiation of �(z) w.r.t. each 

parameter in z =< ��, vw|�, v{|�, v||�, v}|�, �t, vw|t, v{|t, v||t, v}|t >,	 and making the obtained forms 

equal zero, we have,   

∑ {K.ñÇ ò� − �� − �¬�²|ÇÆ − 2�̅t î �¬�²|ïÆ − �¬�²|Ç¬�²|ïðó − (�eK.)�eñÇ ò� − �� − �¬�²|ïÆ − 2�̅� î �¬�²|ÇÆ − �¬�²|Ç¬�²|ïðó}��s� = 0  

�\� ¦ 1vw|� − ��§ [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s� = 0 

�\� ¦ 1v{|� − <�§ [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s� = 0 

�\� ¦ 1v||� − F�§ [� − �� − 2v̅}|�� − 2�̅t( 1v̅}|t� − 1v̅}|�v̅}|t)]
�
�s� = 0 

∑ \�{ �¬²|Ç [� − �� − �¬�²|ÇÆ − 2�̅t î �¬�²|ïÆ − �¬�²|Ç¬�²|ïð] − ôeõ.¬�²|Ç − �ñ̅Ç¬�²|ïÆ ¬�²|Ç + Äñ̅Ç¬�²|ÇÆ ¬�²|ï +	Âe�ñ̅Ç¬�²|ÇÈ }��s� = 0  
∑ { eK.�eñï ò� − �� − �¬�²|ÇÆ − 2�̅t î �¬�²|ïÆ − �¬�²|Ç¬�²|ïðó + (�eK.)�eñï ò� − �� − �¬�²|ïÆ − 2�̅� î �¬�²|ÇÆ − �¬�²|Ç¬�²|ïðó}��s� = 0  

�(1 − \�) ¦ 1vw|t − ��§ [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s� = 0 
�(1 − \�) ¦ 1v{|t − <�§ [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s� = 0 
�(1 − \�) ¦ 1v||t − F�§ [� − �� − 2v̅}|t� − 2�̅�( 1v̅}|�� − 1v̅}|�v̅}|t)]
�
�s� = 0 

∑ (1 − \�){ �¬²|ï [� − �� − �¬�²|ïÆ − 2�̅� î �¬�²|ÇÆ − �¬�²|Ç¬�²|ïð] − ôeõ.¬�²|ï − �ñ̅ï¬�²|ÇÆ ¬�²|ï + Äñ̅ï¬�²|ïÆ ¬�²|Ç + Âe�ñ̅ï¬�²|ïÈ }��s� = 0  

We note that the first-order partial derivatives in the above equations are obtained during the proof of 

Theorem 1. 

 



Electronic Companion                                                                                                                             ec9 
_____________________________________________________________________________________ 
 
 

 
 

 Let ¡� = (� − ��)v̅}|t� v̅}|�� − 2v̅}|t� − 2�̅t(v̅}|�� − v̅}|tv̅}|�), [� = (� − ��)v̅}|t� v̅}|�� − 2v̅}|�� − 2�̅��v̅}|t� − v̅}|tv̅}|�
. 
The above equations can be written as, 

1v̅}|t� v̅}|�� �ß\���¡� − (1 − \�)1 − �� [�â = 0
�
�s�  

1v̅}|t� v̅}|�� �\� ¦ 1vw|� − ��§¡�
�
�s� = 0 

1v̅}|t� v̅}|�� �\� ¦ 1v{|� − <�§¡� = 0
�
�s�  

1v̅}|t� v̅}|�� �\� ¦ 1v||� − F�§¡� = 0
�
�s�  

�\� à ¡�v̅}|t� v̅}|�� v}|�	 − [�v̅}|t� v̅}|�± − 2v̅}|t� v̅}|� − 2�̅�v̅}|t� v̅}|� + 6�̅�v̅}|�� v̅}|t +	6 − 4�̅�v̅}|�± á = 0�
�s�  

1v̅}|t� v̅}|�� �ö1− \��t [� − \�1 − �t ¡�÷ = 0
�
�s�  

1v̅}|t� v̅}|�� �(1 − \�) ¦ 1vw|t − ��§[� = 0
�
�s�  

1v̅}|t� v̅}|�� �(1 − \�) ¦ 1v{|t − <�§[� = 0
�
�s�  

1v̅}|t� v̅}|�� �(1 − \�) ¦ 1v||t − F�§[� = 0
�
�s�  

�(1 − \�)[ [�v̅}|t� v̅}|�� v}|t − ¡�v̅}|t± v̅}|�� − 2v̅}|�� v̅}|t − 2�̅tv̅}|�� v̅}|t + 6�̅tv̅}|t� v̅}|� + 6 − 4�̅tv̅}|t± ]�
�s� = 0 

Solving these newly obtained equations leads to the forms in Theorem 2. 
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Appendix D: Evaluation Results with the Avatar Social Network 

Data on the avatar social network were collected from an online game company, including dialog, profile, 

and adoption data for 25,500 avatars registered in an online game over a one-year period. Dialog data 

contain 263.8 million dialog records among the 25,500 avatars; the profile of an avatar consists of 2 time-

invariant attributes: gender and profession, and 11 time-variant behavioral attributes: accumulated online 

time, elapsed offline time since last log-out, shopping amount on dress, shopping amount on weapons, 

frequency of trading with other avatars, amount of money spent in trading, amount of money earned in 

trading, frequency of setting up a vendor stall, amount of money earned through vendor stalls, amount of 

money spent at other avatars’ vendor stalls, and level12; and adoption data record week-by-week adoption 

of a virtual item, firstly available to purchase at the beginning of the one-year period, by the avatars, with 

an average weekly adoption rate of 0.40%. We created 52 snapshots of the avatar social network that 

include social entities (��) corresponding to avatars, the strength of a social tie (���� ) measured as the 

average number of dialog records per week between avatars �� and �� by week G, and the intrinsic 

characteristics =>? consisting of avatar profile attributes. Following the evaluation procedure in §4.1, we 

compared our method with the benchmarks in Table 1. Similar to the mobile social network, we gathered 

additional data regarding weekly adoptions of all other virtual items by the same group of avatars during 

the study period for the implementation of the influence probability method. These virtual items are not 

necessities and firstly available to purchase during the study period. As shown in Table D1, the evaluation 

results are generally consistent with those of the mobile social network: (1) according to the Wilcoxon 

test, our method significantly outperforms each benchmark method (p < 0.001); (2) the AUCs of the 

cascade and the influence probability methods are marginally larger than that of random guess (0.5). 

These results provide additional evidence suggesting the predictive power of the proposed method and the 

importance of confounding factors in adoption probability predictions. 

                                                      
12 An avatar can elevate its level through activities such as accomplishing a task. 
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   Evaluation Week  

(T+1) 
LEMNB CM1 CM2 CM3 IP NB LWNB SVM k-NN 

3 0.5862 0.5031 0.5031 0.5031 0.5412 0.5533 0.5467 0.5735 0.5890 

4 0.6498 0.5038 0.5038 0.5038 0.5022 0.6123 0.6023 0.6191 0.5826 

5 0.6661 0.5034 0.5034 0.5034 0.5233 0.6375 0.6278 0.6190 0.6581 

6 0.5720 0.5044 0.5044 0.5044 0.5311 0.5199 0.5110 0.5497 0.5540 

7 0.6177 0.5231 0.5231 0.5231 0.5436 0.5592 0.5543 0.5069 0.5492 

8 0.6412 0.5178 0.5178 0.5178 0.5347 0.5839 0.5781 0.5539 0.5618 

9 0.6633 0.5089 0.5089 0.5089 0.5483 0.5076 0.5310 0.6330 0.6552 

10 0.7528 0.5092 0.5092 0.5092 0.5209 0.5971 0.5734 0.6281 0.7077 

11 0.7081 0.5097 0.5097 0.5097 0.5370 0.5439 0.5220 0.6415 0.6750 

12 0.5772 0.5102 0.5102 0.5102 0.5422 0.5571 0.5243 0.5041 0.5701 

13 0.7382 0.5086 0.5129 0.5089 0.5035 0.5737 0.6728 0.6061 0.6579 

14 0.6234 0.5131 0.5134 0.5334 0.5363 0.5170 0.5072 0.5808 0.5810 

15 0.6553 0.5204 0.5106 0.5141 0.5294 0.5153 0.5016 0.5876 0.6000 

16 0.6750 0.5174 0.5171 0.5175 0.5263 0.5187 0.5037 0.5691 0.6572 

17 0.6821 0.5114 0.5114 0.5114 0.5482 0.5323 0.5636 0.5977 0.6223 

18 0.6896 0.5119 0.5119 0.5119 0.5373 0.5631 0.5328 0.6302 0.5321 

19 0.6633 0.5122 0.5122 0.5122 0.5008 0.5951 0.5647 0.7120 0.6188 

20 0.6267 0.5128 0.5128 0.5128 0.5375 0.5472 0.5388 0.6248 0.6084 

21 0.6514 0.5133 0.5133 0.5133 0.5201 0.5766 0.5566 0.6678 0.6568 

22 0.6975 0.5133 0.5133 0.5133 0.5000 0.5615 0.5041 0.6206 0.6733 

23 0.6903 0.5136 0.5136 0.5136 0.5212 0.5659 0.5030 0.6665 0.6762 

24 0.8316 0.5136 0.5136 0.5136 0.5000 0.6393 0.5478 0.6412 0.8003 

25 0.8454 0.5139 0.5139 0.5139 0.5003 0.6398 0.5180 0.6357 0.7043 

26 0.8253 0.5142 0.5142 0.5142 0.5003 0.6318 0.5610 0.6919 0.6669 

27 0.7455 0.5142 0.5142 0.5142 0.5003 0.5338 0.5077 0.6789 0.7184 

28 0.7592 0.5145 0.5145 0.5145 0.5003 0.5079 0.5330 0.6694 0.7396 

29 0.8178 0.5155 0.5175 0.5158 0.5003 0.6258 0.5824 0.6846 0.7080 

30 0.7542 0.5299 0.5313 0.5313 0.5000 0.5156 0.5619 0.7461 0.7302 

31 0.8549 0.5151 0.5151 0.5151 0.5005 0.6603 0.6156 0.6910 0.7096 

32 0.7843 0.5061 0.5127 0.5274 0.5013 0.5882 0.5439 0.7150 0.7318 

33 0.7686 0.5156 0.5156 0.5156 0.5036 0.5154 0.5630 0.7576 0.7518 

34 0.7371 0.5159 0.5159 0.5159 0.5052 0.5946 0.5459 0.7901 0.7384 

35 0.6318 0.5167 0.5167 0.5167 0.5357 0.5685 0.5982 0.5686 0.5317 

36 0.7799 0.5167 0.5167 0.5167 0.5338 0.6822 0.6102 0.6062 0.7832 

37 0.7792 0.5175 0.5175 0.5175 0.5346 0.6772 0.6070 0.6249 0.7030 

38 0.7889 0.5184 0.5184 0.5184 0.5034 0.5678 0.5226 0.7245 0.7568 

39 0.6526 0.5189 0.5189 0.5189 0.5037 0.6372 0.5726 0.7445 0.6164 

40 0.6791 0.5192 0.5192 0.5192 0.5032 0.5657 0.5047 0.6682 0.6344 

41 0.7705 0.5200 0.5200 0.5200 0.5034 0.7143 0.5440 0.7220 0.7789 

42 0.7346 0.5202 0.5202 0.5202 0.5034 0.6424 0.5557 0.6928 0.7450 

43 0.6829 0.5203 0.5203 0.5203 0.5037 0.5971 0.5147 0.6527 0.6131 

44 0.7834 0.5209 0.5209 0.5209 0.5037 0.6547 0.6443 0.6733 0.7231 

45 0.8615 0.5214 0.5231 0.5214 0.5237 0.8567 0.8355 0.7243 0.8596 

46 0.7720 0.5146 0.5027 0.5133 0.5037 0.6510 0.6213 0.6859 0.6940 

47 0.7254 0.5188 0.5355 0.5355 0.5037 0.7213 0.6830 0.5895 0.7097 

48 0.7033 0.5176 0.5144 0.5144 0.5042 0.6789 0.6964 0.6296 0.7325 

49 0.7340 0.5136 0.5136 0.5124 0.5283 0.6606 0.7032 0.5949 0.7020 

50 0.7889 0.5245 0.5245 0.5245 0.5378 0.7741 0.7818 0.6995 0.7811 

51 0.8537 0.5280 0.5290 0.5290 0.5000 0.8548 0.8553 0.8333 0.8652 

52 0.6856 0.5276 0.5276 0.5276 0.5000 0.6141 0.6930 0.6031 0.6807 

Avg. 0.7192 0.5153 0.5155 0.5163 0.5165 0.6062 0.5829 0.6486 0.6779 

Std. 0.0761 0.0060 0.0069 0.0072 0.0169 0.0804 0.0826 0.0686 0.0799 

Table D1: Comparative AUC Analyses of Proposed and Benchmark Methods  
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Appendix E: AUC Diagrams: Proposed Method versus Benchmark Methods  

Using data in Table 2, we plot AUCs of the proposed method and each benchmark method across 50 

evaluation weeks. According to our discussion in §4.2, the performance of learning-based predictive 

methods (i.e., LEMNB, NB, LWNB, SVM, and k-NN) vary across evaluation weeks and the performance 

of cascade methods (i.e., CM1, CM2, CM3, and IP) is relatively stable, as reflected in the following 

figures. Furthermore, the AUCs of different learning-based predictive methods may vary differently 

across evaluation weeks because of the differences in the patterns they learned. 

 

 

Figure E1: AUC Across Evaluation Weeks: LEMNB vs. IP vs. CM1   

 

 

Figure E2: AUC Across Evaluation Weeks: LEMNB vs. CM2 vs. CM3   
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Figure E3: AUC Across Evaluation Weeks: LEMNB vs. NB   

 
Figure E4: AUC Across Evaluation Weeks: LEMNB vs. LWNB  

  
Figure E5: AUC Across Evaluation Weeks: LEMNB vs. SVM 

 

 
Figure E6: AUC Across Evaluation Weeks: LEMNB vs. k-NN   
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Appendix F: Extending Proposed Method with Additional Factor: A Preliminary Analysis 

For a social entity v, with a set F of adopter neighbors, let e(F) denote the number of social ties 

connecting a pair of adopter neighbors in F. According to (Backstrom et al. 2006), the connectedness Z(v) 

of v’s adopter neighbors can be measured as 









=

2

||

)(
)(

F

Fe
vZ                                                                        (G1) 

where  








2

|| F
 is the number of all possible social ties connecting adopter neighbors in F. To consider the 

connectedness factor, we have to reconstruct training and test data by calculating Z(v) for each training or 

test record. More importantly, we need to adjust our method to predict a social entity’s adoption 

probability, on the basis of influence, equivalence, similarity, and hidden confounding powers on the 

entity as well as the connectedness of the entity’s adopter neighbors.  

Theorems 1 and 2 still hold when considering the connectedness factor, because of the Naïve Bayes’s 

conditional independence among factors. Therefore, we can estimate parameters for the connectedness 

factor in the same way as we estimate parameters for other factors (e.g., influence power). Specifically, 

we can initialize parameters 1|Zλ and 0|Zλ for the connectedness factor as follows, similar to parameter 

initialization for influence power in equations (33) and (34):    

∑
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where iZ denotes the connectedness of adopter neighbors for training record i. Furthermore, we can 

update parameters 
1|

ˆ
Zλ and 

0|
ˆ

Zλ  as follows, similar to parameter updates for influence power in equations 

(23) and (24):  
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Consideration of the connectedness factor requires several adjustments of the proposed method: (1) 

initializing the parameters for the connectedness factor with equations (G2) and (G3) in parameter 

initialization; and (2) updating parameters for the connectedness factor with equations (G4) and (G5) in 

parameter update. For clarity, we now name this adjusted method, which considers the additional 

connectedness factor, LEMNB+.  

In Table F1, we compare the performance of LEMNB+ and LEMNB (i.e., the original method 

without considering the connectedness factor) using both social networks we studied. We apply the 

Wilcoxon test (Demsar 2006) to the AUCs in Table F1; statistical testing results suggest that, for each 

social network, LEMNB+ significantly outperforms LEMNB (p < 0.01). Our evaluation results provide 

evidence suggesting that the connectedness of adopter neighbors could be an important predictor of 

adoption behaviors, consistent with Backstrom et al. (2006). Further, we demonstrate a viable way to 

incorporate additional factors into the proposed method through this analysis. 
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   Evaluation Week 

(T+1) 

Mobile Social Network Avatar Social Network 

LEMNB LEMNB+ LEMNB LEMNB+ 

3 0.8722 0.8955 0.5862 0.6127 
4 0.8299 0.8741 0.6498 0.6637 

5 0.8505 0.9010 0.6661 0.6988 

6 0.8666 0.9086 0.5720 0.5728 

7 0.8643 0.9036 0.6177 0.6672 

8 0.8286 0.7946 0.6412 0.6947 

9 0.8083 0.7808 0.6633 0.6633 

10 0.8011 0.7659 0.7528 0.7528 

11 0.8643 0.8346 0.7081 0.7275 

12 0.7974 0.8458 0.5772 0.5602 

13 0.8339 0.8777 0.7382 0.7619 

14 0.8223 0.7947 0.6234 0.5689 

15 0.8654 0.8567 0.6553 0.6553 

16 0.7240 0.7041 0.6750 0.6750 

17 0.7270 0.7399 0.6821 0.6821 

18 0.8276 0.8632 0.6896 0.6448 

19 0.8323 0.8822 0.6633 0.6633 

20 0.7221 0.7603 0.6267 0.6296 

21 0.7852 0.7568 0.6514 0.6514 

22 0.8497 0.8935 0.6975 0.6769 

23 0.7905 0.7628 0.6903 0.6809 

24 0.7982 0.8363 0.8316 0.8596 

25 0.7838 0.7627 0.8454 0.8595 

26 0.8302 0.7993 0.8253 0.8253 

27 0.7832 0.7672 0.7455 0.7658 

28 0.7165 0.6872 0.7592 0.7529 

29 0.7825 0.8099 0.8178 0.8178 

30 0.7650 0.7569 0.7542 0.7542 

31 0.6681 0.7023 0.8549 0.8655 

32 0.7232 0.7459 0.7843 0.7843 

33 0.7121 0.7516 0.7686 0.7686 

34 0.6840 0.6987 0.7371 0.8544 

35 0.7289 0.7557 0.6318 0.6065 

36 0.7413 0.7645 0.7799 0.7799 

37 0.7577 0.7608 0.7792 0.7792 

38 0.7414 0.7439 0.7889 0.8813 

39 0.6999 0.7030 0.6526 0.8010 

40 0.8505 0.8838 0.6791 0.7503 

41 0.7509 0.7570 0.7705 0.8006 

42 0.7528 0.7575 0.7346 0.7581 

43 0.8218 0.8225 0.6829 0.7317 

44 0.8392 0.8399 0.7834 0.7834 

45 0.8542 0.8563 0.8615 0.8228 

46 0.8633 0.8649 0.7720 0.8013 

47 0.8864 0.8862 0.7254 0.7249 

48 0.8777 0.8777 0.7033 0.6880 

49 0.8847 0.8847 0.7340 0.7058 

50 0.8942 0.8948 0.7889 0.8005 

51 0.8922 0.8933 0.8537 0.8564 

52 0.8990 0.8990 0.6856 0.7225 

 Avg. 0.8029 0.8112 0.7192 0.7321 

 Std. 0.0625 0.0672 0.0761 0.0832 

             Table F1: Comparative AUC Analyses of LEMNB and LEMNB+  



Electronic Companion                                                                                                                             ec17 
_____________________________________________________________________________________ 
 
 

 
 

Appendix G: Evaluating Proposed Method with an Alternative Operationalization of Entity 

Similarity 

We examine whether an alternative operationalization of entity similarity could affect the performance of 

our method. Specifically, the distance function by Aha et al. (1991) can be used to measure the similarity 

between entities with a mix of nominal, real-valued, and integer attributes. Like the distance function used 

by our method, the function by Aha et al. (1991) still computes entity distance on each feature with 

equation (44) or (45) but integrates entity distance on each feature differently. In particular, the distance 

between entities x and y is computed as (Aha et al. 1991),  

     ,),(),(
1

2∑
=

=

n

i

ii yxdyxd                                                 (G1) 

where ),( ii yxd is computed using equation (44) or (45). In Table G1, we compare the performance 

between our method LEMNB and a variance using the distance function by Aha et al. (1991), namely 

LEMNBA. We apply the Wilcoxon test (Demsar 2006) to the AUCs across 50 evaluations in Table G1; 

our testing results suggest that, for each social network we studied, the performance difference between 

LEMNB and LEMNBA is not significant ( p > 0.1), thereby suggesting the robustness of our method 

across these commonly used distance functions. 
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   Evaluation Week 

(T+1) 

Mobile Social Network Avatar Social Network 

LEMNB LEMNBA LEMNB LEMNBA 

3 0.8722 0.8870 0.5862 0.5605 
4 0.8299 0.8393 0.6498 0.5861 

5 0.8505 0.8608 0.6661 0.6182 

6 0.8666 0.8772 0.5720 0.5437 

7 0.8643 0.8729 0.6177 0.6483 

8 0.8286 0.8274 0.6412 0.7088 

9 0.8083 0.8197 0.6633 0.6624 

10 0.8011 0.7836 0.7528 0.6960 

11 0.8643 0.8732 0.7081 0.7438 

12 0.7974 0.7902 0.5772 0.5731 

13 0.8339 0.8529 0.7382 0.7010 

14 0.8223 0.8390 0.6234 0.5786 

15 0.8654 0.8742 0.6553 0.7098 

16 0.7240 0.7357 0.6750 0.6219 

17 0.7270 0.7238 0.6821 0.7094 

18 0.8276 0.8351 0.6896 0.6541 

19 0.8323 0.8402 0.6633 0.6463 

20 0.7221 0.7323 0.6267 0.6320 

21 0.7852 0.7944 0.6514 0.6790 

22 0.8497 0.8763 0.6975 0.6701 

23 0.7905 0.8046 0.6903 0.6846 

24 0.7982 0.7940 0.8316 0.8241 

25 0.7838 0.7907 0.8454 0.8794 

26 0.8302 0.8387 0.8253 0.8930 

27 0.7832 0.7999 0.7455 0.7753 

28 0.7165 0.7148 0.7592 0.7435 

29 0.7825 0.7798 0.8178 0.7591 

30 0.7650 0.7759 0.7542 0.7843 

31 0.6681 0.6679 0.8549 0.8046 

32 0.7232 0.6861 0.7843 0.8489 

33 0.7121 0.6783 0.7686 0.7993 

34 0.6840 0.6700 0.7371 0.7340 

35 0.7289 0.7538 0.6318 0.6380 

36 0.7413 0.7350 0.7799 0.7606 

37 0.7577 0.7120 0.7792 0.7407 

38 0.7414 0.6800 0.7889 0.8204 

39 0.6999 0.6711 0.6526 0.6657 

40 0.8505 0.8580 0.6791 0.7313 

41 0.7509 0.7188 0.7705 0.8008 

42 0.7528 0.7167 0.7346 0.7437 

43 0.8218 0.8097 0.6829 0.6799 

44 0.8392 0.8557 0.7834 0.8090 

45 0.8542 0.8261 0.8615 0.8321 

46 0.8633 0.8506 0.7720 0.7469 

47 0.8864 0.8428 0.7254 0.7254 

48 0.8777 0.8371 0.7033 0.6454 

49 0.8847 0.8702 0.7340 0.7115 

50 0.8942 0.8576 0.7889 0.7842 

51 0.8922 0.8711 0.8537 0.8878 

52 0.8990 0.8674 0.6856 0.7021 

 Avg. 0.8029 0.7974 0.7192 0.7180 

 Std. 0.0625 0.0678 0.0761 0.0863 

             Table G1: Comparative AUC Analyses of LEMNB and LEMNBA  


