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Abstract

Health information technology has increased accessibility of health and medical data and benefited 

medical research and healthcare management. However, there are rising concerns about patient 

privacy in sharing medical and healthcare data. A large amount of these data are in free text form. 

Existing techniques for privacy-preserving data sharing deal largely with structured data. Current 

privacy approaches for medical text data focus on detection and removal of patient identifiers from 

the data, which may be inadequate for protecting privacy or preserving data quality. We propose a 

new systematic approach to extract, cluster, and anonymize medical text records. Our approach 

integrates methods developed in both data privacy and health informatics fields. The key novel 

elements of our approach include a recursive partitioning method to cluster medical text records 

based on the similarity of the health and medical information and a value-enumeration method to 

anonymize potentially identifying information in the text data. An experimental study is conducted 

using real-world medical documents. The results of the experiments demonstrate the effectiveness 

of the proposed approach.
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1. Introduction

The advances in health information technology have enabled organizations to store, share, 

and analyze a large amount of personal health and biomedical data. As a result of 

widespread implementation of electronic health records (EHR) systems, stimulated intensely 

by the Health Information Technology for Economic and Clinical Health Act (HITECH Act 

2009), there has been an explosion of health data being generated and collected by health 

organizations. In tandem with this unprecedented growth of available electronic data, 

secondary use of the data has increased rapidly across a wide variety of health domains. 

Empowered by health informatics and analytic techniques, secondary use of health data can 

aid clinical decision making; expand knowledge about diseases, genetics, and medicine; 

improve patients’ healthcare experiences; reduce healthcare costs; and support public health 
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policies (Jensen et al. 2012, Safran et al. 2007, Wylie and Mineau 2003). As a result, there is 

a growing trend for using EHR data beyond direct healthcare delivery purposes.

While secondary use of health data has significantly enhanced the quality and efficiency of 

medical research and healthcare management, there are growing concerns about patient 

privacy due to the widespread practice of health information sharing (Garfinkel et al. 2007, 

Safran et al. 2007). To respond to these concerns, the Health Insurance Portability and 

Accountability Act (HIPAA) established a set of privacy rules, which was strengthened by 

the HITECH Act (2009). The HIPAA Safe Harbor (SH) rule specifies 18 categories of 

explicitly or potentially identifying attributes, called Protected Health Information (PHI), 

that must be removed before the health data is released to a third party (DHHS 2000). A full 

list of PHI elements is provided in Table 1 (DHHS 2000, pp. 82818–82819). A strict 

implementation of the SH rule, however, may be inadequate for protecting privacy or 

preserving data quality. Recognizing this limitation, HIPAA also provides alternative 

guidelines that enable a statistical assessment of privacy disclosure risk to determine if the 

data are appropriate for release.

Along the lines of the statistical approach, there is a large body of research on privacy-

preserving techniques for data sharing and data mining, most of which deal with structured 

data that can be stored in well-defined relational databases (Aggarwal and Yu 2008). Various 

techniques have been developed to anonymize structured data. However, health and medical 

data in EHR systems and medical research platforms come from heterogeneous sources with 

various representations (Carter 2008, Murphy et al. 2010). They include well-structured data 

(e.g., identity, registration, and demographic data), set-valued data (e.g., codes such as the 

International Classification of Diseases (ICD) and the Logical Observation Identifiers 

Names and Codes (LOINC)), free text (e.g., clinical narratives, pathology reports, and 

discharge summaries), and images from radiology systems. These diverse data 

representations and formats present challenges that existing privacy-preserving approaches 

for structured data cannot effectively deal with. Therefore, in spite of the abundance of 

research in data privacy, its application in health and medical domains lags behind.

This research concerns privacy protection issues when medical documents containing free 

text, such as clinical narratives and discharge summaries, are shared for secondary use. In 

such cases, some identifying information is embedded in the text, where anonymization 

techniques designed for structured data are not readily applicable. The majority of privacy 

research in sharing and releasing medical documents has followed the SH rule and focused 

on the automatic detection of PHI attributes in the documents (Meystre et al. 2010, Uzuner 

et al. 2007, Murphy et al. 2011). The identified PHI values are then simply removed from, or 

replaced with a constant value in the released text documents. Studies have shown that such 

a simple de-identification strategy lacks the flexibility to adequately meet the diverse needs 

of data users (Meystre et al. 2010, Uzuner et al. 2007). There is a lack of research on how to 

mask the PHI fields (other than simple removal) and how to cope with non-PHI but 

potentially identifying information to improve privacy protection and data utility. This 

research addresses this problem.
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It is well documented that anonymization approaches are more effective when applications 

on the anonymized data are more specific than general (Aggarwal and Yu 2008, Fung et al. 

2010). Applications and analyses based on structured data typically include traditional 

statistical analysis such as regression and multivariate analysis and data mining applications 

such as classification and clustering. Anonymization techniques are developed for these 

applications accordingly (Agrawal and Srikant 2000, Aggarwal and Yu 2008, Fung et al. 

2010, Li and Sarkar 2011, Melville and McQuaid 2012). For unstructured data such as 

medical text data, applications often include text mining tasks such as medical keyword-

based search query and information extraction, as well as those that are also suitable for 

structured or semistructured data such as counting query and association analysis (Jensen et 

al. 2012, Meystre et al. 2008, Murphy et al. 2010). We develop our approach with these 

applications in mind.

In this study, we propose a framework to extract, cluster, de-identify, and anonymize the 

medical documents, focusing on the analysis and design aspects of privacy-preserving 

technology. The proposed framework consists of three major components: (i) information 

extraction, which extracts PHI and non-PHI attributes that could reveal patients’ identities, 

as well as health and medical information, from the text documents; (ii) document 

clustering, which clusters patient documents based on the similarity of the health and 

medical concept, using a recursive binary partitioning method; and (iii) de-identification and 

anonymization, which remove explicit individual identifiers and anonymize potentially 

identifying attributes using a novel cluster-level value-enumeration method. The proposed 

framework is implemented into a prototype system. The main contributions of this research 

are summarized below.

Identifying weakness in HIPAA Safe Harbor based de-identification

We provide clear evidence from real-world data that the SH rule for de-identifying data can 

be underprotective (i.e., de-identified data having high disclosure risk) in some cases and 

overprotective (i.e., resulting in poor data utility) in others. Identifying and investigating this 

problem has significant research and practical implications, since the current mainstream 

approaches in both research and practice follow the SH rule to protect privacy by detecting 

and removing the PHI elements from medical documents.

Document clustering using medical information and recursive partitioning

Existing statistical or computational approaches in the data privacy literature typically 

cluster the records based on demographic attributes, which often work well for the 

applications based on structured data but are not so effective for those based on text 

documents. We introduce a novel idea of clustering documents based on health and medical 

information, which significantly increases the utility of the anonymized data. The proposed 

clustering approach is implemented with a recursive binary partitioning algorithm for 

controlling the level of disclosure risk, which is new to the literature.

Value enumeration for anonymizing data at the cluster level and the dataset-level

Unlike traditional methods that use generalization or noise perturbation to anonymize the 

data after clustering, we propose a novel value-enumeration method for anonymizing data, 
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which results in a smaller information loss than traditional methods. We introduce the notion 

of cluster-level and dataset-level anonymity for value enumeration and develop a drill-down 

method to further reduce information loss in the anonymized data.

In the next section, we motivate our research using a real-life example and demonstrate the 

problems with the current SH approaches and the basic idea of our proposed approach using 

similar examples. In Section 3, we review related work in data privacy and health 

informatics. In Section 4, we present the analysis and design of the proposed document 

sharing framework. We report the results of the experimental study on a set of real-life data 

in Section 5. We then discuss implications and limitations of our research in Section 6. In the 

last section, we summarize our work and discuss future research.

2. Motivating Examples

We first provide a real example of clinical text data, which is a discharge summary originally 

provided by Partners Healthcare in Massachusetts (Uzuner et al. 2007). To make the data 

available for research, the authentic PHI values (e.g., patient and physician names, dates, and 

hospital names) in the original data were replaced with reasonable surrogates, which are 

realistic semantically and consistent with the original format, by the data provider before the 

data were released. The document, which is shown in Figure 1, includes a header that 

provides admission and discharge dates. The main body of the discharge summary includes 

several sections, such as history of present illness, past medical history, physical 

examination, and discharge medications. Presumably, there will be a record of structured 

data associated with this text document, which may include patient name, date of birth, 

gender, address, phone number, and so on. In this study, we focus on anonymizing and 

sharing medical text data without considering the structured data. We will discuss later in 

Section 6 how to apply our approach to anonymize the associated structured data as well.

The information in the document in Figure 1 can be classified into six categories: (a) patient 

and physician names, (b) admission and discharge dates, (c) hospital name, (d) patient age, 

(e) patient gender, and (f) health and medical information. The first three categories are PHI 

while the remaining three categories are not. When medical text data are used for research 

and analysis, typically a set of such documents are shared together (Safran et al. 2007, 

Jensen et al. 2012). To examine the problem with a set of documents, consider an example of 

five short clinical notes shown in Figure 2, created based on the real example in Figure 1. 

While the text in the notes are highly simplified because of space limitations (particularly for 

the health and medical information), the six categories of information mentioned above still 

appear in these simplified notes.

The original text is shown in the left panel of Figure 2. In compliance with the HIPAA SH 

rule, the patient and hospital names must be removed, and the date expression must be 

truncated to include only the year. On the other hand, HIPAA permits releasing non-PHI 

items, such as age, gender, and health, and medical information, without any change. As a 

result, the HIPAA-compliant de-identified notes are shown in the right panel of Figure 2.
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Although the de-identified documents are HIPAA-compliant, they can be overprotective or 

underprotective. For example, truncating the full-date value to year removes important 

“season” information in the first three records, which could be crucial for detecting a 

pandemic outbreak. On the other hand, it may not be hard to identify the 88-year-old man in 

record 1 using the other information (e.g., gender, admission year, and geographical area) in 

the notes. So, existing de-identification approaches could put a patient’s privacy at risk and 

at the same time provide data with significant information loss.

To overcome these limitations, the proposed approach first clusters the patients’ documents 

based on health and medical information, and then anonymizes the potentially identifying 

attributes using a cluster-level value-enumeration method. Figure 3 illustrates how the 

proposed approach works for the example shown in Figure 2. With the proposed approach, 

the five records are clustered into two groups based on the patient’s symptoms and health 

data. The first group includes records 1–3, which show flu-like symptoms. The second group 

includes records 4 and 5, characterized by Hepatitis-A symptoms. After clustering, a full-

date value is replaced by a list of month-year values associated with the group. Similarly, 

individual age and hospital values are anonymized by a list of values. This method of 

anonymizing clinical documents provides very useful information for public health 

surveillance and healthcare/medical research without compromising patient privacy. The 

cluster-level values are listed in natural alphabetic or numeric order, which essentially masks 

the original values. Compared to the SH approach, the value-enumeration method may 

provide more detailed information for some fields (e.g., dates and hospitals); it may also 

provide less detailed information for other fields (e.g., age) if privacy concerns are present. 

The level of detail can be controlled by the data owner. For example, the age values are 

enumerated because the 88-year-old is highly distinguishable. If individual age values do not 

cause privacy concerns, they can be directly presented without value enumeration.

To see why the proposed clustering method provides better data utility than traditional 

clustering-based methods, in Figure 4 we show the results using a popular traditional method 

called k-anonymity (Sweeney 2002), where records are clustered into two groups based on 

similarity in demographic and date attributes, and concerned values are replaced with 

generalized values. The first group includes records 1, 2, and 5, while the second group 

includes records 3 and 4. The data set satisfies 2-anonymity since each record cannot be 

distinguished from at least another record with respect to the generalized values. Suppose 

the anonymized data are used to support a keyword-based search query. When a user enters 

the terms “abdomen pain” and “fatigue,” records 4 and 5 will be retrieved from the data 

anonymized by either the proposed method or k-anonymity. The age value from the k-

anonymized data will show [5–17] and [52–88]; the hospital values will be [Southern 

Region Hosp] and [Northeastern Region Hosp], and the date values will be [Mar–Jul 2009] 

and [Apr–Aug 2009]. The proposed method clearly provides more useful age, hospital, and 

date information than k-anonymity. A similar comparison can be observed for the other 

group if the user enters “runny nose” and “fever.”

We should mention that for convenience we have placed the records belonging to the same 

cluster together in Figures 3 and 4, but it is clear that the anonymized records in the released 
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set do not have to be grouped by cluster. If necessary, these records can be shuffled across 

clusters before releasing.

3. Related Work

There are two types of privacy disclosure widely recognized in the literature (Duncan and 

Lambert 1989): (a) identity disclosure (or reidentification), which occurs when a data 

intruder is able to match a record in a data set to an individual; and (b) attribute disclosure, 

which occurs when an intruder is able to predict the sensitive value(s) of an individual 

record, with or without knowing the identity of the individual. Related to the two types of 

disclosures, the attributes of data on individuals can be classified into three types (Fung et al. 

2010).

The first type is explicit identifier (EID), such as name, phone number, and social security 

number, which can be used to directly identify an individual. It is clear from Table 1 that all 

PHI categories are EIDs except category 2 (locations) and category 3 (dates). The second 

type is quasi-identifier (QID), such as age, gender, race, and zip code, which do not 

explicitly reveal identities but may be linked to external data sources to eventually identify 

an individual. Sweeney (2002) found that 87% of the population in the United States can be 

uniquely identified with three QID attributes—gender, date of birth, and five-digit zip code

—which are accessible from voter registration records available to the public. In the PHI list 

in Table 1, category 2 (locations) and category 3 (dates) are QIDs. Note that a QID may be 

an attribute that is not a PHI field (e.g., gender). The third type is sensitive attributes, which 

contain private information that a person typically does not want disclosed, such as sensitive 

diseases, sexual orientation, and personal financial information. None of the items listed in 

Table 1 are a sensitive attribute. That is, HIPAA does not provide guidelines on how to 

protect sensitive attribute data; instead, the basic idea of the HIPAA SH rule is to protect 

privacy by preventing identity disclosure. This study also focuses on identity disclosure only.

3.1. Data Privacy in Structured Data

Data privacy has been an active area of research for decades. Most data-privacy studies 

assume that data is stored in well-defined relational databases. A major line of privacy 

research has focused on devising principles to establish the requirements of privacy 

protection and to form criteria for assessing privacy risks. One of the most popular principles 

is k-anonymity (Sweeney 2002), which requires that each individual record in a data set 

should be indistinguishable from at least k − 1 other records with respect to the QID 

attribute values. These indistinguishable records are usually considered to form a group and 

k is called the minimum group size. In fact, it is easy to see that the maximum 
reidentification risk for any individual record in a k-anonymized data set is 1/k. So, 

parameter k is an important privacy risk measure. Privacy risk can also be measured by 

average reidentification risk based on actual group sizes (which may be greater than k), 

discussed in more detail in Section 5.

The k-anonymity approach generalizes different but similar QID values into a higher-level 

value within a group; it leaves sensitive attribute values unchanged. Because individuals in a 

group have the same generalized QID values, they are subject to high attribute-disclosure 
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risk if their sensitive values are the same or similar. That is, while k-anonymity is effective in 

protecting against identity disclosure, it does not consider attribute-disclosure risk. To 

address this issue, a privacy principle called l-diversity has been proposed (Machanavajjhala 

et al. 2006). The l-diversity principle requires that a sensitive attribute should include at least 

l well-represented values in each group of the k-anonymized data. Another privacy principle, 

called t-closeness (Li et al. 2007), addresses the issue by requiring that, for each group, the 

distance between the distributions of the sensitive attributes in the group and the overall 

distribution of the sensitive attributes cannot be larger than a threshold value t. The l-
diversity, t-closeness, and the other privacy principles focusing on sensitive value protection 

for structured data typically assume that there is one or a few predefined sensitive attributes, 

which is not a realistic scenario for text data. Medical text documents typically have a large 

number of unstructured (not predefined) sensitive attributes, such as symptoms, conditions, 

test results, diagnosis, and treatments. It is difficult, if not impossible, to apply the idea of l-
diversity or t-closeness for the sensitive attributes in medical document data.

Various anonymization methods have been proposed in the literature, including 

generalization, suppression, swapping, and noise perturbation (Cooper and Collman 2005). 

Generalization and suppression either generalize the original values to a higher level 

category or remove the values (Sweeney 2002). Swapping involves an exchange of attribute 

values between different records (Dalenius and Reiss 1982, Li and Sarkar 2011). 

Generalization, suppression, and swapping apply to both categorical and numeric data. 

Noise perturbation adds noise to the original data to disguise their true values (Agrawal and 

Srikant 2000, Li and Sarkar 2013, Melville and McQuaid 2012), which applies mainly to 

numeric data. There are also studies that address privacy disclosure problems by hiding 

sensitive information (Menon et al. 2005). Applying an anonymization method to data 

causes information loss and reduces data utility. It is thus necessary to evaluate 

anonymization methods based on some data utility measures together with the privacy risk 

measures. The data utility measures are typically related to the changes in summary statistics 

or data analysis results. We discuss more about data utility measures in Section 5.

3.2. De-Identification for Medical Document Sharing

Unlike privacy research in the structured data, where numerous techniques have been 

proposed and developed, privacy protection approaches for sharing medical documents have 

been mainly based on the SH principle, focusing on the detection and removal of PHI items 

from the documents. Meystre et al. (2010) and Uzuner et al. (2007) have reviewed more than 

a dozen state-of-the-art techniques in the field, all of which follow the SH approach. The 

task of detecting PHI items from the text can be viewed as a classification problem, where 

the terms in a medical document are classified into various PHI categories (e.g., name, date, 

location) or determined to be non-PHI terms. Often, some information extraction methods in 

the field of natural language processing are used to perform this task. These methods can be 

largely divided into two categories: pattern matching and machine learning.

Pattern matching methods check each term in a document against a list of manually crafted 

rules and predefined PHI dictionaries to determine the category of the term (Friedlin and 

McDonald 2008). The dictionaries typically include PHI-specific lists such as person name 
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list, city list, and hospital list, for matching PHI items. They may also include medical term 

lists for matching non-PHI elements. A major advantage of pattern matching methods is that 

they require little or no annotated training data. However, these methods often require 

significant work for developers to craft rules and algorithms to account for different PHI 

categories, and these rules and algorithms require customization to different data sets. In 

terms of performance, manually crafted rules often miss unexpected or nonstandard 

variations of PHI terms, resulting in a low proportion of relevant terms being retrieved. To 

overcome these limitations, supervised machine learning methods are often used to 

categorize PHI terms (Wellner et al. 2007). Popular machine learning methods used include, 

for example, support vector machines (SVM) (Cortes and Vapnik 1995) and conditional 

random fields (CRF) (Lafferty et al. 2001). Studies have shown that in general, machine-

learning-based techniques perform better than pattern-matching-based techniques (Uzuner et 

al. 2007, Meystre et al. 2010). Many machine-learning-based techniques also incorporate 

some rules and dictionaries to further improve performance. A disadvantage of a machine-

learning-based approach is that it requires fairly large corpuses of annotated documents as 

training data.

The effectiveness of machine-learning techniques can be further improved by using 

ensemble learning, where the results from multiple base-learning algorithms are combined 

(through, for example, a weighted voting mechanism) to generate the final results. It has 

been shown that this approach can help to improve machine learning performance on 

classification problems (Wolpert 1992, Tan and Gilbert 2003). Prior research has shown that 

performances of different PHI detection techniques vary in different scenarios (Uzuner et al. 

2007). Therefore, combining multiple detection algorithms through ensemble learning is 

likely to improve the overall performance for PHI detection. While there are a considerable 

number of studies that apply the ensemble approach for classification problems on structured 

data (Polikar 2006) and for text document classification (Sebastiani 2002), we have not 

found any publication that uses the ensemble approach for detecting PHI and QID fields in 

the literature.

Gardner and Xiong (2009) propose a framework for de-identifying medical text data. Their 

framework includes, in addition to the SH implementations, a k-anonymity-based 

alternative, which groups the documents based on QID attributes such as age and location, 

and anonymizes the QID values by generalization. We have shown in Section 2 that 

grouping data by QID attributes may not serve well for the purposes of sharing medical 

documents. Therefore, it is desirable to have documents categorized based on the health and 

medical information. In addition, Gardner and Xiong (2009) directly adopt the k-

anonymity’s generalization method to anonymize data, which, as we have shown, tends to be 

overprotective and undermine the utility of the anonymized data. The value-enumeration 

method we propose provides better data utility than the generalization method with the same 

disclosure risk.

In summary, current privacy research in sharing medical documents focuses mainly on the 

SH approach. There is a lack of interaction between the study in de-identification for 

medical documents and that in anonymization for structured data. To integrate these two 

research streams, existing attribute detection techniques need to be extended beyond the 
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HIPAA-defined PHI fields. On the other hand, anonymization techniques designed for 

structured data need to be reinvented to take advantage of the rich semantic information 

embedded in the textual contents.

4. The Proposed Approach

Regarding the statistical approach to de-identification, the U.S. Department of Health and 

Human Services has recommended the following principles to determine disclosure risk 

(OCR 2012): (i) replicability, which refers to the chance the health information will 

consistently occur in relation to the patient; (ii) availability of external data sources that 

contain the patients’ health information; and (iii) distinguishability of the patient’s data. In 

general, the greater the replicability, availability, and distinguishability of the health 

information, the greater the disclosure risk. For example, identity and demographic data are 

highly distinguishing, highly replicable, and are available in public data sources; they are 

thus considered high-risk information. On the other hand, laboratory results may be very 

distinguishing, but they are rarely replicable and seldom disclosed in externally available 

data sources; they are thus considered low-risk information. The three principles are well 

justified and we develop our approach based on these principles.

Based on these principles, we classify the information in medical documents into three 

classes of attributes and process them differently: (a) explicit identifiers (EID), which will be 

removed or replaced with a constant in the released documents. (b) quasi-identifier (QID), 

which includes, in the context of medical documents, some PHI attributes such as date of 

birth, admission/discharge date, hospital, and zip code; also included are some non-PHI 

attributes such as age, gender, race, and marital status. To prevent reidentification, we apply 

the cluster-level value-enumeration method to anonymize QID values. (c) Health and 
medical details (HMDs), such as symptoms, test results, disease, and medications. We will 

follow the common practice to keep HMDs unchanged because they are of low replicability 

and availability, but are critical for clinical analysis and healthcare research. In our 

framework, HMDs are the basis for clustering medical documents. The proposed framework, 

which we call DAST (De-identification and Anonymization for Sharing medical Texts), 

consists of three functional modules as shown in Figure 5.

4.1. Information Extraction

Module 1 of DAST reads the original documents and detects and extracts three types of data 

attributes from the textual contents. This module extends the scope of existing medical de-

identification systems by extracting not only the PHI elements defined by HIPAA but also 

additional QIDs not covered by HIPAA (such as patients’ age, marital status, ethnicity), as 

well as HMDs such as patients’ symptoms, diagnosis, and treatments. The additional QIDs 

are later analyzed in terms of their privacy risks and are subject to anonymization in Module 

3. The extracted HMDs serve as input for Module 2 to perform document clustering. 

Therefore, the effectiveness of this module is critical since the performances of the other 

modules depend on it. Figure 6 shows the design of Module 1, which contains three 

components: (1.1) feature extractor, (1.2) base classifiers, and (1.3) result aggregator.
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The feature extractor (component 1.1) breaks medical documents into terms and extracts 

three categories of features for each term: local features regarding the term itself (e.g., term 

length, part-of-speech, etc.); global features regarding the term’s position in the document 

(e.g., header, body text, heading, etc.); and external features regarding term information 

gained from external resources (e.g., belonging to a proper noun list, belonging to a medical 

concept lexicon, etc.). Component 1.2 consists of a set of independent term classifiers called 

base classifiers (e.g., SVM-based classifier, CRF-based classifier, rule-based classifier, etc.), 

which can be taken from existing tools (Wellner et al. 2007, Savova et al. 2010). These base 

classifiers classify the terms extracted by component 1.1 into one of four classes: EID, QID, 

HMD, or irrelevant. The results of the base classifiers are then fed into component 1.3 to 

produce the final combined results. For example, in the combined result for record 2 in 

Figure 2, “Mrs. Brown” will be classified as an EID and assigned a tag “PATIENT” to 

indicate it is a patient name. Similarly, “52 year old” and “female” will be recognized as 

QIDs and are tagged with “AGE” and “GENDER,” respectively. Words such as “joint pain,” 

“sore throat,” and “fever” will be classified as HMDs.

The result aggregator (component 1.3) uses an ensemble approach to reach the final 

classification decision. An ensemble classifier consolidates multiple base classifiers to 

obtain a better predictive performance than those obtained from the base classifiers 

individually. In term-classification problems, two measures are typically used for evaluating 

the performance of the classifiers: (a) recall, which is the proportion of relevant terms that 

are retrieved, and (b) precision, which is the proportion of retrieved terms that are relevant. 

In many applications, precision tends to be more important than recall. For classifying PHI 

terms, however, it is critical to understand that recall is far more important than precision 

since any PHI term not detected may cause identity disclosure. This aspect has been 

overlooked by the existing approaches for PHI term detection. Our ensemble approach takes 

this priority for recall into account when aggregating the results.

More specifically, the result aggregator uses a “set-union” method to combine result sets 

from the base classifiers to improve the performance in recall. For example, if the PATIENT 

set generated by base classifier 1 is {Mrs. Brown: PATIENT; Mrs. White: PATIENT} and 

that by base classifier 2 is {Mrs. Black: PATIENT; Mrs. White: PATIENT}, respectively, 

then the result aggregator will generate a PATIENT set that is the union of the two base 

PATIENT sets {Mrs. Brown: PATIENT; Mrs. White: PATIENT; Mrs. Black: PATIENT}. In 

this way, the result aggregator will find every term that is identified as PATIENT by any base 

classifier, resulting in high recall.

When there are conflicts between base classifiers, the result aggregator resolves the conflicts 

based on disclosure risk priority. If a term is recognized as an EID by any classifier, it will 

be classified as an EID even though it is recognized as a QID or an HMD by the other 

classifiers. For example, if a base classifier recognizes “white” as a PATIENT name and the 

other base classifiers consider it as a RACE, “white” will be classified as a PATIENT and 

removed from the anonymized text. This enables maximum protection for the EID attributes. 

Similarly, if a term is classified as a QID by one classifier but as an HMD by the other 

classifiers, it will be classified as a QID because a QID value will be subject to value-

enumeration while an HMD value will remain unchanged in the anonymized text.
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In this module, the most time-consuming tasks are the training of base classifiers. The time 

complexities for training SVM and CRF classifiers are quadratic in the size of the training 

set (Platt 1998, Sutton and McCallum 2012). We note that classifier training is an off-line 

process that needs to be performed only once. When these classifiers are used for de-

identification of medical documents, their runtime performance is linear in size.

4.2. Document Clustering

Clustering-based anonymization approaches are common in data privacy research (Li and 

Sarkar 2013). These approaches typically cluster the records based on QID attributes, such 

as age and location, and then anonymize the QID values. As explained earlier, clustering by 

QID attributes may not serve well for the purposes of medical document sharing, where data 

users are typically more interested in patients’ health and medical information such as 

symptoms, diagnosis, and treatments. To address this problem, we propose to cluster the 

documents based on the HMD.

Module 2 of the proposed DAST framework clusters patient documents based on the HMD 

terms extracted from Module 1. There exists a variety of document clustering techniques, as 

described in a survey by Carpineto et al. (2009). However, none of them can be adopted 

directly for our purposes. We aim at clustering the data such that the documents within a 

group are more similar with respect to a medical concept. At the same time, we attempt to 

cluster the data with an appropriate group size for each group to strike a balance between 

disclosure risk and information loss—an overly large group size would result in too many 

QID values enumerated, causing significant information loss; whereas with an overly small 

size, too few QID values would be listed, resulting in a high disclosure risk. Therefore, the 

clustering algorithm should be able to control the size of each cluster. Some well-known 

clustering techniques, such as k-means clustering, require the number of groups (clusters) to 

be specified as an input, and thus are not appropriate for our clustering purpose.

We consider a state-of-the-art document clustering technique called nonnegative matrix 

factorization (NMF) (Lee and Seung 1999). Given a collection of n documents with a total 

of m terms, let B be an m × n term-document matrix. The NMF factorizes B into two 

nonnegative matrices, W = [wjp] (j = 1, …, m; p = 1, …, c) and H = [hqi] (q = 1, …, c; i = 1, 

…, n), such that B ≈ WH, where c ≪ min(m, n) is a prespecified parameter, representing the 

number of clusters. The NMF problem can be formulated as

(1)

The NMF has a very appealing interpretation. Each of the c columns of W is a basis vector 

representing a semantic feature, i.e., a set of words denoting a cluster or concept, with each 

element wjp indicating the degree to which term j belongs to cluster p. Matrix H describes 

the contribution of the documents to these concepts or clusters, with each element hqi 
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representing the degree to which document i is associated with cluster q. Unlike other 

matrix-decomposition-based clustering methods that generally have negative entries in the 

component matrices, NMF ensures that all elements are nonnegative, which is consistent 

with the nonnegativity nature of the original term-document matrix. In the context of 

medical document clustering, a cluster may represent an observable or latent medical 

concept such as a disease or a condition; a cluster may also contain a mixture of several 

similar medical concepts. Some clusters may even show similar patient demographics 

related to certain diseases or conditions. These medical concepts are not specified a priori; 

instead, they are “learned” by the NMF clustering algorithm.

It is computationally prohibitive to find a global optimal solution for the NMF model (1) 

(Lee and Seung 2001). Lee and Seung (2001) and Xu et al. (2003) have developed efficient 

NMF algorithms for finding near optimal solutions, which run either faster than or 

comparable to the other popular algorithms. They have shown that their algorithms are 

nondecreasing and converging in objective function (1). Studies have shown that the NMF-

based methods outperform, in terms of clustering quality, many other well-known document 

clustering methods, such as k-means clustering, spectral clustering, singular value 

decomposition, and graph-based clustering (Kuang et al. 2012, Xu et al. 2003).

The NMF, however, cannot be used directly for our clustering purpose because it requires 

the number of clusters, c, as an input and lacks a mechanism to control the size of a cluster. 

In our clustering task, the number of clusters cannot be prespecified because each cluster 

must satisfy the requirement on the minimum number of records in a cluster. To address this 

issue, we propose a recursive NMF procedure, as a component of Module 2. Essentially, this 

procedure performs a recursive binary partitioning of the data, using NMF for each binary 

split, until each group cannot be further partitioned because of the minimum group size 

requirement. A sketch of the recursive NMF algorithm is given in Figure 7. It is easy to 

show that the recursive NMF algorithm results in clusters that have low within-cluster 

variation and high between-cluster variation because each NMF in the recursive process has 

this property.

The computational complexity of the traditional NMF algorithm is of O(cnt), where t is the 

number of iterations that is controllable by the user (Xu et al. 2003; the default value in our 

system is t = 50, a commonly used value). For the proposed recursive binary NMF 

algorithm, each binary split takes O(nt) time; and it requires c − 1 such splits to get c 
clusters. Therefore, the time complexity of the proposed NMF algorithm is also of O(cnt).

To better understand how the proposed clustering method works, we provide a clustering 

example in Figure 8, which is based on a real data set used in the experiment (the medication 

data described in Section 5). The tree-structured diagram illustrates the recursive partitioning 

process and each node in the tree represents a cluster (partitioned subset) of documents. We 

show in each cluster the terms that describe the principal diagnosis of the case; these terms 

appear frequently in multiple documents within the same cluster. It is clear that for each 

cluster there is more or less an underlying medical concept. The concepts at higher levels are 

more general and they become more specific at lower levels. For example, the first split 

divides the entire data set into two clusters, one largely representing nonchronic conditions 
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while the other representing mostly chronic diseases. For the four example final clusters 

(leaf nodes), the first cluster includes bodily injury cases; the second contains mostly 

childbirth cases; the third appears to be a cluster of gynecologic cancer cases; and the fourth 

include those with cardiovascular diseases.

4.3. De-Identification and Anonymization with Value Enumeration and Drill-Down

Data privacy studies in the health domain typically focus on the risk of identity disclosure, 

which is consistent with the privacy principles underlying HIPAA. Similarly, this study also 

focuses on identity disclosure. That is, we consider limiting the risk of reidentifying an 

individual from the released data. A medical document typically contains rich information 

about HMDs such as symptoms, test results, and diagnosis. It is virtually impossible to 

protect against attribute disclosure; i.e., to develop a mechanism that masks HMDs. This 

perhaps explains why HIPAA focuses exclusively on the reidentification issue.

When illustrating the value-enumeration method in Figure 3, we have assumed that the 

entire data set contains only those five clinical notes. The reidentification risks mentioned 

above is also based on this assumption. When the data set includes more than those five 

clinical notes, the actual reidentification risk can be lower because there may be additional 

clinical notes in the data set that have the same attribute values as those enumerated in 

Figure 3. To further examine the reidentification risk in a general setting, we first define 

some terms.

Definition 1—A grain value of a QID attribute refers to a value of the QID attribute to be 

used for value enumeration.

We also use the term “grain” to describe the level of detail for a QID attribute in value 

enumeration. Information contained in a grain value is typically more detailed than that 

allowed by the HIPAA SH rule or that generated by traditional k-anonymity approaches. For 

example, in Figure 3 the grain is “month-year” for the Visit Date attribute and hospital name 

for the Hospital attribute (and it is the age itself for the Age attribute). They are more 

detailed than the corresponding attribute values in the right panel of Figure 2 (HIPAA Safe 

Harbor) and in Figure 4 (k-anonymity). Like generalization hierarchy in k-anonymity, the 

grain is determined by the data owner.

Definition 2—Given d QID attributes denoted by Aj (j = 1, …, d), let Vj (j = 1, …, d) be 

the set of distinct grain values of the jth QID attribute. Let  be a distinct 

grain value in Vj. A profile refers to a possible combination of d grain values from the d QID 

attributes, expressed as . In other words, a profile is an element of 

the Cartesian product .

For instance, one profile (possible combination of the QID attribute values) for record 1 in 

Figure 3 is {Visit Date = “Mar-2009,” Hospital = “Mass General Hosp,” Age = 5}. Note that 

the number of distinct values of Visit Date in Figure 3 is four, while this number is five 

originally in Figure 2.

Li and Qin Page 13

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Definition 3—A cluster of records with value-enumerated QID attributes are said to satisfy 

cluster-level k-safety if the cluster has at least k records and all records within the cluster 

have the same set of profiles.

In Figure 3, for example, records 1–3 satisfy cluster-level 3-safety, and records 4 and 5 

satisfy cluster-level 2-safety. With appropriately specified grains, the document clustering 

algorithm described in the previous section can always result in a set of records that satisfy 

the cluster-level k-safety requirements. It is easy to see that, like k-anonymity, the maximum 

reidentification risk for any individual record in a data set satisfying k-safety is 1/k.

As discussed earlier, the cluster-level k-safety may be too conservative in estimating 

reidentification risk. To illustrate, consider Figure 9, which shows a different scenario of 

value-enumeration for the example data in Figure 2. In this scenario, the values of the Visit 

Date and Age attributes are enumerated in the same way as in Figure 3, but the values of the 

Hospital attribute are listed with a single hospital name for each record. This data set 

provides more detailed information about patients than that in Figure 3. Since the hospital 

name is provided for a patient, if a doctor from another organization receiving this 

anonymized data is interested in getting more detailed information about the patient, the 

doctor can contact the hospital and request an approval (e.g., patient consent) to access the 

original record. The value-enumerated records in Figure 9, however, do not satisfy the 

cluster-level k-safety requirements. If the entire data set contains only these five records, 

then they all have unique hospital names and thus have high reidentification risks. Suppose, 

however, these five records are included in a data set of a few thousand records, all of which 

came from the five hospitals shown in the example. Then, it is likely that some other records 

in the data set have the same profile as these records, which would lower the reidentification 

risks for these records. Based on this observation, it is necessary to define reidentification 

risk at the dataset-level.

Definition 4—A set of records with value-enumerated QID attributes are said to satisfy 

dataset-level k-safety if for each possible profile associated with a record there exist at least 

k − 1 records in the data set that contain the same profile.

Obviously, cluster-level k-safety is more conservative in considering reidentification risk 

than dataset-level k-safety. We point out that this difference in reidentification risk between 

cluster-level and dataset-level arises in our approach because our clustering method groups 

the records based on the HMD attributes, not on the QID attributes. In traditional k-

anonymity approaches (e.g., Sweeney 2002, Gardner and Xiong 2009), grouping of records 

into clusters are based on the QID attributes. As a result, the QID values in different clusters 

are mutually exclusive in general. In this situation, the difference in reidentification risks 

between cluster-level and dataset-level is relatively insignificant.

Suppose the records in Figure 9 all satisfy the dataset-level k-safety. Then, it is natural to 

further examine if it is possible to provide more detailed values for the other QID attributes 

while satisfying dataset-level k-safety. Figure 10 shows a scenario, where the value of the 

Visit Date attribute for each record is listed with a single month-year value. Suppose records 

4 and 5 satisfy the dataset-level k-safety while records 1–3 do not. Then records 1–3 can be 
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released as they appear in Figure 9, while records 4 and 5 can be released as they appear in 

Figure 10. It is not difficult to see that this process of finding more specific value-

enumeration representation can be continued as long as the dataset-level k-safety is satisfied. 

We call the process of replacing a list of enumerated values with a single grain value for a 

QID attribute Aj a drill down on Aj. The drill-down process starts from a set of cluster-level 

k-anonymized records and continues until no attribute value can be displayed in a more 

detailed manner without violating the dataset-level k-safety requirements.

Given a set of value-enumerated data with G clusters that satisfy cluster-level k-anonymity, 

let  be the number of enumerated values of the jth QID 

attribute for each record in group g. Then, the number of profiles for each record in group g 

is . We call this quantity the profile size of group g. That is, the profile size of a 

group refers to the number of possible combinations of the enumerated values of all QID 

attributes in the group. For example, the profile size for each record in the first group in 

Figure 3 is 2 × 2 × 3 = 12, and it is 6 and 3 in Figures 9 and 10, respectively. The profile size 

can be considered as a measure of information loss due to value enumeration. A small 

profile size suggests a small information loss, thus it is desirable. Therefore, it is natural to 

set the objective of the drill-down process to minimizing the total profile size 

. On the other hand, the dataset-level k-safety requirements must be 

satisfied.

Let M be the total number of possible profiles in the entire data set whose QID attribute 

values are value enumerated. Let  be a profile and 

 be the number of times this profile appears in the data set. Then, given a set 

of data with G clusters that satisfy cluster-level k-safety, the drill-down problem can be 

formulated as

(2a)

(2b)

As explained earlier, each drill-down on an attribute causes the objective value (2a) to 

decrease. However, finding a global optimal solution for this optimization problem is 

computationally expensive because the process involves computation of all possible 

combinations of the attributes to drill down. Our strategy for an efficient solution is to select 

one QID attribute at a time for drill down. The criterion is to select the attribute having the 

smallest number of distinct grain values in the data set. This allows the drill-down process to 

be performed more gradually and the dataset-level k-safety constraint (2b) to be satisfied 

more easily at each step. The detailed drill-down value-enumeration algorithm is given in 

Figure 11.
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The most time-consuming component of the drill-down algorithm is the computation of the 

profile count . If this is a concern, the Apriori-algorithm (Agrawal and 

Srikant 1994) can be used to dynamically eliminate any profile having a subset of the profile 

(i.e., combination of the grain values of fewer than d QID attributes) whose frequency count 

is smaller than k.

4.4. Data Utility Analysis

We have emphasized earlier that our approach is developed for medical text data sharing 

applications such as association analysis and medical keyword-based search query that 

involve both QID and HMD data. To analyze data utility with anonymized data, let X be a 

set of QID attributes and Y be a set of HMD terms in a document set. For any x ∈ X and y ∈ 
Y (where x may contain one or more QID attribute values and y may contain one or more 

HMD values), the probability of associating x with y is

(3)

where P (y) can be interpreted as the “support” item-set y in the association rule mining 

context and as the “recall” for y in the medical keyword-based query context (and recall that 

our approach is designed with priority to improve this measure). With the original data, the 

probability in (3) can be estimated as

(4)

where n is the total number of records in the “support” context and the number of relevant 

records in the “recall” context, ny is the number of records (out of the n records) containing 

y, and nx|y is the number of records containing x given Y = y. For anonymized data, because 

HMDs are not changed, ny and n remain unchanged; but nx|y needs to be estimated from the 

domain of x given y, based on the anonymized data. It is easy to see from the examples in 

Section 2 that this domain contains only a limited number of discrete values with the value 

enumeration method, but it is typically a region that covers much more discrete values with 

the SH or k-anonymity method. In estimating nx|y, the smaller the domain size is, the closer 

the estimate  is to nx|y. For example, if x refers to QID values that have been drilled 

down, then , since the domain in the anonymized data contains the same values as 

in the original data.

Let , , and  be the estimated P(x, y) calculated using the original 

data, the SH-compliant data, and value-enumerated data, respectively. Based on the above 

discussion, we have the following property.

Proposition 1—If the grain values for value enumeration are more detailed than that 

allowed by the Safe Harbor rule, then  is closer to  than  that is

Li and Qin Page 16

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

Proof—Let D(x|y) be the domain of x given y based on the anonymized data. Without any 

knowledge about the distribution of x and y, we assume a uniform distribution, which has a 

probability density of 1/|D(x|y)|. Then with anonymized data, . When the 

grain values are more detailed than that allowed by the SH, D(x|y) associated with value 

enumeration contains only the enumerated grain values or their possible combinations if x 
involves multiple attributes, while with SH, it must cover all possible grain values 

suppressed by SH or all possible combinations of these values. Thus,  calculated from 

value-enumerated data is closer to nx|y than that calculated from SH-compliant data. Since 

ny and n in (4) remain unchanged, we have (5).

Likewise, we can show a similar result to Proposition 1 when the SH is replaced by k-

anonymity with its generalization method. Therefore, the proposed approach enables a more 

accurate estimation of the association or relationship between QID and HMD information 

than SH or k-anonymity.

5. Experimental Evaluation

We have developed a prototype system based on the proposed DAST framework. The 

system is implemented in Java and text data is organized using XML. We conduct a set of 

experiments to compare DAST with the HIPAA SH implementation and the k-anonymity 

method in terms of reidentification risk and data utility. As we reviewed in Section 3, the SH 

based approach represents the mainstream approach for medical document de-identification 

and k-anonymity is well accepted in the field as well.

We use the real-world data sets provided by the Informatics for Integrated Biology and the 

Bedside (i2b2) project for this study. The i2b2 project has collected multiple sets of clinical 

documents from different healthcare organizations and made them available for research. We 

use three data sets for the experimental evaluation. The first set, which has 889 records, was 

provided for research on the medication aspect of patient care and thus is called Medication. 

The second set, called Obesity, includes 1,237 records that are related to obesity disease. 

The third set contains 871 records, collected from a project initiated by a Veterans Affairs 

(VA) healthcare organization. So, the data set is named VA. Each record above is a medical 

document, with the format similar to that in Figure 1. Detailed information about the three 

data sets can be found on the i2b2 website (www.i2b2.org/NLP/DataSets). The elements of 

information contained in these text data sets include patient name, admission and discharge 

date, age, gender, hospital, symptoms, test results, diagnosis, disease, medications, and so 

on. To protect privacy, all PHI values had already been replaced with reasonable surrogate 

values by the data providers before the data were released. The surrogate values are realistic 

semantically and consistent with the original format. For example, “Mr. Anderson” may be 

replaced by “Mr. Taylor” and “6/21/2003” may be replaced by “9/16/1997.”
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5.1. Information Extraction and Classification

We implemented three base classifiers in the system. The first is an SVM-based classifier 

that relies mostly on the local features to classify a term as part of a PHI or non-PHI 

category. The second is a CRF-based pattern recognizer that utilizes both local and global 

features to classify a term. The third is a rule-based classifier that mainly uses lexical cues 

and record structure information to recognize PHI. On top of these three base classifiers, we 

implemented a result aggregator using the union and risk priority methods discussed in 

Section 4.1 to combine the outputs of the three base classifiers and produce the final results. 

Information extraction performances are evaluated based on three commonly used measures: 

(i) recall, which is the proportion of relevant items that are retrieved, (ii) precision, which is 

the proportion of retrieved items that are relevant, and (iii) F-measure, which is the harmonic 

mean of recall and precision.

Out of the three data sets, Medication is the only one that has all PHI marked in the text for 

testing extraction performance. In fact, the Medication data came with two sets of records: a 

training set of 669 records and a testing set of 220 records. We focused on the extraction of 

three categories in this experiment: Patient Name (EID), Admission Date (QID), and Age 

(QID). The results of the information extraction on the Medication data are shown in Table 

2. Among the three base classifiers, the CRF-based classifier performed the best, with the 

highest recall, precision, and F-measure. The SVM-based classifier was a close second, 

while the rule-based classifier was the worst. These results are consistent with those found 

from prior studies (Meystre et al. 2010, Uzuner et al. 2007). The final results generated by 

the aggregator showed a recall of 90.94%, which is about 4.3 percentage points higher than 

that of the CRF classifier, and a precision of 89.85%, which is about 1.5 percentage points 

lower than that of the CRF classifier. We believe this trade-off between recall and precision 

is favorable because, as explained earlier, recall should be considered more important than 

precision for PHI detection. The aggregator also has the highest F-measure, indicating that it 

is the best when recall and precision are considered together.

5.2. Privacy Risks

All three data sets were used in the experiments for evaluating privacy risk and data utility. 

After extracting the QID attributes from the text, we found that there were very few zip code 

and/or location values in the text that we could use for the experiment. Therefore, we 

focused on analyzing privacy risks for two QID attributes in this experiment: Age and 

Admission Date. The grains for the two attributes are age in year and admission month-year.

We evaluate privacy disclosure risk using two criteria. The first focuses on the worst-case 

scenario, measuring the number and proportion of records that can be uniquely reidentified 

based on the QID attribute values. The second measure is related to the average 

reidentification risk.

Based on the HIPAA SH rule, Admission Date values should be truncated into admission 

year (AdminYear) while Age values can remain unchanged. When the data is processed in 

this way, however, there are still many unique Age and Age-AdminYear combination values. 

Table 3 shows the number (and percentage, within the parentheses) of records with these 
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unique values for each data set, resulting from applying the SH rule, k-anonymity, and 

DAST, respectively. With the data processed under the SH rule, if an adversary knew the age 

and admission year (or even only age) of some patients in the data sets, it is not difficult for 

the adversary to reidentify the patients and subsequently reveal all of the information of the 

patients. With the data anonymized using k-anonymity or DAST (with k > 1), there is no 

record that can be uniquely identified by the value of Age or Age-AdminYear combination 

because of the k-anonymity and k-safety requirements. Therefore, the proposed value-

enumeration approach is safer than the SH rule with respect to protecting against unique 

identification. The DAST-anonymized data can provide more accurate time period 

information (month-year) than the SH based data (year only). However, to avoid uniqueness 

on Age value, DAST needs to enumerate a unique Age value together with at least another 

Age value, which causes some information loss on the Age values for the related records, as 

compared to the SH release.

To evaluate average reidentification risk, we first define individual reidentification risk. For a 

record i, let ni be the number of the other records in the data set that also contain the QID 

profile of record i. Clearly, a larger ni value implies a smaller reidentification risk for record 

i. Therefore, the reidentification risk for record i is defined by 1/(1 + ni), represented as a 

percentage. Subsequently, for a data set of N records, the average reidentification risk over 

all of the records in the data set is

(6)

When using k-anonymity and DAST, the average reidentification risk varies with different k 
values. We performed the experiments using two values: k = 3 and k = 6, which are 

commonly used in the k-anonymity related studies (Sweeney 2002, Machanavajjhala et al. 

2006). For the SH based data, the average reidentification risk can be calculated 

straightforwardly.

The results of average reidentification risk are shown in Table 4. It is observed that DAST 

outperforms SH in all scenarios, particularly for the cases involving the Age-AdminYear 

combination. When considering Age only, because most age values in the data sets have 

frequency counts much larger than the threshold k values, DAST performed drill down for 

most of the records, displaying age value individually as in SH. Consequently, the drill-down 

results appear only slightly better than the SH results. However, the average reidentification 

risks with drill down are always smaller than those with SH because drill down cannot be 

performed on a few rare age values, which are associated with records of very old patients. 

These high-risk patients were protected by drill down but not by SH. This explains why in 

data privacy research and practice, disclosure risk is more often measured using the 

maximum risk (such as the unique reidentification risk) instead of average risk. In the case 

of the Age-AdminYear combination, the average reidentification risks with SH are very high 

because many records in the original data sets have either a unique Age-AdminYear 

combination value or share the value with very few other records. Drill-down operations 

cannot be applied to these records because of the k-safety requirements. As a result, the 
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average risks with drill down are much lower than those with SH. It is not surprising that 

drill-down results in higher average risks than no drill-down because drill-down reveals 

more detailed QID information on average. However, the maximum reidentification risks, 

represented by 1/k and controllable by the user, are the same with or without drill down. It is 

also observed that average reidentification risk decrease as k increases, which is expected.

The average reidentification risks associated with DAST are very close to those with k-

anonymity, particularly for DAST without drill down. This is understandable because with 

the same k, the group sizes produced by k-anonymity are very close to those by DAST. With 

drill down, DAST incurs somewhat higher average reidentification risks than k-anonymity. 

However, drill-down provides much better data utility than k-anonymity, as demonstrated in 

the next section.

5.3. Data Utility

Medical text data can be used for knowledge discovery in, for example, disease comorbidity, 

patient stratification, drug interactions, and clinical outcomes (Jensen et al. 2012, Safran et 

al. 2007). Two basic techniques underlying these applications are search query and 

association rule mining (Jensen et al. 2012). In evaluating data utility, therefore, we focus on 

the effectiveness of the DAST-anonymized data when these two techniques are employed.

As mentioned earlier, health and medical research involving epidemic and infectious disease 

usually requires season information, which can be found from the admission months of the 

patients. However, the HIPAA SH rule prohibits the explicit release of admission month, 

while k-anonymity and value enumeration provide generalized or enumerated but not exact 

information about admission months. Therefore, it is necessary to evaluate information loss 

when a query about admission month is performed on the anonymized data using the SH, k-

anonymity, and our proposed approaches.

We ran a set of queries on each data set to count the number of patients admitted in each 

month across all years. Because a record anonymized with value enumeration contains 

multiple month values in a cluster, we randomly choose one of them for that record based on 

the month value distribution in the cluster. For example, suppose a cluster contains three 

records with two month values: “Jan” in two records and “Feb” in one record. Then for each 

record in this cluster, “Jan” will have a 2/3 chance of being selected and assigned to the 

record and “Feb” will have a 1/3 chance. There are no month values for the SH based data. 

So, the month values in the data were generated randomly using the uniform distribution. 

Similarly, the month values for k-anonymity were generated using the uniform distribution 

based on the available month values within each group.

For each data set, a counting query for each month was run on the original data, and the data 

anonymized by the SH, k-anonymity, and value enumeration, respectively. We then 

compared the counts from an anonymized data set with those from the original data based on 

the average error measure below
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(7)

where Ct and  are the count of month t from the original data set and the anonymized data 

set, respectfully. A small error value implies that the count based on the anonymized data is 

close to that on the original data, which is clearly desirable.

Again, we used k = 3 and k = 6 for DAST. The experimental procedure was repeated 20 

times for each query on each data set considering the effect of the random selection of the 

month values. The average error rates over the 20 runs are reported in Table 5. It is clear that 

the average error rates on the data generated by DAST are generally smaller than those by 

SH or k-anonymity. The differences are statistically significantly at α = 0.01 for all pairwise 

comparisons involving DAST except one case (for the Obesity data where k = 3 between k-

anonymity and DAST without drill down). The DAST causes smaller error rates than SH 

and k-anonymity because month value distribution with DAST are closer to the original 

distribution than those with SH and k-anonymity. The results also show that, for the same k 
value, the error rate with drill down is smaller than that without drill down in each case, 

suggesting that the data quality associated with dataset-level k-safety is better than that with 

cluster-level k-safety. In addition, it can be observed that as k increases, the error rate 

associated with DAST increases. This is expected because a larger k value implies a greater 

profile size, resulting in more enumerated month values for a record. On the other hand, a 

larger k value implies a higher privacy protection level.

In terms of association rule mining, we evaluate the performance in data utility in the 

context of large itemset mining. This is a realistic context because many medical document 

sharing applications can be viewed as finding large itemsets and associations in the 

documents. We focus on mining associations between medical information and two QID 

attributes: Admission Date and Hospital. The grains for the two PHI attributes are admission 

month-year and hospital name, respectively, which are important season and location 

information that is not available if the HIPAA SH rule is strictly followed.

To facilitate comparisons, we converted the document data sets into medical-term-

association tables. Each row of the table corresponds to a document in the original data set. 

Each column represents a medical term extracted from Module 1 of DAST and there are a 

few hundred columns for each data set. These medial terms are related to the medical 

concepts and topics in the data set. Additional columns were added to the table to represent 

the admission month and hospital. Similarly, we converted the data sets anonymized by SH, 

k-anonymity, and DAST into respective medical-term-association tables. The method to 

determine month values for the counting queries described earlier was also used in creating 

the tables.

For each data set, an association rule mining algorithm was run on the original table, and the 

tables based on the data anonymized by SH, k-anonymity, and DAST, respectively. We then 

compared the large itemsets discovered from an anonymized table with those from the 
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original table based on an error measure defined below (Aggarwal and Yu 2008, Rizvi and 

Haritsa 2002)

(8)

where L represents the set of all large itemsets with a support count larger than the minimum 

support threshold (which was set to 10 in this experiment); Fℓ is the frequency count of the 

ℓth large itemset from the original data set; and  is the corresponding count from the 

anonymized data set. Equation (8) measures the proportion of the large itemsets in the 

original data set that are correctly found in the anonymized data set. Clearly, a small error 

rate is desirable.

Considering the effect of the random selection of the QID attribute values, the experimental 

procedure was repeated 10 times on each data set. The average error rates over the 10 runs 

are reported in Table 6. It is clear that DAST outperforms the SH and k-anonymity 

approaches substantially in terms of large itemset mining. The differences are statistically 

significantly at α = 0.001 for all pairwise comparisons involving DAST. Therefore, our 

proposed approach preserves data utility significantly better than the SH and k-anonymity 

approaches. Similar to the counting query case, for the same k value, the error rate with drill 

down is smaller than that without drill down in each case. Note that because hospital names 

in the original data were replaced by the data providers with surrogate names, which no 

longer have location meaning, generalization used by k-anonymity cannot be implemented 

for counting itemsets containing hospital names. So, the error rate for k-anonymity in Table 

6 is calculated based on the large itemsets without hospital names.

In addition to counting query and association rules mining, we performed a third 

experiment, where anonymized medical documents would be used for keyword-search-based 

information retrieval. Our experiment focused on searches related to medical terms (HMD) 

and hospital names (QID). We wrote a program that allows HMD terms to be used for search 

queries on the document collection and retrieves a set of hospital names associated with the 

HMD terms. For example, for a query that contains two keywords, “diabetes” and “glucose,” 

the program will return a set of hospital names, indicating that these two words appear in a 

record that contains one or more of these hospitals.

We first composed our keyword list using all of the medical terms extracted by our HMD 

extractor. We then removed the terms that appear in more than 25% of the total records 

(these high frequency terms are not very useful to characterize medical concepts in a 

document). The result is a list of 387 terms that are highly relevant to the medical concepts 

conveyed in the text data. These terms are rare enough to represent the differences between 

individual records. We used all single terms and all possible two-term combinations as query 

terms in our experiment. This resulted in a total of  queries, which 
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were used for retrieving hospital names from the original data sets, as well as anonymized 

data sets. Queries that returned empty results were disregarded.

The performance of the search results, which we call search query score, is measured based 

on the well-known Jaccard similarity coefficient

(9)

where Q is the number of queries, and Hq and  are the set of hospital names retrieved by 

the qth query from the original data set and anonymized data set, respectively. The value 

range of this measure is [0, 1]. A larger value indicates that the results from the anonymized 

data set are similar to those from the original set, which suggests a better performance. Safe 

Harbor does not allow releasing hospital names, so the search query score for Safe Harbor 

on any data set is zero. To make comparisons somewhat meaningful, we also randomly 

generated the hospital values for Safe Harbor based on the hospital value distribution in the 

original data set (by assuming that the distribution information was provided to the data 

user). This random selection process was repeated 10 times and the average score value over 

the 10 runs is reported. Because surrogate hospital names in the data do not have location 

meaning, generalization used by k-anonymity cannot be implemented. So, we did not 

include k-anonymity in this experiment.

The search query score results are summarized in Table 7, where under Safe Harbor a score 

of zero indicates no hospital is found, while the results inside the parentheses were 

computed by assuming the hospital value distribution is known (which is unlike month 

values where random guessing is always possible). Clearly, DAST outperforms Safe Harbor 

substantially in this task. The results are statistically significantly different at α = 0.001 for 

all pairwise comparisons. Therefore, our proposed approach achieves better data utility 

significantly than the SH approach. Overall, the score values with DAST appear to still be 

low, which is expected because enumerated values often include both the original and 

irrelevant hospital names for each record. Safe Harbor essentially cannot provide hospital 

names for any medical-term based search query. Again, the drill-down operations improve 

the quality of search results. Also, as k increases, the score associated with DAST decreases.

The search query score in Equation (9) is a measure of accuracy for an individual search 

query. For medical research, the shared data are more likely to be used for finding patterns 

and relationships that are characterized at the data set level (rather than individual 

information retrieval). To evaluate the effectiveness of the proposed approach in this aspect, 

we use the following statistic to measure data utility in preserving the relationship between 

the search query term and the hospital:

(10)
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where H represents the set of all hospitals retrieved; nh|w is the number of times hospital h 

being retrieved by search keywords w from the original data set; and  is the 

corresponding number from the anonymized data set. Equation (10) measures the proportion 

of the hospitals retrieved by given search keywords from the original data set that are 

correctly retrieved from the anonymized data set.

Again, we applied the distribution-based method described earlier to determine the retrieved 

hospital. So, the experimental procedure was repeated 10 times on each data set. The 

average error rates over the 10 runs are reported in Table 8. It is clear that DAST 

outperforms SH substantially. The differences are statistically significantly at α = 0.001 for 

all pairwise comparisons. Therefore, our proposed approach preserves the relationship 

between the search query term and the hospital significantly better than SH.

6. Discussion

Experimental results from the real-world data in Section 5.2 provide clear evidence that the 

HIPAA SH approach for de-identifying data can be underprotective (i.e., de-identified data 

having high disclosure risk). On the other hand, the results in Section 5.3 show that the SH 

approach can also be overprotective (i.e., resulting in poor data utility). These findings have 

significant research and practical implications, since the mainstream approaches in both 

existing research and current practice follow the SH rule to de-identify data for medical 

document sharing.

To overcome these weaknesses in the existing approaches, we propose clustering text 

documents based on health and medical information, using a recursive binary partitioning 

algorithm. The clustered data are then anonymized using a novel value-enumeration method. 

We introduce the notion of cluster-level and dataset-level anonymity for value enumeration 

and develop a drill-down method to further reduce information loss in the anonymized data. 

The results of the experimental study demonstrate that the anonymized data generated by the 

proposed approach have lower disclosure risk and better data utility than those generated by 

the SH based existing approach.

We have so far focused on anonymizing and sharing medical text data without considering 

the related structured data. It is fairly straightforward to apply our approach to anonymize 

the structured data associated with the text. When the text documents are clustered, the 

structured record will go together with its associated text document. The structured data can 

also be classified into three categories: EID, QID, and HMD. So, the same treatments for the 

three categories as for the text data can be applied; that is, EIDs will be removed, QID 

values will be enumerated, and HMDs will remain unchanged.

When using the proposed technique in practice, the user needs to determine the minimum 

group size. In general, the smaller the group size, the closer the anonymized record to the 

original record, and the higher the reidentification risk. In the clustering-based 

anonymization approach, it is common to use a group size of between 3 and 10 records 

(Sweeney 2002, Machanavajjhala et al. 2006, Li et al. 2007). Our experiments have 

demonstrated that a group size within this range is effective in limiting reidentification risk 
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and preserving data utility. Another important decision for the user is to choose appropriate 

grain values for QID attributes. In principle, information contained in a grain value should 

be more (or no less) detailed than that allowed by the HIPAA SH rule or that generated by 

traditional k-anonymity approaches. For admission/visit date, we suggest using month-year 

or season-year as the grain value to provide season information. For date of birth, we believe 

year of birth (age) should be detailed enough. For location attributes, we suggest using a 

five-digit zip code and/or hospital name as the grain value. In general, the gain value 

depends more on the information need and data utility consideration rather than on the 

disclosure risk concern because the latter can be addressed by adjusting the minimum group 

size.

We have used three real-world data sets for experimental evaluation. As we mentioned 

earlier, to protect privacy, all PHI values in the data sets had been replaced with reasonable 

surrogate values by the data providers before the data were released. However, it is possible 

that a true value was replaced with an inappropriate surrogate. Because of privacy concerns, 

it is also likely that the data provider acted overly conservatively in processing the original 

data. In these cases, the results on the processed data may be more or less different from 

those on the original data (although it can be expected that the effect would be similar for all 

techniques under evaluation). Ideally, the original data should be used whenever possible.

Another limitation of this study is that the proposed framework is designed for sharing a set 

of text documents (instead of a single record) for the purposes of medical research, public 

health reporting, and health-care management study. This is the same setting as that assumed 

in data privacy literature on the structured data (Aggarwal and Yu 2008, Sweeney 2002). 

When the purpose of sharing medical documents is to study an individual case, the proposed 

approach may or may not be applicable, depending on whether a set of medical documents 

is available together with the individual document.

7. Conclusions and Extensions

In this study, we investigate the issues related to privacy protection in sharing medical 

documents. We propose a novel privacy protection framework that integrates and improves 

techniques developed in the data privacy and health informatics fields to reduce privacy 

disclosure risks in sharing medical documents while preserving the utility of the data. We 

demonstrate the validity and effectiveness of the proposed framework by developing and 

evaluating a prototype system based on the proposed framework. Our experiments show that 

the proposed approach significantly outperforms the HIPAA SH approach. Therefore, our 

proposed approach may be a promising alternative to the HIPAA SH rule for sharing patient 

medical documents with appropriate privacy protection.

As medical data sharing is being increasingly considered in practice, there is a rising 

concern that patient privacy is being compromised. The proposed framework will reduce the 

risks of reidentification of individuals from anonymized data, while improving the utility of 

the data. This should alleviate patients’ concerns about loss of privacy and confidentiality 

and increase their willingness to participate in research that uses patient data. The proposed 

approach will also reduce organizations’ concerns about potential privacy violations and 
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enable organizations to safely share and publish high-quality data for legitimate research and 

analysis.

Future research can be pursued along several lines. In the proposed value-enumeration 

approach, the values of a QID attribute are shown either with a list of all distinct values 

within the cluster or with a specific grain value after drill down. Alternatively, we can 

consider providing a subset of all distinct values for a QID attribute, which could be 

implemented using a divide-and-conquer approach. Another possible extension of this work 

is to apply the idea of privacy by design or value sensitive design (Cooper and Collman 

2005) to the value-enumeration scheme and to allow individual patients to determine the 

grain details that can be released. In addition, it is worthwhile to explore more effective ways 

to further improve the performance of machine learning and document clustering techniques 

in our framework.

This work studies the problem where each individual has only one record. It is also 

interesting and challenging to examine the privacy problem where an individual may have 

multiple records in the data set. This is an understudied problem in data privacy research 

even for structured data. When an individual has multiple records in a data set, it is likely 

that the grain values of some or all QID attributes will be the same for these records. We 

believe the proposed k-safety principle may be extended to consider the number of distinct 

grain values to deal with the problem of one individual with multiple records. This topic 

deserves an in-depth investigation in future research.
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Figure 1. 
An Example of a Medical Discharge Summary
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Figure 2. 
An Example of Clinical Text—Original and De-Identified
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Figure 3. 
An Example of Clinical Text Anonymized with the Proposed Approach (Scenario 1)
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Figure 4. 
An Example of Clinical Text Anonymized with k-Anonymity
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Figure 5. 
Proposed DAST Framework Architecture
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Figure 6. 
Design of the Information Extraction Module
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Figure 7. 
Algorithm for Recursive Binary Partitioning with NMF
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Figure 8. 
Example of Document Clustering
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Figure 9. 
An Example of Clinical Text Anonymized with Value Enumeration (Scenario 2)
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Figure 10. 
An Example of Clinical Text Anonymized with Value Enumeration (Scenario 3)
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Figure 11. 
Drill-Down Value-Enumeration Algorithm
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Table 1

Protected Health Information Defined by HIPAA

Category Description

  1. Names

  2. Locations: All geographic subdivisions smaller than a state, including street address, city, county, precinct, zip code, and their 
equivalent geocodes, except for the initial 3 digits of a zip code if the corresponding area contains more than 20,000 people.

  3. Dates: (i) All elements of dates (except year) for dates directly related to an individual, including birth date, admission date, 
discharge date, date of death. (ii) All ages over 89 and all elements of dates (including year) indicating such an age.

  4. Telephone numbers

  5. Fax numbers

  6. E-mail addresses

  7. Social security numbers

  8. Medical record numbers

  9. Health plan beneficiary numbers

10. Account numbers

11. Certificate/license numbers

12. Vehicle identifiers and serial numbers, including license plate numbers

13. Device identifiers and serial numbers

14. Web Universal Resource Locators (URLs)

15. Internet Protocol (IP) address numbers

16. Biometric identifiers, including finger and voice prints

17. Full face photographic images and any comparable images

18. Any other unique identifying number, characteristic, or code

Source. Adapted from DHHS (2000).
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Table 2

Results of Information Extraction Performance

SVM-based (%) CRF-based (%) Rule-based (%) Aggregator (%)

Recall 82.72 86.64 37.78 90.94

Precision 88.93 91.36 79.36 89.85

F-measure 85.71 88.94 51.19 90.39

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Qin Page 42

Ta
b

le
 3

R
es

ul
ts

 o
f 

th
e 

U
ni

qu
e 

R
ei

de
nt

if
ic

at
io

n 
R

is
k

D
at

a 
se

t
A

ge
 o

nl
y

A
ge

-A
dm

in
Y

ea
r 

co
m

bi
na

ti
on

Sa
fe

 h
ar

bo
r

k-
an

on
ym

it
y

D
A

ST
Sa

fe
 h

ar
bo

r
k-

an
on

ym
it

y
D

A
ST

M
ed

ic
at

io
n 

(8
89

 r
ec

or
ds

)
22

 (
2.

5%
)

0
0

30
9 

(3
4.

8%
)

0
0

O
be

si
ty

 (
1,

23
7 

re
co

rd
s)

12
 (

1.
0%

)
0

0
47

6 
(3

8.
5%

)
0

0

V
A

 (
87

1 
re

co
rd

s)
17

 (
2.

0%
)

0
0

29
6 

(3
3.

9%
)

0
0

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Qin Page 43

Ta
b

le
 4

R
es

ul
ts

 o
f 

th
e 

A
ve

ra
ge

 R
ei

de
nt

if
ic

at
io

n 
R

is
k

A
ge

 o
nl

y 
(%

)
A

ge
-A

dm
in

Y
ea

r 
co

m
bi

na
ti

on
 (

%
)

k 
= 

3
k 

= 
6

k 
= 

3
k 

= 
6

D
at

a 
se

t
SH

k-
an

on
ym

it
y

D
A

ST
(n

o 
dr

ill
)

D
A

ST
(d

ri
ll)

k-
an

on
ym

it
y

D
A

ST
(n

o 
dr

ill
)

D
A

ST
(d

ri
ll)

SH
k-

an
on

ym
it

y
D

A
ST

(n
o 

dr
ill

)
D

A
ST

(d
ri

ll)
k-

an
on

ym
it

y
D

A
ST

(n
o 

dr
ill

)
D

A
ST

(d
ri

ll)

M
ed

ic
at

io
n

8.
66

7.
23

6.
27

8.
34

4.
19

4.
16

8.
30

37
.1

2
16

.9
8

14
.2

9
17

.9
7

8.
02

7.
54

10
.6

8

O
be

si
ty

7.
84

6.
57

5.
83

7.
78

4.
01

3.
98

7.
71

34
.9

2
15

.3
7

13
.0

2
16

.8
3

7.
63

5.
79

8.
52

V
A

8.
27

7.
49

6.
09

8.
09

4.
12

4.
04

8.
02

36
.5

8
16

.0
7

13
.9

6
16

.2
3

8.
30

7.
02

9.
86

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Qin Page 44

Ta
b

le
 5

E
rr

or
 R

at
e 

fo
r 

th
e 

C
ou

nt
in

g 
Q

ue
ry

k 
= 

3
k 

= 
6

D
at

a 
se

t
Sa

fe
 h

ar
bo

r
k-

an
on

ym
it

y
D

A
ST

 (
no

 d
ri

ll)
D

A
ST

 (
dr

ill
)

k-
an

on
ym

it
y

D
A

ST
 (

no
 d

ri
ll)

D
A

ST
 (

dr
ill

)

M
ed

ic
at

io
n

0.
21

71
0.

18
37

0.
15

36
0.

06
83

0.
21

76
0.

17
45

0.
11

73

O
be

si
ty

0.
26

38
0.

21
31

0.
21

47
0.

10
85

0.
25

07
0.

23
94

0.
16

36

V
A

0.
22

69
0.

18
79

0.
17

24
0.

09
54

0.
21

65
0.

19
26

0.
12

49

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Qin Page 45

Ta
b

le
 6

E
rr

or
 R

at
e 

fo
r 

L
ar

ge
 I

te
m

se
ts

k 
= 

3
k 

= 
6

D
at

a 
se

t
Sa

fe
 h

ar
bo

r
k-

an
on

ym
it

y
D

A
ST

 (
no

 d
ri

ll)
D

A
ST

 (
dr

ill
)

k-
an

on
ym

it
y

D
A

ST
 (

no
 d

ri
ll)

D
A

ST
 (

dr
ill

)

M
ed

ic
at

io
n

0.
45

69
0.

23
43

0.
13

58
0.

07
13

0.
31

09
0.

15
69

0.
10

96

O
be

si
ty

0.
47

62
0.

27
75

0.
20

79
0.

11
98

0.
34

41
0.

24
82

0.
15

21

V
A

0.
43

81
0.

25
60

0.
13

69
0.

08
04

0.
33

48
0.

17
53

0.
10

42

N
ot

e.
 T

he
 r

es
ul

ts
 a

re
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 a

t α
 =

 0
.0

01
 f

or
 a

ll 
pa

ir
w

is
e 

co
m

pa
ri

so
ns

.

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Qin Page 46

Ta
b

le
 7

R
es

ul
ts

 o
f 

th
e 

Se
ar

ch
 Q

ue
ry

 S
co

re D
A

ST
 (

k 
= 

3)
D

A
ST

 (
k 

= 
6)

Sa
fe

 h
ar

bo
r

N
o 

dr
ill

 d
ow

n
W

it
h 

dr
ill

 d
ow

n
N

o 
dr

ill
 d

ow
n

W
it

h 
dr

ill
 d

ow
n

M
ed

ic
at

io
n

0 
(0

.0
67

1)
0.

17
23

0.
21

14
0.

11
86

0.
14

37

O
be

si
ty

0 
(0

.0
71

2)
0.

19
64

0.
24

18
0.

12
56

0.
16

94

V
A

0 
(0

.0
54

7)
0.

16
20

0.
20

31
0.

10
53

0.
13

96

N
ot

e.
 T

he
 r

es
ul

ts
 a

re
 s

ta
tis

tic
al

ly
 s

ig
ni

fi
ca

nt
ly

 d
if

fe
re

nt
 a

t α
 =

 0
.0

01
 f

or
 a

ll 
pa

ir
w

is
e 

co
m

pa
ri

so
ns

.

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Qin Page 47

Ta
b

le
 8

E
rr

or
 R

at
e 

fo
r 

th
e 

H
os

pi
ta

l C
ou

nt
 w

ith
 G

iv
en

 K
ey

w
or

ds

D
A

ST
 (

k 
= 

3)
D

A
ST

 (
k 

= 
6)

Sa
fe

 h
ar

bo
r

N
o 

dr
ill

 d
ow

n
W

it
h 

dr
ill

 d
ow

n
N

o 
dr

ill
 d

ow
n

W
it

h 
dr

ill
 d

ow
n

M
ed

ic
at

io
n

0.
64

52
0.

11
73

0.
06

32
0.

13
74

0.
06

94

O
be

si
ty

0.
71

09
0.

09
04

0.
05

16
0.

11
51

0.
06

13

V
A

0.
58

72
0.

11
62

0.
05

89
0.

13
87

0.
06

28

Inf Syst Res. Author manuscript; available in PMC 2018 March 19.


	Abstract
	1. Introduction
	Identifying weakness in HIPAA Safe Harbor based de-identification
	Document clustering using medical information and recursive partitioning
	Value enumeration for anonymizing data at the cluster level and the dataset-level

	2. Motivating Examples
	3. Related Work
	3.1. Data Privacy in Structured Data
	3.2. De-Identification for Medical Document Sharing

	4. The Proposed Approach
	4.1. Information Extraction
	4.2. Document Clustering
	4.3. De-Identification and Anonymization with Value Enumeration and Drill-Down
	Definition 1
	Definition 2
	Definition 3
	Definition 4

	4.4. Data Utility Analysis
	Proposition 1
	Proof


	5. Experimental Evaluation
	5.1. Information Extraction and Classification
	5.2. Privacy Risks
	5.3. Data Utility

	6. Discussion
	7. Conclusions and Extensions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

