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Consumption and Performance: Understanding Longitudinal Dynamics of 
Recommender Systems via an Agent-Based Simulation Framework 

 

Abstract 

We develop a general agent-based modeling and computational simulation approach to study the impact of 

various factors on the temporal dynamics of recommender systems’ performance.  The proposed agent-based 

simulation approach allows for comprehensive analysis of longitudinal recommender systems performance 

under a variety of diverse conditions, which typically is not feasible with live real-world systems.  We 

specifically focus on exploring the product consumption strategies and show that, over time, user-

recommender interactions consistently lead to the longitudinal performance paradox of recommender systems.  

In particular, users’ reliance on the system’s recommendations to make item choices generally tends to make 

the recommender system less useful in the long run or, more specifically, negatively impacts the longitudinal 

dynamics of several important dimensions of recommendation performance.  Furthermore, we explore the 

nuances of the performance paradox via additional explorations of longitudinal dynamics of recommender 

systems for a variety of user populations, consumption strategies, as well as personalized and non-personalized 

recommendation approaches.  One interesting discovery from our exploration is that a certain hybrid 

consumption strategy, i.e., where users rely on a combination of both personalized- and popularity-based 

recommendations, offers a unique ability to substantially improve consumption relevance over time.  In other 

words, for such hybrid consumption settings, recommendation algorithms facilitate the general “quality-rises-

to-the-top” phenomenon, which is not present in the pure popularity-based consumption.  In addition to 

discussing a number of interesting performance patterns, the paper also analyzes and provides insights into the 

underlying factors that drive such patterns.  Our findings have significant implications for the design and 

implementation of recommender systems. 

Keywords: dynamics of recommender systems, agent-based modeling, simulation, consumption strategies, 

prediction accuracy, consumption diversity, consumption relevance.    
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1 Introduction and Motivation 

Recommender systems are commonplace in the electronic marketplace.  They provide personalized 

suggestions to individual consumers to help them discover information and items that are most relevant to their 

interests and needs.  Such systems are especially valuable in complex electronic commerce markets that often 

involve millions of products to choose from.  In practice, recommender systems have demonstrated strong 

influence on both consumers and retailers.  For example, it has been reported that recommendations could 

account for 35% of product sales at Amazon.com (Marshall 2006).  Netflix, the Internet television and movie 

streaming/rental company, has reported that about 75% of the content watched by its subscribers  is suggested 

by its recommendation system (Amatriain and Basilico 2012).   

Much research in the area of recommender systems has focused on developing and improving 

personalization techniques for making accurate predictions of user preference ratings for individual items.  The 

developed prediction algorithms are typically evaluated in a fixed static setting on an existing rating data file 

using traditional evaluation approaches from machine learning and data mining literature, such as 

training/testing data split or cross-validation.  In other words, a vast number of studies in the recommender 

systems literature have used existing offline datasets collected from real world systems for assessing the 

performance of algorithms.  Such datasets typically represent a one-time snapshot of the system and can help 

make best design choices (e.g., find the best performing algorithm) for that specific situation.  However, it 

often remains unclear how these design choices will affect users’ consumption of items and interactions with 

the system, which in turn will influence the future performance of the system.  In prior literature, the nature of 

long-term consumer-recommender interactions, i.e., temporal dynamics of recommender systems, has been 

underexplored.  Additionally, the static datasets only contain the actually observed interactions between users 

and items in a fixed system setting, and therefore, we do not know the evolution possibilities and longitudinal 

dynamics of the system under other, alternative settings.  There are many “what-ifs” to be explored in a system, 

e.g., what might happen in the long run, if system ranks the recommended items differently? What if users rely 

more vs. less heavily on the system for their item selections?  To answer these questions, we need to analyze 

and understand the longitudinal dynamics of recommender systems.   

In addition, real-world recommender systems implementations have to focus not only on recommendation 

accuracy, but rather balance a number of objectives, including accuracy, diversity, relevance, novelty, 
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popularity, scalability, adaptability, awareness, explanations, social values, similarity… (Amatriain and 

Basilico 2012).  In other words, most serious real-world recommender systems inevitably have to navigate 

various tradeoffs in order to balance many (often conflicting) goals.  Thus, understanding longitudinal 

performance tradeoffs that are inherent in the interactions between the users and the system constitutes an 

important and practical research topic.  Such understanding would enable designers to anticipate the temporal 

changes in the system, make strategic design choices, and maximize the long-term value of system.  This paper 

demonstrates that consumption strategies (based on different degrees of users’ reliance on recommendations 

when choosing which items to consume) turn out to have a major influence on some of these tradeoffs and, 

more generally, on the longitudinal performance dynamics of the system.  Thus, understanding the impact of 

consumption strategies (and some of the underlying reasons behind it) represents an important contribution of 

this work.  

An ideal approach for studying recommender systems’ longitudinal dynamics would be to perform large-

scale longitudinal field experiments in real world settings.  Depending on the research question, such live 

experiments may need to isolate or control for the effects of numerous (potentially confounding) factors, such 

as the composition of user and item populations (e.g., user population heterogeneity, distribution of item 

popularity), users’ “lifecycle” characteristics (e.g., users’ consumption frequency), users’ consumption 

strategies (e.g., how users choose items), etc.  Controlling for some of these effects may be difficult in real-

world settings; thus, conducting such field experiments may not be feasible or could be prohibitively 

expensive.  Therefore, we propose and develop an agent-based modeling and simulation approach to 

investigate the temporal dynamics of recommender systems.   

Agent-based modeling methodology allows to create computational models that simulate the 

simultaneous actions and interactions of artificial agents, which typically represent individual entities (e.g., 

users), in an attempt to re-create and predict the appearance of complex phenomena (Miller and Page 2007).  

In the recommender systems context, agent-based simulation is typically much cheaper and faster than large-

scale field experiments with real users and systems.  Besides, simulation can provide a rich environment for 

exploration, allowing for numerous experiments under a variety of settings, which makes it possible to identify, 

explore, and separate effects of different factors.  Simulation can uncover key insights that could then be further 

analyzed using additional methodologies (i.e., more targeted field experiments and econometric analyses) and, 
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thus, can be used in conjunction with other methods such as field experiments and analytical modeling.  These 

characteristics of agent-based simulation make it well-suited for our exploration of longitudinal dynamics of 

recommender systems.   

The contributions of the paper are three-fold.  First, we introduce a general-purpose agent-based modeling 

framework for exploring the longitudinal dynamics of recommender systems.  Little research has 

systematically examined the longitudinal aspects of recommender systems and how users’ interactions with 

the system influences the system’s performance over time.  One reason for this is because studying longitudinal 

dynamics is inherently difficult as there are so many intertwined factors involved in the user-recommender 

ecosystem.  As mentioned earlier, it is often difficult to isolate (or control for) the effects of various factors 

analytically or experimentally.  Thus, building upon prior studies that demonstrated the usefulness of 

simulation to examine some specific recommender-systems-related research questions (e.g., Fleder and 

Hosanagar 2009; Jannach et al. 2015; Prawesh and Padmanabhan 2014), this research introduces (and 

advocates for) a general-purpose, comprehensive, low-cost, and risk-free simulation framework that can be 

used to explore various emerging phenomena resulting from user-recommender interactions by allowing 

researchers and practitioners to manipulate all the different aspects of recommender systems as well as simulate 

various canonical user consumption behaviors.   

A second key contribution of this paper is that we use the simulation framework to study how users’ 

consumption strategies (specifically, with respect to the level of users’ reliance on recommendations) influence 

the longitudinal performance dynamics of the system.  The user’s inherent consumption strategy is not 

something that can be controlled by companies using field experiments; thus, agent-based modeling provides 

a useful tool for researchers to study the impact of consumption strategies.  In our paper, we demonstrate an 

interesting paradox that users’ high reliance on the recommender system actually provides highly suboptimal 

performance outcomes (i.e., smaller benefits for the system’s performance) in the long run.  The simulation 

framework allows us to perform a more in-depth investigation of all the process-oriented metrics to provide an 

in-depth understanding of why and how this performance paradox occurs.  Our analysis suggests that the 

different consumption strategies (e.g., select items randomly vs. based on recommendations) lead to 

fundamental changes in the structural and value distributions of the rating data, which subsequently serve as 

inputs for the recommendation algorithms, and therefore affect the future performance of the recommender 
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systems.  The theoretical understanding of the longitudinal nature of recommender systems represents a major 

contribution of this work.  

Third, we provide explorations of several additional factors about user populations and types of 

recommender systems (e.g., personalized vs. popularity-based recommendations, non-homogeneous user 

populations, top-N and classification systems).  Our exploration reveals some highly interesting patterns.  For 

example, the hybrid consumption strategy based on personalized and popularity-based recommendations offers 

a unique combination that is able to substantially improve the relevance of selected/consumed items over time.  

It is because recommender systems can discover and popularize the “good quality” items that are appealing to 

a significant number of people (but that are not popular at this time), thus, helping these items climb up in the 

popularity rank list.  This results in a general increase of item quality in the list of most popular items (and, 

hence, consumption relevance) over time.  In other words, in hybrid consumption settings, recommendation 

algorithms facilitate the general “quality-rises-to-the-top” phenomenon, which is not present in the pure 

popularity-based consumption; this is another important finding facilitated by the simulation-based approach.  

In addition to discussing a number of key performance patterns, the paper also analyzes and provides insights 

into the underlying factors that drive these patterns.   

2 Related Work 

2.1 Recommender Systems  

Recommender systems make recommendations by inferring user’s preferences for items based on user’s 

feedback on previously consumed items.  The most common approach to modeling users’ preferences for items 

is via numeric ratings.  For example, Amazon users are asked to rate the items they have purchased on a 5-star 

scale (with 1 being “I hate it” and 5 – “I love it”).  A recommender system then analyzes patterns of users’ past 

ratings and predicts users’ preferences on unconsumed items.   

There has been a significant amount of research on the design and implementation of recommender system 

algorithms, with the goal of improving accuracy performance (see Adomavicius and Tuzhilin (2005) for an 

overview).  Among the different types of algorithms, the neighborhood-based Collaborative Filtering (CF) 

approach, which predicts unknown ratings of a user (or item) based on the ratings of the “nearest neighbor” 

users (or items) with similar rating patterns (e.g., Linden et al. 2003; Resnick et al. 1994; Sarwar et al. 2001), 

represents arguably the most popular recommendation approach.  The neighborhood-based CF technique can 
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be user-based, if the ratings of the “nearest neighbor” users are used to predict unknown ratings (Konstan et al. 

1997; Resnick et al. 1994), or item-based, if the ratings of the “nearest neighbor” items are used to predict 

unknown ratings (Linden et al. 2003; Sarwar et al. 2001).  The neighborhood-based CF approaches are widely 

used in real world applications; e.g., Amazon is a well-known early adopter of the item-based CF algorithm 

(Linden et al. 2003; Smith and Linden 2017).  We use item-based CF as our recommendation algorithm choice 

in our simulation experiments. 

In terms of performance evaluation, prior literature characterizes performance as a multi-faceted construct 

that can be evaluated along a number of dimensions (Herlocker et al. 2004).  The evaluation approach can be 

broadly categorized as either system-centric or user-centric (Herlocker et al. 2004; Pu et al. 2011).  Vast 

majority of recommender systems literature has focused on system-centric evaluation, which considers 

algorithmic performance and uses measures such as accuracy, diversity, and coverage.  In contrast, user-centric 

evaluation focuses on user experience and uses measures such as relevance, usability, and satisfaction.  Our 

simulation framework measures the performance on several key dimensions – both system-centric and user-

centric – including systems’ prediction capability (e.g., accuracy), item discovery capability (e.g., aggregate 

item diversity), and user’s consumption outcome (e.g., relevance of consumed items).  Many real-world 

systems, including the ones used by Netflix and Amazon, strive to balance different dimensions in their 

personalization services (see, for example, Amatriain and Basilico 2012; Smith and Linden 2017).  

In addition to the extensive literature on the design of recommender systems, there is an increasing body 

of research that has examined the impact of recommender systems from various perspectives, thus, taking more 

of a longitudinal view.  From the business perspective, research has shown that recommenders can positively 

affect product sales and Web impressions (e.g., Ansari et al. 2000; De et al. 2010).  Fleder and Hosanagar 

(2009) show that recommender systems can lead to a “rich-get-richer, poor-get-poorer” effect for products, 

thus resulting in a decrease in aggregate sales diversity over time.  Jannach et al. (2015) further empirically 

explore the effects of different recommendation algorithms on item popularity as well as several other 

outcomes.  In addition, Prawesh and Padmanabhan (2014) demonstrate that, in non-personalization-based 

recommender systems, recommending top-N popular items could lead to popularity amplification of these 

items and make the system susceptible to manipulations.  From the user perspective, product recommendations 

help reduce users’ search costs (Brynjolfsson et al. 2011).  However, users’ interactions with recommender 
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systems may have unintended effects on user preferences and economic behavior.  In particular, observing the 

system-predicted ratings can bias users’ subsequent judgements for products (Adomavicius et al. 2013; Cosley 

et al. 2003) as well as economic behaviors (Adomavicius et al. 2017).  Our work also takes a longitudinal 

perspective of the recommender systems performance, by focusing on the underexplored issue of how the 

performance is affected by users’ consumption strategies over time.  The proposed simulation framework not 

only provides a promising opportunity to perform an in-depth, systematic study of this issue, but also to 

uncover the potential mechanisms through which these effects may occur.   

Lastly, the recommender systems literature that uses the multi-armed bandit – or, more generally, 

reinforcement learning (Sutton and Barto 1998) – perspective has a potentially relevant connection to this 

work, as it focuses on the classic exploration-exploitation dilemma of how the system should take actions in 

order to optimize some longitudinal (or cumulative) aspects of performance.  Exploitation implies providing 

users with the most relevant recommendations (i.e., to gain more value at the current point), while exploration 

means providing users with possibly suboptimal recommendations that can help the recommendation algorithm 

acquire most informative new knowledge about users’ preferences (i.e., to be able to gain more value in the 

future).  For example, Li et al. (2010) proposed a contextual-bandit approach to personalize the 

recommendations based on contextual information and user feedback in order to maximize users’ clicks on the 

recommended news articles, and Zeng et al. (2016) further incorporated the time-varying contextual 

information to maximize the cumulative value of recommendations.   In contrast to the multi-armed bandit 

literature on recommender systems, this study focuses not on new algorithm development but rather on 

understanding the longitudinal performance implications of different user behaviors (e.g., consumption 

strategies) for any given algorithm of interest.    

In summary, there has been a substantial amount of work in the area recommender systems that has 

focused on algorithmic development and the influence of recommendations on businesses and users.  However, 

little research is available on understanding how the longitudinal dynamics of recommender systems 

themselves is influenced by users’ continuous interactions with the system.  Our work sets out to address this 

gap by investigating the impact of users’ consumption strategies on the long-term performance of 

recommender systems.  We show that users’ reliance on the recommender systems leads to a performance 

paradox between the consumption relevance and future performance of the recommender systems.  We also 
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discuss a number of other longitudinal performance patterns arising from users’ consumption strategies and 

provide analysis of key underlying factors behind these patterns.  

2.2 Agent-Based Modeling and Simulation 

We use agent-based modeling methodology to simulate the ongoing interactions of multiple agents (i.e., users) 

with the recommender system to investigate the system’s temporal dynamics.  The simulation process is one 

of emergence from the micro (i.e., individual) level to a macro (i.e., aggregated) level.  In agent-based 

modeling, the agents are software entities that carry out some operations on behalf of a user or another program 

with some degree of independence or autonomy, and in so doing, employ some knowledge or representation 

of the user's goals or desires (Wooldridge and Jennings 1995).  As summarized by Miller and Page (2007), the 

advantages of agent-based models over traditional experiments include being “flexible, process oriented, 

timely, adaptive, inherently dynamic, heterogeneous, scalable, repeatable, recoverable, constructive, and low 

cost” (Chapter 6).   

Agent-based systems have been heavily used in the social science community to model complex adaptive 

systems.  In the Information Systems literature, prior studies have used agent-based models to simulate auction 

mechanisms to analyze auctioneer and bidder strategies and tradeoffs (e.g., Bapna et al. 2003; Bapna et al. 

2008), to simulate online communities to understand the design factors that lead to online community success 

(e.g., Ren and Kraut 2014), to solve trading agent problems and analyze tradeoffs of trading strategies in 

complex and uncertain environments (such as a supply chain environment in which agents must compete with 

each other in both procurement and sales markets while simultaneously managing inventories, fulfillment, and 

a manufacturing process) (e.g., Ketter et al. 2012; Ketter et al. 2016a).  Prior work on agent-based virtual 

worlds (ABVW) brings real-world modeling aspects to the foreground to evaluate possible futures and 

tradeoffs of high-complexity environments and potential paths to these futures (Chaturvedi et al. 2011).   

Our simulation platform for recommender systems can be categorized as a conventional ABVW to 

perform controlled experiments in pursuit of explanatory theories.  The different user consumption strategies 

that we study are a variant of the Competitive Benchmarking method (Ketter et al. 2016b).  We conduct 

experiments by simulating agent behaviors across many alternative settings and scenarios and observe the 

longitudinal dynamics of recommendation systems as a result of these agents’ actions.  In simulation-based 

research, there is a tension between real-world fidelity and model parsimony and elegance.  We mitigate this 
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tension by seeding the simulation environment with real-world application settings, which we discuss in detail 

in Section 3.  Using an agent-based modeling framework offers three benefits for this research.  First, we can 

implement and test various recommendation settings using a simulation approach.  Second, heterogeneity in 

inherent user preferences and consumption strategies can be easily accommodated, i.e., controlled for and 

experimented with.  Third, we can readily explore a variety of different settings to disentangle the effects of 

various factors on the longitudinal dynamics of recommender systems.   

3 Simulation Framework for Recommender Systems 

Before describing the modeling and simulation choices made for our specific research study, in the next 

subsection we present a brief overview of the general simulation framework that can be used to explore a wide 

variety of issues regarding temporal dynamics of recommender systems. 

3.1 General Procedure and Main Components 

Our general simulation framework reflects the traditional recommendation scenario, where individual users 

are able to consume individual items, possibly after observing item recommendations provided by the 

recommender engine.  After consuming an item, each user is able to provide feedback to the system regarding 

the user’s actual preference for that item (i.e., how relevant the item was to the user).  This feedback is then 

used by the engine to further improve its subsequent recommendations to users, leading to new item 

consumptions, etc.  Correspondingly, our framework consists of three major components that model the state 

of the entire simulated system – item population, user population, and recommender engine – as summarized 

in Table 1.  In addition, our framework includes an iterative simulation procedure that advances the system 

state temporally (step by step), as presented in Figure 1.  In this subsection, we present key aspects of each 

major component needed to properly model longitudinal recommender system behavior in a variety of settings; 

however, each component can be further customized and extended.   

When modeling temporal dynamics of recommender systems, key aspects of the item population 

component include item arrival, item lifespan, and item content (see Table 1a).  The first two aspects control 

the changes in item population over time, i.e., item additions (e.g., new releases) and departures (e.g., item 

discontinuation).  The third aspect, modeling item content distribution, allows to control for heterogeneity of 

items available for consumption (e.g., having similar vs. diverse items).  Also, when modeling the item 

population (as well as the user population), it is important to model the key aspects both at the population level 
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and at the individual level, as reflected in Table 1.  E.g., item content needs to be properly represented in each 

individual item as well as initialized (seeded) according to population-level considerations.  

Table 1. Major Components of the General Simulation Framework. 

(a) ITEM POPULATION 
Aspect Population-level modeling considerations Individual agent modeling (item agent state) 
Item arrival Item arrival rate represents the cadence with which 

new items are introduced.   
ITEMARRIVALTIMEi: The date that item i is added to the 
system.  

Item lifespan Item lifespan distribution represents heterogeneity 
among items in terms of how long they will be 
available to be recommended or consumed. 

ITEMLIFESPANi: The length of time item i will be 
available in the system.   

Item content Item content distribution represents heterogeneity of 
the item population in terms of their content. 

ITEMCONTENTi: Content representation of item i, e.g., as 
a vector item features/characteristics. 

(b) USER POPULATION 
Aspect Population-level modeling considerations Individual agent modeling (user agent state) 
User arrival User arrival rate represents the cadence with which 

new users arrive to the system.   
USERARRIVALTIMEu: The date that user u arrives to the 
system.  

User 
lifespan 

User lifespan distribution represents heterogeneity 
among users in terms of how long they will stay with 
the system (i.e., reflects users’ churn rate). 

USERLIFESPANu: The length of time user u will stay with 
the system.   

User 
preferences 

User preference distribution represents 
heterogeneity of user population in terms of their 
preferences.   

USERPREFSu: Representation of user tastes/preferences, 
e.g., as a vector of preferences for different content 
features.   

User 
consumption 
frequency 

User consumption period distribution represents the 
heterogeneity of users in terms of their consumption 
frequency (i.e., expected timespan between two 
consumptions). 

USERCONSPERIODu: Representation of length of time 
between user u’s two consecutive consumptions. 
(Also, next scheduled consumption for user u is 
referred to as USERNEXTCONSu value.) 

User 
consumption 
strategy 

User consumption strategy distribution represents 
heterogeneity of users based on how they make item 
selection for consumption. 

USERCONSSTRATEGYu: User u’s consumption strategy, 
i.e., the strategy with which an item is selected for 
consumption (e.g., out of the available 
recommendations).  

User 
feedback 

User feedback distribution represents heterogeneity 
of users in terms of how they calculate their 
feedback to the system (i.e., the actual preference 
rating) upon consuming an item. 

USERFEEDBACKu: Function for calculating an actual 
preference that user u would report after consuming 
any given item i, typically modeled as a degree of fit 
between USERPREFSu and ITEMCONTENTi. 

User 
feedback 
likelihood 

User feedback likelihood represents heterogeneity of 
users in terms of how likely they are to provide 
feedback to the system. 

USERFEEDBACKLIKELIHOODu: Representation of user u’s 
likelihood (probability) of submitting feedback on 
newly consumed items. 

(c) RECOMMENDER ENGINE 
Aspect Recommender engine modeling  
[Functionality]  
Rating prediction 

PREDICTRATINGS: Rating prediction algorithm(s), which are used to calculate system-predicted 
(personalized or non-personalized) ratings for not-yet-consumed items.   

[Functionality]  
Recommendation 
generation 

GENERATERECS: Recommendation generator(s), i.e., which are used to produce recommendations 
from predicted ratings in various ways, including as ranked list of all items, top-N items, 
classified categories of items (relevant vs. irrelevant items), etc.  

[Functionality]  
Performance measurement 

EVALUATE: Performance metrics, for measuring different aspects of recommender systems 
performance, e.g., accuracy, diversity, novelty, serendipity, revenue, etc.  

[System state at time t] 
Known historical ratings 

Available ratings (𝑅#)%&, representing user-item consumption history (i.e., a database of known 
user-item ratings at time t), which is the main data source for recommendation algorithms.  Can 
be initialized to represent desired historical rating distributions. 

[System state at time t] 
System-predicted ratings 

Rating predictions (𝑃#)%&, representing the recommender system’s predictions of all (unknown) 
user-item ratings at time t; 𝑃# = PREDICTRATINGS(𝑅#). 

[System state at time t] 
System recommendations 

Recommendations (𝐿#)%, representing system’s recommendations that are available to any given 
user u at time t; i.e., 𝐿%#  = GENERATERECS(𝑃%#). 

We model the user population component using seven key aspects of user behavior as related to 

recommender systems (see Table 1b).  Specifically, and similarly to the item population modeling, user arrival 
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and user lifespan model the user population over time, i.e., user arrivals to and departures from the system.  As 

not all users typically like all items, modeling individual user preferences allows to control the heterogeneity 

of user population.  Users’ consumption of items is a major element of users’ interactions with recommender 

systems and, thus, we model both user consumption frequency (i.e., how often individual users tend to consume 

items) and user consumption strategy (i.e., how individual users select an item for consumption) aspects.  

Finally, since recommender systems rely on feedback from the users (i.e., how much users liked the consumed 

items, which serves as the “ground truth” for the recommendation algorithms), it is crucial for the simulation 

framework to be able to calculate the actual preference rating of any user for any item as needed.  This is 

explicitly modeled as the user feedback aspect, which reflects the degree of fit between the user preferences 

and item content.  The proposed framework also allows to model user feedback likelihood, i.e., how likely 

users are to provide feedback after any given item consumption.  In summary, users are modeled as populations 

of individual agents, which are initialized according to desired population-level considerations but each agent 

then behaving autonomously as prescribed only by their own specific characteristics discussed above. 

Our modeling of the recommender engine component (see Table 1c for an overview) is based on the 

traditional notion of ratings to represent user preferences for items.  The known ratings that a user provided in 

the past are used as inputs to the recommendation algorithm that estimates ratings for the items that the user 

has not yet consumed.  To define the main elements more formally, let U be the set of all users, and I be the 

set of all possible items that can be recommended.  The entire user-item space is then denoted as S = U × I, 

and Rui represents the rating that user u gave item i.  However, at any given time, Rui values are known only 

for a limited subset of the whole user-item space.  Then, the key recommender engine tasks are to predict rating 

values, denoted as Pui, for unknown (u, i) Î U × I pairs and, based on rating predictions, to provide some 

recommendations Lu to each user u (e.g., a list of items ordered based on predicted rating value, as was done 

in this study).  Thus, at any given time t, the recommender engine’s state can be represented by the following 

three key elements: set of known historical user-item ratings for previously consumed items (𝑅#), set of system-

predicted ratings for previously unconsumed items ( 𝑃# ), and the set (or list) of resulting system’s 

recommendations to users (𝐿#).  To manage this state, the recommender engine component is modeled with 

three main functionalities: rating prediction, i.e., algorithms for predicting user’s preference ratings for not-

yet-consumed items (for calculating 𝑃#  based on 𝑅# ); recommendation generation, i.e., strategies for 
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producing item suggestions based on rating predictions (for computing 𝐿#); and performance measurement, 

i.e., evaluating various aspects of system’s performance based on specific metrics of interest.  When items or 

users depart from the system, their ratings can still be used for making predictions, but the system will no 

longer suggest these items or make recommendations to these users. 

We use a discrete-time iterative simulation procedure to advance the system state from one time period 

to the next, as described in Figure 1, where each period represents some desired temporal granularity (e.g., 

day, hour).  Prior to the main simulation, the three major components – i.e., item population, user population, 

and recommendation engine – are initialized according to the desired distributional characteristics (i.e., Step 0 

in Figure 1).  The main simulation procedure consists of iterating the following two steps at each time period 

t.  Step 1 is a “user-system interaction” step, where each user that is due for consumption at current time selects 

an item for consumption using her own consumption strategy, consumes the item, and provides feedback 

(actual rating) about the consumed item back to the system.  Step 2 is a “system update” step, where the 

recommender system’s state is updated based on newly submitted ratings (i.e., rating predictions, 

recommendations, and performance metrics are recalculated), completing a feedback loop that is critical to the 

recommender system’s use and value; both user and item populations are also updated as necessary (e.g., based 

on new arrivals or lifespan restrictions).  

The general simulation framework represents a comprehensive testbed for studying a rich set of 

longitudinal recommender system behaviors and, as with any simulation-based approach, provides multiple 

major benefits.  It is readily replicable and can be rerun multiple times to obtain average performance estimates 

across multiple runs.  Also, every aspect of the framework – from the major performance metrics to any internal 

state variables – can be tracked throughout the simulation, logged, and subsequently inspected and analyzed.  

Furthermore, it is highly customizable, and can be instantiated (as well as expanded or reduced) in numerous 

ways, depending on the desired problem setting.  For example, one could focus on different recommendation 

algorithms, different performance evaluation metrics, different ways of presenting recommendations to users, 

different user consumption strategies, etc.  Also, one could vary modeling sophistication as needed, by 

including stochasticity (e.g., randomness in arrival rates or consumption frequencies), explicit temporal trends 

(e.g., preference evolution of users), context-awareness, more sophisticated behavioral heuristics, etc., as part 

of key aspects of the major components. 
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INITIALIZATION (at time period t = 0) 
[Step 0: System Initialization]  

Initialize the desired item population based on the item distributional parameters. 
Initialize the desired user population based on the user distributional parameters. 
Initialize available rating data 𝑅). 
Calculate item predictions 𝑃) = PREDICTRATINGS(𝑅)) and prepare recommendations for each user u, i.e., 𝐿%)  = GENERATERECS(𝑃%)). 
Evaluate recommendation performance (EVALUATE).  

MAIN SIMULATION (perform Steps 1 and 2 at each time period t = 1, 2, 3, …) 
[Step 1: Main Interaction/Consumption/Feedback Process] 

Use all currently available rating data at current time t: 𝑅# = 𝑅#+,. 
For each user u who is due for an item consumption at time t (i.e., where USERNEXTCONSu = t):  

User u selects item x for consumption from recommendations 𝐿%#+, in accordance to her consumption strategy (USERCONSSTRATEGYu). 
User u consumes item x and calculates her preference rating 𝑟 = USERFEEDBACKu(x).  
Determine whether rating r would be submitted as feedback to the recommender system based on USERFEEDBACKLIKELIHOODu(x);  
    if so, update known rating data to include the new rating, i.e., 𝑅%.# = 𝑟. 

 Update next consumption time for user u, i.e., USERNEXTCONSu = USERNEXTCONSu + USERCONSPERIODu.  
 [Step 2: System Update] 

Update the item population based on the item distributional parameters (item arrivals, departures, etc.). 
Update the user population based on the user distributional parameters (user arrivals, departures, etc.). 
Recalculate item predictions 𝑃# = PREDICTRATINGS(𝑅#) and prepare recommendations for each user u, i.e., 𝐿%#  = GENERATERECS(𝑃%&# ). 
Evaluate recommendation performance (EVALUATE). 

Figure 1. Overview of Iterative Simulation Procedure. 
 

The rest of Section 3 discusses the instantiation of this general simulation framework for our specific 

research study on exploring the impact of consumption strategies on recommender systems performance. 

3.2 Modeling Items 

A typical way to model the item content is using a K-dimensional array that represents different features of the 

item.  Using movies as an example, the item features could represent various explicit movie attributes 

representing, say, the presence (or absence) of different genres, directors, and actors of the movie.  For instance, 

if the first dimension of the array represents the comedy genre, the high value on this dimension would mean 

that the movie has high comedy content. 

In our model, for generalizability and abstraction convenience, we choose to represent item content using 

an array of continuous latent factors (as opposed to observable explicit features).  That is, item i is associated 

with item-feature vector ITEMCONTENTi = (𝑞,,… , 𝑞2).  Latent factors are not directly observed but are rather 

inferred through a mathematical model from variables that are directly measured, i.e., they are abstract 

representation of the actual content of the item.  To achieve a realistic distribution of item content across the 

entire item population, the latent item content vectors are initialized by the results of a matrix factorization 

model based on real-world rating datasets.  We will elaborate on our approach in Section 3.5. 

We note that using latent factors is not the only possible item representation, but it is our implementation 
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choice for the following reasons.  In particular, using latent factors can reduce the dimensionality of data.  A 

large number of observable variables can be aggregated by a mathematical model into a much smaller set of 

latent variables to represent the underlying concepts.  Also, latent factors are often used in statistical modeling 

techniques as a mathematical convenience where they often are not of primary interest, i.e., where “measuring” 

them is not a goal.  In our simulation framework, item content is used to compute the relationships among 

entities (such as content similarity between items, or estimated user preference on items).  Our framework is 

intended to be generalizable to different types of products (e.g., movies, songs, books), and therefore using 

latent factors allows us to abstract away from the explicit, highly application-specific attributes and to be able 

to apply the same simulation framework to different types of items.   

Finally, for this study we use a fixed set of items (as well as a fixed set of users) that are available for the 

entire simulation period, i.e., there are no item (and user) arrivals or departures during the intermediate times.  

The main reason is to focus on isolating the effect of users’ consumption strategies (as expressed by different 

levels of reliance on recommender systems) on the longitudinal performance dynamics and, hence, to avoid 

complex additional potential interactions, complications to experimental design (e.g., the need to provide 

proper allowances for these “cold start” items and users in recommendation and performance evaluation 

procedures), and potential confounding effects toward our research question.   

3.3 Modeling Users 

Users are modeled as autonomous agents in our simulation framework.  We model the behaviors of individual 

agents and observe the collective effect of agent actions.  Below we discuss the specific instantiations of the 

key aspects of user agent model used in our study: user preferences, user feedback, user consumption 

frequency, and user consumption strategy.1   

User preferences.  Similar to item’s content, each user’s preference profile is modeled as an array of K 

values that represent user’s preferences for the corresponding K item features.  Using the earlier example, if 

the first dimension of the array represents the comedy genre, the high value on this dimension would mean that 

the user has high preference for comedy content.  The intuition behind using the same exact set of dimensions 

to model both users and items is that the association (or alignment) between user preferences and item features 

                                                   
1  As discussed earlier, in this study we used a fixed set of users that are available for the entire simulation period, i.e., the aspects of 
user arrival and user lifespan were not considered. 
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can then represent how a user rates an item.  For example, a user with high preference for comedy is likely to 

give a high rating to a movie that has lots of comedic content.  Similarly to item content, we use latent factors 

to represent user preferences (as opposed to observable explicit features).  That is, user u’s preferences for 

items are modeled as a vector of latent factors USERPREFSu = (𝑝,,… , 𝑝2) .  Finally, to achieve realistic 

distributions of user preferences across the entire user population, the latent user preference vectors are 

initialized by the results of a matrix factorization model based on real-world rating datasets.  We will elaborate 

on our approach in Section 3.5. 

User feedback.  Immediately after item consumption, user may submit his/her feedback in the form of 

rating for the newly consumed item back to the system.  A key benefit of user preferences and item content 

being represented by identically modelled latent vectors is that it allows us to calculate any user’s actual 

(“ground truth”) preference rating for each item by computing the association simply as the dot product of the 

two vectors.  That is, the latent vectors of user u (i.e., USERPREFSu) and item i (i.e., ITEMCONTENTi) together 

determine how any user u rates any item i, i.e., 𝑅%& = USERPREFS% ∙ ITEMCONTENT&.  However, prior literature has 

found that real users are often inconsistent in their ratings (e.g., Amatriain et al. 2009; Cosley et al. 2003).  

When users were asked to re-rate previously rated items, despite a strong correlation, their new ratings often 

did not match earlier ratings (Cosley et al. 2003).  Prior research shows that users tend to give ratings from a 

Gaussian probability distribution (Pennock et al. 2000) and that ratings with a drift of ±1 account for more than 

90% of the rate-rerate inconsistencies (Amatriain et al. 2009).  Hence, our simulation framework introduces a 

noise factor to model such rating inconsistency of real world users.  Specifically, users’ submitted ratings are 

perturbed with random noise so that user ratings are normally distributed around their true preferences with 

standard deviation 1.0 (on the rating scale 1 to 5).  Also, the default setting of our specific simulation in this 

study is that users rate every item that they consume (i.e., USERFEEDBACKLIKELIHOOD%	 = 1.0).  Adding some 

randomness to how often a user rates consumed items only “stretches” the longitudinal patterns in time; this 

does not affect the key qualitative characteristics in performance patterns of interest.   

User consumption frequency.  Consumption timespan is the average length of time between a user’s two 

consecutive consumptions and is used to model how often a user consumes items.  For example, a value of 2 

for a user’s consumption timespan means that, on average, this user consumes one item every two time periods.  

The timespan between two consecutive consumptions for user u is drawn from a normal distribution with an 
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average of USERCONSPERIOD% and a standard deviation of σu.  Thus, the time for the next scheduled consumption 

	USERNEXTCONS% is updated as:   

USERNEXTCONS% = USERNEXTCONS% + D, where D ~ N(USERCONSPERIOD%, σu)  

In our experiments, we calibrate the average timespan for each user based on the real world data and 

normalize the average timespans to the interval [1, 5].  In other words, the most active users will consume one 

item in each simulation period, while the least active users will consume one item every five simulation periods, 

on average.  The standard deviation is set to be one period. 

User consumption strategy.  With respect to consumption strategy, we focus on user’s reliance on 

recommendation lists when he/she selects an item to consume.  In our simulation, we assume that the users are 

able to scroll through all items (ranked by predicted relevance, from highest to lowest) and select any item.  

This setting is commonly seen in real-world application settings, such as the “Sort by Relevance” setting on 

Amazon and “Sorted just for you” on Nordstrom’s website.   

In the simulation framework, the probability of an item being selected reduces significantly as the item 

rank gets lower.  We use a probabilistic model to simulate the diminishing consumption likelihood based on 

the item’s rank in the recommendation list.  Following prior literature that suggests an exponential pattern of 

the influence of rank (e.g., Carare 2012; Ursu 2018), we model the consumption probabilities using an 

exponential decay function.  The decay rate can be parameterized to simulate how fast the likelihood of an 

item being consumed decreases as the item’s rank gets lower in the recommendation list.  For an item ranked 

at i-th position, its probability of consumption is calculated as:  

𝑝𝑟𝑜𝑏& = 𝑘 ∙ 𝛼+&  

Because the cumulative consumption probability of all items should be 1, the parameter k can be expressed 

as a function of the exponential decay rate a:  

lim
&→B

∑ 𝑝𝑟𝑜𝑏&& = lim
&→B

𝑝) ∙
,+	DEF

D+,
= 𝑘 ∙ ,

D+,
= 1	      Þ       𝑘 = 𝛼 − 1 

To simulate diminishing consumption likelihood, the value of exponential decay parameter 𝛼 should be 

equal to or greater than 1.  When 𝛼 = 1, this represents a special case where all items have equal probability of 

being chosen.  In other words, this is equivalent to the situation where a user completely ignores the 

recommendations and selects items randomly.  When 𝛼 > 1, larger values of 𝛼 represent heavier reliance on 

the recommendations to make item choices, i.e., a user is more likely to choose items that are ranked high in 
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the recommendation list.  For example, when 𝛼 = 2, it means that the first item has 50% probability to be 

chosen, the second item 25%, the third item 12.5%, the forth item 6.25%, and all the other items share the 

remaining 6.25% probability of being consumed.   

In the simulation experiments for our specific study, we model the various aspects of user behavior 

independently.  However, we would like to emphasize that the general simulation framework allows 

investigators to model relationships among the different aspects with any required degree of complexity, in 

accordance to a specific research question.  For example, a user’s consumption strategy and consumption 

frequency could be modeled as functions of the quality of system’s prior recommendations (e.g., how accurate 

and diverse the recommendations were in recent user-system interactions).  Also, a user’s likelihood of 

submitting her feedback for a newly consumed item may well depend on how much she enjoyed the item.  

At the user population level, we vary the distribution of consumption strategy by changing the mixture 

ratio of different types of users to explore the impact of user population heterogeneity.   Within a population, 

it is possible for users to adopt different consumption strategies, e.g., users can rely on the recommender 

systems to different degrees.  We use percentage distribution to denote the size of different types of users 

within the population.  Section 5 provides more details on heterogeneous (in terms of consumption strategy) 

user populations that we explored in our study. 

3.4 Modeling Recommender System 

As discussed in Section 3.1, we model the recommender engine as having three key functionalities: rating 

prediction, recommendation generation, and performance measurement.  For recommendation generation, we 

model that the system provides item suggestions as a list, which is ranked based on some notion on item 

relevance (or quality), that users can browse through.  The item relevance can be determined in various ways, 

both personalized and non-personalized.  In our simulation experiments, we use personalized ranking based 

on system-predicted ratings for each user as well as non-personalized ranking based on item popularity.   

Details of rating prediction and performance measurement are described in the next two subsections.   

3.4.1 Rating Prediction  

The simulation framework can use any recommendation technique or combination of techniques to estimate 

users’ preference ratings for items.  As part of this study, we explored multiple recommendation algorithms, 

including several variations of the item-based collaborative filtering (CF), user-based CF, and matrix 
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factorization approaches.  We found the results to be highly consistent across different algorithms.  Due to 

space constraints, this paper focuses on the item-based collaborative filtering (Item-CF) algorithm that is 

widely-adopted in real world applications (e.g., Sarwar et al. 2001; Smith and Linden 2017).   

In the item-based CF approach, the prediction of unknown rating for a target user-item pair is computed 

as the weighted sum of ratings received by the target item’s neighbors (i.e., other items that have similar rating 

patterns across users) from the target user.  More specifically, the predicted rating for user u on item i is an 

aggregate of user u’s ratings on previously-consumed items that are similar to item i.  The similarity between 

two items is used as a weight to aggregate ratings.  The more similar item j and target item i are, the more 

weight will be carried by the rating provided on item j by user u in the weighted sum when computing the 

prediction for target item i.  Thus, the predicted rating 𝑅%&∗  is computed as:   

𝑅%&∗ = 	𝑏%& +
∑ 𝑠𝑖𝑚&L × N𝑅%L − 𝑏%LOL∈Q(%,&)

∑ R𝑠𝑖𝑚&LRL∈Q(%,&)
 

where N(u,i) is the set of nearest neighbors (items) to target item i that were previously rated by user u.  The 

computation of recommendations involves a normalization step to remove “global effects” from rating data  

(Bell and Koren 2007).  Specifically, a baseline estimate for each known rating, denoted as bui, is computed as 

bui = µ + bu + bi, where µ is the global mean of ratings in the dataset, bu (bi) is the average rating deviation of 

user u (item i) from global mean µ.  We compute similarity between items using Pearson correlation coefficient.  

The similarity is further adjusted based on the number of common ratings using a shrinkage parameter as 

suggested in (Bell and Koren 2007) and based on the inverse item popularity as suggested in (Breese et al. 

1998).  As part of the parameter tuning and sensitivity analysis, we varied the minimum number of required 

ratings for similarity calculation from 3 to 20, and the number of nearest neighbors used for rating prediction 

from 20 to 100.  The best results are robust across a range of parameter values.  For our simulation, we require 

that each pair of items must be co-rated by at least three users to compute a similarity score.  Each predicted 

rating 𝑅%&∗  is calculated based on user u’s ratings on a maximum of 50 most similar items to item i.   

3.4.2 Performance Measurement 

The performance of recommender systems can be evaluated along many different dimensions.  In this work, 

we focus on three important aspects of recommender systems performance: prediction performance, discovery 

performance, and outcome performance.   
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Prediction Performance (i.e., measured by predictive accuracy).  Prediction performance measures the 

ability of a recommender system to correctly estimate users’ preferences for items (i.e., how well a system can 

identify relevant vs. irrelevant items for each user).  We operationalize prediction performance using the 

prediction accuracy metric.  Prediction accuracy measures how close a recommender system’s predicted rating 

of items for a user differs from the user’s true preference.  One widely used accuracy metric is root mean 

squared error (RMSE):   

𝑅𝑀𝑆𝐸 = VW (𝑅%,&∗ − 𝑅%,&)X
(%,&)∈Y

/|𝑇| 

Here R*
u,i represents the system-predicted rating for user u and item i, Ru,i is the actual rating, and T is the 

set of user-item pairs (u,i) used for performance evaluation.  In our simulation, we use arguably the most 

comprehensive set of evaluation ratings, which includes all the available unconsumed elements in the rating 

space, since we know the ground truth for every possible consumption in our simulation.2     

Discovery Performance (i.e., measured by consumption diversity).  Discovery performance measures a 

system’s capability to provide users with personalized (perhaps even idiosyncratic) suggestions.  In other 

words, how well the system can narrow down the choice set for the user from the items that are predicted to 

be relevant to a much smaller list of “good”, individualized recommendations that are tailored to match user’s 

preferences.  We measure discovery performance using the aggregated consumption diversity of items.  

Providing the same item (or the same small choice set) to a diverse, realistic population of users can also be 

viewed as representing a low level of personalization.  Therefore, consumption diversity may serve as a proxy 

of the system’s capability in discovering relevant and personalized items.   

 
Figure 2. Lorenz Curve; adapted from Adomavicius and Zhang (2012) 

                                                   
2 In terms of robustness checks, we have evaluated the accuracy performance based on several other sets of rating data: (i) a random 
hold-out sample of ratings extracted from real world rating data and (ii) the subset of highly-predicted ratings of the unknown rating 
space.  We found the accuracy performance evaluated on these rating samples still demonstrates the same overall longitudinal patterns, 
consistently with the accuracy on the overall set of unknown ratings.  
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We use the distributional inequality metric Gini coefficient (Gini 1921) to measure aggregate diversity of 

item consumption distribution.  Gini is computed as the ratio of the area between the line of equality and the 

Lorenz curve (shown in Figure 2) that represents cumulative frequency of items arranged in the ascending 

order based on popularity (i.e., area A), over the total area under the line of equality (i.e., area A + B).  For 

discrete distributions Gini is defined as:  

𝐺𝑖𝑛𝑖 =
𝐴

𝐴 + 𝐵 = 1 −
𝐵

𝐴 + 𝐵 = 1 − 2W b
𝑛 + 1 − 𝑖
𝑛 + 1

c × (
𝑥&

𝑡𝑜𝑡𝑎𝑙)
h

&i,
 

where xi is the popularity of item i (i.e., the number of consumptions of item i), n is the total number of items 

available in the system, and total is the total number of item consumptions.  Thus, a value of 0 represents total 

equality (all items are equally popular among users), and a value of 1 represents maximal inequality (e.g., all 

users consuming the same exact bestselling item).   

Outcome Performance (i.e., measured by the consumed item relevance).  Outcome performance focuses 

on the consumption outcomes resulting from the user-recommender interactions and measures what the user 

actually ends up consuming as a result of his/her interactions with the system.  In this paper, we use 

consumption relevance metric, the basic idea of which is that an item that is highly rated by the user (after 

consumption) is considered to be more relevant than an item that is lowly rated.  Formally, we measure 

relevance as the average of user-submitted ratings on newly consumed items:  

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 = 	mW 𝑅%,&
(%,&)∈n

o |𝐶|q  

where Ru,i represents the actual rating given by user u on items i, and C is the set of user-item pairs (u,i) used 

for relevance evaluation, i.e., the set of all new item consumptions by users.  The relevance metric is designed 

to provide a complementary, user-centric view of recommender systems’ performance that captures quality of 

users’ actual consumption experiences/outcomes rather than quality of displayed recommendations. 

Overall, prediction performance, discovery performance, and outcome performance represent three 

different key dimensions of recommender systems.  The first two, i.e., prediction and discovery, are about the 

capabilities of the system, i.e., measuring the system’s capability to provide good recommendations.  The last 

one, outcome performance, is about users’ consumption experience, i.e., serving as a proxy of the user’s 

satisfaction, experience, etc.  In the remainder of the paper, for simplicity we refer to these three performance 

measurements using their corresponding quantitative metrics.  That is, we refer to prediction performance as 
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predictive accuracy, discovery performance as consumption diversity, and outcome performance as consumed 

item relevance.  Although the three metrics used in the study represent different performance aspects, they are 

not completely orthogonal to each other.  For example, prior studies have shown that improvements in diversity 

may come at a cost of accuracy reduction (e.g., Adomavicius and Kwon 2012). 

3.5 Additional Comments on Simulation Initialization and Validation 

The proper initialization of the three major simulation framework components – item population, user 

population, and recommendation engine – represents a crucial component of the simulation procedure 

(indicated by Step 0 in Figure 1).  As part of the initialization, we need to seed the simulation with a set of 

items with realistic item features, a set of users with realistic user preferences, and some initial ratings 

representing realistic user-item consumptions prior to the starting time t = 0.  In our experiments, we initialize 

the item and user populations simultaneously based on real-word data (taken from a real-life recommendation 

application).  Given an actual dataset with users U, items I, and containing a set of known ratings R, we first 

initialize the simulation system to contain the same amount of users and items.  To initialize the item content 

and user preference vectors, we apply a matrix factorization algorithm induced by Singular Value 

Decomposition (SVD) (e.g., Funk 2006; Koren et al. 2009) on real-world ratings data R to derive the latent 

features that best represent users’ preferences and items’ features.  Specifically, the SVD model decomposes 

the rating matrix containing R into two low-rank sub-matrices so that each user u and each item i is represented 

by a vector of latent factors learned from known rating data, i.e., USERPREFS% and ITEMCONTENT&.  These vectors 

are then used throughout the entire simulation and, as discussed earlier, allow us to calculate a realistic 

preference rating of any user u for any item i (upon item consumption) as a simple dot product: 𝑅%& =

USERPREFS% ∙ ITEMCONTENT&	.  More details about the matrix factorization procedure are in Appendix D.   

Next, we seed the simulation (for the starting time t = 0) with |R| pre-existing ratings, each of which is 

readily computed based on the initialized user latent preferences and item latent features, as mentioned above.  

To ensure that the distribution of these initial ratings (i.e., which user-item pairs within U×I contain known 

ratings at t = 0) is also realistic, we again use the real-world rating dataset; specifically, each user’s pre-existing 

item consumptions must correspond to the known ratings in the original real world dataset.  In summary, we 

take advantage of a real-world dataset to obtain an initial simulation environment (users, items, and initial 

ratings) that is representative of realistic situations.   
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We make several additional assumptions for this specific study.  First, each user consumes and rates an 

item at most once, i.e., no repeated consumption or rating for the same item.  Second, all items in the system 

have identical cost, and therefore there are no monetary factors involved when users select items or when the 

system makes recommendations.  Thus, system’s recommendations and user’s selection of an item are based 

essentially on item’s fit with user’s preferences.  Third, items do not have inventory restrictions and can be 

simultaneously consumed by multiple users.  Additionally, there is one central recommender system that serves 

all users, i.e., the recommendations to each user are generated by the same system.  These assumptions apply 

to many real word settings, especially in marketplaces of digital goods.  Example domains include movies, 

songs, news, e-books, etc.  However, to model the application domains where some of these assumptions are 

violated, the simulation framework can be configured and extended to incorporate additional factors, such as 

item price heterogeneity, repeated consumptions, and inventory constraints. 

Our simulation is validated and verified in a number of ways.  First, the simulation is seeded by real-world 

data that represents actual user behaviors and item consumption distributions.  This ensures that the model is 

a reasonable representation of the real-world user and item populations.  Second, the latent factors used to 

model users and items are extracted from real preference data using one of the best-performing matrix 

factorization algorithms.  This assures that the modeled rating process (i.e., deciding what actual rating the 

simulated user should give to an item upon consumption) is representative of the realistic user’s preference 

formation.  Third, our implementations of the recommendation algorithms used in the simulation were 

validated by comparing their outputs with the outputs of the well-known LensKit recommender package 

(http://lenskit.org/) on the same set of input datasets and observing highly consistent performance.  Lastly, we 

employed a variety of testing techniques to ensure that the implementation is correct and that it matches the 

specifications of our conceptual model; also, the reasonableness and robustness of the outputs was examined 

under a variety of parameter settings. 

4 Main Simulation Results: The Performance Paradox  

Our primary objective of this study is to understand how the performance of recommender systems evolves 

with user population exhibiting different degrees of reliance on recommendations.  The main set of experiments 

focuses on exploring homogenous user populations using personalization-based recommender systems 

(RecSys), where all the users receive the same type of recommendations and rely on these recommendations 
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to the same degree for making their item selections.  Following the main results, Section 5 provides additional 

explorations with heterogeneous user populations.   

4.1 Application Settings 

We performed simulation experiments on multiple user and item populations with homogeneous consumption 

behavior in order to understand the baseline effects of various pure consumption strategies.  Specifically, we 

simulated two different application settings by seeding our simulation testbed with publicly available datasets, 

which come from different application domains and have different data characteristics.  These datasets include: 

a subset of the Netflix 100M dataset (Bennett and Lanning 2007) from which we randomly sampled 3000 

movies and extracted a random sample of 3000 users who rated at least one of these movies; and a subset of 

Yahoo! music rating data (from http://webscope.sandbox.yahoo.com/), from which we randomly sampled 

4000 songs and extracted a random sample of 6000 users who rated at least one of these songs.  All ratings in 

the Netflix and Yahoo! Music datasets are integer values between 1 and 5, where 1 represents the least liked 

items and 5 represent the most liked items.  The datasets and their main characteristics are summarized in 

Table 2.  Using these datasets, we generated two sets of user and item populations, and the number of ratings 

represents the initial state (i.e., t = 0) of our simulations.   

Table 2. Summary of experimental application settings 
Dataset  Description Users Items Ratings Density 
Sample of Netflix Movie ratings distributed by Netflix. 3000 3000 344,021 3.82% 
Sample of Yahoo! Music Song ratings released by Yahoo! music services. 6000 4000 230,773 0.96% 

4.2 Key Longitudinal Performance Patterns: The Paradox of Recommender Systems  

We vary the exponential decay rate parameter from 1 to 2 to simulate the degree of reliance.  As mentioned 

earlier, at one extreme, exponential decay of 1 represents the “Random” consumption strategy, in which the 

user uniformly at random chooses among the items that he/she has not consumed before (i.e., completely 

ignores personalized recommendations).  In contrast, exponential decay of 2 represents a consumption strategy 

that focuses very heavily just on the very top items recommended by the system. 

Each user population is endowed with a homogeneous consumption strategy (i.e., every user in the 

population adopts the same exponential decay parameter), and we compared the impact of consumption 

strategy on several important recommendation outcomes using the popular item-based collaborative filtering 

approach.  We repeat each simulation five times and report the average results in the paper.  Across multiple 
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runs, the seeding of user/item populations and rating distribution is the same, so the variance comes from the 

randomness in the users’ consumption choices, the noise in user’s submitted ratings, and timespan between 

consumptions.  We find the longitudinal patterns to be highly robust across runs (variance across five runs is 

very small).  Figure 3 illustrates the temporal changes in: aggregate item consumption diversity (measured by 

Gini coefficient), recommender system’s predictive accuracy (measured by RMSE), and relevance of 

consumed items (measured by average user-specified rating of consumed items) for homogeneous user 

populations with different consumption strategies, generated from two real-world application settings.   

Netflix Yahoo! Music 
(a) Accuracy 

  
(b) Diversity 

  
(c) Relevance 

  
 

Figure 3. Impact of user consumption strategies on key recommendation outcomes across 100 time periods 

The experimental results suggest that the degree of users’ reliance on recommendations significantly 

affects the longitudinal dynamics of a recommender system.  Naturally, the precise magnitude of various 
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performance metrics will vary depending on the specific application domain and/or recommendation 

algorithm; however, qualitatively, dynamics of recommender systems demonstrate high consistency across 

application settings.  With respect to system’s predictive accuracy, as more ratings get submitted to the system 

over time, not surprisingly the RMSE generally keeps decreasing, i.e., accuracy is improved.  The degree of 

the accuracy improvement is, however, significantly affected by the consumption behavior of the user 

population.  Somewhat paradoxically, recommender systems achieve highest accuracy over time when users 

completely ignore the recommender system and choose to consume items at random.  In contrast, as the 

reliance on personalized recommendations increases (as reflected by higher exponential decay parameters), 

the accuracy improvement over time becomes substantially smaller. 

With respect to aggregate consumption diversity, we observe largely consistent patterns in the changes of 

consumption diversity values across different application settings.  The more heavily users rely on 

recommendations, the more concentrated (i.e., less diverse, less personalized) the aggregate consumption of 

the entire user population becomes over time, as shown by larger Gini coefficient.  Specifically, Gini decreases 

(i.e., consumption diversity increases) when users either ignore recommendations (i.e., when exponential decay 

is 1) or use recommendations only to a very small extent, e.g., to avoid really “bad” items (e.g., when 

exponential decay is 1.002).  In contrast, when users heavily rely on system’s recommendations to make item 

selections (e.g., when exponential decay is larger than 1.01), Gini remains relatively unchanged or even 

increases, meaning that many users end up consuming the same items.   

In terms of the recommendation relevance, not relying on personalized recommendations leads to the 

consumption of lower-relevance items on average, while higher reliance on the recommendations leads to more 

relevant items.  Such results are expected, and serve as evidence that the recommendation algorithms are 

effective in finding relevant items for users.  Interestingly, the relevance of many consumption strategies 

remains relatively unchanged longitudinally.  The exception is the Yahoo! Music setting in which we observe 

increasing recommendation relevance for the consumption strategies with more reliance on the recommender 

system.  The reason is that, unlike Netflix rating data, Yahoo! Music data is much sparser during the initial 

simulation periods.  For neighborhood-based recommendation algorithms, such sparse data is typically not 

sufficient for accurate predictions, as evidenced by a much higher error rate for Yahoo! Music data at time t = 

0, as compared to Netflix data (RMSE 1.09 vs. 0.92).  In addition, sparse rating data might not allow to predict 
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all unknown ratings, i.e., some highly relevant items would remain unidentified.  In other words, the coverage 

of neighborhood-based CF is known to suffer in sparse settings (e.g., Ge et al. 2010).  With ratings becoming 

denser over time, both coverage and accuracy improve, leading to more relevant recommendations.   

Combining observations based on all three metrics (i.e., diversity, accuracy, and relevance), we observe 

the performance paradox in the longitudinal dynamics of recommender systems.  While random selection 

strategy leads to highest system accuracy and item consumption diversity, this improvement in performance is 

coupled with lowest relevance of consumed items.  Also, as importantly, while system-generated 

recommendations can effectively help users to find relevant items, the reliance on recommendations will 

typically result in lower recommendation accuracy improvements and will actually reduce users’ aggregate 

consumption diversity (i.e., a potential indicator of the degree of personalization that the system provides, as 

discussed earlier) in the long run – both are important issues that may affect users’ willingness to continue 

using recommender systems.  In summary, the observed performance paradox shows that, although higher (as 

compared to lower) reliance on recommendations leads to higher consumed item relevance over time, the 

trend is opposite for the other performance metrics; that is, higher (as compared to lower) reliance on 

recommendations leads to lower future prediction and discovery performance of a recommender system.  

One reason for the performance paradox lies in the changes of rating data distribution over time.  While 

random consumption provides additional rating data that is more uniformly representative of the underlying 

data space, the system-based consumption leads to more skewed rating values and consumption patterns.  The 

results are consistent with prior observations that recommendations can push users toward the same items, and 

thus make users more similar in their consumptions, leading to a “poor get poorer” and “rich get richer” 

phenomenon (Fleder and Hosanagar 2009).  Such a biased data distribution, in turn, impairs the system’s 

capability in learning users’ preferences, because it is usually advantageous to learn predictive models from a 

more balanced, less skewed datasets (e.g., Adomavicius and Zhang 2012).  The next subsection provides a 

more in-depth discussion and analysis of the key longitudinal patterns. 

4.3 Analysis of the Longitudinal Performance through Process Metrics 

To obtain a more in-depth understanding of the potential underlying mechanisms that drive the different 

longitudinal patterns in recommender systems performance under different consumption strategies, we analyze 

the simulation process and all the intermediate results.  Specifically, we examine and contrast the changes in 



27 

various data characteristics and distribution metrics over time for the two most distinct consumption strategies 

explored in Section 4.2, i.e., Exponential(1) and Exponential(2).  As discussed earlier, Exponential(1) describes 

the scenario where users completely ignore the recommender system and consume items at random, whereas 

under the Exponential(2) scenario users heavily rely on recommender systems to make consumption choices.  

For the convenience of reference, we will refer to Exponential(1) as the “Random” condition and to 

Exponential(2) as the “RecSys” condition.   

Overall, we observe that the two distinct consumption strategies—Random and RecSys—substantially 

change the fundamental structure and distribution of the underlying rating data over time.  Figure 4 illustrates 

the distribution of ratings and rating values at the initial stage of simulation and the distribution of newly 

consumed ratings added to the rating data over the 100 simulation periods in the Netflix application setting.3  

Ratings are plotted as a rating matrix with each column representing an item and each row representing a user.  

Dark dots represent the positions of known ratings in the matrix.  The rows and columns of the rating matrices 

are sorted according to the rating frequency of users and items, i.e., the first column represents the most rated 

item and the first row represents the user who provided the most ratings, and so on.  Figure 4a illustrates the 

initial rating matrix before the simulation process, i.e., the rating data at t = 0.  As would be expected, the initial 

rating matrix represents a snapshot of a realistic, long-tail-type setting, where some users have consumed a lot 

and many users consumed a much smaller number of items, and where some items (e.g., bestsellers) have been 

consumed quite heavily but most have been consumed much less.  The bottom part of Figure 4a is the histogram 

of rating values in the initial matrix (i.e., the number of ratings equal to 1, 2, 3, 4, and 5).  The initial rating 

data is slightly skewed towards high rating values, with a rating mean of 3.54, as is common with real-world 

rating datasets.   

Starting from the initial rating data, the two strategies—Random and RecSys—result in highly different 

consumption distributions illustrated in Figures 4b and 4c respectively.  More specifically, these figures depict 

the structural distribution (as a scatterplot) and value distribution (as a histogram) of the newly added ratings 

for Random or RecSys consumptions over the entire span of 100 simulation periods.  Note that, because users 

                                                   
3 Due to space limitations, we present the results from the Netflix application setting in this paper to discuss the underlying mechanisms 
of the performance paradox of recommender systems.  The results from the Yahoo! Music settings are provided in Appendix A of the 
Online Supplement and are consistent with those from the Netflix setting.   
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consume at the same pace in both Random and RecSys conditions, the two incremental rating matrices in 

Figures 4b and 4c contain the same amount of total ratings (i.e., the same number of dark dots).  The 

distributions (both structural and rating value) of these newly added ratings, however, are notably different for 

the two consumption strategies.  Specifically, we see that the RecSys strategy results in a concentrated 

consumption of a relatively small set of items, as shown by the dense ratings distributed to a small fraction of 

items in Figure 4c.  In contrast, the Random strategy leads to a more balanced dataset in which ratings are 

evenly distributed to all the items, as shown in Figure 4b.  Over the entire simulation (100 periods), the RecSys-

based consumptions spread across only 770 unique items while the Random-based consumptions spread across 

the entire set of 3000 items.  In addition, the rating value distributions are quite different between Random and 

RecSys-based consumptions.  Ratings resulting from the Random strategy follow a normal distribution with a 

mean of 3.46, while the ratings based on RecSys strategy are highly skewed towards high values with a mean 

of 4.17.   

(a) Initial ratings (b) Added rating: random consumption (c) Added ratings: RecSys consumption 

 

 
Figure 4. Rating distribution scatterplots and rating value histograms of: (a) the initial ratings at time 0, (b) the 
newly added ratings based on Random consumption strategy over 100 time periods, and (c) the newly added 

ratings based on RecSys consumption strategy over 100 time periods; Netflix setting.  

Overall, during the entire simulation period, both Random and RecSys consumption strategies provide 

the same number of additional ratings that recommendation algorithms can use to further improve their 

performance; as was shown in Figure 3a, the recommender system’s accuracy has increased for both Random 

and RecSys populations.  However, as discussed above, while the Random-based consumptions provide 

additional rating data that is more representative of the underlying data space in terms of structural user and 
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item distribution (e.g., offers new data on the entire pool of items and users) as well as in terms of rating value 

distribution, the RecSys-based consumptions add new data only for a small fraction of items as well as with 

highly skewed rating values.  As a result, RecSys consumptions offer very little benefit to help improve 

predictions on these un-recommended items, and, correspondingly, Figure 3a reflects consistently better 

predictive accuracy performance of Random (over RecSys). 

In addition to general understanding of rating data dynamics in Random and RecSys conditions, we have 

also calculated a variety of intermediate process metrics (e.g., the rating overlap between pairs of items, the 

average number of neighbors of each item, the distribution of ratings for items) for the purpose of exploring 

the potential mechanisms through which these characteristics may affect outcomes of recommendation 

algorithms (i.e., item-based collaborative filtering in our case).  Prior studies have suggested that dataset 

characteristics significantly impact the accuracy of recommendation algorithms.  For example, prior work has 

examined how connections between users and items (e.g., either purchased or not purchased) affects the 

accuracy of collaborative filtering recommendation algorithms (Huang and Zeng 2011).  Using a bipartite 

graphical representation of user-item interactions, the authors demonstrated that the topological characteristics 

of binary datasets could explain why certain CF algorithms work for the given datasets.  Their results show 

that CF algorithms provide higher accuracy on datasets with larger deviations of clustering coefficients.  In 

another study, Adomavicius and Zhang (2012) show that the accuracy performance of CF algorithms is largely 

driven by the characteristics of rating data.  A small number of rating characteristics, including density, rating 

value distribution, and the frequency distribution of user and item ratings, could explain majority of the 

variance in predictive accuracy of CF algorithms.   

Following these prior studies, we examine a variety of rating dataset characteristics at each simulation 

period.  For example, Figure 5a shows that the Random strategy results in consumptions of substantially more 

unique items than the RecSys strategy.  Among the average of 1031 total consumptions in each simulation 

period, only about 200 unique items are consumed in the RecSys condition, while about 900 unique items are 

consumed in the Random condition.  That is, reliance on recommender systems for item selection leads to an 

increasingly more concentrated consumption on a small number of items, which in turn leads to more 

concentrated (i.e., less diverse) data for algorithms to train on.  This is highly consistent not only with our 

observed trends in consumption diversity (Figure 3a) and underlying rating data (Figure 4c), but also the 
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observations in prior literature about the concentration effects (or the “rich get richer” effects) of recommender 

systems that have been reported in research literature (e.g., Adomavicius and Kwon 2012; Fleder and 

Hosanagar 2009), and we confirm this with our simulations as well, as discussed below.   

(a) Number of Unique Items Consumed in Each Period (b) Rating Mean of Cumulative Rating Data 

  
 

Figure 5. Plots of (a) the number of unique items consumed by users in each simulation period and (b) the average 
rating value of the cumulative rating dataset in each simulation period; Netflix setting. 

Furthermore, when people rely on recommendation lists to make their item selections (as opposed to 

consuming items at random), they are more likely to consume good items that match well with their personal 

preferences, and thus their subsequent ratings on these newly consumed items are high.  Therefore, over time 

we see an increasing difference between rating means of consumed items in the Random vs. RecSys conditions 

in Figure 5b, which is also highly consistent with our observed trends in recommendation relevance (Figure 

3c) and the more granular distributional information about the submitted rating values for these two conditions 

reported in Figures 4b and 4c.   

Additionally, because the neighborhood-based collaborative filtering algorithms largely depend on the 

characteristics of neighborhoods to make predictions, we further examined the temporal trends of the item 

neighborhoods.  For any given item, the size of its neighborhood is defined as the number of other items that 

have an overlap of at least k ratings with this item (i.e., there are at least k users who rated both the focal item 

and the “neighbor” item).  As an informative indicator of temporal dynamics, we computed the average size 

of item neighborhood.  The value of k can be parameterized to adjust the requirements for neighbors: the higher 

the value of k, the more restrictive is to be neighbors.  We varied the value of k in our explorations and found 

the patterns to be highly robust.  Figure 6a illustrates the temporal changes in the neighborhood size for the 

overlap of k = 3, which is what we used in our simulations, in Random and RecSys conditions.  

Figure 6a shows that, unsurprisingly, over time (i.e., as more ratings get added to the data) the average 

neighborhood size in both Random and RecSys conditions increases.  However, this trend is much more 
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prominent in the Random condition as compared to RecSys.  The reason for this can be seen from Figure 6b, 

which displays the change of distributional inequality in rating overlaps (as measured by Gini coefficient) over 

time – i.e., the RecSys consumption (as compared to Random) leads to a substantially more skewed distribution 

of rating overlaps among item pairs.  In other words, because the RecSys strategy leads to concentrated 

consumptions on a small fraction of items, the rating overlaps among this small set of items increase 

significantly.  But many of these items, however, are already neighbors (i.e., they have already had an overlap 

of 3 or more ratings) and, therefore, additional consumptions of these items only increase the overlaps among 

existing neighbors, but offer little help towards expanding the size of the neighborhood.  In contrast, the 

Random strategy leads to an evenly distributed consumptions on all items and, as a result, we observe an 

increase in average rating overlap between pairs of items across the board.  Because of the increasing overlap 

among all items, the number of neighbors that share at least k ratings also increase steadily for all items.  

Therefore, we observe a steady increase of the average neighborhood size in the Random condition, as shown 

in Figure 6a.   

For neighborhood-based algorithms (such as item-based CF) that rely on the “nearest neighbors” for 

calculating predicted ratings, a larger neighborhood size enables the algorithms to make more accurate 

predictions.  This is due to the fact that, with more neighbors, a given item is more likely to have “better”, 

more informative neighbors, i.e., items that share more similar rating patterns.  This is demonstrated in Figure 

6c, which shows temporal changes of the average similarity score of the 10 nearest neighbor items used for 

each rating prediction.  As can be seen from the graph, the average similarity score increases significantly more 

in the Random condition as compared to RecSys, which shows that Random-based consumptions allow the 

item-based CF algorithm to use more similar items in the rating predictions.   

(a) Average Number of Items with ≥ 3 
Common Ratings 

(b) Gini Coefficient of the Distribution of 
Rating Overlaps 

(c) Average Similarity of 10 Nearest Neighbors 
to the Focal Item  

   
 

Figure 6. Plots of (a) average size of item neighborhoods, (b) Gini coefficient of distribution of item rating 
overlaps; and (c) average similarity of top 10 nearest neighbors to the focal item that are previously rated by the 

focal user in each simulation period; Netflix setting. 

1700

1900

2100

2300

2500

0 20 40 60 80 100

N
ei

gh
bo

rh
oo

d 
Si

ze

Time

0.6

0.65

0.7

0 20 40 60 80 100

G
in

i

Time

0.6

0.65

0.7

0 20 40 60 80 100

M
ea

n 
Si

m
ila

rit
y

Time



32 

In summary, combining the insights from the different analyses and explorations, our results show that 

the different consumption strategies—Random and RecSys—change the underlying structure of users’ self-

reported rating data (spatial and value distributions as well as key structural patterns, such as item overlaps and 

neighborhoods) over time in significantly different ways.  Since this data subsequently serves as input to the 

recommendation algorithm, it influences the system’s performance in the future iterations.  We would also like 

to reiterate that, in all the experiments described in Section 4, the users’ RecSys-based consumption strategy 

was modeled as selecting an item from a scroll-down list ranked based on personalized predicted preference 

rating, where the probability of item selection decreases exponentially with each list position.  There exist 

several other formats for presenting recommendations to users (e.g., based on a fixed length top-N list or on a 

binary classification given a rating threshold) and corresponding ways to model item selection.  We explored 

some of these formats as part of our study and found the longitudinal performance patterns to be highly 

consistent with the ones discussed in this section.  For completeness, we include these additional results in 

Appendix B of the Online Supplement.  

5 Exploring Heterogeneous User Populations and Consumption Patterns  

The simulation experiments described in Section 4 represent the first set of steps of investigating recommender 

system dynamics, where we focused on “canonical” user populations that use simple (i.e., non-hybrid) and 

homogeneous consumption patterns, i.e., every user had the same item consumption strategy.  The agent-based 

simulation approach allows to extend our investigation naturally to more complex, more sophisticated 

consumption strategies, including hybrid strategies representing a mixture of multiple canonical strategies.  For 

example, a hybrid approach would allow to model situations where a user might heavily rely on 

recommendations at some times but would largely ignore recommendations at other times.  In this section, we 

demonstrate several natural extensions of our analysis by exploring non-homogeneous user populations and 

more sophisticated consumption patterns.  The first set of experiments examines heterogeneous user 

populations with different degrees of reliance on the personalized recommendations, i.e., populations that 

make some consumptions via zero reliance and some via heavy reliance on the recommender system.  The 

second set of experiments examines the user population mix based on the source of recommendations.  We 

explore populations that make some consumptions based on personalized recommendations and some based 

on popularity-based recommendations.   
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5.1 User Populations with Heterogeneous Patterns of Reliance on Recommendations 

We start by exploring the heterogeneity in users’ reliance on personalized recommender systems.  It is a natural 

extension of the main experiments, and it introduces the mixtures of the two extreme reliance strategies 

explored in the main experiments.  We closely follow the design of main experiment described in Section 4, 

except for making two adjustments to the user population (resulting in two different simulations):   

• Sub-Population Mixture Model (or cross-user consumption heterogeneity): instead of all users using the 

same consumption strategy, we model an equally-split user population, where half of the population always 

chooses items at random, i.e., is modeled using Exponential(1), and the other half always exhibits heavy 

reliance on top recommended items, i.e., is modeled using Exponential(2).  

• Within-User Probabilistic Model (or within-user consumption heterogeneity): here all users have the same 

(but more sophisticated, i.e., hybrid) consumption strategy; i.e., for each consumption, each user chooses 

an item either at random (with 50% probability) or based on the recommender system (50%).  

In other words, these two more complex user populations represent two different approaches (i.e., cross-

user and within-user) to combine Random and RecSys canonical consumption strategies.  Results for the two 

more complex user populations based on the Netflix application setting are presented in Figure 7, labeled as 

“Sub-Population Mix” and “Within-User Probabilistic”, respectively.  For the ease of comparison, the graphs 

also include the temporal dynamics of the two homogeneous populations – based on Random (i.e., 

Exponential(1)) and RecSys (i.e., Exponential(2)) consumption strategies – from earlier experiments.   

An interesting observation is that, in terms of diversity and relevance, both non-homogeneous 

populations, while defined fairly differently, demonstrate similar performance (to each other) over time.  Their 

longitudinal diversity and relevance performance seems to be approximately in the middle between the 

performance of the two canonical populations (i.e., Random and RecSys), exactly as might be expected given 

the 50%-50% compositions of our non-homogeneous populations.  However, with respect to system accuracy, 

the within-user probabilistic population consistently exhibits higher accuracy (lower RMSE) than the cross-

user subpopulation mixture.  For both Netflix and Yahoo! Music settings, the within-user probabilistic 

populations achieve high longitudinal accuracy, similar to the one of the homogeneous Random population, 

while the performance of cross-user subpopulation mixture is substantially worse, although still outperforming 

the homogeneous RecSys population.   
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Netflix Yahoo! Music 
(a) Accuracy 

  
(b) Diversity 

  
(c) Relevance 

  

 
Figure 7. Longitudinal performance patterns in hybrid consumption settings 

In summary, exploring even a simple 50%-50% combination of Random and RecSys consumption 

strategies (either within-user or cross-user) provided novel and interesting insights, i.e., that both non-

homogeneous user populations were able to gain about half of the benefits in diversity and relevance, and the 

within-user probabilistic population was able to gain nearly all the benefits in accuracy, when compared to 

homogeneous populations.  These findings point to important implications for recommender systems design, 

some of which we discuss in Section 6. 

5.2 User Populations Relying on Heterogeneous Sources of Recommendations 

In addition to the recommendations generated by personalized recommender systems, real-world users also 

receive and consider information from many other sources during their decision making process.  One such 
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important source is the popularity of items (e.g., from various lists of bestsellers), which represents a key 

simple type of external information that is easily accessible and can be helpful to users.  Popular items tend to 

receive higher exposure and get selected and consumed more often than less popular items, yielding artificial 

amplification in the popularity of top-recommended items (e.g., Prawesh and Padmanabhan 2014).  Popularity-

based recommendations are commonly seen in real-world applications and, since the popularity rankings are 

not personalized to individual users, they might lead to different temporal dynamics of recommender systems 

performance.  Therefore, in this experiment, our objective is to compare the longitudinal dynamics of 

personalized vs. popularity-based systems.   

We examine and compare the longitudinal performance of two homogeneous populations with pure 

consumption strategies based either (i) on the recommendation algorithm (i.e., denoted as “RecSys”), where 

user heavily relies on the personalized recommendation list (ranked by the predicted rating value) to make item 

choices, or (ii) on popularity (i.e., denoted as “Popularity”), where user heavily relies on the popularity rank 

for consumption.  Item popularity is measured in a standard manner as the number of users who consumed this 

item up to this point in time, i.e., Popularityi = number of consumptions of item i.  In parallel with prior 

experiments, we set the exponential decay parameter to be 2 in both RecSys and Popularity conditions to 

simulate users’ reliance on these two systems. Thus, given a ranked item list, either personalized or popularity-

based, the users heavily rely on the ranked list to make their choices.  In addition, we examine how the hybrid 

consumption strategies based on both personalized and non-personalized (i.e., popularity-based) 

recommendations affect longitudinal recommender system’s dynamics.  Similarly to experiments in Section 

5.1, we again consider a heterogeneous user sub-population mixture (i.e., denoted as “Sub-Population Mix”), 

where half of the users always relies heavily on the popularity rank to choose items, while the other half always 

relies heavily on the personalized recommendations.  And we also consider the within-user probabilistic 

mixture (i.e., denoted as “Within-User Probabilistic”) such that, for each consumption, each user chooses an 

item either based on the items’ popularity rank (with 50% probability) or based on the recommender system 

(50%).  Again, the two more complex user populations represent two different ways (i.e., cross-user and within-

user) to combine Popularity and RecSys canonical consumption strategies.  Experimental results are presented 

in Figure 8.   

Comparing all four populations, pure popularity-based consumption leads to lowest diversity (highest 
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Gini) and relevance.  When users always consume the most popular items, the aggregate consumption diversity 

of the user population inevitably decreases substantially (as indicated by the increasing Gini).  Comparatively, 

pure RecSys-based consumption leads to highest diversity and relevance.  In terms of diversity and relevance, 

consumption strategies that are based on 50%-50% mixtures of RecSys and Popularity tend to exhibit 

longitudinal performance that is somewhat closer to the performance of pure RecSys-based (as opposed to 

Popularity-based) consumption.  The accuracy performance is comparable across four populations.   

Netflix Yahoo! Music 
(a) Accuracy 

  
(b) Diversity 

  
(c) Relevance 

  

 
Figure 8. Populations with Mixtures of Popularity-Based and Personalized Consumption  

Most interestingly, in the relevance graphs, we consistently observe a clear upward trend for the two 

heterogeneous RecSys-Popularity mixture populations across different application settings.  The relevance of 

items consumed by both sub-population mixture and within-user probabilistic populations consistently 
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increases over time towards the most advantageous relevance level exhibited by the pure RecSys strategy.  In 

retrospect, such an upward trend was not consistently observed in different application settings (e.g., both 

Netflix and Yahoo! Music) in other consumption strategies including the pure RecSys and Popularity-based 

strategies (RecSys and Popularity in Figure 8), the two RecSys-Random mixtures (Figure 7), or the 

Classification and TopN recommendation strategies (Figure B1 in Appendix B of the Online Supplement).  

We conduct further analysis to understand the unique increasing trend of relevance for the heterogeneous 

populations.  Because the two heterogeneous RecSys-Popularity user populations apply a hybrid strategy to 

select items, we thereby categorize all the item consumptions in both populations into two halves based on 

how the items were selected by users, i.e., one half of the consumptions (denoted “50%-RecSys”) is a result 

from the RecSys strategy, and the second half (“50%-Popularity”) is from the Popularity-based strategy.  We 

further calculate the average relevance of consumed items separately for these two halves, and Figure 9 shows 

how it changes over time in the Netflix setting (results are analogous for the Yahoo! Music setting presented 

in Appendix A of the Online Supplement). 

Interestingly, decomposing the consumption relevance of hybrid RecSys-Popularity user populations (i.e., 

Sub-Population Mix and Within-Population Probabilistic Mix) into the consumption relevance from the two 

underlying canonical consumption strategies (50%-RecSys and 50%-Popularity) reveals that the overall 

upward trend in relevance is driven entirely by the consumptions from the Popularity strategy.  More 

specifically, Figures 9a and 9b show that, within both heterogeneous RecSys-Popularity user populations, the 

average relevance of items selected by 50%-RecSys does not change much over time and stays about 4.15.  On 

the other hand, the average relevance of items selected by 50%-Popularity initially does not exhibit significant 

change, but later starts to increase steadily (after about 20 simulation periods).   

(a) Sub-Population Mix: 50% Popularity, 50% RecSys (b) Within-User Probabilistic: 50% Popularity, 50% RecSys 

  

 
Figure 9. Relevance of the consumed items based on the RecSys and Popularity strategies in the two RecSys-

Popularity mixture populations; Netflix setting.  
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To understand the relevance increase among Popularity-based consumptions within heterogeneous 

populations, we further analyze the item popularity rank and consumption patterns in each simulation period.  

We find that, over time, the popularity rank of items is materially altered by the RecSys-based consumptions 

in a way that is advantageous for Popularity-based consumptions: (i) following RecSys strategy (as part of the 

mixture) leads to concentrated consumptions of good quality items, some of which are not (yet) popular; (ii) 

this leads to more ratings on these good items and improves their popularity rank; (iii) eventually some of these 

items climb up and make their near the top of the popularity chart; and (iv) following Popularity consumption 

strategy (as part of the mixture) takes advantage of these newly popularized items that are of high quality, 

leading to an upward trend of consumption relevance of Popularity-based consumptions.   

Figure 10 illustrates this by plotting the changes of the popularity rank position for the 10 most-consumed 

items selected by the RecSys strategy.  At initial period t = 0, all of these items are ranked low (e.g., below 

925 out of 3000 total items in the Netflix setting), i.e., the good items (i.e., items that are highly predicted to 

many users) that are not popular.  Over time, these items are highly recommended to users by the recommender 

system and, thus, get consumed by many as part of their RecSys consumptions; hence, the popularity of these 

items increases across the overall dataset.  Eventually, several of these items make it all the way up to the list 

of the most popular items, which then get consumed even more as part of the Popularity consumptions.  In 

other words, hybrid RecSys-Popularity strategies exhibit highly symbiotic tendencies (which do not manifest 

for the homogeneous Popularity strategy alone), where the personalized recommendation system helps 

discover and popularize items that are likable and relevant to many users, thus helps increase the average 

quality of the items at the top of the popularity charts, and therefore subsequently increases the relevance of 

the Popularity-based consumptions.  In other words, the personalized recommendation algorithms facilitate a 

general “quality-rises-to-the-top” phenomenon, which is another important finding that the agent-based 

simulation approach enabled to uncover.   

We also note that the degree of increase in relevance of Popularity-based consumptions is associated with 

the degree of change in the top popularity rank list; e.g., by comparing Figures 10a and 10b for the Netflix 

application setting, we see that the Sub-Population Mix has more dramatic changes in the top-10 popular item 

list than the Within-User Probabilistic mixture, which leads to the different upward slopes of relevance over 

time, as observed in Figure 9.   



39 

(a) Sub-Population Mix: 50% Popularity,50% RecSys (b) Within-User Probabilistic: 50% Popularity,50%RecSys 

  
Figure 10. Changes of popularity rank positions of the 10 most-consumed items selected based on the RecSys 

consumption strategy.  Each line represents the popularity rank dynamics for a given item; Netflix Setting.  

It is clear that both the composition of user population and the nuances of within-user consumption 

patterns substantially impact a recommender system’s long-term dynamics.  The analysis of simple mixtures 

of personalized-random or personalized-popularity consumption strategies already uncover a number of 

interesting patterns of the longitudinal dynamics, which further highlights the usefulness and importance of 

the agent-based simulation approach.  An interesting future research direction would be to systematically 

explore the impact of more complex populations and consumption strategies on recommender systems’ 

outcomes and performance, including the impact of more sophisticated mixtures of users’ reliance on different 

recommendation approaches as well as additional sources of non-personalized recommendations (e.g., item 

likability, critics’ reviews, and word-of-mouth).   

6 Discussion and Conclusions 

6.1 Summary of Findings 

Understanding temporal dynamics of recommender systems represents an important yet underexplored 

research problem.  In this research, we developed a general-purpose agent-based simulation and modeling 

approach to analyze how user-recommender interactions affect recommender systems in the long run.  The 

proposed simulation framework can be used to systematically investigate the impact of various population 

configurations and item consumption patterns (as well as other characteristics of recommendation applications 

that may be difficult to control for in real-world settings and system deployments) on the longitudinal 

recommender system’s performance.   

Our explorations with the agent-based simulation framework provide a number of insights that have 

potentially significant implications for both the designers and the users of recommender systems.  In particular, 

we identify an interesting (and perhaps somewhat paradoxical) phenomenon that has not been explored in 
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research literature: even though such systems are designed to help users find relevant items, the more users use 

the system to make their choices, generally the less improved the system becomes in the future.  More 

specifically, user’s reliance on the recommender system, while helping users discover relevant items, actually 

hurts the diversity of the items that are recommended and consumed as well as impairs system’s learning pace 

to improve predictive accuracy in the future.  In contrast, in the long run, the system’s accuracy and diversity 

would improve the most under the hypothetical scenario where users entirely ignore system’s 

recommendations and randomly select items to consume.  Such a performance paradox is consistently observed 

across several application settings.  We further present a thorough analysis to explain why and how this 

performance paradox occurs.  We show that users’ higher reliance on recommender systems leads to a less 

advantageous structural distribution (i.e., more concentrated on a small number of items) and value distribution 

(i.e., more skewed towards high values) of the rating data, which subsequently serve as inputs to the 

recommender systems and, thus, impair the system’s capability to provide accurate and personalized 

recommendations in the long run.  The in-depth analysis (enabled by the simulation approach) of the underlying 

process leading to the performance paradox represents another contribution of this research.   

Additional explorations of longitudinal dynamics of recommender systems under a variety of simulation 

settings (e.g., personalized vs. popularity-based recommendations, non-homogeneous user populations, top-N 

and classification systems) consistently suggest the existence of recommender system’s performance paradox, 

but with nuanced temporal patterns.  For example, a certain hybrid consumption strategy, i.e., where users rely 

on both personalized- and popularity-based recommendations, offers a unique combination in which 

recommender systems facilitate the general “quality-rises-to-the-top” phenomenon by discovering the good 

quality items (with potential mass appeal, but not yet popular) and popularizing them over time.    

6.2 Implications and Future Research Directions 

Our findings have brought to light several potentially significant issues in the design and implementation of 

recommender systems.  As the main general implication, it is necessary to have a more holistic view about 

recommender systems performance.  While accuracy, diversity, and relevance are all useful performance 

measurements, they represent very different dimensions of recommendation quality.  Based on their specific 

application context, the system’s design needs to weigh the relative importance of these three dimensions on 

the desired overall system utility.  Even more importantly, it is not sufficient to develop recommendation 
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algorithms by optimizing them for recommendation accuracy based on a snapshot of historical rating data, i.e., 

using the traditional predictive modeling process, as it may not lead toward a favorable performance trajectory 

even when users simply keep following system’s recommendations (as would be the intention).  In other words, 

a longitudinal awareness of system’s performance is important, given the findings of this study.   

In terms of more specific implications, since users’ consumption strategies can significantly influence the 

longitudinal performance of recommender systems, it is important for system designers to explicitly account 

for this.  Conducting in-depth analysis of the system’s recommendations and users’ consumption history to 

infer users’ consumption strategies would allow the system to anticipate user’s item choices and strategically 

adjust the system’s parameters according to its long-term objectives.  In other words, various recommender 

system’s components (e.g., rating prediction algorithms, interface designs, rating mechanisms) that play a role 

in users’ interactions with the system may need to be reconsidered, e.g., to account for the performance 

paradox.  If users’ reliance on recommendations can impair the system’s future performance, then how to 

balance the short-term usefulness of the popular and widely used standard ranking approach (i.e., 

recommending highest predicted items to users) with its implications on the longitudinal system’s 

performance?  Reinforcement learning methodologies, as mentioned in Section 2.1, provide promising 

opportunities for researchers and practitioners to develop recommendation approaches that best assist users 

while taking into account the user consumption strategies and long-term performance dynamics of the system.  

Also, some beneficial consumption strategies could be proactively promoted through system’s design.  The 

“quality-rises-to-the-top” phenomenon discovered in this work demonstrates the advantages of hybrid (i.e., 

personalized and popularity-based) consumption and, thus, provides rich opportunities for developing and 

testing various integrative popularity-based and personalized recommendation designs.   

This work opens up a multitude of additional interesting directions for further research.  While this paper 

represents initial explorations using the proposed agent-based simulation framework to study the collective 

behaviors of users on recommender systems, future research is needed to expand the research scope to explore 

more factors that might affect the dynamics of such systems.  For example, our current experiments always 

initialized consumption distribution based on real rating datasets to simulate real-word behaviors.  Future work 

can examine how alternative initialization states (e.g., varying skewness of item popularity, distributions of 

initial user consumptions–more uniformly distributed vs. more concentrated) affect recommender system’s 
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dynamics.  Another potential extension is modeling new item introduction over time in the simulation and 

examining how different factors (e.g., arrival rates, different strategies of dealing with “cold-start” problem) 

affect the dynamics of the system.   

Another direction for future research is to investigate the effect of heterogeneity of user populations in a 

more granular manner.  In real-world systems, users’ consumption strategies are exogenous and the exact 

nature of effects of the consumption strategies largely depends on the population heterogeneity.  Findings on 

simple 50%-50% mixtures of consumption patterns explored in this paper already provide some important 

insights and implications, which could lead to interesting research questions about more sophisticated 

population and consumption mixtures.  For example, future research is needed to investigate the various 

degrees of population heterogeneity (e.g., any proportion of x% vs. (100-x)% mixtures of two consumption 

strategies) and the exact nature of their longitudinal effects on recommender system’s performance.  Future 

work should also investigate more sophisticated population mixture with multiple levels of reliance on 

personalized and non-personalized recommendations.   

While this paper simulates some noise in users’ submitted ratings to provide more realism, the noise is 

added as a random perturbation that is normally distributed around the user’s true preference.  However, prior 

research literature shows that user populations often exhibit systematic biases when providing online reviews 

(Luca and Zervas 2016; Moe and Schweidel 2012) and ratings (Adomavicius et al. 2013; Cosley et al. 2003).  

Thus, using the proposed framework, one could simulate systematic biases in users’ submitted preference 

ratings due to various user-system interactions.  For example, biases can be introduced by the exposure to 

system’s predicted ratings, other users’ reviews and ratings, and item popularity information.  Understanding 

the longitudinal effects of systematic biases in users’ ratings on the temporal dynamics of recommender 

systems performance constitutes another promising avenue for future work.   

In summary, longitudinal dynamics of recommender systems represents a problem-rich area, and the 

experiments in this paper represent just one set of explorations using the agent-based simulation framework.  

These experimental findings would arguably be more difficult to uncover using other methodologies, such as 

field studies and lab experiments, because inherent user behavior (e.g., consumption strategies and system 

usage) is extremely hard to control.  This further emphasizes the value of agent-based simulation as a 

systematic, flexible, low-cost, and low-risk methodology for performing comprehensive explorations as well 
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as in-depth analyses of recommender systems dynamics.  Insights from simulation experiments can lead to 

new theoretical or algorithmic developments as well as more targeted field and lab experiments.  Therefore, 

this paper advocates for the embracing simulation technology in recommender systems research.  
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