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Abstract 
Reverse pricing is a market mechanism under which a consumer’s bid for a product leads to a 

sale if the bid exceeds a hidden acceptance threshold the seller has set in advance. The seller 

faces two key decisions in designing such a mechanism: First, he must decide where in the 

process to collect the revenue—that is, whether to commit to a minimum markup above cost (and 

thus define the bid-acceptance threshold given cost) and whether to set a fee for the consumer’s 

right to bid. Second, the seller must decide whether to facilitate or hinder consumer learning 

about the current bid-acceptance threshold. We analyze these decisions for a profit-maximizing 

small intermediary retailer selling to consumers who can also purchase the product in an outside 

posted-price market. The optimal revenue model is to charge a fee for the right to bid and then 

accept all bids above cost, rather than to set a positive minimum markup above cost. Avoiding 

minimum markups in favor of a bidding fee is more profitable because of increased efficiency 

arising from more entry by consumers and higher bids by the entrants. When consumers learn 

about the bid-acceptance threshold before they enter the market, efficiency increases further, and 

generating revenue through a bidding fee can compensate the seller for his loss of information 

rent when the competition from the outside posted-price firm is relatively weak. 
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1 Introduction 

Reverse pricing (often also referred to as “name-your-own-price selling”) is an emerging market 

mechanism under which a consumer’s bid for a specific product leads to a sale if this bid exceeds 

the seller’s hidden acceptance threshold, which in turn depends on the seller’s marginal cost 

(Spann and Tellis 2006). If a bid exceeds the seller’s threshold, the consumer receives the 

product and pays the bid amount. Some current examples of reverse-pricing sellers are Priceline 

(which specializes in airline tickets, hotel accommodations, and car rentals), some eBay sellers 

(with eBay’s “Best Offer” feature), and discount airlines such as Germanwings.   

Reverse pricing is popular as a spot market for handling unexpected demand or supply 

fluctuations in industries with volatile cost and/or demand, such as the travel industry. Vendors 

such as Expedia post retail prices based on demand predictions, but the residual uncertainty 

arising from consumers’ actual booking behavior frequently results in excess capacity, which 

airlines may sell through alternative channels (Koenigsberg, Muller, and Vilcassim 2008). In this 

paper, we focus on selling excess capacity through a reverse-pricing intermediary retailer, such 

as Priceline, alongside posted-price retailers. The marginal cost of the excess capacity varies with 

every seat sold and hotel room booked, and the strength of reverse pricing is its natural ability to 

accommodate these fluctuating costs, as we discuss next. 

The essence of reverse pricing is reversing the order of actions compared to a standard 

posted-price market, in which the seller first sets the price given his marginal cost and then waits 

for consumers. A reverse-pricing seller solicits consumer bids first and then evaluates them in 

light of current marginal costs. This process allows the seller to use a bid-acceptance rule that 

only accepts profitable bids, that is, bids above the cost of getting the good from a producer at the 
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moment. In this paper, we analyze the seller’s problem of setting such a bid-acceptance rule to 

maximize profits. The problem is essentially static because our seller is an intermediary and 

neither the good nor the consumers persist over time: the producer’s offer price (the seller’s 

marginal cost) is a temporary exploding offer, so the seller cannot keep the good and sell it later. 

The prospective customers are those in the market for that particular product or service at that 

moment, and they are likely to buy the good elsewhere if unsuccessful with reverse pricing. For 

example, if Priceline does not sell a given seat on a flight to a customer interested in buying it 

right now, both the seat and the customer may disappear before another opportunity for a trade 

arises. We thus abstract away from dynamic yield-management issues that would arise if the 

seller were the producer of the good. 

How should our seller design the reverse-pricing mechanism so as to maximize profit? 

The specification of a seller strategy involves two key decisions. First, where in the interaction 

with consumers should the seller generate revenue: by relying entirely on the information rent 

from successful bids (i.e., the difference between the bid amount and cost), by setting a positive 

minimum markup above marginal costs in specifying the bid-acceptance threshold, by charging 

consumers a bidding fee (akin to a subscription fee) for the right to submit a bid, or by some 

combination of these sources? Second, the seller must decide whether to help or hinder the 

consumers in their learning about the bid-acceptance threshold. Consumers may learn about the 

current threshold via repeated bidding (Fay 2004) or through communication with other 

consumers (Hinz and Spann 2008). Given that such learning is typically considered destructive to 

profits (Fay 2004; Hinz and Spann 2008; Segan 2005), understanding whether the seller is in fact 

better off preventing consumers from such learning is important. The answer to this design 

question is intertwined with the answer to the revenue-source question: a seller relying on the 
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information rent would clearly prefer to hinder learning, whereas a seller relying on an upfront 

bidding fee may benefit from such learning because resolving the consumers’ uncertainty may 

increase their willingness to pay the fee. 

We analyze both seller decisions using a model of a small intermediary seller who faces a 

population of consumers and a premium posted-price competitor. Regarding the first decision 

(revenue model), we find that under several different assumptions about consumers, bidding fees 

dominate minimum markups in terms of expected profit. In other words, the seller should never 

try to commit to a positive minimum markup. Instead, the seller is always better off lowering the 

minimum markup slightly and charging a correspondingly higher bidding fee. Bidding fees are a 

superior source of revenue because they allow more trades to occur via an implied lower bid-

acceptance threshold, thereby making the market more efficient. Although similar to the intuition 

for the superiority of a two-part tariff to simple linear pricing (Tirole 1988, p. 136), the argument 

for bidding fees is more subtle: unlike in the case of a simple two-part tariff, our reverse-pricing 

seller is not a monopolist and does not capture the entire consumer surplus because of strategic 

bid-shading (bidding less than valuation) by the consumers. In addition to their profit advantage, 

bidding fees are also easier to implement than minimum markups because they require less 

commitment from the seller: a minimum markup seller needs to credibly promise he will reject 

some profitable trades in the future in order to increase bids today.  

Regarding the second decision, the seller who makes revenue through bidding fees 

sometimes prefers to facilitate consumers’ learning about the bid-acceptance threshold instead of 

trying to prevent them from discovering it. We find that the seller prefers to facilitate consumer 

learning about the threshold when the outside price is relatively high, that is, when the outside 

competition is relatively weak. The additional information assures that only consumers with 
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high-enough valuations enter and submit bids, greatly increasing market efficiency. A high 

outside price gives the seller market power over more consumers, allowing him to capture more 

of the efficiency gain. Bidding fees thus partially “immunize” the seller against the low-profit 

consequences of consumers becoming informed about the threshold: a seller relying only on the 

information rents for revenue would always prefer to hide threshold information from consumers. 

Most prior research on reverse pricing empirically analyzes bidding behavior and focuses 

on either behavioral aspects (Chernev 2003; Ding, Eliashberg, Huber, and Saini 2005; Spann and 

Tellis 2006), the inference of certain consumer characteristics from observed bidding behavior 

(Hann and Terwiesch 2003; Spann, Skiera, and Schäfers 2004), or the impact of information 

diffusion about the seller's bid-acceptance threshold on bidding behavior (Hinz and Spann 2008). 

Four recent articles are more closely relevant to the present work in that they examine some 

aspects of the seller strategy. Terwiesch, Savin, and Hann (2005) discuss the influence of 

frictional costs on the optimal bid-acceptance threshold. Wang, Gal-Or, and Chatterjee (2009) 

and Fay (2009) provide two different rationales for the existence of the reverse-pricing channel in 

addition to a posted-price channel, either used by the same retailer or used by two different 

retailers, respectively. Amaldoss and Jain (2008) analyze joint bidding for multiple items at a 

reverse-pricing retailer and find that such joint bids can increase retailer profit. 

The most closely related piece of prior work is Fay (2004), who examines whether the 

seller should limit consumers’ ability to learn his bid-acceptance threshold. That work focuses on 

learning through rebidding as opposed to learning through communication among consumers. 

Contrary to the common belief that repeat bidding erodes profits by revealing information about 

the seller’s threshold, Fay’s findings suggest that repeat bidding may leave profits unaffected as 

long as the seller anticipates rebidding and adjusts his threshold accordingly. Moreover, they also 
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indicate that the seller may sometimes wish to encourage rather than discourage repeat bidding. 

The key assumption of Fay’s model is that only two possible thresholds exist, arising from two 

possible inventory levels. This assumption both simplifies bidding and gives substantial power to 

the seller through contingent pricing. In contrast, our model allows a continuum of thresholds in 

equilibrium, increasing realism. Our model is also complementary to Fay (2004) in that his seller 

is initially uncertain about inventory, whereas our seller is uncertain about marginal cost. 

In a nutshell, the contributions of this research relative to prior work on reverse pricing 

are as follows: We conceptualize the reverse-pricing seller as an intermediary uncertain about his 

marginal costs. The resulting model allows analysis and optimization of two key parameters of a 

reverse-pricing mechanism that are under the seller’s control: revenue model and information 

release. We show that the optimal reverse-pricing mechanism charges a positive bidding fee and 

accepts all bids above the marginal cost rather than charging a minimum markup above the 

marginal cost akin to a “transaction fee.” Moreover, we account for the possibility of consumers 

discovering the bid-acceptance threshold and show when it is in the seller’s interest to facilitate 

such learning.  

The article is organized as follows: section 2.1 lays out our assumptions. In section 2.2, 

we develop a model of consumer bidding behavior in a reverse-pricing market with an outside 

option. Section 2.3 then investigates the optimal strategy of a seller who cannot commit to a 

minimum markup. We then allow the seller to commit to a specific minimum markup in section 

2.4, and positive minimum markups are not optimal. Section 2.5 analyzes whether the reverse-

pricing seller should facilitate or hinder consumer learning of the bid-acceptance threshold. We 

conclude in section 3.  
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2 Optimal Menu-Based Pricing for a Reverse-Pricing Seller 

2.1 Assumptions 

We analyze the optimization problem of a small perishable-product intermediary seller who 

cannot set posted prices contingent on his highly variable marginal costs. Capturing the idea of 

selling excess capacity beyond some outside market for the good, the seller sets his bidding fee 

and/or minimum markup after learning the prevailing stable posted price in an outside market p 

but before learning current marginal cost w. Capturing the idea that the seller selling excess 

capacity is small relative to the outside market, the seller is a price taker of both p and w. This 

price-taking assumption ensures that our model does not degenerate into Bertrand price 

competition due to a lack of differentiation between the seller and the outside market. The seller 

intermediates between producers and consumers of the product. The product (e.g., producer’s 

excess capacity) is perishable in that neither the consumers’ nor the producer’s offers persist over 

time. Consequently, the seller can model his profit-maximization problem as a single-shot game 

between himself and the consumers who happen to be in the market at the moment. In the 

Priceline plane-ticket setting, the producers are airlines, the product is a seat on a specific flight, 

and the product is perishable in that each airline makes a short-lived offer of a particular marginal 

cost for the seat to Priceline. The consumer is short-lived in that he moves on to buy the ticket 

elsewhere whenever Priceline does not accept his bid. Next, we discuss our assumptions about 

the outside market, consumers, and marginal costs in more detail, starting with the former. 

Outside market. The posted price in the outside market p is variable but set before the 

game begins. For example, the posted price for a plane ticket usually remains constant for several 

days and does not react immediately to activity on Priceline. This price p is informative to the 

consumers, who infer that the reverse-pricing seller’s marginal cost is below p. 
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Consumers. A unit mass of risk-neutral consumers exists. The consumers have private 

valuations of the product drawn from some continuous distribution H with support on [0,1]. We 

provide as many results as possible for a general H but resort to H=Uniform[0,1] when a general 

result is not tractable. Given the normalization of utility to the [0,1] interval, we assume the 

outside posted price p is always below the highest valuation in the market (i.e. p ≤ 1). Because 

the highest consumer valuation exceeds the outside price, two distinct segments of consumers 

emerge: those with a valuation v less than p (“low consumers”) can only buy the product from the 

reverse-pricing seller, whereas others with v ≥ p (“high consumers”) can also obtain a positive 

surplus by buying on the outside posted-price market. Note that these segments are endogenous 

to p, and so the same consumer can be a “low” consumer when p is high and a “high” consumer 

when p is low. Since some consumers cannot afford the outside price, the outside market can be 

considered a premium option. All consumers have unit demand in the sense that once they buy 

the product from the reverse-pricing seller, they do not buy it again on the outside market. 

Finally, consumers incur no frictional cost for bidding, an assumption that can be relaxed while 

preserving the key qualitative results (please contact the authors for details).  

Marginal Costs. The producers offer the product to the reverse-pricing seller at marginal 

cost w, which is between 0 and the outside posted price of p. For analytical tractability, we 

assume marginal costs are distributed uniformly on [0, p]. The critical part of this assumption is 

that p and w are not perfectly correlated, so consumers remain uncertain about w even after 

observing p. 

Timing of the Game. The difference between our model and a model of standard posted-

price retailing is that the marginal cost w is not known when the seller sets his strategy. The seller 

only queries the producers when a bidder appears and makes a request for a specific product. 
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Thus the seller must maximize profits by specifying his strategy (a bidding fee and a bid-

acceptance rule) before he knows w.1 He has the following two sources of revenue at his disposal 

(see Figure 1):  

Figure 1: Seller Profit from Consumer’s Bid 

$
bid (b)thresholdmarginal cost (w)

min. markup
(if m>0)

information
rent

margin

seller profit (Π )= margin + fee ( f )

$
bid (b)thresholdmarginal cost (w)

min. markup
(if m>0)

information
rent

margin

seller profit (Π )= margin + fee ( f )

 

1) The seller can charge each bidder a bidding fee f regardless of whether an individual’s 

eventual bid is successful. This bidding fee enters the bidder’s decision-making analogously 

to an entry cost in an auction (Samuelson 1985). Reverse pricing with a bidding fee is similar 

to charging consumers for a referral service that matches them with producers but is not 

equivalent because the seller also keeps the difference between the accepted bid and the 

marginal cost w. 

2) The seller can earn the margin between his marginal cost w and the consumer’s bid. This 

margin consists of the seller’s information rent as the difference between his bid-acceptance 

threshold and the consumer’s bid and a potential minimum markup between marginal costs 

and the bid-acceptance threshold. The seller may or may not be able to commit to the 

minimum-markup strategy of only accepting bids that are at least a fixed markup m ≥ 0 above 

w. Commitment is necessary for the minimum markup strategy to work, because ex post (i.e., 

once w is realized), this strategy foregoes potentially profitable trades (when w < bid < w+m) 

                                                 
1  An equivalent assumption to the seller announcing the bid-acceptance rule is that the consumers infer it from 

recent experience with the same seller and share this information through word-of-mouth (Hinz and Spann 2008). 
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in order to induce higher bids ex ante. Therefore, the seller without commitment is restricted 

to m=0. In this paper, we first solve the game for a seller without this commitment, and then 

investigate how the seller’s strategy would change with the commitment.  
 

Figure 2 illustrates the timing of the game. First, at Stage 0, the posted price p is set. After seeing 

the price p, consumers update their prior that the cost is uniformly distributed on [0, 1] to a belief 

that the cost is uniformly distributed on [0, p]. At Stage 1, the seller sets and announces his 

( ),m f  strategy (the seller without commitment is restricted to m=0 as discussed above). At 

Stage 2, consumers make their entry decision. Some low consumers do not enter because their 

expected surplus is negative. The consumers who do enter then submit their bids. Once the seller 

receives a bid (Stage 3), he queries the producers to determine the current marginal cost and then 

accepts bids above w+m, using the m announced in Stage 1. The seller faces competition from 

the posted-price market because the bidders whose bids are unsuccessful, as well as those who 

chose not to submit a bid at all, have the opportunity to buy the product on the outside posted-

price market at Stage 4 for price p. 
 
 

Figure 2: Timing of the Game 
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& submits bid if enters
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Seller learns 
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2.2 Consumer strategy: entry decision and subsequent bidding strategy 

We solve the consumer’s problem in Stage 2 using backward induction, starting with the bidding 

strategy given entry. We analyze the bidding strategy for the general case of m ≥ 0, with the 

consumers facing a non-commitment seller bidding as if m=0. Consumers are uncertain about w 

when they submit their bids in Stage 2. Therefore, they must optimize against a distribution of 

bid-acceptance thresholds the seller’s strategy in Stage 3 implies, namely, Uniform[m, p +m]. 

Note that this distribution is the correct equilibrium belief at this stage of the game, either 

because of the incentives of the seller without commitment to use m=0 or because of the seller’s 

commitment to a particular m>0 in Stage 1. We extend the model of Spann and Tellis (2006) to 

account for the outside option and characterize consumers’ bidding behavior at the end of Stage 2 

as follows: 

Proposition 1: Consumers who enter bid ( )
 for 

2|
 for 

2

m v m v p
b v m

m p v p

+⎧ ≤ <⎪⎪= ⎨ +⎪ ≥
⎪⎩

 . 

The proofs of Proposition 1 and all subsequent propositions are in the appendix. This bidding 

problem is analogous to the problem of a bidder in a first-price sealed-bid auction who faces one 

exogenous competitor. The exogenous competitor bids Uniform[m, p +m] . To balance the 

surplus from winning against the probability of winning, the optimal bidding strategy in such a 

situation is to “shade” the bid down from one’s valuation of the product. As in the first-price 

sealed-bid auction, winning means paying one’s bid, and shading is necessary to leave room for 

surplus.2 Since consumers with valuations below m cannot make a positive surplus in this market, 

it is sufficient to characterize the bidding strategy for v>m, for which bid shading is apparent in 

                                                 
2  See Krishna (2002) for an exposition of bidding in a first-price sealed-bid auction. 
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that ( )|b v m v< . Also note that the two consumer segments bid differently: because of the 

outside option, all high consumers with v p>  mimic the behavior of a consumer with v p= . 

Finally, the bidding strategy does not depend on the bidding fee f, because f is sunk upon entry. 

Given the bidding strategy, a comparison of the expected surplus from entering and bidding to 

the expected surplus from not entering governs the entry decision in the beginning of Stage 2 

(Samuelson 1985). Please see Figure 3 for the consumer’s decision tree. The expected surplus is 

derived in the appendix, and it again depends on the consumer segment: 

(1) ( )

( )

( )

2

2

 for 
4

| , ,

 for 
4

v m
f m v p

p
S v f m p

m p
v p f v p

p

⎧ −
− ≤ <⎪

⎪= ⎨
−⎪

− + − ≥⎪
⎩

. 

 

The functional form of the surplus is instructive with respect to consumers’ entry decisions. First, 

low consumers face quadratic surplus because higher valuations and/or lower margins increase 

both the probability of bid acceptance and the surplus upon acceptance. These two components 

multiply to produce the convex function from which the bidding fee is simply subtracted as a 

direct transfer to the seller. Another insight concerns the high consumers: they receive the 

outside-option surplus v - p plus a “gambling bonus” equivalent to the surplus of the consumer 

they mimic in bidding, namely, v = p. Since they can obtain the product for the price p without 

entering, the high consumers will enter only when the gambling bonus exceeds f. Since the 

gambling bonus is equivalent to the expected surplus of a consumer with v = p and the expected 

surplus is increasing in v below p, satisfying the consumer with v = p is a prerequisite for the 

reverse-pricing seller to get any customers at all. When the v = p consumer enters, all high 

consumers enter as well, and low consumers above a valuation threshold 2v m pf= +  enter.  
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Figure 3: Payoff to Consumers 

not enter

enter & bid bid accept

bid reject

( )max ,0v p−

v bid f− −

f−

not enter

enter & bid bid accept

bid reject

( )max ,0v p−

v bid f− −

f−  

Please note that even if consumers enter, their payoff is uncertain. Thus, some consumers may 

pay an entry fee and bid but end up paying only the entry fee f when they are unsuccessful. This 

discussion concludes our analysis of the consumer side in Stage 2. The next section proceeds 

backwards to Stage 1 to solve the seller’s profit-maximization problem. 

2.3 Optimal selling without commitment to a minimum markup (m=0) 

In this section, we derive the optimal strategy of a reverse-pricing seller for the case that he 

cannot commit to a minimum markup m > 0.  

At Stage 1, the reverse-pricing seller without commitment (m = 0) maximizes his 

expected profit by selecting the optimal bidding fee f. The profit-maximization is a screening 

problem because the seller uses the fee to effectively set the entry threshold 2v pf= . 

Increasing f slightly has the marginal benefit of all consumers above v  paying a higher bidding 

fee.  

The marginal cost of increasing f slightly is the reduction in the number of consumers who enter. 

Specifically, the threshold consumer with valuation v  does not enter anymore, which results in a 
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loss of both the marginal bidding fee the consumer would pay and the loss of the marginal profit 

from that consumer not bidding. At the optimal fee level, the marginal benefit equals the 

marginal cost, and the following characterization results: 

Proposition 2: When ( )
( )

13
4

H xx
h x
−

−  is an increasing function of x, the optimal consumer 

entry threshold of a non-commitment seller satisfies either ( )
( )

13
4

H v
v

h v
−

=  or v p= ,  

whichever is lower. When H(x) = x on [0,p], the implied optimal fee is 

( )
 for 13 3

2 2* min ,
22( 6) for 13 3
( 6)

p
p

p
f p

p p p
p p

⎧
< −⎪⎛ ⎞ ⎪= =⎜ ⎟ ⎨⎜ ⎟⋅ + ⎪⎝ ⎠ ≥ −

⎪ ⋅ +⎩

. 

Note that the special-case assumption H(x) = x on [0,p] in Proposition 2 places no 

restriction on the distribution of high consumers. The assumption is that there is a mass of p low 

customers with v<p distributed uniformly on [0,p] and a mass of (1-p) high customers with v > p 

distributed arbitrarily above p. There is no need for a specific assumption about the high 

consumers’ valuations because they all mimic the v = p type. 

The screening nature of the profit-maximization allows the seller to focus only on the 

marginal consumer v. The first condition of Proposition 2 is a single-crossing condition 

analogous to a monotone hazard-rate condition on H. As argued in the previous section, the 

threshold must not exceed p for the seller to make any money at all, hence the dichotomous 

solution: for low p, the competition from the outside market is so strong and the relative 

proportion of high consumers so high that the seller chooses to serve only the high consumers 

and sets v = p. Figure 3 outlines the possible payoffs to consumers. 
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Since the problem of setting the optimal fee is a screening problem, we can easily 

compare it with other problems of a similar structure, namely, ( ) ( )g v InvHazardRate v= . When 

( )g x x= , we get the equation for an optimal reserve of an auctioneer, who can obtain the 

product for zero marginal cost (Myerson 1981). When, on the other hand, ( ) 2g x x= , we get the 

equation for an optimal fee of a zero-marginal-cost referral service that merely matches 

consumers up with producers without collecting any margin. We can therefore easily show that 

( )*f p  is always less than the optimal referral fee but higher than the optimal reserve in a zero-

marginal-cost auction. 

2.4 Optimal selling with commitment to a minimum markup (m ≥ 0) 

In this section, we show that at least in the uniform case of ( ) 1H x x=  on [0,p], the optimal 

seller strategy constrained (by the lack of commitment) to m=0 and ( )*f f p=  of Proposition 2 

is in fact optimal even for the unconstrained seller, who can credibly commit to any minimum 

markup m ≥ 0. In other words, the seller would rather derive revenue from the bidding fee than 

from the additional margin arising from the minimum markup.  

Suppose the seller can credibly establish commitment to any minimum markup m ≥ 0, for 

example, through reputation or transparent billing. The consumers take m into account as we 

show in section 2.2, and the upside for the seller is that all consumers who enter raise their bids 

to compensate for the higher bid-acceptance threshold. The downside is that fewer consumers 

now enter at all, as can be seen from the form of the entry threshold 2v m pf= + . The resulting 

profit function of the seller is quite involved, but we can show that for any m>0, a corresponding 

optimal fee ( )* |f p m  exists, and reducing the m slightly in favor of a small increase in f from 

( )* |f p m  can help the seller. In other words, the profit of a seller who uses the strategy 
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( )( )* | ,f p m m  is decreasing in m for all non-negative m. The details of this result form the 

proof of Proposition 3—the central result of this paper: 

Proposition 3: Suppose H(x) = x on [0,p]. Even if the seller can credibly commit to a 

positive minimum markup, the optimal selling strategy uses zero minimum markup and 

the positive fee ( )*f p  derived in Proposition 2. 
 

As both the fee and the minimum markup screen out some low consumers, they might appear 

equivalent at first glance. However, the minimum markup also changes the entrants’ bidding 

strategy. Because consumers shade their bids to halfway between their valuation and m 

(Proposition 1), the minimum markup increases the bids of the entrants less than it increases the 

acceptance threshold w + m. Therefore, increasing the minimum markup reduces the amount of 

trading the entrants achieve on average, thus diminishing market efficiency (i.e., the size of the 

pie). This reduction in efficiency is large enough to hurt seller profit as well. Consequently, 

generating revenue through a bidding fee, which does not distort bidding, is always better than 

generating revenue through a minimum markup, which does. Note that we analyze the extreme 

case of perfect and effortless commitment to a margin, and find that it is not useful. Therefore, 

intermediate levels of commitment arising from reputation in an alternative dynamic model 

would also not be useful to the seller. 

As discussed above, the proof of Proposition 3 relies on showing that seller profit is 

decreasing in m along the locus of ( )( )* | ,f p m m  strategies. Since the profit is decreasing even 

at m=0, a seller who could credibly subsidize the consumer bids would do so. We emphasize this 

interesting result in the following corollary: 
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Corollary to Proposition 3: Suppose H(x) = x on [0,p]. A seller who charges a bidding 

fee would find it profitable to credibly subsidize bids and accept at least some bids below 

cost. 
 

Illustrative Example. For concreteness, suppose the seller is Priceline and the product is a 

plane ticket from New York to London, for which p = $1000—the lowest outside posted price 

competitors such as Expedia and Travelocity offer. Assume the highest valuation that 

corresponds to v = 1 is $1500, indicating that two thirds of the prospective Priceline customers 

are “low consumers” in that they value the ticket below p and one third are “high consumers” 

who value it above p. Table 1 displays the results for (1) the optimal bidding fee given the 

minimum markup set to zero, (2) the case of an optimal minimum markup given no bidding fee, 

and (3) for the case of the optimal fee to use given the minimum markup suggested in (2). 
 
Table 1: Illustrative example of a plane ticket from New York to London that costs $1000 
on Expedia and that consumers value uniformly between $0 an $1500. 
 
 optimal bidding 

fee, 
no minimum 
markup 

optimal minimum 
markup, 
 
no bidding fee 

optimal minimum 
markup and its 
associated optimal 
bidding fee 

Bidding fee ( f ) $202 $0 $102 
Minimum markup (m) $0 $260 $260 
Screening level (v) $900 $260 $900 
Social welfare (gains from trade) $126 $125 $99 
Seller profit  $109 $60 $84 

 

Please see the appendix for details of the calculations that produced Table 1. The results in Table 

1 show that the social welfare with a minimum markup and no fee is almost as high as with the 

optimal fee and no minimum markup, but the seller only makes about half of this welfare in 

profit, much less than with the optimal fee. Moreover, charging f=0 is not optimal for the seller 

who uses the minimum markup of $260. Instead, using a positive fee of $102 combined with this 
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minimum markup of $260 is optimal, which results in lower social welfare, because more 

consumers are screened out, but higher profit (compare third and fourth column of Table 1). 

However, profit is still considerably lower than in the case of the optimal bidding fee with no 

minimum markup (compare the second and fourth columns of Table 1). This comparison 

illustrates the key point of Proposition 3: the lack of market efficiency when a profit-maximizing 

seller uses a positive minimum markup as well as a bidding fee hurts profitability. 

The uniform assumption does not drive the key qualitative result that the seller prefers 

fees over minimum markups. We have proven an analogy of Proposition 3 for the exponential 

distribution (not reported), and we propose that the economic intuition of increased market 

efficiency is quite general. This intuition is analogous to the intuition behind two-part tariffs 

outperforming uniform pricing in posted-price markets. 

2.5 Should the seller who charges a bidding fee facilitate or hinder consumer 
learning about the current bid-acceptance threshold? 

As discussed in the introduction, consumers may learn the bid-acceptance threshold through 

communication with recent buyers (Hinz and Spann 2008). Consumers who know the acceptance 

threshold never bid more than it, erasing the seller’s information rent completely. Therefore, a 

seller who derives profit only from the information rent (m=f=0) obviously has a strong incentive 

to hide his marginal cost w from consumers.3 This incentive to hide threshold information does 

not immediately extend to a seller who implements a bidding fee following Proposition 3: 

facilitating consumer learning may increase participation by high-value bidders, in turn allowing 

the seller to charge a higher bidding fee and make a higher profit overall. In this subsection, we 

                                                 
3 We believe this to be the basis of Priceline’s no-rebidding policy, as well as the rationale for its randomization of 

the acceptance rule reported in Anderson (2009) and Segan (2005). 
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sharpen this intuition and qualify its validity with a bound on the intensity of outside market 

competition captured by p in our model. 

To analyze the seller’s incentive to hinder consumer learning under bidding fees (f >0), 

we consider the limiting case of consumers knowing the upcoming bid-acceptance threshold with 

certainty prior to making their entry decision. That is, we analyze consumers who learn w at the 

beginning of Stage 2 (see Figure 2). We hope this simple limiting case qualitatively captures 

what would happen with more realistic learning that would still leave the consumers somewhat 

uncertain. When consumers know the current acceptance threshold w, they enter and bid 

( )min ,w p  whenever ( )min ,v p w f− > . The seller accounts for this bidding strategy and 

charges a different bidding fee than one that would be optimal with uncertain consumers. We 

denote the bidding fee optimal under the informed-consumer scenario fI.4 It is relatively simple to 

show (please see Appendix for details) that fI satisfies ( )2 min , |I If E p v v f= >⎡ ⎤⎣ ⎦  , that is, the 

seller should charge half of the expected net valuation (minimum of v and p) of consumers who 

have a positive probability of trading (valuations above fI). In the uniform low-consumer case of 

H(x)=x on [0,p], the optimal fee is ( ) ( )* 22 4 6 3 3If p p p= − − + , which can be bounded by 

( )*4 2Ip f p p< < . In the plane-ticket example of Table 1, ( )* 2 3 3 9 $422If = − ≈ . The 

plane-ticket example suggests the bidding fee is much higher when the potential consumers learn 

the marginal cost w in advance. This inequality extends to all p as long as the low consumers are 

uniformly distributed: when ( )H x x=  on [0,p], ( ) ( )* *If p f p>  for every p because 

( ) ( )* 4 *If p p f p> > . The higher bidding fee makes sense because informed consumers do not 

                                                 
4 While we focus on bidding fees (f>0), note that the argument for facilitating consumer learning is equally valid for 

a seller with commitment to a minimum margin (m>0): with consumers informed about w, bidding fees and 
minimum margins are interchangeable in that any combination that results in the same f+m yields the same 
consumer behavior and profit. 
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have to gamble at entry time and shade their bids afterward. They are thus willing to pay more 

for entry. Our final proposition characterizes when facilitating consumer learning about marginal 

costs is more profitable for the seller than hindering it: 
 

Proposition 4: Suppose H(x) = x on [0,p]. A unique outside price 13 3 1p− < <  exists 

such that facilitating consumer learning about the seller’s current bid-acceptance 

threshold is profitable for the seller when p p> , and vice versa. 

Numerical approximation reveals that 0.885p ≈ . Recall that when 13 3 0.60p < − ≈ , the 

reverse-pricing seller only serves high consumers (Proposition 2). Therefore, when the outside 

price is so low that the reverse-pricing seller serves only high consumers, Proposition 4 shows 

that hindering consumer learning is always optimal.  
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Figure 4: Seller profit under two consumer-information scenarios
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Note to Figure 4: This figure illustrates Proposition 4.  The two curves 
represent seller profits as a function of the price on the outside posted-price 
market. The solid curve involves consumers informed about seller cost 
before making their entry decision. The dashed curve involves consumers 
uncertain about seller cost at the time of their entry decision.  
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Not surprisingly, facilitating consumer learning increases the efficiency of the market for 

all p (proof omitted for parsimony). The intuition for the profitability of facilitating consumer 

learning only with high p is as follows: a high p means both relatively fewer high consumers and 

a larger efficiency gain from the added information. The seller can capture enough of the 

efficiency gain to compensate for the lost information rent provided by the uninformed 

consumers. As p drops and the proportion of high consumers increases, the efficiency advantage 

gradually disappears, but the information rent from uninformed consumers remains. Figure 4 

illustrates Proposition 4. 

3 Discussion 

This paper analyzes the design of an optimal reverse-pricing mechanism from the perspective of 

a profit-maximizing seller. Specification of such a mechanism involves two key decisions: (1) the 

revenue model, namely, whether to set a minimum markup above cost (and thus set the bid-

acceptance threshold) and/or charge a fee for the right to bid, and (2) whether to facilitate or 

hinder consumer learning about the bid-acceptance threshold. Consumers may learn about the 

acceptance threshold through repeated bidding or communication with other consumers.  

Two key implications for reverse-pricing sellers result from our analyses. First, the 

optimal revenue model is to charge a bidding fee and then accept all bids above the marginal cost 

instead of charging a minimum markup above the marginal cost. A bidding fee is preferable 

because it allows more trades to occur and because it does not require commitment to reject 

potentially profitable trades. In contrast, a minimum markup increases the bid-acceptance 

threshold (to cost + minimum markup) without equally increasing bids, thus reducing the amount 

of trading achieved (i.e., reducing efficiency).  
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The second major implication of our analyses is that a seller relying on an upfront bidding 

fee can benefit from consumer learning (e.g., via word of mouth) about the bid-acceptance 

threshold. This result is in sharp contrast with a seller who relies only on information rents as 

source of revenue—such a seller always wants to hinder consumer learning. A seller relying on 

an upfront bidding fee can benefit from such learning due to an increase in market efficiency. 

The seller can charge a higher bidding fee because informed consumers do not have to gamble at 

entry time and shade their bids afterward. Consequently, consumers are willing to pay more for 

entry. Thus, sellers may facilitate consumers’ learning of these thresholds, for example, by 

supporting online communities such as www.biddingfortravel.com or www.betterbidding.com. 

However, the result of the seller benefiting from such an early revelation of the threshold 

depends on the distribution of valuations across consumers and the price in the outside market. 

As the outside price drops and the proportion of high consumers thus increases, the seller may be 

better off hindering consumer learning about the bid-acceptance threshold, because the 

information rent from these consumers dominates the efficiency gains. 

The results of our analyses also provide interesting insights into the phenomenon of 

(“live”) shopping communities (for example, www.woot.com), in which retailers may charge 

consumers a fee for the opportunity to enter and buy short-term promotional offers. Furthermore, 

retailers may even charge consumers a fee for the discovery of the selling price. For instance, on 

the online shopping site Dubli.com, consumers have to pay .80€ to learn the current price of a 

product (and simultaneously, they lower the price by .25€). Swoopo.com combines an ascending 

open auction with bidding fees where consumers have to pay a fee in order to submit a bid.  

Bidding fees can be viewed as analogous to subscriptions, which are quite common in 

discount retailing (BJ’s, Sam’s Club, etc.). When interpreting the bidding fee as a subscription, 
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the key simplifying assumption is that the consumer’s surplus from bidding at Stage 2 is an 

accurate characterization of the consumer surplus that arises from her aggregate purchases over 

the lifetime of the subscription, with these purchases reflecting successful reverse-pricing bids 

rather than posted-price transactions. By showing that bidding fees are optimal in such a 

situation, we have provided a model of a subscription-based reverse-pricing discounter. 

We derive our results under the simplifying assumption of no frictional costs for ease of 

exposition. This assumption is not a limitation because, as we can show (not reported), our basic 

qualitative results would not change if we relaxed it. In contrast, the assumption that the outside 

market is not a strategic player is necessary for our results, and what would happen if more active 

competition were allowed is unclear. The analysis of the dynamics of competition between 

reverse-pricing and posted-price sellers (see Fay 2009) is an important area for future research.  

Our analyses are based on the (common) assumption of rational, utility-maximizing 

consumers. Follow-up work is needed to empirically validate our analytical results. 

Psychological factors might cause actual bidding behavior in a reverse-pricing context to depart 

from the normative model we use to characterize it. For instance, examining consumer reactions 

to bidding fees would be an interesting line of research. We suspect consumers might 

(irrationally) be more willing to pay a minimum markup than to pay a bidding fee for entry. For 

example, consumers may use an overriding “rule” to never pay for anything other than the 

product itself (e.g., information or service), a situation akin to the one Amir and Ariely (2007) 

describe. A deep understanding of the behavioral aspects of bidding in reverse-pricing markets 

will require much empirical work, but the analytical findings we report here provide a normative 

benchmark against which to develop and test behavioral departures and extensions.  
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The analyses we have presented in this article have important implications for sellers who 

wish to apply a reverse-pricing mechanism. Our findings provide guidance as to how such firms 

should determine the optimal reverse-pricing mechanism in terms of how to set a bidding fee or 

minimum markup, whether to facilitate or hinder consumer learning about the bid-acceptance 

threshold, and how best to adjust the revenue model when such consumer learning is anticipated.  
 

 

 

 

Appendix: Proofs of Propositions 
Proof of Proposition 1: It is sufficient to characterize bidding for valuations that exceed the 

minimum markup m, because bidders with valuations below m cannot obtain a positive surplus in 

the market. A bidder with valuation v who has decided to enter and bid an amount x has the 

expected surplus 

( ) ( )( ) ( ) ( )( )| , , Pr  accepted| Pr  denied|S v f m p x m v x v p x m v p f= − + > − − =1  

( ) ( ) ( )x m p m xv x v p v p f
p p
− + −

= − + > − −1 . Maximizing this expected surplus yields the bidding 

strategy ( )
 for 

2|
 for 

2

m v m v p
b v m

m p v p

+⎧ ≤ <⎪⎪= ⎨ +⎪ ≥
⎪⎩

 QED. 

 

Derivation of consumer surplus: Plugging the optimal bidding strategy ( )|b v m  into the surplus 

function ( )| , ,S v f m p  yields ( )

( )

( )

2

2

 for 
4

, , ,

 for 
4

v m
f m v p

p
S v f m p

m p
v p f v p

p

⎧ −
− < ≤⎪

⎪= ⎨
−⎪

− + − >⎪
⎩

. 
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Proof of Proposition 2: The seller maximizes his expected profit ( )fΠ  by selecting the optimal 

bidding fee f. As long as 2 pf p≤ , that is, as long as at least consumer v = p enters, the seller 

obtains the following total expected profit: 

(A1) 

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

2

0 0

2

Pr

1 1
2 2 2

1 2 1

w v v

p
p p

v

p

pf

f v v f E b w b w

v v pH v f w w dwdH v H p w dw

H pf f v dH v H p pπ π

>Π = < + > − =⎡ ⎤⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞= − + > − + − − =⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠

⎡ ⎤= − + + −⎡ ⎤⎣ ⎦⎣ ⎦

∫ ∫ ∫

∫

1

1 , 

( )
22

0

where   is the profit from a bidder of valuation .
2 8

v

v vv w dw vπ ⎛ ⎞≡ − =⎜ ⎟
⎝ ⎠∫  The profit ( )fΠ  

consists of three intuitive parts. The first term is the revenue from bidding fees, the second is the 

expected revenue from low entrants, and the third is the expected revenue from high entrants. 

 The second term of the profit function in equation (A1) requires further dissection and 

explanation. It considers all possible valuations v of consumers who will enter, and for each such 

v, it computes the seller’s ex-ante expected profit from a particular entrant with that valuation. 

This profit, denoted ( )vπ , arises from the seller integrating over all marginal costs that lead to 

accepted bids ( )( )s.t. w w b v<  while collecting the contribution ( )b v w−  for each such w. The 

optimal bidding fee satisfies the following first-order condition: 

(A2) ( ) ( ) ( )2
: 2 1 2

2f

p pf
FOC h pf H pf

⎛ ⎞+
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. 

The FOC captures the following intuition: increasing f slightly has the marginal benefit of all 

consumers above v  paying a higher bidding fee (RHS of equation (A2)). The marginal cost of 

increasing f slightly (LHS of equation (A2)) is the threshold consumer with valuation v  not 

entering anymore, which results in a loss of both the marginal bidding fee consumer would pay 

( )f dv df pf⋅ =  and the loss of the marginal profit from that consumer not bidding 

( ) ( ) ( )| 2f v dv df p pf⋅ =π . Both of these components of the marginal cost are weighted by 

the density ( )h v  of the marginal consumer occurring in the first place.  
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Rewriting the FOC in terms of the entry threshold 2v pf=  completes the proof of the 

general case. Plugging in ( )H x x= on [0,p] yields ( ) ( )* 2 ( 6)f p p p= ⋅ + . The implied 

threshold is less than p when ( )4 6p p≤ ⋅ + , above which v p=  is optimal. QED 

 

Proof of Proposition 3: At Stage 1, the reverse-pricing seller maximizes his expected profit 

( ),m fΠ  by selecting the optimal combination of bidding fee f and minimum markup m. As long 

as 2m pf p+ ≤  (i.e., as long as consumer v=p enters), the seller obtains the following total 

expected profit: 

 

(A3)  
( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

,

2

, Pr | |

1 2 | 1 |

w v v

p

m pf

m f v v f E b v m w m b v m b w

H m pf f m v dH v H p m pπ π

>

+

⎡ ⎤Π = > + > + − =⎣ ⎦

⎡ ⎤= − + + + −⎡ ⎤⎣ ⎦⎣ ⎦ ∫

1

 

( )
2

0

3where |  
2 2 4

v m

v m v m v mm v w dwπ

−

+ − +⎛ ⎞ ⎛ ⎞⎛ ⎞≡ − =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠∫ . To maximize ( ),m fΠ , the seller first 

finds the optimal bidding fee for every possible level of minimum markup m. This contingent 

optimal fee satisfies the following first-order condition that equates the marginal cost of raising f 

slightly with its marginal benefit: 

(A4) ( ) ( ) ( )2
: 2 1 2

2f

p pf
FOC mp h m pf H m pf

⎛ ⎞+
+ + = − +⎜ ⎟⎜ ⎟

⎝ ⎠
. 

Let ( )H x x= on [0,p]. In other words, assume p low consumers are distributed uniformly on [0,p] 

and an additional mass ( )1 p−  of arbitrarily distributed high consumers are above p. For this 

uniform distribution of low consumers, the optimal fee contingent on m implied by fFOC  

becomes 

(A5) ( ) ( )
( )

2 2 1
* |

6
m p

f p m
p p
− +

=
⋅ +

, 
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which obviously holds for m low-enough, specifically ( )1 1m p≤ + . When m is larger, a positive 

fee is not optimal because m alone already screens many consumers sub-optimally. The fFOC  

implies an entry threshold of 4 2 3
6
m mpv

p
+ −

=
+

. Since the entry threshold is linear in m and the 

optimal fee is quadratic in m, the profit function ( ) ( )( ), * |m m f p mΠ ≡ Π  restricted to the locus 

of points that satisfy the fFOC  is only cubic in m : 

(A6) 

( ) ( ) ( )( ) ( )( )

( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

2 23 3
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2

22 2 2
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8 8

32 6 2 3 2 3 8 3
1

24 6 3 3 2 16 2 3 32 1 6 2

p

v

pm v f v m v m dv p m p m

p p p p p m

p p p p p m p p p p m
>

−
Π = − ⋅ + − + + − + =

⎡ ⎤− + + − + − + ⋅ +
⎢ ⎥

= − ⋅ ⎢ ⎥
+ ⎢ ⎥+ − + + ⋅ + + + + − ⋅

⎣ ⎦

∫

 

To prove Proposition 3, it is sufficient to show that for all ( )0 1 1m p≤ ≤ + ,  ( )mΠ  is decreasing 

in m, that is, ( ) 0m′Π < . Π’(m) can be evaluated as  

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( )

2 22 2 3 2

0
2

2 3 8 3 2 3 2 16 2 32 1 6 2

.
8 6

p p m p p p m p p p p

m
p p

>

− + ⋅ + − + + ⋅ + + + + −

′Π = −
+

 

We start by showing that ( ) 0m′Π <  for the two extreme values of m: At the upper limit of m, 

( )
( )

2 4
4

2
1 1 4 3 0 1 4 3 0

1 8 1
p p p p p p

p p
⎛ ⎞ + − +′Π = − < ⇔ + − + >⎜ ⎟+ +⎝ ⎠

, which obviously holds for all 

0 1p≤ ≤ . Second, the profit is also decreasing at the lower limit of m:  

(A7) ( ) ( ) ( ) ( )
( )

2 2
2 3 4 5

2

32 1 6 2
0 0 32 32 72 12 10 0

8 6
p p p p

p p p p p
p p

+ + + −
′Π = − < ⇔ + − + + + >

+
. 

Inequality (A7) clearly holds for p=0 and p=1. To see that it also holds for all 0 1p< < , let 

( ) 2 3 4 532 32 72 12 10p p p p p pλ = + − + + + . Evaluating ( )0 32 0λ′ = >  and ( )1 31 0λ′ = − <  is 

simple. Since λ’ is a quadratic with a positive coefficient on p, it approaches positive infinity as p 

grows very large or very small. Therefore, λ’ has at least one root above 1 because it is negative 
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at p=1 and continuous.  Now suppose a 0 * 1p< <  exists such that ( )* 0pλ < . Then λ’ must 

actually have all three remaining roots between 0 and 1. In other words, λ’ must start out positive 

around p=0, turn negative (λ must decrease below zero toward p*), turn positive again (to let λ 

increase again toward its positive value at 1), and then turn negative near p=1. λ’ starting out 

positive, ending negative, and having three roots between 0 and 1 in turn implies that λ′′  has 

exactly two roots between 0 and 1. Since ( ) ( )0 144 0 and 1 68 0λ λ′′ ′′= − < = > , λ′′  having 

exactly two roots between 0 and 1 is impossible: a cubic that is negative at 0 and positive at 1 

must have either one or three roots between 0 and 1. Therefore, the existence of a p* such that 

0 * 1p< <  and ( )* 0pλ < would lead to a contradiction, and we have shown that Π’(0)<0 for 

every 0 1p≤ ≤ . 

It remains to be shown that ( ) 0m′Π <  for all non-extreme m values as well, that is, for 

( )0 1 1m p< < + . Since ( )mΠ  is cubic in m, Π’(m) is at most quadratic in m. When 2
3p = , 

Π’(m) is actually constant at ( ) 41 0360m′Π = − < . When 2
3p ≠ , the coefficient on m2 in Π’(m) 

is unequivocally negative, so Π’(m) is concave and has a global maximum at ( )* 0m′′Π = . 

Simple algebra shows this maximum is 
2

2

16 2*
16 18 9

p pm
p p

+ +
=

− −
. When 2

3p < , 1*
1

m
p

>
+

, so 

Π’(m) is monotonically increasing on the ( )0,1 1 p+⎡ ⎤⎣ ⎦  interval and ( ) 1 0
1

m
p

⎛ ⎞′ ′Π < Π <⎜ ⎟+⎝ ⎠
 for 

( )0 1 1m p< < + . When, on the other hand, 2
3p > , then * 0m < , so Π’(m)  is monotonically 

decreasing on the ( )0,1 1 p+⎡ ⎤⎣ ⎦  interval and ( ) ( )0 0m′ ′Π < Π <  for ( )0 1 1m p< < + .  Since 

profit ( )mΠ is thus decreasing in m along the locus of possible solutions, the globally optimal 

solution is captured by the  given 0fFOC m = . QED 
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Proof of Proposition 4.  

We start by analyzing the seller profits under the two consumer-information scenarios. The profit 

of the seller facing informed consumers is ( )( ) ( )
*

* * * 2
2

I
I I I I

p ff p f p f
⎛ ⎞− −

Π = − ⎜ ⎟
⎝ ⎠

. This can be 

expressed as ( )( ) ( ) ( )( )* 1 2 2 3 2
27I If p D D p pΠ = − − + −  for ( )4 3 2 2D p p= − − ≤ , where 

the inequality follows from the fact that D is decreasing in p (and hence ( )* 2
3I

Df p −
=  is 

positive and increasing in p as would be expected). Since 
( )( ) ( )( )* 1 2

0
3

I Id f p p D
dp

Π − −
= > , the 

profit is increasing as p increases, that is, as the outside competition weakens. The algebraic 

expression is complicated by the square root in the optimal fee *
If , but the bounds on *

If  can be 

used to bound the profit: 

( ) ( )( ) ( )
2

* * 1 32 8 5
4 2 2 4 4 2 64I I I
p p p p p pf p f p p p p⎛ ⎞⎛ ⎞< < ⇒Π < − − − = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. Another simple-to-

evaluate profit is at p=1, when the seller is a monopolist: the fee becomes 1/3, and the profit 

2 27 ~0.074. 

Now turn to the seller facing uncertain consumers. When p is low enough 

(  13 3 0.60p < − ≈ ), the seller facing uncertain consumers only serves the high consumers by 

charging 2f p=  (with v p= ). His profit is ( ) ( )
2

* | 1
4 8
p pf v p p

⎛ ⎞
Π = = − +⎜ ⎟

⎝ ⎠
, which 

exceeds the upper bound on ( )( )*
I If pΠ  when 216 32 7 0p p− + > , which holds for most of the 

low p because 2 416 32 7 0 0.577p p p− + > ⇔ < ≈ . Therefore, 4 7p <  implies 

( )( ) ( )( )* *I If p f pΠ < Π . Note that ( )* |f v pΠ =  reaches its maximum at 7 1 0.54
3

p −
= ≈ , 

after which point it is decreasing. Since ( )( ) ( )( )** 13 3 13 3I If fΠ − > Π −  (as can be shown 

by direct computation), ( )* |f v pΠ =  must therefore exceed ( )( )*
I If pΠ  also on the 

4 , 13 37
⎡ ⎤−⎣ ⎦  interval. Therefore, a low p implies ( )( ) ( )( )* *I If p f pΠ < Π . When p is high 
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(  13 3 0.60p ≥ − ≈ ), the seller serves some low consumers as well, and his profit is a rather 

unwieldy ( )( ) ( )( )
( )

23

2

32 3 2 6
*

24 6
p p p

f p
p p

+ − +
Π =

+
. It can be shown that ( )( )*f pΠ  is decreasing 

in p. Intuitively, higher p means both a lower competition from the outside posted-price market 

(positive effect) and a lower chance of very low cost w (negative effect).  The negative effect 

overwhelms the positive effect, as can be seen from the fact that both ( )*f p  and ( )v p  are 

decreasing in p: the seller needs to compensate the consumers for the relatively higher costs that 

lead to less trading. At p = 1, the seller charges a fee of (2/7)2, which corresponds to a 

participation threshold of 4/7. Therefore, the profit 

is ( )( ) [ ]
2 1 2

4/7

2 27* 1 1 4 / 7 0.065
7 8 392

vf dv⎛ ⎞Π = − + = ≈⎜ ⎟
⎝ ⎠ ∫ . This profit is less than the corresponding 

profit of the seller facing informed consumers. Therefore, the seller facing informed consumers 

can now capture enough of the additional efficiency that he prefers informed consumers, and 

( )( ) ( )( )* 1 * 1I If fΠ > Π . From continuity of the profits and the fact that ( )( )*f pΠ  is 

decreasing in p for high p while ( )( )*
I If pΠ  is increasing for all p, a unique point 13 3 1z− < <  

exists such that ( )( ) ( )( )* *I If z f zΠ = Π , and the seller facing informed consumers makes a 

higher profit for p>z and vice versa. Finding z algebraically would involve solving a high-order 

polynomial equation, but it can be easily numerically estimated as z≈0.885. QED 

 

Welfare and Profit Calculation of Illustrative Example in Section 2.4 

Let v=1 correspond to $1500, and let p =2/3 (which thus corresponds to $1000), and assume 

consumer valuations are distributed uniformly on [$0,$1500]. The optimal bidding fee to charge 

is ( ) 272* $2023 200f = ≈ , which screens at level ( ) 3
50 $900v = ≈ . Thus, most low consumers 

do not enter. Those low consumers who do enter bid 2v , resulting in bids between $450 and 

$500. In addition, all high consumers enter, and all bid $500. The expected social welfare W 

realized through the reverse-pricing seller is the difference v−w when there is a trade, that is, 

when valuation exceeds v and the bid exceeds w: 
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( )( ) ( ) ( )
2 13 2 2

3 20 035

7572* $1263 9000

pv

W f v w dwdv v w dwdv= − + − = ≈∫ ∫ ∫ ∫  

with an overall probability of trading of about 13 percent. The seller’s profit is 

( )( )
2

2 23

3
5

3 27 2 472632* 1 1 $1093 5 200 8 3 8 648000
v pf dv⎛ ⎞ ⎛ ⎞Π = − + + − = ≈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ . 

Now consider the optimal minimum markup to charge contingent on bidding fees being zero. 

To derive the optimal markup, let f=0 in ( ),m fΠ  in the Proof of Proposition 3: 

( ) ( ) ( ) ( )
23 9 10 5

| 0 | 1 | : *
5

p

m
m

p p
m f m v dv p m p FOC mπ π

− − +
Π = = + − ⇒ =∫ . 

Substituting p =2/3 yields 9 41* $260
15

m −
= ≈ . This markup screens at $260 and results in total 

welfare of ( )( ) ( ) ( )
* *

12 2

* 0 0

189 59 412* $1253 6750

v m p m
p

m p

W m v w dwdv v w dwdv

− −

+
= − + − = ≈∫ ∫ ∫ ∫ . Plugging 

the m* into the profit equation yields ( )( ) 61 41 412* | 0 $603 8000
m f +

Π = = ≈ . 

Now consider the optimal bidding fee contingent on setting the minimum markup 

to 9 41* $260
15

m −
= ≈ . For p=2/3, equation (A5) suggests a fee of 

( )23 3 52 9 41 2 41* | * | $102
3 200 15 3 600

m
f m p f p

⎛ ⎞− −⎛ ⎞= = ⇒ = = ≈⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. Since the combination 

(m*,f*) is now on the locus of optimal fees given markups, we can simply plug the m* into 

equation (A6) to find that the profit is 122 + 123 41 $84
16200

≈ . As expected, this profit is more than 

( )( )2* | 03m fΠ = . Interestingly, the resulting screening level is the same as with the optimal 
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fee and no markup, namely, 3
5 $900≈ . The welfare is thus decidedly lower because of bid-

shading: ( ) ( ) ( )
* *2 13 2 2

3 20 035

18 277 41*, *( *) $99
27000

v m p m

W m f m v w dwdv v w dwdv

− −

+
= − + − = ≈∫ ∫ ∫ ∫ . 

 

Claim: When potential consumers learn the marginal cost before their entry decision, the 

optimal bidding fee is a solution to ( )2 min , |I If E p v v f= >⎡ ⎤⎣ ⎦ .  

Proof of claim: Consumers enter and bid ( )min ,w p  when ( )min , 0v p f w− − > . The seller 

collects all of his revenue through the fee f, resulting in the following profit function:

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

Pr | Pr Pr

1

p

f p

p

f

f f entry f f w v f dH v w p f dH v

f v f dH v p f H p

⎡ ⎤
Π = = < − + < − =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= − + − −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫
 

where the first term in ( )Pr |entry f  averages the probability that w < v – f over the valuations of 

the low consumers. The second term adds the probability that w < p – f times the probability of a 

high consumer occurring. The first-order conditions are 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )

Pr |
0 Pr | 1 1

1
2 min , |                    

1

p

f

p

f

d entry f
entry f f v f dH v p f H p f H f

df

p H p vdH v
f E p v v f QED

H f

= + = − + − − − −⎡ ⎤⎣ ⎦

− +⎡ ⎤⎣ ⎦
⇔ = = >⎡ ⎤⎣ ⎦−

∫

∫
  

In the uniform case of H(x)=x on [0,p], the optimal fee is a solution to the equation 

2 20 3 4 2I If f p p= − + − , which has a unique root below p of ( )
2

* 2 4 6 3
3I

p p
f p

− − +
= . The 

fact that ( )* 2If p p<  follows from ( )2 22 2 4 6 3 3 0p p p p> − − + ⇔ > . QED 
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