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Abstract

Many firms have introduced internet-based customer self-service applications, such
as online payments or brokerage services. Despite high initial signup rates, not all
customers actually shift their dealings online. We investigate whether the multi-stage
nature of the adoption process (an ‘adoption funnel’) for such technologies can ex-
plain this low take-up. We use exogenous variation in events that possibly interrupt
adoption, in the form of vacations and public holidays in different German states, to
identify the effect on regular usage of being interrupted earlier in the adoption process.
We find that interruptions in the early stages of the adoption process reduce a cus-
tomer’s probability of using the technology regularly. Our results suggest significant
cost-saving opportunities from eliminating interruptions in the adoption funnel.
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1 Introduction

Firms in many industries, including banking, education and healthcare, allow customers to

access and manage their accounts online. Online self-service applications can save money

and time for both firms and customers compared to traditional call centers or face-to-face

interaction. They also allow firms to improve customer service, target new customers, and

cross-sell.

Prior research suggests, however, that online applications have not fully lived up to their

productivity promises (Gordon, 2000). This is in part because despite widespread Internet

diffusion, customers often fail to use these services consistently (Goldfarb and Prince, 2008).

For example, only 20-25% of Italian and French online banking customers transferred money

or paid bills online during three months of empirical study (Ensor, 2008; Ensor and Hesse,

2008). Sparse usage of the services’ full capabilities, such as online transactions, reduces

profits, since active users of online banking generate higher revenues for the bank even after

controlling for selection effects (Hitt and Frei, 2002; Lambrecht, 2005).

One notable feature of these technologies is that they require users to navigate a multi-

stage adoption process. In online banking, customers often need to first sign up and then log

into the service before they can complete a transaction and ultimately become regular users.

In this paper, we explore whether the multi-stage nature of the adoption process and the

possibility of interruptions in this process can explain why customers often do not use online

self-service technologies consistently. We use detailed data on individual users’ completion

of different stages of the adoption process of an online banking service. Our customer-level

data from a German retail bank contain information on the customer’s timing of signup for

and initial login into the bank’s online banking service, as well as information on subsequent

usage of the platform. The setting is ideal for studying a multi-stage adoption process,

because German banks have to comply with a complex series of security requirements that

has led to a clear separation of different stages of adoption.
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The presence of multiple stages to adoption allows for interruptions to the adoption

process that persistently affect whether regular usage ever occurs. One possible mechanism

for this effect is that learning to use and becoming familiar with the technology are costly

(Johnson et al., 2003). Customers need to recall this information and behavior to move to

the next stage, but if they forget, they have to re-learn how to use the technology. This

would explain the lack of regular usage that we observe, providing a separate explanation for

the usage gap from those currently proposed in the literature, which emphasize the degree

of a technology’s ‘usefulness’ (Davis, 1989).

Interruptions in moving through the stages of the adoption process are common: 37% of

users do not log into the service in the same month they signed up, and 29% do not conduct

an online transaction in the same month they first log in. The adoption process resembles

an ‘adoption funnel’ due both to these multiple stages and the level of attrition by the end

of the adoption process. Only 28% of customers who have experimented with making an

online transaction continue to make at least one online transaction per month after their

first transaction. If interruptions significantly affect the desired outcome, regular usage, it is

crucial for a firm to manage interruptions by ensuring that customers move swiftly through

the adoption funnel.

It is difficult to identify empirically a causal effect of interruptions in the initial stages

of the adoption process on later regular usage. A positive relationship between customers

being interrupted in the completion of the early stages of adoption and a lack of regular

usage may not represent a causal relationship, but instead merely customer heterogeneity

such as differences in technological aptitude. Both the timely completion of the initial stages

of adoption and the customer’s usage decisions may therefore reflect customer characteristics

that are only partially observable to the researcher.

We address this endogeneity concern by exploiting exogenous sources of interruptions

to a customer’s adoption process. We use variation in the number of school vacation days
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and public holidays across months and German states as a shifter of a customer’s ability to

progress through subsequent adoption stages that is unrelated to the individual customer’s

propensity to adopt. Vacations and public holidays affect whether customers are able to

receive the initial mailing from the bank with login details promptly after signup, allowing

them to complete the initial login to the website. Public holidays may at the same time

counter later interruptions in the adoption process by providing customers with the option

to conduct banking transactions online at a time when branch banking is not available.

We estimate a discrete choice model of the customer’s decision to conduct an online

transaction once he has completed the signup and login stages of the online banking adop-

tion process. We allow the propensity of conducting online transactions to vary with the

incidence of interruptions to the earlier stages of adoption. Instrumenting for interruptions

with vacations and public holidays yields, as in Heckman (1978), a simultaneous-equations

model with endogenous dummy variables. We find a strong negative effect of early-stage

interruptions on usage: An interruption of the adoption process between signup and initial

login, or between initial login and the completion of an initial transaction, reduces a cus-

tomer’s probability of using the technology in subsequent months by 16 and 28 percentage

points, respectively. This slow-down effect of interruptions on a customer’s usage behavior

declines with time spent in the adoption stage, providing additional evidence that we identify

the causal effect of an interruption rather than underlying customer-level heterogeneity. We

use the parameter estimates in rough back-of-the-envelope calculations of the magnitude of

savings to the bank from being able to eradicate interruptions. These imply additional cost

savings to the bank from the introduction of online banking of 6.4% if customers conduct at

least one transaction through the online instead of the offline channel. This highlights the

importance to firms of actively managing the customer adoption processes to ensure there

are no interruptions.
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2 Related Literature

Our work draws upon two literatures: Research on diffusion and adoption of new technolo-

gies, in particular where adoption involves multiple stages; and work from the psychology

and consumer behavior literature on memory, learning, and momentum.

Much of the literature on technology adoption recognizes that adoption frequently in-

volves the completion of several distinct stages (see e.g., Rogers, 2003), but lacks data to

estimate the process with sufficient accuracy. Instead, research into the adoption of new

technologies such as Tellis et al. (2003) and Van Den Bulte and Stremersch (2004) typically

treats the outcome of the individual adoption decision as a single discrete choice. Other ap-

proaches include work by Kalish (1985) who distinguishes between awareness and adoption

of innovations in his theoretical model, but employs only the adoption part of the model in

estimation since he does not observe whether individuals are aware of an innovation. Sim-

ilarly, Van Den Bulte and Lilien (2007) build a model of an adoption process to derive the

implicit relationship between the observed final adoption outcome and factors that affect

behavior in the unobserved interim stages and exploit this theoretical relationship in estima-

tion. Beal et al. (1957) circumvent the unavailability of outcome data at different stages of

the adoption process by collecting ex post survey data on reported behavior in these stages.

We build further on behavioral research that has explored, in other consumer-choice

contexts, how delays and interruptions affect behavior. We draw on laboratory evidence

from psychology on learning and memory loss that suggests that interruptions early in a

given process damage recall and hinder the successful completion of tasks (Bjork and Bjork,

1992; Richardson-Klavehn, 1988; Bjork and Geiselman, 1978; Speier et al., 1999, 2003). In

our setting, it is critical for customers to remember the banking website they need to navigate,

its features and their login details and password.

The psychology literature also points to a number of reasons for such interruptions to
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increase the cognitive costs of completing a new task, here the subsequent stage in the adop-

tion process, making it less likely for customers to engage in regular usage of the technology

even if they do not abandon the service altogether. First, Bahrick (1979) suggests that due to

the lack of repeated recall early in the process, people remember less of the information and

behavior relevant for the transition to regular usage, making the incremental adoption deci-

sion more costly. Second, Schwarz (1998) finds that the perceived quality of an experience

declines in the difficulty of the task, so these cognitive costs may be evaluated as particularly

high if memory loss has previously led to a more difficult usage experience. Last, research

points to the importance of customers having adopted an ‘implementational’ mindset in com-

pleting a sequence of tasks, which can be lost through interruptions (Gollwitzer et al., 1990;

Gollwitzer, 1990, 1993; Gollwitzer and Brandstatter, 1997). In other words, an interruption

between signup and evaluation or between evaluation and trial may lead customers to lose

sight of their goal of conducting more transactions online. Returning to that implementa-

tional mindset may require an additional, persistent cognitive cost. In summary, we expect

that in settings where adoption spans multiple stages and interruptions are common, early

interruptions affect the adoption outcome because they depreciate accumulated knowledge.

3 Data and the Online Banking Industry

3.1 Overview of Industry and Data

Our data come from confidential customer records from a major German retail bank over

23 months from September 2001 to July 2003. The bank introduced online banking in 1997.

Its online service allows customers not only to monitor their checking, brokerage, and credit

card accounts online, but also to initiate domestic and foreign credit and wire transfers, to

purchase or sell brokerage account holdings, and to set up recurring payments. Customers

benefit from online banking because it is quicker to initiate a transaction online than in

a branch. There are also cost savings for the bank. In Germany, the non-cash payments
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system is dominated by credit and wire transfers, which accounted for 49.8% of the total

number of non-cash payment transactions in 2001, and direct debits, which accounted for

another 36.4% (CPSS, 2003).1 German estimates put the savings from processing such an

online-initiated transfer at e0.50 - 1.00 relative to the cost of a paper-based transaction

(Wuebker and Hardock, 2002, and conversations with the bank).

We use data on the 2,130 customers who signed up for the service during the 23-month

span of the data and went on to make at least one online transaction during the sample

period.2 For each customer, the data include the date of signup for online banking, the

monthly number of logins, and the monthly number of online transactions. This means that

we have data on the precise date for signup, but only data on the month that customers log

in for the first time or conduct their first online transaction. We do not have data on other

drivers of customer signup for online banking, such as bank-level marketing activities.

The data further include information on the number of offline transactions that a cus-

tomer conducts each month. This includes automated transactions, such as direct debits, as

well as ATM withdrawals. As a result, a customer makes approximately 17 offline transac-

tions in the average month.3 The available information on offline activity is therefore more

likely a proxy for the customer’s overall banking needs rather than representing the actual

number of user-initiated offline transactions.

Lastly, the data include several customer attributes, such as the age and gender of the

primary account holder,4 and whether a customer has a brokerage account in addition to a

checking account. The data also cover the zip code of the customers’ branches, which we take

1This is unlike the situation in the US, where checks represent only 2.3% of total payments.
2In the Online Appendix, we demonstrate the robustness of our results to this selection criterion by

finding similar patterns for customers who never made a transaction during our sample period.
3The median number of transactions (14) is slightly lower than the mean, reflecting the 0.79% of customers

who conducted more than 75 offline transactions on average each month. We conducted robustness checks
to make sure that such customers did not bias our results and found that the exclusion of such outlying
customers did not change the results significantly.

4We do not observe whether the account is a joint account, but assume instead that the primary account
holder manages the household’s banking activities.
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Table 1: Summary Statistics

Mean Std Dev Min Max

Interruption bef. Login 0.37 0.48 0 1
Interruption bef. Transaction 0.29 0.46 0 1
Months between signup and login 1.05 1.85 0 21
Months between login and first online transaction 0.67 1.82 0 21
Age 35.60 11.40 15 96
Age squared / 1000 1.40 0.97 0.22 9.22
Male 0.51 0.50 0 1
Brokerage account 0.27 0.45 0 1
Branches in Zip 0.94 0.23 0 1

Cross-sectional descriptive data for 2,130 customers who made at least one online transac-
tion during the 23-month sample period.

Mean Std Dev Min Max

Make online transaction in given month 0.59 0.49 0 1
No. online transactions / month 2.57 4.03 0 75
No. logins / month 6.15 10.60 0 301
No. offline transactions / month 17.20 17.40 0 250
Vacation Days in month 5.59 7.90 0 31
Public Holidays in month 0.85 0.93 0 4

Panel data for 2,130 customers who made at least one online transaction during the 23-
month sample period. Monthly observations covering months subsequent to the customer’s
first month with at least one online transaction. 27,946 monthly observations.

as their zip code of residence. We use information from Hoppenstedt Firmeninformationen

GmbH on the bank’s number of physical branches in the local zip code.

Using official state historic records, we collect data on state-level public holidays and

school vacations, which we use as instrumental variables. We calculate the length of each

vacation period including weekends, as we are interested in identifying periods when people

are away from home, rather than merely being off work.

Table 1 provides summary statistics for customer characteristics, banking usage, and

vacations. The average customer is 35.6 years old. 51% of customers are male. Customers

are located in all 16 German states. 27% of customers have a brokerage as well as a checking

account with the bank.
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3.2 The Adoption Funnel

‘Adoption’ frequently refers to the customer’s decision to purchase or begin using a product or

service. For customer self-service technologies, it is difficult to identify one discrete decision

that indicates adoption. In the case of online banking, the customer goes through four

successive stages before the bank realizes cost savings. Our empirical measures are developed

in the specific context of online banking, but the general framework applies to other self-

service technologies. We call this adoption process the ‘Adoption Funnel.’ The different

stages of the adoption funnel are:

a) Signup: A customer signs up for a new internet service.

b) Evaluation: A customer logs into the service for the first time.

c) Trial: A customer processes the first transaction using the service.

d) Regular usage: A customer regularly uses the service to process transactions.

Signup occurs when a customer submits a paper form to a bank branch indicating the wish

to use online banking. The bank sends back a letter detailing the login ID. This system allows

the bank to verify the user’s identity and to transmit the login details securely. Creating the

login details is automated and takes between one and two working days.

At signup the customer learns three types of information: the features of the service

(types of transactions that can be done online), the benefits of the service (time savings and

24/7 accessibility compared to branch services) and the actual steps involved in using the

service. The customer needs to recall this information to transition to all later stages.

Evaluation occurs after a customer received the login details that were sent by the bank

following the signup stage. At evaluation, the customer logs into the web site and is able to

check account details online and to investigate what the new service can do. In the evaluation

stage, the customer learns new behavior. First, customers need to log into the online banking
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web site. This requires remembering to use the login ID and where they stored it. Second,

customers learn how to navigate the banking web site (Johnson et al., 2003), a potentially

difficult task for an inexperienced user.

Trial occurs when customers initiate their first online transaction. Though evaluation

(first login) and trial (first transaction) are often used synonymously, in our setting they

are separated both functionally and empirically. First, a customer can log in at any time

but requires a specific need for a transaction to try the service. Second, the separation is

due to security practices that are mandated for German banks. In a mailing separate from

(but simultaneous to) the mailing of the login details, the customer receives a list of 6-digit

transaction authorization numbers (TAN). An online transaction can only be executed if it is

verified with a TAN. Trial therefore requires the customer to jump through an extra security

hoop, making the customer’s interaction with the online banking site more complex than at

evaluation. Learning involves understanding web site navigation for transactional purposes,

filling out the online transaction form and authorizing transactions. The customers need to

further remember where they stored their TANs (Wuebker and Hardock, 2002).

Regular usage occurs when the customer uses the technology to conduct transactions in

each month. We evaluate this by studying whether, in the months after initial trial, the

customer uses the technology to make transactions. Only when a customer attains regular

usage, can the customer and the bank fully benefit from the service.

3.3 Interruptions in the Adoption Funnel

In moving to regular usage, customer learning of the online platform can be facilitated by

a speedy transition through the adoption process, thereby reinforcing the memorization of

newly learned information and behavior through repeated recall (Bjork and Bjork, 1992;

Richardson-Klavehn, 1988; Bjork and Geiselman, 1978). At the same time, the fact that

adoption is not a single one-time event opens the possibility for exogenous interruptions
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to the process. An interruption slows movement through the adoption funnel by causing

customers to forget the knowledge they previously accumulated (Speier et al., 1999, 2003).

If a vacation, for example, interrupts the adoption process after the initial signup, a customer

may not remember the service’s features, benefits or steps required for usage upon return.

A similar interruption later on in the adoption process after trial may result in forgetting

how to log in or navigate the banking web site.

Empirically, we consider a customer’s adoption process to be interrupted between signup

and evaluation if a customer fails to log in during the month of signup. The only exception

to this is if signup was in the week prior to the end of the month (meaning that the observed

delay in logging into the website could plausibly be explained by the time it took the bank

to mail the envelope). We similarly consider customers to be interrupted between evaluation

and trial if they fail to conduct their first online transaction in the month of their first

login. By this definition, a significant share of customers experience interruptions of different

lengths during the adoption process: As reported in Table 1, 37% of customers do not log in

during the month of their signup, and on average customers take 1.05 months to complete

their move from signup to evaluation. 29% of customers do not conduct their first transaction

in the month of their first log in, taking on average 0.57 months to move from evaluation

to trial. After customers make their first online transaction, they conduct another online

transaction in only 59% of subsequent months. We explore the impact of these interruptions

on regular usage of online banking.

3.4 Exogenous Sources of Interruptions

We want to infer a causal relationship between interruptions in initial stages of the adoption

funnel and subsequent usage. The challenge is that a positive relationship between a cus-

tomer being interrupted in the completion of an early stage of adoption and a lack of regular

usage may merely be the result of customer heterogeneity along a variety of dimensions,
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including technological aptitude, cost of time, or the availability of internet access.

To identify the causal relationship, we need a plausibly exogenous source of interruptions

in the earlier adoption stages that is not correlated with the customer’s unobserved attributes

that lead to regular usage. We exploit the unusually regimented system of school vacation

and public holidays in Germany that vary across the 16 German states. This provides an

exogenous source of events that shift an individual customer’s propensity to interrupt the

adoption process and to move to the next stage of the adoption funnel, but are unrelated to

their unobserved characteristics.

Vacation days affect a customer’s ability to receive the mailing containing the online

banking details and to initially log into online banking, since they usually separate customers

from their computer and their mail. This exogenous variation in computer usage caused by

vacations has also been exploited by Oberholzer-Gee and Strumpf (2007). It implies that

customers who sign up for the service in a vacation-heavy month would be more likely to

interrupt their adoption process and delay their first login than customers who sign up

in another month, for reasons unrelated to unobservable customer tastes for technology.

Therefore, similar customers have different likelihoods of interrupting the adoption process

between signup and evaluation, merely because they sign up in different months.

Public holidays represent an additional source of exogenous variation in whether a cus-

tomer interrupts the adoption process. Similar to vacation days, they cause a delay in the

customer’s receipt of login details, an obvious deciding factor for whether a customer inter-

rupts the adoption process after signup and hence delays their first login. However, once

a customer has received both the login details and the TANs, there needs to be a specific

reason why that customer decides to make an online transaction. One reason independent

of customer-specific drivers of transaction behavior may be that, as is the case on public

holidays, bank branches are closed and consequently there are no other ways of making a

transaction on the particular day. Also, customers may use public holidays to catch up with
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chores such as paying bills. This logic suggests that customers are more likely to make a

transaction if they experience a larger number of public holidays and that otherwise iden-

tical customers move through the adoption funnel at different speeds if they face different

numbers of public holidays in a month.5

Table 1 illustrates the extent of variation in public holidays and vacations days across

customers and months. There are up to four public holidays and up to 31 school vacation

days in a month, with an average of one holiday and six vacation days.6 This reflects the fact

that public holidays are largely set at the state level, with German states setting between

nine to twelve public holidays each year, and that the federal government coordinates the

timing of school vacations to minimize overlap across states.

In estimation, we use the number of vacation days and public holidays in the 14-day

window after each customer signs up for online banking as instruments for whether or not

a customer’s adoption process is interrupted between signup and first login. For example, if

a customer signs up for online banking on August 14, we use vacations and public holidays

that occur from August 15 to August 28. Since we only have monthly data on the timing of

login and transactions, we use the number of vacation days and public holidays in the month

following the first login as an instrument for an interruption between the initial login and

the initial online transaction. The monthly data are less precise, but we were able to use

the exact signup date to improve the precision of the instrument for an interruption before

a first transaction. In cases where the first login falls into the same month as sign-up, we

use only the public holidays in the 30-day window beginning one week after the signup date

as an instrument for an interruption between first login and first transaction.

5School vacations do not affect whether or not a bank branch is open. As shown in Table 3, the effect of
vacations on interruptions between first login and first transaction is not statistically significant, and we do
not use vacations as instruments in that stage.

6The Online Appendix illustrates that this variation stems from variation across states in the timing and
length of vacations and public holidays over the course of the year. It also provides evidence that Germans
make extensive use of such vacations to travel.
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Table 2: Median Splits for Instrumental Variable

Below Median Above Median Diff.

Public Holidays in Signup Month
Interruption bef. Login 0.55 0.62 -0.078***

Vacation Days in Signup Month
Interruption bef. Login 0.53 0.59 -0.062***

Public Holidays in Login Month
Interruption bef. Transaction 0.40 0.15 0.250***

The table compares the percentage of customers who were interrupted before their first login or first
transaction among customers with holidays or vacation days below vs. above the median number of
vacation days or holidays in the sample. *** indicates significant at the 0.001 level.
Sample: 2130 customers who made at least one online transaction during the 23-month period.

Table 3: Linear Probability Models of the Incidence of Interruptions

Interruption Interruption
bef. Login bef. Transaction

(1) (2)
Public Holidays Signup Month 0.120 0.023∗∗∗
Vacation Days Signup Month 0.007 0.003∗∗∗
Public Holidays Login Month −0.086 0.018∗∗∗
Vacation Days Login Month −1.3E-04 −0.002
Age −0.006 −0.005 −0.002 −0.004
Age squared 0.059 −0.053 0.026 −0.049
Male −0.050 0.021∗∗ 0.079 0.019∗∗∗
Brokerage 0.019 −0.023 −0.015 −0.022
Bank Branches 0.061 −0.044 0.065 −0.041
Month Controls Yes Yes

Observations 2,130 2,130

* p <0.10, ** p <0.05, *** p <0.01. OLS specifications for the likelihood of interruptions.
Sample: 2130 customers who made at least one online transaction during the 23-month sample
period.

As shown by the median splits in Table 2, vacation days and public holidays are strong

predictors of interruptions. Customers with an above-median number of vacation days or

public holidays in the signup month have a significantly higher incidence of interruptions

between signup and login than customers with a below-median number of vacation days and

public holidays. Customers with an above-median number of public holidays are also signif-

icantly less likely to interrupt the adoption process between first login and first transaction.

14



Table 3 reports the estimates of a linear probability model of the incidence of an in-

terruption. Column (1) in Table 3 displays the results of an OLS regression of whether or

not a customer experienced an interruption in the transition to login (evaluation stage) on

customer characteristics, public holidays, and vacation days following signup. The results

suggest that public holidays and vacation days in the signup month are positively and signif-

icantly associated with interruptions, controlling for seasonality, customer demographics and

customer bank attributes. Column (2) similarly displays the results of an OLS regression of

the incidence of interruptions in the transition to the first transaction (trial stage) on cus-

tomer characteristics, public holidays and vacation days in the login month. Vacation days

are not significant here, so we did not use them as instruments in our main specification.

Our ability to use the number of vacation and public holidays as instrumental variables

depends on their satisfying the exclusion restriction. This requires that the instrument af-

fects the outcome variable only through the single known causal channel. In our context,

this causal channel is that prior public holidays and vacation days affect regular usage only

through earlier interruptions, and not through other means. Though there are no formal

statistical tests to support the exclusion of the instrumental variables from our main mod-

eling equation of regular usage, it is important to ensure as far as possible that previous

occurrences of public holidays and vacation days are independent of other factors that influ-

ence a customer’s adoption behavior in later stages of adoption. For example, it would be

problematic if the bank changed its marketing campaigns to match vacations or state public

holidays. Conversations with the bank assured us, however, that the bank conducted such

marketing efforts at a national level only. In our estimation, we also control for possible

month- or state-specific factors by including seasonal and state fixed effects.

We also checked whether customers who sign up before a vacation or public holiday differ

in observable attributes from the remaining customers. Our assumption that our instruments

are a random treatment across customers could be violated if there are proportionally fewer
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customers who sign up in these periods or if the customers who do are less likely to use the

internet or are older. There are, however, no statistically significant differences in the shares

of customers or in the demographic features of the customers who sign up before a vacation

or public holiday compared to other times.

4 Modeling a Multistage Adoption Process

In this section, we outline our empirical approach to estimating the determinants of a cus-

tomer’s decision to use online banking and how the customer’s experience earlier in the

adoption funnel affects this decision. We focus on the customer’s decision to make at least

one online transaction in a given month following the initial trial. We assume that a banking

customer i who has completed the initial stages of adoption of the service uses the online

banking service in month t, t = 1, ..., Ti, provided that they derive positive utility from using

the service. In the data, we observe only whether the customer uses the online banking

service, Uit, but not the underlying latent utility from doing so, U∗it.

We capture the benefits of using the service by a vector of customer attributes, Xitβ.

These include the number of bank branches near the customers and whether they hold a

brokerage account, to proxy for the likely value of a physical branch location; the customer’s

age and gender, to reflect possible differences in cost of time across these demographic

groups; and their overall demand for banking services, which we approximate by the number

of offline transactions the customer makes in that month. We further include seasonal and

state controls, and the number of public holidays and vacation days in a month, to allow

for systematic differences in the attractiveness of online banking in different months or in

different locations within Germany.

The costs of using the service reflect the customer’s perceived cost of returning to the

website that month and reusing the service, which are cognitive costs the customer incurs

in the adoption process (Johnson et al., 2003). As we discuss in section 3.3, cognitive
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costs could span learning how to navigate the banking website, remembering login details,

and where they stored and how to use their TANs. Such learning costs likely decline in

the customer’s experience with the service. Accordingly, we include a vector of indicator

variables ζit that reflects how long the customer has been making transactions using online

banking. We include an indicator for whether a customer used the service in the last month,

Ui,t−1, as a separate cost shifter, reflecting the potential for state dependence in cognitive

costs. Int Logini captures whether that customer experienced an interruption between signup

and initial login. Int Transi similarly captures an interruption between initial login and the

first online transaction.

Since customers can relearn and reengage in an implementational mindset, the effect

of Int Logini and Int Transi on utility may not persist forever and instead may be most

important in the initial periods where cognitive costs are highest. In our main specifi-

cation, we represent this potential for the decreasing importance of interruptions flexibly

with non-parametric interactions between ζit and the interruption indicators, Int Logini and

Int Transi.
7

We further recognize that the customer’s usage decisions reflect individual-specific, un-

observed shifters of the customer’s utility of usage. We allow for both random customer- and

month-specific shocks ν3it to the utility from using online banking, such as random fluctua-

tions in the amount of bills that the customer needs to pay in a given month, and persistent

individual heterogeneity in the utility of usage, ε3i , that is possibly correlated with unob-

served determinants of the incidence of interruptions. As in the linear probability models

in Table 3, we specify the likelihood of being interrupted in adoption as a function of cus-

tomer attributes and, importantly, exogenous determinants of interruptions. This results in

7We also use a specification where we impose a linear functional form on the diminishing impact of
interruptions, with similar results. These are reported in the Online Appendix.

17



a system of three estimating equations:

Int Logini = I(β10 +X1
i β11 + Z1

i γ1 + ε1i > 0) = I(u1i + ε1i > 0) (1)

Int Transi = I(β20 +X2
i β21 + α21Int Logini + Z2

i γ2 + ε2i > 0) = I(u2i + ε2i > 0)

Uit = I(β30 +X3
itβ31 + ζitα30 + Int Logini(α

1
31 + ζitα

1
32) + Int Transi(α

2
31 + ζitα

2
32)

+ α33Ui,t−1 + ε3i + ν3it > 0) = I(u3it + ε3i + ν3it > 0)

The propensities for customer interruptions in Equation (1) include two sets of instruments,

Z1
i and Z2

i , that affect a customer’s progress through the trial and evaluation stages of the

adoption funnel. Z1
i contains, as discussed in section 3.4, the number of public holidays and

the number of school vacation days in the two-week period following the customer’s initial

signup for online banking, and Z2
i contains the number of public holidays in the month after

the customer first logs in. These are exogenous sources of variation in interruptions between

signup and the first login or between the first login and first transaction that are excluded

from the customer’s subsequent usage decisions and are uncorrelated with the unobserved

determinants of that decision, ε3i . The instruments allow us to identify a causal effect of

interruptions on the customers’ regular usage that abstracts from differences in customers’

underlying adoption and usage propensities as captured by the εi.

We assume that the unobserved customer attributes εi are freely correlated and fol-

low a mean-zero trivariate normal distribution with variance-covariance matrix [[1, ρ12, ρ13];

[ρ12, 1, ρ23]; [ρ13, ρ23, σ
2
3]].8 The correlations between εi are the source of endogeneity concerns

in identifying the effect of interruptions. Heckman (1978) shows that under weak conditions

satisfied here, all parameters of the multiple-equations model are econometrically identified,

with the exception of the variances of ε1i and ε2i , which we normalize to one. We estimate

8This parameterization is slightly more restrictive than the non-parametric identification strategy sug-
gested by Vytlacil and Yildiz (2007), but it allows us to more easily incorporate discrete explanatory variables
Xi.
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the standard deviation of the unobserved individual effect in the utility to usage, σ3, freely.

Last, we assume that the random customer- and month-specific shocks to the utility from

online banking, ν3it, are distributed according to a standard normal distribution with mean

zero and standard deviation one and are independent across t and of ε1i , ε
2
i , and ε3i .

In estimation, we extend the approach introduced by Heckman (1978) for dummy endoge-

nous variables in a simultaneous-equations system to panel data. Under our assumptions,

the likelihood of observing customer i’s stream of interruption and usage outcomes is given

by:

Li = Pr
(
Int Logini = intLi , Int Transi = intTi , Ui1 = ui1, ..., UiTi = uiTi

)
(2)

=

∫ ∞
−∞

[ ∫ (2intTi −1)u2
i

−∞

∫ (2intLi −1)u1
i

−∞
f(ε1i , ε

2
i

∣∣ ε3i )dε1i dε2i
×

∏
t=1,...Ti

(
1− Φ(u3it + ε3i )

)1−uit Φ(u3it + ε3i )
uit

]
f(ε3i )dε

3
i .

where intLi and intTi denote customer i’s observed outcomes for {Int Logini, Int Transi}

and uit their observed transaction decisions. f(ε1i , ε
2
i | ε3i ) denotes the conditional bivariate

normal distribution of ε1i and ε2i given a realization for ε3i with marginal pdf f(ε3i ). Condi-

tional on ε3i , the first part of the likelihood, corresponding to the propensities of a customer

experiencing interruptions, is therefore a bivariate probit probability for each of the four

possible interruption outcomes, {Int Logini, Int Transi}=(0, 0), (0, 1), (1, 0), (1, 1). Simi-

larly, the likelihood of observing each transaction decision, conditional on ε3i , is a univariate

probit probability.

We evaluate the 2-dimensional integral over the conditional joint normal distribution of

(ε1i , ε
2
i ) using the GHK simulator and similarly employ Monte-Carlo simulation techniques to

integrate over the distribution of ε3i . We then find parameters that maximize the aggregate

log-likelihood across customers. The Online Appendix contains a detailed derivation of
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the log-likelihood function. It also discusses the difficulty of implementing an alternative

modeling approach, a simultaneous-equations-hazard specification for the time a customer

spends in each stage of the funnel.

5 Results

Table 4 presents the results of multiple empirical specifications for the customer’s regular

usage decision. We begin with linear probability models that explore the relationship between

regular usage and interruptions. Model (1) presents results from an OLS regression of the

customer’s usage decision in every month after initial trial on indicators of interruptions

earlier in the adoption funnel and customer attributes. Model (2) repeats this specification,

instrumenting for the interruption variables with the number of vacation and holidays in

the month following signup and the number of holidays in the month following first login in

a two-stage least squares estimation. In the systems-of-equations estimates that follow, we

allow the effect of such interruptions to vary with the number of months passed since trial.

Here, we focus simply on the aggregate effect of interruptions to facilitate the interpretation

of standard instrumental variable tests.

The coefficients suggest that interruptions affect customer usage in statistically and eco-

nomically significant ways. In the OLS specification in column (1), the probability of con-

ducting at least one online transaction in a given month is 10.2 and 15.9 percentage points

higher for a customer that does not experience an interruption before the first login or the

first transaction, respectively, relative to an otherwise identical customer who is interrupted.

The 2SLS specification in column (2) entails a similar effect for an interruption before lo-

gin on regular usage, suggesting that endogeneity concerns do not generally bias the results

downards. The effect of an interruption before the first online transaction on regular usage

increases in absolute terms under 2SLS. This may be because measurement error introduced

by our monthly data means that we include some interruptions in moving from the evalu-
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ation to the regular usage stage that are only artifacts of someone’s adoption spanning the

end of one month and the beginning of another month.

The specification in column (1) allows us to obtain conventional instrumental variable

test statistics for the endogenous interruption variables. The Anderson canonical correlation

likelihood-ratio test for underidentification suggests that we can reject the hypothesis that

the first-stage equation is under-identified (p <0.0001). Our instruments are therefore good

predictors of interruptions.9

The remaining specifications in Table 4 recognize both the discrete nature of our outcome

variables, as well as the panel nature of the usage decisions. Model (3) is a random effects

probit specification of the probability of regular usage. This specification includes the effect

of interruptions on transaction behavior, but as in Model (1) does not treat interruptions as

endogenous. Controlling for unobserved customer attributes with the random effects frame-

work yields similar results to the earlier models for the effect of interruptions in significance

and direction. Model (6), our main specification, controls for the possible endogeneity of

interruptions using the system-of-equations estimator from Equation (1).

As above, the parameter estimates for our main model, Model (6), suggest that both

an interruption before the first login and an interruption before the first transaction signifi-

cantly reduce the probability that a customer moves to regular usage. We calculate marginal

effects for each individual by computing the difference in predicted marginal probability of

usage if the customer has an interruption and if he does not. Averaging across individuals,

this suggests a 15.7 percentage point increase (95% confidence interval 12.3%-19.1%) in the

likelihood of a customer conducting an online transaction in the first month after making

a transaction from eradicating the interruption between signup and evaluation, and a 28

percentage point increase (95% confidence interval 24.3%-31.7%) from eradicating the inter-

9We also checked for overidentification by running a specification similar to those reported in Table 4
but dropping public holidays in the signup month as an instrument in the first stage. This means that our
equations were exactly identified. The results were similar.
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ruption between evaluation and trial. This compares to 37% and 29% of customers in the

sample who experience interruptions between signup and login and between login and first

transaction. This indicates that the effect is economically significant.

The interactions with the month dummies suggest that the impact of an interruption

before the first login becomes very small roughly three months after the first online transac-

tion. For the more recent interruption before the first online transaction, the impact is more

persistent, and the marginal effect implies a 14.8 percentage point decrease in the probabil-

ity of conducting a transaction even after nine months.10 Though the marginal effects are

similar to the 2SLS coefficients on average, they also suggest significant heterogeneity in the

effect of interruptions with time passed.

The control variables indicate that regular usage increases at a decreasing rate in the

customer’s age and is higher for men relative to women. These variables may proxy for the

customer’s opportunity cost of time or computer experience. Our results also show that the

availability of physical bank branches is correlated with a greater probability of regular usage,

possibly reflecting the fact that banks are more likely to be present in regions with a higher

need for banking. Similarly, customers with a greater number of offline transactions who are

likely to have a greater affinity for banking are more likely to make repeated transactions

online.11

10These marginal effects do not represent the marginal effects of the full interaction variable, but rather
the conditional marginal effects of moving from Int Login or Int Trans = 0 to Int Login or Int Trans = 1,
holding fixed the particular number of months the customer has so far spent in the usage stage. We therefore
focus purely on the marginal effect on the usage probability of experiencing an interruption if the customer
is in months 0-3 in the usage stage, months 4-6, etc.

11We also tried other control variables such as zip-code level data on income, educational attainment, and
internet activity. These measures were insignificant in predicting adoption behavior.
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Our main specification also allows for state dependence in the customer’s usage deci-

sion by including an indicator variable for whether the person made a transaction in the

prior month. As expected, the coefficient on prior usage is positive, indicating a positive

association with transaction behavior over time.

The bottom panels of Table 4 contain the parameter estimates of the remaining ancilliary

equations. In line with the median splits presented in Table 2, an interruption before the

first login is positively correlated with the presence of both public holidays and vacations

after signup. These results suggest that the more school vacation days or public holidays

there are after signup, the more likely a person is to get interrupted in moving to initial login

for online banking, possibly because of the increased amount of travel at these times. We

find a negative and significant effect from public holidays on an interruption occurring before

the first online transaction, consistent with either the increased value of online banking in

times of when branches are closed or with an increased focus on household tasks on public

holidays.

We use the proportional chance criterion (PCC) to examine the fit of our main specifi-

cation. If we classify a customer as conducting an online transaction in a month provided

their predicted adoption probability exceeds 0.5, we correctly predict 64.02% of customers’

decisions to make at least one online transaction in a month. This is statistically significantly

higher than the PCC of 51.62%.

As robustness checks, Table 4 contains in columns (4) and (5) two alternative specifi-

cations of the usage model. Model (4) is a model that jointly estimates the probability of

interruptions in the initial stages and the probability of later regular usage, but that does not

consider the effect of interruptions on regular usage. A likelihood ratio test (significant at the

1% level) suggests that the model with interruptions better reflects regular usage behavior

than the alternative specification that excludes these terms. The incidence of interruptions

in early stages is thus important in explaining lack of regular usage.
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Model (5) shows results from a specification that omits state-dependence by excluding

the previous month’s usage decision as an explanatory variable. The results show that if we

did not account for state dependence in our main specification, we would overestimate the

effect of interruptions on regular usage.

Across specifications, we thus find that interruptions both early and later in the adoption

process affect regular usage. At signup, customers learn information that is required for the

transition to all subsequent stages. Customers need to know their TANs and the different

types of transactions available online in order to move to regular usage. Our results thus

suggest that an interruption prior to the first login hurts memorization of relevant informa-

tion and results in greater cognitive costs of regular usage later on, just as an interruption

immediately prior to the stage of regular usage does.

6 Policy Projections

The results in Table 4 suggest that interruptions between earlier stages in the adoption

process can affect regular usage. This section provides some rough estimates of the overall

effect of these interruptions on firm costs in order to guide firm policy. We calculate how

the marginal probability of usage would change if the bank ensured its customers moved

smoothly along the adoption funnel and prevented interruptions in the move to the trial

or evaluation stages of online banking. Before proceeding, we should note two caveats.

First, we simply compare outcomes for a customer that experiences an interruption and an

identical customer that does not, rather than varying the underlying source of interruptions.

Second, out estimates strictly identify only the average local treatment effect of vacations

and holidays. We are therefore making an assumption that they can be considered proxies

for other sources of interruptions that the bank has some control over in these estimates.

We use the estimates presented in Model (6) of Table 4. Table 5 describes the results

for customers in the first month following their first transaction. It compares the average
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Table 5: Projections of change in the likelihood of making a transaction in the first month
after first transaction from eradicating different kinds of interruptions

Mean Std Dev Min Max Observations

Current usage 0.49 0.22 0.01 0.99 2130
Predicted usage if no interruption 0.64 0.15 0.13 1.00 2130
Predicted usage if no interruption bef. login 0.56 0.21 0.02 0.99 2130
Predicted usage if no interruption bef. transaction 0.58 0.18 0.05 1.00 2130

predicted likelihood of someone using online banking for transactions in that subsequent

month if we eradicate the interruption before the first login, the interruption before the

first online transaction, or both interruptions. All of these projections are calculated as

the mean of each individual’s projected difference in marginal propensity. The projections

suggest that the share of customers that use online banking in that month would increase

by 15 percentage points if all interruptions were eradicated. It also suggests that preventing

interruptions between signup and login (a 7 percentage point increase) would have a slightly

weaker effect than preventing interruptions before the first online transaction (a 9 percentage

point increase).

To get a rough idea of the cost savings involved, we use estimates from Wuebker and

Hardock (2002) as well as the bank, that suggest that replacing an offline transaction by its

online equivalent reduces a bank’s variable costs by approximately e0.50–1.00.12 We use the

e0.50 figure, assuming only one transaction per month, even though the average number

of transactions in our sample is 4.3 per month. A retail bank with 1 million new users of

online banking, like the user base of the bank we study, could therefore save at least e6

million in the first 12 months if these customers made at least one transaction online. The

results in Table 6 suggest that the bank we study could therefore expect to see additional

savings of around e384,000 from the increased online transactions due to the prevention of

interruptions in the 11 months following the month of first online usage. This represents an

12This estimate has the advantage that it is specifically for this time period and country, but it is an
aggregate estimate that does not distinguish between different types of transactions.
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Table 6: Proportional increase in transactions over first 12 months in usage stage

Mean Std Dev

Cost-savings, no interruption 0.064 0.092
Cost-savings, no interruption bef. login 0.016 0.036
Cost-savings, no interruption bef. transaction 0.048 0.085

increase of cost savings by 6.4%.

Our results suggest that moving customers along the adoption funnel faster can increase

the likelihood of their using the service in subsequent months. The staggered adoption pro-

cess requires that managers pay particular attention to preventing interruptions and manage

customers’ progress along the adoption funnel. There are a number of ways of minimizing

interruptions to the adoption process, such as in-branch or online customer education mea-

sures on the benefits and usage of the platform, timing promotions to coincide with periods

with likely interruptions, or using price incentives or deadlines to complete the adoption

process or its stages. Though we do not have access to data that could assess the relative

costs and feasibility of these different techniques, our results suggest value to investigating

various ways of reducing interruptions in the adoption process.

7 Conclusion

Online services that firms offer customers typically have a multi-stage adoption process.

Adoption for such services can be characterized as an ‘adoption funnel’ where customers

have the potential to experience interruptions in four incremental stages: Signup, evaluation,

trial, and regular usage. The profitability of such services relies on customers successfully

navigating the multiple stages and regularly using the service afterwards.

This adoption funnel is vulnerable to interruptions. An interruption can lead to forget-

ting of information and behavior previously learned and the loss of an implementational

mindset. As a result, reengaging in the adoption process may lead to significantly greater

cognitive costs, preventing customers from moving to regular usage. We explore empirically
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how interruptions in earlier stages of the adoption funnel affect later regular usage. We use

variation in interruptions resulting from differences in state-level public holidays and vaca-

tions to address endogeneity concerns. Our results demonstrate that exogenous interruptions

in early stages significantly lower the probability that a customer will later regularly uses

the service. Interruptions can therefore partly explain low regular usage.

Our results also highlight that the extensive regulatory efforts to ensure online data se-

curity could potentially have unintended consequences for the diffusion of online services. In

the case we study, the bank initiated the multiple-stage signup process in response to pres-

sure by European regulators that required individual authorization for the release of personal

data. To satisfy the opaque conditions for ‘electronic consent’ of directive 95/46/EC, the

bank used traditional written means to prove that the customers had consented to their

data being made accessible online, and developed the system of access codes or TANs for

each online transaction. For similar security concerns, US Federal Financial Institutions

Examination Council recommended in 2006 that banks use multi-factor identification for

authentication as opposed to the commonly used username/password combination. Mea-

sures to address such security concerns are not limited to the banking sector. Increasingly

complicated processes to protect the security of customers have also been suggested in many

industries13. Our research emphasizes that multi-stage authentication processes are more

vulnerable to interruptions and may lead to lower levels of adoption.

13See for example, ‘Idaho Code S 39-1394’, which requires written authentication for electronic physician
order systems.
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