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Abstract

Consumers’ preferences can often be represented using a multimodal continuous

heterogeneity distribution. One explanation for such a preference distribution is that

consumers belong to a few distinct segments, with preferences of consumers in each

segment being heterogeneous and unimodal. We propose an innovative approach

for modeling such multimodal distributions that builds on recent advances in sparse

learning and optimization. We apply the model to conjoint analysis where consumer

heterogeneity plays a critical role in determining optimal marketing decisions. Our

approach uses a two-stage divide-and-conquer framework, where we first divide the

consumer population into segments by recovering a set of candidate segmentations

using sparsity modeling, and then use each candidate segmentation to develop a set

of individual-level heterogeneity representations. We select the optimal individual-level

heterogeneity representation using cross-validation. Using extensive simulation experiments

and three field data sets, we show the superior performance of our sparse learning model

as compared to benchmark models including the finite mixture model and the Bayesian

normal component mixture model.

Keywords: Sparse Machine Learning; Multimodal Continuous Heterogeneity; Conjoint Analysis.
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1 Introduction

Marketing researchers and practitioners frequently use conjoint analysis to recover consumers’

heterogeneous preferences (Green and Srinivasan 1990, Wittink and Cattin 1989), which

serve as a critical input for many important marketing decisions, such as market segmentation

(Vriens et al. 1996) and differentiated product offerings and pricing (Allenby and Rossi 1998).

In practice, consumer preferences can often be modeled using a multimodal continuous

heterogeneity (MCH) distribution, where the consumer population is interpreted as consisting

of a few distinct segments, each of which contains a heterogeneous sub-population. Since

in most conjoint applications researchers use short questionnaires because of concerns over

response rates and response quality, the amount of information elicited from each respondent

is limited; therefore, adequate modeling of MCH becomes critical.

Modeling MCH raises two major challenges. First, both across-segment and within-segment

heterogeneity must be accommodated in order to fully capture preference variations among

consumers. Second, when pooling data across respondents it is important to impose an

adequate amount of shrinkage to recover the individual-level partworths. The widely used

finite mixture (FM) model approximates MCH using discrete mass points, each representing

a segment of homogeneous consumers (Kamakura and Russell 1989, Chintagunta et al.

1991). While such a discrete representation of the heterogeneity distribution accommodates

across-segment heterogeneity, it does not allow for within-segment heterogeneity. Hierarchical

Bayes (HB) models with flexible parametric specifications for the heterogeneity distribution

have also been proposed to model MCH. For instance, Allenby et al. (1998) developed a

Bayesian normal component mixture (NCM) model in which a mixture of multivariate

normal distributions is utilized to represent consumers’ heterogeneous preferences. While

the NCM model is capable of modeling a variety of heterogeneity distributions, it may not

be able to impose an adequate amount of shrinkage to accurately recover the individual-level
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partworths (Evgeniou et al. 2007). Additionally, it faces inferential challenges when conducting

a segment-level analysis (Rossi et al. 2005), including the label switching problem (Celeux

et al. 2000, Stephens 2000) and the overlapping mixtures problem (Kim et al. 2004).1

In this paper, we propose an innovative sparse learning (SL) approach to address both

challenges in modeling MCH and apply it in the context of metric and choice-based conjoint

analysis. Our SL approach models MCH using a two-stage divide-and-conquer framework.

In the first stage, we build on recent advances in sparse learning (Tibshirani 1996, Yuan

and Lin 2005, Argyriou et al. 2008) to “divide” the MCH distribution and recover a set of

candidate segmentations of the consumer population. We make a simple observation that any

two respondents from the same segment have identical segment-level partworths. Suppose

the population is comprised of a few distinct segments, then a substantial proportion of

pairwise differences of respondents’ segment-level partworths will be zero vectors; in other

words, the pairwise differences of respondents’ segment-level partworths will be sparse. Our

model leverages this observation and learns the sparsity pattern from the conjoint data to

recover informative segmentations of the consumer population. In the second stage, we use

each candidate segmentation to develop a set of individual-level representations of MCH by

separately “conquering” the within-segment heterogeneity distribution of each segment. In

particular, for each segment we model its within-segment heterogeneity assuming a unimodal

continuous heterogeneity (UCH) distribution, which is considerably easier to model compared

to MCH. We select the optimal individual-level representation of MCH using cross-validation

(Wahba 1990, Shao 1993, Vapnik 1998, Hastie et al. 2001). Using the two-stage framework,

our SL model accounts for both across-segment and within-segment heterogeneity, and is able

1Applications of nonparametric Bayesian methods in marketing include the Dirichlet process mixture
model (Ansari and Mela 2003, Kim et al. 2004) and the centered Dirichlet process mixture model (Li and
Ansari 2013). While nonparametric Bayesian methods provide more flexibility, they still suffer from the
same limitations faced by the NCM model. With ongoing research in this area, we expect to see systematic
comparisons between the benefits of using parametric and nonparametric Bayesian methods. In this paper,
we compare our model with the FM and NCM models, which are more established modeling frameworks.
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to endogenously select an adequate amount of shrinkage for recovering the individual-level

partworths. Moreover, since our SL model automatically generates a segmentation of the

consumer population, a segment-level analysis can be readily conducted.

We add to the growing literature of machine learning-based methods for conjoint estimation

(Toubia et al. 2003, 2004, Evgeniou et al. 2005, Cui and Curry 2005, Evgeniou et al. 2007).

This stream of research has largely ignored consumer heterogeneity, with the exception

of Evgeniou et al. (2007), who proposed a convex optimization (CO) model for capturing

unimodal continuous heterogeneity (UCH). Our work contributes by developing the first

machine learning-based approach to modeling the more general MCH.

We compare our SL model to the FM model, the NCM model, and the CO model

using extensive simulation experiments and three field data sets. In simulations, the SL

model shows a consistently strong performance in terms of both parameter recovery and

predictive accuracy across a wide range of experimental conditions. The results from the

simulations shed light on when and why the SL model outperforms other benchmarks. For

instance, the performance of the NCM model relative to the SL model is weak when the

within-segment variance is small or when the amount of respondent-level data is limited.

The latter highlights the usefulness of our approach in contexts where researchers prefer

to elicit consumer preferences using short conjoint questionnaires due to concerns over

response rates and response quality (Lenk et al. 1996). This pattern of results is largely

due to the fact that the amount of shrinkage imposed by the NCM model is influenced by

exogenously chosen parameters for the second-stage priors and can be inadequate depending

on the characteristics of a conjoint data set. In field data, the SL model also shows strong

performance in terms of predictive accuracy and its estimates of individual-level partworths

display shapes consistent with MCH. Moreover, in an optimal pricing exercise, the SL

model generates a more plausible revenue-maximizing price as compared to that from other

benchmarks, showing the managerial relevance of using our approach to model MCH in
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conjoint analysis.

The remainder of the paper is organized as follows. In Section 2 we present our SL model

to modeling MCH in conjoint analysis. We compare the SL model and the benchmark

methods using simulation experiments in Section 3 and three field conjoint data sets in

Section 4. We conclude in Section 5.

2 Model

In this section, we present our sparse learning (SL) approach to model multimodal continuous

heterogeneity (MCH) in conjoint analysis. Specifically, we give a detailed description of our

approach in the context of metric conjoint analysis. We discuss the modifications needed for

choice-based conjoint analysis in the Web Appendix.

2.1 Metric Conjoint Setup

We assume a total of I consumers (or respondents), each rating J profiles with p attributes.

Let the 1× p row vector xij represent the j-th profile rated by the i-th respondent, for i =

1, 2, . . . , I and j = 1, 2, . . . , J , and denote Xi ,
[
x>i1, x

>
i2, . . . , x

>
iJ

]>
as the J×p design matrix

for the i-th respondent. For respondent i, the p× 1 column vector βi is used to denote her

partworths, and her ratings are contained in the J×1 column vector Yi ,
(
yi1, yi2, . . . , yiJ

)>
.

We assume additive utility functions, i.e., Yi = Xiβi + εi, for i = 1, 2, . . . , I, where εi denotes

the random error. The additive specification of the utility functions is a standard assumption

in the conjoint analysis literature (Green and Srinivasan 1990).

2.2 Model Overview

Under a MCH distribution, the consumer population is interpreted as consisting of a few

distinct segments of heterogeneous consumers. To fully capture such a heterogeneity structure,
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a model needs to be sufficiently flexible to accommodate both across-segment and within-segment

heterogeneity. It is also critical that the model has the capacity to impose an adequate

amount of shrinkage when recovering the individual-level partworths. These considerations

motivate a divide-and-conquer strategy for modeling MCH, where the MCH distribution

is “divided” into a collection of within-segment unimodal continuous heterogeneity (UCH)

distributions, and each UCH distribution is separately “conquered” using established estimation

methodologies. We implement this modeling strategy using the following two-stage framework.

In the first stage, we develop a novel sparse learning model to divide the MCH distribution

and recover a set of candidate segmentations of the consumer population. Our model is

built on the simple observation that any two respondents from the same segment may have

different individual-level partworths but must share identical segment-level partworths, i.e.,

the difference between their respective segment-level partworths is the zero vector. Since the

consumer population consists of a few distinct segments, a substantial proportion of pairwise

differences of respondents’ segment-level partworths are zero vectors; in other words, the

pairwise differences of respondents’ segment-level partworths are sparse. Leveraging this

observation, we use the sparse learning model to learn such sparsity patterns from conjoint

data and recover informative candidate segmentations of the consumer population. Each

candidate segmentation provides a decomposition of the MCH distribution into a collection

of within-segment heterogeneity distributions which we utilize in the second stage.

In the second stage, we use each candidate segmentation to develop a set of individual-level

representations of MCH. Given a candidate segmentation, we separately model the within-segment

heterogeneity distribution of each segment assuming an UCH distribution. UCH provides a

reasonable characterization of the within-segment heterogeneity distributions and is considerably

easier to model than MCH. We choose the convex optimization (CO) model of Evgeniou

et al. (2007) to model the within-segment distributions which allows an effective approach

to control the amount of shrinkage imposed when modeling UCH. We select the optimal
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individual-level representation of MCH using cross-validation (Wahba 1990, Shao 1993,

Vapnik 1998, Hastie et al. 2001). The cross-validation procedure provides a fully data-driven

approach to endogenously select an adequate candidate segmentation and an adequate

amount of shrinkage to recover the individual-level partworths.

2.3 First Stage: Recovering Candidate Segmentations

The first stage of our SL model aims at learning a set of candidate segmentations of the MCH

distribution. To motivate, we consider a standard characterization of the data-generating

process of MCH (Andrews et al. 2002a,b). The data-generating process selects the number

of segments L, the segment-level partworths
{
β̂Sl
}L
l=1

, and the segment-membership matrix

Q ∈ RI×L, where Qil = 1 if respondent i is assigned to segment l and Qil = 0 otherwise. If

respondent i belongs to segment l, she receives a copy of segment-level partworths βSi = β̂Sl

and her individual-level partworths are determined by βi = βSi + ξi, where ξi denotes the

difference between respondent i’s segment-level and individual-level partworths, i.e., the

within-segment heterogeneity. Let B̂S ,
{
β̂Sl
}L
l=1

, BS ,
{
βSi
}I
i=1

, and B ,
{
βi
}I
i=1

.

Assuming the above data-generating process, recovering candidate segmentations can be

achieved by learning the set of model parameters
{
L, B̂S, Q,BS, B

}
from the conjoint data.

A closer examination reveals that learning
{
BS, B

}
is sufficient, as other model parameters{

L, B̂S, Q
}

can be uniquely determined from
{
BS, B

}
. We highlight the following three

assumptions about the data-generating process that are relevant to learning
{
BS, B

}
:

A1. The ratings vector Yi is generated based on βi, i.e., Yi = Xiβi + εi.

A2. The individual-level partworths βi is generated based on the segment-level partworths

βSi , i.e., βi = βSi + ξi.

A3. Respondents i and k belong to the same segment if and only if βSi − βSk = 0.
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Within an optimization framework with
{
BS, B

}
as decision variables, A1 (resp. A2)

suggests to penalize the discrepancy between Yi and Xiβi (resp. the discrepancy between βi

and βSi ). A3, together with the observation that for a substantial proportion of i − k pairs

respondents i and k belong to the same segment, implies that the pairwise discrepancies

of the true BS are sparse. It thus suggests that we can impose a sparse structure on the

pairwise discrepancies of BS when learning
{
BS, B

}
and use the sparsity pattern to learn

the underlying segmentation.

Motivated by these considerations, we propose the following sparse learning problem to

recover candidate segmentations, which we refer to as Metric-SEG:

min
I∑
i=1

||Yi −Xiβi ||22 + γ
I∑
i=1

(βi − βSi )>D−1(βi − βSi ) + λ
∑

1≤i<k≤I

θik|| βSi − βSk ||2,

s.t. D is a positive semidefinite matrix scaled to have trace 1,

βi, β
S
i ∈ Rp, for i = 1, 2, . . . , I,

(1)

where γ, λ, and
{
θik
}

are the regularization parameters that control the relative strength

of each penalty term in Metric-SEG. We will discuss the specification of the regularization

parameters in a few paragraphs.

In Metric-SEG, the first two penalty terms are standard quadratic functions measuring

the discrepancy between Yi and Xiβi and that between βi and βSi , respectively. We note that

the matrix D is a decision variable and is related to the covariance matrix of the partworths

within each segment (Evgeniou et al. 2007). The third penalty term aims to impose the sparse

structure suggested by A3 and is the key to the formulation of Metric-SEG. In particular,

it aims to learn whether respondents i and k belong to the same segment by penalizing the

`2-norm of βSi − βSk , i.e., || βSi − βSk ||2, for all i− k pairs. We choose the `2-norm to measure

the discrepancy between βSi and βSk since, unlike most standard measures of magnitude of

vectors, e.g., the sum-of-squares measure, the `2-norm is a sparsity-inducing penalty function
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in that it is capable of enforcing exact zero value in optimal solutions under a suitable level

of penalty.2 Sparsity-inducing penalty functions play a fundamental role in sparse learning

(Tibshirani 1996, Yuan and Lin 2005, Bach et al. 2011). Our use of the `2-norm to penalize

the pairwise differences of BS can be viewed as a generalization of the overlapping `1/`2-norm

(Jenatton et al. 2012, Kim and Xing 2012) and the Fused Lasso penalty (Tibshirani et al.

2004), and was recently introduced in the context of unsupervised learning (Hocking et al.

2011).

The rationale for assessing whether respondents i and k belong to the same segment by

penalizing the `2-norm of βSi − βSk is as follows. For the purpose of illustration, suppose we

set θik = 1 for all i − k pairs in Metric-SEG, and thus, homogenize the penalty imposed

on the `2-norm of βSi − βSk . For any two respondents i and k, we consider the following

components of the objective function of Metric-SEG:

Gi,k ,
∑
r=i,k

||Yr −Xrβr ||22 + γ
∑
r=i,k

(βr − βSr )>D−1(βr − βSr ) + λ|| βSi − βSk ||2.

Within an optimization framework, the three penalty terms inGi,k induce competing shrinkage

over the decision variables
{
βr, β

S
r

}
r=i,k

: the first term shrinks βr toward the true individual-level

partworths βr(T ), and the second term shrinks βr and βSr toward each other, for r = i, k;

whereas the third term shrinks βSi and βSk toward each other. Whether βSi − βSk = 0 holds

in the optimal solution is largely determined by the tradeoff among the three competing

shrinkages, which is, in turn, determined by the distance between βi(T ) and βk(T ) as well as

the regularization parameters γ and λ. If respondents i and k are from the same segment,

the distance between βi(T ) and βk(T ) is likely to be small, and a moderate penalty imposed

on || βSi − βSk ||2, i.e., a small λ, should be sufficient to enforce βSi − βSk = 0 due to the

sparsity-inducing property of the `2-norm. If respondents i and k are from distinct segments,

2We discuss the rationale behind sparsity-inducing penalty functions in the Web Appendix.
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the distance between βi(T ) and βk(T ) is likely to be large, and enforcing βSi −βSk = 0 can only

be achieved when a strong penalty is imposed on || βSi −βSk ||2, i.e., a large λ is specified. This

suggests that if γ and particularly λ are appropriately specified it is possible to recover the

underlying segmentation of the consumer population by solving Metric-SEG and identifying

i− k pairs with βSi − βSk = 0 in the optimal solution.

Regularization Parameters. We first discuss the specification for the regularization

parameters
{
θik
}

. A heterogeneous specification for
{
θik
}

is useful for Metric-SEG because

it allows us to incorporate information that could potentially facilitate the recovery of the

underlying segmentation. For example, suppose there is information suggesting that the pair

of respondents i and k are more likely to be drawn from the same segment as compared to

the pair of respondents i′ and k′. This information can be accommodated in Metric-SEG

by setting θik > θi′k′ such that a stronger sparsity-inducing penalty is imposed to enforce

βSi − βSk = 0.

In this paper, we specify
{
θik
}

as follows:

θik = R
(
W
(
β̄i, β̄k

))
, (2)

where
{
β̄i
}I
i=1

are some initial estimates of the individual-level partworths, W (· , ·) is a

distance measure of two vectors, and R(·) is a positive, non-increasing function. The rationale

for this specification is that, when the distance between the initial individual-level partworths

estimates β̄i and β̄k is small, it is likely that respondents i and k belong to the same segment,

and therefore, θik is set to a large value in order to induce βSi −βSk = 0. The admissible choices

for
{
β̄i
}I
i=1

, W (· , ·), and R(·) are quite flexible. In the empirical implementation of our SL

model, we choose to estimate
{
β̄i
}I
i=1

using the CO model of Evgeniou et al. (2007). We set

W (x, y) =
(
(x−y)>D̄−1(x−y)

) 1
2 , where D̄ is the scaled covariance matrix of the partworths

generated by the CO model along with
{
β̄i
}I
i=1

(Evgeniou et al. 2007); such a specification
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gives more weight to difference between two initial individual-level partworths estimates

along directions in which there is less variation across respondents. We set R(x) = e−ωx,

a positive, non-increasing function parameterized by a regularization parameter ω ≥ 0.

Consequently, we adopt the following specification for
{
θik
}

:34

θik = e−ω
(

(β̄i−β̄k)>D̄−1(β̄i−β̄k)
) 1

2

. (3)

In this specification, the regularization parameter ω controls the extent to which
{
β̄i
}I
i=1

are

used to facilitate recovering candidate segmentations. When ω = 0,
{
β̄i
}I
i=1

do not enter the

specification of
{
θik
}

and a homogeneous penalty is imposed on the pairwise discrepancies

of BS; as ω increases,
{
θik
}

become more heterogeneous and pairs of respondents with closer

initial estimates, i.e., those deemed as more likely to be drawn from the same segment, are

penalized more heavily than those with farther initial estimates.

Given the specification of
{
θik
}

in (3), the regularization parameters for Metric-SEG are

now given by the vector Γ ,
(
γ, λ, ω

)
. Since an appropriate value for Γ is not known a

priori, we specify a finite grid Θ ⊂ R3 and solve Metric-SEG for each Γ ∈ Θ.5 We denote(
B(Γ), BS(Γ), D(Γ)

)
as the optimal solution of Metric-SEG given Γ. For each Γ, we use

BS(Γ) to recover a candidate segmentation Q(Γ).

Solution Algorithm. Metric-SEG is a convex optimization problem for all regularization

parameters Γ ∈ Θ, which implies that it is efficiently solvable to global optimum in theory

(Boyd and Vandenberghe 2004). However, solving Metric-SEG poses algorithmic challenge

3The specification for
{
θik
}

in (3) uses only information contained in the conjoint data. Other information

sources, e.g., consumers’ demographic variables, can be readily incorporated in the specification for
{
θik
}

and hence our SL model via a simple extension of (3). We discuss the extension in the Web Appendix.
4We note that in Metric-SEG the amount of penalty imposed on ||βS

i − βS
k ||2 is controlled by λθik. In

the empirical implementation of our SL model, we normalize θ =
(
θik
)

such that ||θ||2 = 1 and interpret the
regularization parameter λ as controlling the “total” amount of penalty imposed on ||βS

i − βS
k ||2’s.

5The specification for Θ used in simulation experiments and field applications is summarized in the Web
Appendix.
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since the third penalty term, λ
∑

1≤i<k≤I θik|| βSi −βSk ||2, is a non-differentiable and non-separable

function. Non-differentiability implies that standard convex optimization methods requiring

a differentiable objective function, e.g., the Newton’s method, cannot be applied to solve

Metric-SEG; non-separability also adds to the complexity (Chen et al. 2012). We solve

Metric-SEG using a special purpose algorithm based on variable splitting and the Alternating

Direction Augmented Lagrangian (ADAL) method that was proposed in Qin and Goldfarb

(2012). This algorithm is specifically designed for handling complex sparsity-inducing penalty

functions and is capable of solving for the global optimum of Metric-SEG. We provide a

detailed description of the algorithm in the Web Appendix.

Dealing with Small Segments. In many instances of Metric-SEG encountered in our

simulation experiments and field applications, we observed that the candidate segmentation

Q contains a small number of substantive segments which comprise the majority of the

consumer population, as well as a few segments each consisting of very few respondents,

often one or two. Since these small segments bear little practical interpretation, we employ a

simple procedure to combine each of the small segments with its closest substantive segment.

Formally, we define a segment in Q as a valid segment if it contains at least M respondents,

where M is a pre-specified threshold, and as an invalid segment otherwise. Without loss of

generality, we assume that the first L̄ segments of Q are valid. We retain all valid segments,

and for each invalid segment, i.e., the l-th segment with l > L̄, we determine its closest

valid segment by computing c(l) ,
{
v ∈

{
1, 2, . . . , L̄

} ∣∣ ||β̂Sv − β̂Sl ||2 < ||β̂Sv′ − β̂Sl ||2, for v′ ∈{
1, 2, . . . , L̄

}
, v′ 6= v

}
, and combine the l-th segment (an invalid segment) and the c(l)-th

segment (a valid segment). We define Q̄, the segmentation obtained after this processing, as

the candidate segmentation, but still refer to it using Q for simplicity hereafter.6 We note

6In the empirical implementation of our SL model, we set M = 10%I, such that any valid segment contains
a non-negligible portion of the population. The simulation experiments and field applications confirm the
effectiveness of our choice of M .
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it is possible that no valid segment exists in a segmentation, i.e., L̄ = 0. In such a case, we

simply claim that no candidate segmentation is identified for this instance of Metric-SEG.

Summary. The first stage of our SL model recovers a set of candidate segmentations

in the following manner. We specify a finite grid Θ ⊂ R3 from which the regularization

parameters Γ =
(
γ, λ, ω

)
are chosen. For each Γ ∈ Θ, we solve Metric-SEG and obtain the

candidate segmentation Q(Γ). Q(Γ) could be an empty matrix in cases where no candidate

segmentation is identified. We also include the trivial segmentation where all respondents

are in one segment as a candidate segmentation, i.e., Q(Trivial) , 1I×1. We denote the set of

candidate segmentations as Φ, i.e., Φ ,
{
Q(Γ)

}
Γ∈Θ:Q(Γ)6=∅

⋃{
Q(Trivial)

}
. Φ is the output

of the first stage of the SL model.7

2.4 Second Stage: Recovering Individual-level Partworths

The second stage of our SL model aims at leveraging the set of candidate segmentations

Φ to accurately recover the individual-level partworths. To this end, we develop a set of

individual-level representations of MCH based on each candidate segmentation, and select

the optimal individual-level representation of MCH using cross-validation.

Given Q ∈ Φ, we propose to model MCH by separately modeling the within-segment

heterogeneity distribution for each segment assuming a unimodal continuous heterogeneity

(UCH) distribution. That is, Q is interpreted as a decomposition of the MCH distribution

into a collection of UCH distributions that are considerably easier to model. There are

many effective approaches for modeling UCH in the marketing literature, including the

unimodal hierarchical Bayes (HB) models (Lenk et al. 1996, Rossi et al. 1996) and RR-Het,

the metric version of the CO model of Evgeniou et al. (2007). We choose RR-Het to model

7Recall that we also obtain a set of individual-level partworths estimates
{
B(Γ)

}
by solving Metric-SEG.

We retain only the set of candidate segmentations Φ and exclude
{
B(Γ)

}
as the output of the first stage

because the latter are biased. We provide a detailed discussion about the bias in
{
B(Γ)

}
in the Web

Appendix.
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within-segment UCH distributions because it outperforms standard unimodal HB models

(Evgeniou et al. 2007) and allows for a direct and parsimonious way for controlling the

amount of shrinkage imposed on the individual-level partworths estimates that can be readily

incorporated in a cross-validation framework for endogenously selecting an adequate amount

of shrinkage.

Formally, for a candidate segmentation Q with L segments, we define a set of modeling

strategies
{
S | S ,

(
Q,ψ,COV

)}
, parameterized by ψ =

(
ψ1, ψ2, . . . , ψL

)
and COV =(

COV 1, COV 2, . . . , COV L
)
, where ψl > 0 and COV l ∈

{
General(G),Restrictive(R)

}
for

l = 1, 2, . . . , L. The modeling strategy S models MCH and obtains the individual-level

partworths estimates
{
β̃i
}I
i=1

by solving a convex optimization problem Metric-HET
(
Q; l;ψl;COV l

)
for the l-th segment of Q, denoted as Υ(Q; l), for l = 1, 2, . . . , L. When COV l = G, the

optimization problem Metric-HET
(
Q; l;ψl;G

)
is defined as follows:

min
∑

i∈Υ(Q;l)

||Yi −Xiβ̃i ||22 + ψl
∑

i∈Υ(Q;l)

(
β̃i − β̃l0

)>
(Dl)−1

(
β̃i − β̃l0

)
,

s.t. Dl is a positive semidefinite matrix scaled to have trace 1,

β̃i ∈ Rp, for i ∈ Υ(Q; l); β̃l0 ∈ Rp.

(4)

When COV l = R, the optimization problem Metric-HET
(
Q; l;ψl;R

)
is defined as follows:

min
∑

i∈Υ(Q;l)

||Yi −Xiβ̃i ||22 + ψl
∑

i∈Υ(Q;l)

(
β̃i − β̃l0

)>
(I/p)−1

(
β̃i − β̃l0

)
,

s.t. β̃i ∈ Rp, for i ∈ Υ(Q; l); β̃l0 ∈ Rp.

(5)

We note that (5) is obtained from (4) by restricting the decision variable Dl = I/p. In both

optimization problems, the regularization parameter ψl provides a direct and parsimonious

way to control the tradeoff between fit and shrinkage. In particular, a larger ψl imposes

more shrinkage on the individual-level partworths estimates in the l-th segment toward β̃l0,
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which can be shown to be the segment mean (Evgeniou et al. 2007), and hence results in

more homogenous estimates. The matrix Dl in (4) is related to the covariance matrix of the

partworths within the l-th segment (Evgeniou et al. 2007). Explicitly modeling Dl allows for

a general covariance structure and gives rise to much flexibility in modeling within-segment

heterogeneity. On the other hand, restricting Dl = I/p in (5) imposes a restrictive covariance

structure that is less flexible but is also more parsimonious and robust with respect to

overfitting. We assess the relative strength of the two optimization problems with different

covariance structures using cross-validation.

We note that each modeling strategy S =
(
Q,ψ,COV

)
gives rise to a distinct individual-level

representation of MCH. In particular, the segmentation Q determines the way in which MCH

is decomposed into a collection of UCH’s, and ψ and COV control the amount of shrinkage

imposed and the covariance structure assumed when modeling UCH for each segment of Q,

respectively.

Cross-validation. In order to endogenously select the optimal modeling strategy (and

hence the optimal individual-level representation of MCH it implies), we evaluate the cross-validation

error of each modeling strategy S. Cross-validation is a standard technique used in the

statistics and machine learning literature for model selection (Wahba 1990, Shao 1993,

Vapnik 1998, Hastie et al. 2001), and has been adopted in the recent literature of machine

learning and optimization-based methods for conjoint estimation (Evgeniou et al. 2005,

2007). We measure the cross-validation error of a modeling strategy S, CV E(S), identically

as in Evgeniou et al. (2005, 2007). The cross-validation error CV E(S) provides an effective

estimate of the predictive accuracy of the modeling strategy S on out-of-sample data using

only in-sample data, i.e., the data available to the researcher for model calibration. To

implement cross-validation, we pre-specify a finite grid Ξ ⊂ R, and for each Q we consider

modeling strategies S =
(
Q,ψ,COV

)
such that ψl ∈ Ξ and COV l ∈

{
G,R

}
, for l =
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1, 2, . . . , L.8 We select S that minimizes CV E(S) as the optimal modeling strategy and

its corresponding Q as the optimal candidate segmentation, which we denote as S∗ and

Q∗, respectively. Consequently, the cross-validation procedure allows us to endogenously

select the modeling strategy S∗ that is expected to have the optimal predictive accuracy on

out-of-sample data. We recover the optimal individual-level partworths estimates
{
β̃∗i
}I
i=1

by applying S∗ to the complete data set
{
Xi, Yi

}I
i=1

.

Confidence Intervals. Besides point estimates for individual-level partworths, our SL

approach can also be used to produce confidence intervals for individual-level partworths

estimates via bootstrapping, similar to the CO model (as detailed in the online appendix of

Evgeniou et al. (2007)). In order to generate the bootstrap estimates for confidence intervals,

we first estimate the optimal modeling strategy S∗ =
(
Q∗, ψ∗, COV ∗

)
. Next, we generate a

large number of (e.g., 1000) random bootstrap samples from the original data set, and apply

the modeling strategy S∗ to each bootstrap sample; here the bootstrap samples are obtained

by keeping all respondents and for each respondent randomly sampling her conjoint profiles

with replacement. We then use the empirical distributions of partworths estimates generated

from the bootstrap samples to construct confidence intervals.

2.5 Summary

We briefly summarize our SL model Metric-SL in the following. The MATLAB code for

Metric-SL is available from the authors upon request.

First Stage.

Step 1a. Obtain the initial estimates
{
β̄i
}I
i=1

and the scaled covariance matrix of the

partworths D̄ using RR-Het (Evgeniou et al. 2007).

8The specification for Ξ used in simulation experiments and field applications is summarized in the Web
Appendix.
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Step 1b. For each Γ ∈ Θ, set θik = e−ω
(

(β̄i−β̄k)>D̄−1(β̄i−β̄k)
) 1

2

, and solve Metric-SEG (see

(1)). Recover the candidate segmentation Q(Γ) from BS(Γ).

Step 1c. Repeat Step 1b for each Γ ∈ Θ, and obtain the set of candidate segmentations:

Φ =
{
Q(Γ)

}
Γ∈Θ:Q(Γ)6=∅

⋃{
Q(Trivial)

}
. (6)

Second Stage.

Step 2a. For eachQ ∈ Φ, define a set of modeling strategies
{
S | S =

(
Q,ψ,COV

)
s.t. ψl ∈

Ξ, COV l ∈
{
G,R

}
, for l = 1, 2, . . . , L

}
. A modeling strategy S recovers the individual-level

partworths by solving a set of L optimization problems
{

Metric-HET
(
Q; l;ψl;COV l

)}L
l=1

defined in (4) and (5).

Step 2b. Select the modeling strategy S∗ =
(
Q∗, ψ∗, COV ∗

)
with the minimum cross-validation

error, i.e., S∗ = argmin
S

CV E(S). Q∗ is selected as the optimal segmentation.

Step 2c. Generate the optimal individual-level partworths estimates
{
β̃∗i
}I
i=1

by applying S∗

to
{
Xi, Yi

}I
i=1

, i.e., by solving L∗ optimization problems
{

Metric-HET
(
Q∗; l;ψl∗;COV l∗)}L∗

l=1
.

The outputs of the second stage are
({
β̃∗i
}I
i=1
, Q∗

)
, which are also the final outputs of

the complete Metric-SL model.

2.6 Extension to Choice-based Conjoint Analysis

Choice-based conjoint (CBC) has been the dominant conjoint approach recently (Iyengar

et al. 2008). Our SL model can be readily extended to the context of CBC. In particular,

our SL model can be applied to CBC by simply replacing the squared-error loss functions in

all optimization problems in Metric-SL with the logistic loss functions. We discuss our SL
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model for CBC, Choice-SL, in the Web Appendix. The MATLAB code for Choice-SL is

available from the authors upon request.

3 Simulation Experiments

In this section we report the results of a set of simulation experiments designed to test the

performance of our sparse learning (SL) model. Simulation experiments have been widely

adopted in the marketing literature to evaluate conjoint estimation methods (Vriens et al.

1996, Andrews et al. 2002b). We consider both metric and choice-based conjoint simulation

experiments.

3.1 Metric Conjoint Simulation Experiments

We compared Metric-SL, the metric version of our SL model, to three benchmark methods:

(1) the finite mixture (FM) model (Kamakura and Russell 1989, Chintagunta et al. 1991),

(2) the Bayesian normal component mixture (NCM) model (Allenby et al. 1998), and (3)

RR-Het, the metric version of the convex optimization (CO) model of Evgeniou et al. (2007).

The FM model represents multimodal continuous heterogeneity (MCH) using discrete mass

points. The NCM model specifies a mixture of multivariate normal distributions to characterize

the heterogeneity distribution and is capable of representing a wide variety of heterogeneity

distributions. RR-Het is not specifically designed to model MCH; however, we included

it as a benchmark method to assess the improvement made by adopting the more general

Metric-SL model.

The implementation of the three benchmark methods closely followed the extant literature.

In particular, the FM model was calibrated using the Bayesian information criterion (BIC)

(Andrews et al. 2002b), and for the NCM model the number of components was selected using

the deviance information criterion (DIC) (Spiegelhalter et al. 2002, Luo 2011). We provide
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the setup of the NCM model including the specification of parameters for the second-stage

priors in the Web Appendix.

3.1.1 Data

Our experimental design and data-generating process largely followed past work that has

used simulations to evaluate methods for recovering MCH within metric conjoint settings

(Andrews et al. 2002b). See Andrews et al. (2002b) for a discussion of the experimental

design and the data-generating process.

Experimental Design. We experimentally manipulated four data characteristics:

Factor 1. The number of segments: 2 or 3;

Factor 2. The number of profiles per respondent (for calibration): 18 or 27;

Factor 3. The error variance: 0.5 or 1.5;

Factor 4. The within-segment variances of distributions: 0.05, 0.10, 0.20, 0.40, 0.60, 0.80

or 1.00.

Hence, we used a 23 × 7 design, resulting in a total of 56 experimental conditions. We

randomly generated 5 data sets for each experimental condition and estimated all conjoint

models separately on each data set.

Data-generating Process. We adopted the conjoint designs used in Andrews et al.

(2002b) in which six product attributes were varied at three levels each. Each data set

consisted of 100 synthetic respondents and their responses were generated according to the

following three-step process: we (1) generated the true segment-level partworths, (2) assigned

each respondent to a segment and generated her true individual-level partworths, and (3)

generated her response vector. More specifically, the true segment-level partworths for any
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segment l, βl(S), were generated as a vector of random numbers sampled independently

from a uniform distribution over the interval [−1.7, 1.7]. Each respondent was randomly

assigned to all segments with equal probabilities, and her true individual-level partworths

βi(T ) were generated as βi(T ) = βl(S)+σξi if respondent i was assigned to segment l, where

σ2 is the pre-specified within-segment variance (Factor 4) and ξi is a vector of independent

standard normal random variables. Given βi(T ), the response vector Yi was computed as

Yi = Xiβi(T )+δεi, where δ2 is the pre-specified error variance (Factor 3) and εi is a vector of

independent standard normal random variables. In order to evaluate the predictive accuracy

of the conjoint estimation methods, we generated 8 holdout profiles for each respondent

regardless of whether 18 or 27 profiles (Factor 2) were used for calibration.

3.1.2 Results

We compared all four conjoint estimation methods in terms of parameter recovery and

predictive accuracy. Parameter recovery was assessed using the root mean squared error

between the true individual-level partworths βi(T ) and the estimated individual-level partworths

βi(E), which we denote as RMSE(β). Predictive accuracy was measured using the root

mean squared error between the observed ratings Yi(O) and the predicted ratings Yi(P ) on

the holdout sample, which we denote as RMSE(Y ). Following Evgeniou et al. (2007), we

computed RMSE(β) and RMSE(Y ) for each respondent in each data set and report the

average RMSE(β) and RMSE(Y ) across respondents and data sets for each experimental

condition.9

Across experimental conditions, we find that Metric-SL overall outperforms the benchmark

models both in terms of parameter recovery and predictive accuracy. In particular, Metric-SL

performs best or not significantly different from best on RMSE(β) (at p < 0.05) in 51 out of

56 conditions, and is either the best performing method or indistinguishable from the best

9In addition to parameter recovery and predictive accuracy, we also compared the computation time of
Metric-SL and the NCM model and report the results in the Web Appendix.
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method on RMSE(Y ) (at p < 0.05) in 52 out of 56 conditions. The comparisons are based

on paired t-tests over the same 500 respondents, i.e., 100 respondents per data set × 5 data

sets, in each experimental condition.

To illustrate, we summarize the results for a subset of experimental conditions in Table

1, where Num-S denotes the number of segments in the heterogeneity distribution (Factor

1), Num-P denotes the number of profiles per respondent for calibration (Factor 2), EV

denotes the error variance (Factor 3), and WSV denotes the within-segment variances of

distributions (Factor 4). We note that for both RMSE(β) and RMSE(Y ) lower numbers

indicate better performance. The full results for all 56 conditions are reported in the Web

Appendix.

Insert Table 1 here.

Table 1 shows a systematic pattern of RMSE(β) and RMSE(Y ) for the four conjoint

estimation methods with respect to WSV. When WSV is small, e.g., WSV = 0.05 or 0.10,

the NCM model and RR-Het perform substantially worse than Metric-SL whereas the FM

model shows a good performance; as WSV increases the relative performance of the NCM

model and RR-Het gradually improves and that of the FM model quickly deteriorates.

On the other hand, Metric-SL demonstrates a consistently strong performance across the

range of WSV. This performance pattern confirms the importance of explicitly modeling

both across-segment and within-segment heterogeneity, and also endogenously selecting an

adequate amount of shrinkage to recover individual-level partworths in modeling MCH.

The FM model assumes a discrete heterogeneity distribution which does not allow for

within-segment heterogeneity and hence is not capable of fully capturing the variations

in consumer preferences when within-segment heterogeneity is substantial. RR-Het models

consumer preferences using a unimodal continuous heterogeneity (UCH) distribution, which

does not accommodate across-segment heterogeneity and thus limits its performance when

the underlying heterogeneity distribution is fairly discrete. The NCM model explicitly models
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both across-segment and within-segment heterogeneity, but is not capable of endogenously

selecting the amount of shrinkage since it is influenced by exogenously chosen parameters

for the second-stage priors. In Table 1, the relatively inferior performance of the NCM

model when within-segment heterogeneity is small or moderate suggests that the amount of

shrinkage imposed by the NCM model is inadequate in these experimental conditions. This

provides evidence that, consistent with findings in Evgeniou et al. (2007), the amount of

shrinkage imposed by the NCM model can be inadequate depending on the characteristics

of a conjoint data set. In contrast, our Metric-SL model addresses both modeling challenges

and shows a robust performance across conditions.

We conducted a regression analysis to examine the impact of the experimental factors

on RMSE(β) and RMSE(Y ) of the four conjoint estimation methods. For RMSE(β), we

adopted the following specification:

RMSE(β)t = α0 + α1 × Num-S-Dummyt + α2 × Num-P-Dummyt + α3 × EV-Dummyt

+α4 ×WSVt + εt,

(7)

where the index t runs over the 56 experimental conditions. The dependent variable RMSE(β)t

is the average RMSE(β) of a method in condition t as those reported in Table 1. For the

independent variables, we dummy coded the first three experimental factors, Num-S, Num-P,

and EV, and used the original value of the fourth experimental factor, WSV.10 Table 2 shows

the results of the OLS estimation on RMSE(β) for each of the four conjoint estimation

methods.

Insert Table 2 here.

We make a few observations from the results in Table 2. The fact that the coefficients

for Num-S are insignificant for all methods suggests that the number of segments has little

10Num-S-Dummyt = 1 when Num-St = 3; Num-P-Dummyt = 1 when Num-Pt = 27; and EV-Dummyt = 1
when EVt = 1.5.
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impact on RMSE(β). Num-P has significant negative coefficients for all methods except

the FM model, implying that more calibration profiles improve the accuracy of parameter

recovery for the three methods other than the FM model. EV has significant positive

coefficients for all methods, which means that a larger error variance hurts all methods;

we note that the impact of error variance on the FM model is smaller compared to other

methods. WSV has significant positive coefficients, indicating that a larger within-segment

variance leads to a higher error in parameter recovery for all methods. Furthermore, as WSV

increases, the FM model deteriorates most quickly, followed by Metric-SL, which is in turn

followed by RR-Het and the NCM model. This is consistent with our previous findings about

the relative performance of the four conjoint estimation methods with respect to WSV.

We also conducted a regression analysis to understand the impact of the experimental

factors on the relative performance between Metric-SL and the NCM model. In particular,

we adopted a specification identical to (7) except that the dependent variable was replaced

with the difference of RMSE(β) for Metric-SL and the NCM model. The results of the OLS

estimation are reported in the last column of Table 2. The results show that the performance

of Metric-SL relative to the NCM model improves when there are fewer calibration profiles.

This finding highlights the usefulness of Metric-SL especially in contexts where researchers

prefer to elicit consumer preferences using short conjoint questionnaires due to concerns

over response rates and response quality (Lenk et al. 1996). We also find that a larger

error variance and a smaller within-segment variance improve the relative performance of

Metric-SL.

For RMSE(Y ), we used a specification identical to (7) except that the dependent variable

was the average RMSE(Y ) of a method in a specified experimental condition. We report the

results of the OLS estimation in Table 3.

Insert Table 3 here.

The impact of the experimental factors on RMSE(Y ) is largely similar to that on RMSE(β).
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A couple of main differences are that for RMSE(Y ) Num-S has significant positive coefficients

for all methods except Metric-SL, and Num-P has the largest impact on the FM model.

3.2 Choice-based Conjoint Simulation Experiments

We compared Choice-SL, the choice version of our SL model, to three benchmark methods:

(1) the FM model, (2) the NCM model, and (3) LOG-Het, the choice version of the CO

model. All benchmark methods were the choice versions of those in Section 3.1 and the

implementations were similar to their metric version counterparts.

3.2.1 Data

Our experimental design and data-generating process largely followed past work that has

used simulations to evaluate methods for recovering MCH using choice data (Andrews et al.

2002a, Andrews and Currim 2003).

Experimental Design. We experimentally manipulated four data characteristics:

Factor 1. The number of segments: 2 or 3;

Factor 2. The number of choice sets per respondent (for calibration): 16 or 24;

Factor 3. The error variance: standard (1.645) or high (3.290);

Factor 4. The within-segment variances of distributions: 0.05, 0.10, 0.20, 0.40, 0.60, 0.80

or 1.00.

Hence, we used a 23 × 7 design, resulting in a total of 56 experimental conditions. We

randomly generated 5 data sets for each experimental condition and estimated all conjoint

models separately on each data set.
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Data-generating Process. In all data sets, each choice set consisted of four conjoint

profiles, each associated with a distinct brand. In addition to the three (i.e., 4−1 = 3) brand

dummies, the attributes also included one continuous variable and two binary variables. We

created four levels for the continuous variable, each being a range: “low” ≡
[
− 1.3,−0.65

]
,

“medium-low” ≡
[
−0.65, 0

]
, “medium-high” ≡

[
0, 0.65

]
, and “high” ≡

[
0.65, 1.3

]
. For each

choice set we randomly selected a value from each range and assigned the four values to the

profiles such that each profile had an equal chance to be assigned with the lowest value. For

each of the two binary attributes, we randomly selected a profile in a choice set and set its

value on the attribute to 1. We note that the design of the continuous attribute and the two

binary attributes was aimed at inducing sufficient variations in the data and is different from

those in Andrews et al. (2002a) and Andrews and Currim (2003), which considered scanner

panel applications rather than conjoint applications.

In each data set, the choices of 100 synthetic respondents were generated using a three-step

process similar to that in Section 3.1. We closely followed Andrews et al. (2002a) and

Andrews and Currim (2003) and generated three levels of segment-level coefficients (low,

medium, and high) for each of the six attributes (i.e., three brand dummies, one continuous

variable, and two binary variables). The rationale for this design with three levels of

coefficients was to have different segments assigned with different levels of coefficients for

each attribute and therefore create clear separations between segments. The medium-level

coefficients were generated as follows: the brand-specific constants were sampled from a

uniform distribution over the interval
[
− 1, 1

]
, the coefficient of the continuous variable was

sampled from a uniform distribution over
[
− 2.5,−2

]
, and the coefficients of the binary

variables were sampled from a uniform distribution over
[
2, 2.5

]
. The high-level (resp.

low-level) coefficients were generated by adding to (resp. subtracting from) the corresponding

medium-level coefficients a normal random variable drawn from N(1.5, 0.152), where 1.5 was

the mean separation between segments (Andrews et al. 2002a, Andrews and Currim 2003). In
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experimental conditions with three segments (Factor 1), we generated the true segment-level

partworths by assigning the three levels of coefficients of each attribute randomly to the

three segments; in experimental conditions with two segments, we simply retained the true

segment-level partworths of the first two segments generated in the three-segment conditions.

We denote the true segment-level partworths for any segment l as βl(S).

Each respondent was randomly assigned to the available segments with equal probabilities.

As in Section 3.1, respondent i’s true individual-level partworths βi(T ) were generated as

βi(T ) = βl(S) + σξi if respondent i was assigned to segment l, where σ2 is the pre-specified

within-segment variance (Factor 4) and ξi is a vector of independent standard normal random

variables. Given βi(T ), respondent i’s choices were stochastically generated according to the

logit model where the variance of the type-I extreme value random variables was given by

the pre-specified error variance (Factor 3). In order to evaluate the predictive accuracy of

the conjoint estimation methods, we generated 8 holdout choice sets for each respondent

regardless of whether 16 or 24 choice sets (Factor 2) were used for calibration.

3.2.2 Results

We compared the four conjoint estimation methods in terms of parameter recovery and

predictive accuracy. Parameter recovery was assessed using RMSE(β). Predictive accuracy

was measured using the holdout sample log-likelihood (Andrews et al. 2002a), which we

denote as Holdout-LL. Again, for each experimental condition we report the average RMSE(β)

and Holdout-LL across all respondents and data sets.11

Similar to metric simulation experiments, we find that Choice-SL overall outperforms

the benchmark models both in terms of parameter recovery and predictive accuracy. In

particular, Choice-SL is the best performing model or indistinguishable from the best model

on RMSE(β) (at p < 0.05) in 31 out of 56 conditions, and performs best or not significantly

11In addition to parameter recovery and predictive accuracy, we also compared the computation time of
Choice-SL and the NCM model and report the results in the Web Appendix.
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different from best on Holdout-LL (at p < 0.05) in 42 out of 56 conditions.

For the purpose of illustration, we summarize the results for a subset of experimental

conditions in Table 4, where Num-S denotes the number of segments in the heterogeneity

distribution (Factor 1), Num-CS denotes the number of choice sets per respondent for

calibration (Factor 2), EV denotes the error variance (Factor 3), and WSV denotes the

within-segment variances of distributions (Factor 4). We note that for RMSE(β) lower

numbers indicate better performance whereas for Holdout-LL higher numbers indicate better

performance. The full results for all 56 conditions are reported in the Web Appendix.

Insert Table 4 here.

We find that results in Table 4 are qualitatively similar to those in Table 1 except that the

FM model becomes the best performing model when WSV is small.

As in the metric simulation experiments, we conducted a regression analysis to examine

the impact of the experimental factors on both performance measures, RMSE(β) and Holdout-LL.

The regression specifications were similar to (7). Tables 5 and 6 report the results of the

OLS estimation.

Insert Tables 5 and 6 here.

Table 5 shows that the performance of Choice-SL relative to the NCM model in terms of

parameter recovery improves with more segments and a smaller within-segment variance.

Table 6 shows that the performance of Choice-SL relative to the NCM model in terms of

predictive accuracy improves with fewer choice sets for calibration. This finding, consistent

with what we found in the metric simulation experiments, further emphasizes the usefulness

of our model in contexts in which concerns over response rates and response quality prompt

researchers to use short conjoint questionnaires. We also find that more segments and a

smaller within-segment variance improve the relative performance of Choice-SL. Later, we

leverage these findings to explain the relative performance among models on field data.
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4 Field Data

4.1 Metric Conjoint

We evaluate the performance of our Metric-SL model using a metric conjoint data set of

personal computers that was first introduced in Lenk et al. (1996). The same data set was

also used in Evgeniou et al. (2007) to compare conjoint estimation methods. In the study,

180 respondents each rated 20 hypothetical personal computers on an 11-point scale (0 to

10). Each hypothetical profile was represented using 13 binary attributes and an intercept.

The first 16 profiles formed an orthogonal and balanced design and were used for calibration,

and the last 4 were used for holdout validation. See Lenk et al. (1996) and Evgeniou et al.

(2007) for details of this data set.

We compared the predictive accuracy of four models, Metric-SL, the FM model, the

NCM model, and RR-Het using RMSE(Y ) and the first choice hits in the holdout sample

(Andrews et al. 2002b), which we denote as 1stCH. For any respondent, 1stCH was set

to 1 if the holdout profile with the highest observed rating was correctly predicted, and

0 otherwise. We report the average RMSE(Y ) and 1stCH across 180 respondents for each

method. Table 7 summarizes the results. We note that for RMSE(Y ) lower numbers indicate

better performance whereas for 1stCH higher numbers indicate better performance.

Insert Table 7 here.

Using paired t-tests over the 180 respondents, we find that Metric-SL and RR-Het perform

best or not significantly different from best (at p < 0.10) both in terms of RMSE(Y ) and

1stCH. This performance comparison validates the predictive accuracy of Metric-SL; it also

suggests that the assumption of a unimodal continuous heterogeneity (UCH) distribution

made by RR-Het is not restrictive on this data set.
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4.2 Choice-based Conjoint

4.2.1 Application 1 – Hotel Choice

A total of 188 respondents participated in this study and each of them was shown 12 choice

sets. Each choice set consisted of three hotel profiles and a no-choice option. Seven attributes,

including brand, room rate, location, restaurant, gym, Internet access, and rewards points,

were used to represent the profiles. The brand attribute was treated as discrete with 5 levels,

e.g., Westin, whereas all other attributes were treated as continuous. We randomly selected

10 out of the 12 choice sets for each respondent for calibration and used the remaining 2

choice sets for holdout validation.

We compared the predictive performance of four models, Choice-SL, the FM model,

the NCM model, and LOG-Het using Holdout-LL and the holdout sample hit rate, which

we denote as Holdout-HIT. We report the average Holdout-LL and Holdout-HIT across all

188 respondents for each method. The results are summarized in Table 7. We note that

for both Holdout-LL and Holdout-HIT higher numbers indicate better performance. Using

paired t-tests over 188 respondents, we find that Choice-SL performs best or not significantly

different from best (at p < 0.10) for both Holdout-LL and Holdout-HIT. The NCM model

performs significantly worse than best on Holdout-LL and the FM model and LOG-Het

perform significantly worse than best on Holdout-HIT. Thus, the empirical performance

comparison validates the predictive accuracy of Choice-SL.

4.2.2 Application 2 – Cell Phone Plan Choice

A total of 72 respondents participated in this study, and each of them was shown 18 choice

sets that consisted of three profiles and a no-choice option. Six attributes were used for

constructing the conjoint profiles: access fee, per-minute rate, plan minutes, service provider,

Internet access, and rollover of unused minutes. The same data set was used in Iyengar et al.
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(2008). We used the best fitting “nonlinear-effects” specification in Iyengar et al. (2008)

that adds logarithmic terms in access fee, per-minute rate, and plan minutes to the standard

conjoint specification.12 We randomly selected 15 out of the 18 choice sets for each respondent

for calibration and used the remaining 3 choice sets for holdout validation.

We compared the predictive performance of four models, Choice-SL, the FM model, the

NCM model, and LOG-Het using Holdout-LL and Holdout-HIT. Since the sample size of

this data set is relatively small, the paired t-tests among the four models were insignificant

on both performance measures. To tackle this issue we adopted the following alternative

statistical test procedure. We generated 10 random replications of the data set. In each

replication, we retained all 72 respondents, randomly selected 15 out of the 18 choice sets for

each respondent for calibration, and used the remaining 3 choice sets for holdout validation.

Each conjoint estimation method was separately applied to each of the 10 replications,

and Holdout-LL and Holdout-HIT for each respondent were computed in each replication.

We computed the average Holdout-LL and Holdout-HIT across 10 replications for each

respondent, and compared the four conjoint estimation methods using paired t-tests over the

72 respondents. The results are summarized in Table 7. Recall that for both Holdout-LL

and Holdout-HIT higher numbers indicate better performance. We see from Table 7 that

Choice-SL performs best (at p < 0.10) on Holdout-LL and the NCM model performs best

(at p < 0.10) on Holdout-HIT.

4.2.3 Comparison Between the Two Choice-based Applications

Table 7 shows that the predictive accuracy of Choice-SL compared to the NCM model is

more favorable on the hotel data set than on the cell phone plan data set. It is instructive to

interpret this comparison using our findings in Section 3.2 regarding how the predictive

12We differed from Iyengar et al. (2008) in that we standardized all continuous attributes, i.e., each
continuous attribute was demeaned and divided by its standard deviation, before model estimation. The
standardization is a widely adopted technique in the statistics and machine learning literature (Tibshirani
1996) which ensures that all continuous attributes have similar scales.
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performance of Choice-SL relative to the NCM model varies with respect to the data

characteristics. First, Choice-SL recovers 2 segments in the hotel data set as well as in

most replications of the cell phone plan data set, and hence there is no clear evidence

suggesting that the two data sets have different numbers of segments. Second, the number

of calibration choice sets of the hotel data set (i.e., 10) is smaller than that of the cell phone

plan data set (i.e., 15). Third, we use Choice-SL to infer the within-segment variances in

both data sets and find that the average inferred within-segment variance for the hotel data

set is smaller than that for the cell phone plan data set. Recall that in Section 3.2 we found

that Choice-SL is likely to perform better relative to the NCM model in terms of predictive

accuracy when the number of calibration choice sets is small and the within-segment variance

is small. Therefore, the results in Table 7 are consistent with our findings in the simulation

experiments.

4.3 Graphical Illustration of Partworths Estimates

In this section, we provide graphical illustrations of the individual-level heterogeneity representations

recovered by the four methods on the three field data sets. Given a conjoint estimation

method and a data set, we estimate a density for each partworth by applying a kernel

smoothing density estimator to the individual-level point estimates of the partworth for all

respondents.

Insert Figures 1, 2, and 3 here.

To illustrate, we plot the density estimates for the following partworths. Figure 1 displays

the density of intercept in the personal computer data set. The density curves estimated

by Metric-SL, the NCM model, and RR-Het are qualitatively similar and exhibit largely

unimodal continuous shapes, while the FM model recovers three spikes in the density curve.

Figure 2 shows the density of the partworth corresponding to location in the hotel data
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set. It is evident that the density curves estimated by Choice-SL and the FM model display

multimodal continuous shapes, whereas those estimated by the NCM model and LOG-Het

are unimodal. In Figure 3 we plot the density of the partworth corresponding to plan minutes

in the cell phone plan data set. The density curves of all methods except LOG-Het show

multimodal continuous shapes, with the multimodality estimated by Choice-SL and the FM

model being more pronounced than that estimated by the NCM model. Density estimates

for other partworths are available from the authors upon request.

4.4 Comparison on Pricing Implications

We use the hotel data set as an example to compare the pricing implications of the four

conjoint estimation methods. To illustrate, we consider a hotel profile with the following

attributes: brand set to Westin, location and Internet access set to high levels, and restaurant,

gym, and rewards points set to medium levels. We use the individual-level partworths

estimates obtained from each method to derive the individual-level willingness-to-pay (WTP)

defined as the price at which a respondent is indifferent between choosing this particular hotel

profile and the no-choice option (Jedidi and Zhang 2002). To ensure that the WTP estimates

are plausible, we set the minimum (resp. maximum) feasible WTP to $0 (resp. $1000).

We find that the primary distinguishing characteristic between the WTPs estimated by

Choice-SL and other three methods is that the latter infer a large WTP for more respondents.

Choice-SL infers that 34.6% of respondents have a WTP greater than $300, whereas the NCM

model, the FM model, and LOG-Het estimate this proportion to be 50.5%, 41.0%, and 43.1%,

respectively. This difference in the estimates for the fraction of respondents with large WTPs

has a substantial impact on the revenue-maximizing prices implied by different methods.13

Choice-SL, the NCM model, the FM model, and LOG-Het set the revenue-maximizing prices

to $216, $477, $458, and $790, respectively. Furthermore, Choice-SL, the NCM model, the

13If cost data were present, we could determine the profit-maximizing price.
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FM model, and LOG-Het estimate the proportion of respondents who would prefer the

hotel profile described above to the no-choice option at the revenue-maximizing prices to be

55.3%, 33.5%, 37.2%, and 17.6%, respectively. Hence, the four conjoint estimation methods

imply different pricing strategies. Choice-SL recommends using a moderate price to capture a

large chunk of the market whereas the other three methods (especially LOG-Het) recommend

using a high price to extract revenue from a smaller segment of respondents with high WTPs.

Given that the highest price shown in all hotel profiles was $250, we find that the pricing

decision of Choice-SL has higher face validity.

5 Conclusions

Consumer preferences can often be modeled using a multimodal continuous heterogeneity

(MCH) distribution and adequate modeling of MCH is critical for accurate conjoint estimation.

In this paper, we propose an innovative sparse learning (SL) approach for modeling MCH.

The SL approach models MCH via a two-stage divide-and-conquer framework, in which MCH

is decomposed into a small collection of within-segment unimodal continuous heterogeneity

(UCH) distributions using sparse learning methodology and each UCH is then separately

modeled. Consequently, we explicitly account for both across-segment and within-segment

heterogeneity in the SL model. In addition, the amount of shrinkage imposed to recover the

individual-level partworths is endogenously selected using cross-validation.

We test the empirical performance of our SL model and compare it to the finite mixture

model (Kamakura and Russell 1989, Chintagunta et al. 1991), the Bayesian normal component

mixture model (Allenby et al. 1998), and the convex optimization model of Evgeniou et al.

(2007) using extensive simulation experiments and three field data sets. We find that our SL

model demonstrates a consistently strong performance across a wide range of experimental

conditions as well as field data sets with distinct characteristics. We also show the managerial
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relevance of our SL model using an optimal pricing exercise in which the SL model generates

a more plausible revenue-maximizing price.

There are several promising avenues for future research. First, we can consider an

extension of our SL model by incorporating kernel methods (Vapnik 1998) which was introduced

to marketing by Cui and Curry (2005) and Evgeniou et al. (2005). Second, researchers

can also consider other population based complexity controls to improve the capability for

modeling MCH. Third, our SL model, like the finite mixture model and the Bayesian normal

component mixture model, can be applied to estimate consumers’ heterogeneous preferences

in settings other than conjoint analysis, e.g., scanner panel data sets, and it may be fruitful

to compare our SL model with benchmark models in such settings. Finally, an interesting

research direction is to explore the potential of machine learning methods in modeling other

phenomena in marketing beyond consumer heterogeneity.
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Table 1: RMSE(β) and RMSE(Y ) for a Subset of Experimental Conditions

RMSE(β) RMSE(Y )

Num-S Num-P EV WSV Metric-SL NCM FM RR-Het Metric-SL NCM FM RR-Het

2 18 1.5 0.05 0.2315 0.4074 0.2367 0.3459 1.2656 1.3637 1.2918 1.3377

0.10 0.2959 0.4319 0.3233 0.3889 1.2822 1.3591 1.3423 1.3432

0.20 0.3706 0.4654 0.4534 0.4492 1.3544 1.4062 1.5338 1.4087

0.40 0.4645 0.4956 0.6218 0.4981 1.4359 1.4498 1.7215 1.4597

0.60 0.5039 0.5175 0.7485 0.5254 1.4108 1.4115 1.8227 1.4202

0.80 0.5450 0.5446 0.8737 0.5606 1.4659 1.4584 2.0126 1.4695

1.00 0.5644 0.5635 0.9789 0.5712 1.4590 1.4605 2.1829 1.4630

Notes. Bold numbers in each experimental condition for each performance measure indicate best or not significantly different
from best at the p < 0.05 level based on paired t-tests.

Table 2: Regression Analysis of RMSE(β) for Metric Simulations

Variable Metric-SL NCM FM RR-Het Metric-SL - NCM

Intercept 0.2033∗∗∗ 0.2884∗∗∗ 0.2392∗∗∗ 0.2582∗∗∗ −0.0851∗∗∗

Num-S 0.0062 0.0068 0.0146 0.0105 −0.0006

Num-P −0.0427∗∗∗ −0.0609∗∗∗ −0.0123 −0.0589∗∗∗ 0.0181∗∗

EV 0.1217∗∗∗ 0.1493∗∗∗ 0.0253∗∗ 0.1471∗∗∗ −0.0277∗∗∗

WSV 0.2254∗∗∗ 0.1106∗∗∗ 0.7622∗∗∗ 0.1539∗∗∗ 0.1147∗∗∗

R2 0.86 0.97 0.98 0.93 0.69

Notes. Dependent variables in the 2nd, 3rd, 4th, and 5th columns are RMSE(β)’s of Metric-SL, NCM, FM,
and RR-Het, respectively; the dependent variable in the 6th column is the difference between RMSE(β)’s

of Metric-SL and NCM.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 3: Regression Analysis of RMSE(Y ) for Metric Simulations

Variable Metric-SL NCM FM RR-Het Metric-SL - NCM

Intercept 0.7662∗∗∗ 0.8154∗∗∗ 0.8861∗∗∗ 0.8024∗∗∗ −0.0492∗∗∗

Num-S 0.0108 0.0119∗∗ 0.0327∗∗ 0.0140∗∗ −0.0012

Num-P −0.0488∗∗∗ −0.0607∗∗∗ −0.1058∗∗∗ −0.0632∗∗∗ 0.0120∗∗

EV 0.5497∗∗∗ 0.5636∗∗∗ 0.3989∗∗∗ 0.5639∗∗∗ −0.0139∗∗∗

WSV 0.1395∗∗∗ 0.0728∗∗∗ 0.9374∗∗∗ 0.0954∗∗∗ 0.0667∗∗∗

R2 0.99 0.99 0.98 0.99 0.67

Notes. Dependent variables in the 2nd, 3rd, 4th, and 5th columns are RMSE(Y )’s of Metric-SL, NCM,
FM, and RR-Het, respectively; the dependent variable in the 6th column is the difference between

RMSE(Y )’s of Metric-SL and NCM.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 4: RMSE(β) and Holdout-LL for a Subset of Experimental Conditions

RMSE(β) Holdout-LL

Num-S Num-CS EV WSV Choice-SL NCM FM LOG-Het Choice-SL NCM FM LOG-Het

2 16 3.290 0.05 0.5521 0.6760 0.3598 0.7021 −0.8900 −0.9207 -0.8765 −0.9342

0.10 0.4920 0.6692 0.3584 0.6429 −0.9069 −0.9397 -0.8972 −0.9427

0.20 0.5087 0.6829 0.4646 0.6738 -0.9131 −0.9420 -0.9165 −0.9410

0.40 0.6389 0.7773 0.6602 0.7418 -0.8758 −0.8966 −0.9092 −0.8876

0.60 0.7315 0.8512 0.8324 0.7820 -0.9109 −0.9351 −0.9526 −0.9199

0.80 0.7653 0.8053 0.9207 0.8068 -0.9229 −0.9276 −0.9980 -0.9204

1.00 0.8783 0.8791 0.9990 0.9045 -0.9237 −0.9312 −0.9808 -0.9219

Notes. Bold numbers in each experimental condition for each performance measure indicate best or not significantly different
from best at the p < 0.05 level based on paired t-tests.
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Table 5: Regression Analysis of RMSE(β) for Choice-based Simulations

Variable Choice-SL NCM FM LOG-Het Choice-SL - NCM

Intercept 0.4446∗∗∗ 0.6287∗∗∗ 0.3143∗∗∗ 0.6153∗∗∗ −0.1841∗∗∗

Num-S 0.0270∗∗ 0.0668∗∗∗ 0.0364∗∗ 0.0535∗∗∗ −0.0398∗∗

Num-CS −0.0919∗∗∗ −0.1093∗∗∗ −0.0450∗∗∗ −0.0958∗∗∗ 0.0174

EV 0.0426∗∗∗ 0.0658∗∗∗ 0.0070 0.0415∗∗∗ −0.0232

WSV 0.3834∗∗∗ 0.1405∗∗∗ 0.7626∗∗∗ 0.2230∗∗∗ 0.2429∗∗∗

R2 0.94 0.88 0.96 0.93 0.71

Notes. Dependent variables in the 2nd, 3rd, 4th, and 5th columns are RMSE(β)’s of Choice-SL, NCM, FM,
and LOG-Het, respectively; the dependent variable in the 6th column is the difference between RMSE(β)’s

of Choice-SL and NCM.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Table 6: Regression Analysis of Holdout-LL for Choice-based Simulations

Variable Choice-SL NCM FM LOG-Het Choice-SL - NCM

Intercept −0.7234∗∗∗ −0.7580∗∗∗ −0.7156∗∗∗ −0.7609∗∗∗ 0.0346∗∗∗

Num-S −0.0002 −0.0067 −0.0034 −0.0035 0.0064∗∗∗

Num-CS 0.0117 0.0175∗∗ 0.0059 0.0164∗∗ −0.0058∗∗

EV −0.1888∗∗∗ −0.1899∗∗∗ −0.1713∗∗∗ −0.1874∗∗∗ 0.0011

WSV 0.0058 0.0370∗∗∗ −0.1037∗∗∗ 0.0473∗∗∗ −0.0312∗∗∗

R2 0.91 0.92 0.88 0.92 0.68

Notes. Dependent variables in the 2nd, 3rd, 4th, and 5th columns are Holdout-LL’s of Choice-SL, NCM,
FM, and LOG-Het, respectively; the dependent variable in the 6th column is the difference between

Holdout-LL’s of Choice-SL and NCM.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 7: Field Conjoint Data Sets

The Personal Computer Data Set

Metric-SL NCM FM RR-Het

RMSE(Y ) 1.6099 1.6558∗∗∗ 1.8639∗∗∗ 1.6072

1stCH 0.7056 0.6722∗∗ 0.5889∗∗∗ 0.6944

The Hotel Data Set

Choice-SL NCM FM LOG-Het

Holdout-LL -0.9270 −1.0297∗∗ -0.9192 -0.9305

Holdout-HIT 0.6330 0.6410 0.5878∗∗ 0.6090∗

The Cell Phone Plan Data Set

Choice-SL NCM FM LOG-Het

Holdout-LL -0.9205 −0.9540∗ −0.9944∗∗∗ −0.9389∗

Holdout-HIT 0.6278∗ 0.6407 0.5856∗∗∗ 0.6190∗∗∗

Notes. For RMSE(Y ) lower numbers indicate better performance; for 1stCH higher numbers indicate
better performance; for Holdout-LL higher numbers indicate better performance; and for Holdout-HIT

higher numbers indicate better performance.

Bold numbers: best or not significantly different from best at the p < 0.10 level.
Numbers with ∗: significantly different from best at the p < 0.10 level.
Numbers with ∗∗: significantly different from best at the p < 0.05 level.
Numbers with ∗∗∗: significantly different from best at the p < 0.01 level.
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Figure 1: Density Plots: Intercept in the Personal Computer Data Set
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Figure 2: Density Plots: The Partworth Corresponding to Location in the Hotel Data Set
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Figure 3: Density Plots: The Partworth Corresponding to Plan Minutes in the Cell Phone
Plan Data Set
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