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Abstract. Managing marketing resources over time requires dynamic model estimation,
which necessitates specifying some parametric or nonparametric probability distribution.
When the data generating process differs from the assumed distribution, the resulting
model is misspecified. To hedge against such a misspecification risk, the extant theory rec-
ommends using the sandwich estimator. This approach, however, only corrects the variance
of estimated parameters, but not their values. Consequently, the sandwich estimator does
not affect anymanagerial outcomes such as marketing budgeting and allocation decisions.
To overcome this drawback, we present the minimax framework that does not necessitate
distributional assumptions to estimate dynamic models. Applying minimax control the-
ory, we derive an optimal robust filter, illustrate its application to a unique advertising
data set from the Canadian Blood Services, and contribute several novel findings. We
discover the compensatory effect: Advertising effectiveness increases and the carryover
effect decreases as robustness increases. We also find that the robust filter uniformly out-
performs the Kalman filter on the out-of-sample predictions. Furthermore, we uncover
the existence of a profit-volatility trade-off, similar to the returns-risk trade-off in finance,
whereby the volatility of profit stream decreases at the expense of reduced total profit
as robustness increases. Finally, we prove that, unlike for-profit companies, managers of
nonprofit organizations should optimally allocate budgets opposite the advertising-to-sales
ratio heuristic; that is, advertise more (less) when sales are low (high).

History: Fred Feinberg served as the senior editor and Harald van Heerde served as associate editor
for this article.

Supplemental Material: Data and the web appendix are available at https://doi.org/10.1287/
mksc.2016.1010.
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1. Introduction
Brand managers should optimally allocate market-
ing resources to maximize long-term profit (Gatignon
1993, Mantrala 2002, Shankar 2008, Gupta and Steen-
burgh 2008). To this end, they seek counsel from
marketing analytics companies (e.g., IRI, MarketShare,
Kvantum), who analyze the firm’s own market data
augmented with data from other sources (e.g., Kantar,
Nielsen, J.D. Power, etc.), assess the impact of the mar-
keting activities on sales performance, and then rec-
ommend optimal budgets and allocations for brand
managers to consider when developing marketing
plans. For real-world case studies documenting this
disciplined practice, see Corstjens andMerrihue (2003),
Kumar and Mirchandani (2012), or Nichols (2013). To
furnish optimal recommendations, marketing analyt-
ics companies use models and methods often invented
by academic researchers from various scientific disci-
plines. For instance, marketing mix models find their
roots in the pioneering work of Little (1975), while
methods for estimating dynamic models rest on the
foundations laid by Fisher’s (1922) likelihood prin-
ciple and Kalman’s (1960) filter. In summary, brand

managers make the decisions on marketing budgets
and allocations; marketing analytics companies con-
duct the analyses using existing models and meth-
ods to facilitate marketing decisions; and academic
researchers invent new models and methods that
enable informed decision making and thus improve
the practice of marketing.

The optimal allocation of marketing resources over
time requires estimation of dynamic models that relate
marketing activities (e.g., advertising, price, etc.) to
market outcomes (e.g., sales, share, etc.). Existing
methods to estimate such dynamic models assume
that the forecast errors between the model’s predic-
tions and the market data follow some probability dis-
tribution, which is typically multivariate normal (e.g.,
Naik et al. 1998, Vakratsas et al. 2004, Lachaab et al.
2006, Ataman et al. 2008, Bruce 2008, Rubel et al. 2011,
van Heerde et al. 2013, Liu and Shankar 2015, Kolsarici
and Vakratsas 2015). The data generating process can,
however, differ from the assumed probability distribu-
tion. The resulting estimated parameters depend on
this ex ante assumption of some distribution Fi . Yet
what if the distribution was F j instead? Furthermore,
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the probability distributions are infinite and can be rep-
resented in the setΩ� {F1 , . . . , Fi , . . . , F∞}, where Fi can
be Normal, Gamma, Gaussian Mixture, etc. Because
there exists an infinite number of distributions in Ω,
it is unreasonable to expect researchers or analysts to
estimate parameters for each of the alternative distri-
butions. Hence we propose to develop a new method
for estimating dynamic models that does not require
the assumption or specification of any probability dis-
tribution, parametric or nonparametric.
To elucidate the conceptual idea, let ωNormal denote

the forecast errors resulting under the assumption of a
Normal distribution; ωGamma under the Gamma distri-
bution; and so on. Then the set ω� {ω1 , . . . , ωi , . . . , ω∞}
contains the forecast errors arising from the corre-
sponding distributions in Ω. Because the proposed
method does not assume any specific distribution, the
forecast errors arising from all of the distributions
must be accounted for when estimating model param-
eters. To accommodate all of the distributions, we
consider the largest possible errors ω∗ �max{ωNormal ,
ωGamma , ωGaussian Mixture , . . . , ωi , . . . , ω∞}. Consequently,
regardless of any specific distribution, we conserva-
tively estimate parameters under the worst case sce-
nario stemming from the largest possible number of
errors. As a result, the estimated parameters are robust
to any distribution in the set Ω of all possible dis-
tributions. To summarize, robustness is a conceptual
property pertaining to the possibility set Ω, while
conservatism operationalizes robustness via the worst
case scenario.
We formalize the notion of worst case scenarios via

the minimax principle (Wald 1950). To understand this
principle, let L(α, ω) denote a loss function such as
the sum of squared errors, where α denotes the model
parameters and ω are the forecast errors. In the extant
literature, one assumes that ω follows some probabil-
ity distribution (typically Normal), then evaluates the
expected loss L(α) � Ɛ[L(α, ω)], and finally minimizes
it with respect to α to obtain the parameter estimates α̂.
By contrast, the proposed method eschews the distri-
butional assumption on ω, minimizes the loss function
L(α, ω)with respect to α andmaximizes it with respect
to ω, and thus obtains the parameter estimates α̂. For-
mally, we solve the minimax problem

min︸︷︷︸
α

max︸︷︷︸
ω

L(α, ω)

to obtain the (best) parameter estimates α̂ under
the largest errors ω∗ (worst case). In the context of
dynamic models, this minimax problem transcends to
a multi-period game. Applying minimax control the-
ory (see, e.g., Başar and Bernhard 1995), we solve this
dynamic game to obtain the best parameter estimates
{α̂t : t � 1, . . . ,N} under the largest possible errors {ω∗t :
t � 1, . . . ,N}.

We present the results in Propositions 1 and 2.
Specifically, Proposition 1 furnishes ω∗t for every
period t without making any distributional assump-
tions. Proposition 2 offers α̂t recursively over time t,
and depends on a scalar parameter γ, which specifies
the degree of conservatism (or robustness): The smaller
the γ, the more conservative (or robust) the estima-
tion. Interestingly, we show that the robust recursions
of α̂t converge to the standard Kalman filter recursions
as γ tends to infinity. In other words, we show that
the Kalman filter estimation is the least conservative.
As γ decreases, the proposed robust filter becomes
more conservative, which means it places more weight
on the observed data than the Kalman filter, thereby
accommodating a broader range of scenarios.

In summary, the proposed robust filter not only
relaxes the necessity of specifying distributions of any
kind but also facilitates the robust estimation of time-
varying dynamic linear models, which cover broad
classes such as the vector auto regression models
(e.g., Lütkepohl 2005), ARIMA models (e.g., Brockwell
and Davis 1996), time-varying parameter models (e.g.,
Koop and Korobilis 2010), dynamic regression (e.g.,
Biyalogorsky and Naik 2003), dynamic factor models
(e.g., Bruce et al. 2012) or hierarchical linear models
(e.g., Raudenbush and Bryk 2002), to mention a few
examples. Thus, for such a broad class of dynamic
models, the proposed approach strives to improve the
practice of marketing by circumventing the risk of
model misspecification. When models are misspeci-
fied, the forecast errors contain information, which the
proposed robust filter incorporates to learn about the
true state by placing more weight on the observed data
than the normal Kalman filter.

We apply the proposed dynamic robust estimation
to a unique data set from the Canadian Blood Services
(CBS), which presents three years of weekly adver-
tising and blood collection across all five provinces
of English-speaking Canada (i.e., without Québec).
Our analysis reveals that, as conservatism increases,
the effectiveness of advertising increases, whereas the
carryover effect decreases. This compensatory effect
generalizes across all of the provinces. This result
arises because the proposed filter places greater weight
on more recent data. Furthermore, we compare the
dynamic robust estimation with the Kalman filter esti-
mation, with and without White’s (1980) correction
for robust inferences via the sandwich estimator. We
also provide diagnostic tests to determine when to use
which method, i.e., robust filter, Kalman filter, robust
filter with White’s correction, or Kalman filter with
White’s correction, so that researchers and analysts can
use the appropriate method in their empirical contexts.
Finally, we derive the optimal budget and allocation
strategies for nonprofit organizations whose objective
differs fromprofit-maximization.We prove that, unlike
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for-profit companies, they should spend the marketing
budget opposite the advertising-to-sales ratio heuristic,
i.e., advertise more (less) when sales are low (high).
The rest of the paper proceeds as follows. Sec-

tion 3 describes the framework for robust estimation;
Section 4 derives the robust filter; Section 5 applies
the robust filter to blood donation data and provides
an empirical comparison with the Kalman filter and
White’s correction; Section 6 furnishes the optimal
budget and allocation strategies. Section 7 presents
concluding comments. We begin with a review of the
extant literature on model misspecification.

2. Literature Review
Model misspecification arises when the actual data
generating process differs from the assumed prob-
ability distribution. Starting with Eicker (1963), this
issue has been studied in statistics (see, e.g., Eicker
1967, Huber 1967, Hinkley 1977) and led to an ap-
proach known as heteroskedasticity-consistent estima-
tion (White 1980, 1982). In this approach, the standard
errors of the estimated parameters are “corrected” to
hedge misspecification risk by modifying the infer-
ence conducted via the likelihood theory. For misspec-
ified models, White (1980) shows that the inverse of
the Fisher information matrix does not yield a con-
sistent variance-covariance matrix, thus resulting in
incorrect statistical inferences. To conduct robust infer-
ences, White (1980) proposes the sandwich estimator,
which uses not only the inverse of the Fisher informa-
tion matrix but also the gradients of the log-likelihood
function; Equation (22) in Section 4 presents the for-
mula for computational purposes.

In thecontextofdynamicmodels,weestimateparam-
eters by computing the likelihood function using the

Figure 1. Robust Estimation and Inferences

Robust inferences?
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2. Nonrobust inferences
3. Nonrobust budget
4. Nonrobust allocation
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3. Conservative budget
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1. Nonrobust parameter estimates
2. Robust inferences
3. Nonrobust budget
4. Nonrobust allocation

No Yes

No

Yes

Panel A
Kalman filter

Panel B
White’s correction

Panel C
Robust filter

Panel D
Combined approach

Kalman filter recursions, and conduct statistical infer-
ences, i.e., significance of the estimated parameters,
with or without the sandwich estimator. For example,
see Naik et al. (1998) for the Kalman filter estimation
without White’s correction, and Naik et al. (2008) for
robust inferences via the sandwich estimator. Panel A
in Figure 1 presents the Kalman filter estimation with-
out White’s correction; Panel B in Figure 1 augments it
with White’s correction for robust inferences.

The primary drawback of White’s correction (i.e.,
the sandwich estimator) is that it does not correct the
values of the estimated parameters; it only corrects
for their variance. Consequently, managerial decisions
would not change whether one uses the sandwich esti-
mator. Consider, for example, estimating a dynamic
sales response model with and withoutWhite’s correc-
tion. Would the estimated level of optimal budget or
the optimal allocation to marketing activities change?
No, because these quantities are functions of the model
parameters, whose estimated values remain the same;
only their standard errors change due to White’s cor-
rection. Hence the recommended budget and its allo-
cation to marketing activities remain unaltered.

To overcome this drawback, we develop a method
to “correct” the parameter estimator itself. In doing so,
the proposed method also corrects for the variance of
the estimated parameters. Recall that Panels A and B
in Figure 1 require prespecifying a probability distri-
bution, which we aim to relax. To this end, in Panel C
of Figure 1, the proposed method, which we call the
robust filter, makes no distributional assumptions for
the error terms in dynamic linear models.

Because the robust filter provides different parame-
ter estimates than those obtained from Panels A and B
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in Figure 1, managerial outcomes such as the budget
and allocation change as do their standard errors. In
other words, the robust filter yields the robust esti-
mates and robust inferences. Finally, by applying the
sandwich estimator together with the dynamic robust
estimation, we achieve “double” robustification for
inferences, as shown in Panel D of Figure 1.
In summary, the extant literature investigates robus-

tification through the lens of statistical outcomes such
as inference, but it cannot affect any managerial out-
comes; managerial decisions do not change with or
without the sandwich estimator. How else should
managers then safeguard against misspecifiedmodels?
To address this question, we next present the minimax
framework to robustify parameter estimation.

3. A Framework for Robust
Dynamic Estimation

Consider the dynamic linear model (e.g., Harvey 1989,
West and Harrison 1997, Shumway and Stoffer 2011)
given by the observation equation

yt � Ztαt + vt , (1)

where yt is the n × 1 vector of observed dependent
variables, αt is the m × 1 vector of unobserved state
variables, Zt is the n×m link matrix, and vt is the n×1
vector of error terms that follow a multivariate nor-
mal distribution N(0,Ht). Furthermore, the state vec-
tor αt dynamically evolves over time via the transition
equation

αt+1 � Ttαt + dt +ωt , (2)

where Tt is the m × m transition matrix, dt is the
m×1 drift vector, and the error terms ωt follow an
m-dimensional multivariate normal distribution
N(0,Qt). Because thesystemmatrices {Zt ,Tt , dt ,Ht ,Qt}
can be time-varying, Equations (1) and (2) encapsulate
many classes such as the vector auto regressionmodels
(e.g., Lütkepohl 2005), ARIMA models (e.g., Brockwell
and Davis 1996), time-varying parameter models (e.g.,
Koop and Korobilis 2010), dynamic regression (e.g.,
Biyalogorsky and Naik 2003), dynamic factor models
(e.g., Bruce et al. 2012) or hierarchical linear models
(e.g., Raudenbush and Bryk 2002), to mention a few
examples. Section D in the web appendix explains how
thesemodels are special cases of Equations (1) and (2).
In Equations (1) and (2), the state vector αt is un-

observed; hence, we seek the estimator α̂t of the
unobserved state αt by minimizing ∑N

t�1 ‖αt − α̂t ‖2
assuming that the error terms (vt , ωt) follow multi-
variate normal distributions. In other words, we min-
imize the expected sum of squared errors, L(α) �
Ɛ[∑N

t�1 ‖αt − α̂t ‖2], to find the best estimator α̂� {α̂t :
t � 1, . . . ,N}, which is given by the Kalman filter
recursions (see, e.g., Appendix B in Naik et al. 1998).

Here we have used the notation ‖x‖2 � x′x and, more
generally, ‖x‖2A � x′Ax for any vector x and a con-
formable positive definite matrix A. The loss func-
tion L(α) can be viewed as the expected loss L(α) �
Ɛ[L(α, v , ω)], where the expectation operator Ɛ[ · ] inte-
grates out (v , ω) using the assumed distributions of
the error terms. This operation explains why statistical
estimation requires the assumption of some probability
distribution for (v , ω).

To not assume any probability distributions for
(v , ω), we invoke the minimax principle, due to Wald
(1950), and replace (v , ω) by their worst case (i.e.,
largest) disturbances. Specifically, we seek the estima-
tor α̂ � {α̂t : t � 1, . . . ,N} by minimizing ∑N

t�1 ‖αt − α̂t ‖2
with respect to α̂t , as before, but subject to the maxi-
mization of the sum of squared disturbances,

D(v , ω)�
N−1∑
t�0

(
‖ωt ‖2Q−1

t
+ ‖vt ‖2H−1

t

)
+ ‖α0 − α̂0‖2P−1

0
,

where (α0 ,P0 , α̂0) denote the initial state, its uncer-
tainty, and its estimate, respectively. In other words,
we replace the integration operation Ɛ[ · ] by the max-
imization operation so as to eschew the distributional
assumptions. Thus, in the robust estimation frame-
work, we make no distributional assumptions for the
error terms because the minimax principle optimizes
over the unobserved states and the unknown errors.

To construct a joint objective function, we combine
the loss functions L(α) and D(v , ω) in the performance
index

L(αt , vt , ωt)
�

∑N
t�1 ‖αt − α̂t ‖2

‖α0 − α̂0‖2P−1
0
+

∑N−1
t�0 (‖ωt ‖2Q−1

t
+ ‖vt ‖2H−1

t
)
. (3)

For further details on this performance index, see
Banavar (1992), Theodor and Shaked (1994), Başar and
Bernhard (1995) or Simon (2006). In Equation (3), all
individual terms on the right-hand side (RHS) are
quadratic forms and hence positive, so zero is the
least value that L( · ) attains. We search for all of
the finite sequences of {(α̂t , ωt): t � 1, . . . ,N} such
that the performance index is smaller than some pos-
itive constant γ, i.e., the feasible solutions satisfy
L(αt , vt , ωt) < γ.
The parameter γ embodies conservatism in design-

ing the optimal state estimator α̂. To understand this
idea, consider the scenario when γ is small. Then,
ceteris paribus, the optimal ω∗ must be sufficiently
large to satisfy L(αt , vt , ωt) < γ. The large ω∗ in turn
perturbs the state αt substantially due to Equation (2).
By contrast, when γ is large, even small values of ω∗ can
satisfy L(αt , vt , ωt)< γ. The small ω∗ in turnmarginally
perturbs the state αt due to Equation (2). In the
extreme, when γ tends to infinity, the disturbances ω∗
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are the smallest, leading to the least conservative sce-
nario. Hence, as γ decreases, the estimation becomes
more conservative (or robust) by accommodating wide
perturbations to the unobserved state αt .

Given any level of conservatism γ, what are the best
trajectories of the state estimator α̂ � {α̂t : t � 1, . . . ,N}
and the disturbance sequences (v∗ , ω∗)� {(v∗t , ω∗t): t � 0,
. . . ,N−1}? To find them, we need to solve theminimax
problem

(α̂t , v
∗
t , ω

∗
t)� arg min︸︷︷︸

αt

max︸︷︷︸
(vt , ωt )

L(αt , vt , ωt) < γ, (4)

subject to Equations (1) and (2) and without distribu-
tional assumptions on (vt , ωt).

Equation (4) induces a dynamic game, “dynamic”
because Equation (2) evolves over time, and “game”
because one can evoke the metaphor of two fictitious
players, the so-called statistician and Nature, engaged
in a competitive game in which the statistician seeks
to estimate the unobserved state αt , while Nature
injects disturbances (vt , ωt) to obscure the state and
thus impede the statistician. Formally, the statistician
chooses α̂t ∈ (−∞,∞) to minimize L(αt , vt , ωt), and
Nature chooses the disturbances (v∗t , ω

∗
t) ∈ (−∞,∞) to

maximize L(αt , vt , ωt). Because ω∗t perturbs the future
evolution of αt (via Equation (2)), the statistician fore-
sees this perturbed path and incorporates its effect in
determining the best estimator {α̂t}. Likewise, Nature
foresees the statistician’s best response over time {α̂t}
when determining her best response {(v∗t , ω∗t)} such
that neither of them have incentives to deviate, thereby
attaining the equilibrium strategies {(α̂t , v∗t , ω

∗
t): t �

1, . . . ,N}.
In summary, the minimax estimation framework

reveals three insights, i.e., no distributional assump-
tions are necessary to estimate the unknown state αt

in dynamic linear models; the parameter γ embodies
conservatism (small γ⇒more conservative); the opti-
mal state estimator α̂t is the least conservative when
γ→∞.

4. Deriving the Robust Filter
Here we solve the dynamic game in Equation (4) to
derive the method for robust dynamic estimation. We
first obtain the optimal disturbances in Proposition 1,
then present the robust filter in Proposition 2, and
finally discuss parameter estimation and inference.

4.1. Optimal Disturbances
To derive the disturbances without making distribu-
tional assumptions, we apply minimax control theory

(see, e.g., Zames 1981, Başar and Bernhard 1995).
Using (3), we first re-express L(αt , vt , ωt)< γ as follows:

J(αt , ωt) �
N∑

t�1
‖αt − α̂t ‖2

−γ
[N−1∑

t�0
(‖ωt ‖2Q−1

t
+ ‖yt −Ztαt ‖2H−1

t
)

+‖α0− α̂0‖2P−1
0

]
, (5)

where we substituted vt � y t −Ztαt from Equation (1).
Equation (5) expresses the loss function for the statisti-
cian and Nature. The first term on its RHS reflects the
loss a statistician incurs in estimating the unobserved
state, while the second term in the square parentheses
captures Nature’s impedance via ({ωt}, α0).

The resulting game is zero-sum. To see this point,
let J(αt , ωt) � J1 � −J2, where J1 � J(αt , ωt) denotes the
statistician’s payoff function, and J2 � −J(αt , ωt) repre-
sents Nature’s payoff function. Consequently J1 + J2 �

J(αt , ωt) + (−J(αt , ωt)) � 0 for every (αt , ωt), not just
at the equlibrium solutions, because of the common
objective function J(αt , ωt) in Equation (5) for both
players. Also, the value of the game

J∗ � J(α∗t , ω∗t)� min︸︷︷︸
αt

max︸︷︷︸
ωt

J(αt , ωt)

is not zero at equilibrium.
Next, to dynamically optimize J(αt , ωt), we apply

Pontryagin’s maximum principle (see, e.g., Sethi and
Thompson 2000). To this end, we re-express the state
dynamics in Equation (2) as follows:

∆αt � αt+1 − αt � dt − (I −Tt)αt +ωt . (6)

Then, using (5) for a given t, we formulate the Hamil-
tonian function

Ht � ‖αt − α̂t ‖2 − γ
[
‖ωt ‖2Q−1

t
+ ‖yt −Zαt ‖2H−1

t

]
+ µ′t+1

(
dt − (I −Tt)αt +ωt

)
, (7)

where we have adjoined the RHS of Equation (6) using
the m × 1 vector of costate variables, µt+1. The Hamil-
tonian Ht decomposes the dynamic optimization prob-
lem argmax J(αt , ωt) in (4) into instantaneous static
optimization problems in (7). Then we connect the
optimized solutions over time using the evolution of
costate variables prescribed by Pontryagin’s maximum
principle (see, e.g., Sethi and Thompson 2000).

Equation (7) has the following interpretation. The
first term on the RHS represents the loss in forecast
accuracy; the second term accounts for the adverse
impact due to the shocks; and the third term captures
the long-term impact due to fluctuations in the true
state. The larger the costate, the larger the impact of
state fluctuations on forecast accuracy. In other words,
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the costate variables quantify the difficulty in improv-
ing the forecast accuracy due to the fluctuating states.
Based on Pontryagin’s maximum principle, the first-

order conditions (FOCs) are given by

∂Ht

∂ω′t
� 0 and ∆µt �−

∂Ht

∂αt
, (8)

where ∆µt � µt+1 − µt . Differentiating Ht , we get
∂Ht/∂ωt � −γ(∂(ω′tQ−1

t ωt)/∂ωt) + µ′t+1 � −2γω′tQ−1
t

+ µ′t+1. Setting the last expression to zero, we get
2γω∗′t Q−1

t � µ′t+1, which yields the optimal disturbances

ω∗t � Qtλt+1 , (9)

where we have re-expressed the costate variables as
λt+1 � µt+1/(2γ).
Using Equation (8) we next obtain the costate dy-

namics. Specifically, ∆µ′t � −∂Ht/∂α′t � −2(αt − α̂t)′ +
2γ(yt −Ztαt)′H−1

t (−Zt) + µ′t+1(I −Tt). Dividing by 2γ,
replacing µt/(2γ) by λt , and taking the transpose, we
get λt+1 − λt � −(αt − α̂t)/γ − Z′t H

−1
t (yt − Ztαt)+ λt+1 −

T′tλt+1. Hence the costate vector evolves as follows:

λt � T′tλt+1 + (αt − α̂t)/γ+Z′t H
−1
t (yt −Ztαt). (10)

Collecting (9) and (10), we obtain the following propo-
sition.

Proposition 1. The vector of optimal disturbances is
given by

ω∗t � Qtλt+1 ,

where the costate vector evolves according to

λt � T′tλt+1 + (αt − α̂t)/γ+Z′t H
−1
t (yt −Ztαt),

starting backwards from the terminal λN � 0 for t � {N − 1,
. . . , 1, 0}.
Equations (9) and (10) provide a mechanism to gen-

erate the sequence of optimal disturbances without
requiring distributional assumptions. The costate vec-
tor is driven by the forward dependence (T′tλt+1), the
state estimation error (αt − α̂t), and the measurement
noise (yt − Ztαt). As γ decreases, the magnitude of
the costate vector increases and so does the size of the
worst case disturbances ω∗t . Incorporating these distur-
bances in the state vector, we next derive the optimal
state estimator α̂t .

4.2. Robust Filter
At initial t � 0, we maximize J(α0 , ω0) in Equation (5)
subject to the constraint in Equation (2). Specifically,
we maximize the Lagrangian l(α0) � −γ‖α0 − α̂t ‖2P−1

0
+

µ′0α0 � −γ(α0 − α̂t)′P−1
0 (α0 − α̂t) + µ′0α0 to get ∂l/α′0 �

−2γ(α0 − α̂t)′P−1
0 + µ′0. Setting the last equality to zero,

we get α0 � α̂0 + P0λ0, where λ0 � µ0/(2γ). We next
use this relationship between the true and estimated

states for t ≥ 1, i.e., αt � α̂t + Ptλt . Substituting it and
the disturbances ω∗t � Qtλt+1 from Proposition 1 in the
state Equation (2), we get

α̂t+1 +Pt+1λt+1 � dt +Tt α̂t +TtPtλt +Qtλt+1. (11)

Similarly, we substitute αt � α̂t + Ptλt in the costate
Equation (10) to obtain

λt � T′λt+1 +Ptλt/γ+Z′t H
−1
t (yt −Zt(α̂t +Ptλt)). (12)

Then, collecting all of the λt terms in (12) to its left-
hand side and taking the inverse, we get

λt �
(
I −Pt/γ+Z′t H

−1
t ZtPt

)−1

·
(
T′tλt+1 +Z′t H

−1
t (yt −Zt α̂t)

)
. (13)

Next, we substitute λt from (13) in (11), collect the
terms for λt+1, and apply Lagrange’s method of unde-
termined coefficients to observe that

α̂t+1 � dt +Tt α̂t +TtPt

(
I −Pt/γ+Z′t H

−1
t ZtPt

)−1

·Z′t H−1
t (yt −Zt α̂t), (14)

and

Pt+1 � TtPt

(
I −Pt/γ+Z′t H

−1
t ZtPt

)−1T′t +Qt . (15)

Collecting (14) and (15), we state the following propo-
sition.

Proposition 2. The optimal state estimator α̂t is given
recursively for t � 1, . . . ,N by

α̂t+1 � dt +Tt α̂t +Tt Kt(yt −Zt α̂t), (16)

where

Kt � Pt(I −Pt/γ+Z′t H
−1
t ZtPt)−1Z′t H

−1
t , and (17)

Pt+1 � TtPt(I −Pt/γ+Z′t H
−1
t ZtPt)−1T′t +Qt . (18)

Equations (16) through (18) provide the optimal
recursions to update the state estimate α̂t+1 based on α̂t .
This update is proportional to the estimation error
(yt − Zt α̂t). The proportionality depends on the gain
matrix Kt . The gain matrix should satisfy the condi-
tion that the matrix (I − Pt/γ + Z′t H

−1
t ZtPt) is posi-

tive definite to ensure optimality (i.e., the second-order
conditions).

The subtraction of Pt/γ in (17) optimally expands
the gain matrix Kt . To see this clearly in (17), ob-
serve that as γ decreases, the matrix Pt/γ increases, so
(−Pt/γ) decreases, which in turn increases (I −Pt/γ +
Z′t H

−1
t ZtPt)−1 due to the inverse operation, and

hence Kt increases. Consequently, a larger Kt places
greater weight on the current market data (yt −Zt α̂t).
Thus, a more robust filter overweighs the recent past,
making it relatively more “present-oriented.” Similar
reasoning shows that Pt+1(γ) in (18) increases as γ
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decreases. As a result, a more robust filter also accom-
modates a wider range of perturbations to the unob-
served states αt .
In Section B of the web appendix, we prove the

robust filter converges to the Kalman filter as γ→∞.
Specifically, we show that the gain matrices, the covari-
ance matrices, and the state estimators of the stan-
dard Kalman filter and the proposed robust filter are
asymptotically equivalent. Furthermore, the robust fil-
ter becomes less conservative as γ increases and so
it is the least conservative filter at γ→∞. Thus, the
Kalman filter is not only nested but also the least con-
servative filter.

4.3. Robust Parameter Estimation and Inference
The time-varying systemmatrices {Zt ,Tt , dt ,Ht ,Qt} in
Equations (1) and (2) depend on the p × 1 vector of
model parameters θ. To estimate θ, as in the Kalman
filter estimation, we maximize the criterion

Sγ(θ) � − 1
2

N∑
t�1

[
ln(det(Ft(θ)))

+(yt −Zt α̂t(θ))′Ft(θ)−1(yt −Zt α̂t(θ))
]
, (19)

where Ft(θ) � ZtPt(θ)Z′t + Ht(θ). More precisely, for
a given level of conservatism γ, we obtain the robust
parameter estimates

θ̂ � argmaxSγ(θ). (20)

To conduct robust inference, we extract the square root
of the diagonal of the negative inverse of the Hessian
of Sγ(θ) to obtain the vector of robust standard errors

se(θ̂)� Sqrt(Diag(−Ĝ−1)), (21)

where the p × p Hessian matrix Ĝ � (∂2Sγ(θ)/
∂θ∂θ′)|θ�θ̂ is evaluated at the estimated parameter
values.
In summary, we derived the optimal disturbances

in Equation (9) without making any distributional
assumptions; Equations (16) through (18) provide the
robust filter recursions; Equation (20) yields the robust
parameter estimates; and Equation (21) enables robust
inference. These equations, together, complete the pro-
posed approach for robust dynamic estimation shown
in Panel C of Figure 1.

To complete the approach mentioned in Panel D of
Figure 1, we “correct” the standard errors obtained
from Equation (21) via White (1980). Specifically, for
each observation t, we first numerically compute the
gradient ∂Sγ(θ)/∂θ′, which is a 1× p vector. Next, we
stack all of the gradients row-wise to create the N × p
matrix A and thus create the matrix M �A′A of dimen-
sion p × p. Then, we obtain the vector of double-robust
standard errors

se(θ̂)� Sqrt(Diag(G−1 MG−1)). (22)

Note that the robust parameter estimates θ̂ (fromEqua-
tion (20)) remain the same in both standard error
estimators (i.e., Equations (21) or (22)). Hence double-
robustification affects only the inference, and does not
alter the managerial outcomes based on Equation (20).

4.4. When To Use Which Method?
Should researchers or analysts always pursue robust
estimation and inferences? Not necessarily. The answer
depends on whether the residuals exhibit nonnormal-
ity and whether we suspect misspecification. To this
end, we suggest using the Jarque–Bera test to ascertain
normality andWhite’s test to discover heteroskedastic-
ity or misspecification.

The Jarque–Bera test statistic is given by

T1 � (N − p)(S2
+ 0.25(C − 3)2)/6, (23)

where the sample skewness

S �

(∑N
t�1(rt − r̄)3∑N
t�1(rt − r̄)2

)3/2

,

the sample kurtosis

C �

(∑N
t�1(rt − r̄)4∑N
t�1(rt − r̄)2

)2

,

and (rt , r̄) denotes the individual residuals and their
average. The null hypothesis is that the residuals are
normally distributed (i.e., neither skewness nor kur-
tosis). The statistic T1 follows χ2 with two degrees of
freedom, which yields the p-values at the 95% confi-
dence level.

To conduct the White’s (1980) test, researchers or
analysts should run an auxiliary regression with the
dependent variable as the squared residuals, and the
regressors being the constant plus the linear, quadratic,
and cross-product terms of the variables in the original
model. Then the White (1980) test statistic is given by

T2 �NR2 , (24)

where R2 denotes the unadjusted fit of the auxiliary
regression. The null hypothesis is that neither het-
eroskedasticity nor misspecification exists. The statis-
tic T2 follows χ2

k with k degrees of freedom, which
equals the number of regressors excluding the con-
stant, and it yields the p-values at the 95% confidence
level.

If T1 holds, i.e., one fails to reject the null, then the
residuals are deemed normal; if T2 holds, then neither
heteroskedasticity nor misspecification exists. Accord-
ingly, researchers or analysts run the Kalman filter and
then apply T1 and T2 to the residuals from Panel A. If T1
and T2 hold, they stay in Panel A. There is no need for
robust estimation or robust inferences. If T1 holds but
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not T2, they go to Panel B and apply the sandwich esti-
mator as in Equation (22), but using the gradient and
Hessian matrices obtained from the Kalman filter (for
details, see Naik et al. 2008). If T1 does not hold, they
go to Panel C and run the robust filter. Then they apply
T2 to the residuals obtained from the robust filter. If T2
holds, they stay in Panel C. If not, they go to Panel D
and the sandwich estimator given in Equation (22) is
applied. In general, this road map guides researchers
and analysts to discover for themselves whether they
should implement the results from robust estimation
and inferences in their particular empirical contexts.
Next, we apply the robust dynamic estimation to blood
advertising by Canadian Blood Services.

5. Empirical Application
5.1. Blood Marketing
Over a hundred million blood donations are col-
lected worldwide every year. Blood donors give blood
without compensation and without knowing who the
donees are. Thus, blood donations epitomize altruism,
which blood collection agencies elicit through adver-
tising. Yet advertising for blood differs from brand
advertising. Unlike conventional marketing, profit con-
siderations do not arise for blood collection agencies
since there are no market prices or profit margins
involved. Moreover, collection agencies do not adver-
tise to maximize donations but to bring blood collec-
tions close to targets since blood cannot be stored for
long periods.
The literature on blood donations is sparse. A recent

study by Aravindakshan et al. (2014) investigates how
online media generates blood donations for a small
community blood bank. By contrast, we study adver-
tising by CBS, a large national blood collection agency
serving English-speaking Canada.

For historical perspective, recall that the government
of Premier Jean Chrétien established the CBS because,
during the 1980s, over 30,000 people received tainted
blood products due to the negligence of the Cana-
dian Red Cross in performing the necessary tests to
detect HIV and Hepatitis C. In response, the Royal
Commission, headed by Justice Horace Krever, inves-
tigated this nationwide public calamity. Based on the
commission’s report (Krever 1998), the Canadian gov-
ernment banned the Red Cross from collecting blood.
Red Cross blood collection was replaced by the CBS
(see www.blood.ca) for collecting and supplying blood
in Canada, except Québec. In this new system, Cana-
dian Provinces and Territories provide funding to CBS,
which delivers blood products to hospitals free of
charge without consideration of the market prices or
profit margins. As a state monopoly, CBS does not
face competition for blood collection in any of its five
provinces, i.e., Alberta, the Atlantic Provinces, British
Columbia, Ontario, and the other Prairies. Moreover,

based on the Krever Commission, CBS cannot import
blood from outside these five provinces, and the hospi-
tals cannot receive blood products from other sources.

5.2. Data Description
CBS deploys marketing communications to elicit altru-
istic behaviors from donors. Consistent with its motto,
It’s in you to give, CBS advertises to motivate peo-
ple to give blood by using mass communications via
radio advertisements and personal communications
via phone calls. We collected weekly data on pints
of blood collected, radio gross rating points (GRPs),
and the number of phone calls for each of the five
provinces from April 2010 through March 2013. Thus,
we observed the entire blood collection in English-
speaking Canada for 156 weeks. Table T1 in the web
appendix (see Section A) summarizes the descriptive
statistics.

5.3. Blood Collection Dynamics
Let yt denote the actual blood collected at time t, bt
denote the mean blood levels, and vt represent the dis-
turbance such that

yt � bt +
√

hvt , (25)

where h measures the impact of the disturbances vt .
The mean blood level evolves over time as follows:

bt+1 � β1
√

u1t + β2
√

u2t +φbt +
√

qωt , (26)

where (u1t , u2t) denotes the weekly radio GRPs and
the number of phone calls, (β1 , β2) correspond to their
effectiveness, φ represents the carryover effect, and q
measures the impact of the disturbance ωt . In robust
estimation, the disturbances (vt , ωt) are conceptually
viewed as Nature’s perturbations that are strategically
set rather than randomly drawn (as in the nonro-
bust Kalman filter estimation). Consequently, (

√
h ,
√

q)
are interpreted as the impact of marginal changes in
(v t , ωt) on the observation and state variables (y , b),
respectively. Formally,

√
h � ∂y/∂ν and √q � ∂b/∂ω.

Thus, they represent the impacts of disturbances (ν, ω)
on (y , b), respectively.
Equations (25) and (26) can be cast into the dynamic

linear model in (1) and (2), respectively. To see this
equivalence, note that Zt � 1, αt � bt , Ht � h, Tt �φ, dt �

β1
√

u1t +β2
√

u2t , and Qt � q. We observe (yt , u1t , u2t) for
t � 1, . . . ,N � 156 weeks. We must estimate the param-
eter vector θ � (β1 , β2 , φ, h , q)′ of dimension p � 5. We
use 104 observations for estimation and hold out 52
observations for validation. We next apply the four
methods mentioned in Panels A–D of Figure 1. For
details of Panels A and B, see Naik et al. (1998, 2008),
respectively. For details of Panels C and D, see Sec-
tions 4.2 and 4.3.
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5.4. Scale for Conservatism
Here we create a scale such that conservatism increases
as κ increases rather than as γ decreases (i.e., reverse
the orientation). We first estimate the Kalman filter
to obtain the parameter estimates and the maximized
value S∗γ�∞ in Equation (19). Then we apply the robust
filter to estimate the model for various values of γ, and
select that value of γ, which we denote by γ̂min, for
which the difference −2(S∗γ − S∗γ�∞) just equals χ2

1, 0.05 �

3.84. In words, we conceptually seek that robust fil-
ter that is statistically no worse than the Kalman fil-
ter. For Alberta, Atlantic, British Columbia, Ontario,
and the Prairies, we find γ̂min � (4,000, 3,000, 3,000,
50,000, 4,000), respectively. Next, we increase γ in incre-
ments of 1,000 up to a large value (which occurs at
103,000 in our application) such that the parameter esti-
mates from the robust filter converge to those obtained
from the Kalman filter. Finally, we create a scale κ �

exp(−(γ− γ̂min)/γ̂min) such that conservatism increases
as κ increases (i.e., reverse the orientation with respect
to γ). In this scale, κ and γ map one-to-one with κ � 0
corresponding to the least conservative filter and κ � 1
to the most conservative filter.

5.5. Parameter Estimates
We estimated 500 models for various γ and 5 prov-
inces. Table 1 reports the parameter estimates and
t-values across the four approaches in Figure 1. Pan-
els A and B of Table 1 present the parameter estimates
and their t-values from the Kalman filter without and
with White’s correction, respectively. The estimated
parameter values in Panels A and B do not change;
only the t-values differ because the sandwich estima-
tor alters the standard errors to hedge misspecifica-
tion risk.
By contrast, Panel C of Table 1 displays the results

from the proposed robust filter. Recall that the robust
filter uses the optimal disturbances derived in Propo-
sition 1, eschewing probabilistic assumptions for the

Table 1. Parameter Estimates (t-Values)

Provinces Radio β̂1 Calls β̂2 Carryover φ̂ Radio β̂1 Calls β̂2 Carryover φ̂

Panel A. Kalman filter Panel B. White’s correction

Alberta 0.90 (2.15) 0.44 (2.17) 0.88 (18.23) 0.90 (2.30) 0.44 (2.21) 0.88 (19.20)
Atlantic 0.06 (0.29) 1.33 (6.08) 0.28 (1.43) 0.06 (0.29) 1.33 (4.72) 0.28 (1.05)
B.C. 0.66 (2.72) 0.20 (1.60) 0.93 (29.43) 0.66 (2.91) 0.20 (1.62) 0.93 (27.07)
Ontario 1.05 (1.73) 0.71 (2.65) 0.87 (17.76) 1.05 (1.85) 0.71 (2.35) 0.87 (15.13)
Prairies 0.78 (2.31) 0.98 (4.79) 0.62 (6.49) 0.78 (2.50) 0.98 (3.95) 0.62 (5.24)

Panel C. Robust filter Panel D. Combined approach

Alberta 1.07 (2.44) 0.61 (2.91) 0.83 (15.63) 1.07 (2.47) 0.61 (2.77) 0.83 (15.45)
Atlantic 0.06 (0.32) 1.47 (8.58) 0.15 (0.82) 0.06 (0.31) 1.47 (6.79) 0.15 (0.60)
B.C. 0.72 (2.87) 0.23 (1.73) 0.91 (26.88) 0.72 (2.96) 0.23 (1.63) 0.91 (23.68)
Ontario 1.23 (1.97) 0.88 (3.19) 0.83 (15.79) 1.23 (2.08) 0.88 (2.54) 0.83 (12.31)
Prairies 0.82 (2.42) 1.21 (6.63) 0.51 (13.87) 0.82 (2.57) 1.21 (5.50) 0.51 (4.27)

random errors. Consequently, the estimated param-
eter values obtained via the Equation (20) for the
robust filter (Panel C) differ from those obtained via
the Kalman filter (Panel A). This outcome is the con-
sequence of parametric robustification, which places
a greater weight on current market data compared
to the Kalman filter (i.e., present-orientedness of the
robust filter). In addition, the standard errors from
Equation (21) for the robust filter (Panel C) differ from
those obtained via the Kalman filter (Panel A). Thus,
we obtain the robust estimates and robust inferences.

To achieve “double-robust” inferences, we use the
sandwich estimator in Equation (22). The parameter
values in Panels C and D do not change since both
are obtained via Equation (20). Only the t-values dif-
fer because Equation (21) yields the standard errors
for the robust filter, whereas Equation (22) yields the
standard errors from the sandwich estimator. However,
double robustification in Panel D alters the parame-
ter estimates (relative to Panel B) and their significance
(relative to Panels A–C).

Substantively, the results show that the carryover
effects are significant in all provinces except Atlantic
and they appear bi-modal with values clustered in the
neighborhoods of 0.5 and 0.9. We also learn that radio
advertising is statistically significant in all provinces,
except Atlantic where phone calls generate blood dona-
tions. Phone call communications are statistically sig-
nificant in all provinces, except British Columbiawhere
radio advertising generates blood donations. More-
over, heterogeneity exists across provinces. The effec-
tiveness of radio advertising estimated with the robust
filter ranges from 0.06 to 1.23 with a median of 0.83.
Similarly, the phone call effectiveness ranges from 0.23
to 1.47 with a median of 0.88.

5.6. Compensatory Effect
Figure 2 presents the effect of conservatism on the car-
ryover effect, radio effectiveness, and phone call effec-
tiveness for Alberta. As conservatism increases, we
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Figure 2. (Color online) Compensatory Effect of Conservatism
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observe that the estimated effectiveness of radio adver-
tising increases; the estimated effectiveness of phone
calls also increases; whereas the estimated carryover
effect decreases. These findings generalize across all
five provinces.
These results reveal the compensatory effect between

marketing effectiveness and the carryover effect as con-
servatism increases. That is, marketing effectiveness
and the carryover effect move in the opposite direction.
Thus, conservatism induces managers to rely more on
the present and less on the past. We attribute this
finding to the present-orientedness of the robust filter
whose gainmatrix places greater weight on the current
data, thereby increasing short-term effectiveness and
decreasing long-term carryover effect.

5.7. Marketing Elasticities
To compare the relative performance of CBS’ mar-
keting instruments, we compute the elasticities for
radio advertising and personal phone calls. Specifi-
cally, for each province, we draw 100,000 realizations
from the distribution of estimated parameter values,
which takes into account the associated parametric
uncertainty and their cross-correlations via the full
variance-covariancematrix.We obtain themedian elas-
ticities and their statistical significance based on the
2.5th and 97.5th percentiles.

Radio advertising elasticities for Alberta, Atlantic,
British Columbia, Ontario, and the Prairies are (0.09,
0.002, 0.16, 0.07, 0.03), respectively. All of the elastic-
ities, except Atlantic, are statistically significant. Sub-
stantial heterogeneity exists across provinces, ranging
from negligible in Atlantic to 0.16 in British Columbia.
To provide a perspective, consider the meta-analysis
by Sethuraman et al. (2011) based on the extant adver-
tising literature. They present elasticities for television,
print, and aggregate advertising, but no elasticity for

radio advertising is reported in their meta-analysis, indicat-
ing its scant availability in the extant literature. Further-
more, studies in the meta-analysis focus on industries
such as pharmaceutical, durable goods, food, nonfood,
and services, where consumers receive tangible ben-
efits from the advertised brand. By contrast, blood
donors do not receive tangible benefits. Despite these
differences, it is remarkable that the median elasticity
of radio advertising for blood is 0.07, which is compa-
rable to the median advertising elasticity of 0.10 (ibid,
p. 468). Thus, our work augments this scant literature
by contributing the elasticities of radio advertising.

To complement mass advertising on radio, CBS
also uses its National Contact Center to make phone
calls, which constitute one-on-one personal commu-
nications. The elasticities of personal communications
for Alberta, Atlantic, British Columbia, Ontario, and
the Prairies are (0.33, 0.27, 0.27, 0.35, 0.29), respectively.
All of the elasticities, except for British Columbia, are
statistically significant. Unlike radio advertising, much
heterogeneity does not exist across provinces, with
the elasticities ranging from 0.27 to 0.35. To provide
a perspective, consider the meta-analysis by Albers
et al. (2010) based on the extant literature on personal
selling. Over 50% of their studies cover the pharmaceu-
tical industry (e.g., sales force communication to physi-
cians) and about 25% pertain to military recruiting
efforts. No elasticity for personal communications of non-
profit organizations is reported in their meta-analysis, again
indicating scant availability in the extant literature.Despite
this difference, it is remarkable that the mean elastic-
ity for phone call communications for blood donations
is 0.29, which is comparable to the mean elasticity for
personal selling of 0.31 (ibid, p. 840). Thus, we further
augment the scant literature by contributing the elas-
ticities of phone call communications.
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5.8. Was Robustification Necessary?
We answer this question based on the road map given
in Section 4.4. Specifically, we trace the diagnostic
path in our empirical context, starting with Kalman
filter residuals in Panel A of Figure 1, applying the
Jarque–Bera test, and obtaining T1 � 0.707 (p-value �
0.001), and thus rejecting the normality assumption.
Because T1 does not hold, we go to Panel C of Figure 1,
conduct robust dynamic estimation, apply White’s test
to the residuals from the robust filter, obtain the test
statistic T2 � 123.88 (p-value � 0.000), and thus reject
homoscedasticity and no misspecification. Because T2
does not hold, we go to Panel D of Figure 1 and apply
the sandwich estimator to achieve double robustifica-
tion of inferences. Hence, our market data support use
of the combined approach in Panel D for robust param-
eter estimation and doubly robust inferences.

5.9. Fit vs. Forecasts Trade-off
Robustification induces a trade-off between in-sample
fit and out-of-sample forecasts. To understand this, we
use 104 observations to fit the model and hold out 52
observations to assess predictive accuracy. Table 2
reports the results. Panel A shows that the Kalman fil-
ter better fits the sample data (i.e., larger log-likelihood
values) for all five provinces. By contrast, Panel B
shows that the robust filter uniformly outperforms the
Kalman filter on the out-of-sample predictions across
the three metrics, i.e., mean squared error (MSE),
mean absolute percentage error (MAPE), and mean
absolute deviation (MAD), in all five provinces. This
finding suggests that the out-of-sample data degrade
the Kalman filter’s performance much more than the
robust filter’s performance. The intuition is as follows.

Table 2. Fit vs. Forecasts Trade-off

Panel A: In-sample fit

Log-likelihood

Provinces Kalman filter Robust filter

Alberta −464.77 −466.68
Atlantic −450.07 −450.66
B.C. −418.30 −419.77
Ontario −580.75 −582.67
Prairies −471.32 −472.89

Panel B: Out-of-sample prediction

MSE MAPE (%) MAD

Kalman Robust Kalman Robust Kalman Robust
Provinces filter filter filter filter filter filter

Alberta 846.1 532.5 3.9 3.1 22.1 17.4
Atlantic 1,752.1 1,632.9 8.6 8.3 32.2 31.2
B.C. 501.2 394.9 3.7 3.3 18.3 16.4
Ontario 9,636.7 6,791.1 4.5 3.8 70.3 59.5
Prairies 1,193.3 893.8 6.7 5.8 27.5 24.0

In the estimation sample, the Kalman filter performs
better than the robust filter because, by construction,
the latter sacrifices up to 3.84 points on the χ2-scale to
eschew distributional assumptions; its benefit accrues
in the holdout sample when the data generation pro-
cess departs from normality or the assumed model is
misspecified.

6. Dynamic Multimedia Allocation Under
Conservatism

Given the robust estimation results, we tackle the bud-
get allocation problem of the large public health agency
whose objective differs from profit-maximization.
Specifically, we seek insights into how managers
should determine the optimal marketing budget and
optimally allocate it to radio advertising and phone call
communications. We investigate these issues next.

CBS manages each province independently and sets
the collection targets. A deviation from the targets
is costly because blood levels below the target create
shortages, whereas levels above it generate waste (e.g.,
Brodheim and Prastacos 1979, Prastacos 1984). Because
the cost of excess or shortage is asymmetric, we use the
LINEX function (Varian 1975, Zellner 1986),

g(b , τ)� e−a(b−τ)
+ a(b − τ) − 1, (27)

where (b , τ) are the actual and target blood levels
and a > 0 controls the magnitude of asymmetry. In
Equation (27), g( · ) represents the cost that exponen-
tially increases as the shortage increases (i.e., b − τ
become more negative) due to the first term on the
RHS; the cost grows linearly when the excess blood
level increases (i.e., b − τ become more positive) due
to the second term on the RHS; the third term ensures
that the cost is zero when b � τ.

CBS allocates its marketing budget B(t) to radio
advertising and phone calls to drive blood collections.
To minimize the total cost of excess and shortage plus
the marketing budget B(t), we specify the objective
function

f (u1 , u2)

� Ɛ

[∫ ∞

0
e−ρt

{
e−a(b−τ)

+ a(b − τ) − 1+ B(t)
}

dt
]
, (28)

where ρ is the discount rate, and the blood collection
evolves according to

db �
(
β1
√

u1 + β2
√

u2 − δb
)

dt +
√

q dW. (29)

Equation (29) is an equivalent continuous-time version
of the discrete-time blood dynamics in Equation (26).
Comparing the two equations, we note that dW �ωt dt
denotes the increment of a standard Brownian motion,
δ�1−φ, and u1(t) and u2(t) are the radio GRPs and the
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number of phone calls. The marketing budget equals
B(t) � c1u1(t) + c2u2(t), where c1 and c2 are the costs
per GRP and phone call, respectively.
Wewant to identify theoptimal strategies (u∗1 , u∗2) that

minimize the total expectedcost inEquation (28).To this
end, we define the value function

V(b)�min(u1 , u2)
{

f (u1 , u2)
}
,

which satisfies the Hamilton–Jacobi–Bellman (HJB)
equation

ρV(b) � min
(u1 ,u2)

{
[e−a(b−τ)

+ a(b− τ)−1+B(t)]
+Vb(β1

√
u1 + β2

√
u2− δb)+ qVbb/2

}
, (30)

where Vb � ∂V/∂b and Vbb � ∂
2V/∂b2.

Equation (30) has three terms on its RHS. The first
term [e−a(b−τ) + a(b − τ) − 1 + B(t)] represents the direct
cost incurredeveryperiod.Thesecondterm,Vb(β1

√
u1+

β2
√

u2 − δb), consists of two parts, i.e., (i) the expected
incrementalbloodcollectedƐ[db/dt]� β1

√
u1+β2

√
u2−

δb due to the marketing activities (u1 , u2) and (ii) the
valuation Vb of a pint of incremental blood. Thus,
Vb(β1

√
u1+β2

√
u2−δb)adds the indirect contribution to

the value function. The third term, qVbb/2, accounts for
thedynamicuncertaintyinbloodcollection,Var[db/dt].

Equation (30) is a second-order partial differential
equation (PDE). To solve this PDE, we first differenti-
ate its RHS with respect to (u1 , u2) to obtain the FOCs
and then substitute them back into (30) to eliminate
the minimization operator. Because blood collection
operates close to the target, we also expand g(b , τ) by
the Taylor series around τ and use Lagrange’s method
of undetermined coefficients to fully characterize the
value function as follows:

V(b)� A2(b − τ)2/2+A1(b − τ)+A0 , (31)

where the coefficients (A0 ,A1 ,A2)depend on themodel
parameters:

A2 �
2δ+ ρ−

√
(ρ+ 2δ)2 + 2a2(β2

1/c1 + β
2
2/c2)

β2
1/c1 + β

2
2/c2

,

A1 �
2τδ(−(ρ+ 2δ)+

√
(ρ+ 2δ)2 + 2a2(β2

1/c1 + β
2
2/c2))

(β2
1/c1 + β

2
2/c2)(ρ+

√
(ρ+ 2δ)2 + 2a2(β2

1/c1 + β
2
2/c2))

and

A0 �
3(β2

1/c1 + β
2
2/c2)(A1 − τA2)2

4ρ

+
qA2 + τ(2ρA1 + τ(a2 −A2ρ))

2ρ .

Note that A1 is always positive and that A2 is al-
ways negative. Having analytically solved the PDE
in (30), we present the optimal marketing strategies in
Proposition 3.

6.1. Optimal Marketing Resource Allocations
Proposition 3. Theoptimalmarketingstrategiesaregivenby

u∗i �

{
(K0i −K1i(b − τ))2 if b < b̃ ,
0 otherwise,

(32)

for i � (1, 2), where

K0i �
A1βi

2ci
> 0, K1i �−

A2βi

2ci
> 0,

and b̃ denotes the buffer level corresponding to the zero opti-
mal marketing spends.

Equation (32) has the following properties. First,
they are feedback (or closed-loop) strategies as a func-
tion of the state variable b. Second, they exhibit nonlin-
ear state dependence due to (b − τ)2. Last, they operate
so as to restore the target level τ.

To understand this last point, consider what hap-
pens when blood collection exceeds the target, i.e.,
b > τ. Because (b − τ) > 0, optimal advertising should
be reduced per (32) as b increases, which in turn
suppresses the rate of blood collection due to Equa-
tion (29). On the other hand,when blood collection falls
below the target, i.e., b < τ, optimal advertising should
be increased because (b−τ)< 0 in Equation (32), which
in turn boosts the blood collection rate due to (29) and
thus restores collection levels closer to the target. This
mechanism to advertisemore (less) when the state vari-
able is small (large) is the opposite of the advertising-
to-sales ratio heuristic, which recommends spending
more (less) when sales are high (low), as used by for-
profit companies (see, e.g., Farris et al. 1998).

6.2. Buffer Levels
Should forward-looking managers stop advertising
when the collection reaches the target or continue
advertising beyond the target? Proposition 3 shows
that optimal advertising stops when u∗i � 0, which cor-
responds to the buffer level b̃ � τ(1 + η). This buffer
level always exceeds the target because

η � δ
−ρ+

√
(2δ+ ρ)2 + 4(β2

1/c1 + β
2
2/c2)

2(β2
1/c1 + β

2
2/c2 + δ(r + δ))

> 0.

Hence, forward-looking managers should not stop
advertising even if they reach the target collections. Why?
Because if they were to stop advertising at the target,
the expected collection levels may soon fall below the
target due to Equation (29), thus creating shortages.
Anticipating this impending shortfall and responding
to prevent it, the manager must continue to advertise
to build a healthy buffer.

To provide further guidance on how much buffer
level is “healthy,” we empirically evaluate the optimal
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buffer levels by taking 10,000 draws from the distri-
bution of estimated parameters along with asymmetry
parameter a � 1 and the costs c1 � $16 and c2 � $2.2
obtained from the CBS’ marketing team and ρ� 5% per
annum discount rate. Results show that the optimal
buffer level should be 44% larger than the actual target
in Alberta; 77% larger in Atlantic; 43% larger in British
Columbia; 33% larger in Ontario; and 65% larger in the
Prairies. On average, CBS shouldmaintain a 36% buffer
over their collection targets.

6.3. Budget and Allocation
How does the pursuit of conservatism affect the mar-
keting budget? To answer this question, we evaluate
Equation (32) for the optimal radio GRPs and phone
calls in each of the five provinces. Table 3 reports
the average weekly optimal marketing budget in each
province. The optimal conservative and nonconser-
vative budgets are about the same in the Prairies.
However, the optimal conservative budget exceeds the
nonconservative budget in Alberta by 7.8%, in British
Columbia by 2.5%, and in Ontario by 4.6%. By con-
trast, the optimal conservative budget is below the non-
conservative budget in Atlantic by 5%. Across the five
provinces, the total conservative budget exceeds the
nonconservative budget by 3.7%. Yet the optimal con-
servative budget is 54.4% below the actual budget; this
shows that CBS overspends on marketing.
Besides overspending, how do they allocate the

budget to radio versus phone advertising? For each
province, Table 4 presents the optimal budget alloca-
tion to radio advertising as a ratio of the total opti-
mal budget, i.e., c1u∗1/B∗. The optimal allocation to

Table 3. Optimal Weekly Budgets

Kalman filter Robust filter
(κ � 0) ($) (κ � 1) ($)

Alberta 10,662 11,493
Atlantic 7,493 7,121
B.C. 8,152 8,355
Ontario 72,327 75,651
Prairies 8,372 8,346
Total 107,006 110,966

Table 4. Optimal Radio Allocationa

Kalman filter Robust filter
(κ � 0) (%) (κ � 1) (%)

Alberta 37 28
Atlantic 0 0
B.C. 60 56
Ontario 22 21
Prairies 8 5
Total 24 22

aThe remaining budget is allocated to phone call communications.

radio advertising varies substantially across provinces
from 0% to 56% with a median of 21%. Because
the remaining budget is allocated to phone calls, the
phone calls get (72%, 100%, 44%, 79%, 95%) in Alberta,
Atlantic, British Columbia, Ontario, and the Prairies,
respectively.

The median phone call allocation of 79% compared
to radio advertising at 21% comports with their rela-
tive elasticities. Specifically, our estimation results (see
Section 5.7) show that phone calls (radio advertis-
ing) elasticity is 0.29 (0.07). That is, personal phone calls
are four times more effective than radio advertising. How-
ever, the heuristic of allocating budgets proportional
to the relative elasticities does not uniformly apply to
all provinces. For example, this heuristic would allo-
cate 37% to radio advertising in British Columbia,
whereas the optimal allocation recommends 56% (via
Equation (32)), thereby resulting in a sub-optimal
under-allocation to radio advertising.

6.4. Profit vs. Volatility Trade-off
Robustification induces another trade-off: The total
profit reduces, but so does its volatility. Conservatism
influences the long-term profit level and its variability
differentially. For this insight, we compute the expecta-
tion of the value function for various levels of conser-
vatism.We represent the value function as the negative
of the total cost function and interpret it as the long-
term profit. That is, we evaluate and plot (Ɛ(V)κ�0 −
Ɛ(V)κ�κ)/E(V)κ�0 for different values of κ from zero to
unity. This scaled expectation measures the percentage
profit reduction as a function of conservatism. Similarly,
we compute the variance of the value function V(b),
i.e., (var(V)κ�0−var(V)κ�κ)/var(V)κ�0. This scaled vari-
ance quantifies the percentage volatility reduction as a

Figure 3. (Color online) Impact of Conservatism on Profit
and Its Variance
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Table 5. Optimal Robustness

κ∗ ρ � 0.003 ρ � 0.03 ρ � 0.3

Alberta 0.520 1.000 1.000
Atlantic 0.000 0.000 0.521
B.C. 0.999 1.000 1.000
Ontario 0.999 1.000 1.000
Prairies 0.001 0.169 1.000

function of conservatism. Figure 3 presents the results
for the Alberta province. It reveals that, as conser-
vatism increases, the profit reduction increases above
10% at κ � 1, but the volatility reduction increases
more sharply, beyond 50% at κ � 1. The plots for other
provinces (not shown for brevity) are qualitatively sim-
ilar. This profit-volatility trade-off is reminiscent of the
returns-risk trade-off in finance; for example, a more
conservative investor can add more bonds to the port-
folio and thus reduce returns as well as volatility. To
determine optimal conservatism,1 we combine profit
and volatility to formulate U(κ) � Ɛ(V)κ − ρvar(V)κ,
where ρ denotes the risk aversion coefficient, and thus
obtain κ∗ � argmax0≤κ≤1 U(κ). We apply NMaximize in
Mathematica 10.1 and report κ∗ for various values of ρ
in Table 5. For example, when risk aversion is small ρ�
0.003, managers should be least robust in Atlantic and
the Prairies, moderately robust in Alberta, and most
robust in British Columbia and Ontario.

7. Conclusions
Optimal budgeting and allocation of marketing re-
sourcesover timerequire estimationofdynamicmodels
(see, e.g., Gatignon 1993, Mantrala 2002, Shankar 2008,
Gupta and Steenburgh 2008). Virtually all estimation
methods assume that error terms follow the Normal
distribution or some other probability distribution,
parametric or nonparametric. When the data gener-
ation process differs from the assumed probability
distribution, model misspecification arises. The extant
literature recognizes the seriousness of this misspec-
ification problem and recommends using the sand-
wich estimator (White 1980) to “correct” the statistical
inferences. However, although the sandwich estima-
tor affects statistical outcomes such as inference, it
does not alter the managerial actions of budgeting and
allocation because the estimated parameters remain
unchanged, with or without this correction. Conse-
quently, despite White’s (1980) sandwich estimator,
managers continue to risk misallocating marketing
resources in the presence of misspecification. This
was our motivation to develop a method for robust
dynamic estimation. We apply minimax control theory
to derive the robust filter for a general time-varying
multivariate dynamic linear model without making
any distributional assumptions. Specifically, we first

derive the optimal disturbances in Proposition 1 via
Pontryagin’sMaximumPrinciple. Then, using the opti-
mal disturbances, we derive the robust filter recur-
sions in Proposition 2. The robust filter safeguards
against the misspecification risk inherent in making
distributional assumptions. Furthermore, it reveals two
new insights, i.e., (i) the robust gain matrix optimally
enhances the weight on observed data compared to the
Kalman filter, and (ii) the robust filter nests the Kalman
filter as γ→∞. In other words, the Kalman filter is the
least conservative in the family of conservative filters
indexed by γ.

Applying the proposed method in the context of
blood donation marketing, we find that the esti-
mated effectiveness of marketing activities increases
and the carryover effect decreases as conservatism in-
creases. This compensatory effect generalizes across
the five English-speaking Canadian provinces. We also
uncover the novel finding that personal (i.e., phone
call) communications are four times more effective
than mass (i.e., radio) advertising. In Proposition 3,
we further prove that nonprofit organizations should
optimally advertise more (less) when sales are low
(high), which is the opposite of the advertising-to-sales
ratio heuristic used by for-profit companies. Finally, we
find that robustification improves out-of-sample pre-
dictions and induces a profit-volatility trade-off.

We close by noting how to use the robust dynamic
estimation. Operationally, users should make two
small changes: (1) Replace the Kalman gain matrix
with the new robust gain matrix in (17); and (2) Re-
place the prior covariance matrix with the new robust
covariance matrix in (18). Specifically, replace the
usual Kalman gain matrix K̃t � P−t Z′t(ZtP−t Z′t +Ht)−1

with the robust gain matrix Kt � Pt(I − Pt/γ +

Z′t H
−1
t ZtPt)−1Z′t H

−1
t . Similarly, replace the usual prior

covariance in period (t + 1) with Pt+1 � TtPt(I −Pt/γ +
Z′t H

−1
t ZtPt)−1T′t + Qt . Both the robust gain and covari-

ance matrices involve subtraction of the matrix (Pt/γ),
which is computationally simple. This small, but
important, change yields the robust filter in Panel C.
It optimally inflates the gain and covariance matri-
ces (since the subtraction is inside an inverse opera-
tion) and places a greater weight on the market data
(i.e., induces present-orientedness), thus accommodat-
ing more scenarios to consider when making deci-
sions. Users can then perform the tests T1 and T2 to
decide which method and results to use in their empir-
ical contexts.
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