MANAGEMENT SCIENCE

Vol. 51, No. 3, March 2005, pp. 374-390
1ssN 0025-1909 | E1ssN 1526-5501 | 05 | 5103 | 0374

[l lorms}

po110.1287/mnsc.1040.0336
©2005 INFORMS

CABOB: A Fast Optimal Algorithm for Winner
Determination in Combinatorial Auctions

Tuomas Sandholm
Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, sandholm@cs.cmu.edu

Subhash Suri

Department of Computer Science, University of California, Santa Barbara, California 93106, suri@cs.ucsb.edu

Andrew Gilpin, David Levine

CombineNet, Inc., Fifteen 27th Street, Pittsburgh, Pennsylvania 15222
{agilpin@combinenet.com, dlevine@combinenet.com}

C

ombinatorial auctions where bidders can bid on bundles of items can lead to more economically effi-
cient allocations, but determining the winners is ¥ 2%-complete and inapproximable. We present CABOB,

a sophisticated optimal search algorithm for the problem. It uses decomposition techniques, upper and lower
bounding (also across components), elaborate and dynamically chosen bid-ordering heuristics, and a host of
structural observations. CABOB attempts to capture structure in any instance without making assumptions
about the instance distribution. Experiments against the fastest prior algorithm, CPLEX 8.0, show that CABOB
is often faster, seldom drastically slower, and in many cases drastically faster—especially in cases with structure.
CABOB'’s search runs in linear space and has significantly better anytime performance than CPLEX.

We also uncover interesting aspects of the problem itself. First, problems with short bids, which were hard for
the first generation of specialized algorithms, are easy. Second, almost all of the CATS distributions are easy, and
the run time is virtually unaffected by the number of goods. Third, we test several random restart strategies,
showing that they do not help on this problem—the run-time distribution does not have a heavy tail.

Key words: auction; combinatorial auction; winner determination; winner-determination algorithm; search;
branch and bound; MIP; anytime algorithm; branching heuristics; dynamically chosen heuristic; bounding

across components; random restart

History: Accepted by G. Anandalingam and S. Raghavan, special issue editors; received June 4, 2002. This
paper was with the authors 5 months for 2 revisions.

1. Introduction

In many auctions, a bidder’s valuation for a combi-
nation of distinguishable items that are for sale is not
the sum of the individual items’” valuations—it can be
more, or less. This is often the case, for example, in
electricity markets, equities trading, bandwidth auc-
tions (McMillan 1994, McAfee and McMillan 1996),
transportation exchanges (Sandholm 1993, 2000, 1991;
Net Exchange, Inc. 2001), pollution rights auctions,
auctions for airport landing slots (Rassenti et al.
1982), supply chains (Sandholm 2002b, Walsh et al.
2000, Babaioff and Nisan 2001), and auctions for
carrier-of-last-resort responsibilities for universal ser-
vices (Kelly and Steinberg 2000). Combinatorial auctions
where bidders can bid on bundles of items (Rassenti
et al. 1982, Sandholm 1993) allow bidders to express
complementarity among the items (and, with a rich
enough bidding language, also substitutability among
the items) (Sandholm 2002a, b; Fujishima et al. 1999;
Nisan 2000; Hoos and Boutilier 2001). Perhaps the

374

most well-known combinatorial auction is the Federal
Communications Commission’s planned combinato-
rial auction for spectrum licenses. Less publicized,
in business-to-business commerce, billions of dollars
worth of combinatorial auctions are conducted annu-
ally by vendors such as CombineNet, Manhattan
Associates, NetExchange, and Trade Extensions.

Due to the expressiveness that combinatorial auc-
tions offer to the bidders, such auctions tend to yield
more economically efficient allocations of the items
because bidders do not get stuck with partial bun-
dles that are of low value to them. In the academic
literature this has been demonstrated, for example, in
airport landing slot allocation (Rassenti et al. 1982)
and in markets for trucking tasks (Sandholm 1993,
Net Exchange, Inc. 2001).

However, determining the winners in a combinato-
rial auction is computationally complex, and there has
been a surge of research into addressing that prob-
lem. Three fundamentally different approaches have

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

375

been taken: (1) designing algorithms that provably
find an optimal solution but are slow on some
problem instances (Sandholm 2002a; Fujishima et al.
1999; Sandholm and Suri 2003; Andersson et al. 2000;
de Vries and Vohra 2003; Gonen and Lehmann 2000;
Lehmann and Gonen 2001; Leyton-Brown et al. 2000b;
van Hoesel and Miiller 2001; Balas and Yu 1986; Babel
and Tinhofer 1990; Babel 1991; Balas and Xue 1991,
1996; Nemhauser and Sigismondi 1992; Mannino and
Sassano 1994; Pardalos and Desai 1991; Loukakis
and Tsouros 1983), (2) designing algorithms that are
provably fast but fail to find an optimal (or even
close to optimal) solution to some problem instances
(Lehmann et al. 2002, Hoos and Boutilier 2000, Zurel
and Nisan 2001, Anandalingam et al. 2002), and
(3) restricting the bundles on which bids can be sub-
mitted so severely that the remaining problem can be
solved optimally and provably fast (Rothkopf et al.
1998, Sandholm and Suri 2003, Tennenholtz 2000,
Penn and Tennenholtz 2000, van Hoesel and Miiller
2001, Lehmann et al. 2005).

The third approach suffers from economic ineffi-
ciencies and exposure problems similar to those of
noncombinatorial auctions because the bidders might
not be allowed to bid on the bundles they desire.
The second approach suffers from wasting economic
efficiency whenever a suboptimal solution is settled
on, and because the winner-determination problem is
inapproximable (Sandholm 2002a), no fast algorithm
can guarantee that its solution is even close to opti-
mal. Furthermore, suboptimal winner determination
generally compromises the incentive properties of the
auction (Nisan and Ronen 2000; Sandholm 2002b, a).
Due to these reasons, we focus on the first approach—
with the understanding that on some problem in-
stances, any algorithm within this approach will take
a long time. We present an optimal search algorithm
for the winner-determination problem, and show that
the algorithm is fast in practice. The algorithm is the
newest development in our multiperson R&D effort
within this approach, which has been ongoing since
1997 (Sandholm 2002a, Sandholm and Suri 2003).

The rest of the paper is organized as follows. We
formally define the problem in §2 and present our
core algorithm in §3. Section 4 discusses bid-ordering
heuristics. Experiments are presented in §§5-7. Ran-
dom restart strategies are discussed in §8. Section 9
presents conclusions and future research directions.

2. The Winner-Determination

Problem
In this section we formally define the winner-
determination problem. In the following sections, we
will present our algorithm for optimally solving this
problem.

DerINITION 1. The auctioneer has a set of items,
M =1{1,2,...,m}, to sell, and the buyers submit
a set of bids, %8 ={B;,B,,...,B,}. A bid is a tuple
B; = (S;,p;), where S; C M is a set of items and
p;€R, p; =0, is a price. The binary combinatorial auc-
tion winner-determination problem is to label the bids as
winning or losing so as to maximize the auctioneer’s
revenue under the constraint that each item can be
allocated to at most one bidder:!

n
max) px;
=1

st. Y x;<1, Vie{l.m|
jlies;

x; €1{0,1}.

This problem is & %-complete (Rothkopf et al. 1998,
Karp 1972). The problem cannot even be approxi-
mated to a ratio of n'~¢ in polynomial time, for any
fixed € > 0 (unless Z»% = N %) (Sandholm 2002a).

If bids could be accepted partially, the problem
would become a linear program (LP), which can
be solved in polynomial time. Here we present the
LP-formulation and its dual because we will use them
in several ways in our algorithm.

n
LP max) px;
j=1

ijilr

jlieS;

Vie{l.m}

. >
x]_O

x; €R
m

DUAL min) y;
i=1

2 vizp, Vje{l.n)

i€S;

¥ =0

y; €R.

In this continuous setting, the shadow price y; gives
the price for each individual item i. In the binary case,
individual items cannot generally be given prices, but

If there is no free disposal (auctioneer is not willing to keep any of
the items, and bidders are not willing to take extra items), an equal-
ity is used in place of the inequality. We focus on the problem with
free disposal, as does the bulk of the literature on combinatorial
auctions.

2This was recently proven using an approximation-preserving
reduction from the MAX-CLIQUE problem, which is known to be
inapproximable (unless Z2% = N %) (Hastad 1999). For a review of
the approximability of special cases of combinatorial auctions, see
Sandholm (2002a).

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

376

Management Science 51(3), pp. 374-390, © 2005 INFORMS

each y; value from DUAL gives an upper bound on
the price of item 1.3

3. Description of the Algorithm

Our algorithm, CABOB (Combinatorial Auction
Branch On Bids), is a tree-search algorithm that
branches on bids. The high-level idea of branching on
bids was already proposed by Sandholm and Suri in
the BOB algorithm (Sandholm and Suri 2003). How-
ever, BOB was not implemented, and experimental
results were never published. CABOB incorporates
many of the techniques proposed in BOB and a host
of additional ones. All of them have been imple-
mented, and experimental results are presented.

The skeleton of CABOB is a depth-first branch-and-
bound tree search that branches on bids. The value
of the best solution found so far is stored in a global
variable f*. Initially, f*=0.

We maintain a conflict graph structure that we
call the bid graph, denoted by G. The nodes of the
graph correspond to bids that are still available to
be appended to the search path, that is, bids that do
not include any items that have already been allo-
cated. So, the number of vertices |V| < n. Two ver-
tices in G share an edge whenever the corresponding
bids share items.*>¢ As vertices are removed from G
when going down a search path, the edges that they
are connected to are also removed. As vertices are
reinserted into G when backtracking, the edges are
also reinserted.

®In general the solution to the DUAL is not unique, that is, several
shadow price vectors y are optimal. According to the concerns that
the DUAL captures, any optimal shadow price vector is equally jus-
tified. When we use shadow prices in CABOB (as will be described
later in the paper), we use that optimal shadow price vector that
the linear programming algorithm that solves the DUAL returns.

*Because G can be constructed incrementally as bids are submit-
ted, its construction does not add to winner-determination time
after the auction closes. Therefore, in the experiments, the time to
construct G is not included (in almost all cases it was negligible
anyway, but for instances with bids containing a large number of
items it sometimes took almost as much time as the search).

® One potential problem is that the bid graph could be prohibitively
large to store if the problem were huge. One could address this by
generating a bid graph only when the graph size is below some
threshold. Then, if the size falls below the threshold later on some
search path, one could generate the bid graph then, for the remain-
ing subtree of the search tree. If the graph is sparse, the graph size
tends to be small enough to construct the graph at the root. On the
other hand, if the graph is dense, the average node degree is large.
Then every IN branch will kill off a large part of the (implicit) bid
graph, so the search would quickly get to a point of having a small
explicitly constructable bid graph.

¢ Conflict graphs have been used to speed up optimization prob-
lems before in different ways. In Atamtiirk et al. (2000), efficient
data structures for conflict graphs were presented when the goal
was cut generation. In our setting, the purpose is neighbor finding
and decomposition. The data structures in Atamtiirk et al. (2000)
do not support these operations efficiently.

The following pseudocode of CABOB makes calls to
several special cases that will be introduced later. For
readability, we only show how the values are updated,
and omit how the solution (set of winning bids) is
updated in conjunction with every update of f*.

As will be discussed later, we use a technique
for pruning across independent subproblems (com-
ponents of G). To support this, we use a parameter,
MIN, to denote the minimum revenue that the call to
CABOB must return (not including the revenue from
the path so far or from neighbor components) to be
competitive with the best solution found so far. The
revenue from the bids that are winning on the search
path so far is called g. It includes the lower bounds (or
actual values) of neighbor components of each search
node on the path so far.

The search is invoked by calling CABOB(G, 0, 0).

ArcoritaM 3.1. CABOB(G, g, MIN)

1. Apply special cases COMPLETE and NO_EDGES
2. Run depth-first-search on G to identify the connected
components of G; let ¢ be number of components
found, and let G, G,, ..., G, be the ¢ independent bid
graphs
3. Calculate an upper bound U; for each component i
4. If >, U; <MIN, then return O
5. Apply special case INTEGER
6. Calculate a lower bound L, for each component i
7.A«—g+> Li—f*
8. If A>0, then
frefrta
MIN « MIN + A
9. If ¢ > 1, then goto (11)

10. Choose next bid B, to branch on (use articulation bids
first if any)
10.a. G« G—{B;}
10.b. Apply special case ALL_NEIGHBORS
10.c. For all B; s.t. B; # By and S;N S, # 2,
G« G—{B}
10d. fr, < f*
10.e. f;, <~ CABOB(G, g +pi, MIN —p,)
10.f. MIN < MIN + (f* — f,)
10.g. For all B; s.t. B; # B, and 5;N S, # &,
G < GU(B}}
10h. fr, < f
10.. f,,; < CABOB(G, g, MIN)
10.j. MIN < MIN + (f* — f,)
10.k. G« GU{B}
10.1. Return max{fi,, f,u:}
11. P:)lved <0
12. Htmsolved <~ Z?:l ui/ Lunsolved <~ Z?:l Li
13. For each component i € {1, ..., c} do
13.a. If B2y .0 + Hypsored < MIN, return 0
13.b. 31/ <~ P:(;lved + (Lunsolved - LI)

13.c. foﬁ}d (_f*

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

377

13.d. f* < CABOB(G,, g+, MIN — g})
13.e. MIN « MIN + (f* — £5,

13.£. Flper < Fopea T f7

13g Hunsulved < Hunsulved - lll

13.h. Lunsolved <~ Lunsolved - Ll

14. Return F*

solved

We now discuss the techniques of CABOB at more
length.

3.1. Upper Bounding

In Step (3), CABOB uses an upper bound on the rev-
enue that the unallocated items can contribute. If the
current solution cannot be extended to a new opti-
mal solution under the optimistic assumption that the
upper bound is met, CABOB prunes the search path.

Any technique for devising an upper bound could
be used here. We solve the remaining LP (in our
implementation of CABOB, we used the LP solver
that comes with CPLEX rather than write our own
LP solver), whose objective function value gives an
upper bound. By LP we mean the LP that is defined
by the remaining bids, that is, bids that are still in G.

CABOB does not make copies of the LP table, but
rather incrementally deletes (reinserts) columns corre-
sponding to the bids being deleted (reinserted) in G as
the search proceeds down a path (backtracks). Also,
as CABOB moves down a search path, it remembers
the LP solution from the parent and uses it as a start-
ing solution for the child’s LP.

It is not always necessary to run the LP to optimal-
ity. Before starting the LP, one could look at the con-
dition in Step (4) to determine the minimum revenue
the LP has to produce so that the search branch would
not be pruned.” Once the LP solver finds a solu-
tion that exceeds the threshold, it could be stopped
without pruning the search branch. If the LP solver
does not find a solution that exceeds the threshold
and runs to completion, the branch could be pruned.
However, CABOB always runs the LP to completion.
We made this design choice because CABOB uses the
solutions from the LP and the DUAL for several other
purposes beyond upper bounding (such as for the
INTEGER special case, for bid ordering, and for ran-
dom restart methods—as we will discuss later).

Our experiments showed that using LP as the
upper-bounding method led to significantly faster
completion times of the search algorithm than using
any of the other upper-bounding methods pro-
posed for combinatorial auction winner determina-
tion before (Sandholm 2002a, Fujishima et al. 1999,

7In the case of multiple components, when determining how high
a revenue one component’s LP has to return, the exact solution
values from solved neighbor components would be included, as
well as the upper bounds from the unsolved neighbor components.

Sandholm and Suri 2003). This is likely due to bet-
ter bounding, better bid ordering, and the effect of
the INTEGER special case, described below. The time
taken to solve the LP at every node was greater than
the pernode time with the other upper-bounding
methods, but the reduction in tree size amply paid
for that.

3.2. The INTEGER Special Case
If the LP happens to return integer values (x; =0
or x; =1) for each bid j (this occurs frequently, con-
trary to our expectations), CABOB makes the bids
with x; =1 winning, and those with x; = 0 losing. This
is clearly an optimal solution for the remaining bids.
CABOB updates f* if the solution is better than the
best so far. CABOB then returns from the call without
searching further under that node. Sufficient condi-
tions under which the LP provides an integer-valued
solution are described in Gul and Stacchetti (1999),
Nisan (2000), and Bikhchandani and Ostroy (2002).
If some of the x; values are not integer, we cannot
simply accept the bids with x; = 1. Neither can we
simply reject the bids with x; =0. Either approach can
compromise optimality. Consider the following auc-
tion with six bids and six items. The bids are given in
Table 1.

Table 1 A Combinatorial Auction Instance Illustrating That
Bids Whose LP Relaxation Values Are Integral May
Not Be Excluded from Subsequent Search

Bid Items Price

A {1,2} 2

B {2,3) 2

c {1,3,4} 2

D {3, 4,5} 2

E {5, 6} 45

F {6} 3

This combinatorial auction corresponds to the fol-
lowing mathematical program:

max 2A+2B+2C+2D+4.5E+3F
such that A+C<1
A+B<1
B+C+D<1
C+D<1
D+E<1
E+F<1.

Table 2 gives the unique optimal values for each
of the decision variables for both the combinatorial
auction (that is, the integer program (IP)) and the cor-
responding LP.

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

378

Management Science 51(3), pp. 374-390, © 2005 INFORMS

Table 2 Optimal IP and LP Values of the Combina-

torial Auction Instance Given in Table 1

Bid IP LP

MmO O >
—o—_0o0o —
o
(3]

Note that in the optimal LP solution, bid E has a
value of 1, but in the optimal IP solution E has a
value of 0. Also note that bids D and F both have
a value of 0 in the optimal LP solution, but have val-
ues of 1 in the optimal IP solution. In summary, even
though the LP unambiguously suggests that bids D
and F be rejected and bid E be accepted, any one
of these actions would compromise optimality of the
algorithm.

3.3. Lower Bounding

In Step (6), CABOB calculates a lower bound on the
revenue that the remaining items can contribute. If the
lower bound is high, it can allow f* to be updated,
leading to more pruning and less search in the subtree
rooted at that node.

Any lower-bounding technique could be used here.
Rounding can be effective for this purpose (Hoffman
and Padberg 1993); we use the following rounding
technique. In Step (3), CABOB solves the remain-
ing LP anyway, which gives an “acceptance level”
x; € [0, 1] for every remaining bid B;. We insert all bids
with x; > 3 into the lower-bound solution. We then try
to insert the rest of the bids in decreasing order of X,
skipping bids that share items with bids already in
the lower-bound solution.® This method gives a lower
bound because the solution it obtains is feasible. (If an
item is contained in more than one bid, at most one of
those bids can have x; > % in the LP, so at most one of
those bids will be inserted into the lower-bound solu-
tion in the first phase of the lower-bound construc-
tion. In the second phase, feasibility is maintained by
only considering for insertion bids that do not share
items with bids already in the lower-bound solution.)

Our experiments showed that the lower-bounding
technique did not help very much. One reason is that
the search algorithm’s left branch (where all bids on
the path are winning) provides a lower bound itself.
Therefore, the potential advantage from explicit lower
bounding at a node comes from the lower bound
being found early without having to invest the costly
solving of several LPs (one per search node) that are
involved in traversing the left branch.

8 Note that inserting a bid into the lower-bound solution does not
mean inserting the bid into the search path. Also, it does not mean
that the bid is removed from G.

In the future we plan to try other (additional)
lower-bounding techniques within CABOB beyond
rounding techniques—such as stochastic local search
(Hoos and Boutilier 2000). Additional lower bounds
cannot hurt in terms of the number of search nodes
because the search algorithm can use the highest
(that is, the best) of the lower bounds. However, there
is a trade-off between reducing the size of the search
tree via sophisticated lower-bounding techniques and
reducing the per-node time by using only quick lower
bounding.

3.4. Exploiting Decomposition

Decomposition techniques are another powerful tool
to incorporate into search algorithms. The idea is to
partition the bids into sets (aka connected compo-
nents) so that no bid from one set shares items with
any bid from any other set. The winner determination
can then be conducted in each set separately.

In Step (2), CABOB runs an O(|E|+|V|) time depth-
first search (DFS) in the bid graph G. Each tree in
the depth-first forest is a connected component of G.
Winner determination is then conducted in each com-
ponent independently. Because search time is super-
linear in the size of G, this decomposition leads to a
time savings. The winners are determined by calling
CABOB on each component separately. As the exper-
iments show, this can lead to a drastic speed-up.

3.5. Upper and Lower Bounding Across
Components
Upper- and lower-bounding techniques are common
in tree-search algorithms, and CABOB uses upper
and lower bounding as discussed above. However,
in addition to common upper and lower bounding,
somewhat unintuitively, we can achieve further prun-
ing, without compromising optimality, by exploit-
ing information across the independent components.
When starting to solve a component, CABOB checks
how much that component would have to contribute
to revenue in the context of what is already known
about bids on the search path so far and the neigh-
boring components. Specifically, when determining the
MIN value for calling CABOB on a component, the
revenue that the current call to CABOB has to pro-
duce (the current MIN value) is decremented by the
revenues from solved neighbor components and the
lower bounds from unsolved neighbor components.
Our use of a MIN value allows the algorithm to work
correctly even if on a single search path there may be
several search nodes where decomposition occurred,
interleaved with search nodes where decomposition
did not occur. _
Every time a better global solution is found and f*
is updated, all MIN values in the search tree should
be incremented by the amount of the improvement

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

379

because now the bar of when search is useful has
been raised.” CABOB handles these updates without
separately traversing the tree when an update occurs.
CABOB directly updates MIN in Step (8), and updates
the MIN value of any parent node after the recursive
call to CABOB returns.

CABOB also uses lower bounding across compo-
nents. At any search node, the lower bound includes
the revenues from the bids that are winning on the
path, the revenues from the solved neighbor compo-
nents of search nodes on the path, the lower bounds
of the unsolved neighbor components of search nodes
on the path, and the lower bound on the revenue that
the unallocated items in the current search node can
contribute.

Due to upper and lower bounding across compon-
ents (and due to updating of f*), the order of tackling
the components can potentially make a difference in
speed. CABOB currently tackles components in the
order that they are found in the DFS. We plan to
study more elaborate component ordering in future
research.

3.6. Forcing a Decomposition via Articulation Bids
In addition to checking whether a decomposition has
occurred, CABOB strives for a decomposition. In the
bid choice in Step (10), it picks a bid that leads
to a decomposition, if such a bid exists. Such bids
whose deletion disconnects G are called articulation
bids. Articulation bids are identified in O(|E| + |V])
time by a slightly modified DFS in G, as proposed in
Sandholm and Suri (2003).

The scheme of always branching on an articula-
tion bid, if one exists, is often at odds with price-
based bid-ordering schemes, discussed later. It has
been proven that no scheme from the articulation-
based family dominates any scheme from the price-
based family, or vice versa, in general (Sandholm and
Suri 2003). However, our experiments showed that
in practice it almost always pays off to branch on
articulation bids if they exist (because decomposition
reduces search drastically).

Even if a bid is not an articulation bid, and would
not lead to a decomposition if the bid is assigned los-
ing, it might lead to a decomposition if it is assigned
winning because that removes the bid’s neighbors
from G as well. This is yet another reason to assign a
bid that we branch on to be winning before assigning
it to be losing (value ordering). Also, in bid order-
ing (variable ordering) one could give first prefer-
ence to articulation bids, second preference to bids
that articulate on the winning branch only, and third
preference to bids that do not articulate on either

°This causes the MIN values to stay nonnegative throughout
the tree.

branch (among them, price-based bid ordering could
be used). One could also try to identify sets of bids
that articulate the bid graph and branch on all of
the bids in the set. However, to keep the computa-
tion at each search tree node linear time in the size
of G, CABOB simply gives first priority to articulation
bids, and if there are none, uses other bid-ordering
schemes, discussed later. If there are several articula-
tion bids, CABOB branches on the one that is found
first (the others will be found at subsequent levels
of the search). One could also use a more elaborate
scheme for choosing among articulation bids.

3.7. The COMPLETE Special Case

In Step (1), CABOB checks whether the bid graph G
is complete: |E| = (n(n —1))/2. If so, only one of the
remaining bids can be accepted. CABOB thus picks
the bid with the highest price, updates f* if appropri-
ate, and prunes the search path.

3.8. The NO_EDGES Special Case

In Step (1), CABOB checks whether the bid graph G
has any edges (|E| > 0). If not, it accepts all of the
remaining bids, updates f* if appropriate, and prunes
the search path.

3.9. The ALL_NEIGHBORS Special Case

In Step (10.b), CABOB checks whether the bid to
branch on, By, neighbors all other bids in G. If so, none
of the other bids can be accepted. Therefore, CABOB
never actually proceeds to the branch where B, is acc-
epted, but simply tries to include B, and updates f*
if appropriate. CABOB then proceeds to the branch
where B; is rejected. This saves the time of removing
all the vertices and edges from G and then immedi-
ately reinserting them.

3.10. Preprocessing

Several preprocessing techniques have been proposed
for search-based winner determination algorithms
(Sandholm 2002a), and any of them could be used
in conjunction with CABOB. However, in CABOB the
search itself is fast, so we did not want to spend sig-
nificant time preprocessing (because that could dwarf
the search time). The only preprocessing that CABOB
does is that as a bid B, arrives, CABOB discards
every bid B, that B, dominates (p, >p, and 5, CS,),
and discards bid B, if it is dominated by any earlier
bid.!” Because this can be done incrementally as bids
arrive, and therefore does not factor into the winner-
determination time after the auction closes, this time
(which is negligible anyway) is not included in the
experiments.

0 This preprocessor (also used in Fujishima et al. 1999) is a spe-
cial case of Preprocessor 2 presented in Sandholm (2002a). It corre-
sponds to Preprocessor 2 with the search depth confined to one.

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

380

Management Science 51(3), pp. 374-390, © 2005 INFORMS

4. Bid-Ordering Heuristics
In Step (10) of CABOB, there are potentially a large
number of bids on which CABOB could branch. We
developed several bid-ordering heuristics for making
this choice.""> They are geared toward finding good
solutions early. This has two advantages. First, if the
algorithm has to be stopped before reaching an opti-
mal solution (or before having proven that the best
solution found so far is optimal), a good solution
is available. This is often called the anytime aspect
of a search algorithm. Second, seeing good solutions
early on reduces total run time because more of the
search tree gets pruned—mainly due to enhanced
upper bounding.

We conducted detailed experiments with the fol-
lowing bid-ordering heuristics:

e Normalized Bid Price (NBP) (Sandholm and Suri
2003): Branch on a bid with the highest

w; = Pi .
TS

It was hypothesized (Sandholm and Suri 2003) that «
slightly less than 1 would be best (because a = 1 gives
the best worst-case bound within a greedy algorithm,
Lehmann et al. 2002), but we determined experimen-
tally that @ € [0.8, 1] yields fastest performance.

* Normalized Shadow Surplus (NSS): The problem
with NBP is that it treats each item as equally valu-
able. It could be modified to weight different items
differently based on static prices that, for example, the
seller guesses before the auction. We propose a more
sophisticated method where the items are weighted
by their “values” in the remaining subproblem. We use
the shadow price y; from the remaining DUAL prob-
lem as a proxy for the value of an item. We then
branch on the bid whose price gives the highest sur-
plus above the value of the items™ (normalized by

)

" This corresponds to variable ordering. Choosing between the
IN-branch (x; = 1) and the OUT-branch (x; = 0) first corresponds to
value ordering. In the current version of CABOB, we always try
the IN-branch first. The reason is that we try to include good bids
early so as to find good solutions early. This enables more prun-
ing through upper bounding. It also improves the anytime perfor-
mance. CPLEX, on the other hand, uses value ordering as well in
that it sometimes tries the OUT-branch first. In future research we
plan to experiment with that option in CABOB as well.

12 Bid-ordering heuristics have also been developed for winner
determination in multiunit combinatorial auctions (Sandholm and
Suri 2003, Leyton-Brown et al. 2000b, Gonen and Lehmann
2000, Lehmann and Gonen 2001) and combinatorial exchanges
(Sandholm and Suri 2003).

B A related approach is column generation (Barnhart et al. 1998).
It seems best suited when the problem contains a huge num-
ber of variables (columns). (Typically these variables are implicitly
defined, such as sequences of flight legs in crew scheduling, and
thus there can be exponentially many of them in the explicit input

the values so the surplus has to be greater if the bid
uses valuable items):

‘_Zie i Ji
w.:pl S/]/ (2)

ey

Next we showed experimentally that the follow-
ing modification to the normalization leads to faster
performance:
. — Pj— Lies; Yi
! log(Yies, i)

We call this scheme NSS.

* Bid Graph Neighbors (BGN): Branch on a bid with
the largest number of neighbors in the bid graph G.
The motivation is that this will allow CABOB to
exclude the largest number of still eligible bids from
consideration.

* Number of Items: Branch on a bid with the largest
number of items. The motivation is the same as
in BGN.

* One Bids (OB): Branch on a bid whose x;-value
from LP is closest to 1. The idea is that the more of
the bid is accepted in the LP, the more likely it is to
be competitive.

* Fractional Bids: Branch on a bid with x; clos-
est to 1. This strategy has been widely advocated in
the operations research literature (e.g., Wolsey 1998,
p- 99). The idea is that the LP is least sure about
these bids, so it makes sense to resolve that uncer-
tainty rather than to invest branching on bids about
which the LP is “more certain.” More often than not,
the bids whose x; values are close to 0 or 1 tend to
get closer to those extreme values as search proceeds
down a path, and in the end, LP will give an inte-
ger solution. Therefore, those bids never end up being
branched on.

We ran experiments on several distributions (dis-
cussed later), using all possible pairs of these bid-
ordering heuristics for primary bid selection and
tiebreaking, respectively. We also tried using a third
heuristic to break remaining ties, but that never
helped. The speed difference between CABOB with

®)

size.) Because of the infeasibility of dealing with such a huge set of
variables, the column generation method works with only a small
subset of variables, and brings into the LP basis new columns on
demand. In CABOB, we are typically never faced with problems
where the number of bids is too large to explicitly work with. The
complexity of winner determination does not seem to arise from
a large number of bids, but rather from the structure of the bids.
However, the idea of using shadow prices from the LP dual to
choose which bid to next branch on does have some resemblance
to column generation’s method of identifying which bid/column
to bring into the LP. One important difference, however, may be
that while column generation only adds a bid/column to the LP
basis, CABOB actually branches on that bid explicitly, setting it
to 1 or 0.

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

381

the best heuristics and CABOB with the worst heuris-
tics was greater than two orders of magnitude.
The best composite heuristic (OB+NSS) used OB first,
and broke ties using NSS.

4.1. Choosing Bid-Ordering Heuristics
Dynamically

We noticed that on certain distributions, OB + NSS
was best while on distributions where the bids
included a large number of items, NSS alone was
best. The selective superiority of the heuristics led
us to the idea of choosing the bid-ordering heuristic
dynamically based on the characteristics of the remaining
subproblem. We determined that a distinguishing
characteristic between the distributions was LP
density:

density

number of nonzero coefficients in LP

~ number of LP rows x number of LP columns’ @)
OB + NSS was best when density was less than 0.25,
and NSS was best otherwise. Intuitively, when the LP
table is sparse, LP is good at “guessing” which bids
to accept. When the table is dense, the LP makes poor
guesses (most bids are accepted to a small extent).
In those cases the price-based scheme NSS (that still
uses the shadow prices from the LP) was better.

So, at every search node in CABOB, the density
is computed, and the bid-ordering scheme is chosen
dynamically (OB + NSS if density is less than 0.25,
NSS otherwise). This is the bid-ordering scheme that
we use in the experiments presented later in this
paper.

As a fundamentally different bid-ordering method-
ology, we observe that stochastic local search—or
any other approximate algorithm for the winner-
determination problem—could be used to come up
with a good solution fast, and then that solution
could be forced to be the left branch (IN-branch) of
CABOPB’s search tree. Committing (as an initial guess)
to the entire set of accepted bids from the approximate
solution in this way would give CABOB a more global
form of guidance in bid ordering than conducting bid
ordering on a per-bid basis. To refine this method fur-
ther, CABOB could take hints (for example from the
approximation algorithm) as to how “surely” differ-
ent bids that are accepted in the approximate solu-
tion should be accepted in the optimal solution. In the
left branch (IN-branch) of CABOB, the “most sure”
bids should then be assigned closest to the root of
the search tree, because bids near the root will be the
last ones to be backtracked in the search. This order-
ing will allow good solutions to be found early, and
(mainly due to upper bounding) avoids unnecessary
search later on.

5. Design Philosophy of

CABOB vs. CPLEX

We benchmarked CABOB against a general-purpose
integer programming package, CPLEX 8.0. It was
recently shown (Andersson et al. 2000) that CPLEX 6.5
is faster (or comparable) in determining winners in
combinatorial auctions than are the first-generation
special-purpose search algorithms (Sandholm 2002a,
Fujishima et al. 1999). CPLEX 7.0 is reported to
be about 60% faster than CPLEX 6.5 (ILOG Inc.
2000), and CPLEX 7.1 is as much as 21% faster
than CPLEX 7.0, based on a few comparisons that
we performed. CPLEX 8.0 performance differs from
CPLEX 7.1: It is better in some instances and worse
in others. Overall, we have found it to be about
the same. Therefore, to our knowledge, CPLEX 8.0
is the fastest prior optimal algorithm for the prob-
lem. Furthermore, it was recently shown that in
combinatorial auction winner determination, CPLEX
performs favorably even against incomplete search
algorithms—such as stochastic local search—that do
not generally find the optimal solution (Schuurmans
et al. 2001). Therefore, when we compare CABOB
against CPLEX 8.0, to our knowledge we are com-
paring it against the state-of-the-art general-purpose
solver.

There are some fundamental differences between
CABOB and CPLEX that we want to explain to put
the experiments in context. CPLEX uses best-bound
search (Wolsey 1998),'*'5 which requires exponen-
tial space (CPLEX also has an option to force depth-
first search, but that makes the search slower), while
CABOB uses depth-first branch-and-bound (DFBnB),
which runs in linear space.!’® Thus, on many harder
problems, CPLEX ran out of virtual memory and

14 Best-bound search is identical to A* search (Hart et al. 1968,
Russell and Norvig 1995) if the next node to expand is always cho-
sen to be the node with the greatest f = g + h. However, to avoid
solving a node’s LP when the node is first seen (and only solv-
ing the LP when the node comes up for expansion), sometimes a
node’s parent’s LP value (or some refinement thereof) is used in
practice as a proxy for the node’s h value.

5 Actually, CPLEX uses a slightly enhanced version of best-bound
search, where the search continues down the current path if the cur-
rent path is almost as promising (in terms of the value of f =g+ h)
as the most promising node on the open list (ILOG Inc. 2002). This
bias (how close the current node’s f value has to be to the best f
value on the open list) is controlled by the backtrack parameter
within CPLEX. We tried different settings, and concluded that the
default setting is very competitive. Therefore, we left the backtrack
parameter at its default setting in the experiments that we present
in this paper.

1 CABOB could be converted to use another search strategy. We
considered SMA* (Russell 1992) and recursive best-first search
(Korf 1993). However, we decided against SMA* because it would
require keeping copies of the bid graph G (one for each leaf of
the search tree), which would require frequent slow copying and
would use a large amount of memory. We decided against recursive

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

382

Management Science 51(3), pp. 374-390, © 2005 INFORMS

stopped before it found the optimal solution. In our
experiments we show only cases where CPLEX was
able to run in RAM. Everything else being equal,
DFBnB should put CABOB at a disadvantage when
it comes to reaching the optimal solution quickly
because it does not allow CABOB to explore the most
promising leaves of the search tree first (we show in
the experiments that CABOB was often faster never-
theless). At the same time, we believe that the mem-
ory issue can make best-bound search unusable for
combinatorial auctions of realistic sizes in practice.
Like CABOB, CPLEX uses LP to obtain upper bounds.

CPLEX uses a presolver to manipulate the LP table
algebraically (Wolsey 1998, ILOG Inc. 2002) to reduce
it before search.” In the experiments, we ran CABOB
without any such presolving.

Put together, everything else being equal, CPLEX
should find an optimal solution and prove optimality
faster than DFBnB, but one would expect the anytime
performance to be worse.

6. Experimental Setup

We tested CABOB and CPLEX on the common combi-
natorial auction benchmarks distributions: those pre-
sented in Sandholm (2002a), and the Combinatorial
Auction Test Suite (CATS) distributions (Leyton-Brown
et al. 2000a). In addition, we tested them on new
distributions.

The distributions from Sandholm (2002a) follow.

e Random(m, n): Generate n bids as follows. For
each bid, (1) pick the number of items randomly from
{1,2,...,m}, (2) randomly choose that many items
without replacement from {1,2,...,m}, and (3) pick
a price from a uniform distribution on [0, 1].1®

o Weighted random(m, n): As above, but pick the
price between 0 and the number of items in the bid.

e Uniform(m,n, A): Generate n bids as follows.
For each bid, (1) randomly choose A items without
replacement from {1,2,...,m}, and (2) pick a price
from a uniform distribution on [0, 1].

* Decay(m, n, a): Generate n bids as follows. Give
the bid one random item from {1,2,...,m}. Then

best-first search because it leads to significant amounts of redun-
dant search on problems where the edge costs of the search tree are
real numbers.

7We do not know of any way to do the preprocessing steps that
CPLEX uses incrementally as bids arrive. Therefore, in the experi-
ments we include CPLEX'’s preprocessing time in CPLEX’s overall
run time. However, CPLEX’s preprocessing time on these problems
is usually negligible anyway.

8 The random distribution is a particularly well-suited input for a
bid dominance preprocessor such as that used in CABOB. Because
the resulting problem is drastically different from the original prob-
lem, we do not include any experimental results for this distri-
bution, as any comparison would mostly reflect the effect of the
preprocessor rather than search performance.

repeatedly add a new random item from (1,2, ..., m}
(without replacement) with probability a until an
item is not added or the bid includes all m items.
Pick the price between 0 and the number of items
in the bid. In the tests we used a =0.75 because the
graphs in Sandholm (2002a) show that this setting
leads to the hardest instances on average (at least for
that algorithm).

We tested the algorithms on all of the combinato-
rial auction benchmark distributions available in the
CATS suite: paths, regions, matching, scheduling, and
arbitrary.’ For each one of these, we used the default
parameters in the CATS instance generators, and var-
ied the number of bids n and the number of items m.

We also tested the algorithms on the following new
benchmark distributions:

® Bounded(m, n, A, /_\): Generate n bids as follows.
For each bid, (1) draw the number of items A ran-
domly between a lower bound A and an upper
bound A, (2) randomly include A distinct items from
{1,2,...,m} in the bid, and (3) pick the price from a
uniform distribution on [0, A]. This distribution is a
more realistic variant of the uniform distribution in
the sense that it includes bids with different numbers
of items.

* Components(m,n, A, C): Generate C problems
(which are independent in the sense that each one
has its own set of m items), each from the distribu-
tion Uniform(m, n, A). This distribution models, for
example, auctions where the items are specific to geo-
graphical regions (such as spectrum licenses), and
each bidder—such as a radio station—is only inter-
ested in licenses within her own metropolitan area.?

We generate bids so no two bids have the same
set of items. The experiments were conducted on a
2.8 GHz Pentium IV PC with 4 GB RAM. Each point
in each plot is the mean run time for 100 instances.
CABOB and CPLEX both use the default LP solver
that comes with CPLEX (dual simplex) (ILOG Inc.
2002). CABOB and CPLEX were tested on the same
problem instances.

19 CATS also includes distributions that are not benchmarks for
combinatorial auctions, but rather for multiunit combinatorial auc-
tions, a generalized problem.

?In many spectrum auctions, there are additionally some bidders
that want licenses across metropolitan areas—such as mobile phone
network operators that want national coverage. While the com-
ponents distribution does not model this, CABOB’s articulation
and decomposition techniques apply to this setting as well. Once
enough of those broader bids have been branched on, the remain-
ing bid graph will have an articulation bid. CABOB will branch
on that bid, causing the problem to decompose. The components
distribution is mainly used as an extreme example of how well our
decomposition strategy can boost performance in practice.

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

383

Figure 1 Run Times on the Weighted Random and Decay Distributions
Sandholm weighted random (#bids/#items = 10)
1,000
100 F
@ 10t
[0)
E
=1t
0.1
001 L L L L L
250 500 750 1,000 1,250 1,500 1,750
Bids

7. Experimental Results

The weighted random distribution (Figure 1, left)
is easy for both algorithms. The algorithms achieve
their performance very differently. With 1,000 bids,
CPLEX’s presolve + LP solves the problem 95% of
the time while CABOB resorts to search 88% of the
time. Above 1,000 bids, CABOB’s performance varies
greatly. Most of the time CABOB solves the prob-
lem quickly, but occasionally it must resort to search,
which results in longer average performance.

The decay distribution (Figure 1, right) was sig-
nificantly harder for both algorithms.?' Both algo-
rithms resort to search. CPLEX was significantly faster
than CABOB due to its best-bound search strategy (as
opposed to CABOB’s depth-first branch and bound),
its use of cutting planes to reduce the LP polytope
(ILOG Inc. 2002), and its presolver.

The uniform distribution (Figure 2) was even
harder than the decay distribution (roughly equally
hard for CABOB, and significantly harder for CPLEX).
Both algorithms resorted to search. The figure on the
left shows how the algorithms scale as the number
of bids increases, and the figure on the right shows
how the algorithms scale as the number of items per
bid varies. The speeds are comparable, but CPLEX is
faster. For the first-generation winner-determination
algorithms (Sandholm 2002a, Fujishima et al. 1999),
the instances with small numbers of items per bid
were much harder than instances with long bids. (This
was because a search path can contain a large number
of short bids, but only a small number of long bids.
Therefore, the search depth—ignoring any pruning—
is greater with short bids.) For both CABOB and
CPLEX, complexity is quite insensitive to the number

2 The decay distribution is significantly harder, both for CPLEX
and CABOB, than we originally presented in the IJCAI-01 version
of this paper, because in the old version there was an error in the
problem instance generator. The authors thank Mattias Tenhunen
and Fredrik Ygge for raising suspicion that the performance in the
original graph seemed too good. This led us to find the error in the
decay distribution instance generator.

Sandholm decay (#bids/#items = 10, o. = 0.75)

0.01 - -
200 400 600 800
Bids

of items per bid, except that complexity drops signif-
icantly as the bids include less than five items each!
This is because LP tends to handle cases with short
bids well, both in terms of upper bounding and find-
ing integer solutions. (If each bid contains only one
item, LP always finds an integer solution.)

While the problem instances from the distribu-
tions discussed above exhibit no structure, the com-
ponents distribution demonstrates the performance of
the algorithms on structured instances. In particular,
it shows the power of CABOB’s decomposition tech-
nique and pruning across components in an extreme
example. CABOB’s run time increases linearly with
the number of components. The run time of CPLEX
increases exponentially (Figure 3). (The same perfor-
mance would be observed even if there were a single
“glue” bid that included items from each compo-
nent, because CABOB would identify that bid as an
articulation bid.) While the decomposition technique
helps drastically when the problem is decomposable,
it also increases the time per search node. On prob-
lems where decompositions are rare, this leads to a
net increase in run time. For example, on the decay
distribution, CABOB’s run time would be reduced
by a third if the decomposition technique were
turned off.

On the bounded distribution (Figure 4)—which is
a more realistic version of the uniform distribution—
the relative performance of CABOB and CPLEX
depended on the bounds. For short bids, CPLEX
was somewhat faster, but the relative speed difference
decreased with the number of bids. For long bids,
CABOB was much faster for small bids (mainly due
to checking for completeness of the bid graph G), but
as the number of bids continues to grow, a complete
bid graph occurs less often.

The CATS distributions were surprisingly easy for
both solvers. They are extremely easy, except for the
scheduling distribution, which is moderately difficult.
(These observations hold at least for the default set-
tings of the CATS instance generator parameters.)

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

384

Management Science 51(3), pp. 374-390, © 2005 INFORMS

Figure 2 Run Times on the Uniform Distribution

Sandholm uniform (#bids/#items = 10, 5 items/bid)
100

125 250 . 375 500
Bids

This suggests that more realistic instance distributions
of the winner determination problem are in fact easier
than the more random, unstructured ones.

There are five distributions in CATS: paths, regions,
scheduling, arbitrary, and matching. Experimental res-
ults from these distributions appear below. For each
distribution, two graphs are shown: one where the
number of bids is varied, and one where the number
of items is varied. Interestingly, on the CATS distri-
butions, the run time of the algorithms is virtually
unaffected by the number of items in the auction (for
a fixed number of bids).

The paths distribution was one of the easy distribu-
tions. As Figure 5 shows, both algorithms scale very
well. CABOB is more than an order of magnitude
faster than CPLEX.

The regions distribution was more difficult for both
algorithms, but nevertheless easy (Figure 6). The
scheduling distribution is of medium difficulty as
Figure 7 shows. It is the hardest of the CATS dis-
tributions. Both algorithms scale very well. On these
distributions, CPLEX is faster than CABOB.

The arbitrary and matching distributions (Figures 8
and 9) were also easy. Interestingly, as the number of

Figure 3 Run Times on the Components Distribution
Components: 150 bids, 15 items, 5 items per bid
10,000 T : . :
1,000 ¢ e
T
. 1o0fp E
L e
o} CPLEX _..»°
E top T ;
= Pt
1] 3
«'*“
== CABOB
01 ¥~ .
2
0.01 . . . L
1 2 3 4 5 6

Number of components

Sandholm uniform (500 bids, 50 items)
100 . . T

ltems per bid

bids increases beyond a certain point (for a fixed num-
ber of items), CABOB’s run time decreases. The reason
is that, on these distributions, once there is a sufficient
number of bids, the LP finds an integral solution at
the root of the search tree, so CABOB does not need
to resort to search.

7.1. Anytime Performance

The anytime performance of a search algorithm is
important so that if the algorithm happens to take
more time than is available, it can be terminated with a
reasonably good solution available. As expected from
their respective designs, CABOB has better anytime
performance than CPLEX. Figure 10 illustrates this
phenomenon. Each curve is averaged over 100 prob-
lem instances. CABOB achieves close to optimal
solution quality significantly faster than CPLEX even
on this problem distribution (uniform distribution),
on which CPLEX completes its search significantly
faster overall (see Figure 2).

8. Random Restarts
Random restarts have been widely used in local
search algorithms, but recently they have been shown
to speed up tree-search algorithms as well (Gomes
et al. 1998). We conjectured that random restarts, com-
bined with randomized bid ordering, could avoid the
perils of unlucky bid ordering (searching large parts
of the state space that do not contain an optimal
solution). To see whether we could improve CABOB
using random restarts, we implemented the random
restarts methods that are best (to our knowledge) and
improved them further to try to capitalize on the spe-
cial properties of the problem.

We implemented the following restart strategies:

® Double: Double the execution time between
restarts.

* Constant: Restart after every 6 backtracks (Gomes
et al. 1998).

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions
Management Science 51(3), pp. 374-390, © 2005 INFORMS

Figure 4 Run Times on the Bounded Distribution
Bounded: (#bids/#items = 10, 5 to 10 items/bid)
1,000 T T T T T
100
0
[0)
£ 10
|_
1
0.1 R :
250 300 350 400 500 600 700
Bids
Figure 5 Run Times on CATS Paths
CATS: paths (NUMGOODS = 50)
10 . . .
CPLEX
T e wmmmmmmmmmmmTT b
5 P
SRNRT :
0.01 CABOB E
0.001 . . .
5,000 10,000 20,000 30,000 40,000
Bids
Figure 6 Run Times on CATS Regions
CATS: regions (NUMGOODS = 50)
10 T
0.01 : - - : : :
1,000 2,000 3,000 4,000 5,000 6,000 7,000
Bids
Figure 7 Run Times on CATS Scheduling

CATS: scheduling (NUMGOODS = 100)

1,000

5,000
Bids

2,500

10,000

Bounded: (#bids/#items = 10, 20 to 25 items/bid)

100 T T T T T

0.1

0.01 —
250 300 350 400

500 600 700
Bids
CATS: paths (NUMBIDS = 25,000)
1 T r
CPLEX
e
[0 i
£ 0.1
'_
CABOB
0.01 L L
20 40 60 80
ltems
CATS: regions (NUMBIDS = 1,000)
1 T T T r
CABOB
z
g otp ;
€
e . CPLEX
0.01 : . : .
10 20 30 40 60 80
ltems
CATS: scheduling (NUMBIDS = 5,000)
100 T T T
10} CABOB E
3
(0]
£
|_
1 L 4
CPLEX
0.1 : : :
40 80 120 160 200
Items

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

386

Management Science 51(3), pp. 374-390, © 2005 INFORMS

Figure 8 Run Times on CATS Arbitrary

CATS: arbitrary (NUMGOODS = 100)
100 T T T T T

Time (s)

0.1

15,000 20,000

Bids

2,000 5,000 7,500 10,000

e Luby-Sinclair-Zuckerman: (Luby et al. 1993).2
Luby et al. showed that the constant scheme above
is optimal if & is tailored to the run-time distribution,
which is, unfortunately, usually not known in prac-
tice. Therefore, they constructed a scheme that suffers
only an asymptotically logarithmic time penalty, inde-
pendent of the run-time distribution. In the scheme,
each run time is a power of 2. Each time a pair of
runs of the same length has been executed, a run
time of twice that length is immediately executed:
1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1, ...

We implemented the following bid-ordering tech-
niques to use with the restart strategies:

* Random: Randomly pick a remaining bid.

* Boltzmann: Pick a bid with probability

eq]/T

Pi= S en/T’ ©)

where higher values of T result in more random-
ness, and ¢; is a measure of how promising bid j is.

We used
w:

_]
9; =% + LPUB’ (6)

where x; is the decision variable from the remain-
ing LP, w; is from the Normalized Shadow Surplus
(NSS) bid-ordering heuristic (Equation (3)), and LPUB
(the objective function value of the remaining LP) is
used for normalization. In other words, this definition
of g; uses the intuitions from both of the best bid-
ordering heuristics (One Bids (OB), and Normalized
Shadow Surplus (NSS)) in determining how promis-
ing a bid is.

* Bound: Each bid whose x; value is within a
bound b of the highest x; value is equally probable.

2 Actually, the results of Luby et al. (1993) are for independent
runs. Our runs are not really independent because f* is carried
over from completed runs when starting a new run. This method is
better than independent runs, but might cause the results of Luby
et al. not to hold.

25,000

CATS: arbitrary (NUMBIDS = 5,000)

100
o __/—
o CABOB
Q
£
|_
1 L
CPLEX
0.1 . . .
40 80 120 160 200
ltems

We tried every bid ordering with every restart strat-
egy, and varied the initial time allotment and the
parameters §, T, and b. The results of our experiments
showed that CABOB was always faster than CABOB
with restarts.

It turns out that this is not just a facet of our restart
schemes or parameters settings. Random restarts tend
to lead to speed-up when the run-time distribution
has a heavy tail (Gomes et al. 1998). We decided to test
whether CABOB exhibits heavy-tailed run times on
the winner-determination problem. We chose a distri-
bution on which CABOB's run time varied greatly, so
as to increase the chance of finding a heavy tail. This
was the uniform distribution with five items per bid.
If a distribution has a heavy tail, the variance and usu-
ally also the mean are unbounded (Gomes et al. 1998).
As can be seen in Figure 11, our mean and variance
are not only bounded, but constant. This means that
the run-time distribution does not have a heavy tail.
This suggests that random restarts are not a fruitful
avenue for future improvement in this setting.

Our findings suggest several alternative hypothe-
ses about the benefits of restarts: (1) Restarts do not
help in optimization problems; they can only help
in constraint satisfaction problems. (2) Restarts help
on some optimization problems as well, but combi-
natorial auctions are within a subclass of optimiza-
tion problems on which restarts do not help, and
(3) restarts help only if the search algorithm (vari-
able and value-ordering heuristics, upper and lower-
bounding techniques, decomposition techniques, etc.)
is bad, and CABOB is not bad. Disambiguating
among these hypotheses is an interesting direction for
future research on restart strategies in general, not just
in the context of combinatorial auctions.

9. Conclusions and Future Research

Combinatorial auctions where bidders can bid on
bundles of items can lead to more economically
efficient allocations, but determining the winners

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

387

Figure 9 Run Times on CATS Matching
CATS: matching (NUMGOODS = 2,500)
10 T . . .
@
(0]
£
'_
0.01

5,000
Bids

is ¥P-complete and inapproximable. We presented
CABOB, a sophisticated search algorithm for the prob-
lem. It uses decomposition techniques, upper and
lower bounding (also across components), a host of
structural observations, elaborate and dynamically
chosen bid-ordering heuristics, and other techniques
to increase speed—especially on problems with dif-
ferent types of special structure, which we expect to
be common in real combinatorial auctions. CABOB
attempts to automatically identify different forms
of structure, and to exploit such structure when it
exists. Experiments against the fastest prior algorithm,
CPLEX 8.0, show that CABOB is often faster, sel-
dom drastically slower, and in many cases drastically
faster—especially in cases with structure. CABOB’s
search runs in linear space, while CPLEX takes expo-
nential space, and often runs out of virtual memory.
CABOB also has significantly better anytime perfor-
mance than CPLEX. Based on these observations, we
feel that CABOB contains many search techniques
that are useful for winner determination in combina-

Figure 10 Anytime Performance: Average Solution Quality on the
Uniform Distribution (7 Items per Bid, 50 ltems, 500 Bids),

Reported by Each Algorithm Once per Second

Anytime Performance

1.00
0.99 r
0.98
0.97
0.96
0.95
0.94

Percent of optimal

0.93
0.92,

091 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

10,000 15,000 20,000 25,000 30,000

CATS: matching (NUMBIDS = 10,000)

10
@
o CABOB
g .l
'—
/ CPLEX \
o4
250 1,000 2,000 3000 4000 5000
ltems

torial auctions, and potentially for other optimization
problems.

We also uncovered interesting aspects of the prob-
lem itself. First, problems with short bids, which were
hard for the first generation of specialized algorithms,
are easy. Second, almost all of the CATS distributions
are easy, and the run time is virtually unaffected by
the number of items in the auction. On two of the
CATS distributions, CABOB’s run time decreases as
the number of bids increases beyond a certain point.
Third, we tested a number of random restart strate-
gies, and showed that random restarts do not help
on this problem—the run-time distribution does not
have a heavy tail (at least not for CABOB).

We hope that the ideas presented in CABOB will
facilitate the development of even faster winner-
determination algorithms in the future. We are
currently working not only on designing faster algo-
rithms for winner determination in combinatorial
auctions, but also on winner determination in com-
binatorial reverse auctions and exchanges (Sandholm
and Suri 2003, Sandholm et al. 2002, Kothari et al.

Figure 11 The Mean and Variance of CABOB’s Search Time as a
Function of the Number of Instances in the Sample
120 T T T T
100 F -
Variance
80 i? — i
60 -
40 - E
Mean
20 ot g
Number of instances
0
0 300 600 900 1,200 1,500

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

388

Management Science 51(3), pp. 374-390, © 2005 INFORMS

2003), as well as in combinatorial markets with addi-
tional side constraints (Sandholm and Suri 2001).

Beyond winner determination, there are several
other interesting research directions within combi-
natorial auctions. Designing mechanisms (rules) for
iterative combinatorial auctions is one such direction
(Sandholm 1993; DeMartini et al. 1999; Parkes 1999;
Parkes and Ungar 2000a, b; Wurman and Wellman
2000; Bikhchandani et al. 2001; Ausubel and Milgrom
2002). A more recent, more general direction is to sup-
plement the auctioneer with an elicitor that selectively
elicits bids from the bidders in order to determine
a good allocation of items to bidders without requir-
ing the bidders to bid on all combinations of items
(Conen and Sandholm 2001a, b, 2002b, a; Smith et al.
2002; Zinkevich et al. 2003; Blum et al. 2004; Santi
et al. 2004; Lahaie and Parkes 2004). While the com-
munication complexity of combinatorial auctions is
exponential in the worst case (Nisan and Segal 2003),
in practice only a vanishingly small fraction of the
bidders’ private valuation information needs to be
elicited in order to determine the optimal allocation
(and incentive compatible payments to be made by
the bidders) (Hudson and Sandholm 2004). Another
interesting direction for future research in combina-
torial auctions is to design a proxy bidder agent that
not only bids on the user’s behalf, but also computes
the user’s (and his competitors’) valuations based on
an optimization model of how each party would use
the bundles of items that he might win (Larson and
Sandholm 2001b, a, 2004b, a).

Acknowledgments

This work was funded by, and conducted at, CombineNet,
Inc., Fifteen 27th St., Pittsburgh, PA 15222. A short early ver-
sion of this paper appeared in the Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Seattle,
WA, 1102-1108, August 2001.

References

Anandalingam, G., R. Kwon, L. Ungar. 2002. An efficient approx-
imation algorithm for combinatorial auctions. Working paper,
Center for Electronic Markets and Enterprises, University of
Maryland, College Park, MD.

Andersson, Arne, Mattias Tenhunen, Fredrik Ygge. 2000. Integer
programming for combinatorial auction winner determination.
Proc. Fourth Internat. Conf. Multi-Agent Systems (ICMAS). IEEE
Computer Society, Boston, MA, 39-46.

Atamtiirk, A., G. L. Nemhauser, M. W. P. Savelsbergh. 2000. Conflict
graphs in solving integer programming problems. Eur. J. Oper.
Res. 121 40-55.

Ausubel, Lawrence M., Paul Milgrom. 2002. Ascending auctions
with package bidding. Frontiers Theoret. Econom. 1(1).

Babaioff, Moshe, Noam Nisan. 2001. Concurrent auctions across the
supply chain. Proc. ACM Conf. Electronic Commerce (ACM-EC)
Tampa, FL. ACM, New York, 1-10.

Babel, Luitpold. 1991. Finding maximal cliques in arbitrary and
special graphs. Computing 46 321-341.

Babel, Luitpold, Gottfried Tinhofer. 1990. A branch and bound
algorithm for the maximum weighted clique problem. ZOR—
Methods Models Oper. Res. 34 207-217.

Balas, Egon, Jue Xue. 1991. Minimum weighted coloring of trian-
gulated graphs, with application to maximum weighted ver-
tex packing and clique finding in arbitrary graphs. SIAM].
Comput. 20(2) 209-221.

Balas, Egon, Jue Xue. 1996. Weighted and unweighted maximum
clique algorithms with upper bonds from fractional coloring.
Algorithmica 15 397-412.

Balas, Egon, Chang Sung Yu. 1986. Finding a maximum clique in
an arbitrary graph. SIAM |. Comput. 15(4) 1054-1068.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
P. H. Vance. 1998. Branch-and-price: Column generation for
solving huge integer programs. Oper. Res. 46 316-329.

Bikhchandani, Sushil, Joseph M. Ostroy. 2002. The package assign-
ment model. . Econom. Theory 107 377-406.

Bikhchandani, Sushil, Sven de Vries, James Schummer, Rakesh
V. Vohra. 2002. Linear programming and Vickrey auctions.
Working paper.

Blum, Avrim, Jeffrey Jackson, Tuomas Sandholm, Martin Zinkevich.
2004. Preference elicitation and query learning. . Mach. Learn-
ing Res. 5 649-667.

Conen, Wolfram, Tuomas Sandholm. 2001a. Preference elicitation
in combinatorial auctions: Extended abstract. Proc. ACM Conf.
Electronic Commerce (ACM-EC), Tampa, FL. ACM, New York,
256-259.

Conen, Wolfram, Tuomas Sandholm. 2001b. Minimal preference
elicitation in combinatorial auctions. Proc. Internat. Joint Conf.
Artificial Intelligence, (IJCAI), IJCAI-2001 Workshop on Economic
Agents, Models, and Mechanisms, Seattle, WA. 71-80.

Conen, Wolfram, Tuomas Sandholm. 2002a. Differential-revelation
VCG mechanisms for combinatorial auctions. AAMAS-02
Workshop Agent-Mediated Electronic Commerce (AMEC), Bologna,
Italy. Lecture Notes in Computer Science, No. 2531. Springer,
Berlin, Germany.

Conen, Wolfram, Tuomas Sandholm. 2002b. Partial-revelation VCG
mechanism for combinatorial auctions. Proc. National Conf.
Artificial Intelligence (AAAI), Edmonton, Canada. AAAI Press,
Menlo Park, CA, 367-372.

DeMartini, Christine, Anthony M. Kwasnica, John O. Ledyard,
David Porter. 1999. A new and improved design for multi-
object iterative auctions. Technical report 1054, California Insti-
tute of Technology, Social Science, Pasadena, CA.

de Vries, Sven, Rakesh Vohra. 2003. Combinatorial auctions: A sur-
vey. INFORMS]. Comput. 15(3) 284-309.

Fujishima, Yuzo, Kevin Leyton-Brown, Yoav Shoham. 1999. Taming
the computational complexity of combinatorial auctions: Opti-
mal and approximate approaches. Proc. Sixteenth Internat. Joint
Conf. Artificial Intelligence (IJCAI), Stockholm, Sweden. 548-553.

Gomes, Carla, Bart Selman, Henry Kautz. 1998. Boosting combina-
torial search through randomization. Proc. National Conf. Artifi-
cial Intelligence (AAAI), Madison, WI. AAAI Press, Menlo Park,
CA.

Gonen, Rica, Daniel Lehmann. 2000. Optimal solutions for multi-
unit combinatorial auctions: Branch and bound heuristics. Proc.
ACM Conf. Electronic Commerce (ACM-EC), Minneapolis, MN.
ACM, New York, 13-20.

Gul, Faruk, Ennio Stacchetti. 1999. Walrasian equilibrium with
gross substitutes. J. Econom. Theory 87 95-124.

Hart, Peter E., Nils J. Nilsson, Bertram Raphael. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Systems Sci. Cybernetics 4(2) 100-107.

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

Management Science 51(3), pp. 374-390, © 2005 INFORMS

389

Héstad, Johan. 1999. Clique is hard to approximate within n'~¢. Acta
Math. 182 105-142.

Hoffman, Karla L., Manfred Padberg. 1993. Solving airline crew-
scheduling problems by branch-and-cut. Management Sci. 39(6)
657-682.

Hoos, Holger, Craig Boutilier. 2000. Solving combinatorial auc-
tions using stochastic local search. Proc. National Conf. Artificial
Intelligence (AAAI), Austin, TX. AAAI Press, Menlo Park, CA,
22-29.

Hoos, Holger, Craig Boutilier. 2001. Bidding languages for combi-
natorial auctions. Proc. Seventeenth Internat. Joint Conf. Artificial
Intelligence (IJCAI), Seattle, WA. 1211-1217.

Hudson, Benoit, Tuomas Sandholm. 2004. Effectiveness of query
types and policies for preference elicitation in combinatorial
auctions. Internat. Conf. Autonomous Agents and Multi-Agent
Systems (AAMAS), New York, 386-393.

ILOG Inc. 2000. CPLEX presentation. INFORMS, San Antonio, TX.
ILOG Inc. 2002. CPLEX 8.0 User’s Manual.

Karp, Richard M. 1972. Reducibility among combinatorial prob-
lems. Raymond E. Miller, James W. Thatcher, eds. Complexity
of Computer Computations. Plenum Press, New York, 85-103.

Kelly, Frank, Richard Steinberg. 2000. A combinatorial auction with
multiple winners for universal services. Management Sci. 46(4)
586-596.

Korf, Richard E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1) 41-78.

Kothari, Anshul, Tuomas Sandholm, Subhash Suri. 2003. Solving
combinatorial exchanges: Optimality via a few partial bids.
Proc. ACM Conf. Electronic Commerce (ACM-EC), San Diego, CA.
ACM, New York, 236-237.

Lahaie, Sebastién, David Parkes. 2004. Applying learning algo-
rithms to preference elicitation. Proc. ACM Conf. Electronic Com-
merce (ACM-EC). ACM, New York.

Larson, Kate, Tuomas Sandholm. 2001a. Computationally limited
agents in auctions. AGENTS-01 Workshop of Agents for B2B.
Montreal, Canada, 27-34.

Larson, Kate, Tuomas Sandholm. 2001b. Costly valuation computa-
tion in auctions. Theoretical Aspects of Rationality and Knowledge
(TARK VIII). Siena, Italy, 169-182.

Larson, Kate, Tuomas Sandholm. 2004a. Designing auctions for
deliberative agents. Internat. Conf. Autonomous Agents Multi-
Agent Systems (AAMAS), Workshop Agent-Mediated Electronic
Commerce (AMEC). New York, 225-238.

Larson, Kate, Tuomas Sandholm. 2004b. Experiments on deliber-

ation equilibria in auctions. Internat. Conf. Autonomous Agents
Multi-Agent Systems (AAMAS). New York, 394-401.

Lehmann, Benny, Daniel Lehmann, Noam Nisan. 2005. Combinato-
rial auctions with decreasing marginal utilities. Games Econom.
Behavior Forthcoming.

Lehmann, Daniel, Rica Gonen. 2001. Linear programming helps
solving large multi-unit combinatorial auction. Electronic Mar-
ket Design Workshop. Maastricht, The Netherlands.

Lehmann, Daniel, Lidian Ita O’Callaghan, Yoav Shoham. 2002.
Truth revelation in rapid, approximately efficient combinato-
rial auctions. J. ACM 49(5) 577-602.

Leyton-Brown, Kevin, Mark Pearson, Yoav Shoham. 2000a.
Towards a universal test suite for combinatorial auction algo-
rithms. Proc. ACM Conf. Electronic Commerce (ACM-EC), Min-
neapolis, MN. ACM, New York, 66-76.

Leyton-Brown, Kevin, Moshe Tennenholtz, Yoav Shoham. 2000b.
An algorithm for multi-unit combinatorial auctions. Proc.
National Conf. Artificial Intelligence (AAAI), Austin, TX. AAAI
Press, Menlo Park, CA.

Loukakis, E., C. Tsouros. 1983. An algorithm for the maximum

internally stable set in a weighted graph. Internat. . Comput.
Math. 13 117-129.

Luby, Michael, Alistair Sinclair, David Zuckerman. 1993. Optimal
speedup of Las Vegas algorithms. Inform. Processing Lett. 47
173-180.

Mannino, Carlo, Antonio Sassano. 1994. An exact algorithm for the
maximum stable set problem. Comput. Optim. Appl. 3 242-258.

McAfee, R. Preston, John McMillan. 1996. Analyzing the airwaves
auction. J. Econom. Perspect. 10(1) 159-175.

McMillan, John. 1994. Selling spectrum rights. J. Econom. Perspect.
8(3) 145-162.

Nemhauser, George L., G. Sigismondi. 1992. A strong cutting
plane/branch-and-bound algorithm for node packing. J. Oper.
Res. Soc. 43(5) 443-457.

Net Exchange, Inc. 2001. Market architecture: Improving markets
by enhancing choice, http://www.nex.com/docs/nexst.pdf
(May).

Nisan, Noam. 2000. Bidding and allocation in combinatorial auc-
tions. Proc. ACM Conf. Electronic Commerce (ACM-EC), Min-
neapolis, MN. ACM, New York, 1-12.

Nisan, Noam, Amir Ronen. 2000. Computationally feasible VCG
mechanisms. Proc. ACM Conf. Electronic Commerce (ACM-EC),
Minneapolis, MN. ACM, New York, 242-252.

Nisan, Noam, Ilya Segal. 2003. The communication requirements
of efficient allocations and supporting prices. J. Econom. Theory
Forthcoming.

Pardalos, Panos M., Nisha Desai. 1991. An algorithm for finding
a maximum weighted independent set in an arbitrary graph.
Internat. J. Comput. Math. 38 163-175.

Parkes, David C. 1999. iBundle: An efficient ascending price bun-
dle auction. Proc. ACM Conf. Electronic Commerce (ACM-EC),
Denver, CO. ACM, New York, 148-157.

Parkes, David C., Lyle Ungar. 2000a. Iterative combinatorial auc-
tions: Theory and practice. Proc. National Conf. Artificial Intelli-
gence (AAAI), Austin, TX. AAAI Press, Menlo Park, CA, 74-81.

Parkes, David C., Lyle Ungar. 2000b. Preventing strategic manipu-
lation in iterative auctions: Proxy-agents and price-adjustment.
Proc. National Conf. Artificial Intelligence (AAAI), Austin, TX.
AAAI Press, Menlo Park, CA, 82-89.

Penn, Michal, Moshe Tennenholtz. 2000. Constrained multi-object
auctions and b-matching. Inform. Processing Lett. 75(1-2)
29-34.

Rassenti, Stephen J., Vernon L. Smith, R. L. Bulfin. 1982. A com-
binatorial auction mechanism for airport time slot allocation.
Bell J. Econom. 13 402-417.

Rothkopf, Michael H., Aleksandar Peke¢, Ronald M. Harstad. 1998.
Computationally manageable combinatorial auctions. Manage-
ment Sci. 44(8) 1131-1147.

Russell, Stuart. 1992. Efficient memory-bounded search methods.
Proc. Eur. Conf. Artificial Intelligence (ECAI), Vienna, Austria,
1-5.

Russell, Stuart, Peter Norvig. 1995. Artificial Intelligence: A Modern
Approach. Prentice Hall, Upper Saddle River, NJ.

Sandholm, Tuomas. 1991. A strategy for decreasing the total trans-
portation costs among area-distributed transportation centers.
Nordic Operations Analysis in Cooperation (NOAS): OR in Busi-
ness. Turku School of Economics, Finland.

Sandholm, Tuomas. 1993. An implementation of the contract net
protocol based on marginal cost calculations. Proc. National
Conf. Artificial Intelligence (AAAI), Washington, D.C. AAAI
Press, Menlo Park, CA, 256-262.

Sandholm, Tuomas. 2000. Issues in computational Vickrey auctions.
Internat. J. Electronic Commerce 4(3) 107-129.

Sandholm, Tuomas. 2002a. Algorithm for optimal winner determi-
nation in combinatorial auctions. Artificial Intelligence 135 1-54.

Sandholm et al.: Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions

390

Management Science 51(3), pp. 374-390, © 2005 INFORMS

Sandholm, Tuomas. 2002b. eMediator: A next generation electronic
commerce server. Comput. Intelligence 18(4) 656-676.

Sandholm, Tuomas, Subhash Suri. 2001. Side constraints and non-
price attributes in markets. I[JCAI-2001 Workshop on Distributed
Constraint Reasoning. Seattle, WA, 55-61.

Sandholm, Tuomas, Subhash Suri. 2003. BOB: Improved winner
determination in combinatorial auctions and generalizations.
Artificial Intelligence 145 33-58.

Sandholm, Tuomas, Subhash Suri, Andrew Gilpin, David Levine.
2002. Winner determination in combinatorial auction general-
izations. Internat. Conf. Autonomous Agents and Multi-Agent Sys-
tems (AAMAS). Bologna, Italy, 69-76.

Santi, Paolo, Vincent Conitzer, Tuomas Sandholm. 2004. Towards
a characterization of polynomial preference elicitation with
value queries in combinatorial auctions. Conf. Learning Theory
(COLT). Banff, Alberta, Canada, 1-16.

Schuurmans, Dale, Finnegan Southey, Robert Holte. 2001. The
exponentiated subgradient algorithm for heuristic Boolean pro-
gramming. Proc. Seventeenth Internat. Joint Conf. Artificial Intel-
ligence (IJCAI), Seattle, WA, 334-341.

Smith, Trey, Tuomas Sandholm, Reid Simmons. 2002. Constructing
and clearing combinatorial exchanges using preference elici-
tation. AAAI-02 Workshop on Preferences in Al and CP: Sym-
bolic Approaches. Edmonton, Alberta, Canada. AAAI Press, Menlo
Park, CA, 87-93.

Tennenholtz, Moshe. 2000. Some tractable combinatorial auctions.
Proc. National Conf. Artificial Intelligence (AAAI), Austin, TX.
AAAI Press, Menlo Park, CA.

van Hoesel, Stan, Rudolf Miiller. 2001. Optimization in elec-
tronic marketplaces: Examples from combinatorial auctions.
Netnomics 3(1) 23-33.

Walsh, William, Michael Wellman, Fredrik Ygge. 2000. Combinato-
rial auctions for supply chain formation. Proc. ACM Conf. Elec-
tronic Commerce (ACM-EC), Minneapolis, MN. ACM, New York,
260-269.

Wolsey, Laurence A. 1998. Integer Programming. John Wiley & Sons,
New York.

Wurman, Peter R., Michael P. Wellman. 2000. AkBA: A progressive,
anonymous-price combinatorial auction. Proc. ACM Conf. Elec-
tronic Commerce (ACM-EC), Minneapolis, MN. ACM, New York,
21-29.

Zinkevich, Martin, Avrim Blum, Tuomas Sandholm. 2003. On
polynomial-time preference elicitation with value queries. Proc.
ACM Conf. Electronic Commerce (ACM-EC), San Diego, CA.
ACM, New York, 176-185.

Zurel, Edo, Noam Nisan. 2001. An efficient approximate alloca-
tion algorithm for combinatorial auctions. Proc. ACM Conf.
Electronic Commerce (ACM-EC), Tampa, FL. ACM, New York,
125-136.

