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mpirical evidence suggests that decision makers often weight successive additional units of a valued

attribute or monetary endowment unequally, so that their utility functions are intrinsically nonlinear or irreg-
ularly shaped. Although the analyst may impose various functional specifications exogenously, this approach is
ad hoc, tedious, and reliant on various metrics to decide which specification is “best.” In this paper, we develop
a method that yields individual-level, flexibly shaped utility functions for use in choice models. This flexibility
at the individual level is accomplished through splines of the truncated power basis type in a general additive
regression framework for latent utility. Because the number and location of spline knots are unknown, we use
the birth-death process of Denison et al. (1998) and Green’s (1995) reversible jump method. We further show
how exogenous constraints suggested by theory, such as monotonicity of price response, can be accommodated.
Our formulation is particularly suited to estimating reaction to pricing, where individual-level monotonicity
is justified theoretically and empirically, but linearity is typically not. The method is illustrated in a conjoint
application in which all covariates are splined simultaneously and in three panel data sets, each of which has
a single price spline. Empirical results indicate that piecewise linear splines with a modest number of knots fit
these data well, substantially better than heterogeneous linear and log-linear a priori specifications. In terms
of price response specifically, we find that although aggregate market-level curves can be nearly linear or log-
linear, individuals often deviate widely from either. Using splines, hold-out prediction improvement over the
standard heterogeneous probit model ranges from 6% to 14% in the scanner applications and exceeds 20% in
the conjoint study. Moreover, “optimal” profiles in conjoint and aggregate price response curves in the scanner
applications can differ markedly under the standard and the spline-based models.
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1. Heterogenous Utility and Flexible

Functional Forms
Previous studies of choice models have typically as-
sumed that utility can be linked to covariates lin-
early, usually via a fixed functional form exogenously
imposed by the analyst. These assumptions are moti-
vated largely by methodological convenience in terms
of model structure and estimation, as well as post hoc
interpretability of the underlying parameterization.
There is, however, substantial theoretical and empir-
ical justification from several disciplines in favor of
utility functions of various, often irregular, shapes. In
the economics literature, many studies on “flexible”
functional forms (Wales 1977, Caves and Christensen
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1980) in demand systems have supported utility non-
linearity at the aggregate level. Such flexibility is
crucial in gauging response to price, in particular,
a finding echoed in marketing (Abe 1998, Bell and
Lattin 2000) and psychology (Wu and Gonzalez 1996,
Gonzalez and Wu 1999).

The estimation of flexible individual-specific func-
tions in empirical studies using choice models has
largely been neglected, hampered by methodologi-
cal difficulties. One difficulty—of needing to exoge-
nously impose a particular functional specification
for latent utility—raises a number of problems of
its own. The first such problem is ordinarily theory-
dependent: Which particular specification should be
imposed? Because utility itself is unobserved, there is
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seldom any overriding theoretical justification for one
functional specification over another, other than pure
parsimony. This may be, in part, why linear specifi-
cations have come to assume something of a default
role. A second problem follows from the first: When
theory fails to suggest a particular functional speci-
fication, which should be explored? A trial-and-error
approach is time consuming and raises questions
of overfitting; it also requires specification of func-
tional families from which one might reasonably draw
candidates. A final problem concerns how the ana-
lyst might choose among various candidate specifica-
tions; that is, which test procedures should be used?
Because different empirical applications favor dif-
ferent parameterizations, theoretical generalizations
across studies may be difficult to come by.

In this paper, we propose a nonparametric, spline-
based model to investigate flexible utility functions for
choice models, with a particular empirical emphasis
on capturing price response. The presented method
allows one to (1) model utility functions at the indi-
vidual rather than at the aggregate level, (2) exam-
ine the degree of cross-sectional variation in utility
function shape, and (3) better understand the true
relationship among specific covariates (particularly,
price), observed choice probabilities, and market-level
response. Throughout, we stress that it is not strict
linearity, per se, that our approach is meant to relax.
Rather, it is the need to prespecify a particular func-
tional form for individual-level utility.

We test the proposed formulation against those
commonly applied in prior literature in a variety
of settings: a conjoint application for the design of
a small durable and three scanner panel data sets
of varying characteristics. The conjoint application,
although stemming from a design with fixed within-
attribute levels, allows each of six input variables to
be splined simultaneously. The scanner applications
allow for the assessment of individual-level price
response curves, where the spline “knots” are house-
hold-specific. In all applications, we find that piece-
wise-linear splines give rise to curves that appear to
capture covariate effects well, particularly for price.
Gains from the application of splines are substan-
tial, not only in terms of Bayesian measures of model
fit but in the managerially critical metric of predic-
tive accuracy in hold-out samples. Moreover, response
estimates systematically differ when strict assump-
tions of price response linearity are relaxed to mono-
tonicity, as we do here.

The remainder of this paper is organized as fol-
lows. Section 2 reviews key literature that bears on
the assessment of latent utility, with particular regard
to individual-level specifications and price response

linearity. Section 3 incorporates truncated power basis
type splines into a heterogeneous probit choice frame-
work, and describes specification issues, identifica-
tion, and Bayesian estimation. Section 4 presents four
applications and the comparative results of a vari-
ety of utility specifications on the assessment of price
response. Finally, §5 discusses both theoretical and
managerial implications of our suggested approach,
as well as avenues for future research.

2. Modeling Flexible Utility and
Pricing Effects

Choice models typically assume that multiattribute
systems link observed choices to covariates (e.g.,
prices or environmental variables). However, the ex-
tant literature has been largely silent on estimating
consumer-specific, flexible functions for latent utility.
Gonzalez and Wu (1999) found substantial evidence
for complex utility shapes at both the aggregate and
individual levels; moreover, they detailed the substan-
tial methodological problems in measuring them at
the individual level, even in a controlled setting and
using parametric representations. To our knowledge,
obtaining such measurements using field data not
subject to experimental controls is an open question.

Marketing studies provide consistent evidence that
response to environmental variables, particularly
price, can be nonlinear, with substantial individual-
level variation. For example, Kalyanaram and Little
(1989) demonstrated the existence of a range of
prices in which consumers are very nearly insensi-
tive to price changes, and Gupta and Cooper (1992)
reported a similar effect for price discounts. Account-
ing for complex pricing effects has been among areas
to which splines have been successfully applied.
Kalyanam and Shively (1998) applied a stochastic
spline methodology to weekly unit sales for multiple
brands and categories, finding wide shape variation,
although their model was not designed to account for
household-level effects.

A number of studies have addressed nonlinear util-
ity formulations nonparametrically. Abe (1998) pro-
posed a nonparametric additive model to estimate
a binary logit model utility function, albeit only at
the aggregate level, finding it to be nonlinear. Briesch
et al. (2002) used a nonparametric representation to
study whether consumers react differently to price
reductions versus larger deal discounts, discovering
deviations from linearity in deal effects across four
categories. Shively et al. (2000) proposed a nonpara-
metric model for the relationship between consumer
preference and a set of explanatory covariates and
found that several such relationships (four in 24)
in their study were decidedly nonlinear. In conjoint
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modeling, the use of piecewise linear, heterogeneous
utility functions of multiple attributes is quite com-
mon (Lenk et al. 1996, Andrews et al. 2002).

In this paper, we conflate the objectives of these var-
ious studies, allowing for complex functional shapes
at the individual level, where utilities themselves are
latent. This goal is analogous to that of Bell and
Lattin (2000), who found that unless response hetero-
geneity is appropriately accounted for, measurements
of important aspects of consumer behavior—in their
case, reliance on reference prices—could go dramat-
ically awry. Our empirical applications will examine
whether presumptions about the shape of individual-
level price response may be altering inferences about
market-level strategy. In this way, we seek to free
managerial decisions, specifically regarding optimal
pricing strategy, from artifacts of specific functional
assumptions about how individuals translate product
attributes and prices into relative preference. In the
next section, we present a spline-based model formu-
lated with this specific goal in mind.

3. Model Specification

3.1. Multinomial Probit Model

Let y,, = j denote the event that individual & (h =
1,..., H) chooses alternative j (j=1, ..., J) on choice
occasion t (t=1,..., T;). Let x;, denote individual h’s
k-dimensional vector of discrete explanatory vari-
ables (e.g., feature, display) for alternative j on choice
occasion t. Throughout, we use “choice occasion”
as a generic label for purchase occasion (in scanner
panel data) or choice task (in conjoint data). Suppose
that there are M continuous explanatory variables
Vit = (Ui, 1, -+ O, m)'- Then, individual h’s utility
for alternative j on choice occasion t is assumed to fol-
low an additive regression specification (Hastie and
Tibshirani 1990),

M
Upje = X B, + > (Vijtm) + Enjes 1)
m=1

where f/'(e) is an unknown, possibly nonlinear, func-
tion of vy, and &, is an error term. A more detailed
discussion of our specification for f}! is given in §3.2.

To complete the model specification, let u, =
(4n¢, - -, upy) denote a J-dimensional vector of latent
utilities, let x;,, = (x}1;, - - - , X;,;;)’ denotea | x k covariate
matrix, define 7Thjt = Zf\le Ifl(v]ijnl)’ Ty = (7T111t/ et
m,), and let €, = (&4y;, ..., &)’ be a J-dimensional
normal random vector with mean vector 0 and covari-
ance matrix %,. Summarizing, our model is

Yu=]j if wy =max(uy,, ..., uy,), such that

@)
Ep ™ N](Uf 2'u)/

uy, = X By + 7 + €y,

where N;(m, %) denotes a J-dimensional normal dis-
tribution with mean vector p and covariance matrix 3.
The resulting choice probabilities for the multinomial
probit model are given by the [-fold integral,

phjt = p(yht :] | Bhl Thtr 21{)

ny(ay | %, By +m,, 2,) duy,,

hlt hjt

i=1,...,], 3

where n;(u | p, %) denotes a J-variate normal density
for the vector u with mean vector p and covariance
matrix %. Furthermore, A;;, is the interval (—oo, u,;)
if i #j and (—oo, o0) if i = . This specification suffers
from two well-known identification problems: loca-
tion invariance and scale invariance. Our approach to
resolving these identification problems is slightly dif-
ferent for the conjoint and scanner panel data appli-
cations that we describe in §4.

In the conjoint data application, we let the last op-
tion, J, be a “no-choice” option. We set the utility of
the no-choice option to u,; = 0; therefore, we must
introduce an intercept for each individual, B8;,, that
measures the individual’s intrinsic utility preference
of choice versus no choice. Thus, we have

/
Ui = Bro + XyeBi + Wiy + €t

j=1,...,]—-1, and (4)

Uy = 0,

where x;,;, and m,;, are described after (1) and before
(2), and where the covariance matrix for the (J — 1)-
dimensional error term, €,, = (&1, ..., &y, j-1,1), 1S @
(] — 1)-dimensional identity matrix, denoted I;_;.

In the scanner data applications, we suppose that
there are alternative-specific intercepts for the | alter-
natives and also a number of additional binary vari-
ables; we will include two such in our applications:
feature advertising and display. The portion of the
resulting | x (J + 2) matrix x;, that corresponds to
the alternative-specific intercepts is a (J x J) iden-
tity matrix. To deal with the location identification
problem, we arbitrarily pick one of the alternatives
(say, J) and drop the Jth column of this identity
matrix; the corresponding alternative-specific inter-
cept is therefore unnecessary, and thus the other | —1
alternative-specific intercepts are measured relative to
alternative . We note that this will affect interpreta-
tions of alternative-specific intercepts across models,
as both the intercept in question and the “base” used
for identification must jointly be taken into account.
There are several methods available to handle the
scale invariance problem in the scanner data applica-
tions. Chib and Greenberg (1998) and McCulloch et al.
(2000) provide thorough discussions.
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3.2. Incorporating Splines into the Model

In this section, we first describe our use of splines to
approximate the function £ in (1) and then some esti-
mation issues related to splines. To incorporate flexi-
bly shaped utility functions, we use a nonparametric
approach without strong functional assumptions to
model f/. It is well known that a continuous function
may be arbitrarily well approximated by a piecewise
polynomial function with a sufficiently large number
of knots (cf. Wegman and Wright 1983). Specifically,
we let each /() be a spline function with a truncated
power basis (Denison et al. 1998, Lindstrom 2002),
also known as a “one-sided basis” (Schumaker 1981,
p. 112),

lﬂl
h
fm(vhjtm) = Z Yhmn(vhjtm - Shmo)i
n=1

hm

lﬂ’l
+2 Vi, 1+ (Onjm — Spmi) 4 ®)

i=1

for vy € [Sum,0s Sim, g, 411, Where w, = max(0, w),
w9l = I(w > 0), g, is the number of interior knots
for individual & for the mth spline function, I, is
the order of the spline, {y,,,;} are individual-specific
spline coefficients, and {s;,,;}, arranged in ascend-
ing order, are individual-specific interior knot points
with boundary knots, s, o and sy, , ., for the mth
spline. Here, I(a) is the usual indicator function for
the event a.

In our applications, we found linear splines to per-
form better than splines of higher order, and we restrict
our discussion here to linear splines.! Thus, we use

I
fn;(vhjtm) = Yhm1 (Uhjtm - ShmO)+

Ghm

2 Vi, 1401 @njem = Smi) +- (6)

i=1

Note that, for identification purposes, we do not
include an intercept term in (5) or (6), accommodating
one as needed through B, in (1).

Let us now turn to some estimation issues related
to the spline functions. Because the u,,;, are unknown
latent variables, it is very difficult to choose a rea-
sonable knot configuration for each individual in
advance. A key feature of our model is that it endoge-
nously settles on an appropriate knot configuration,
leading to the difficult problem of spline estimation
with varying knots (see Wegman and Wright 1983

! Details of the MCMC sampler for linear and higher order splines,
various prior settings, and all full conditionals are included in
the online appendix to this paper (provided in the e-companion),
and in Kim et al. (2007). The electronic companion to this paper
is available as part of the online version that can be found at
http://mansci.journal.informs.org/.

for a review). The linear spline function model in (6)
requires the estimation of two sets of parameters:
(1) the knot configuration, that is, the number and
location of knots, g, and sy, 1, - - -, Sy, g,,; and (2) the
spline coefficients, Yy 1, -+, Yim, 144, -

We use Markov chain Monte Carlo (MCMC) simu-
lation to estimate the spline functions. Our notation
for the parameters that describe the household-
specific knot configurations is as follows:

* 3.,<€{0,1,...,Q,} denotes the possible number
of interior knots for f!(*) given Q,, candidate knots,

® Dy =1{Dpms -+, Dymg, } denotes a set of Q,, can-
didate interior knots, and

® O =1{Sum, 1, Sum,q,, ) denotes a set of g, inte-
rior knots chosen from %,

The appendix describes the hierarchical structure
for the regression coefficients B, in (1) and B, =
(Bro,Bjy) in (4), and the prior distributions for all
parameters.

3.2.1. Monotonicity and Knot Configuration. Re-
searchers often seek to place constraints on individual-
specific utility shapes. These can come about for a
variety of reasons, including those imposed by theory,
rationality, or previous findings. For example, eco-
nomic theory suggests that the spline reflecting the
effect of price be monotonically decreasing. In our
applications, we will thus require

h 1
fm (Uhjtm) = fn: (Z)thm)

Note that (7) leads to several separate inequality con-
straints that must be jointly satisfied. The multivariate
normal random-effects probit, by contrast, allows for
the possibility that some individual-level “draws” are
nonmonotonic or even nondecreasing.

The knot configuration for each individual at each
MCMC iteration is sampled from a collection of pre-
specified candidate knot points; we take up how to
arrive at this candidate set in our applications. We use
a special discrete version of Green’s (1995) reversible-
jump Metropolis-Hastings algorithm in our MCMC
simulation. Green’s method allows the number and
location of knots to vary across iterations by allowing
“births” and “deaths” among them, a critical feature
to which we will return in our applications.

if vlljtm = U;;jtm' (7)

4. Empirical Applications

The proposed model is illustrated for two widely
popular applications of choice models in marketing:
choice-based conjoint and scanner panel data. The
conjoint application is chosen to demonstrate how
to estimate multiple spline functions simultaneously.
The three scanner data applications are pursued to
show how to solve the varying knot problem for
individual-level utility splines where there is a rela-
tively large number of candidate knots.
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The conjoint data set contains six attributes, each
with five levels, thus limiting the number of pos-
sible knots and predetermining their potential loca-
tions. We estimate the spline-based model on three
separate scanner data sets, comparing fit and hold-
out performance to that of the standard multinomial
probit (MNP) model for both linear and log-linear
price specifications. We note that the log-price form
is directly suggested by economic theory, given opti-
mal consumer budget allocation (Allenby and Rossi
1991). For both types of application, we focus mainly
on parameter estimates relevant to, and implications
of, splines. Because our empirical results supported
linear splines in all four applications, we present only
those results; all others are available in the online
appendix.

4.1. Application I: Choice-Based Conjoint

We model conjoint choice data for bathroom scales
collected by the Optimal Design Engineering Labora-
tory at the University of Michigan (see Michalek et al.
2005 for further details regarding study design and
materials). The design consisted of six attributes—
weight capacity, platform aspect ratio, platform area,
interval gap between one-pound markings, size of
printed numbers, and price—each with five levels.
Specific levels for each of these attributes appear in
Table 1. Each of 184 subjects completed an online
series of 50 fixed tasks, each including three product
profiles and a no-choice option; thus, H = 184 and
] =4. For the purpose of out-of-sample validation, we
divided the full data set into training, y, and predic-
tion data sets, y. The prediction data consisted of the
last 10 choice observations for each subject, so that
the number of observations in the training data set is
T,=40Vh.

Because none of the six attributes is purely cate-
gorical, we introduced a separate spline for each, so
M =6 in (1). To aid in graphical comparability, we
divided by the lowest value for each attribute, leav-
ing the transformed largest values distinct; see the last
column in Table 1. Splines were then introduced over
these rescaled levels.

4.1.1. Model Comparison. We estimated several
different models. First, we estimated a baseline model,
M,, the random effects probit commonly applied in

choice-based conjoint:

!
Upir = Bro + XpeBi + €t

j=1,...,]—1, and (8)

uh]t = 0/

where €, = (&1, .-+, &5, 7-1,1) ~ N;_1(0, I). Note that
M, is actually less restrictive than a spline model, as
it allows any sort of relationship between the part-
worths for a particular attribute. We will examine
empirically whether this flexibility helps or hampers
hold-out performance.

Because u;,; =0 and B, is included in the spec-
ification for u,,, we define x,; so that the “effect”
of the first level of each attribute is zero. Therefore,
X;; was a 24-dimensional vector, consisting of four
dummy variables for the second to the fifth levels for
each attribute. Thus, 8, measures the utility of the
choice option at the lowest values for all attributes
over the no-choice option. The parameters of the base-
line model are B8,, and B,;. The relevant hierarchical
structure and prior distributions are as in item (1) in
the appendix; the chosen values of the priors for M,
were g,=0, ¢, =20, a,=0,=0.5, g, =0,, C, =W, =
20I,,, and 1, =2. We also estimated the linear spline
model S described after (6):

6
Upis = Bro+ D fn]z(vhjtm) + Epjis

m=1

ji=1,...,]—-1, and (9)

uh][ = 0,

where €, = (g, ---
scribed previously.

The set ,,, of candidate knots for the mth spline
(m=1,...,6) consisted of the three interior levels
of the corresponding attribute. The exterior levels
(here, the first and the fifth) serve as boundary knots.
Because the profile stimuli sets were identical across
subjects, so are these candidate knots. Thus, the num-
ber of interior knots g, € {0,1,2,3} Vh, m. In addi-
tion, the monotonicity constraint was imposed on the
price spline, f/'(), although the other splines were
unconstrained.

’8}111_1J)/ ~ N]_l(o, I), as de'

Table 1 Attributes and Their Levels in the Conjoint Study

m Attributes Unit Levels Rescaled levels

1 Weight capacity Ibs. 200; 250; 300; 350; 400 1;1.25; 1.50; 1.75; 2.00
2 Platform aspect ratio length/width 6/8;7/8;1; 8/7; 8/6 1;1.17;1.33;1.52; 1.78
3 Platform area in.2 100; 110; 120; 130; 140 1;1.10; 1.20; 1.30; 1.40
4 Interval mark gap in. 0.063; 0.094; 0.125; 0.156; 0.188 1;1.49; 1.98; 2.45; 2.98
5 Size of number in. 0.75; 1.00; 1.25; 1.50; 1.75 1;1.33; 1.66; 2.00; 2.33
6 Price $ 10; 15; 20; 25; 30 1; 1.50; 2.00; 2.50; 3.00
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Table 2 Model Performance in the Conjoint Study
Training data Prediction data
Log of integrated log of Log of posterior Correctly predicted:
Model likelihood BFy, - predictive distribution hit rate (%)
M, (Heterogeneous traditional probit) —5,828.70 0 —2,361.80 48.08
S (Heterogeneous linear spline probit) —4,451.67 1,377.03 —1,895.57 59.42

The parameters for our spline model in the conjoint
application are 8,, and the parameters characterizing
the splines. The appendix describes the hierarchical
structure for these parameters and the prior distri-
butions. We chose the prior parameter values g, =0,
¢y =20, and a, = b, = 0.5; these are identical to those
for M,. Furthermore, the prior distributions for the
spline coefficients y,&iﬁ’f; “m) had parameters a,, =0 and
b, =10 (m =1,...,6). Finally, the distribution for
the number of internal knots g,, was Poisson (with
parameter A, = 3) truncated at 3, the maximum num-
ber of internal knots. Empirically, we observed little
substantive dependence on A, for nearby values or
relative to a uniform prior.

After 10,000 iterations, all models seemed to con-
verge; the proportion of sampled quantities that
passed the Geweke convergence statistics ranged
from 77.6% to 100%. Parameter inferences were based
on an additional 30,000 iterations. For all spline mod-
els, the subject-specific knot configurations were well
mixed, as indicated by examining individual-level
trace plots.> To choose between two models, B; and
B,, we calculate the Bayes factor, BFj 5, the ratio of
the two respective integrated likelihoods. For such
computations, we applied Genz’ (1992, 1993) adaptive
Monte Carlo and Lattice Rule methods. Fortran codes
for these methods are available from Genz.

To assess the relative performance of the spline
models for the prediction data set, we computed two
quantities:

1. The predictive density at the observed values y
of the prediction data set, p(y | y) = [p(¥ | ®)p(P |
y)d®, where @ denotes all unknown parameters of
the given model, p(y | ®) denotes the density of y
given the parameters ®, and p(® | y) denotes the pos-
terior distribution for @ given the training data set y.

2. The proportion of correctly predicted purchases
for the given model, this so-called “hit rate” was
obtained by first sampling latent utilities for each
purchase observation in y, given ®, at each MCMC
iteration, computing the proportion of all purchases
for which the chosen alternative was the one with

2 As an informal check on convergence, we recomputed all reported
quantities using the first and last third of the iterations used for
inference; this was done for all four included applications. Differ-
ences were substantively minor and never significant.

maximal utility and then averaging these proportions
across iterations.

Table 2 presents the integrated likelihoods and pre-
dictive inferences. By either measure, the linear spline
model S was decisively preferred to the traditional
heterogeneous probit model. This result may seem
surprising, given the great improvement—23.6%—in
hold-out hit rate for the spline-based models. How-
ever, we believe that it may be explained as follows.
Note that the prediction data set relied on part-worth
values that were deliberately included in the training
set. However, this was relatively less “informative”
for some respondents than others because they tended
to select the no-choice option or simply avoided cer-
tain attribute levels among their choices. In such
cases, the spline model could leverage information
on other attribute levels for that particular respondent,
whereas the traditional heterogeneous probit (M,)
could do so only for other respondents (through the
across-subjects attribute correlation). In other words,
the spline model provides an explicit mechanism for
a “smoothing” of part-worths so that the values of
poorly estimated attribute levels can be improved via
interpolation across MCMC runs; M, although less
restricted, lacks such a mechanism.

An extreme case—avoided in our study by de-
sign—is one in which the prediction stimuli include
levels never tested in the training data. In such a
case, M, might have to resort to ad hoc (linear) inter-
polation using adjacent values only, whereas spline-
based models can interpolate based on all levels
for that attribute. We speculate that a spline-based
model might perform well as an update mechanism
for adaptive conjoint studies, although we have not
explored that possibility here.

Because the linear spline model performed best, we
examine it in greater detail in the following section.

4.1.2. Estimation Results for the Linear Spline
Model, S. It is instructive to examine estimates result-
ing from S, relative to those from M, and their rel-
ative implications. For brevity, we consider variation
in knot configuration, function shape, and optimal
design using various summary measures and tests.

Interior Knot Configurations. The knot configuration
was quite varied across subjects, and we explore this
issue in greater depth in our scanner applications.
Let us temporarily set aside the posterior uncertainty
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Figure 1 Conjoint Data—Histogram of Modal Number of Interior Knots
Across Subjects
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about the number of knots and focus instead on
the modal number of interior knots for each subject
and attribute. Figure 1 presents a histogram of these
subject-specific modal numbers for each of the six
attributes.

First, consider attributes m =4 and m = 6, inter-
val mark gap, and price. The modal number was 0
for 1.6% and 25% of subjects, respectively; for the
linear spline model S, this lack of knots implies lin-
ear (increasing or decreasing) part-worth curves for
relatively few subjects. Conversely, the modal num-
ber was greater than zero for a sizable proportion of
subjects, 98.4% and 75.0%; these subjects thus appear
to have nonlinear part-worth curves for these two
attributes. For the other four attributes, there was
not even a single subject whose modal number of
interior knots was zero, suggesting that all subjects
exhibited some degree of nonlinearity for these four
attributes. Intriguingly, of all six attributes, price had
by far the largest proportion of modal knot zeros, as
per Figure 1; for these individuals, a linear specifica-
tion would apparently be most appropriate for price
among the six attributes.

Summarizing, Model S suggests considerable vari-
ation in the number of interior knots across subjects,
and it provides very strong evidence in favor of non-
linearity in part-worth curves for all attributes (with
the possible exception of price for about one quarter
of respondents). Of course, M, also does not presume
linearity, so the superior performance of S cannot be
attributed directly to allowing for nonlinear response.
But M, imposes a sort of foundational nonlinearity:
Each attribute level is estimated separately, so near-
linear relations across them occur only by happen-
stance, not as a built-in feature of the model of which
the estimation can avail. In practice, the analyst using
M, is likely to interpolate between adjacent levels
when necessary, but not between nonadjacent levels
because a distinct utility value is indicated at each

level. Under the linear spline model S, however, as
long as the number of internal knots is not at its
maximum value (here, three), the utility values at
some of these fixed levels would, in fact, be the lin-
ear interpolant of its adjacent values. The estimated
part-worth curves may thus be smoother under S than
under M. Let us now examine this possibility and the
shapes of individual part-worth curves under various
models.

Disaggregate Spline Part-Worth Curves. It is straight-
forward to use the MCMC output to estimate in-
dividual-specific splines. Because knot number and
location can change from one iteration to another, the
resulting curve of posterior means is not necessarily
a linear spline curve; it is likely smoother. Using the
linear spline model, Figure 2 presents posterior mean
part-worth curves for two randomly selected subjects
for weight capacity and price. The solid and the thin
lines in Figure 2 represent the posterior mean part-
worth curves under S and M,), respectively; dotted
lines enveloping the part-worth curves indicate pos-
terior 5th and 95th percentile part-worth curves. At
the lowest (base) level of each attribute, the poste-
rior variance of the part-worth curve is zero because,

Figure 2 Conjoint Data—Individual-Level Spline (S) and Benchmark
(M,) Part-Worth Curves
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for identification purposes, the curve measures differ-
ences relative to this base.

As conjectured, each of the posterior mean part-
worth curves under S appears smoother than the
analogous curves under M, which often tend to
zigzag across attribute levels, as evidenced by h=6
for weight capacity. Except for the price spline under
S, no constraints were imposed, so this difference
in smoothness (and, on occasion, monotonicity) is a
genuine substantive difference between the two mod-
els” individual-level part-worth predictions. We report
informally that a similar pattern is evident through-
out the subject pool.

Whereas it is not meaningful to compare the ver-
tical distances between the two posterior mean part-
worth curves in Figure 2 at different levels of an
attribute, we can compare the shapes of the two poste-
rior mean part-worth curves: It is smoother under the
spline model than model M,;. One must bear in mind
that the posterior variation around such curves can
be large, even with many observations per subject. As
such, the analyst should make individual-level infer-
ences with caution, perhaps eschewing them entirely
in favor of aggregate inferences, which we take up
next.

Market-Level Optimal Product Design. For the same
two attributes just considered, weight capacity (m =1)
and price (m = 6), Figure 3 depicts the aggregate
posterior mean part-worth curves under S and M.
As before, curves are noticeably smoother under S
than M,. Although we must stop short of deeming
this a desirable or correct feature, such smoothness,
particularly in aggregate, does square with the intu-
itive notion of latent utility.

For each of the six attributes, the levels with highest
aggregate posterior mean part-worths were {350 1b.,
0.875, 130 sq. in., 0.156 in., 1.75 in., $10} for S and
{300 Ib., 1, 100 sq. in., 0.156 in., 1.5 in., $10} for M—
that is, the most promising single-product profile
differed under the two models. Given the superior
hold-out accuracy of S, something so basic as the opti-
mal product design may be mispredicted by the stan-
dard model, M.

4.2. Application II: Scanner Panel Data
Estimating price response is often among the chief
tasks in scanner studies. Previous investigators study-
ing price and promotional response (e.g., Hardie et al.
1993, Bell and Lattin 2000) took their cue from the
difficulty of disentangling reference effects, preference
heterogeneity, and the specification of the utility func-
tion. We continue in this vein by attempting to free
measures of price response from artifacts of overspec-
ification of the functional form for utility.

For three Information Resources, Inc. (IRI) scanner
product categories (kitchen paper towels, toilet tissue,

Figure 3 Conjoint Data—Aggregate Spline (S) and Benchmark (M)
Part-Worth Curves
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and ice cream), we compare our spline-based model
with a base model exogenously specifying the func-
tional form of price response. For each product cat-
egory, we selected the top | SKUs in terms of total
dollar sales, so that at least 95% of the market was
covered. Each data set was divided into two sub-
sets: training data, y, and prediction data, y. For each
household, we used the first 80% of the household’s
n, purchase observations for model estimation, that
is, T, = [n;, * 0.8]; the remaining (n, — T;,) purchase
observations (i.e., 20%) were reserved for the predic-
tion task. To aid in household-level inference, house-
holds were selected if T, was at least (] — 1) 4+ 3, the
dimension of B, when there are | —1 product dum-
mies, a feature ad dummy, a display dummy, and
price; we elaborate on these variables next.

Table 3 offers a brief summary of our three data
sets. For the paper towel and ice cream data sets,
sizes were common across products. Only the toilet
tissue data set included two different sizes—two and
nine products for one- and four-roll packages, respec-
tively. Despite these different package sizes, we used
posted price rather than unit price per roll so that the
price spline was expressed in constant dollar units, not
dollars per unit. We thus assess the incremental disu-
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Table 3 Summary of IRI Scanner Panel Data Sets
Total number of
purchase observations
Observed

Category Product size J H price range Training data Prediction data

Paper towels 1 roll 6 133 $0.33, $1.32 2,131 479

Toilet tissue 1 and 4 rolls 1 198 $0.38, $2.45 5123 1,197

Ice cream 64 0z 7 81 $0.49, $4.49 1,159 252

tility of each additional monetary unit, size differ-
ences being at least partially mitigated via product
dummies.?

4.2.1. Model Comparison. We compared several
models for the three scanner data sets, with price
being the focal and only continuous variable; thus,
M = 1. Furthermore, we imposed monotonicity on
all spline-based price response curves. The predictor
variable vector x,; needed for the spline model in (1)
was a vector of | — 1 product dummies, a feature
ad dummy, and a display dummy. To ensure iden-
tifiability, we did not introduce a dummy variable
for the last product, J. The dimension of the design
matrix x,,, required in (2), was (] x k), with k=] + 1.
For simplicity, as in the conjoint application, each data
set had a common spline order for all households,
that is, /,; = . We again estimated the proposed spline
models, S, for increasing ! until there was no further
improvement in fit.

As benchmarks, we estimated two models popular
in the literature: the linear, M,, and log-linear, Mlog,
price response models. As in our conjoint applica-
tion, M, was the standard probit model, where x,;
consisted of | —1 product dummies, one feature ad
dummy, one display dummy, and price. For both M,
and M,,,, the dimension of the regression coefficient
vector was k=] + 2.

As noted before, using the approach of McCulloch
et al. (2000) and an unrestricted covariance matrix %,
the MCMC simulation did not always converge for all
our models (i.e., M,, Mlog, and S), particularly for the
product dummy elements in ;. Because most house-
holds in the data sets purchased a sharply restricted
subset of the available products, Xz and %, for infre-
quently purchased products may have been weakly
identified. As there were no convergence problems
for %; when %, was specified to be a correlation

% There were empirical justifications for this choice as well. First,
prices across the two different sizes did overlap: Price ranges were
$0.38-$0.63 and $0.48-$2.45 for one- and four-roll products, respec-
tively; standard tests using the individual prices as inputs did not
show means to differ significantly (p > 0.1) across the two sizes.
Second, all models subsequently reported fit better when actual
posted prices were used instead of unit prices: BF,cual price, unit price
ranged from 304.9 to 365.1 across all models.

matrix, we use the correlation form for ¥, in all model
comparisons.*

The relevant hierarchical structure and the prior
distributions are given in the appendix. The prior dis-
tributions for pg, X4, and %, had the following values:

Cp =201,
and C=4I,.

gB:Ok/ 7"3:2,

W;=20I,, m=5,
Note that the values for m and C led to a prior distri-
bution for 3, centered at I ;, with reasonably diffuse
priors for the off-diagonal entries of X,; specifically,
the [mean &2 x std. dev.] interval for the off-diagonal
elements under the prior was [—1.26, 1.26], covering
the range (—1, 1) of possible correlation values.

To determine the prior distribution for a house-
hold’s knot locations, we first obtained a household-
specific set of candidate knots for the price splines,
%1, based on the household’s observed prices in the
training data: After listing the distinct prices for all
alternatives and all purchase occasions, we selected
Qy,; candidate knots by subdividing the distinct prices
into Q;; + 1 equal parts. By doing so, all intervals
bounded by two adjacent interior knots had at least
one price observation; this was important, as it is
impossible to make inferences regarding intervals
devoid of observations. Discretizing the set of can-
didate knot locations resulted in a discrete proposal
distribution for knot locations, simplifying the appli-
cation of the birth-death steps in our reversible-jump
algorithm.

For simplicity, we set the number of candidate
knots Q;; to be the same for all households in a
given data set: 9, 11, and 10 for the paper towel, toi-
let tissue, and ice cream data sets, respectively. As
a practical complication, price ranges differed in the
training and prediction data sets, even for a given
household. To ensure that predictions could be made
for the prediction data set under the monotonicity
constraint across the relevant price range, we let s, ,
and sy, , 41 be the minimal and maximal observed
prices in the whole data set, as opposed to the training

* We do not believe the correlation matrix to be an especially severe
restriction as %, allows for correlated utilities, and does not impose
IIA; see, for example, Chib and Greenberg (1998).
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data alone. These minimal and maximal values were
used only for the prediction tasks; inferences on price
splines should be made only in the range of prices
observed in the training data set.

The prior distribution for a household’s interior
knot number was Poisson with parameter A; = 3,
implying a reasonably diffuse prior. Simulations sug-
gested that inferences were not very sensitive to
choice of A;, nor to using a flat prior. Given a value
for the interior number of knots, g,,, the prior for
a household’s knot locations was a random sample
from the (%) possible knot configurations from ;.

am
Finally, the }arior distribution for each spline coeffi-
cient .7 1 with =0 and vari-
Yii " was normal with mean a, =0 and vari

ance b, = 10.

For all models, the first 20,000 iterations of the
MCMC simulation were a burn-in period; parametric
inferences were based on an additional 20,000 itera-
tions. The proportion of parameters among pz and X,
that passed the Geweke convergence statistics ranged
from 82.9% to 91.1% for spline models; the household-
specific knot configurations were well mixed.

Table 4 presents model comparison results for the
training and prediction data. Two of our models
could capture nonlinear price response curves: the
log-linear price model M,,, and the spline model, S.
Model M,,, captures the exogenously specified log-
linear response curve suggested by economic theory
(Allenby and Rossi 1991), whereas the spline model is
considerably more flexible. Across the three data sets,
both the linear and quadratic spline models were pre-
ferred to the linear price model, M, (estimation results
for quadratic and higher order splines are available
from the authors). The relative performance of the
log-linear price model, M,,,, was not as clear cut.
Although M,,, did indeed perform better than the
linear price model in the two paper products data
sets (although not ice cream), it was inferior to lin-
ear spline models for all three data sets, as assessed
by both the predictive density for the prediction data

set and the hit rate. Among exogenously specified
price response curves, this offers limited evidence in
favor of a log-price formulation over a linear one. Yet
both were handily outperformed by the linear spline
model. Given that M, and M, are ordinarily consid-
ered fairly general model formulations, that the lin-
ear spline model improves hold-out hit rate as much
as 14.3% is persuasive evidence in its favor (e.g., for
paper towels and M, versus S, (31.2 —27.3)/27.3 =
14.3%).

In summary, the linear spline, S, was the best-per-
forming model across all data sets in terms of Bayes
factors and both prediction measures. We examine
this model and its implications in greater detail in the
next section.

4.2.2. Estimation Results for the Linear Spline
Model, S. We first consider linear spline model re-
sults for the discrete covariates and for the error cor-
relation matrix. The hierarchical model coefficient for
feature ad (that is, the relevant element of ) showed
the expected sign in all three data sets, as did that
for display (with the exception of the ice cream data
set). Display activities were rarely observed for ice
cream products, which may explain this finding. The
estimates of X, showed strong error correlations: Pos-
terior means for off-diagonal elements in %, ranged
from —0.783 to 0.912, —0.632 to 0.572, and —0.912 to
0.914 for the paper towel, toilet tissue, and ice cream
data sets, respectively. Clearly, these data would have
been poorly served by a standard logit or an uncor-
related probit specification.

To gauge the prevalence of nonlinearities, we ob-
tained the modal numbers of interior knots for all
households in each data set. The most common
household-specific modal numbers were 2, 0, and 0
for the paper towel, toilet tissue, and ice cream data
sets, respectively. The proportions of households for
which these modal numbers were greater than zero
were 90.2%, 44.4%, and 42.0%, suggesting that a large
proportion of households appears to exhibit some

Table 4 Scanner Data—Model Comparisons
Training data Prediction data
Log of integrated Log of Log of posterior Correctly predicted:

Category Model likelihood BFMO‘. predictive distribution hit rate (%)
Paper towels M, —3,260.2 0 —891.7 27.3
Mo —3,173.6 86.6 —791.4 27.8
S —2,9221 338.1 —718.0 31.2
Toilet tissue M, —8,650.7 0 —2,100.2 25.8
Mo —8,499.1 151.6 —2,051.2 271
S —8,315.6 335.2 —2,032.1 27.6
Ice cream M, —1,713.0 0 —366.2 30.5
Migg -1,7513 -38.3 —402.3 28.0
—1,567.4 145.7 —360.3 323
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degree of price response nonlinearity. Although we
did not systematically study drivers of nonlinearity
or “kinkedness,” price response curves for the paper
towel data required, on average, significantly (p <
0.01) more interior knots than either the toilet tissue
or ice cream data.

This raises the issue of how the spline shapes vary
across households. The MCMC output readily allows
the calculation of household-level response curves,
although we must note that posterior variation around
these is large for many of them. We report informally
that, in spite of the monotonicity constraint, the pos-
terior price splines displayed a remarkable variety of
functional shapes, both in terms of concavity versus
convexity and degree of kinkedness. Although most
individual-level curves appeared to be consistent with
a logarithmic or linear specification, many were not,
a subject to which we next turn our attention.

Estimated Household-Specific and Aggregate Price Spline
Curves. As discussed, we found the shape of the
price spline to be quite heterogeneous across house-
holds (albeit “noisy”). This finding says little about
the market-level price response, as described by an
aggregate price spline curve. It is entirely possible
that a large proportion of the consumer pool has a
household-level price spline curve that is not consis-
tent with either linearity or log-linearity, but that the
aggregate price response is well described by one of
these functional forms. To investigate this, we calcu-
lated the posterior distribution for this aggregate price
spline by averaging the H individual price splines
at each MCMC iteration. For each of 100 evenly
spaced price grid points, Figure 4 presents the pos-
terior means of the average price splines and their
associated 90% posterior interval for both the spline
model S and under the better fitting of the standard
heterogeneous probit models, M.

Regardless of the data set, the posterior mean curve
for the average price spline does not appear to be
well described by linearity or log-linearity. For the
paper towel data set, the aggregate price spline curve
is clearly concave. For the toilet tissue data, on the
other hand, it is consistent with linearity throughout
most of its range, with what appear to be inflections
for low and high prices. For the ice cream data, the
curve based on S is of a very different shape than that
based on M,,,. Note that these curves are all of the
same form under M,; they are literally restricted to
be as such, even if they accord with certain a priori
theories of price response. By contrast, the far more
flexible linear spline model, S, allows for rather dif-
ferent aggregate shapes for each of the three data sets.
Based on Figure 4 and the superior hold-out perfor-
mance of S, one might argue that the imposed shape
under M,,, could well be a misspecification for at least
two of these data sets.

Figure 4 Scanner Data—Aggregate Price Splines

(a) Kitchen paper towel

1.0

Marginal utility
S
9
1

! | |
) —_ —_
=] n o

1 1 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Price

(b) Toilet tissue

1.0

e
f=J
L

Marginal utility
S
wn

| |
Iy y
L L

-2.0 1

0.5 1.0 1.5 2.0 2.5
Price
(c) Ice cream

1.0 1

m—— Spline (S)
— Log-linear (M,,,)
0.5 ox

o [5 percentile, 95 percentile]

Marginal utility
&
W
1

|
o
1

|
—_
o)
1

T
0.5 1.0 1.5 2.0 2.5 2.0 2.5
Price

We consider these aggregate results telling indica-
tions of the power of the nonparametric approach to
representing utility at the individual level. However,
such aggregate functions provide practitioners with
no guidance with regard to effective pricing segmen-
tation schemes. Thus, one might question whether,
and how, individual-level price spline results can
inform pricing decisions.

Disaggregate and Aggregate Price Response. Hetero-
geneity in nonlinear price response raises questions
of appropriate pricing practice. Managers would like
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to optimize pricing on the “finest” basis possible,
that is, on the household level or, failing that, for each
of a set of well-delineated segments. Although truly
individual-level pricing/promotion is not currently
practicable in a traditional supermarket environment,
it is becoming increasingly common in electronic
transactions. In such settings, managers would wish
to know whether there are systematic differences be-
tween aggregate- and household-level “optimal” pric-
ing strategies.

Given the price splines, it is straightforward to ex-
amine the impact of various sorts of pricing policies.’
Doing so requires that household-level price response
curves be calculated and averaged across any group
or segment of interest. For example, let us consider
for illustration household & =9 in the paper towel
data, which had a total of T; =33 purchase occasions
in the training data and a highly kinked posterior
price spline, as in Figure 5(a). Given the regression
coefficient vector for this household (B,), the correla-
tion matrix (%,), and the household’s price splines,
we can readily obtain choice probabilities for all prod-
ucts as a function of product A’s price. For both
the linear spline model and model M,, Figures 5(b)
and 5(c) plots these choice probabilities for six prod-
ucts. Under M, the posterior mean of the price coeffi-
cient for h =9 was —0.0996, so the household appears
to be rather insensitive to price changes. That is, price
response (i.e., choice probability curves) are nearly
flat as a function of the price for product A. Thus,
model M, might well suggest a high price for h =9.
Under Model S, the household’s choice probabili-
ties also appeared rather insensitive over the price
range [$0.40, $0.90], but they became considerably
more sensitive for higher prices, calling into question
the conclusion of M,. Such an analysis is, of course,
informal, as it sidesteps implementation issues and
unintended consequences of targeted pricing policies
(Feinberg et al. 2002). Still, group-based pricing could
be implemented whenever households can be identi-
fied and segmented based on, for example, geodemo-
graphics. It would then be a simple matter to estimate
segment- or market-level response curves by combin-
ing individual-level curves.

Among a store manager’s major decisions is finding
the best single price for a product at a given time, that
is, at the aggregate level. As in the previous section,
one can simply view the entire market as a single seg-
ment, aggregating across the respondent pool using
draws for B,, %,, and ;. As before, we used our

® Exploring this issue rigorously requires detailed data on wholesale
costs, as well as a model of promotional response, purchase tim-
ing, and stockpiling behavior (e.g., Montgomery 1997, Montgomery
and Bradlow 1999). In principle, splines can supplement any such
model in the manner pursued here, so that household- or segment-
level profit calculations follow directly from price response curves.

Paper Towels Data—Marginal Utility and Choice Probabili-
ties as a Function of the Price for Product A

Figure 5
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paper towel training data set to compute the choice
shares of products given different prices for a focal
brand. Figure 6 presents a plot of these choice shares
for product A. Note that choice probabilities based
on the spline model are more sensitive (i.e., steeper)
than under the traditional MNP formulation. More-
over, the choice probability for product A displays a
notable nonlinearity under S not apparent under M.
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Figure 6 Paper Towels Data—Aggregate Choice Shares as a Function
of the Price for Product A
Under spline (S)
0.5
Product A
0.4
g
£ 0.3
Q
2
202+
o Product D —— qmarzn==—"=
Product C -~~~ —”*,-f:fr_“—"-'
0.1 HProductB ... _ e T i o s
Product E ==
Product F
0.0
T T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Price of product A
Under base model (M)
0.5

0.4 Froduct A\
0.3

Choice share

0.2 4 Product C .-~~~
Product D ~—_

0.1 o ProductB ... [ e

Product B ===

0.0 1

T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Price of product A

Given the substantially better hold-out performance
of the spline models, one might question pricing sug-
gestions arising from M. In short, the spline model
offers systematically and substantively distinct esti-
mates of market-level price response. In turn, the two
models would suggest rather different optimal pric-
ing policies, regardless of what else the analyst builds
into an optimization model (e.g., wholesale costs and
other retailer data). We thus believe that splines may
offer a useful method through which to assess price
optimization frameworks proposed in marketing, as
price splines invoke monotonicity only, as opposed to
strict linearity, at the household level.

5. Discussion
In this paper, we present a new approach to estimat-
ing utility functions of various shapes at the consumer
level. Applying splines, under an additive modeling
structure, to a variety of data sets yielded several
conclusions:

1. The proposed model performed substantially
better than the traditional linear or log-linear specifi-
cations. This improvement was apparent in terms of

both Bayes factors and, more important, proportion
of correctly predicted hold-out choices.

2. Despite a linear or log-linear appearance to some
aggregate utility curves (for price), many individuals
had utility curves consistent with neither specifica-
tion. Moreover, there existed a great deal of hetero-
geneity in the functional shapes of the splines, with
varying degrees of concavity.

3. Market-level response to price differed nontriv-
ially under the traditional log-linear and the linear
spline specifications.

The first finding suggests that, all else equal, there
is reason to believe that splines can be profitably
applied in settings for which the functional nature
of the response variable to continuous covariates is
unknown. We believe this to be of both theoretical
and practical importance. In the vast majority of prior
studies, nonlinearities in the utility valuation function
have been imposed exogenously and, therefore, must
be of a known, prespecified form. Splines can elimi-
nate the sort of guesswork such an approach requires,
as well as its attendant biases. Surprisingly, splines
offered the greatest incremental value, in terms of
hold-out predictive accuracy, in our conjoint applica-
tion. Although more work is needed to address this
issue fully, we believe that the spline model offers
a key benefit in being able to “smooth” part-worths
across all of a respondent’s levels (for a particular
attribute), in addition to the shrinkage afforded by
traditional (Bayesian) random-effects conjoint models.

The second finding suggests that even when price
response may appear linear or log-linear at the aggre-
gate level, this should not be taken as evidence that
individual-level curves are of the same form. Not
only did most households have decidedly nonlinear
price response, but the shape—both the slope and
concavity—of such response varied widely through-
out the respondent pool for each of our data sets.
One caveat here is that posterior intervals about these
curves are often wide enough to call into question any
“shapes” based on posterior means alone.

The final finding is especially important: Market-
level response was tightly determined in each of our
scanner applications, and a rather different functional
shape was in evidence across them, in stark contrast
to the traditional model, which imposes its shape
exogenously. Because optimization frameworks rely
on rendering choice share as a function of marketing
mix inputs, biases stemming from traditional utility
functional forms can lead to costly errors in setting
marketing policies.

We do not wish to suggest that “simple” functional
specifications have little to recommend them. Indeed,
such functions are easier to interpret, their estima-
tors are more efficient, and they are often more accu-
rate when extrapolating outside the range of observed
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prices. As general as our modeling framework was,
it nevertheless invoked a number of limitations and
assumptions. For example, our splines were of the
truncated power basis type; more general, although
less parsimonious, forms do exist (Schumaker 1981).
Although splines do allow flexibility in utility shape,
they do not help researchers with another sort of flex-
ibility, that of assessing possible interactions between
covariates. In addition, our splines presume continu-
ity; in some applications (far removed from prod-
uct choice), nonlinear utility functions may exhibit
notable jumps, which might potentially be captured
through general polynomial splines (Denison et al.
1998). We believe this to be a fertile basis for future
investigations, particularly those involving gambles,
threshold effects, and reservation prices, all of which
have been broadly validated in experimental contexts.
An online supplement to this paper is available on
the Management Science website (http://mansci.pubs.
informs.org/ecompanion.html).

6. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Appendix. Prior and Posterior Distributions

To conserve space, this appendix gives only a brief sum-
mary of the prior distributions for the various parameters
in our models. The order of the spline in (5), I,,, is assumed
to be given. Because it is unknown, we first consider /,, =1
and increase /,, by one in sequence, determining an appro-
priate value for I, by comparing Bayes factors.

To complete the model specification, prior distributions
for the two application types are as follows. The individ-
ual regression coefficients in both applications are modeled
through a hierarchical random-effects specification.

1. Choice-based conjoint application: We assume that
Bio ~ N(o, 03) Y h, with py ~ N(gy, ¢o) and a5 ~1G(ay, by),
and that B;,; ~ Ny(py, 2q) Vh, with p; ~ Ni(g;,C;) and
3, ~ IW,(r;, W;). Here, N(u, 02) denotes a univariate nor-
mal distribution with mean u and variance o?; 1G(a, b)
denotes an inverted gamma distribution with shape param-
eter a and scale parameter b; and IW,(r, W) denotes a
k-dimensional inverted Wishart distribution with parame-
ters r and W, where r > 0 and W is nonsingular.

2. Scanner panel data application: We assume that B, ~
Ni(pg, 2p) Y h, with pg ~ Ni(gg, Cp) and X ~ IW, (15, Wp).
The prior distribution for the unknown covariance matrix
3, is IW;(m,C), but ¥, is restricted to be a correlation
matrix.

The parameters related to the spline function are de-
scribed after (6). Their prior distributions are as follows:

3. We use the same prior distribution for the knot con-
figuration for each individual. Their prior distributions are
as follows. The prior distribution for the number of interior
knots, g, is Poisson with known mean A,, truncated at
Q,,, the number of all candidate knots in %,,,. In our scan-
ner data applications, we chose A; = 3. A limited simulation
analysis suggested that the results are not really sensitive to
departures from this prior distribution.

4. Given the number of interior knots, the prior distribu-
tion for the knot locations 6, is constant.

5. Given the number of interior knots g, and the knot
locations 6,,,, the prior distribution for the (I, + gj,,)-di-

. . .. ,0) .9
mensional spline coefficient vector 'y;(:z,’i”‘ hm) (y,(,?ﬂ’””l ’””), e,

y,iﬂ;f”l:)fj;';’]?nx)’ is such that 'y;(l'zz,’f”i’ ) ~ N(a,,,b,) fori=1,...,
L, + Gy Y h, possibly subject to constraints like (7).

We use MCMC methods to evaluate the posterior distri-
butions resulting from these prior distributions and the like-
lihoods for the models described in this paper. More detail
on the prior distributions and the MCMC simulation can be

obtained in the online appendix and in Kim et al. (2007).

References

Abe, M. 1998. Measuring consumers’ nonlinear alternative choice
response to price. J. Retailing 74(4) 541-568.

Allenby, G. M., P. E. Rossi. 1991. Quality perceptions and asymmet-
ric switching between brands. Marketing Sci. 10(3) 185-204.
Andrews, R. L., A. Ansari, I. S. Currim. 2002. Hierarchical Bayes
versus finite mixture conjoint analysis models: A comparison
of fit, prediction, and partworth recovery. J. Marketing Res. 39(1)

87-98.

Bell, D. R,, J. M. Lattin. 2000. Looking for loss aversion in scanner
panel data: The confounding effect of price response hetero-
geneity. Marketing Sci. 19(2) 185-200.

Briesch, R. A, P. K. Chintagunta, R. L. Matzkin. 2002. Semiparamet-
ric estimation of brand choice behavior. J. Amer. Statist. Assoc.
97 973-982.

Caves, D. W, L. R. Christensen. 1980. Global properties of flexible
functional forms. Amer. Econom. Rev. 70(3) 422-432.

Chib, S., E. Greenberg. 1998. Analysis of multivariate probit models.
Biometrika 85(2) 347-361.

Denison, D. G. T., B. K. Mallick, A. F. M. Smith. 1998. Automatic
Bayesian curve fitting. J. Roy. Statist. Soc. Ser. B 60 333-350.
Feinberg, F. M., A. Krishna, Z. J. Zhang. 2002. Do we care what oth-
ers get? A behaviorist approach to targeted promotions. J. Mar-

keting Res. 39 277-291.

Genz, A. 1992. Numerical computation of multivariate normal
probabilities. . Computational Graphical Statist. 1 141-149.
Genz, A. 1993. Comparison of methods for the computation of mul-

tivariate normal probabilities. Comput. Sci. Statist. 25 400—405.

Gonzalez, R., G. Wu. 1999. On the shape of the probability weight-
ing function. Cognitive Psych. 38 129-166.

Green, P. J. 1995. Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination. Biometrika 82
711-732.

Gupta, S., L. G. Cooper. 1992. The discounting of discounts and pro-
motion thresholds (by consumers). . Consumer Res. 19 401-411.

Hardie, B. G. S, E. J. Johnson, P. S. Fader. 1993. Modeling loss aver-
sion and reference dependence effects on brand choice. Mar-
keting Sci. 12 378-394.

Hastie, T. J., R. J. Tibshirani. 1990. Generalized Additive Models.
Chapman and Hall, London, UK.



Kim, Menzefricke, and Feinberg: Capturing Flexible Heterogeneous Utility Curves: Bayesian Spline Approach

354

Management Science 53(2), pp. 340-354, © 2007 INFORMS

Kalyanam, K., T. S. Shively. 1998. Estimating irregular pricing
effects: A stochastic spline regression approach. J. Marketing
Res. 35 16-29.

Kalyanaram, G., J. D. C. Little. 1989. An empirical analysis of lat-
itude of price acceptance in consumer package goods. J. Con-
sumer Res. 21 408-418.

Kim, J. G., U. Menzefricke, E.- M. Feinberg. 2007. A Bayesian
spline approach to capturing heterogeneous utility curves: The-
ory. Working paper, Ross School of Business, University of
Michigan, Ann Arbor, ML

Lenk, P. J.,, W. S. DeSarbo, P. E. Green, M. R. Young. 1996. Hier-
archical Bayes conjoint analysis: Recovery of partworth het-
erogeneity from reduced experimental designs. Marketing Sci.
15(2) 173-191.

Lindstrom, M. J. 2002. Bayesian estimation of free-knot splines
using reversible jumps. Computational Statist. Data Anal. 41
255-269.

McCulloch, R. E.,, N. G. Polson, P. E. Rossi. 2000. A Bayesian
analysis of the multinomial probit model with fully identified
parameters. |. Econometrics 99(1) 173-193.

Michalek, J. J., E. M. Feinberg, P. Y. Papalambros. 2005. Linking
marketing and engineering product design decisions via ana-
lytical target cascading. J. Product Innovation Management 22(1)
42-62.

Montgomery, A. L. 1997. Creating micro-marketing pricing strate-
gies using supermarket scanner data. Marketing Sci. 16(4)
315-337.

Montgomery, A. L., E. T. Bradlow. 1999. Why analyst overconfi-
dence about the functional form of demand models can lead
to overpricing. Marketing Sci. 18(4) 485-503.

Schumaker, L. L. 1981. Spline Functions: Basic Theory. John Wiley &
Sons, New York.

Shively, T. S., G. M. Allenby, R. Kohn. 2000. A nonparametric
approach to identifying latent relationships in hierarchical
models. Marketing Sci. 19(2) 149-162.

Wales, T. ]. 1977. On the flexibility of flexible functional forms: An
empirical approach. J. Econometrics 5 183-193.

Wegman, E. J., I. W. Wright. 1983. Splines in statistics. J. Amer.
Statist. Assoc. 78(382) 351-365.

Wu, G., R. Gonzalez. 1996. Curvature of the probability weighting
function. Management Sci. 42 1676-1690.



MANAGEMENT SCIENCE Llorms}

po110.1287/mnsc.1060.0616ec ©2007 INFORMS

pp- ecl-ec4
e-companion

ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—"“Capturing Flexible Heterogeneous
Utility Curves: A Bayesian Spline Approach” by
Jin Gyo Kim, Ulrich Menzefricke, and Fred M. Feinberg,
Management Science 2007, 53(2) 340-354.

Online Appendix

This appendix presents the Markov chain Monte Carlo (MCMC) sampler utilized in the main paper.
Details on prior literature, set up of the various spline and benchmark models, descriptions of data
sets, and all empirical details are included in the main paper.

EC.1. Evaluation of the Posterior Distribution with an MCMC Sampler

Given [,,, the MCMC sampler is designed to estimate individual-specific spline functions with varying
knot configuration. Let:

* V=W Yur,), Y=1, -, Y1),

* B=B1 .- By,

* u,=(wy, ..., wy) and u=(uy, ..., uy),

© (@ 0, ) = (W, O Vi "))y andt (@,0,7) = {(ar, 00, 1), - (i, (01, vi)),

o gt — (O 77',(:}’;'9“'7’”)’ denote effects of {v}; ,} for individual /i depending on
qu, 9, v,, and 7, as in the main péper, and

o @0v) — (,.n.iqlrelr')/l), ..., ,n_;jHrgHryH))/.

Then, the full posterior distribution is

p(u, B, mg, X, 2,,9,0,vy) o< py | wp(u| B, Z,, 7@
xp(B g, 2p)p(q, 0, ¥)p(mp)p(Zp)p(X,), (EC1)

where
H ’Th

p(y |l wpu|B, =, 7@ o [TTT(N, (W | xBy + w7, 3 ) (wy, € Ay)),

h=1t=1

and Ay = Ay x -+ x Ay is the sample space of u,. Furthermore,

H M
P(q/ 0/ Y) = 1_[ 1_[ p(')’}(,’i];m, ) | qhml Hhm)p(ehm | %m)P(%m)

h=1m=1

To evaluate (EC1), we use Markov chain Monte Carlo methods, sampling all unknown quantities
in sequence.

EC.1.1. Sampling from p(u, B, pg, 25, 2,19q,0,7v,y)

1. Sample wy, from p(uy, | By, =, mi "™, y) = Ny (u, | x,B; + m "™, X )I(wy, € Ay,) for each
individual # and choice occasion ¢. As | increases, rejection sampling becomes very inefficient. We
therefore sample u,,, under the constraint I(u,, € A;,) by the multivariate slice sampling method (Neal
2003), which allows one to sample multiple quantities simultaneously with only one auxiliary random
variable (see Figure 8 on p. 723 of Neal’s paper). In order to implement the multivariate slice sampler,
it is important to set the width of slices to be sufficiently large. We set the slice width to be 10.

ecl
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2. Sample a correlation matrix ¥, = {0} from p(%, [u, B, w0V = IW, (i, C) by using the slice
sampler for off-diagonal elements in sequence given the constraints o;; =1 and |oy| <1, where i =
m+3, T, and

H T, '

C=C+Y > (u—x,B; — ‘ﬂ';(l?h' o yh)) (W — X, — )
)

1=1t=1
3. Sample B, from p(B, | u;, =, @ %M, Mg, 3g) = N(jig, 2p) for each household %, where ju; =
T (5 X0 X, E (g — ™) and Xp= (3504 20 %, 20 ) )
4. Sample pg from p(mg | B, 25) = N(jg, 2;), a multivariate normal density with pg = Eﬁ(CglmB +
X, YiLiB,) and 3, = (Gl + HXGH) ™ _
5. Sample 35 from p(2g | B, mg) = IW(75, Wy), an inverse Wishart density with 73 =75 + H and
Wy=Wg+ Zf:l By —1p)(Br—mp)-

EC.1.2. Sampling from p(q, 0, v|u, B, pg, %5, %,,y)
For each household and each spline, we have:

(G » Onm) (qn, 01, vi)
p(qhmr Onir Vi | W, By ey, 10, )

X P(uh | Bh/ 2:'u' ﬁ}(':(qh,eh,Yh))p(‘}/}(jﬁnﬂehm | qhm/ ehm) X p(ehm | qhm)p(qhm)'

It is necessary to allow the dimension of (g, 61, Vi) to change across iterations. So, as discussed
previously, we use the reversible jump MCMC method (Green 1995), which is designed to move
around a countable union of subspaces ® = J7, ®; by making random transitions between ®; and ;.
To implement it, we consider four possible transitions: (a) a birth step (addition of a knot), (b) a
death step (deletion of a knot), (c) movement of a knot, and (d) update of y,,, without changes in g,
and 6,,,. Thus, the set of possible moves is w € {U, M, 0,1, 2, ...}, where U means an update of v,
without changes in gy, 6,,,, M means a random movement of a knot, and m =0, 1,2, ... refers to
increasing the number of interior knots from g,,, =m to q, =m+1 or decreasing from g, =m+1 to

qpm = M.
We let the probabilities for these four possible transitions be

1
Sg, = AmMiIn (1, M) for a birth step, (EC2)
" P(th)
-1
T = amin(l, M) for a death step, (EC3)
P(Ghm)
v, = b(1-— Squn — thm) for a move step, and (EC4)
gqhm = 1 - gqhm - thm - Uqhm for an update Step' (EC5)

The positive constant a should be as large as possible subject to s, +7, <0.9 for all g, =0,1, ..., Q,.
Note that this has the practical consequence of bounding the move and update step probabilities
below by 1—2a. It is easy to find the constant a by examining (s, + 7,) over all values of g, < Q,,.
Note that 4 should fall in the interval [0, 0.5]; otherwise, if 2 > 0.5, the sum of the probabilities San and
7,, could be greater than one for some values of g,,,. We take a =0.45, but other values are also valid.
Because ¢, should be in the interval [0, Q,], we use 7y =v, =0 and 55 =v, =0. Note that the ratio
(@ £1)/p(q1m) is not affected by this truncation because p(q;,,,) (g, < Q) = (1/ ZIQ:”() Po(gi,, | Ay)) -
Po(qy,, | A,,). In addition, we let b = 0.5, but other nonnegative values from the interval (0, 1) are also
valid.

Ghm Onm)

EC.1.2.1 Update Step. In the update step, only v, = 'ylim is updated, g, and 0,, being
unchanged. Let the scalar i, = u,; — XiBn — Zf\il,z’;&m fz‘h(vhjt,i)r let @y, = (Wpigms - Upgew), @
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J-dimensional vector, and let W, = (Qq,,, - - -, Wyr, ,,). Furthermore, let the (I, +¢j,,)-dimensional vector
2, collect the coefficients of y,,,, that is,

(vhjtm - ShmO)i—

(vhjtm - ShmO)i

Z _ (,U . —s )Zm
hitm = hjtm hm0/+ s

L
(vhjtm - Shml)#»n

(v . —5s lm
hjtm hmgy, )+

/ . ~ mrs H m
and let z,,, = (Zy4p, - - - Zyji) b @ | x (1, +q,,) matrix. Thus, wy,, = me“/;iq,ﬁ )y €. We then have

- 1
p()’hm | Wy 2"ul 9 eh) = C_p(uhm | Yim s Ell)p(yhm | Gns Hhm)/
hm
with normalizing constant

Ty =~/ —15 %1 / -
eXP{—%[Zt’:l uhtmzuluhtm + (lm + qhm)z_m + ghmGhnaghm]}

T, _ 1/2 4
Q) T2|%, [T2[L, o A by 30 2 2 Zi |

Chm = C(qhml Hhm) = (EC6)

T ’ 1~ T ’ — _ .
where Bim = Ghm{(am/bl71)1lm+q,,m + Ztil thmzuluhfm }r Ghm = {(1/bm)11m+qhm + Ztil thmzulzhtm} 1/ lq 1s a
vector of g ones, and the prior parameters a,, and b,, are defined as in the main paper, that is, the

... . .. . . ~ L0, .
conditional posterior distribution for vy,,, given (u,,,, ., n{f"f e, q,,9,) is

m

Yim ™~ Nl,,,-%—qh,,, (ghml Ghm) (EC7)

When a constraint is imposed on the splines, for example, monotonicity, then v,,, must be sampled
from N, .. (8um, Gum) (Ynm € B), where B denotes the space of v,,, under the imposed constraint.
It is thus necessary to multiply the normalizing constant in (EC6) by a correction factor involving
& Qs Own) = [, 5P Viim | 81mr Gi) @Y 50 that the normalizing constant is

CZm = C*(qhml Ghm) = )C(thz Ghm)

1
d)(qhm/ ohm
In this case, we can use the single variable slice sampler (cf., Neal 2003) to sample v;,,.

EC.1.2.2. Birth, Death, and Move Steps. In the birth, death, and move steps, the transition prob-
abilities in (EC2) to (EC4) yield a proposed new value for g, = g;,, +, where r = —1,0, 1. Given
Jnm, we must then propose a new value for 6,,, 6,,,- To add a new knot or move/delete one of the
knots currently present, we have a set of candidate knots, %y, = {Dj1, - - -, Dy, }, which can be, for
example, a set of prespecified grid points or a subset of {v}; ,} for all j and t. Then, for each iteration,
a newly proposed value of 6, given g, is generated as follows:

1. Birth step: Add a knot uniformly chosen from one of the Q,, — g;,, candidate grid points from %,,,,.

2. Death step: Delete a knot uniformly chosen from the g, knots currently present.

3. Move step: Choose one of the currently present g, knots uniformly and change its location to a
value uniformly chosen from the currently nonpresent knots.

Given the newly proposed knot configuration (gy,,, 0;,), we must finally propose a value for the

spline coefficients for each household and each spline, v, = '?,(1‘1’;””9””’), where we drop the superscript

for expository convenience. Our proposal distribution for these spline coefficients, ), is their con-
ditional posterior distribution, that is, ¥, ~ N 14, (8um, Gun), Where g, and G, are defined just
before (EC7). Note that we have changed the notation from g, and G, in (EC?) to g, and G, to
make explicit that these quantities are computed for the newly proposed knot configuration (g,,,,, 0,,)-



Kim, Menzefricke, and Feinberg: Capturing Flexible Heterogeneous Utility Curves: A Bayesian Spline Approach
ec4 pp- ecl—ec4; suppl. to Management Sci. 53(2) 340-354, ©2007 INFORMS

Given the proposal (i, O, '?,(i",’“’e’””)) generated above, we must now decide whether or not to

accept it. Using the notation in Green (1995), the acceptance probability for each move type is
a =min{(1, (likelihood ratio) x (prior ratio) x (proposal ratio) x Jacobian)}.

The Jacobian is needed for the steps in which the dimension is changing: It does not matter for the

move step, but it does for the birth and death steps. In both these steps, the Jacobian term is one

because the new knot configuration, q; and 0,(:_”’), and the spline coefficients, '?,(1?3;””0”"’) , are generated
independently of the previous values.

Concentrating first on the pair (g, 9,(5,’;’“)) and a birth step, the prior ratio is

Qu
P(%m + 1) 1/(%m+1) _ p(qhm + 1) Ghm +1

P () 1/(%’;) @) Q= G

and the proposal ratio is

P(death | Thm + 1)%,% _ p(qhm) Qm — Qnm

Pirth [ g g2 PG+ D) Gunt1

where we have used the fact that P(death | g, + 1) = amin{1, p(g;,,,)/p(qnn + 1)} and P(birth | g;,,,) =
amin{1, p(gy,, +1)/p(Gs,)}- Combining prior and proposal ratios for the pair (g, 49,(1?1’;"’)), we find the
product to be one. For a death step the ratio is the inverse, that is, one, and for a move step, it is
also one.

Let us now concentrate on the likelihood ratio, and on the prior ratio and proposal ratio contributed
by the spline coefficients. Because the proposal distribution for the spline coefficient vector is its con-
ditional posterior distribution as given in (EC7), the product of likelihood ratio, prior ratio, and pro-
posal ratio is just the corresponding ratio of the normalizing constants in (EC6), ¢(Gim, )/ (G s Om),
where ¢(§j,, 05,,) indicates that the normalizing constant is computed for the newly proposed knot
configuration.

The acceptance probability is thus
C(qhml Ohm) }, (ECS)

a= min{ 1,
C(qhml ehm)
with

T 1/2

- n -1
C(qhm’ ghm) _ Ilm+’7hm + bm Zt:l Z;ﬁmzu Zhfm|
= — -
C(qhm’ Hhm) |Il,,,+qh,,, + bm Zt/:ll Z;q[mzu 1thm‘

12
1 = ﬂi / -1 = -1z
X exp E (qhm - th)b— + glzmchmghm - ghmGhmghm ’

where the term (g, — §;,,,) equals 1,0, and —1 for a death, move, and birth step, respectively.

When there is a constraint on the spline coefficient vector such that v,,, € B, each of the normalizing
constants in (EC8) must be multiplied by its appropriate correction factor involving ¢(e) as discussed
before and we must sample the newly proposed value for the spline coefficient vector, ¥, from this
region. We found rejection sampling to be very inefficient for this purpose, and so used a slice sampler
instead.

References

See references list in the main paper.
Neal, R. M. 2003. Slice sampling (with discussion). Ann. Statist. 31 705-767.



