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Abstract: Scholars who view organizational, social, and technological systems as sets of interdependent 
decisions have increasingly used simulation models from the biological and physical sciences to examine 
system behavior.  These models shed light on an enduring managerial question: how much exploration is 
necessary to discover a good configuration of decisions?  The models suggest that, as interactions across 
decisions intensify and local optima proliferate, broader exploration is required.  The models typically 
assume, however, that the interactions among decisions are distributed randomly.  Contrary to this 
assumption, recent empirical studies of real organizational, social, and technological systems show that 
interactions among decisions are highly patterned.  Patterns such as centralization, small-world 
connections, power-law distributions, hierarchy, and preferential attachment are common.  We embed 
such patterns into an NK simulation model and obtain dramatic results: holding fixed the total number of 
interactions among decisions, a shift in the pattern of interaction can alter the number of local optima by 
more than an order of magnitude.  Thus, broader exploration is far more valuable in the face of some 
interaction patterns than in the face of others.  We develop simple, intuitive rules of thumb that allow a 
decision maker to examine two interaction patterns and determine which requires greater investment in 
broad exploration.
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1. Introduction 

How much should an organization invest in the broad exploration of new possibilities?  This enduring 

question arises in a wide array of contexts, including the management of production processes (Abernathy 

1978), the search for new technologies (Wheelwright and Clark 1992; Fleming 2001), the structuring of 

organizations (Tushman and O’Reilly 1996), the design of products (Baldwin and Clark 2000), and the 

design of individual and organizational learning processes (Ashby 1960; Argyris and Schön 1978; March 

1991).  The question poses a managerial dilemma.  On one hand, managers of an organization must 

embrace the exploration of new possibilities.  Otherwise, the organization fails to innovate.  On the other 

hand, managers must contain exploration because it competes for resources with another crucial 

organizational process, the exploitation of known opportunities (March 1991).  It is widely acknowledged 

that effective organizations strike a healthy balance between exploration and exploitation, even though it 

is organizationally difficult to accomplish both (Ghemawat and Ricart i Costa 1993; Tushman and 

O’Reilly 1996; Benner and Tushman 2003).  But how can one know whether a particular balance is 

healthy?  Under which conditions is it essential to rein in exploration, and when must one unleash it? 

Studies of complex adaptive systems (CASs), set initially in the physical and biological sciences, 

have begun to shed light on this issue.  Many of these studies seek systems that relax the exploration / 

exploitation tradeoff – that are responsive and creative yet stable and orderly – neither frozen nor chaotic 

(e.g., Langton 1990; Kauffman 1993).  Among the CAS frameworks that have made the transition to 

management science, the NK model from theoretical biology (Kauffman and Levin 1987; Kauffman and 

Weinberger 1989; Kauffman 1993) has become a particularly popular platform for studying organizations 

as complex adaptive systems (e.g., Levinthal 1997; McKelvey 1999; Gavetti and Levinthal 2000; Rivkin 

2000; Sorenson 2002; Ethiraj and Levinthal 2004).  The model grants a researcher control over the 

interactions among the elements that make up a system.  Results of the model have shed light on the 

question of optimal exploration: as the degree of interaction among a firm’s choices rises, the poor local 

optima that can disrupt a firm’s search efforts proliferate and it becomes preferable, ceteris paribus, for a 
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firm to undertake more exploration in order to escape those optima (Kauffman 1993; Levinthal 1997; 

Rivkin and Siggelkow 2003). 

By embedding recent empirical results in a simulation model, this paper takes the NK model’s 

insights on optimal exploration an important step further.  Past modeling efforts have looked exclusively 

at how the degree of interaction among a firm’s choices affects appropriate exploration.  Much less 

attention has been placed on the pattern of interaction among these choices.  Indeed, in most NK analyses 

it is assumed that interactions among choices have a random pattern.  This made sense in the biological 

context, where the interactions were among genes and it was “useful to confess our total ignorance and 

admit that, for different genes and those which epistatiscally affect them, essentially arbitrary interactions 

are possible” (Kauffman 1993: 41).  In the context of organizational, technical, and social systems, 

however, recent empirical work has shown that interactions are often very patterned.  Our paper exploits 

this newly-gained knowledge.  Specifically, it examines how commonly observed patterns of interactions 

affect the proliferation of local optima and, accordingly, the appropriate amount of exploration.  We find 

that systems of choices with the same number of total interactions but different patterns of interactions 

can display very different numbers of local peaks.  Moreover, we identify easily observable 

characteristics of interaction patterns, beyond the overall degree of interaction, that allow one in many 

cases to look at two patterns of interaction and tell immediately which one generates more local optima 

and requires agents to explore more broadly for effective sets of choices.  This can enable managers to 

convert their knowledge of the interactions among the choices they face into concrete guidance for 

optimal exploration. 

For insight into real patterns of interactions, we rely on empirical work conducted in diverse domains.  

Detailed work at the level of individual firms (e.g., Porter 1996; Siggelkow 2002), and at the level of 

individual product systems (e.g., Eppinger, et al. 1994; Ulrich and Eppinger 1999; Baldwin and Clark 

2000), has yielded a number of explicit maps that show the interdependencies among the various system 

elements, allowing us to start seeing patterns.  Likewise, recent network analyses, such as the work on 

small-world networks (Watts and Strogatz 1998), has generated a great deal of research describing the 
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patterns of real-world networks of interactions.  As most of these studies show, networks tend not to be 

random but are highly patterned.1  Specifically, recent empirical work led us to study ten different 

interaction patterns: a small-world interaction structure (Watts and Strogatz 1998), which includes as 

extreme cases the random structure and the local structure; the preferential attachment and the power-law 

structures, two structures currently under intense investigation (e.g., Barabási 2002); and the centralized, 

hierarchical, block-diagonal, diagonal, and dependent structures, which capture various patterns 

observed in product design and studies of firms. 

We emphasize the implications of interaction patterns for optimal exploration.  Prior research has 

shown, however, that interaction patterns affect other organizational phenomena as well, including the 

ability of a firm to adapt to environmental change, to find a valuable configuration of choices, to imitate 

the effective configurations of other firms, and to replicate one’s own effective configurations (Levinthal 

1997; Rivkin 2000; 2001).  We speculate below on how interaction patterns may influence these 

phenomena.  Moreover, firms might be able to affect interaction patterns through system design decisions 

(Levinthal and Warglien 1999).  Our findings suggest how firms might design systems to be more readily 

searchable. 

The paper is structured as follows:  Section 2 describes in detail the ten interaction structures we 

analyze.  Section 3 outlines how we create decision problems with these different underlying interaction 

structures, and it describes four types of organizations we employ to show the effects of interaction 

patterns on organizational search outcomes.  The results in Section 4 characterize the local optima that 

arise from various interaction structures.  Section 5 explains in an intuitive way the link between different 

interaction patterns and the number of local optima they create.  The different numbers of local optima, in 

turn, affect the benefit of broad organizational exploration, as Section 6 shows.  Section 7 concludes. 

                                                 
1 It is interesting to note that similar to the NK framework, network and graph theory, building on the seminal work 
by Erdős and Rényi (1959), traditionally relied on a randomness assumption as well.  As Barabási (2002: 23) points 
out, “The random network theory of Erdős and Rényi has dominated scientific thinking about networks since its 
introduction in 1959.  It created several paradigms that are consciously or unconsciously imprinted on the minds of 
everyone who deals with networks.  It equated complexity with randomness.  If a network was too complex to be 
captured in simple terms, it urged us to describe it as random.” 
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2. Types of influence matrices 

While the model we study is general enough to encompass a wide range of organizational, technical, 

and social systems, for expositional purpose we focus on firms as our system of interest.  Following a 

long tradition in the organization literature (e.g., Learned, et al. 1961) that has gained energy recently 

from empirical, prescriptive, and computational studies (e.g., Siggelkow 2002; Porter 1996; Levinthal 

1997), we conceptualize firms as systems of interdependent choices.  Firms must make numerous 

decisions.  Each firm must choose, for instance, how much to train its sales force, whether to field a broad 

product line or a narrow one, whether to pursue basic R&D or not, etc.  A number of these decisions 

interact with each other.  For instance, the value of having a well-trained sales force might increase as a 

firm broadens its product line. 

In the context of modeling search behavior of firms, the NK framework assumes that a firm faces N 

decisions, each of which can be configured in a number of different ways (two, in our simulations).  The 

contribution of an individual decision to a firm’s overall payoff depends on the resolution of that decision 

and possibly other decisions.  It is common to think of the space of decisions and the payoffs from 

combinations of choices as defining a “performance landscape”: each of the N decisions corresponds to a 

“horizontal” dimension while the payoff is represented on the “vertical” axis. 

An influence matrix records which decisions affect each decision.  If a firm makes N decisions, then 

an influence matrix is an N*N matrix whose entry (i, j) is set to an “x” if the resolution of column 

decision j affects the value of row decision i.  Since each decision affects itself, all influence matrices 

have x’s along their diagonal.  Influence matrices can differ, however, in the total number of off-diagonal 

x’s, i.e., in the number of interactions among the decisions, and in the patterns of these interactions.  In 

the original NK set-up (Kauffman 1993), it was assumed that each decision is affected by exactly K other 

decisions, i.e., each row contained K off-diagonal x’s.  Thus, in total, an NK influence matrix contained 

N*(K+1) interactions.  While a number of studies have investigated various consequences that arise when 

K increases in a random influence matrix (e.g., Rivkin 2000), we are interested in the effect of different 

patterns of interactions holding K fixed.  Hence, to allow for comparisons of different types of interaction 
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structures, we keep the total number of interactions fixed, at N*(K+1), but alter the pattern of interactions 

among the decisions.   

Even for relatively small values of N and K, many possible interaction structures exist.  In particular, 

N*K (off-diagonal) interactions can be placed in N2 – N locations (the N diagonal elements are always 

filled), creating 
)!K*NNN()!K*N(

)!NN(
2

2

−−
−  possibilities.  For N = 12 and K = 2, for instance, this yields 

1.36*1026 possible influence matrices.  For all our analyses, the labeling of individual decisions does not 

matter (i.e., columns and corresponding rows can be re-arranged).2  This reduces the number of patterns 

by a factor of N!.  Yet, for N = 12 and K = 2, this still leaves 2.84*1017 different patterns.  Given this vast 

space of possibilities, it is helpful to consider different types of interaction patterns.  In particular, we 

focus on ten types that were culled from current work on networks, from studies of firms as systems of 

interdependent activities, and from product design analyses.  

Influence matrices arise frequently in these contexts even though the term “influence matrix” might 

not have been used there.  The representation of a network as an influence matrix is straightforward 

(Wasserman and Faust 1994).  Each row corresponds to a node of a network, while an entry in row i, 

column j, would denote that node j has a link to (and affects) node i.  The work on firms as systems of 

interdependent activities generally has represented firms as consisting of a network of activities that are 

linked by interactions among them (Porter 1996; Siggelkow 2002).  Again, these networks can easily be 

transformed into influence matrices.  Most directly, the product design literature has developed the tool of 

a “design structure matrix” (DSM) (Steward 1981; Eppinger, et al. 1994; Baldwin and Clark 2000) which 

corresponds to an influence matrix by our definition.  A DSM contains all design decisions (e.g., 

concerning particular design parameters) that have to be resolved.  The DSM has an entry in row i, 

column j, if the design choice of element j has an impact on the optimal design choice of element i.  For 

instance, the choice of engine power (element j) might have an impact on the optimal design of the brake 

                                                 
2 For the analysis it would not matter, for instance, whether we label the decision concerning training of the sales 
force as decision 1 or as decision 2.  As long as we keep track of which decisions interact with one another, the 
labels of the decisions can be interchanged. 
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system (element i).  Table 1 examines all activity system maps that have been published in the literature 

(Porter 1996; Siggelkow 2001; 2002) and all DSMs that were published on the DSM home page 

(www.dsmweb.org), which is hosted by Steven Eppinger, Daniel Whitney and Ali Yassine.  For the firm 

activity systems, N ranges from 18 to 48 and K from 2.2 to 3.5.  For the DSMs, N varies from 13 to 111 

with K ranging from 1.4 to 6.8. 

The ten different types of influence matrices we explore can be divided into two groups.  For the first 

five types, each decision is affected by exactly K other decisions.  That is, each row of the influence 

matrix contains exactly K off-diagonal entries.  The subsequent five types allow for more heterogeneity 

among the decisions.  For instance, some decisions are allowed to be affected by many other decisions, 

while other decisions might only depend on themselves. 

Random.   In a random influence matrix, exactly K x’s are placed at randomly chosen off-diagonal 

positions in each row.  For one example with N = 12 and K = 2, see Figure 1A.  This specification is one 

of the two original specifications of the NK model (Kauffman 1993), and is the set-up most commonly 

used in the organization literature (e.g., Westhoff, Yarbrough, and Yarbrough 1996; Rivkin 2000).   

Local.  In a local influence matrix, the other original specification, each decision i is assumed to be 

influenced by its K/2 neighbors on either side of it (Figure 1B).  For instance, if K = 2, decision 3 is 

affected by decisions 2 and 4.  Decisions are assumed to lie on a “ring,” i.e., decision 1 would be affected 

by decision 2 and decision N.  This influence structure is related to Thompson’s (1967) notion of 

“sequential interdependence” and has been employed previously in the organization literature (Levinthal 

1997; Gavetti and Levinthal 2000).  Moreover, it forms the starting point of the small-world influence 

structure. 

Small-world.  Though not new, the notion of small-world networks has attracted renewed attention 

due to recent theoretical advances (Milgram 1967; Watts and Strogatz 1998).  A core feature of small-

world networks is that most interactions are local, yet a few interactions exist between elements of the 

system that are distant from each other.  Small-world interaction patterns have been documented in a 

variety of settings, including ownership patterns among German firms (Kogut and Walker 2001), board of 
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directors’ interlocks (Davis, Yoo, and Baker 2003), memberships in underwriting syndicates (Baum, 

Shipilov, and Rowley 2003), firm-alliance networks (Schilling and Phelps 2004), career networks of 

artists (Uzzi, Spiro, and Delis 2002), and collaboration networks of scientists (Newman 2001). 

Following the algorithm by Watts and Strogatz (1998), we create small-world influence matrices in 

two steps.  First, a matrix is initialized with a local influence structure.  Second, each off-diagonal x is 

exchanged with a randomly chosen location in the same row with probability p.  For one example, see 

Figure 1C.  One should note that p = 0 yields an influence matrix with a local structure, while p = 1 

creates a random influence structure. 

Block-diagonal.  Interactions can be local in a different sense as well.  In some systems, decisions can 

be grouped such that decisions within each group all affect each other, while no interactions across groups 

exist.  This structure relates back to the notion of decomposability (Simon 1962) and is the key 

characteristic of modularity (Eisenhardt and Brown 1999; Baldwin and Clark 2000; Schilling 2000).  

Block-diagonal structures have been used in a number NK-models (Marengo, et al. 2000; Rivkin and 

Siggelkow 2003; Siggelkow and Levinthal 2003), yet their characteristics have not been compared to 

other structures.  For an example of a symmetric block-diagonal influence matrix, see Figure 1D. 

Preferential attachment.  In all influence matrices discussed up to this point, each decision is affected 

by precisely K other decisions, while each decision itself affects K other decisions on average.  In some 

systems, however, certain decisions exist that are more central than others, in the sense that they affect 

many other decisions.  For instance, in the analysis of the mutual fund company Vanguard, Siggelkow 

(2002) reports that certain of Vanguard’s choices were much more central than other choices.  Similarly, 

DSMs often show that certain design elements are much more central than others.  For example, Figure 2 

displays the DSM of an automobile brake system as reported by Black, Fine, and Sachs (1990).  In this 

DSM, element 4 (corresponding to “piston front size”) affects seven out of the other 12 elements of the 

system, while element 11 (“booster – maximum stroke”) influences only itself.  Such imbalances in the 

influence exerted by various elements is sometimes reflected in a distinction between core and peripheral 

elements (e.g., Hannan and Freeman 1984). 
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One method of creating networks that contain elements that are more central than others has been 

provided by Barabási and Albert (1999).  Their algorithm captures a “rich-get-richer” dynamic, by which 

nodes that already have many interactions are more likely to add a further interaction than nodes that have 

few interactions.  Thus, interactions are preferentially attached to nodes that already affect many other 

nodes.  We create preferential attachment influence matrices in four steps.  First, we initialize a matrix 

with x’s along the main diagonal.  Second, we pick one row randomly with equal probability.  Call this 

row i.  Third, we pick one column randomly with a probability that is proportional to the number of x’s 

that are already in that column.  In particular, if Dj is the number of x’s in column j and S is the total 

number of x’s in the matrix at the current point, then the probability that column j is picked is Dj/S.  

Fourth, if column j was picked, we replace the entry in row i, column j with an x (if there is already a x in 

(i, j) the x is not changed) and S is updated.  We repeat steps 2 - 4 until S = N*(K+1).  For one resulting 

example, see Figure 1E. 

Power law.  A different implementation of the notion that some elements are more central than others 

assumes that the degree distribution of nodes follows a power law.  (Here, the degree of a node equals the 

number of other nodes it affects.)  A number of networks have been shown to have degree distributions 

that follow a power law (Albert, Jeong, and Barabási 1999; Strogatz 2001; Albert and Barabási 2002).3  In 

the context of firm activity systems, the degree distribution in the influence matrix that Siggelkow (2002) 

reports for the mutual fund provider Vanguard closely follows a power law. 

We create a power law influence matrix in two steps.  First, we initialize the matrix with x’s along the 

main diagonal.  Second, in each column, M off-diagonal x’s are added, where M lies between 0 and        

N – 1, such that Prob(M) = (M+1)-γ.  Thus, plotting the number of decisions (M) that a given decision 

affects against the probability of this occurrence yields a straight line on a log-log scale: (ln(Prob(M)) =   

–γ*ln(M+1)).  The parameter γ is chosen such that on average the total number of x’s in each influence 

                                                 
3 The previously described preferential attachment algorithm can yield a power law distribution if the matrix is 
allowed to grow, i.e., if nodes are added to the system every time the algorithm cycles through steps 2 - 4 (Barabási 
and Albert 1999).  Given the fixed value of N and differing values of K, this approach is not suitable here.  As a 
result, we create a power law distribution directly. 
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matrix equals to N*(K+1).  For instance, for N = 12, setting γ to 1.37 produces the same total number of 

interactions on average as a random influence matrix with K = 2.  For an example of a resulting influence 

matrix, see Figure 1F. 

Centralized.  The centralized influence matrix takes the notion of highly influential decisions to the 

extreme.  It assumes that some decisions affect all other decisions, while other decisions only affect 

themselves.  (See, e.g., Barabási (2002: 103) for a mechanism that can lead to a “winner-take-all” 

interaction structure and Ghemawat and Levinthal (2000) for an application of this influence matrix to 

organizational search.)  Starting with x’s along the main diagonal, this matrix is created by adding x’s into 

the first column, then into the second column, etc., until the matrix contains a total of N*(K+1) 

interactions.  See Figure 1G. 

Hierarchical.  The hierarchical influence matrix assumes decisions are ordered in some fashion, with 

high-ranked decisions influencing all the decisions below them but not the decisions above them 

(Ghemawat and Levinthal 2000).  Starting with x’s along the main diagonal, we create a hierarchical 

influence matrix by adding x’s below the diagonal, starting with the first column, continuing with the 

second column, etc., until the matrix contains a total of N*(K+1) interactions.  See Figure 1H. 

Diagonal.  The diagonal influence matrix reflects a situation (as in the hierarchical structure) in which 

decisions can be ordered such that high-ranked decisions never affect low-ranked decisions, yet decision 

1 is not necessarily the most central decision (as in the hierarchical structure).  Starting with x’s along the 

main diagonal, this matrix is created by randomly adding x’s below the diagonal until the matrix contains 

a total of N*(K+1) interactions.  For an example, see Figure 1I.  A number of DSMs have diagonal, or 

close to diagonal, influence matrices.  See for instance, Figure 3, which shows the DSM for the major 

tasks of a cartridge development project at Kodak as reported by Ulrich and Eppinger (1999). 

Dependent.  The dependent influence matrix captures an instance in which a handful of decisions are 

affected by virtually every other decision the firm makes, yet those decisions exert little influence 

themselves.  We construct such a matrix by transposing the centralized influence matrix.  See Figure 1J. 
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3. Creation of performance landscapes and firms that search on them 

Firms are assumed to make N binary decisions about how to configure their activities.  Hence, an N-

digit string of zeroes and ones summarizes all the decisions a firm makes that affect its performance.  We 

represent this “choice configuration” as d = d1d2 … dN with each di either 0 or 1.   

Once a particular influence matrix is chosen, the computer generates a performance landscape based 

on this influence matrix.  Specifically, it assigns a payoff to each of the 2N possible configurations of 

choices.  The contribution Ci of each decision to overall firm value is affected by other decisions: Ci = 

Ci(di; other dj’s), where the identity of the “j’s” (i.e., those decisions that influence the contribution of 

decision i) is specified by the influence matrix.  For each possible realization of di and the relevant other 

dj’s, a contribution is drawn at random from a uniform U[0, 1] distribution.  The overall payoff associated 

with a configuration is the average over the N contributions: 

P(d) = ( )∑
=

N

1i
jii s'dother;dC / N 

In Section 4, we will describe a number of properties of different performance landscapes.  In this 

discussion, a key construct is the concept of a “local peak.”  A local peak is a configuration d such that no 

configuration d' exists that differs from d in only one decision and has higher performance than d.   

In Section 6, we will examine how patterns of interactions affect the value of greater exploration.  To 

do so, we will analyze the performance of two types of firms:   

a) The low-exploration firm starts at a random choice configuration d, evaluates in each period a 

randomly chosen alternative d' that differs from d in terms of one decision, and adopts d' if it yields 

higher performance.  The firm continues to do so each period until it can find no superior alternatives.  

At that point, it rests atop a local peak. 

b) The high-exploration firm allocates some of its search efforts to the consideration of more distant 

alternatives.  Specifically, it considers each period an alternative d' that differs from d in terms of one 

or two decisions.  For instance, in an N = 4 simulation, a high-exploration firm at 0000 might 

evaluate the alternative 0110. 
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Section 6 also illustrates the impact of interaction patterns on the relative performance of firms that 

differ in their organizational designs.  This involves two other types of firms: 

a) In the decentralized firm, decisions are split between two managers, A and B.  Manager A is 

responsible for the first N/2 decisions, while manager B is responsible for the remaining N/2 

decisions.  In each period, each manager evaluates local alternatives for her “department.”  

Continuing with the N = 4 example, in assessing any alternative d, manager A would consider PA(d) 

= C1(d) + C2(d), while manager B would consider PB(d) = C3(d) + C4(d).  In evaluating alternatives, 

each manager assumes that choices in the other department will not change.  After evaluating 

alternatives, each manager implements the alternative that she finds best (or maintains the status quo 

if no evaluated alternative has higher performance). 

b) In the hierarchical firm, decisions are again split up and department managers assess alternatives as 

in the decentralized firm.  In this firm, however, each department manager is required to send her 

most preferred alternative to a CEO.  The CEO, in turn, evaluates all possible combinations of 

departmental proposals and implements the combination that is best for the firm.  For instance, if the 

status quo is 0000, and Manager A proposes 10 for decisions 1 and 2 and Manager B proposes 01 for 

decisions 3 and 4, then the CEO evaluates 0000, 1000, 0001, and 1001 and picks the configuration 

that has the highest value of P(·).  This choice configuration would then be the starting point for 

search for both department managers in the next period. 

 
4. Landscape characterization 

We use each of the ten different influence matrices to generate performance landscapes and determine 

a number of topological characteristics of the resulting landscapes.  For all simulations, we consider the 

case of N = 12.  For each set of landscapes with different interaction patterns, we hold the total number of 

interactions constant.  In particular, we consider influence matrices with 24, 36, 48, 60, 72, and 84 
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interactions, corresponding to values of K in the traditional random set-up of 1 through 6.4  

One of the key characteristics of a landscape is the number of local peaks it contains.  Prior work on 

the random NK model has documented that increases in K lead to an increase in the number of local 

peaks (Kauffman 1993).  The organizational implications of this feature have been discussed by Levinthal 

(1997), Rivkin (2000), and others.  In contrast, this study is concerned with the number of local peaks 

given a fixed value of K, i.e., holding the total number of interactions constant, that are to be found in 

landscapes with different underlying patterns of interactions.  

Table 2 reports the number of local peaks for the random, the local, and the small-world matrices.  

Recall that the small-world set-up involves the parameter, p, the probability of non-local interactions, and 

it includes as special cases the local influence matrix (p = 0) and the random influence matrix (p = 1).  

Two patterns in Table 2 are noteworthy.  First, as the interaction structure becomes increasingly random 

(i.e., as p increases), the number of local peaks declines.  The change in number of local peaks is, 

however, rather modest – a decrease of 11-24% as one moves from local to random influence. 

Second, the decline in the number of local peaks is fairly linear with respect to p.  The correlation 

between the number of peaks and p ranges from -0.72 to -0.93 for different values of K.  This near-

linearity stands in stark contrast to the results of Watts and Strogatz (1998), who identify a number of 

highly non-linear relationships in small-world networks, e.g., between the clustering coefficient and p, 

and between the characteristic path length and p.  Thus, while certain aspects of small-world networks 

respond non-linearly to p, the number of local peaks in performance landscapes based on small-world 

influence matrices behaves rather smoothly as p is changed.  Since the landscape features we study 

(including ones discussed below) behave linearly in p, we will focus below on the extreme cases, the local 

and random influence matrices, and not on matrices with intermediate values of p. 

The first panel of Table 3 contains the number of local peaks for the other seven influence matrices.  

For reference’s sake, we again include the results from the local and random matrices.  The table shows 

                                                 
4 Note, for K > 5 (given N =12), it is not possible to construct diagonal, hierarchical, or power law influence 
matrices.  As a result, since we are interested in comparisons across influence matrices, we do not investigate values 
larger than K = 6.  
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that landscapes based on the same number of total interactions but different interaction patterns can 

contain dramatically different numbers of local peaks.  For instance, on K = 2 landscapes, the number of 

local peaks ranges from 3.4 for landscapes based on centralized influence matrices to 129.0 for 

landscapes based on dependent influence matrices.  Similarly, for K = 5, the range is from 18.8 

(centralized) to 242.0 (dependent).5  Note that the high and low ends of these ranges differ markedly from 

the number of local peaks derived from the frequently-used random influence matrix. 

One immediate consequence of the different number of local peaks is that firms are much more likely 

to find the global peak in landscapes with centralized interaction patterns than in landscapes that have 

dependent interaction patterns.  Placing one low-exploration firm on every point of the landscape and 

letting them engage in incremental search until they have reached a local peak, we report in the second 

panel of Table 3 the fraction of firms that reach the global peak.  In general, a pronounced negative 

relationship exists between the number of local peaks and the fraction of firms that reach the global peak.  

For instance, in the K = 2 landscapes, 56.4% of firms reach the global peak on centralized landscapes, 

while only 3.3% reach the global peak on dependent landscapes.  

An additional feature of interest concerns the clustering of local peaks.  Are local peaks clustered 

around the global peak or are they spread out?  As previous studies have argued (Kauffman 1993; Rivkin 

2000), the answer to this question is interesting because it captures the degree to which knowledge of one 

good combination of choices conveys information about the whereabouts of other good combinations.  In 

the bottom panel of Table 3, we report the fraction of local peaks that differ from the global peak along 

four or fewer decisions.  For K = 2 landscapes, we detect very different degrees of clustering of local 

peaks.  Block-diagonal landscapes appear to the be the most clustered and centralized landscapes the most 

dispersed.  For K = 4 landscapes, the differences remain but are much smaller. 

We conclude our analysis of the features of performance landscapes by examining two influence 

matrices drawn from the literature on DSMs.  Figures 2 and 3 replicate the DSMs of an automobile brake 

                                                 
5 As a benchmark, note that a fully interdependent influence matrix, with K = 11, has 315.1 local peaks on average. 
 



  14 
 

 

system and a cartridge design.  Using each of these influence matrices, we create 50 performance 

landscapes and compute the number of local peaks that arise on average.  The brake system is composed 

of N = 13 elements, while the cartridge project is composed of N = 14 elements.  One can measure K for 

each matrix by counting the number of off-diagonal interactions and dividing by N; a random interaction 

matrix with this level of K would have the same number of total interactions.  This yields K = 3.8 and K = 

2.5 for the two DSMs, respectively.  For the brake system, we find that 61.2 local peaks arise on average.  

This is significantly higher than the 53.0 local peaks in random landscapes with K = 4 (and N = 13).  For 

the cartridge system, we find 57.6 local peaks on average, which compares to 53.3 local peaks found on 

random landscapes with K = 3 (and N = 14).  Thus, in each case, the actual performance landscape 

appears to be more rugged than the random benchmark. 

 
5. Intuition 

Even if the total number of interactions among decisions is held constant, performance landscapes can 

differ markedly in the number of local peaks they contain.  To understand what drives these differences, 

consider the two influence matrices that produce the fewest and the most peaks: the centralized and the 

dependent matrices, respectively.  In particular, take the matrices shown in Figures 1G and 1J, for which 

N = 12 and the total number of interactions is the same as in a random matrix with K = 2.  For each of 

these two, we describe the shapes of the resulting landscapes as well as the underlying intuition for the 

number of local peaks that arise. 

The centralized matrix is distinguished by the large number of columns that contain only one x.  

These columns represent decisions that do not affect the contributions of other choices.  The presence of 

such “uninfluential” decisions creates large smooth subspaces on each performance landscape – gently 

sloped plateaus – that limit the number of local peaks (for a related notion of neutral networks, see Lobo, 

Miller, and Fontana (2004)).  In Figure 1G, for instance, suppose that decisions 1, 2, and 3 have been set.  

The contribution of each remaining decision then depends only on the resolution of that decision itself.  

The best configuration of the remaining choices conditional on d1, d2, and d3 is easy to find: simply set d4 
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to 0 or 1, whichever produces higher performance, and then do the same for d5, d6, …, d12.  Because 

decisions 4-12 are uninfluential, the alteration of each does not affect the contributions of the other 

decisions, and this simple procedure produces the greatest possible performance conditional on decisions 

1-3.  Thus, for each possible configuration of {d1 d2 d3}, there is a plateau that rises smoothly to a 

maximum, and the total number of local peaks can be no greater than eight, the number of different 

configurations of {d1 d2 d3}.  In fact, the number may be smaller than eight if the maximum point on any 

plateau is below an adjacent point on another plateau.  The actual number of local peaks, on average, is 

3.4 (Table 3). 

In more intuitive terms: the presence of uninfluential decisions reduces the number of choices that 

threaten to confound the decision maker and face her with difficult tradeoffs.  In the matrix in Figure 1G, 

for instance, once decisions 1, 2, and 3 have been made, the remaining choices are “obvious.”  The 

number of potentially conflicting constraints plunges, and this simplifies matters dramatically.  As the 

effective dimensionality of the problem falls, broad exploration for solutions becomes less valuable (as 

we demonstrate directly in the next Section). 

In contrast to the centralized matrix, the dependent matrix is distinguished by the large number of 

rows that contain only one x and the small number of rows that contain many x’s.  In matrix 1J, for 

instance, each of decisions 1-9 makes a contribution to performance that is not influenced by other 

decisions, while decisions 10-12 are sensitive to many other choices.  The “uninfluenced” decisions 1-9 

create a distinctive topology: the performance contribution from these choices alone form a smooth, 

single-peaked surface, as would arise from a N = 9, K = 0 matrix.  Consider two choice configurations 

that differ only in terms of one of these nine decisions.  The performance of these adjacent points can 

differ from one another by no more than 1/N, the maximum performance contribution of the decision that 

distinguishes those configurations.  Accordingly, decisions 1-9 form a smooth underlying surface.  Added 

onto that surface, to form the complete performance landscape, are the contributions of decisions 10-12.  

These contributions are very sensitive to many other choices: indeed, they change from one randomly 

drawn contribution to another whenever any decision is altered.  A change in a single decision can alter 
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the total contributions of decisions 10-12 by as much as 3/N.  Naturally, the addition of relatively large 

random increments to a smooth underlying surface creates a landscape with many, many local peaks, akin 

to the dimpled surface of a golf ball.6 

More intuitively, the concentration of many decisions’ influences onto a handful of decisions creates 

the potential for many conflicting constraints and lots of internally consistent configurations of choices.  

From each of these consistent configurations, a change in one decision leads to lower performance, but 

changes in two or more decisions might cause performance to improve again.  This is especially likely 

when many decisions are uninfluenced, causing all configurations to have a similar underlying level of 

performance and permitting small differences to create numerous local optima.  As we show below, this 

increases the need for broad exploration, in order to escape poor local optima and find a good one. 

The intuition for the centralized and dependent matrices lead us to a hypothesis: for a given number 

of total interactions in an influence matrix, the number of local peaks declines with the number of 

uninfluential decisions (i.e., those with one x per column) and rises with the number of uninfluenced 

decisions (i.e., those with one x per row).  To examine this hypothesis further, we focus on K = 3, 

generate 50 influence matrices of each type shown in Table 3, count the number of uninfluential and 

uninfluenced decisions in each matrix, generate a performance landscape with each, and count the number 

of local peaks on each.  This produces a sample of 450 landscapes (50 landscapes per type x 9 types).  We 

then use this sample to regress the number of local peaks on the number of uninfluential decisions and the 

number of uninfluenced decisions, and we obtain: 

 
Number of local peaks = 27.4 – 4.0 x number of uninfluential decisions + 19.8 x number of uninfluenced decisions 
                                                   (t-stat = -4.9)                                               (t-stat = 14.9) 
 

                                                 
6 In contrast, if the underlying surface is already somewhat rugged, the perturbations caused by decisions that are 
affected by many other decisions create fewer additional local peaks. The following analysis confirms this intuition: 
An N = 12, K = 0 landscape is very smooth, containing only one peak.  Its influence matrix contains x’s only on the 
diagonal.  If we fill one row of this influence matrix with x’s, i.e., make one decision’s contribution dependent on all 
other decisions, the number of local peaks increases sharply to 58.  Now start with an influence matrix in which 
decision 1 is affected by decision 2, decision 2 is affected by decision 3, etc.  This influence pattern, which contains 
no uninfluenced decisions, leads to a performance landscape with 9 local peaks. Filling one row of this influence 
matrix with x’s increases the number of local peaks only to 39. 
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The very large t-statistics confirm the power of these two variables to predict the number of local peaks.  

Indeed, the two variables explain 89.3% of the variance in the number of local peaks. 

This suggests that one can inspect two influence matrices, count the number of uninfluential and 

uninfluenced decisions, and predict with accuracy which is likely to produce more local peaks and, 

accordingly, which will probably require more exploration.  We return to the power and the limits of this 

hypothesis in the concluding section. 

 
6. Performance consequences 

In prior sections, we have asserted that the proliferation of local peaks increases the value of, and 

need for, broad exploration.  Other researchers have shown this to be true when the proliferation comes 

from an increase in K (Kauffman 1993; Rivkin and Siggelkow 2003).  Here, we illustrate that interaction 

patterns that produce more local peaks, even if K is fixed, also call for broader exploration.  To do so, we 

conduct the following simulation: On each performance landscape we place a low-exploration firm, able 

to evaluate only the nearest alternatives to the status quo, and a high-exploration firm, able to evaluate 

alternatives that differ from the status quo in up to two decisions.  Both firms are given the same, 

randomly chosen starting point and are allowed to search for better configurations for 300 periods.  By 

then, both firms have exhausted opportunities for improvement.  We calculate the performance of each 

firm relative to the global peak of the landscape, record the performance difference between the two 

firms, and then generate a new performance landscape with the same underlying influence matrix.  For 

each influence matrix, we repeat this exercise 1,000 times.  The average performance difference captures 

the value of broader exploration in the face of each type of influence matrix. 

Those differences, reported in Table 4, reveal three striking patterns concerning the value of broader 

exploration.  First, as one would expect in a set-up where exploration is made costless, high-exploration 

firms have significantly better performance than low-exploration firms for all levels of K and for all types 

of influence matrices.  Second, within each type of influence matrix (i.e., for each column of the table), 
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higher levels of K make broad exploration more valuable – a finding in line with the prior research 

mentioned above. 

Third and crucially, the value of broad exploration varies significantly across types of influence 

matrices even if the total number of interactions is held constant (i.e., for each row of the table).  

Moreover, the within-row differences correspond closely to differences in the number of local peaks.  As 

the number of local peaks increases, the value of broad exploration increases even if K is fixed.7  For K = 

2, for instance, the centralized matrix produces only 3.4 local peaks on average and the value of broader 

exploration is merely 0.023, while the dependent matrix generates many more local peaks, 129.0, and the 

value of broader exploration is statistically significantly higher at 0.068.  Indeed, the number of local 

peaks appears to do a better job than K at predicting the value of broad exploration.  Casual inspection of 

Table 4 and the top panel of Table 3 supports this notion.  It is easy to find pairs of landscapes that have 

approximately the same number of local peaks and lead to the same benefit of broader search despite 

differences in K.  Consider, for instance, the random matrix with K = 2 and the centralized matrix with K 

= 4; the power-law matrix with K = 4 and the centralized matrix with K = 6; and the diagonal matrix with 

K = 4 and the preferential attachment matrix with K = 6.  More rigorously, an analysis of the value of 

broad exploration in Table 4, the number of local peaks in Table 3, and K reveals that (a) the number of 

local peaks is a strong and robust predictor of the value of broad exploration, with a correlation 

coefficient of 0.827, and (b) the number of local peaks explains more of the variance in the value of broad 

exploration than does K alone.  Overall, the results lend strong support to the notion that the marginal 

value of broader exploration is greater on landscapes with more local peaks. 

Prior research efforts – both empirical classics like Burns and Stalker (1961) and kindred simulations 

like Rivkin and Siggelkow (2003) – have shown that organizational designs differ in how much 

exploration they encourage.  That finding, coupled with this paper’s argument about influence matrices 

and the value of exploration, suggests a speculation: a change in influence matrix may call for a change in 

                                                 
7 The only exception to this relationship is the diagonal pattern, for which the benefit of broader search is somewhat 
lower than one would expect given its number of local peaks. 
 



  19 
 

 

organizational design, even holding the total number of interactions constant.  We support this speculation 

with an example.  Specifically, we place one decentralized and one hierarchical firm on a random starting 

point on each landscape.  In each firm, managers evaluate two alternatives per period.  In the 

decentralized firm, each division manager implements the alternative she finds best for her department; in 

the hierarchical firm, each division manager sends her most preferred alternative to the CEO who then 

evaluates all possible combinations of proposals and implements the best combination she finds.  We 

measure the performance of firms at the end of period 300 and, in Table 5, report the average 

performance differences from 1,000 landscapes of each type.  A positive difference denotes that the 

decentralized firm outperforms the hierarchical firm; a negative difference implies that the hierarchical 

firm has the higher performance. 

The column labeled “random” replicates the finding of Rivkin and Siggelkow (2003), which used 

random influence matrices.  For low levels of K, the hierarchical firm significantly outperforms the 

decentralized firm, while for high levels of K, the decentralized firm significantly outperforms the 

hierarchical firm.  Similar trends in the performance differences arise in all columns; as K increases, the 

benefit of the decentralized structure increases.  These trends reflect the impact of organizational design 

on exploration: the autonomy of departmental managers in the decentralized firm permits broad 

exploration, while in a hierarchical firm, the oversight of a CEO – who refuses to ratify moves that reduce 

performance even temporarily – confines exploration.  As K increases and local peaks proliferate, broad 

exploration becomes more valuable on the margin, and the benefit of the widely-exploring decentralized 

design increases. 

The interesting new finding is again in the rows.  For K = 2, for instance, the hierarchical structure 

leads to significantly higher performance than the decentralized structure when the underlying interaction 

structure is random (difference = -0.0070), but the performance ranking between these two firms reverses 

when the underlying interaction structure is dependent (difference = +0.0321).  This result is consistent 

with the prior intuition: for the same level of K, landscapes with dependent interaction structures have 

many more local peaks than landscapes with random interaction structures (Table 3) so we would expect 
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the benefit of the broader exploration generated by the decentralized structure to arise at lower levels of K 

if the firm is on a dependent landscape than if the firm is on a random landscape.  This (admittedly 

stylized) example illustrates how the appropriate choice of organizational design may hinge on the pattern 

of interactions among decisions, not just the total number of interactions.  Overall, the performance 

advantage of the decentralized firm, with its broad exploration, is closely correlated to the number of local 

peaks.  Indeed, the correlation coefficient between the entries in the top panel of Table 3 (the number of 

local peaks) and the figures in Table 5 (the decentralized firm’s performance advantage) is a large and 

highly significant 0.915. 

 
7. Discussion and Conclusion 

In management science, the study of complex systems has recently gained momentum as simulation 

tools, originally developed in biology and physics, have been applied to organizational, social, and 

technological settings.  This paper aims to make such simulation models more realistic by incorporating 

into one particular model some of our empirical knowledge of such settings.  Many simulation models in 

this field of inquiry have two parts: a problem space (a performance landscape, an environment, etc.) and 

entities that search (or move, or live) in the problem space.  The early models in this genre were – as a 

natural starting point – fairly simplistic in both respects.  The original NK model, for instance, which 

formed the starting point for many applications in the organization literature, assumed performance 

landscapes in which the interactions among elements were determined randomly and entities in which 

change occurred only through incremental, local search.  While the latter assumption was appropriate for 

biological systems that evolve by mutations to single, randomly chosen genes, it is dubious for 

organizational, social, and technological systems in which human agents can employ more sophisticated 

forms of search.  A number of studies have attempted to model search more realistically, incorporating 

cognition (Gavetti and Levinthal 2000) or internal organizational structure (Rivkin and Siggelkow 2003), 

for instance.  
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The main thrust of the present paper was to infuse more realism into the first part of these simulation 

models, the creation of performance landscapes.  The random interaction assumption has often been 

justified by pleading ignorance of what true interaction patterns look like.  That plea is implausible, we 

feel, in the settings that interest management scientists, thanks to recent empirical studies.  These studies 

show that the interactions among activities, product elements, decisions, and decision makers are not 

random, but follow distinctive patterns.  We identified ten patterns (including the random benchmark) and 

examined the characteristics of landscapes produced by each.  We found that underlying interaction 

patterns affect landscape topology substantially even if the total number of interactions is held constant.  

In particular, dependent, diagonal, and, to a lesser degree, local and block-diagonal interaction patterns 

tend to generate performance landscapes with substantially more local peaks than the random interaction 

pattern, while centralized and hierarchical interaction patterns typically lead to substantially fewer local 

peaks.  Interestingly, small-world type interaction patterns exhibit linear, rather than non-linear, changes 

in the number of local peaks as the probability of non-local interaction is changed.  

The interaction patterns that produce very few local peaks are marked by a handful of highly 

influential decisions and a large number of uninfluential decisions.  These patterns produce landscapes 

that are easy to search: once the handful of core decisions are made, other choices fall into place naturally.  

As a result, the decision maker faces a problem whose true dimensionality is modest.  In contrast, 

interaction patterns with a handful of highly sensitive decisions and a large number of uninfluenced 

decisions tend to produce many local peaks.  The uninfluenced decisions produce a smooth underlying 

surface that is made very rugged by the handful of sensitive decisions.  For a given level of K, we can 

explain a remarkably high portion of the variance in the number of local peaks – nearly 90% – by 

reference to the number of uninfluential and uninfluenced decisions.8  This suggests a practical rule of 

                                                 
8 We suspect that our ability to explain so much of the variance by looking only at polar cases, wholly uninfluential 
decisions and completely uninfluenced decisions, reflects an extreme assumption of the NK model: a change in any 
influential decision completely re-randomizes the contribution of a focal decision.  Under a less extreme assumption, 
a change in an influential decision would alter the focal decision’s contribution, but not completely.  In such a 
setting, one might have to take into account more than simply the number of wholly uninfluential and completely 
uninfluenced decisions in order to anticipate the number of local peaks.  For instance, one might have to calculate 
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thumb for individuals who are deciding how much to invest in exploratory efforts.  Relatively little 

exploration is required in systems where a handful of core decisions influence a large number of 

peripheral, otherwise-independent choices.  More exploration is necessary in systems where a large 

number of independent decisions converge to influence a handful of choices. 

We have emphasized the implications of these results for the allocation of resources toward 

exploration versus exploitation.  When facing interaction patterns that create many local peaks, managers 

are well advised to devote more resources to exploration and to adopt organizational designs that 

encourage wider exploration.  Though our simulation results focus on the value of broad exploration, we 

believe they also have ramifications for other organizational phenomena.  For instance, prior research 

efforts with related models have shown that the proliferation of local optima makes it difficult for 

organizations to adjust successfully in the face of environmental change (Levinthal 1997), to imitate the 

successes of others (Rivkin 2000), and to replicate their own successes (Rivkin 2001).  These research 

efforts have focused on increases in the total number of interactions as the reason for the proliferation of 

local peaks, but proliferation caused by differences in influence matrices should have similar effects.  

Thus, we see interaction patterns affecting not just the appropriate degree of exploration, but also the 

likely success of change, imitation, and replication efforts. 

Similar logic suggests a cautionary word about previous studies that have examined only random 

influence matrices.  Most of these studies were concerned with effects that arise as the number of 

interactions, K, increases.  Our results imply that “comparative static” results with respect to changes in 

K, such as “imitation becomes more difficult as K increases,” continue to hold as long as the underlying 

interaction pattern remains fixed.  The results also show, however, that K is not the only factor that 

determines landscape characteristics and consequent competitive phenomena.  For instance, a firm that 

has based its competitive advantage on a set of choices with high K and a centralized interaction pattern 

                                                                                                                                                             
how concentrated influence is in, and on, a handful of decisions.  This is a speculation that deserves investigation in 
future research. 
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may find that its advantage is eroded by imitation more easily than if it had a lower value of K but a 

diagonal interaction pattern. 

Our results also have system-design implications since firms can sometimes influence the interaction 

patterns they face rather than take them as given (Levinthal and Warglien 1999; Baldwin and Clark 

2000).  Because optimization of high-dimensional systems with many interdependencies is usually a 

difficult task, it may be very helpful to design a system in a way that smoothes performance landscapes 

and facilitates the search for good solutions.  A management team might accomplish this by altering the 

pattern of interactions among elements in a system, even if the total number of interactions among the 

elements cannot be reduced.  Smoothing of a landscape may also make the system more robust – able to 

recover effectively after a perturbation in the mapping from choices to performance.  On the other hand, if 

competitors can reproduce a firm’s design of interactions, smoothing might make local search a more 

powerful means for rivals to rediscover a firm’s configuration of choices and to copy its successes. 

By managerial intervention or by the selective force of births and deaths of systems, the patterns of 

interactions present in organizational, social, and technological systems are likely to evolve.  An exciting 

question for future research is, what interaction patterns will prevail over time?  Or perhaps a contingent 

question is appropriate: what conditions encourage the emergence of which kinds of interaction patterns?  

Simon (1962) makes a strong argument for nearly decomposable systems, on the strength of their ability 

to improve module-by-module rather than in system-wide fashion.  Patterns of interaction, however, may 

affect not only the power of exploration across discrete modules, but also the ability of managers to 

explore possibilities within each module.  Our results show that the pattern of interactions among 

decisions can dramatically alter the search challenge that managers face.  Patterns that improve 

“searchability” may very well prevail in ecological competition among interaction patterns. 
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FIGURE 1:  DIFFERENT TYPES OF INFLUENCE MATRICES, ALL WITH THE SAME NUMBER 
OF TOTAL INTERACTIONS (N = 12, K = 2, N*(K+1) = 36) 
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             E. PREFERENTIAL ATTACHMENT   F. POWER-LAW 
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FIGURE 2: DESIGN STRUCTURE MATRIX OF AN AUTOMOBILE BRAKE SYSTEM DESIGN 
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Source: Black, Fine, and Sachs (1990) as in: http://www.dsmweb.org/Scrap_book/Brake.htm 
 
 
 
 
 

FIGURE 3: DESIGN STRUCTURE MATRIX FOR THE 14 MAJOR TASKS 
OF KODAK’S CHEETAH PROJECT (CARTRIDGE DEVELOPMENT) 
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Source: Ulrich and Eppinger (1999), as in http://www.dsmweb.org/Scrap_book/Cartridge.htm 
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TABLE 1: CHARACTERISTICS OF ACTUAL DESIGN STRUCTURE MATRICES 
AND ACTIVITY SYSTEMS 

 
Example N K* 
Design structure matrices:   

Automobile break system (Black, Fine, and Sachs 1990) 13 3.8 
Kodak cartridge development process (Ulrich and Eppinger 
1999) 14 2.5 

Automobile climate control system (Pimmler and Eppinger 
1994) 16 1.4 

Automobile door (Dong 1999) 32 3.4 
Automobile digital-mock-up process for the layout for  
components in the engine compartment (Ulrich and Eppinger 
1999) 

50 3.5 

Semiconductor development process (Osborne 1993) 60 6.5 

Power plant design  72 6.8 

Jet engine design (Mascoli 1999) 111 5.8 

   

Activity systems:   

Vanguard - 1974 (Siggelkow 2002) 18 2.2 

Vanguard - 1977 (Siggelkow 2002) 24 2.8 

Vanguard - 1978 (Siggelkow 2002) 29 2.8 

Vanguard - 1991 (Siggelkow 2002) 41 2.9 

Vanguard - 1997 (Siggelkow 2002) 48 3.0 

Liz Claiborne - 1990 (Siggelkow 2001) 36 3.2 

Liz Claiborne - 1997 (Siggelkow 2001) 34 3.5 

IKEA - 1996 (Porter 1996) 20 3.4 

Southwest Airlines - 1996 (Porter 1996) 18 3.4 

Vanguard - 1996  (Porter 1996) 25 3.4 
* The value of K is computed by dividing the number of off-diagonal interaction effects 

by N. 
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TABLE 2: NUMBER OF LOCAL PEAKS FOR SMALL-WORLD INFLUENCE MATRICES 

p = 0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 (local) (random)
K = 1 5.0 5.1 4.8 4.6 4.7 4.2 4.5 4.5 4.6 4.7 4.3 4.2
K = 2 14.0 14.0 13.6 12.5 12.3 11.3 12.6 11.6 10.9 11.6 11.1 10.7
K = 3 27.5 28.8 26.2 25.2 24.6 24.4 24.3 23.4 23.2 23.5 23.0 23.1
K = 4 48.0 46.8 45.0 43.8 42.6 41.7 41.1 40.7 39.9 39.1 39.5 39.7
K = 5 71.7 69.2 67.3 66.1 64.8 63.0 61.4 61.9 62.2 61.8 60.7 60.8
K = 6 99.6 96.1 95.2 92.2 92.1 89.9 89.3 89.2 88.5 88.6 88.3 87.9

Each result is an average over 200 landscapes of each type. 
 
 
 

TABLE 3: CHARACTERISTICS OF LANDSCAPES BASED ON DIFFERENT TYPES OF INFLUENCE MATRICES 

 C
en

tra
liz

ed
 

H
ie

ra
rc

hi
ca

l 

Po
w

er
  l

aw
 

R
an

do
m

 

Pr
ef

er
en

tia
l 

at
ta

ch
m

en
t 

Lo
ca

l 

B
lo

ck
-

di
ag

on
al

 

D
ia

go
na

l 

D
ep

en
de

nt
 

          
1. Average number of local peaks 
K = 1 1.9 2.3 4.5 4.8 5.0 5.0 5.6 7.6 55.4 
K = 2 3.4 4.9 10.5 10.7 12.8 14.0 14.9 20.1 129.0 
K = 3 6.2 9.7 20.5 23.1 23.4 27.5 33.6 43.6 177.4 
K = 4 10.9 24.9 31.1 39.7 37.1 48.0 40.2 75.7 206.0 
K = 5 18.8 64.3 56.3 60.8 57.7 71.7 82.9 114.4 242.0 
K = 6 32.2   87.9 80.9 99.6 102.7  248.0 
          
2. Fraction of low-exploration firms that reach global peak (%) 
K = 2 56.4 42.2 35.1 29.4 27.5 24.2 28.9 19.8 3.3 
K = 4 25.3 16.7 17.0 12.0 9.6 9.7 9.4 8.0 1.5 
          
3. Portion of all local peaks within Hamming distance of 4 of the global peak (%) 
K = 2 6.4 17.9 31.9 30.1 33.1 37.5 49.9 29.2 30.8 
K = 4 10.6 15.7 19.2 20.6 20.0 20.6 26.5 19.1 24.5 

Each result in Panel 1 and 3 is an average over 200 landscapes.  Each result in Panel 2 is an average over 
50 landscapes. 
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TABLE 4: VALUE OF BROADER EXPLORATION 
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K = 1 0.012 0.017 0.021 0.024 0.026 0.024 0.030 0.029 0.041 
K = 2 0.023 0.028 0.029 0.032 0.039 0.045 0.057 0.039 0.068 
K = 3 0.029 0.038 0.040 0.039 0.040 0.051 0.068 0.047 0.077 
K = 4 0.037 0.046 0.048 0.040 0.045 0.050 0.060 0.050 0.081 
K = 5 0.040 0.058 0.047 0.045 0.049 0.053 0.072 0.062 0.079 
K = 6 0.048   0.043 0.052 0.057 0.070  0.079 

Each cell contains the performance difference in period 300 between a firm that engages in broad 
exploration (i.e., evaluates alternatives that differ in up to two decisions from the status quo) and a firm 
that engages in narrow exploration (i.e., evaluates only alternatives that differ in one decision from the 
status quo).  Performance is measured relative to the highest performance possible in each landscape.  
Performance differences are averages over 1,000 landscapes.  All performance differences in this table 
are statistically significant with p < 0.001. 

 

 
TABLE 5: PERFORMANCE ADVANTAGE OF DECENTRALIZED FIRM 
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K = 1 -0.0007 0.0006 -0.0016 -0.0076 -0.0057 -0.0032 -0.0012 0.0007 0.0173 
K = 2 -0.0011 0.0045 0.0065 -0.0070 -0.0058 -0.0014 -0.0007 0.0053 0.0321 
K = 3 0.0058 0.0000 0.0054 -0.0059 0.0019 0.0039 -0.0000 0.0099 0.0362 
K = 4 0.0000 0.0043 0.0070 0.0022 0.0070 0.0049 -0.0001 0.0131 0.0409 
K = 5 0.0027 0.0207 0.0080 0.0089 0.0066 0.0065 0.0023 0.0169 0.0464 
K = 6 0.0012   0.0134 0.0101 0.0144 0.0010  0.0419 

Each cell contains the performance difference in period 300 between a firm that is completely 
decentralized and a firm that employs an active hierarchy.  Performance is measured relative to the 
highest performance possible in each landscape.  Performance differences are averages over 1,000 
landscapes.  Differences in italics are significant at a level of 0.05; differences in bold are significant at a 
level of 0.01 or better. 
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