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Abstract

Performance-based contracting is reshaping service support supply chains in capital intensive in-

dustries such as aerospace and defense. Known as “power by the hour” in the private sector and

as performance-based logistics (PBL) in defense contracting, it aims to replace traditionally used

fixed-price and cost-plus contracts in order to improve product availability and reduce the cost of

ownership by tying a supplier’s compensation to the output value of the product generated by the

customer (buyer).

To analyze implications of performance-based relationships, we introduce a multitask principal-

agent model to support resource allocation and use it to analyze commonly observed contracts. In

our model the prime (principal) faces a product availability requirement dictated by its customer

for the “uptime” of the end product. The prime then offers contracts contingent on availability to

n suppliers (agents) of the key subsystems used in the product, who in turn exert cost reduction

efforts and set spare parts inventory investment levels. We show that the first-best solution can

be achieved if channel members are risk-neutral. When channel members are risk-averse, we find

that the second-best contract combines a fixed payment, a cost-sharing incentive and a performance

incentive. Furthermore, we show how these contracts evolve over the product deployment life cycle

as product use and support cost risks change. We show, in particular, that when the prime is

less (more) risk-averse than the suppliers, the performance incentive increases (decreases) while the

cost sharing incentive decreases (increases) with time. Finally, we illustrate the application of our

model to a problem based on aircraft maintenance data and show how the allocation of performance

requirements and contractual terms change under various environmental assumptions.
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1 Introduction

Support and maintenance services continue to constitute a significant part of the U.S. economy, often

generating twice as much profit as do sales of original products. For example, a study by Accenture (see

[1]) found that $9B in after-sales revenues produced $2B in profits for General Motors, which is a much

higher rate of profit than its $150B in car sales generated over the same time period. According to

the same study, after-sales services and parts contribute only 25% of revenues across all manufacturing

companies but are often responsible for 40-50% of profits.

Since maintenance services are often provided and consumed by two different organizations (i.e., the

OEM and the customer), the issue of contracting between them becomes important. While contracts

for maintenance services of simpler products (electronics, automobiles) often involve fixed payments for

warranties, there are many instances of complex systems that require more sophisticated relationships

between service buyers and suppliers. For example, in capital-intensive industries such as aerospace

and defense, it is very hard to guarantee product availability due to significant uncertainties in product

reliability and usage as well as inherent product complexity, resulting in large risks to both the customer

and service provider. Therefore maintenance support in these industries is typically conducted using

fixed-price or cost-plus contracts: under the former, the buyer of support services pays a fixed fee to

the supplier to purchase necessary parts and support services, whereas under the latter the supplier

repairs the product and charges full cost plus a premium to the buyer. Studies in the defense industry

(see http://www.pblprograms.com) estimate that 80% of current maintenance contracts are cost-plus,

and the remaining 20% are fixed-price.

Through our work with major defense contractors we observe a major shift in the world of support

and maintenance logistics for complex systems over the past few years. Performance-based contracting,

a novel approach for the sustainment business, is replacing traditional service procurement practices.

This approach is often referred to as “power by the hour” or performance-based logistics (PBL) in,

respectively, the airline and defense industries. The idea behind it is quite simple: one buys the results

of product use (e.g., value creation), not the service parts or repair services required to restore or

maintain a product. The premise behind performance-based contracting is elaborated in the official

Department of Defense (DoD) guidelines1:

The essence of Performance Based Logistics is buying performance outcomes, not the indi-

vidual parts and repair actions... Instead of buying set levels of spares, repairs, tools, and

data, the new focus is on buying a predetermined level of availability to meet the [buyer’s]

1Excerpt from Defense Acquisition Guidebook Section 5.3 (http://akss.dau.mil/dag).
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objectives.

Performance-based contracts originally were implemented in commercial settings predominantly for

avionics products. For example, engine manufacturers General Electric, Pratt & Whitney, and Rolls

Royce all have performance-based contracts with commercial airlines in which their compensation is

tied to product availability (hours flown). Recently, the U.S. Department of Defense has initiated the

implementation of pilot PBL programs in the military; in 2005 there were 92 such programs, compared

with 57 programs in 2002 (see http://www.pblprograms.com). Among frequently cited PBL success

stories are avionics for the H-60 helicopter contract that brought logistic response time (LRT) down

from 52.7 days pre-PBL to 8 days after PBL implementation and the F/A-18 Hornet aircraft contract

with a pre-PBL LRT of 42.6 days and a post-PBL LRT of 2 days, among many others. Inspired

by such notable success of PBL contracts, on August 16, 2004, the DoD issued Memorandum 5000.1,

which “requires program managers to develop and implement PBL strategies that optimize total system

availability,” thus mandating all future maintenance contracts to be based on performance.

A critical element of performance-based contracting is the clear separation between the buyer’s

expectations of service (the performance goal) and the supplier’s implementation (how it is achieved):

in other words, “The contract explicitly identifies what is required, but the contractor determines how

to fulfill the requirement” (Macfarlan and Mansir [16]). As a consequence, PBL contracting should

promote new and improved ways to manage spare parts inventory, negotiate contracts, and make

resource allocation decisions. For example, under the traditional cost-plus contract, the supplier of a

service must truthfully report its detailed cost structure to the buyer in order to estimate which exact

expenses are eligible for reimbursement. Under a PBL arrangement, the supplier does not have to

support cost sharing at this level of detail. Moreover, the product buyer no longer directly manages or

possibly even owns resources such as the inventory of spares and thus is not concerned with specifics

such as inventory stocking, as long as the availability target is met. Finally, in the long run suppliers

may find it in their interest to invest in designing and producing more reliable products (i.e., with lower

part failure rates) and/or more efficient repair and logistics capabilities.

Not surprisingly, such a radical change in the approach to contracting with the DoD has caused

controversy among suppliers of maintenance services. For example, among 128 suppliers whose bids

were solicited on a PBL support contract, only 5 responded positively, and the rest simply responded

“not interested” (see http://www.pblprograms.com). As chief logistician of Northrop Gruman (one of

the major DoD contractors) put it, “after nearly five years since its inception, PBL still is generating

a great deal of discussion and will engender a major cultural and responsibility change at the supplier

level” (see Phillips [19]). Moreover, the purported benefits of PBL arrangements came under the
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scrutiny of the Government Accountability Office, which recently concluded that “DoD program offices

could not demonstrate that they have achieved cost savings or performance improvements through the

use of performance based logistics arrangements.”2

The preceding discussion underscores the urgency and lack of understanding of PBL arrangements.

The academic literature, however, offers little guidance with respect to how such contracts should be

executed. In this paper we aim to take a first step towards filling this void by proposing a model

of contractual relationships that arise in practice when procuring repair and maintenance services

in a performance-based environment. We embed a standard single-location spare parts inventory

management problem into a moral hazard model with one principal (representing the prime supplier

of the product or the end customer), and multiple interdependent agents (representing suppliers of the

key product subsystems), in which each agent (supplier) performs two tasks: inventory management

of spares and cost reduction activities. We use this model to analyze three types of contracts (and

any combination thereof) that are commonly encountered in aerospace and defense procurement and

high technology industries: fixed-price, cost-plus and PBL. In analyzing these contracts we pursue the

following goals: (1) what is the optimal combination of contractual levers that achieves the best possible

outcome for the buyer? (2) how should performance requirements for the final product be allocated

to suppliers? and (3) how should the risk associated with the maintenance of complex equipment be

shared among channel members?

We show that, in the absence of incentive problems (i.e., if suppliers’ decisions are observable and

contractible), the contract that achieves the first-best solution is a nonperformance arrangement that

combines partial cost reimbursement with a fixed payment. If supplier actions are unobservable and the

parties are risk-neutral, we show that the first-best solution can still be achieved using a contract that

combines a performance incentive with a fixed payment (but no cost sharing). However, when even

one of the parties is risk-averse, the first-best solution cannot be achieved. We show that in this case

“pure” fixed-price, cost-plus or performance-based contracts (or any pair-wise combinations of them)

are not suitable because they do not provide the necessary incentives. Thus, we show that the second-

best contract involves all three elements: a combination of a fixed payment, a cost sharing payment

and a performance-based payment. For any such contract we show that each supplier’s problem is

well-behaved (quasi-concave) under suitable parameter restrictions and we find analytically optimal

decisions for all suppliers for any given contract proposed by the buyer. Unfortunately, the buyer’s

problem neither is well-behaved nor admits to tractable analytical solutions (the latter is true even in

the centralized supply chain). Using a combination of analytical results for special cases and numerical

2See http://www.gao.gov/cgi-bin/getrpt?GAO-05-966.
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analysis performed on a data set that is representative of a supply chain supporting a fleet of military

airplanes, we obtain insights into the structure of the optimal contract. In particular, we study the

sensitivity of the optimal contract to an operating characteristic (i.e., cost uncertainty) and infer that,

when the principal is less (more) risk-averse than the suppliers, the performance incentive increases

(decreases), whereas the cost sharing incentive decreases (increases) as time progresses. Finally, we

analyze the impact of problem parameters on contractual terms, performance, and profitability.

To the best of our knowledge, this paper represents the first attempt to embed the after-sales

service supply chain model into the principal-agent framework in which channel members behave in a

self-interested manner. Our results are consistent with the observed practice of using multiple contract

types whose mix evolves over time. Finally the model framework introduced here can be implemented

in conjunction with more detailed supply chain models to support contract negotiations and long-term

strategy analysis. The rest of the paper is organized as follows. After a brief review of related literature

in Section 2, we present modeling assumptions and notations in Section 3, followed by the formulation

of the principal-agent model. In the same section we analyze the first-best solution as well as derive

solutions for the general second-best case. In Section 4 we analyze special cases, beginning with the

risk-neutrality assumption, then an assumption of partial observability of suppliers’ actions, and finally

a situation with one supplier. The section concludes with a numerical analysis of the practical set of

data. Finally, in Section 5 we discuss managerial implications of our study.

2 Literature Review

Two distinct models blend together in our paper: a classic inventory allocation model for repairable

items, well known in operations management, and the moral hazard model that has been an area of

active research in economics. The theory of repairable parts inventory management dates back to

the 1960s when Feeney and Sherbrooke [11] introduced a stochastic model of the repairable inventory

problem whose steady-state solution relies on the application of Palm’s Theorem. Sherbrooke’s MET-

RIC model (Sherbrooke [23]) introduced a heuristic optimization algorithm for allocating inventory

resources for the multi-echelon, multi-indentured version of the problem. Subsequent models have led

to notable success in enabling the management of multimillion-dollar service parts inventory resources

in both commercial and government applications (e.g., see Cohen et al. [8] for a discussion of a suc-

cessful application of multi-echelon optimization by IBM’s service support division). Research in this

area has largely focused on improving computational efficiency and incorporating more realistic as-

sumptions, such as allowing for capacitated supply or nonstationary demand processes. For a recent

comprehensive account of developments in this field, see Muckstadt [18], who reviews the underlying
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theory, Sherbrooke [24], which focuses on aerospace and defense industry applications, and Cohen et

al. [7], which introduces a modeling framework that has been used to guide the development of state-

of-the art software solutions in various industries. In brief, repairable inventory models are typically

concerned with finding the optimal (cost-minimizing) inventory stocking targets for each product com-

ponent subject to an overall service constraint. Service (performance) requirements can be defined in

terms of either item fill rates or end product availability (i.e., system “uptime”). The latter is preferred

in our context of performance contracting because there is a one-to-one mapping between inventory

investment and item backorders: the latter drive overall product delay, which in turn drives product

uptime.

It is important to note that while the one-location variant of the availability problem is well behaved

(i.e., convex), extensions that include multiple echelons/locations, material classes/indentures and al-

ternative sourcing options (new buy, repair, internal transfer) lead to large-scale nonlinear, non-convex,

stochastic optimization problems with millions of decision variables and thousands of constraints. Cur-

rent state-of-the-art solutions are based on variants of the greedy heuristic introduced by Sherbrooke.

Numerous papers study the principal-agent models, and comprehensive reviews can be found in

Bolton and Dewatripont [3]. The building block for our paper is the moral hazard model in which

actions of agents (suppliers) are unobservable to the principal (buyer). Moreover, our model includes el-

ements of multitasking (Holmström and Milgrom [13]), because two decision variables for suppliers, the

cost reduction effort and the inventory position, interact with each other. An additional complication

is the presence of multiple agents whose contracts are interdependent due to the performance constraint

that the principal faces. The mainstream interest in the principal-agent theory is in designing opti-

mal nonlinear contracts. Despite the theoretical appeal, the predominant form of contracts observed

in practice is linear. Holmström and Milgrom [12] addressed this discrepancy by explaining that a

sequence of repeated observations of performance outcomes necessitates a simple linear relationship

between the aggregate performance and the aggregate payment, effectively collapsing the multi-period

dynamic contracting problem into a single-period problem. In this paper we take a descriptive ap-

proach and assume that the linear contract form is exogenously specified, which is consistent with our

observations of industrial practices in the defense and other industries. The economics literature that

studies contracting for defense procurement takes the same approach when analyzing incentives. For

example, Scherer [22] discusses linear (cost-plus and fixed-price) contracts as well as the impact of

risk aversion in defense contracting. Similar to Scherer’s work, we allow for risk aversion and study

cost-plus and fixed-price contracts in the context of maintenance and compare them with performance

contracts. Cummins [10] studies risk sharing and the role of risk aversion in defense contracts.

Incentive alignment in supply chains through contracts has been a topic of great interest in oper-
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ations management over the past decade (see Cachon [4] for a comprehensive survey). Recently, the

role of information asymmetry has received considerable attention both in the adverse selection setting

(representative articles include Corbett [9], Iyer et al. [14], Lutze and Ozer [15] and Su and Zenios [25])

and in the moral hazard setting (for example, see Plambeck and Zenios [21], Chen [5] and Plambeck

and Taylor [20]). The current paper addresses the growing interest in this area.

As is evident from our survey, although there is voluminous literature on service supply chain

parts-inventory management, to date this stream of research has been confined to single-firm models

and hence does not address issues that arise in decentralized supply chains in practice. Furthermore,

although extensive literature in economics aims to model contractual relationships among different

parties, it does not address the complexities of repair and maintenance contracting environments. To

our knowledge, our paper is the first to put a repairable parts model into the decentralized framework

and to study the issue of contracting in after-sales service supply chains.

3 Model

3.1 Modeling Assumptions

The principal, henceforth called the prime, is the prime supplier of N assembled products (“systems,”

which can be airplanes, computers, manufacturing equipment, etc.) to customers such as airlines,

branches of the military or industrial companies. Each system is composed of n distinct major parts

(“subsystems” which, in the case of an airplane, can represent avionics, landing gear, weapons systems,

etc.), each produced and maintained by a unique supplier. We use subscript 0 to denote the prime

and subscript i for subsystem supplier i, i = 1, 2, ..., n. Failure of subsystem i occurs at a Poisson rate

λi. Each supplier maintains an inventory of spares and a repair facility. A failed unit is immediately

replaced by an operating unit (if it is available) from the supplier’s inventory with transportation lead

times assumed to be negligible. If a replacement is unavailable, a backorder occurs, and the system

becomes inoperable. As a result, downtime in any subsystem leads to downtime of the entire system.

Upon failure, the defective unit immediately goes into the repair facility, modeled as an M/G/∞ queue

(i.e., we assume ample repair capacity). It takes on average Li time units to repair and ship the

subsystem, and once the task is completed the subsystem is placed in the supplier’s inventory, i.e., we

assume one-for-one replenishment to a target stock level. Therefore, we have a closed-loop cycle for the

repair process. As the subsystems are typically very expensive and their lifetimes are very long, we

assume that no subsystem is discarded during the entire support period. We also ignore the breakdown

of subsystems into multiple components which typically include line replaceable units (LRUs) as well

as lower indenture level components, i.e., each subsystem is treated as a single composite item. Figure
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Figure 1: Closed loop cycle for repairable items.

1 illustrates this process. One of supplier i’s decisions is the target stocking level for subsystem

spare parts inventory si which determines the fill rate as well as the expected number of backorders.

Evidently, there is a total of N + si units of subsystem i in the supply chain, but only si of them are

owned by the supplier.3

The number of backorders, Bi, is a random variable that is observed continuously. Bi and si are

related to each other through Bi = (Oi − si)+, where Oi is a stationary random variable representing

the pipeline (on-order) inventory. Palm’s Theorem states that Oi is Poisson-distributed, with the mean

μi = λiLi (see Feeney and Sherbrooke [11]). Although this observation leads to closed-form expressions

for system performance metrics, it turns out that working with integer-valued random and decision

variables complicates our analysis significantly, as additional complexity results from the game-theoretic

situation considerations associated with the various contracting options. In particular, conducting

comparative statics to gain insights into firms’ behavior is prohibitively complex. For this reason,

we depart from the usual discrete Poisson process assumption and model Oi, Bi, and si as continuous

variables. This approach is reasonable in our context since each unit of a supplier’s inventory represents

a composite of the various LRUs and the components associated with their particular subsystem.

To this end, we let Oi be distributed continuously with cdf Fi and pdf fi, which have nonnegative

support [0,∞) with Fi(0) ≥ 0. μi, the mean of Oi, is determined by the mean failure rate times the

average repair lead time, consistent with the Palm Theorem result noted above. The distribution of

Bi, denoted by Gi(· | si), is related to Fi(·) through Gi(x | si) = Fi(x + si), which is obtained from

P (Bi ≤ x | si) = P (Oi ≤ x+ si). Furthermore,

E [Bi | si] =
R∞
0 [1−Gi(x | si)] dx =

R∞
0 [1− Fi(x+ si)] dx

3We also note that an important consideration in implementing PBL relationships in practice concerns defining asset
ownership and managerial controls across the three echelons (customer, prime and subsystem supplier). We have observed
that many possibilities are being experimented with in practice.
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so that we obtain

∂E [Bi | si]/ ∂si = −1 + Fi (si) ≤ 0, ∂2E [Bi | si]
±
∂s2i = fi (si) ≥ 0. (1)

Hence we see that expected backorder is decreasing and convex in si.

The performance metric of our problem is availability, which is defined as the fraction of time a

subsystem is operational. Availability is a random variable related to the backorder through Ai =

1 − Bi/N .4 Since the ratio E [Bi | si] /N is typically very small, the expected availability can be

approximated as follows:

E[A0 | s1, s2, ...sn] =
Qn
i=1E[Ai | si] =

Qn
i=1 (1− E [Bi | si]/N) ' 1−

Pn
i=1E [Bi | si]/N.

We see that the relation Ai = 1−Bi/N can be applied to the system (i = 0) as well if we define B0 ≡Pn
i=1Bi, i.e., the overall system backorder is the sum of subsystem backorders. With this definition,

the system availability requirement E[A0 | s1, s2, ...sn] ≥ bA0 (e.g., “expected system availability has to

exceed 95%”) is equivalent to the system backorder constraint E [B0 | s1, s2, ...sn] =
Pn
i=1E [Bi | si] ≤bB0. We call bB0 the system backorder target. The additive separability of B0 in terms of {Bi}i=1,...n

relies on the assumption that the probability of two or more subsystems being backordered at a given

point in time is negligible, thus implying that there is no ambiguity in assigning accountability for

system downtime to a specific supplier and that all system failures are caused by single subsystem

failure. We note that the sufficient condition for this assumption to hold is Cov[Bi, Bj ] = 0, i 6= j. We

also assume that
Pn
i=0 μi >

bB0 in order to rule out the trivial case where s1 = s2 = ... = sn = 0 is

optimal.

We assume that supplier i’s total cost to maintain its subsystem, Ci, has fixed and variable com-

ponents with an additive stochastic term εi, and it can be reduced by supplier’s effort ai so that

Ci = cisi +Ki − ai + εi. Thus, the degree of cost uncertainty is assumed to be beyond the supplier’s

control (e.g., establishing a maintenance network in a different country where the fleet of airplanes is

deployed involves large uncertainties beyond the control of the supplier). We note that the inherent un-

certainty associated with subsystem failure is captured in the inventory demand process and is reflected

in the inventory on-order distribution. Without loss of generality, we normalize the fixed cost to zero,

Ki = 0 for all i. We assume that cost uncertainties εi have zero mean and a finite variance and are

uncorrelated, i.e., Cov[εi, εj ] = 0 for i 6= j. Furthermore, we assume that Cov[εi, Bi] = Cov[εi, Bj ] = 0

4This relationship is based on the ergodic property of the stationary random variable Oi, i.e., the long-run sample
path frequency distribution is identical to the probability distribution. In other words, the fraction of time we observe
Oi to be less than or equal to x has the same probability as Fi(x | si).

9



holds for all i, j, i.e., the two sources of randomness, product performance/failure and maintenance

cost variation, are assumed to be independent. By exerting effort ai the supplier incurs monetary

disutility ψi(ai), which is convex increasing (ψ
0
i(ai) > 0, ψ

00
i (ai) > 0), with ψi(0) = 0. In the sequel,

we assume quadratic functional form ψi(ai) = kia
2
i /2 with ki > 0. This assumption does not funda-

mentally change the insights of our model, while generating compact expressions,5 and for this reason

it is commonly used in the literature (see, for example, Chen [5]).

The prime supplier’s objective is to maximize her expected utility function subject to the system

availability requirement, or equivalently the backorder requirement. Her utility is a function of her total

expenditure only, although it is possible to incorporate a fixed revenue term to capture the expected

profit associated with delivering the fleet availability to the end customer. This expenditure is a sum

of transfers to the suppliers, each of which is comprised of (1) a fixed payment, (2) reimbursement

for the supplier’s cost and (3) a backorder-contingent incentive payment. In the performance-based

contracting environment, neither the details of supplier cost nor how he meets performance objectives

is revealed to the prime. Instead, each supplier is compensated for his total realized cost Ci and

his realized backorder Bi. The fact that both contractible variables are random raises the issue of

incentives. Since Ci and Bi are functions of the supplier’s cost reduction effort ai and base stock

level decision si, the supplier can partially control the performance related to his subsystem and his

compensation by setting ai and si. However, stochasticity means he may choose (ai, si) that are not

optimal from the prime’s point of view. For example, an opportunistic supplier may choose to minimize

his own disutility of efforts by “shirking” (i.e., choosing low ai and si), hoping that a fortuitous state

of the world is realized. The prime’s task is then to provide appropriate incentives through contract

terms that would induce the supplier to perform the desired action.

Specifically, the contract that the prime offers to supplier i has the form

Ti(Ci, Bi) = wi + αiCi − viBi, (2)

where wi, αi, and vi are the contract parameters determined by the prime; wi is the fixed payment, αi

is the prime’s share of the supplier’s costs, and vi is the penalty rate for each backorder incurred by

the supplier. With vi = 0 and αi = 0, we obtain a fixed-price (FP) contract whereas with αi = 1 and

vi = 0 we obtain a cost-plus (C+) contract with full reimbursement.

The crucial distinction between the supplier’s actions ai and si is the way each variable contributes

to the performance outcomes; the backorder is influenced by si only, since Bi = (Oi − si)+, whereas

the total cost is affected by both decision variables, Ci = cisi − ai + εi. This interaction creates

5It turns out the condition ψ000i (ai) ≥ 0 is sufficient to ensure solution uniqueness in later analysis.
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asymmetry in how the suppliers’ actions influence outcomes Bi and Ci. Raising ai reduces the total

cost but has no impact on availability, which is driven by component reliability and customer usage

patterns. That said, raising si improves availability but incurs a higher cost. The latter is the classical

cost-availability trade-off seen in the repairable parts inventory theory. We note that an alternative

formulation, whereby supplier effort impacts product reliability and/or repair capabilities (thereby

impacting λi and Li), is not considered here and will be the subject of a follow-up paper.

We assume that all members of the supply chain are risk-averse with expected mean-variance utility

E[Ui(X)] = E[X]− riV ar[X]/ 2. (3)

The constant ri is the risk aversion factor, representing the inherent attitude towards uncertainty. Risk

aversion is common among defense contractors, for example, because of great uncertainties that pervade

product development, production, and maintenance (see Scherer [22] for discussion and references). The

larger the value of ri, the more risk-averse a firm is, whereas risk neutrality is a special case with ri = 0.

This form of utility function is widely used in finance as a basis of mean-variance portfolio theory; see

Markowitz [17]. This form of utility function is exact for the constant absolute risk aversion utility

function (Ui(X) = −e−rX) with a Normally distributed error term (X ∼ Normal(μ,σ2)). For other

distributions and utility functions expression (3) is merely an approximation obtained by expanding

Ui(X) around E[X] in a Taylor series up to the second-order term. This form of utility function

has been widely used in recent operations management literature because of its tractability (Chen

and Federgruen [6], Van Mieghem [26]). In our setting risk aversion constants {ri} are likely to be

quite small for all supply chain members because they are mostly multinational, multibillion-dollar

corporations (see Cummins [10] for evidence that risk aversion is negatively associated with firm size

in defense contracting). Thus, the mean-variance approximation does not cause significant distortions

and provides a “good recommendation” on how to quantify a firm’s risk aversion even if its utility

function is unknown (Van Mieghem [26]).

Our modeling setup and assumptions require some discussion. In trying to come up with a realistic

model of the maintenance relationship, we do not venture beyond a single-period steady-state setup

with moral hazard, since there are enough complexities and richness in our model to merit close

inspection before extending the findings to other settings. Indeed, even the centralized problem in the

absence of agency issues is quite complex, so we use the most basic version of it (i.e., unlimited repair

capacity, stationary failures, etc.), and relaxing any of these assumptions is likely to obscure our findings

regarding contracting issues. A single-period, steady-state assumption is a plausible simplification

of reality, whereas more complex multi-echelon, multi-indenture models are applied in practice to
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determine actual spare part deployments. Due to uncertainties in fleet deployment schedules and

future support budgets, the DoD is unwilling to sign long-term contracts (i.e., for the life of the

program), and instead typically contracts on a shorter-term basis with annual adjustments. Suppliers

typically conduct multi-period budget planning using a single-period steady-state model on a rolling-

horizon basis. Although pre-contractual bargaining or renegotiation may exist in practical situations,

we do not formally model them and assume that the prime offers take-it-or-leave-it contracts to the

suppliers.6 With respect to the moral hazard elements of the model, we assume that neither inventories

of spare subsystem parts nor efforts are observable but that backorders and total costs are observable

and contractible. Observability of backorders is a natural assumption because the system becomes non-

operational during the backorder, as is clearly observable. Furthermore, our assumption with respect

to observability of the total cost implies that sharing of information regarding costs happens on the

aggregate level (i.e., for the program budget) rather than at a detailed level (i.e., for subsystem spare

parts). This assumption is in the spirit of the PBL arrangement (see above) in which the buyer is

not concerned with verifying details about how availability was achieved (e.g., through a combination

of cost-reduction efforts and subsystem spare parts investment), which is typical in related papers

(see, e.g., Bajari and Tadelis [2]). Of course, it is often hard to measure or define product-specific

maintenance costs and some degree of arbitrariness is inevitable in this process. Furthermore, we

assume that there is uncertainty with respect to the total cost for maintaining each subsystem but not

with respect to its unit cost. This is a plausible assumption in the maintenance industry where the unit

cost of spares is easy to estimate based on maintenance and procurement information but where fixed

costs for support (e.g., warehouses, overhead, etc.) are largely uncertain because these costs depend

greatly on where and how systems are deployed, which is usually unknown a priori. In our discussions

with companies involved in such contracts we found that the uncertainty with respect to fixed costs is

of greater importance during the maintenance stage whereas the uncertainty with respect to unit cost

might be more important during the product acquisition stage, which we do not model.

Under the assumptions we have laid out so far, supplier i who is given a contract Ti(Ci, Bi) has the

following expected utility:

E [Ui (Ti(Ci, Bi)−Ci − ψi(ai)) | ai, si] = wi − (1− αi)(cisi − ai)− viE [Bi | si]− kia2i /2 (4)

−ri(1− αi)
2V ar[εi]/2− riv2i V ar[Bi | si]/2.

Similarly, the prime’s expected utility E[U0] is

6We note that our model could be used in a “what-if” manner to support analysis of such negotiations.
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E [U0 (−
Pn
i=1 Ti(Ci, Bi)) | {ai, si}] = −

Pn
i=1 (wi + αi(cisi − ai)− viE [Bi | si] (5)

+r0α
2
iV ar[εi]/2 + r0v

2
i V ar[Bi | si]/2

¢
where we have assumed independence across subsystems, i.e., Cov[εi, εj ] = Cov[Bi, Bj ] = Cov[εi, Bi] =

Cov[εi, Bj ] = 0 for i 6= j. Our final assumption is that each supplier has reservation utility (in

expectation) U i which we normalize to zero, U i = 0. The sequence of events (which is standard for

moral hazard problems) is as follows: (1) the prime offers the suppliers take-it-or-leave-it contracts, (2)

the suppliers take cost reduction measures and set the base stock levels of their spares inventory, (3)

costs and backorders are realized, and (4) suppliers are compensated according to the contract terms.

3.2 First-Best Solution: Complete Observability of Suppliers’ Actions

In this section we analyze the problem under the assumption that suppliers’ actions {ai, si} are both

observable and contractible, a situation often referred to as the first-best solution because the prime

avoids incentive problems by dictating {ai, si}. This is the benchmark case against which we can

evaluate the efficiency of other contracts. The prime’s problem is

(AFB) max
{wi,αi,vi,ai,si}

E [U0 (−
Pn
i=1 Ti(Ci, Bi)) | {ai, si}] ,

s.t.
Pn
i=1E [Bi | si] ≤ bB0, (AR)

E [Ui (Ti(Ci, Bi)−Ci − ψi(ai)) | ai, si] ≥ 0. (IRi)

The expected utility expressions are given by (4) and (5). (AR) is the system availability require-

ment constraint expressed in terms of backorders, and (IRi) is the individual rationality constraint

that ensures supplier i’s participation. This program can be solved in two steps. First we determine

the optimal wi for each choice of (ai, si) satisfying (IRi), thus making wi a function of those variables,

wi(ai, si). As is typical in such problems, the prime sets fixed payments {wi} in order to extract all

of the surplus from the suppliers. Then we optimize over all (ai, si) that satisfy (AR). The following

proposition specifies the first-best solution.

Proposition 1 When the suppliers’ decisions are observable and contractible, the optimal contract

specifies the following supplier decisions (ai, si):

ai = 1/ki, (6)
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si(θ) = F
−1
i (max (1− ci/θ, 0)) , (7)Pn
i=1E [Bi | si(θ)] = bB0. (8)

The solution {aFBi }, θFB and {sFBi } =
©
si(θ

FB)
ª
is unique and is obtained by offering a non-

performance-based, risk-sharing contract such that vi = 0 and

αFBi = ri/ (r0 + ri) . (9)

Supplier i’s expected utility is zero, whereas the prime’s expected utility is
Pn
i=0

³
−cisFBi + 1

2ki
− 1

2
r0riV ar[εi]
r0+ri

´
.

We note that {sFBi } and θFB are determined simultaneously from equations (7) and (8). They can

be found using a greedy algorithm similar to the one used in calculating optimal inventory stocking

levels for each part in classical service parts problems (Sherbrooke [24]). The optimal risk-sharing rule

(9) is a modified version of the Borch rule (see Bolton and Dewatripont [3]). It is useful to consider

extreme cases. If ri = 0, i.e., if supplier i is risk-neutral, αi = 0, corresponding to the FP contract;

since the prime is risk-averse whereas the supplier is not, the prime transfers all risks to the supplier.

At the opposite end, consider r0 = 0, i.e., the prime is risk-neutral. In this case αi = 1, meaning that

the C+ contract is used. Although it may sound counterintuitive that the C+ contract achieves the

first-best solution, we should recall that incentives are not an issue in the current setting because the

suppliers’ actions are observable and contractible. The role of the C+ contract is merely to mitigate

the suppliers’ reluctance to participate in the support relationship (the IR constraint), which requires

an extra payment by the prime. When both r0 and ri are positive, the prime and the supplier i share

the cost-related risk according to (9), i.e., based on the value of the supplier’s risk aversion relative to

that of the prime.

We now focus on the prime’s expected utility in which there are three terms for each supplier. The

first term (−cisFBi ) is the cost of sFBi units in the supplier’s inventory. The second term 1/2ki is the

net savings due to the supplier’s cost reduction efforts. The last term 1
2
r0ri
r0+ri

V ar[εi] can be interpreted

as the joint risk premium between supplier i and the prime, which is positive only if they are both

risk-averse. If r0 > 0 and ri = 0, the prime can protect herself perfectly from the cost-related risk by

offering an FP contract (α = 0), and the supplier, who is risk neutral, absorbs all risks. If, on the

other hand, r0 = 0 and ri > 0, a C+ contract is used to facilitate each supplier’s participation while

the risk-neutral prime absorbs all risks. When both parties are risk-averse, there is a trade-off between

the prime’s desire to protect herself (represented by the term r0α
2
iV ar[εi]/2 in (5)) by decreasing αi

and reducing each supplier’s risk premium (ri(1 − αi)
2V ar[εi]/2 in (4)) by increasing αi, resulting in

an inefficiency. The importance of risk allocation among the prime and the suppliers in our model
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is consistent with observations in the related literature that “in recent years, defense contracting has

come to be seen as a problem of optimal risk sharing” (see Cummins [10]).

Unlike cost-related risk, performance risk poses no trade-off between the prime and the suppliers:

it can be taken away by setting vi = 0. In other words, all parties mutually benefit without the perfor-

mance clause in the first-best contract; if vi > 0, a risk-averse supplier demands a premium due to the

possible penalty associated with the stochastic realization of backorders, so a risk-averse prime faces

income fluctuations. Both concerns disappear when vi = 0 without incurring extra cost because the

observability of the suppliers’ actions {si} implies that the actions can be perfectly enforced even with-

out performance incentives. Thus, the prime’s attitudes toward cost and performance uncertainties are

different. This key observation will continue to hold even when the suppliers’ actions are unobservable.

3.3 Private Actions: The Suppliers’ Problem

We now turn to the situation in which suppliers’ actions are unobservable to the prime — which is to be

expected in a PBL environment. Given the contract parameters (wi,αi, vi), supplier i chooses (ai, si)

that maximize his expected utility (4). That is, he solves

max
ai,si

wi − (1− αi)(cisi − ai)− viE [Bi | si]− kia2i /2− ri(1− αi)
2V ar[εi]/2− riv2i V ar[Bi | si]/2.

A distinctive feature of this problem is that V ar[Bi | si] is a function of the decision variable si. This is a

departure from the common assumption found of most moral hazard models in economics that only the

mean of the performance measure is affected by the decision variable. In our model the dependence of

V ar[Bi | si] on si is unavoidable. As will become clear, this feature complicates the analysis significantly

and at the same time creates new dynamics. It turns out that the supplier’s problem is generally not

quasiconcave in si, but unimodality can be guaranteed under a mild parametric assumption.

Proposition 2 Suppose αi < 1 and vi[1 − F (0)] ≥ (1 − αi)ci. In this scenario there is a unique

interior solution to the supplier’s problem in which supplier i chooses optimal a∗i and s
∗
i such that

a∗i = (1− αi) /ki, (10)

vi[1− Fi(s∗i )] + riv2i Fi(s∗i )E[Bi | s∗i ] = (1− αi)ci. (11)

Since αi and vi are determined by the prime, the condition in Proposition 2 has to be checked

against the optimal solution. We have verified through numerical examples that the condition is

mild in the sense that it is violated only under extreme parameter settings (e.g., when the prime’s risk

aversion measure r0 is orders of magnitude greater than that of the supplier, ri). We henceforth assume
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that the condition is always satisfied. From the Proposition we obtain the following result, which offers

an intuition into the impact of contract parameters on optimal decisions.

Corollary 1 Suppose conditions in Proposition 2 hold. Then

(i) ∂s∗i /∂ri > 0, ∂a
∗
i /∂ri = 0.

(ii) ∂s∗i /∂αi > 0, ∂a
∗
i /∂αi < 0.

(iii) ∂s∗i /∂vi > 0, ∂a
∗
i /∂vi = 0.

From (i) we see that the more risk-averse the supplier, the greater the optimal inventory position

he chooses. By investing in more spares, the supplier cuts down not only the number of expected

backorders but also the likelihood of backorders (in short, he increases the fill rate), reducing the

variance associated with backorders. Hence, a risk-averse supplier is inclined to increase si to protect

himself from performance uncertainty.7 To put it another way, there exists a preventive measure by

the supplier to avoid the risk of backorders (increase si) but not the cost risk, because the optimal cost

reduction effort is unaffected by the degree of risk aversion, which is apparent from (10).8

Parts (ii) and (iii) in Corollary 1 explain optimal supplier responses to the contract terms αi and vi

which have some intuitive properties. If the prime increases the reimbursement ratio αi, the supplier

becomes less concerned with cost overruns and hence does not exert as much cost reduction effort as

he might otherwise (∂a∗i /∂αi < 0). At the same time, his perceived effective unit cost of inventory

((1−αi)ci on the right-hand side of (11)) decreases, making it desirable to stock more inventory. With

respect to the backorder penalty vi, the larger vi means a stronger incentive to decrease backorders

so that s∗i increases. However, the performance penalty does not affect a
∗
i , as it serves only as an

incentive to reduce backorders, not costs. It is important to note that this predicted behavior is, in

part, a consequence of our model assumptions in which supplier effort affects only cost and that cost

uncertainties and product performance (reliability) risk are unrelated (i.e., independent).

3.4 Private Actions: The Prime’s Problem

Anticipating that the suppliers will respond by choosing {ai, si} according to (10) and (11), the prime

selects contract terms {wi,αi, vi} that achieve minimal total disutility subject to the backorder con-

straint. With the right incentives, each supplier will voluntarily choose (ai, si) that match the prime’s

expectation, even though there is no way to verify the suppliers’ decisions directly. This voluntary

7This result is the opposite of the conclusion in the risk-averse newsvendor model (Chen and Federgruen [6]), which
predicts that the optimal inventory level decreases with the degree of risk aversion.

8This result is due to the assumption that the stochastic term εi enters additively into the supplier’s total cost
Ci = cisi − ai + εi; the effort reduces the mean of Ci but not the variance. Under this standard assumption the supplier
has no control over the variability of cost, so his attitude toward risk does not factor into the decision about a∗i .
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action is expressed in terms of incentive compatibility (IC) constraints, which are added to the prime’s

problem formulation as follows.

(ASB) max
{wi,αi,vi}

E [U0 (−
Pn
i=1 Ti(Ci, Bi)) | {a∗i , s∗i }] ,

s.t.
Pn
i=1E [Bi | s∗i ] ≤ bB0, (AR)

E [Ui (Ti(Ci, Bi)− Ci − ψi(ai)) | a∗i , s∗i ] ≥ 0, (IRi)

(a∗i , s
∗
i ) ∈ argmaxE [Ui (Ti(Ci, Bi)− Ci − ψi(ai)) | ai, si] . (ICi)

Similar to the first-best case, it can be demonstrated that (IRi) constraints bind at the equilibrium

so that we can simplify the problem by solving for a value of wi that leaves suppliers with zero profits.

Using the Lagrange multiplier θ for the backorder constraint, we can write n individual Lagrangian

functions. Moreover, it is convenient to convert the Lagrangian into a function of (αi, si, θ) rather than

a function of (αi, vi, θ) using the monotonicity result ∂s
∗
i /∂vi > 0 from Corollary 1. Using (10), we

obtain

Li(αi, si, θ) = cisi + θE [Bi | si]− (1− αi)/ki + (1− αi)
2/ (2ki) +

¡
r0αi

2 + ri(1− αi)
2
¢
V ar[εi]/2

+ (r0 + ri) [vi(αi, si)]
2V ar[Bi | si]/2, (12)

whereby

vi(αi, si) =

⎧⎨⎩
(1−αi)ci
1−Fi(si) if ri = 0,

1−Fi(si)
2riFi(si)E[Bi | si]

³
−1 +

q
1 + 4rici(1−αi)Fi(si)E[Bi | si]

[1−Fi(si)]2
´

if ri > 0,
(13)

from (11). We readily notice that the optimal performance incentive vi(αi, si) is a decreasing function

of αi; in order to have the supplier choose si, the prime may decrease vi while increasing αi, or vice

versa. Thus, vi, the incentive to increase the stocking level, and 1− αi, the incentive to reduce costs,

are complements. This observation plays a key role in a later analysis and will be discussed further.

We denote the optimal solution pairs with superscripts SB, {αSBi , sSBi }. Unfortunately, (12) is

not generally quasiconvex and hence is not necessarily unimodal. The analytical specification of sSBi

is intractable even with αi fixed, requiring numerical analysis. To circumvent this difficulty and gain

additional insights, in the next section we focus on several special cases and later analyze the original

problem numerically.
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Contract
type

No performance-based compen-
sation (v = 0)

Performance-based compensa-
tion (v > 0)

Pure per-
formance
(α = w = 0)

The customer is unable to extract all
supplier surplus.

Fixed price
(α = 0)

While achieving the first-best cost
reduction effort aFB, the supplier is
incentivized to reduce s as much as
possible.

First-best can be achieved with the
appropriate choice of w and v under
risk neutrality. Second-best is not
achieved under risk aversion (α > 0
in general).

Cost plus
(α = 1)

The supplier exerts zero cost reduc-
tion effort (a = 0) and is indifferent
toward s.

The supplier exerts zero cost reduc-
tion effort (a = 0) and tries to in-
crease s as much as possible.

Table 1: Incentive effects of various contract combinations in the presence of performance constraint.

3.5 Cost Plus (C+) vs. Fixed Price (FP) vs. Performance Contracts

Before delving into the analysis of optimal contracts, we pause here to evaluate the effectiveness of the

most widely used contract forms, C+ (αi = 1, vi = 0) and FP (αi = vi = 0), and compare them with

the performance contracts (vi > 0). Let us first consider the traditional cost reimbursement contracts,

C+ and FP. Consistent with other literature analyzing and comparing these contracts (see Scherer [22]),

our model indicates that they are polar opposites when it comes to providing cost reduction incentives.

With the FP contract a supplier becomes the residual claimant and hence it is in his interest to reduce

costs as much as possible. In terms of the risk, the FP contract gives perfect insurance to the prime

because the supplier bears all cost-related risks (i.e., cost under- or overruns). In contrast, the C+

contract shifts all risks to the prime, as she has to reimburse whatever the realized cost may be. At

the same time, the C+ contract provides no incentive for the supplier to reduce costs.9

Despite the prevalence of C+ and FP contracts in practice, they do not induce the desired supplier

behavior when a performance constraint has to be taken into account and the prime cannot observe

suppliers’ actions. This becomes clear after inspecting the supplier’s utility function (4). With the FP

contract, it is in the supplier’s interest to reduce not only the effort ai but also the inventory si as much

as possible, thus violating the minimum availability desired by the prime. A C+ contract, on the other

hand, has the effect of making the supplier indifferent to the choice of si. Clearly, inducing proper

actions requires performance incentives. The simplest contract in this category (the “pure performance

contract”) has αi = wi = 0 and vi > 0. Indeed, such a contract can induce the supplier to choose the

optimal inventory level si but the prime is unable to extract profits. Interestingly (to be demonstrated

in the following section) a contract with wi > 0 and vi > 0 can achieve the first-best solution, but only

9For this reason, contracts with 0 ≤ αi < 1 are often called incentive contracts (see Scherer [22]), a term that refers to
incentives to reduce costs rather than performance incentives.
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if all parties are risk-neutral, because proper risk sharing requires αi > 0. Thus, the optimal contract

will have all three components: a fixed payment, a cost-sharing clause, and a performance incentive.

Table 1 summarizes supplier behavior under all of these contract combinations.

4 Analysis

4.1 Risk-Neutral Firms

Many difficulties associated with the analysis disappear if all suppliers and the prime are risk-neutral,

which may be the case in practice if the prime and the suppliers are all very large, well-diversified

corporations. In this case, as we show below, even when actions are unobservable, the first-best solution

is achieved with a contract that is a simple combination of FP and performance-based components.

This solution highlights the performance allocation aspect of our problem at the expense of ignoring

the issue of risk-sharing.

Proposition 3 With r0 = r1 = ... = rn = 0, the first-best solution is achieved if and only if

(i) α1 = α2 = ... = αn = 0,

(ii) wi = cis
FB
i + θFBE[Bi | sFBi ]− 1/2ki, and

(iii) v1 = v2 = ... = vn = θFB.

The supplier i’s expected utility is zero while the prime’s expected utility is
Pn
i=0

¡
−cisFBi + 1/2ki

¢
.

The preceding result is not entirely new: it is often the case in other principal-agent models that the

first-best solution is achieved with an FP/performance contract between two risk-neutral firms when

there is only one effort variable (for example, see Bolton and Dewatripont [3]). It turns out that having

two effort variables ai and si as well as multiple suppliers leads to the same result. To see why, note

that the prime can (1) choose αi to induce a
∗
i = a

FB
i because the supplier’s response a∗i is a function

of αi only and (2) given this αi, choose vi to induce s
∗
i = sFBi without incurring any inefficiencies

associated with risk sharing. Thus, αi and vi under risk neutrality serve only as incentives and not as

instruments for providing insurance/sharing risk.

There is, however, a major deviation from the classical analysis involving just one supplier. It

is captured in part (iii), which can be interpreted to mean that every backorder from heterogeneous

subsystems has equal importance regardless of the subsystem unit price ci so performance incentives

are equal across suppliers. In our additively separable backorder model (B0 =
Pn
i=0Bi) this makes

intuitive sense, because the prime does not discriminate between a backorder of a $1,000 item and that

of a $10 item: i.e., each item contributes equally to the downtime of the system. However, it would

be erroneous to conclude that item unit cost {ci} has no effect on determining the backorder incentive
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θFB because it determines θFB indirectly through the (AR) constraint. The fact that penalty rates are

linked across suppliers continues to hold in the risk-averse case, although the equality as in (iii) can no

longer be sustained because of suppliers’ varying attitudes toward risk. The policy implication of this

result is to treat all suppliers equally with respect to the performance incentive.

4.2 Risk-Averse Firms: Cases with Partial Observability

As the next step in gaining insights we now analyze the problem under a simplifying assumption that

either {si} or {ai} are observable and contractible, but not both. As will become evident shortly,

these special cases serve as bounds on the optimal contract parameters under conditions of complete

unobservability and hence are useful in understanding the structure of the problem. We shall first

consider the case when {si} are observable but {ai} are not. This may happen if suppliers utilize

consignment inventory management for all subsystems (which is sometimes the case in practice) so

that inventories are visible to the prime. As si can now be dictated by the prime, there is no need to

the provide the performance incentive vi, i.e., the optimal contract has vi = 0 for all i. The prime’s

problem (A0SB) then becomes

(A0SO) min
{αi,si}

Pn
i=1

¡
cisi − (1− αi)/ki + (1− αi)

2/ (2ki) +
¡
r0α

2
i + ri(1− αi)

2
¢
V ar[εi]/2

¢
,

s.t.
Pn
i=1E [Bi | si] ≤ bB0.

The optimal contract (denoted by the superscript SO) is as follows.

Proposition 4 When {si} of all suppliers are observable to the prime but {ai} are not, it is optimal

to specify the contract terms according to

(i) αSOi = kiri/ (1/V ar[εi] + ki(r0 + ri)) < αFBi ,

(ii) wSOi = (1− αSOi )cis
FB
i − (1− αSOi )2/ (2ki) + ri(1− αSOi )2V ar[εi]/2, and

(iii) vSOi = 0.

sSOi = sFBi is imposed on supplier i while the contract terms induce the cost reduction effort aSOi =

(1 + kir0V ar[εi]) /
¡
ki + k

2
i (r0 + ri)V ar[εi]

¢
.

Even though one of the supplier’s actions is observable to the prime, we see that the first-best

solution cannot be achieved and hence there are inefficiencies due to incentive issues. Namely, there is

less cost sharing than is first-best optimal because the prime has to give more incentive to reduce costs

than would have been the case after offering αFBi , so the prime transfers more risk to suppliers by cutting

down the cost reimbursement αi. We see that α
SO
i exhibits intuitive properties: as V ar[εi] approaches

infinity, αSOi increases asymptotically to the first-best optimal risk sharing ratio αFBi because the
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supplier’s effort ai is buried in huge uncertainty and there is no need to provide an extra cost reduction

incentive above the level required by the first-best solution. It is also clear that αSOi moves toward

zero (toward an FP contract) as V ar[εi] decreases. The relative risk aversion ratio r0/ri is another

major determinant of αSOi which is similar to the first-best case: if the ratio is small, αSOi is on the

C+ side (closer to 1) whereas a large ratio implies that αSOi is on the FP side (closer to 0). In other

words, the more risk-averse a firm is compared to its counterpart (on a relative scale that depends on

the parameter values), the more it is protected from risk.

We note that, quite interestingly, αSOi can be derived from an alternative assumption that (ai, si) are

both unobservable but V ar[εi] À V ar[B i| si]. In this scenario performance uncertainty is negligible

compared to cost uncertainty, so the focus of incentives is on driving down costs, not on improving

performance. The situation is different with regard to {vi}, however, since the prime needs to utilize the

performance penalty rate (vi > 0) in order to have the suppliers choose the desired inventory positions

{si}.

The other possibility is when {ai} of all suppliers are observable but {si} are not. We denote the

optimal solution in this case with the superscript AO. The prime’s problem becomes

(A0AO) min
{ai,αi,si}

Pn
i=1

³
cisi − ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
V ar[εi]/2 + (r0 + ri) [vi(αi, si)]

2 V ar[Bi | si]/2
´

s.t.
Pn
i=1E [Bi | si] ≤ bB0

We note that the link between ai and αi is decoupled but that the link between (αi, si) and vi remains.

It is clear that aAOi = aFBi as in (6) but that tractable expressions for αAOi and sAOi do not exist.

Despite this shortcoming, αAOi can be evaluated analytically in the special case with only one supplier,

a scenario which we present next.

4.3 Single Risk-Averse Supplier

In this subsection we assume that there is only one supplier, so we drop the subscript i. Not only

is such a firm-to-firm setting consistent with a majority of supply chain contracting models in the

literature, but it is also one of the commonly observed arrangements found in PBL practice. For

example, a setting in which manufacturing of a single key component is outsourced or one where a

military customer contracts directly with a subsystem supplier fits this description (e.g., the Navy’s

PBL contract with Michelin for tires or commercial airline “power by the hour” contracts with engine

manufacturers like GE and Rolls Royce). In addition, there are instances in which an intermediary acts

as a wholesaler of a subsystem. If the intermediary has a performance contract with the subsystem

provider, he becomes the “prime” in our model. As we will shortly see through numerical experiments,
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insights from this simpler model continue to hold for the general assembly structure with multiple

suppliers.

With a single supplier, it seems natural for the prime to set incentives in a way that E
£
B | sSB

¤
= bB0

holds. In particular, this would be the case if the prime’s disutility was increasing monotonically in

s, which is an intuitive property. Unfortunately, this intuition is not entirely correct. As noted in

the previous section, the analysis of risk-averse firms is complicated by the non-quasiconvexity of the

performance risk premium term (r0 + r) v(α, s)
2V ar[B | s]. For a fixed α, numerical plotting shows that

this term may exhibit quasiconcavity in s (as opposed to the desired quasiconvexity), implying that the

Lagrangian (12) can be bimodal. Thus, the prime may prefer to have more inventory than follows from

E
£
B | sSB

¤
= bB0. This, however, happens only in extreme cases when the prime is several orders of

magnitude more risk-averse than the supplier and therefore wants to protect herself from performance

risk with a very large inventory. In most of our numerical examples with a wide range of parameter

combinations the prime’s objective function was, indeed, increasing monotonically in s. Therefore, we

will henceforth assume that the problem parameters are such that the backorder constraint is binding,

which effectively requires the optimal inventory position sSB to satisfy E
£
B | sSB

¤
= bB0. Given that

v is completely determined by α and s according to (13), the only variable to be determined is the

cost-sharing parameter α so that our problem is simplified to a one-dimensional optimization.

Lemma 1 The prime’s Lagrangian (12) is convex in α when s is fixed.

It follows that there is a unique αSB that minimizes the prime’s disutility. There exists a closed-

form solution, but it is quite complex (the first order condition for α is a cubic equation; see proof

in the Appendix), and inspection alone does not provide ready insights. Instead, we employ implicit

differentiation to gain a better understanding. Namely, we focus on understanding how the parameters

of the contract change when cost uncertainty V ar[ε] changes. There are several motivations behind

this analysis. First, cost uncertainty is of primary importance in practice because it is often harder to

estimate than performance uncertainty. Second, there are significant changes in cost uncertainty over

the product life cycle (while performance uncertainty is relatively more stable) and therefore there is a

need to understand how contractual terms would change in response. Finally, as will be seen shortly,

by varying the cost uncertainty we are able to obtain insights that sometimes differ fundamentally from

insights in the classical literature on moral hazard problems with multitasking.

Proposition 5 Suppose r0, r > 0 and that s
SB is fixed by the backorder constraint E

£
B | sSB

¤
= bB0.

Then αSO < αSB < αAO and vSB > vAO > vSO = 0. Further, let è(r0, r) = ∂L/∂α|α=αFB where L is

the prime’s Lagrangian defined in (12). Function è(r0, r) increases in the ratio r/r0 and crosses zero
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Figure 2: è(r0, r) > 0, the supplier is relatively more risk-averse than the prime.
exactly once. The optimal contract parameters αSB and vSB are related to αFB and vFB as follows.

(i) If è(r0, r) > 0, αSB < αFB, dαSB/d(V ar[ε]) > 0, and dvSB/d(V ar[ε]) < 0.

(ii) If è(r0, r) = 0, αSB = αFB, vSB = vFB, and dαSB/d(V ar[ε]) = dvSB/d(V ar[ε]) = 0.

(iii) If è(r0, r) < 0, αSB > αFB, dαSB/d(V ar[ε]) < 0, and dvSB/d(V ar[ε]) > 0.

First, we note that the optimal cost sharing ratio αSB is bounded above by αAO, the optimal

ratio when the cost reduction effort a is observable. In the current case the effort is not observable and

therefore the prime has to reduce α to provide more incentives to reduce costs. The side effect is that the

supplier’s effective unit cost (1−α)c increases, thus requiring a higher performance incentive v to achieve

the desired inventory position. Therefore, vSB > vAO. Second, we note that αSB is bounded below

by αSO, which we derived by assuming that the inventory position s is observable. When inventory is

not observable, the prime needs to provide a better performance incentive, vSB > vSO = 0, but doing

so exposes both the prime and the supplier to performance risk thus creating inefficiency that can be

mitigated by increasing α. Higher α reduces the effective unit cost (1−α)c for the supplier and allows

him to achieve the inventory position sSB with a smaller v. Hence, increasing α above αSO achieves

the optimal solution.

A comparison of the second-best solution with the first-best solution is more complex. It is instru-

mental to consider two cases based on the relative risk aversion of the prime and the supplier separately.

Since function è(r0, r) increases in the ratio r/r0 and crosses zero exactly once, the condition è(r0, r) > 0
in (i) can be interpreted as r Â r0, where the symbol “Â” means that the supplier is relatively more

risk-averse than the prime. Similarly, è(r0, r) < 0 can be interpreted as r ≺ r0, whereby the prime is
relatively more risk-averse than the supplier. We first consider the former situation (which may arise

if the prime is a bigger and more diversified company than the supplier). We believe that this case

is more natural in practice. Figure 2 illustrates the results in (i). We make the following observa-

tions from these figures. First, αSB < αFB, and the unobservability of effort and inventory results
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in less cost reimbursement than under the first-best solution. Second, αSB increases with V ar[ε] and

asymptotically approaches αFB. With a large cost uncertainty, the risk-averse supplier is reluctant to

participate in the trade, so the prime has to provide insurance by reimbursing a large proportion of the

supplier’s costs. Thus the supplier has less incentive to make efforts to reduce costs. On the other hand,

when V ar[ε] is small, providing cost-reduction incentives becomes more important. Third, the gap

between αSB and αSO decreases in V ar[ε]. This gap can be interpreted as the additional inefficiency

due to performance risk. When cost uncertainty is large, the performance uncertainty V ar[B | sSB] is

negligible and the gap between SB and SO disappears. The gap between αSB and αAO is interpreted

similarly. Finally, vSB decreases with V ar[ε], asymptotically approaching v(αFB, sFB). With higher

cost uncertainty, the performance incentive is lowered.

Overall, we observe that αSB and vSB move in the opposite directions as V ar[ε] increases because

the prime increases α to mitigate the supplier’s risk (we recall that the supplier is more risk-averse

than the prime in the current setting), and as a result, the supplier’s effective unit cost (1 − α)c is

reduced, making it less expensive to stock inventory and allowing for a smaller incentive v. Therefore

increasing 1−α has the same effect on inventory as increasing v; these two incentives are complements

with respect to s. This conclusion is similar to the one presented in Holmström and Milgrom’s [13]

original multitask principal-agent model in which increasing variability in one output leads to weaker

incentives for all outputs. Yet, the mechanism by which we arrive at our conclusion is different.

Specifically, in Holmström and Milgrom [13], raising one effort raises the marginal disutility of raising

another effort, which is not the case in our model (whereby the supplier’s disutilities (1 − α)cs and

ka2/2 are independent of each other). Holmström and Milgrom show that, if an agent has a strong

incentive to perform one task because the result of the other task is difficult to measure (and hence

there is a little incentive to perform it), the agent’s attention is disproportionately directed toward the

former task, since he finds it more costly to exert both efforts. In this case the best course of action for

the prime is to reduce the incentive to perform the former task as well. Another important assumption

in their model is that the outcomes are affected by exactly one effort each, so there is a one-to-one

correspondence between an incentive and an effort. In contrast, our model has an outcome C that is

a function of both a and s via C = cs − a + ε. Increasing the cost reimbursement ratio α because of

large cost uncertainty V ar[ε] produces conflicting reactions by the supplier with respect to a and s,

the former decreasing while the latter increases as described above.

The model closest to ours is found in Bolton and Dewatripont ([3], pp. 223-8) where there is direct

conflict between the tasks, because exerting one effort positively affects one outcome but negatively

affects the other. Despite the similarity in structure, there is no direct correspondence between our

results, because Bolton and Dewatripont compare two tasks performed by one agent and two tasks
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Figure 3: è(r0, r) < 0, the prime is relatively more risk-averse than the supplier.
independently assigned to two agents, a trade-off we do not consider.

Next, we consider the case in which the prime is relatively more risk-averse than the supplier, r ≺ r0
(case (iii) in Proposition 5). Figure 3 is an analog of Figure 2. Compared to the previous discussion,

αSB and vSB exhibit exactly opposite behavior. Now αSB > αFB and αSB decreases in V ar[ε] while

vSB increases in V ar[ε]. This fundamental difference arises because, unlike in the previous case where

insurance was more important for the supplier, it is now the prime who needs protection from risk.

With large cost uncertainty the prime is protected by choosing small α, thereby transferring most of

the risk to the supplier. A nonintuitive consequence of this outcome is that the supplier is incentivized

more to reduce his cost and increase his stocking level when the cost uncertainty is great. Therefore,

the prime’s concern for her own risk protection reverses contractual terms and comparative statics.

The complementarity between 1− αSB and vSB still remains, however: as 1− αSB increases, so does

vSB.We note that results when the prime is more risk-averse than the supplier are somewhat contrary

to what we have come to expect from the existing literature on multitasking where the prime is often

assumed to be risk-neutral.

4.4 Multiple Risk-Averse Suppliers

In this section we present a numerical analysis of the problem with multiple suppliers. We illustrate

our findings via two examples. First, we consider two suppliers that differ by at most one of the

parameters {ri, V ar[εi]}. This example isolates the trade-off between incentives and risk. The second

example is based on actual maintenance data from a fleet of military fighter aircraft. This second data

set illustrates how our model can be applied in practice to support long-term strategic planning and

contract negotiations.
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4.4.1 Example 1: Two Symmetric Suppliers

In this example we assume that all parameter values are symmetric across the suppliers except for either

{ri} or {V ar[εi]}. Default values are μi = σ2i = 10, ci = 1, ki = 0.2, r1 = 0.1, V ar[ε1] = 10, and
bB0 = 4

and a normal distribution of on-order inventory is chosen in keeping with our continuous approximation

for the underlying inventory model. We vary supplier 2’s risk aversion and cost uncertainty r2 and

V ar[ε2] and the prime’s risk aversion r0 in order to observe their effects on (α
SB
i , vSBi ) and (aSBi , sSBi ).

We note that the first-best inventory positions are sFB1 = sFB2 = 8.725. Table 4 (see Appendix)

summarizes the results of varying r2 and r0.

We observe only minimal changes in sSB1 and sSB2 as parameters change, with the greatest change

occurring when r0 is large ((s
SB
2 − sSB1 )/sFB1 = 0.094 = 9.4% distortion when r0 = r2 = 1, r1 = 0.1).

In contrast, αSB2 changes widely (e.g., with r0 = 0.1, α
SB
2 increases from 0.184 to 0.726 as r2 increases

from 0.01 to 1). We also see that αSB1 is essentially unaffected by r2, the risk aversion of the other

supplier. We infer from these observations that suppliers’ efforts {αi} are more flexible in optimizing

contracts because they are not subject to an externality such as the overall backorder constraint, which

limits the ranges of {sSBi }. We also confirm that αSB2 > αFB2 for a relatively large ratio r0/r2, while

the opposite is true for a small ratio r0/r2, just as predicted by Proposition 5 but for a single supplier.

Furthermore, we notice that αSB2 increases monotonically in r2 for small r0 (= 0.01), but we do not

observe the same monotonicity when r0 is large (= 1): α
SB
2 initially decreases from 0.436 to 0.430 but

then increases to 0.539. The explanation is as follows: when r0 is small, increasing α tends to reduce

both the cost and performance premiums (see (12) and (13)). However, when r0 is large, tension exists

between the two risk premium terms; although increasing α reduces the performance risk for both the

prime and the suppliers, it exposes the prime to the risk of greater cost. These two opposing forces

break down the monotonicity.

Next, Table 5 (see Appendix) illustrates the effect of varying V ar[ε2]. Once again we observe that

sSB2 is not very sensitive to changes in V ar[ε2], but that α
SB
2 is. From the table, we see that αSB2 moves

toward αFB2 as V ar[ε2] increases (regardless of the value of r0), confirming the prediction from Proposi-

tion 5 for the single supplier case. In addition, numbers in the table demonstrate that dαSB2 /dr0 > 0 for

small V ar[ε2] whereas dα
SB
2 /dr0 < 0 for large V ar[ε2]. (This can be proven analytically in the single

supplier case, but we omit the derivation.) In other words, when cost uncertainty is relatively low, the

more risk-averse prime moves toward a C+ contract and takes up a larger portion of the cost-related

risk, a nonintuitive result. What actually happens is that the performance premium is more important

in this situation, outweighing the concern for cost-related risks. Clearly, in the presence of performance

risk, the intuition regarding cost sharing is not always straightforward.
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Finally, Table 6 (see Appendix) shows how the optimal contract parameters and the suppliers’

actions vary as the overall backorder constraint changes. In this example, suppliers 1 and 2 are

asymmetric only in their attitude toward risk: r1 = 0.1 and r2 = 1, while r0 = 0.5. As expected,

vSB1 and vSB2 decrease as bB0 increases, since a less stringent backorder constraint allows for smaller
inventories and hence reduces the need for performance incentives. Changes in αSB1 and αSB2 are

relatively small. We see that distortion in {sSBi } becomes larger as the constraint is relaxed (measured

by the quantity (sSB2 − sSB1 )/sFB1 , it grows from 2.94% at bB0 = 1 to 9.75% at bB0 = 7). Intuitively, this
happens because the less stringent backorder constraint results in a larger range in which inventories

can be adjusted without violating the constraint. However, the magnitude of the distortion is still

small, confirming our previous observation that the presence of the backorder constraint limits the

prime’s contract parameter choices (α and v) such that they induce the base stock levels to be close to

the first-best values {sFBi }.

4.4.2 Example 2: Actual Data for a Fleet of Military Aircraft

Our second numerical example is based on a real-life maintenance data for a fleet of military fighter

aircraft. A total of N = 156 aircraft are deployed in the fleet. We obtained data on unit costs, daily

failure rates and repair lead times for a representative collection of 50 line replaceable units (LRUs). To

utilize our model we aggregate data into five subsystem groups: avionics (a), engines (e), landing gear

(l), mechanical (m), and weapons (w), based on descriptions of each part. We employ the following

technique to obtain costs, failure rates and lead times for these subsystems. First, we assign each part

to one of the groups, and compute the subsystem’s mean inventory on-order as μi =
Pni
j=1 λjLj , where

i ={a,e,l,m,w} and ni = the number of parts within subsystem i. Thus, we treat each subsystem as a

“kit” which is replaced whenever any part within it fails. Since, in practice, only failed items would be

replaced in response to a subsystem failure, summing the unit costs of the parts to obtain the unit cost of

the subsystem (i.e., ci =
Pni
j=1 λjcj) would undoubtedly overestimate the total capital invested in each

subsystem. Therefore, we introduce a correction by computing the effective unit cost that is weighted

by the demand rate, ci =
³Pni

j=1 λjcj

´
/
Pni
j=1 λj . In other words, we give less weight to the value of

parts that rarely fail and give more weight to the value of parts that frequently fail. Alternatively we

could view the problem where the cost of a failing part kit is equal to the demand-weighted average

cost, i.e., weighted over all parts in the kit.

The first row of Table 2 lists computed values of {ci} using our aggregation technique. To verify that

this approach is reasonable, we compare the amounts of investment in each subsystem
³Pni

j=1 cjsj

´
predicted by our model with two benchmarks. The results are shown in Table 2. The first benchmark,

which we call the “2-echelon, disaggregated” model, has the solution computed using a proprietary
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Subsystem avionics (a) engine (e) landing gear (l) mechanical (m) weapons (w)

ci (in $1,000) 148.6 9.2 27.5 12.1 87.7

ki (×10−3) 0.336 5.435 1.818 4.132 0.570

μi 128.20 19.36 13.72 54.61 66.61

Total investment ($M) with availability target of 95%

2-echelon, disaggregated 21.461 0.381 1.012 1.437 8.305

1-echelon, disaggregated 19.641 0.295 0.772 0.973 7.592

1-echelon, aggregated 18.872 0.258 0.495 0.811 6.139

Table 2: Choices of contract parameters.

commercial algorithm from MCA Solutions, Inc. that optimizes over multiple echelons and indentures

and considers each part-location directly.10 The second benchmark is called the “1-echelon, disaggre-

gated” model; its solution is computed using a classical greedy algorithm, but each LRU is treated as

a separate part. The difference between these two benchmarks is that the former exploits the multi-

echelon nature of the model, whereas the latter does not. Finally, we have the “1-echelon, aggregated”

model, which uses our aggregation technique. We observe that the aggregated model results in an

investment dollar amount that is quite close to those amounts generated by the disaggregated mod-

els, especially in terms of the relative investment distribution among the subsystems. We note that

the aggregated model underestimates the investments required due to the benefit of the risk pooling

associated with treating parts as a kit in one location (the same logic applies when the “1-echelon, dis-

aggregated” model is compared to the “2-echelon, disaggregated” model). This comparison indicates

that our aggregation methodology is quite reasonable for the purpose of predicting how a collection of

first-tier suppliers would allocate inventory investment and assume risk in response to contract terms

proposed by the prime. In particular, our model could be used in the context of a hierarchical solution

whereby the model introduced in this paper would predict how risk would be allocated between the

prime and the suppliers as well as the relative investments that each supplier would make (in total) to

provide the prime with the required system availability, given the terms of a proposed contract. The

actual deployments across multiple parts and locations could then be determined in a second phase

where commercial software such as MCA’s SPO system could be used to optimize the allocation of each

supplier’s total inventory investment subject to their overall subsystem backorder constraint. Various

ownership and control structures could also be accommodated by running the analysis separately for

each structural alternative of the service supply chain. This approach is consistent with our obser-

vations of the current approach that primes, customers, and subsystem suppliers are taking as they

engage in performance-based contract negotiations.

Table 2 summarizes the computed values of {ki}, along with {ci} and the subsystem’s mean in-

10http://www.mcasolutions.com/
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p
V ar[εi]/E[εi] = 0.05

p
V ar[εi]/E[εi] = 0.2

i a e l m w a e l m w

αSBi 0.566 0.087 0.407 0.267 0.462 0.630 0.096 0.846 0.293 0.724

vSBi 65.20 213.61 57.56 134.90 64.04 58.15 209.90 24.31 118.60 41.34

aSBi 1,285 168 326 201 943 1,099 166 84 171 484

sSBi 126.31 27.26 18.29 66.98 69.90 126.20 27.24 18.39 66.95 70.05bAi 96.46% 99.96% 99.88% 99.91% 98.80% 96.42% 99.96% 99.88% 99.91% 98.83%

IIRi 18,769 250 503 810 6,129 18,753 250 505 810 6,143

NCRi 1,007.46 91.31 229.51 117.63 689.88 895.88 91.16 78.13 110.60 417.76

CRPi 271.98 0.21 61.04 1.98 169.81 4,252.59 3.35 225.61 25.72 1,795.11

PRPi 467.17 7.76 17.94 20.96 176.08 375.26 7.58 3.02 16.40 71.33

Table 3: Optimal contract terms and suppliers’ actions. The dollar figures are in thousands. IIR stands for investment in
resources and is equal to cis

SB
i . NCR is −aSBi + 1

2
ki(a

SB
i )2, the net cost reduction. CRP is the residual cost risk premium,

1
2 (r0(α

SB
i )2 + ri(1− αSBi )2)V ar[εi], and PRP is the residual performance risk premium,

1
2 (r0 + ri)(v

SB
i )2V ar[Bi|sSBi ].

ventory on-order {μi} inferred from the data. To determine values of parameters {ki} and {V ar[εi]},

we use the following approach: for each subsystem, we assume that the fixed cost is 100 times higher

than the (effective) unit cost ci and that the maximum dollar amount of cost reduction aFBi = 1/ki

is 20% of the fixed cost. For the sake of simplicity, we also assume that the coefficient of variationp
V ar[εi]/E[εi] is the same across suppliers. We infer the risk aversion coefficient for each subsystem

provider from the market capitalization of a representative manufacturer of such a subsystem. For

example, if Boeing is chosen as the prime and GE as the engine manufacturer, we calculate the risk

aversion ratio of r0/re ' 7 since GE’s market capitalization is roughly 7 times that of Boeing (see

justification for using company size as a proxy for risk aversion in Cummins [10]). This approach is, of

course, quite simplistic, but it fits our aim to illustrate the model (true risk aversion can be estimated

empirically). Using this methodology we choose ra = 1.79r0, re = 0.15r0, rl = 11.76, rm = r0, and

rw = 3.33 and we select r0 = 0.15 while the availability target is set at 95%. The optimal contract

terms and the suppliers’ actions are presented in Table 3.

We consider two scenarios: with small and high cost uncertainty (as captured by the coefficient of

variation
p
V ar[εi]/E[εi]). As can be seen in Table 3, the avionics system drives the results because

it is the most expensive and the subsystem that fails most frequently; due to high unit cost, it is

assigned the lowest availability target (96.46% when the coefficient of variation is 0.05) and it also has

the largest allocation in terms of the inventory investment. In the case with high cost uncertainty, the

cost premium is higher than the performance premium for most suppliers, whereas the performance

premium becomes more salient when cost uncertainty is small. Consistent with our results for a single

supplier, we observe that {αSBi } increases and {vSBi } decreases with
p
V ar[εi]/E[εi]. Finally, we note

that the optimal inventories {sSBi } as well as total investment amounts are very close to the values

computed by the standard greedy algorithm and values of {sSBi } are quite insensitive to changes in
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V ar[εi].

5 Conclusion

The goal of this paper is to introduce contracting considerations into the management of after-sales

service supply chains. We do so by blending the classical problem of managing the inventory of

repairable service parts with a multitask principal-agent model. Furthermore, we use this novel model

to analyze incentives provided by three commonly used contracting arrangements, fixed-price, cost-plus

and performance-based (FP, C+ and PBL). By doing so, we analyze at least two practically important

issues of contracting in service supply chains — performance requirement allocation and risk sharing —

when a single customer (either the prime supplier or the end customer) is contracting with a collection

of first-tier suppliers of the major subsystems used by an end product/system. When performance

is defined as overall system availability, the answer to the former can be found from the solution of

the classic multi-echelon, multi-indenture service part resource allocation problem, à la MCA’s SPO

system. Our innovation is in explicitly modeling decentralized decision making and considering how

firms behave when they face uncertainties arising from both support costs and product performance.

The notion of risk sharing found in the principal-agent literature is incorporated in our model, providing

insights into what types of contract should be used under various operating environments. Specifically,

we have discovered that incentive terms in the contract exhibit complementarity, i.e., incentives for

both cost reduction and high availability move in the same direction as the operating environment

(characterized by cost uncertainty) changes.

Furthermore, our analysis allows us to make normative predictions with respect to how contracts

are likely to evolve over the product life cycle. Given our assumption that supplier effort reduces

maintenance costs but does not improve product performance reliability or repair capabilities, our

model is consistent with the observation that performance uncertainty is relatively stable throughout

the sustainment process, whereas cost uncertainty is likely to be reduced over time by learning about

costs through the deployment of a larger fleet of systems. Thus, if a series of performance contracts

are signed over the product lifetime, our analysis indicates that the cost reimbursement ratio α will

decrease (increase) over time if the supplier is relatively more (less) risk-averse than the prime. For the

performance incentive v the direction is reversed. It would be interesting to verify this result empirically.

From our conversations with executives at a major defense supplier we found that, indeed, typically

contracts evolve over time from being more C+-oriented (large α) to being more FP-oriented (smaller

α). Since larger, more diversified primes are more common in practice, we believe that suppliers are

often more risk-averse in these settings, as independently confirmed by executives we worked with.
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Thus, there is encouraging anecdotal evidence that is consistent with our analysis.

We find that, in the presence of great residual uncertainty associated with performance, cost sharing

is still an effective tool even if the cost uncertainty is small. That is, the combination FP/performance-

based contract is not optimal in such instances (notice the gap between zero and αSB at V ar[ε] = 0

in Figure 2), because the cost reimbursement α can be used as a risk protection mechanism even for

the risk borne by the performance. Adjusting inventory s for this purpose has limited effect because

its primary role is with respect to the availability requirement. Hence, some degree of cost sharing is

recommended in the performance contracting environment even when the cost uncertainty is low. Our

numerical study shows that the optimal inventory position profile {sSBi } is quite insensitive to changes

in risk-related parameters such as r0, ri, and V ar[εi]. This happens because the presence of a stringent

backorder constraint limits the range in which {sSBi } can be varied once parameters {ci} and {μi} are

fixed. Moreover, all analytical results that we obtain for simplified cases continue to hold under more

general conditions.

Performance-based contracting in service supply chains offers fertile ground for research where

economics and classical inventory theory converge naturally. Not only does it pose theoretically chal-

lenging questions but also insights gained from the analysis are of great interest to practitioners who

are currently undergoing major business process changes due to the move towards PBL contracting.

Our paper analyzes several major issues in performance contracting, but many open questions remain.

Follow-up studies may address such topics as the free-riding problem arising from overlapping down-

times across parts; gaming among suppliers and the consequences to realized performance; long-term,

strategic product reliability investment vs. intermediate-term, tactical inventory decisions; investment

in enhanced repair and logistics capabilities that would reduce lead times; alternative ownership and

management scenarios; and many more. We are currently working on some of these issues. Finally,

empirical verification of the insights gained from this paper will lead to more effective implementation

of contract design and aid contract negotiations.
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Appendix

Proof of Proposition 1. We first prove that at the equilibrium, all (IRi) constraints are binding,

i.e., wi − (1− αi)(cisi − ai) − viE [Bi | si] − kia2i /2 − ri(1 − αi)
2V ar[εi]/2− riv2i V ar[Bi | si]/2 = 0 for

all i. Suppose otherwise, i.e., that there exists j such that wj − (1 − αj)(cjsj − aj) − vjE [Bj | sj ] −

kja
2
j/2− rj(1− αj)

2V ar[εj ]/2− rjv2jV ar[Bj | sj ]/2 > 0. By reducing wj by ², the prime’s utility (5) is

increased by ² while the (AR) constraint is unaffected. This result allows us to transform (AFB) into

(A0FB) min
{αi,vi,ai,si}

Pn
i=1

¡
cisi − ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
V ar[εi]/2 + (r0 + ri) v

2
i V ar[Bi | si]/2

¢
,

s.t.
Pn
i=1E [Bi | si] ≤ bB0.

Notice that (A0FB) reduces to the classic resource allocation problem faced by a single decision maker

(Muckstadt [18]) in the special case ai = r0 = ri = 0. Clearly, the objective function is minimized

when vi = 0 for all i. With this observation, the Lagrangian with the associated multiplier θ becomes

L(a, s, θ) =
Pn
i=1

¡
cisi − ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
V ar[εi]

¢
/2 + θ

³Pn
i=1E [Bi | si]− bB0´

= −θ bB0 +Pn
i=1

¡
cisi + θE [Bi | si]− ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
V ar[εi]/2

¢
. (14)

It is apparent that the minimization can be done separately for each supplier. As the objective is

a decreasing function of {si} the optimal values are always at the corner and the (AR) constraint is

binding, implying that θ > 0. Note ∂2Li/∂a2i = ki > 0, ∂2Li/∂s2i = θf(si) > 0, and ∂2Li/∂α2i =

r0 + r ≥ 0. In the absence of cross partial terms ∂2Li/∂aisi = ∂2Li/∂siαi = ∂2Li/∂αiai = 0, so the

Hessian for supplier i is positive definite and hence the problem is convex, establishing the uniqueness

of the equilibrium solution. (6), (7), and (9) are obtained from the first-order condition of supplier

i. Clearly, the optimal si is a function of θ, which is determined from the (AR) constraint, as in (8).

The supplier’s profit and the prime’s expenditures follow immediately.

Proof of Proposition 2. The following identities are needed to prove solution uniqueness:

∂V ar[Bi | si]/∂si = −2Fi(si)E[Bi | si] ≤ 0, (15)

∂2V ar[Bi | si]/∂s2i = −2fi(si)E[Bi | si] + 2Fi(si)[1− Fi(si)]. (16)

Let us drop the subscript i for notational convenience. Differentiating the supplier’s expected utility

function (4) with respect to s, we find that

∂U/∂s = −(1− α)c+ v[1− F (s)] + rv2F (s)E[B | s], (17)
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which is greater than zero for all s if α = 1 and v > 0, because U increases without bound in this case.

If α < 1 and v[1− F (0)] ≥ (1− α)c, then ∂U/∂s ≥ 0 at s = 0, so U is nondecreasing initially. Notice

also that lims→∞ ∂U/∂s = −(1−α)c < 0, so there exists at least one critical point on [0,∞). Setting

∂U/∂s = 0, we obtain E[B | s∗] = (1−α)c− v[1−F (s∗)]/
¡
rv2F (s∗)

¢
. Substituting this result into the

second derivative

∂2U/∂s2 = −vf(s) + rv2f(s)E[B | s]− rv2F (s)[1− F (s)] (18)

(note (15) and (16) are used), we obtain

∂U/∂s|s=s∗ = −vf(s∗)− [v − (1− α)c]f(s∗)/F (s∗) + vf(s∗)− rv2F (s∗)[1− F (s∗)]

= −[v − (1− α)c]f(s∗)/F (s∗)− rv2F (s∗)[1− F (s∗)] < 0,

where the inequality follows from the condition v ≥ v[1−F (0)] ≥ (1−α)c. Since the second derivative

is negative at every critical point, s∗ cannot be a minimizer. Combining this result with ∂U/∂s|s=0 > 0

and lims→∞ ∂U/∂s < 0, we conclude that U has a unique maximizer. Optimal solutions follow from

the first-order conditions.

Proof of Corollary 1. We drop the subscript i for notational convenience. After differentiating the

first-order condition (17) implicitly with respect to r (optimal s is a function of r, i.e., s∗ = s(r)) and

collecting the terms we obtain

∂s∗

∂r
=

v2F (s∗)E[B | s∗]
vf(s∗)− rv2f(s∗)E[B | s∗] + rv2F (s∗)[1− F (s∗)] .

Notice that the denominator has the sign opposite of that in (18). Hence ∂s∗/∂r > 0. Similarly,

∂a∗/∂α = −1/k < 0,
∂s∗

∂α
=

c

vf(s∗)− rv2f(s∗)E[B | s∗] + rv2F (s∗)[1− F (s∗)] > 0,

∂a∗/∂v = 0,

∂s∗

∂v
=

[1− F (s∗)] + 2rvF (s∗)E[B | s∗]
vf(s∗)− rv2f(s∗)E[B | s∗] + rv2F (s∗)[1− F (s∗)] > 0.

Proof of Proposition 3. With r0 = r1 = ... = rn = 0, the prime’s Lagrangian for supplier i becomes

Li(ai, si, θ) = cisi + θE [Bi | si]− ai + kia2i /2
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and solutions are given by (6), (7), and (8). From the supplier’s utility

Ui(ai, si, wi, vi,αi) = wi − (1− αi)(cisi − ai)− viE [Bi | si]− kia2i /2

it is clear that setting αi = 0 and vi = θ yields the same Lagrangian (with the reverse sign) as Li plus a

constant, reproducing the first-best solutions. The supplier’s profit and the prime’s expenditure follow

immediately.

Proof of Lemma 1. Define γ ≡ 4cF (s)E [B | s] /[1− F (s)]2 and note that (13) can be rewritten as

v(α) =
2c

1− F (s)
1

rγ

³
−1 +

p
1 + rγ(1− α)

´
,

from which we obtain

v0(α) = − c

1− F (s)
1p

1 + rγ(1− α)
, v00(α) = −1

2

c

1− F (s)
rγ

[1 + rγ(1− α)]3/2
,

and

∂(v2)

∂α
= 2v(a)v0(a) = − 4c2

[1− F (s)]2
1

rγ

Ã
1− 1p

1 + rγ(1− α)

!
,

∂2(v2)

∂α2
= 2(v0(a))2 + 2v(a)v00(a) =

2c2

[1− F (s)]2
1

[1 + rγ(1− α)]3/2
.

Differentiating the Lagrangian (12) and substituting ∂(v2)/∂a and ∂2(v2)/∂a2, we find that

∂L
∂α

=
α

k
+ [(r0 + r)α− r]V ar[ε]−

2(r0 + r)c
2

[1− F (s)]2
1

rγ

Ã
1− 1p

1 + rγ(1− α)

!
V ar[B | s],

∂2L
∂α2

=
1

k
+ (r0 + r)V ar[ε] +

(r0 + r)c
2

[1− F (s)]2
1

[1 + rγ(1− α)]3/2
V ar[B | s] > 0.

Proof of Proposition 5. We use the results in the proof of Lemma 1. Define

`FB(α) ≡ [(r0 + r)α− r]V ar[ε],

`SO(α) ≡
α

k
+ [(r0 + r)α− r]V ar[ε],
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`AO(α) ≡ [(r0 + r)α− r]V ar[ε]−
2(r0 + r)c

2

[1− F (s)]2
1

rγ

Ã
1− 1p

1 + rγ(1− α)

!
V ar[B | s],

`SB(α) ≡
∂L
∂α
(α) =

α

k
+ [(r0 + r)α− r]V ar[ε]−

2(r0 + r)c
2

[1− F (s)]2
1

rγ

Ã
1− 1p

1 + rγ(1− α)

!
V ar[B | s].

αFB, αSO, αAO, and αSB are the solutions to `FB(α) = 0, `SO(α) = 0, `AO(α) = 0, and `SB(α) = 0,

respectively. Observe `AO(α) ≤ `SB(α) ≤ `SO(α) for any α. Since `0j(α) > 0 for all j, α
SO ≤ αSB ≤

αAO. In contrast, both `FB(α) ≤ `SB(α) and `FB(α) ≥ `SB(α) are possible. To see this, substitute

αFB = r/(r0 + r) in `SB to obtain

`SB(α
FB) =

1

k

r

r0 + r
− 2(r0 + r)c

2

[1− F (s)]2
1

rγ

⎛⎝1− 1q
1 + rγ r0

r0+r

⎞⎠V ar[B | s].
Let δ ≡ r/r0 and rewrite `SB(αFB) as a function of δ:

è
SB(δ) ≡ `SB(αFB) =

1

k

δ

1 + δ
− 2c2

[1− F (s)]2
1

rγ

µ
1 +

1

δ

¶⎛⎝1− 1q
1 + rγ 1

1+δ

⎞⎠V ar[B | s].
Differentiating, we see that

è0
SB(δ) =

1

k

1

(1 + δ)2
+

2c2

[1− F (s)]2
1

rγ

⎡⎢⎣ 1
δ2

⎛⎝1− 1q
1 + rγ 1

1+δ

⎞⎠+ (1 + 1/δ)
(1 + δ)2

rγ

2
³
1 + rγ 1

1+δ

´3/2
⎤⎥⎦V ar[B | s] > 0.

Hence, èSB(δ) is increasing. Notice limδ→0 èSB(δ) = −∞, limδ→∞ èSB(δ) = 1/k. Therefore there is a
unique δ† such that èSB(δ†) = 0. Since èSB(δ) is increasing, èSB(δ) = `SB(αFB) > 0 for all δ > δ†,

implying that αSB < αFB, since `SB(α) is also increasing. Likewise, α
SB > αFB for all δ < δ†.

Differentiating `SB(α
SB) = 0 with respect to V ar[ε] and collecting terms, we see that

dαSB

d(V ar[ε])
=

r − (r0 + r)αSB
1
k + (r0 + r)V ar[ε] +

(r0+r)c2

[1−F (s)]2
1
rγ

1
[1+rγ(1−αSB)]3/2V ar[B | s]

.

The numerator is negative if αSB > αFB, zero if αSB = αFB, and positive if αSB < αFB. The sign of

dvSB/d(V ar[ε]) is the reverse of that of dαSB/d(V ar[ε]) via (13).
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r0 = 0.01 r0 = 0.1 r0 = 1
r2 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

αFB2 0.500 0.909 0.990 0.091 0.500 0.909 0.010 0.091 0.500

αSB1 0.279 0.279 0.279 0.318 0.318 0.318 0.430 0.430 0.429

αSB2 0.060 0.279 0.755 0.184 0.318 0.726 0.436 0.430 0.539

vSB1 0.994 0.993 0.987 0.952 0.944 0.934 0.823 0.801 0.758

vSB2 1.408 0.993 0.288 1.215 0.944 0.317 0.826 0.801 0.490

aSB1 3.603 3.603 3.603 3.409 3.409 3.409 2.849 2.852 2.856

aSB2 4.699 3.603 1.224 4.082 3.409 1.371 2.820 2.852 2.303

sSB1 8.729 8.725 8.678 8.779 8.725 8.650 8.905 8.725 8.330

sSB2 8.722 8.725 8.773 8.672 8.725 8.802 8.559 8.725 9.151

−U0 13.342 13.923 15.153 14.000 14.435 15.676 19.104 19.153 20.141

Table 4: Effects of changing r2. Italics indicate symmetric parameters.

r0 = 0.01 r0 = 0.1 r0 = 1
(αFB2 = 0.909) (αFB2 = 0.5) (αFB2 = 0.091)

V ar[ε2] 1 10 100 1 10 100 1 10 100

αSB1 0.279 0.279 0.279 0.318 0.318 0.318 0.429 0.430 0.430

αSB2 0.172 0.279 0.650 0.268 0.318 0.442 0.654 0.430 0.156

vSB1 0.993 0.993 0.992 0.944 0.944 0.944 0.794 0.801 0.800

vSB2 1.127 0.993 0.507 1.007 0.944 0.785 0.505 0.801 1.149

aSB1 3.603 3.603 3.603 3.409 3.409 3.409 2.853 2.852 2.852

aSB2 4.138 3.603 1.752 3.658 3.409 2.790 1.731 2.852 4.221

sSB1 8.724 8.725 8.718 8.725 8.725 8.723 8.670 8.725 8.715

sSB2 8.727 8.725 8.733 8.726 8.725 8.728 8.782 8.725 8.735

−U0 13.653 13.923 15.139 14.172 14.435 16.780 17.794 19.153 24.341

Table 5: Effects of changing V ar[ε2] when r1 = r2 = 0.1. Italics indicate symmetric parameters.

bB0 1 2 3 4 5 6 7

αSB1 0.421 0.404 0.398 0.396 0.396 0.397 0.399

αSB2 0.592 0.604 0.614 0.624 0.634 0.644 0.653

vSB1 1.678 1.147 0.935 0.820 0.748 0.699 0.666

vSB2 0.792 0.557 0.463 0.412 0.379 0.357 0.341

aSB1 2.896 2.980 3.011 3.021 3.021 3.015 3.006

aSB2 2.039 1.981 1.929 1.879 1.830 1.782 1.737

sSB1 11.852 10.384 9.355 8.511 7.765 7.078 6.425

sSB2 12.205 10.752 9.751 8.948 8.259 7.644 7.083

(sSB2 − sSB1 )/sFB1 2.94% 3.48% 4.15% 5.00% 6.17% 7.69% 9.75%

IIR1 11.852 10.384 9.355 8.511 7.765 7.078 6.425

IIR2 12.205 10.752 9.751 8.948 8.259 7.644 7.083

NCR1 2.057 2.092 2.104 2.108 2.108 2.106 2.102

NCR2 1.623 1.589 1.557 1.526 1.495 1.465 1.435

CRP1 0.610 0.586 0.577 0.574 0.574 0.576 0.578

CRP2 1.708 1.696 1.687 1.680 1.675 1.671 1.668

PRP1 1.252 1.160 1.116 1.090 1.074 1.062 1.055

PRP2 0.574 0.587 0.600 0.611 0.621 0.628 0.632

−U0 24.521 21.484 19.425 17.781 16.364 15.088 13.905

Table 6: Effects of changing B̂0, with r0 = 0.5, r1 = 0.1 and r2 = 1. IIR stands for investment in resources and is equal
to cis

SB
i . NCR is −aSBi + 1

2ki(a
SB
i )2, the net cost reduction. CRP is the residual cost risk premium, 12 (r0(α

SB
i )2+ ri(1−

αSBi )2)V ar[εi], and PRP is the residual performance risk premium,
1
2
(r0 + ri)(v

SB
i )2V ar[Bi|sSBi ].
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