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Deterministic inventory theory provides streamlined optimization models that attempt to capture tradeoffs

in managing the flow of goods through a supply chain. We will consider two well-studied deterministic

inventory models, called the one-warehouse multi-retailer problem (OWMR) and its special case the joint

replenishment problem (JRP), and give approximation algorithms with worst-case performance guarantees.

That is, for each instance of the problem, our algorithm produces a solution with cost that is guaranteed to

be at most 1.8 times the optimal cost; this is called a 1.8-approximation algorithm. Our results are based on

an LP-rounding approach; we provide the first constant approximation algorithm for the OWMR problem

and improve the previous results for the JRP problem.
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1. Introduction

Deterministic inventory theory provides streamlined optimization models that attempt to capture

tradeoffs in managing the flow of goods through a supply chain. We will consider two well-studied

inventory models, the one-warehouse multi-retailer problem (OWMR) and its special case the

joint replenishment problem (JRP). Using LP-rounding techniques we provide the first constant

approximation algorithm for the OWMR problem. That is, for each instance of the problem, our

algorithm produces a solution with cost that is guaranteed to be at most C times the optimal
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cost, for some constant C > 1. The constant C is called the worst-case guarantee of the algorithm.

Moreover, when specialized to the JRP model, our LP-rounding approach provides worst-case

guarantees that improve on previous approximation algorithms for this problem by Levi et al.

(2006).

As the name suggests, in the OWMR model there is one warehouse that orders a particular

commodity from a supplier, in order to serve demand at N distinct retailers. We consider a discrete

finite planning horizon of T periods, and are given the demand dit ≥ 0 required for each retailer

i = 1, . . . ,N , in each time period t = 1, . . . , T . There are two types of costs incurred: ordering costs

(to model that there are fixed costs incurred each time the warehouse replenishes its supply on

hand from the supplier, as well as the analogous cost for each retailer to be stocked from the

warehouse) and holding costs (to model the fact that maintaining inventory, at both the warehouse

and the retail store, incurs a cost). The aim of the model is to provide an optimization framework

to balance the fact that ordering too frequently is inefficient for ordering costs, whereas ordering

too rarely incurs excessive holding costs.

The dynamics of the OWMR model are as follows. At the beginning of each period s, each retailer

i can place an order for any number of units from the warehouse, to replenish its on-hand inventory.

The order is assumed to arrive instantaneously (this is without loss of generality), and can be used

to satisfy demand in period s, or in subsequent periods. Any such order placed by retailer i incurs

a fixed ordering cost Ki, which is independent of the size of the order and of the time period in

which the order is placed. However, all orders placed by the different retailers, in each period s,

must be satisfied only from the on-hand inventory at the warehouse in that period. So in turn, at

the beginning of each period r the warehouse can place an order for any number of units from the

supplier. This order is again assumed to arrive instantaneously, and can be used to satisfy retailer

orders in period r, or in subsequent periods. Any such order of the warehouse in period r incurs a

fixed ordering cost K0
r , which also is independent of the size of the order and the combination of

items being ordered. All demands must be satisfied on time, i.e., any unit that is used by retailer

i to satisfy its demand in period t, dit, must be ordered by the warehouse from the supplier in
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some period r, and then by retailer i from the warehouse in some period s, where r ≤ s≤ t. (In

the inventory literature, these assumptions are usually referred to as “neither back orders nor lost

sales are allowed”.) The goal is to find a feasible ordering policy that satisfies all demands on time

with minimum total ordering and holding costs. Throughout the paper, we will use dr, sc (r ≤ s)

to denote a pair of warehouse and retailer orders in periods r and s, respectively. We note that

while the warehouse ordering cost K0
r is time-dependent, the retailer ordering cost Ki is stationary

over time. It is easy to show that if we allow it to be time-dependent, then the OWMR problem

becomes as hard as set-cover problem (see Chan et al. (2000) for the details). Thus, it is not likely

that there exists an approximation algorithm with a sub-logarithmic worst-case guarantee (Feige

1998).

The standard models for holding cost make two natural linearity assumptions: (1) the cost is

proportional to the number of units of the commodity held, and (2) there is cost associated with

holding from period t to t+1, which is then additive over the period held. We use a more general

holding cost structure, extending the model that has been introduced by Levi et al. (2006) for

the JRP. While still maintaining (1), we generalize (2) in a way that preserves the most useful

properties of an optimal solution (as well as of an optimal solution to a natural LP relaxation),

but captures much more general phenomena, such as the notion of perishable goods (where the

holding cost becomes infinite, when the good is held too long). Capturing the right generalization

is subtle here, due to the nature of the interaction between the two levels, and this is outlined in

Section 2; we introduce, in essence, a holding cost hit
rs associated with ordering one unit of the

demand at retailer i for period t according to the pair dr, sc which is assumed to satisfy certain

natural monotonicity properties.

The one-warehouse multi-retailer problem is a generalization of several classical inventory models,

such as the single-item lot-sizing problem (in which there is, in effect, only one retailer and the

warehouse holding and ordering costs are 0) and the joint replenishment problem (JRP) (where,

in effect, the holding cost at the warehouse is enormous, and hence each unit of demand can be
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assumed to be satisfied by an order ds, sc). The general OWMR model has been studied extensively,

and plays a fundamental role in broader planning issues, such as the management of supply chains.

Arkin et al. (1989) have shown that OWMR is NP-hard even for the special case of the JRP, where

the warehouse serves only as a cross-docking point (i.e., no inventory is ever held at the warehouse).

Federgrun and Tzur (1999) have proposed an interesting heuristic based on dynamic programming.

However, for the theoretical analysis of the worst-case performance of their algorithm, they have

assumed that the cost parameters and the demands are bounded by uniform constants. Chan

et al. (2000) have considered a variant of OWMR, in which the ordering costs are piecewise-linear

functions, and the holding cost is linear and additive. They considered the class of zero-inventory

ordering (ZIO) policies, in which the warehouse and retailers order if and only if their current on

hand inventory is 0. They established the effectiveness of these policies, showing that the cost of the

optimal ZIO policy is at most 4
3

times the cost of the optimal policy. In Chan et al. (2000) and in a

subsequent paper by Shen et al. (2002), they have proposed an integer program to find the optimal

ZIO policy, which is NP-hard. Next they have developed heuristics to round the optimal solution

of the LP relaxation to get an approximation algorithm for finding the best ZIO policy. However,

the performance guarantee of their algorithm is O(log(N + T )). For the problem we consider in

this paper, it is well known that ZIO policies are optimal.

Recently, Levi et al. (2006, 2004) have presented a general primal-dual algorithmic framework

that solves the single-location lot-sizing problem and provides a 2-approximation for the JRP and

the assembly problem, which is yet another classical inventory model (see Levi et al. (2006, 2004)).

It is an open question whether the primal-dual approach can be extended to work in the more

general OWMR problem considered in this paper. The main barrier seems to be the more complex

structure involved with holding inventory in two ”levels” (the warehouse and retailers), which does

not seem to preserve several properties that are essential for the analysis in Levi et al. (2006, 2004).

For the problem we consider in this paper, it is well known that ZIO policies are optimal (Zipkin

2000). We propose a natural integer program to find the optimal policy, which is different from

the one proposed in Chan et al. (2000) and Shen et al. (2002). We first solve the LP relaxation



Levi et al.: A Constant Approximation Algorithm for the One-Warehouse Multi-Retailer Problem
Article submitted to Management Science; manuscript no. MS-00565-2004.R2 5

to optimality, and then introduce techniques to round this optimal solution to a feasible solution

for the OWMR problem, which can be proven to be near-optimal. The rounding is done in two

phases. In the first phase we determine the warehouse orders; based on that, we determine the

retailer orders in the second phase, and this is done separately for each retailer. Our algorithms

are based on new dependent randomized rounding techniques, that are similar in spirit to those

used for the metric facility location problem (Shmoys 2004), but are able to exploit the additional

special structure of the inventory model. Specifically, we show that the solution produced by the

randomized algorithms has expected cost that is guaranteed to be at most 1.8 times the cost of an

optimal solution to the OWMR problem. We then show how to derandomize these algorithms and

this yields a deterministic 1.8-approximation algorithm for the OWMR problem. When specialized

to the JRP our LP is identical to the one used by Levi et al. (2006, 2004). Thus, the LP-rounding

approach can be applied to the JRP and improves on their primal-dual 2-approximation for the

JRP. The inventory models that are discussed in this paper are usually solved in practice via

integer programming solution methods, such as branch and bound. We believe that our techniques

can be naturally incorporated into these method to generate good feasible solutions and enhance

the computational procedures.

One note on the relation between deterministic inventory models and the facility location problem

is in order. If one thinks of orders as facilities and demands as customers, then deterministic

inventory models can be viewed as special facility location problems. Nevertheless, the inventory

models we consider are significantly different, since the holding cost structure, which plays the role

of the assignment costs, is asymmetric and does not obey the triangle inequality. These are both

essential assumptions in all of the existing approximation algorithms for the metric facility location

problem. It is interesting that the additional structure of these inventory problems is sufficient to

extend some of these techniques. (For a survey on the approximation techniques that were applied

to the metric facility location problem, see Shmoys (2004).)

In the appendix, we also consider an important extension of the models above. In many real-life
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applications the ordering cost actually corresponds to transportation cost. Usually the transporta-

tion is based on trucks with a given capacity. We model this using soft capacities. Now we can

order in batches each of capacity U , where for each batch we order (in a given period), we incur

an additional fixed cost. We allow different batch capacities for the warehouse and the retailers,

and then show how to extend the algorithms developed for the OWMR problem to work in this

more general model. In particular, we provide a 3.6-approximation algorithm for the JRP and the

OWMR problem with soft capacities, and a 2-approximation algorithm for the single-location lot-

sizing (with time-dependent batch capacities). Here we are using ideas and techniques that were

introduced by Jain and Vazirani in their seminal paper on the facility location problem (Jain and

Vazirani 2001). Jin and Muriel (2005) also consider this model and propose several heuristics based

on centralized and decentralized approaches.

As a by-product of our work, we prove upper bounds on the integrality gap of facility location

inspired LP relaxations for several variants of the OWMR problem. Specifically, for the special case

of the OWMR problem, the single-location lot-sizing problem, it can be shown that our rounding

approach, when applied to the facility location-inspired linear programm of this problem, yields an

optimal solution. (As already mentioned, here we have only one retailer, and there is no warehouse.

There is only one ordering cost Ks, in each period s, and holding costs as before.) This shows that

the corresponding LP has an integer optimum. Other proofs with very different styles were given

by Krarup and Bilde (1977), Bárány et al. (1984), Bertsimas et al. (1999) and recently by Levi

et al. (2006). Finally, for the single-location lot-sizing problem with soft capacities we show (in

Appendix 5) that the natural facility location inspired LP has an integrality gap of at most 2.

The rest of the paper is organized as follows. In Section 2, we discuss the holding cost structure

that we use in this paper. In Section 3, we present an LP relaxation of the OWMR problem and

discuss some of the properties of fractional optimal solutions of the LP. In Section 4, we describe our

rounding algorithms and their worst-case analysis. The extension to soft capacities is considered

in Appendix 5. We then conclude with some open questions.
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2. The holding cost structure

In most of the existing literature, the holding cost is modeled in the following way. For each period

t, the warehouse and each retailer i have a per unit cost hi
t ≥ 0 (i = 0,1, . . . ,N) to hold one unit in

inventory from period t to period t + 1. The holding cost incurred at the end of each period is a

linear function of the on-hand inventory at the end of the period.

We model the holding cost in the following more general way. Consider a demand point (i, t)

and a pair of potential orders dr, sc, where again r is the period in which the unit was ordered by

the warehouse from the supplier, and s is the period in which it was ordered by retailer i from

the warehouse (r ≤ s≤ t). For each (i, t) and dr, sc, we let hit
rs be the cost of holding one unit in

the warehouse location over [r, s), then sending it to retailer i (in period s), and holding it at the

premises of retailer i over [s, t). We assume that the holding cost parameters obey the following

natural properties:

Property 1: Non-negativity. The parameters hit
rs are assumed to be non-negative.

Property 2: Monotonicity with respect to s. Each retailer i = 1, . . . ,N has exactly one of the

following properties which applies to all demand points (i, t) (for t = 1, . . . , T ). For each demand

point (i, t) and warehouse order in period r (r ≤ t), hit
rs is either non-increasing in s ∈ [r, t], or

it is non-decreasing in s ∈ [r, t]. We partition the retailers into two sets accordingly. Let IJ be

the set of retailers i such that hit
rs is non-decreasing in s for each t and r ≤ t and call them J-

retailers, and let IW be the rest of the retailers, i.e., retailers i such that hit
rs is non-increasing

in s for each t and r ≤ t, and call them W -retailers. In models with the traditional holding cost

structure, the set IJ corresponds to retailers for which it is cheaper to hold inventory at the retailer

premises (i.e., hi
t ≤ h0

t , for each t), and IW corresponds to retailers for which it is cheaper to hold

inventory at the warehouse (i.e., hi
t > h0

t , for each t). It is straightforward to see that in an optimal

policy, the warehouse does not hold inventory of J-retailers. Instead, in each period in which the

warehouse orders some amount of units for J-retailers, it is cheapest to distribute the complete

amount immediately to these retailers. Thus, for these retailers it is sufficient to consider only

pairs of orders ds, sc. Moreover, the joint replenishment problem is the special case where all of the
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retailers are J-retailers. We note that the partition of the retailers into these two types is a standard

assumption in the literature. In particular, the OWMR problem is traditionally considered under

the assumption that hi
t > h0

t for each i and t.

Property 3: Monotonicity with respect to r. For each retailer i and some demand point (i, t),

fix the retailer order in some period s (s ≤ t); we assume that hit
rs is non-increasing in r ∈ [1, s].

Moreover, for each retailer i ∈ IJ and a demand point (i, t), we assume that, for each r < r′ ≤ t ,

the order dr, rc is more expensive than the order dr′, r′c. This property captures the fact that in

most of the common scenarios, holding inventory for longer time is more expensive.

Property 4: Monge Property. For each demand point (i, t) with i ∈ IW and any four periods

r2 < r1 ≤ s2 < s1 ≤ t, the inequality, hit
r2,s1

+hit
r1,s2

≥ hit
r2,s2

+hit
r1,s1

is satisfied. This property implies

that it is always cheapest for the warehouse to use a FIFO order in satisfying the orders of each

retailer. As we shall show in Section 3, this property induces structural properties on the optimal

solution of the corresponding LP relaxation.

One can easily verify that all of the above properties are satisfied under the traditional holding

cost structure. Of course, the way we model the holding cost is much more general. In particular,

it enables us to capture other very important phenomena, such as perishable commodities, where

the parameter hit
rs can be equal to infinity. In addition, the fact that the holding costs are defined

per demand point and not per period provides a transparent way to model situations in which

serving different customers incurs different holding costs. We note that per unit ordering costs

can be incorporated into the holding cost as long as we preserve the above mentioned properties.

(We note that one can incorporate even demand-point-dependent ordering costs as long as the

monotonicity properties above are preserved.)

3. A linear program

In this section, we will first present a natural formulation of the OWMR problem as an integer

program. In the next section, we shall show how to round the optimal solution of the corresponding

LP relaxation to a feasible solution for the OWMR problem, while increasing the cost by only a

constant factor.
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The formulation is based on the well-known fact that there exists an optimal solution to the

OWMR problem in which each demand dit is satisfied from a unique pair of orders dr, sc, where

again r≤ s≤ t (see Zipkin (2000) for details). By this we mean that the warehouse orders the entire

demand dit in some period r≤ t, and keeps it in inventory over the time interval [r, s) (r≤ s≤ t).

Then in period s, the entire demand dit is ordered from the warehouse by retailer i and is kept in

inventory (at the retailer’s premises) until time t.

For each demand point (i, t) and a pair of orders dr, sc, such that r≤ s≤ t, we define H it
rs := hit

rsdit

to be the total cost of providing the demand dit from the pair of orders dr, sc. Let xit
rs (for r≤ s≤ t)

be a binary decision variable that is equal to 1 if demand point (i, t) (i.e., demand dit) is satisfied

by the pair of orders in periods r (warehouse order) and s (retailer i order). For each i = 1, ..,N

and s = 1, . . . , T , let yi
s be a binary decision variable that indicates whether retailer i placed an

order in period s. Finally, let y0
r be a binary variable that indicates whether the warehouse placed

an order in period r. This gives rise to the following integer programming formulation:

minimize
T∑

r=1

y0
rK

0
r +

N∑
i=1

T∑
s=1

yi
sK

i +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

xit
rsH

it
rs (P)

subject to
∑

r,s:r≤s≤t

xit
rs = 1, i = 1, . . . ,N, t = 1, . . . , T, dit > 0, (1)

∑
r:r≤s

xit
rs ≤ yi

s, i = 1, . . . ,N, t = 1, . . . , T, s = 1, . . . , t (2)

∑
s:r≤s≤t

xit
rs ≤ y0

r , i = 1, . . . ,N, t = 1, . . . , T, r = 1, . . . , t (3)

xit
rs ≥ 0, yi

r ∈ {0,1} i = 0, . . . ,N, s = 1, . . . , T, r = 1, . . . , s, (4)

t = s, . . . , T.

Constraint (1) ensures that each positive demand point (i, t) is fully satisfied no later than period

t. Constraint (2) ensures that no demand dit can be satisfied by a retailer order in period s ≤ t

(and some warehouse order in period r ≤ s), unless retailer i indeed placed an order in period s.

Lastly, constraint (3) ensures that no demand point dit can be satisfied by a warehouse order in

period r (and some retailer order r ≤ s≤ t), unless the warehouse placed an order in period r. It

is straightforward to see that the corresponding integer program provides a correct formulation of
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the OWMR problem. Hence, if we relax the binary constraints yi
r ∈ {0,1} to yi

r ≥ 0, we get an LP

relaxation that provides a lower bound on the cost of any feasible solution to the OWMR problem.

For the rest of this paper we let (x̂, ŷ) and optLP be the optimal solution and the value of (P ),

respectively.

We note again that for each retailer i in IJ , it suffices to consider only the variables xit
rs with

r = s (the warehouse does not hold inventory of J-retailers).

Lemma 1. There exists an optimal solution to the OWMR problem where each J-retailer order

is placed in a period in which there is also a warehouse order.

A ssume that there exists an optimal solution to the OWMR problem, in which a retailer order

of some J-retailer i is placed in some period s′, where there is no warehouse order placed in that

period. Let r′ be the latest warehouse order placed by time period s′. That is, there is no warehouse

order placed in each of the periods r ∈ (r′, s′]. Since the holding costs are monotonic in r (Property

2 of the holding costs) and the solution is assumed to be optimal, we can assume, without loss of

generality, that all the units ordered by retailer i in period s′ were ordered by the warehouse in

period r′. Since i is a J-retailer, it is clear that canceling the order in period s′ and placing instead

a retailer order at r′ will not increase the retailer ordering cost and will decrease the overall holding

costs incurred by retailer i (Property 3 of the holding costs). The lemma then follows.

Consequently, for each retailer i∈ IJ , we can adapt accordingly the constraints (1), (2) and (3).

In particular, for each i ∈ IJ and each period s, the modified constraints (2) and (3) are xit
ss ≤ yi

s

and xit
rr ≤ y0

r , respectively. It is easy to see that, in an optimal solution, we must have yi
s ≤ y0

s , for

each period s = 1, . . . , T . Next we discuss several structural properties of the optimal solution (x̂, ŷ)

that will be used throughout the rest of this paper.

3.1. Structural Properties of the Optimal Solution of (P)

The Monge Property. Recall the Monge property of the holding cost, i.e., Property 4 of h in

Section 2. We say that a feasible solution (x, y) to (P ) satisfies the Monge property, if xit
rs > 0

(r≤ s≤ t) implies that xit
r̃,s̃ = 0 for any dr̃, s̃c such that r̃ < r and s̃ > s. Without loss of generality,
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we assume that (x̂, ŷ) (the optimal solution of (P )) satisfies the Monge property. We note that

because of the Monge property on the holding cost, any feasible solution to (P ) can be converted

in polynomial time to one that satisfies the Monge property and has no greater cost.

The Greedy Usage Property. We claim that there exists an optimal solution (x̂, ŷ) to (P) with

the property that, for each demand point (i, t) and a retailer-i order in period s ≤ t, we have

∑
r∈[1,s] x̂

it
rs = ŷi

s, except for possibly the earliest retailer-i order that fractionally serves (i, t) in the

solution (x̂, ŷ). (By the earliest retailer-i order that fractionally serves (i, t) we mean s̄, such that

∑
r∈[1,s̄] x̂

it
rs̄ > 0 and

∑
r∈[1,s] x̂

it
rs = 0, for each s < s̄.) We call the latter property the greedy usage

property. In particular, define an open fractional order of the warehouse or some retailer i to be

a period s with ŷ0
s > 0 or ŷi

s > 0, respectively. Consider some positive demand point (i, t) and the

sequence of open retailer-i fractional orders in (x̂, ŷ) over the time interval [1, t]. Intuitively, the

greedy usage property means that in the optimal solution (x̂, ŷ), demand point (i, t) fractionally

uses the open retailer (fractional) orders in a greedy manner from latest to earliest. One of the

implications of this property is that each open fractional retailer-i order s′ ∈ [1, t] (i.e., ŷi
s′ > 0), such

that
∑

s∈[s′,t] ŷ
i
s < 1, is fully used by (i, t). That is,

∑
r∈[1,s′] x̂

it
rs′ = ŷi

s′ . (In other words, Constraint

(2) is tight.)

The greedy usage property follows from the monotonicity properties of h, specifically from Prop-

erties 2 and 3. For any feasible solution for (P) that does not satisfy the greedy usage property,

there exists another feasible solution that does satisfy the property and has an objective values

that is not higher. In particular, assume that there exist two retailer orders s′ < s, such that for

some (i, t) we have
∑

r∈[1,s] x̂
it
rs < ŷi

s and
∑

r∈[1,s′] x̂
it
rs′ > 0. Let r′ ≤ s′ be such that x̂it

r′,s′ > 0 and

ε = min{x̂it
r′,s′ , ŷ

i
s−

∑
r∈[1,s] x̂

it
rs}. If i∈ IW , it is straightforward to verify that by increasing x̂it

r′,s by ε

and decreasing x̂it
r′,s′ by ε, we get a feasible solution with objective values that is not higher. (This

follows from Property 2.) If i∈ IJ , then r′ = s′ and by Property 2 it follows that increasing x̂it
ss by

ε and decreasing x̂it
s′,s′ by ε result in a feasible solution with no greater cost. (This follows from

Property 3.)
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4. The Random Shift Algorithms

In this section, we will show how to round the optimal solution of (P ), denoted again by (x̂, ŷ),

to a feasible solution to the OWMR problem with cost at most 1.8 times the optimal cost. We

shall first describe two different randomized rounding procedures that we call random shift with

retailer two-sided push and random shift with retailer one-sided push. Our rounding procedures run

in two phases. In the first phase, we determine the warehouse orders, using a simple mechanism

that we call random shift. In the second phase, we use the output of the first rounding phase to

determine the orders of each retailer. This phase is done separately for each retailer. We shall

show that the expected cost of each one of the algorithms is guaranteed to be at most twice the

cost of an optimal policy for the OWMR problem. In the worst-case analysis we shall bound each

part of the cost, i.e., the warehouse ordering cost, the retailer ordering cost and the holding cost,

using the respective part of the cost incurred by the optimal fractional solution (x̂, ŷ). Moreover,

we show that the algorithm with the cheapest expected cost among the two is guaranteed have

expected cost at most 1.8 times the optimal cost of the OWMR problem. Finally, we describe how

to derandomize the algorithms and get a deterministic approximation algorithm with a worst-case

performance guarantee of 1.8. That is, for each instance of the problem, the algorithm produces a

solution that is guaranteed to be at most 1.8 times the cost of an optimal policy.

4.1. The Random Shift Procedure

We first describe the random shift procedure that is used in the first phase of the algorithms in

which we decide in what periods to place warehouse orders. This simple randomized procedure is

based on the values ŷ0
1, . . . , ŷ

0
T .

For the description of the random shift procedure, consider the interval (0,
∑T

r=1 ŷ0
r ], which

corresponds to the total weight of open fractional warehouse orders in the optimal fractional

solution (x̂, ŷ). Each period m = 1, . . . , T is then associated with the respective interval Ŷ 0
m =

(
∑m−1

r=1 ŷ0
r ,

∑m

r=1 ŷ0
r ], which is of length ŷ0

m. In particular, some periods can correspond to empty

intervals of length 0 (if ŷ0
m = 0). The input for this procedure is a step parameter c∈ (0,1]. Given c,
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choose a shift parameter α0 uniformly at random from (0, c]. Let W be the smallest integer multiple

of c that is greater than
∑T

r=1 ŷ0
r . Specifically, W is the upper ceiling of the total accumulated

weight of fractional warehouse orders in the optimal LP solution (x̂, ŷ) scaled by 1
c
; that is, W =

d 1
c

∑T

r=1 ŷ0
re. Note that the interval (0,

∑T

r=1 ŷ0
r ] is contained in the interval [0, cW ]. Within the

interval [0, cW ] focus on the sequence of points 0, c, . . . , c(W − 1). The shift parameter α0 induces

a sequence of what we call warehouse shift points. Specifically, the set of warehouse shift points is

defined as {α0 + cw : w = 0, . . . ,W − 1}. This set is constructed through a shift of random length

α0 to the right of the points 0, c, . . . , c(W − 1). Thus, there are W shift points that are all located

within the interval [0, cW ]. Observe that the sequence of warehouse shift points is a-priori random

and is realized with the shift parameter α0 (see Figure 1).

y0 - axis

0
1ŷ

( ]( ]( ] ( ]
0
2ŷ 0

3ŷ 0
Tŷ

∑
=

T

1r

0
rŷ

0 c 2c 3c (W-1)c Wc
α0α0α0 α0

Figure 1 Each interval ( ] corresponds to some period r of length of ŷ0
r . The warehouse shift points (black

bullets) are generated by shifting the points 0, c,2c, . . . , (W − 1)c to right by α0. A warehouse order is placed in

period r, if there is at least one shift point within its corresponding interval (e.g., periods 1 and 3 in the picture).

The warehouse shift points determine the periods in which warehouse orders are placed. For each

period m = 1, . . . , T , we place a warehouse order in that period if there is at least one shift point

within the interval Ŷ 0
m that is associated with m. That is, we place a warehouse order in period m,

if for some integer 0≤w≤W −1 there exists a warehouse shift point α0 + cw that falls within the

interval Ŷ 0
r .



Levi et al.: A Constant Approximation Algorithm for the One-Warehouse Multi-Retailer Problem
14 Article submitted to Management Science; manuscript no. MS-00565-2004.R2

Next we bound the expected warehouse ordering cost incurred by the random shift procedure.

Lemma 2. Consider the random shift procedure described above with input length parameter

c ∈ (0,1]. Then, the total expected warehouse ordering cost of the random shift procedure, denoted

by K0 is at most 1
c

times the total warehouse ordering costs in the optimal LP solution. That is,

K0 ≤ 1
c

∑T

r=1 ŷ0
rK

0
r .

F or each w = 0, . . . ,W − 1 the interval (cw, c(w + 1)] generates at most one warehouse order.

Moreover, in each interval (cw, c(w+1)], there is exactly one warehouse shift point that is uniformly

distributed over the interval. Thus, the expected cost of the warehouse order generated by the

interval (cw, c(w+1)] is at most 1
c

∑T

m=1 |Ŷ 0
m∩(cw, c(w+1)]|K0

m. It follows that the overall expected

warehouse ordering cost is at most

1
c

W−1∑
w=0

T∑
m=1

|Ŷ 0
m ∩ (cw, c(w +1)]|K0

m =
1
c

T∑
m=1

K0
m

W−1∑
w=0

|Ŷ 0
m ∩ (cw, c(w +1)]|= 1

c

T∑
m=1

ŷ0
mK0

m,

where the last equality follows from the fact that each interval Ŷ 0
m is partitioned by the intervals

(cw, c(w +1)]. The proof of the lemma then follows.

Let TW := {r1 < r2 < ... < rM} be the set of periods of the warehouse orders as determined in

the first phase of the algorithm using the random shift procedure. Note that constraints (1) and

(3) imply that if t is the earliest period with a positive demand point (i.e., the earliest demand

point with dit > 0), then
∑t

r=1 ŷ0
r ≥ 1. Moreover, by the properties of the random shift procedure

described above, it is straightforward to verify that there will be at least one warehouse order

placed in the interval [1, t], i.e., r1 ∈ [1, t]. This implies that each positive demand point can be

satisfied by at least one warehouse order that is placed earlier in time.

Once we decide upon the warehouse orders, then the OWMR problem decomposes into N single-

location, single-item lot-sizing problems. These problems can be solved optimally using dynamic

programming (see, for example, Wagner and Whitin (1958) andFedergruen and Tzur (1991)) to

achieve the minimum overall retailer ordering cost and holding cost under the assumption that

warehouse orders are placed at r1 < r2 < · · ·< rM . The collection of the solutions to these single-

location problems can be used to obtain a solution to the OWMR problem. However, as part of the
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worst-case analysis, we next describe two algorithms that use the random shift in the first phase, but

determine the retailer orders in the second phase using randomized rounding procedures that are

applied to each retailer i separately. We shall analyze the worst-case expected performance of these

algorithms. The corresponding algorithms might not yield the optimal solution with respect to the

warehouse orders placed in phase one. Nevertheless, we shall show that, regardless of the instance of

the problem, the algorithm with the cheapest expected cost among the two is guaranteed to produce

a solution with expected cost at most 1.8 times the cost of an optimal solution to the OWMR

problem. Consequently, this is also true for the solutions obtained by dynamic programming.

4.2. The Random Shift Algorithm with Two-sided Retailer Push Algorithm

Throughout the rest of the paper, we shall refer to the random shift algorithm with two-sided

retailer push as Algorithm 1. As we have already mentioned, Algorithm 1 has two phases. The first

phase is the random shift procedure described above with step parameter c = 1. Consider again

TW := {r1 < r2 < ... < rM}, the set of warehouse orders placed in the first phase of the algorithm.

Next we consider each retailer i separately (i = 1, . . . ,N), and determine its orders using what

we call two-sided push procedure. First, the algorithm generates a sequence of (random) retailer-i

shift points in a way similar to the way in which warehouse shift points are constructed. Let Wi

be the upper ceiling of the accumulated weight of fractional retailer orders in the LP solution;

that is, Wi = d∑T

s=1 ŷi
se. Similar to the random warehouse shift procedure above, choose a retailer

shift parameter αi uniformly at random from (0,1] and construct a sequence of Wi retailer-i shift

points {αi + w : w = 0, . . . ,Wi − 1} (recall that c = 1). In contrast to the warehouse shift points,

the retailer-i shift points are used to determine only tentative retailer-i orders. The reason is that

placing retailer orders depends also on the output of the first phase, in which warehouse orders are

determined. For each period m = 1, . . . , T , we say that there is a tentative retailer order placed in

period m, if there is a retailer-i shift point within the interval (
∑m−1

s=1 ŷi
s,

∑m

s=1 ŷi
s].

The tentative orders are used to determine the permanent retailer orders. The way in which

this is done depends on whether retailer i is a J-retailer or a W -retailer. Suppose that there is a

tentative retailer-i order placed in some period m, then one of the following two cases applies:
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Case I: Retailer i is a J-retailer. Recall that, without loss of generality, for J-retailers we restrict

attention only to policies in which retailer-i orders are placed only in periods with warehouse

orders. That is, permanent retailer-i orders in the second phase must be placed in periods s∈ TW ,

where again TW is the set of periods in which warehouse orders were placed in the first phase of

the algorithm. Since we place retailer orders only in periods s ∈ TW , if m /∈ TW we wish to push

this tentative retailer order to periods in which we have already placed warehouse orders in the

first phase of the algorithm. In particular, for each tentative retailer order, we place up to two

permanent retailer orders: one order is placed in the latest period with a warehouse order in TW

prior to period m, if such an order exists (i.e., the tentative order is ‘pushed’ to be earlier in time);

a second order is placed in the earliest period with a warehouse order in TW after period m (i.e.,

the tentative order is ‘pushed’ to be later in time), if such an order exists. In other words, we place

permanent retailer-i orders in max{r ∈ TW : r≤m} and min{r ∈ TW : r≥m}.

Case II: Retailer i is a W -retailer. In this case we can place a permanent retailer order in each

period m for which there is a tentative order. However, we also place a second permanent retailer

order in the earliest period in TW (strictly) after m, if such a warehouse order exists. That is, we

place one permanent order at m and possibly a second permanent order in min{r ∈ TW : r > m}.

The reason that we push tentative retailer orders both earlier and later in time will be made clear

in the following discussion. Intuitively, we place additional retailer orders to guarantee that the

holding costs incurred by each demand point (i, t) are not too high compared to the holding costs

this demand point incurs in the fractional optimal solution (x̂, ŷ). (This property of the algorithm

will be used in the proof of Lemma 4 below.)

Let Ti be the set of permanent retailer-i orders placed by Algorithm 1. As we have already

observed, there is a warehouse order placed prior to the earliest period with a positive demand

point. We claim that the sets TW and Ti (for i = 1, . . . ,N) induce a feasible solution to the OWMR

problem. That is, for each demand point (i, t), the solution produced by Algorithm 1 has at least

one pair of warehouse-retailer orders dr, sc that can serve (i, t), i.e., r ∈ TW , s ∈ Ti and r ≤ s≤ t.

In particular, each demand point (i, t), is satisfied by the cheapest pair of orders dr, sc, such that
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r ∈ TW and s ∈ Ti. The proof of this claim is discussed in Lemma 4 below, in which we show that

not only such a pair of warehouse-retailer orders exists, but that the holding costs incurred by (i, t)

under Algorithm 1 are bounded.

From Lemma 2 above it follows that the total expected warehouse ordering cost of Algorithm

1 is bounded by
∑T

r=1 ŷ0
rK

0
r . Next we bound the total expected retailer ordering cost, which is

denoted by KI . The proof is identical to the proof of Lemma 2 above.

Lemma 3. The total expected retailer ordering cost of Algorithm 1 is at most twice the total

retailer ordering costs in (x̂, ŷ), the optimal solution of the LP. That is, KI ≤ 2
∑N

i=1

∑T

s=1 ŷi
sK

i.

Finally, we wish to bound the total expected holding costs incurred by Algorithm 1, which is

denoted by H. Each demand point (i, t) is considered separately (for i = 1, . . . ,N and t = 1, . . . , T ),

and its expected holding cost is bounded using the holding cost that this demand point incurs in

the optimal LP solution (x̂, ŷ). In particular, focus on some demand point (i, t), and let Ĥ it = Ĥ

be the random holding cost that Algorithm 1 incurs in satisfying this demand point. (Since the

following discussion is focused on a fixed demand point, we simplify the notation and omit the

superscript it whenever possible.) We wish to bound E[Ĥ], the expectation of Ĥ.

Service points. Consider demand point (i, t), and let Sit = S be the set of all pairs of warehouse

and retailer-i orders, which fractionally serve (i, t) in the optimal LP solution (x̂, ŷ). Specifically, let

S = {drm, smc : x̂it
rm,sm

> 0}. Let L = |S|, and without loss of generality, assume that S = {drm, smc :

m = 1, . . . ,L}, where hit
r1,s1

≤ hit
r2,s2

≤ . . . ,≤ hit
rL,sL

. That is, the order pairs dr1, s1c, . . . , drL, sLc are

sorted in an increasing order according to the per-unit holding costs that they incur. We call these

L pairs of warehouse-retailer orders the service points of (i, t). However, since the solution (x̂, ŷ)

is assumed to have the Monge Property, we conclude that drm, smc ≤ drm′ , sm′c, i.e., rm ≤ rm′

and sm ≤ sm′ , for each 1≤m′ < m≤ L. Moreover, if i is a J-retailer, we have sm = rm, for each

m = 1, . . . ,L. To simplify notation, for each m = 1, . . . ,L, we use Hm to denote H it
rm,sm

= hit
rm,sm

dit,

assuming H1 ≤H2 ≤ · · · ≤HL. Thus, the holding cost incurred by (i, t) in the optimal LP solution

(x̂, ŷ) can be expressed as
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L∑
m=1

x̂it
rm,sm

Hm.

Next we bound from below the probability Pr(Ĥ ≤Hm) that the holding cost incurred by (i, t)

in the solution produced by Algorithm 1 is at most Hm, for each m = 1, . . . ,L. This will then be

used to bound the overall expected holding costs incurred by demand point (i, t).

Lemma 4. For each m = 1, . . . ,L, the probability that the holding cost incurred by (i, t) under

Algorithm 1 is at most Hm, is at least (
∑m

u=1 x̂it
ru,su

)2; that is, Pr(Ĥ ≤Hm)≥ (
∑m

u=1 x̂it
ru,su

)2.

W e have already mentioned that given the sets TW and Ti, each demand point (i, t) is served

from the cheapest possible pair of warehouse-retailer orders. Moreover, if there exist r ∈ TW and

s ∈ Ti, such that r ≥ rm, s≥ sm and r ≤ s≤ t, then the holding cost incurred by (i, t) is at most

Hm. (We have already seen that for any two pairs of orders dr, sc and dr′, s′c, such that r≤ r′ and

s≤ s′, we have hit
r′s′ ≤ hit

rs.)

Consider now the event, in which there is a warehouse shift point within the interval [rm, t] and

a retailer-i shift point within [sm, t]. This implies that there is a warehouse order within [rm, t] and

a tentative retailer-i order within [sm, t]. Since sm ≥ rm it follows that within the interval [rm, t]

there is at least one warehouse order either earlier or later than the retailer-i tentative order within

[sm, t]. However, for each the retailer tentative order, Algorithm 1 aims to generate a permanent

retailer order earlier and later in time. It follows that there must exists a pair of warehouse-retailer

orders dr, sc, such that r ∈ TW , s ∈ Ti, r ≥ rm, s≥ sm and r ≤ s≤ t. It is now sufficient to bound

from below the the probability of this event.

By the construction of Algorithm 1, it follows that the probability of placing a warehouse order

within [rm, t] is equal to min{1,
∑

r∈[rm,t] ŷ
0
r} and that the probability of having a tentative retailer

order within [sm, t] is equal to min{1,
∑

s∈[sm,t] ŷ
i
s}. However, warehouse orders are determined

independently of the tentative retailer orders. This implies that

Pr(Ĥ ≤Hm)≥min{1,
∑

r∈[rm,t]

ŷ0
r} ·min{1,

∑

s∈[sm,t]

ŷi
s}.
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Finally, Constraints (2) and (3), respectively, imply that min{1,
∑

s∈[sm,t] ŷ
i
s} ≥

∑m

u=1 x̂it
ru,su

and

that

min{1,
∑

r∈[rm,t] ŷ
0
r} ≥

∑m

u=1 x̂it
ru,su

. The proof of the lemma then follows.

Lemma 4 above implies that under Algorithm 1, demand point (i, t) is served by a pair of orders

dr′, s′c, such that rL ≤ r′ and sL ≤ s′. (Observe that (
∑L

u=1 x̂it
ru,su

)2 = 1.) In particular, it implies

that the sets TW and Ti indeed induce a feasible solution. Moreover, we can express E[Ĥ] as

∑

dr,sc: rL≤r, sL≤s

H it
rsPr(Ĥ = H it

rs), (5)

where again Pr(Ĥ = H it
rs) denotes the corresponding probability that under Algorithm 1 demand

point (i, t) is served by the pair of orders dr, sc.

Given (5) above, it is straightforward to derive an upper bound on the expected holding cost

incurred by demand point (i, t) under Algorithm 1. Let H0 = 0 and observe that

E[Ĥ] =
∑

dr,sc: rL≤r, sL≤s

H it
rsPr(Ĥ = H it

rs) (6)

≤ H1Pr(H0 ≤ Ĥ ≤H1)+
L∑

m=2

HmPr(Hm−1 < Ĥ ≤Hm)

= H1Pr(Ĥ ≤H1)+
L∑

m=2

Hm[Pr(Ĥ ≤Hm)−Pr(Ĥ ≤Hm−1)]

= HL +
L−1∑
m=1

Pr(Ĥ ≤Hm)[Hm−Hm+1].

The inequality in (6) above follows from the fact that, for each m = 1, . . . ,L, we weight the prob-

ability Pr(Hm−1 < Ĥ ≤Hm) by Hm, which is the highest holding cost within this range. The first

equality follows from the fact that Pr(Ĥ < 0) = 0 and the identity Pr(Hm−1 < Ĥ ≤Hm) = Pr(Ĥ ≤

Hm)− Pr(Ĥ ≤Hm−1). The last equality follows from Lemma 4, in which we show that Pr(Ĥ ≤

HL) = 1. Moreover, observe that the term
∑L−1

m=1 Pr(Ĥ ≤Hm)[Hm −Hm+1] above is non-positive,

since Hm−Hm+1 ≤ 0. This implies that if we consider (6) above, but, for each m = 1, . . . ,L−1, we

replace Pr(Ĥ ≤Hm) with a lower bound on that probability, then the upper bound developed in

(6) is still maintained.
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In particular, Lemma 4 and (6) above imply that

E[Ĥ] ≤ H1(x̂it
r1,s1

)2 +
L∑

m=2

Hm

[
(

m∑
u=1

x̂it
ru,su

)2− (
m−1∑
u=1

x̂it
ru,su

)2

]
(7)

=
L∑

m=1

Hm

[
(

m∑
u=1

x̂it
ru,su

)2− (
m−1∑
u=1

x̂it
ru,su

)2

]
.

The inequality follows because, for each m = 1, . . . ,L− 1, we replace Pr(Ĥ ≤Hm) in (6) by the

lower bound established in Lemma 4 above, and Constraint (1) implies that (
∑L

u=1 x̂it
ru,su

)2 = 1.

The holding cost function. To conclude the analysis, we next introduce the holding cost function

H̄ it(β) = H̄(β). This function is defined for each demand point (i, t) according to the optimal

LP solution (x̂, ŷ). For a given value of β ∈ (0,1], let m(β) be the unique index, such that β ∈

(
∑m(β)−1

u=1 x̂it
ru,su

,
∑m(β)

u=1 x̂it
ru,su

]. (Constraint (1) above implies that
∑L

u=1 x̂it
ru,su

= 1.) We call m(β)

the the β-index of (i, t) and

drm(β), sm(β)c the β-point of the service points dr1, s1c, . . . , drL, sLc to reflect the fact that this is

the first service point by which the accumulated β fraction of the demand (i, t) is satisfied in the

optimal LP solution (x̂, ŷ). Then we define H̄(β) = Hm(β). The function H̄(β) is a step function

with steps starting at the points 0, x̂it
r1,s1

,
∑2

u=1 x̂it
ru,su

, . . . ,
∑L−1

u=1 x̂it
ru,su

and step heights H1, . . . ,HL,

respectively. Moreover, the integral of H̄(β) over (0,1] is equal to the holding costs incurred by

(i, t) in the LP optimal solution (x̂, ŷ). That is,

∫ 1

0

H̄(β)dβ =
L∑

u=1

x̂it
ru,su

Hu.

We note that Shmoys et al. (1997) have used a similar function to H̄(β) in their paper that provides

the first constant approximation algorithm for the classical metric facility location problem. Next

we shall describe another application of this function. In particular, we use the density function H̄

to bound the expected holding costs incurred by (i, t) under Algorithm 1.

Inequality (7) and the properties of the function H̄(β) imply

E[Ĥ]≤
L∑

m=1

Hm

[
(

m∑
u=1

x̂it
ru,su

)2− (
m−1∑
u=1

x̂it
ru,su

)2

]
= (8)
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2
∫ 1

0

βH̄(β)dβ ≤ 2
∫ 1

0

H̄(β)dβ ≤ 2
L∑

u=1

x̂it
ru,su

Hu.

The equality follows from the properties of H̄(β), being a step function. (In particular, on each of the

intervals (
∑m−1

u=1 x̂it
ru,su

,
∑m

u=1 x̂it
ru,su

] we take the integral Hm

∫Pm
u=1 x̂it

ru,suPm−1
u=1 x̂it

ru,su

β.) The second inequality

follows from the fact that we integrate over [0,1]. This implies the following lemma.

Lemma 5. Let H denote the total expected holding costs incurred by Algorithm 1. Then these

costs are at most twice the total holding costs incurred in the optimal LP solution (x̂, ŷ). That is,

H≤ 2
∑N

i=1

∑T

t=1

∑
r,s:r≤s≤t x̂

it
rsH

it
rs.

Lemmas 2, 3 and 5 imply the following theorem.

Theorem 1. The total expected cost K0 +KI +H incurred by Algorithm 1 is guaranteed to be at

most twice the cost of an optimal policy for the OWMR problem. Thus, Algorithm 1 is a randomized

2-approximation for the OWMR problem and its special case the JRP problem.

L et opt denote the value of an optimal policy for the OWMR problem and optLP be the optimal

value of (P ). Lemmas 2, 3 and 5 imply that

K0 +KI +H≤
T∑

r=1

ŷ0
rK

0
r +2

N∑
i=1

T∑
s=1

ŷi
sK

i +2
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

x̂it
rsH

it
rs ≤ 2optLP ≤ 2opt.

The proof of the theorem then follows.

4.3. The Random Shift Algorithm with Retailer One-Sided Push

Next we describe the random shift algorithm with retailer one-sided push that we refer to as Algo-

rithm 2. Note that the inequality in the proof of Theorem 1 above is not balanced, in that the

warehouse ordering part in the LP solution is weighted by 1, while the retailer ordering cost and

holding cost parts are weighted by 2. The idea underlying Algorithm 2 is to place warehouse orders

more frequently. This incurs additional warehouse ordering costs, but decreases the retailer order-

ing costs and holding costs incurred. Thus, Algorithm 2 creates a different balance between the

different parts of the total cost.
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Like Algorithm 1, Algorithm 2 also runs in two phases. In the first phase we again determine

the warehouse orders, now applying the random shift procedure described above but with a step

parameter c∈ (0,0.5]. (We will later set c so as to appropriately balance between Algorithm 1 and

Algorithm 2.) Let TW again be the set of periods of the warehouse orders placed by the algorithm.

It is readily verified that Algorithm 2 places warehouse orders more frequently than Algorithm 1,

which uses a step parameter equal to 1. Moreover, from Lemma 2 above, we conclude that the

total expected warehouse ordering costs of Algorithm 2 is at most 1
c

times the warehouse ordering

costs in the LP solution. That is, K0 ≤ 1
c

∑T

r=1 ŷ0
rK

0
r . We have already mentioned that once the

warehouse orders are determined one can solve for each of the retailers separately to minimize the

resulting retailer ordering and holding costs. However, we next describe the second phase of the

algorithm as part of the worst-case analysis.

In the second phase of the algorithm we determine the retailer orders, and this is again done

separately for each retailer. First we generate retailer-i shift points and tentative retailer orders in

a way similar to what was described above for Algorithm 1, but with a different step parameter

that is coordinated with the step parameter used in the first phase of the algorithm. Specifically,

set the retailer step parameter to be equal 1− c. Since c∈ (0,0.5] the retailer step parameter 1− c

is greater than c. The permanent retailer orders are again placed according to whether retailer i is

a J-retailer or a W -retailer. Suppose that there is a tentative retailer-i order placed in some period

m. Then one of the following two cases applies:

1. Retailer i is a J-retailer. In this case we simply push the tentative order to the earliest period

in TW later in time, if such an order exists. That is, we place the permanent retailer-i order in

min{r ∈ TW : r≥m}.

2. Retailer i is a W -retailer. In this case, we simply place a permanent retailer order in period

m.

Observe that in Algorithm 2, tentative retailer orders are ‘pushed’ only to be later in time.

The next lemma bounds the total expected retailer ordering costs incurred by Algorithm 2. The

proof is similar to that of Lemma 2.
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Lemma 6. Let KI be the overall expected retailer ordering costs incurred by Algorithm 2. Then

these costs are at most 1
1−c

times the total retailer ordering costs incurred in the LP optimal solution

(x̂, ŷ). That is, KI ≤ 1
1−c

∑N

i=1

∑T

s=1 ŷi
sK

i

For each i = 1, . . . ,N , let Ti be the set of periods of permanent retailer-i orders placed by the

algorithm. Once again we claim that together with TW they induce a feasible solution to the

OWMR, in which each demand point is served from the cheapest possible pair of warehouse-retailer

orders. (Similar to the discussion of Algorithm 1, it is sufficient to show that, for each positive

demand point (i, t), there exists a pair of warehouse-retailer orders dr, sc that can serve demand

point (i, t), such that s∈ Ti and r ∈ TW .) In fact, in Lemma 7 we shall show that under Algorithm

2, each demand point (i, t), is served from such a pair of warehouse-retailer orders.

Next we wish to bound the overall expected holding costs incurred by Algorithm 2. Similar to

the analysis of Algorithm 1, we consider each demand point separately, and bound the expected

holding costs it incurs under Algorithm 2 using the respective holding cost it incurs in (x̂, ŷ). The

first step is to bound from below the probabilities Pr(Ĥ ≤Hm), for each m = 1, . . . ,L, where Ĥ

is the holding cost that demand point (i, t) incurs in the solution obtained by Algorithm 2, and

Pr(·) is the corresponding probability induced by the Algorithm 2.

Lemma 7. For each m = 1, . . . ,L,

Pr(Ĥ ≤Hm)≥max{0,

∑m

u=1 x̂it
ru,su

− c

1− c
}.

R ecall that
∑L

u=1 x̂it
ru,su

= 1. For each given value of β ∈ (0,1], let again m(β) be the β-index

of (i, t), i.e., the unique index such that β ∈ (
∑m(β)−1

u=1 x̂it
ru,su

,
∑m(β)

u=1 x̂it
ru,su

].

Note that, for each m < m(c), the lower bound above trivially holds, since
∑m

u=1 x̂it
ru,su

< c and the

lower bound is equal to 0. Consider now some m≥m(c), such that
∑m

u=1 x̂it
ru,su

> c. In particular,

we have already seen that rm ≤ rm(c) and sm ≤ sm(c).

Moreover, we have already seen that if (i, t) is served by a pair of warehouse-retailer orders dr, sc
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such that r≥ rm and s≥ sm, then the holding cost it incurs is at most Hm. Thus, we focus on this

event and show that the probability it occurs is at least

max{0,

∑m

u=1 x̂it
ru,su

− c

1− c
}.

First consider the case in which i is a J-retailer. Focus on the event, in which there is a warehouse

order within the interval [rm(c), t] and a tentative retailer-i order within the interval [sm, sm(c)].

Since sm(c) = rm(c) and Algorithm 2 aims to shift tentative retailer orders later in time, it follows

that indeed (i, t) will be served by a pair of orders dr, sc such that r ≥ rm and s≥ sm. It is now

sufficient to lower bound the probability of the latter event.

However, since
∑

r∈[rm(c),t]
ŷ0

r ≥ c, there is a warehouse order placed within the time interval

[rm(c), t] with probability 1. Moreover, we claim that the probability of having a tentative retailer-i

order within the time interval [sm, sm(c)] is at least 1
1−c

(∑m

u=1 x̂it
ru,su

− c
)
. Since warehouse orders

are determined independently of tentative retailer orders the proof of this case will follow. This

can be seen as follows:

m∑

u=m(c)

x̂it
ru,su

=
m∑

u=1

x̂it
ru,su

−
m(c)−1∑

u=1

x̂it
ru,su

≥
m∑

u=1

x̂it
ru,su

− c.

However, Constraint (2) implies that the cumulative weight of retailer-i fractional orders over the

time interval [sm, sm(c)], i.e.,
∑m

u=m(c) ŷ
i
su

, is at least
∑m

u=1 x̂it
ru,su

− c, from which the claim follows.

(Recall that the step parameter in second phase of Algorithm 2 is 1− c.)

Next consider the case in which i is a W -retailer, and let µ =
∑m

u=1 x̂it
ru,su

− c > 0. Focus on

the event, in which there is a warehouse order within the interval [rm, rm(µ)] and a retailer-i order

within [sm(µ), t]. Since rm(µ) ≤ sm(µ), it follows that indeed (i, t) will be served by a pair of orders

dr, sc such that r ≥ rm and s ≥ sm. Using similar arguments we conclude that there is a retailer

order placed within the time interval [sm(µ), t] with probability at least µ/(1− c) and that there
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is a warehouse order placed within the time interval [rm, rm(µ)] with probability 1. Moreover, the

above two events are again independent events.

Lemma 7 above implies that (i, t) is served by a pair of warehouse-retailer orders dr, sc, such

that r ≥ rL and s≥ sL, with probability 1. This implies that the solution induced by the sets TW

and Ti is feasible. In particular, Inequality (6) above is valid. (Observe that Inequality (6) does not

depend on Algorithm 1, but only on the fact that with probability 1, (i, t) is served by a pair of

warehouse-retailer orders dr, sc such that r≥ rL and s≥ sL.) Similar to the analysis of algorithm 1,

the upper bound obtained by Inequality (6) is maintained if, for each m = 1, . . . ,L−1, one replaces

Pr(Ĥ ≤Hm) by a respective lower bound.

Using the lower bounds obtained in Lemma 7, we get that

E[Ĥ] ≤ 1
1− c

L∑

u=m(c)

Hux̂it
ru,su

≤ 1
1− c

L∑

u=m(c)+1

x̂it
ru,su

Hu +Hm(c)

∑m(c)

m=1 x̂it
rm,sm

− c

1− c

≤ 1
1− c

L∑
u=1

x̂it
ru,su

Hu.

We have obtained the following lemma.

Lemma 8. Let H denote the overall expected holding cost incurred by Algorithm 2 with a step

parameter c ∈ (0,0.5]. Then H is at most 1
1−c

times the holding costs incurred by the optimal LP

solution (x̂, ŷ). That is, H≤ 1
1−c

∑N

i=1

∑T

t=1

∑
r,s:r≤s≤t x̂

it
rsH

it
rs.

Lemmas 6 and 8 imply the following theorem.

Theorem 2. The overall expected costs K0 +KI +H incurred by Algorithm 2 with a step param-

eter c∈ (0,0.5] is at most

1
c

T∑
r=1

ŷ0
rK

0
r +

1
1− c

N∑
i=1

T∑
s=1

ŷi
sK

i +
1

1− c

N∑
i=1

T∑
t=1

∑
r,s:r≤s≤t

x̂it
rsH

it
rs.

It is readily verified that for c = 0.5, Algorithm 2 is a randomized 2-approximation for the OWMR

problem.
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4.4. Combining Algorithms 1 and 2

Next we use Algorithm 1 and Algorithm 2 together. Specifically, we shall show that taking the

algorithm with the minimum expected cost among algorithms 1 and 2 yields an improved expected

worst-case guarantee of 1.8. We shall achieve this by choosing the step parameter of Algorithm 2

to be c = 1/3. Using the fact that min{a, b} ≤ λa+(1−λ)b, for each 0≤ λ≤ 1, we apply Theorems

1 and 2 (with c = 1/3) and take λ = 3/5 to conclude that the solution with the smaller expected

cost has expected value at most

1.8

(
T∑

r=1

ŷ0
rK

0
r +

N∑
i=1

T∑
s=1

ŷi
sK

i +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

x̂it
rsH

it
rs

)
= 1.8optLP ≤ 1.8opt.

Theorem 3. There exists a randomized 1.8-approximation algorithm for the OWMR problem

and its special case the JRP problem.

Finally, we describe how to derandomize the algorithms and get deterministic approximation

algorithms with the same guarantee. We have already mentioned that once the warehouse orders

are determined, the problem decomposes to N single-retailer subproblems that can be solved to

optimality via dynamic programming. Thus, the expected cost of the solutions obtained by dynamic

programming is at most the expected cost of algorithms 1 and 2. It is now enough to show how to

derandomize the first phase of the algorithms. However, it is readily verified that in the random

shift procedure described above, there is only a polynomial number of values of α0 that yield

distinct sets of warehouse orders. Specifically, there are O
(

T
c

)
such points, where c is again the step

parameter being chosen. (Observe that we can restrict attention only to sequences of shift points

in which one of them is at the right edge of an interval Ŷ 0
m or (cw, c(w + 1)]. Thus, the number

of different sequences of shift points to be considered is bounded by dT/Ce.) It is readily verified

that these values can be easily enumerated. (For the analysis we have considered the values c = 1

and c = 1
3
.) Specifically, the cost of the solution obtained by taking the best (cheapest) choice of

warehouse orders is at most the expected cost over all choices.

Theorem 4. There exists a deterministic 1.8-approximation algorithm for the OWMR problem

and its special case the JRP problem.
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5. Conclusions

In this paper, we have demonstrated how strong LP relaxations can be used to construct provably

near-optimal solutions for a class of classical deterministic inventory models. We have focused on

the classical model, known as the one-warehouse multi-retailer problem, and designed the first

constant factor approximation algorithms for several variants of this model. This is yet another

example of the potential of LP-based approximation methods as a tool to ”attack” inventory

problems. We find that this direction is important, both theoretically and practically. From the

practical aspect, we point out that in many real-life cases, these inventory problems are solved as

integer programs. This emphasizes the importance of techniques that enable us to efficiently round

fractional solutions to good feasible integer solutions, as a tool for enhancing the computational

procedures for solving these IP’s.

We believe that it would be interesting to test the typical quality of the solutions that our

algorithms generate on different inputs and compare them to other known heuristics.

A very interesting theoretical open question is related to the approximability of the OWMR

problem. The problem is proven to be NP-hard, since the special case of the JRP is NP-hard

(Arkin et al. 1989). However, we know of no approximability hardness result and one can not even

exclude the existence of a polynomial-time approximation scheme (i.e., one might be able to design

a ρ−approximation algorithm for any ρ > 1). In addition, the analysis presented in this paper is not

tight, that is, we do not have bad examples on which the performance of the proposed algorithms

matches the upper bound of 1.8.

Finally, it seems that LP-based approximation techniques can be used to provide high qual-

ity solutions to a class of classical inventory models. It is most interesting to see whether these

techniques can be applied to more complicated inventory models.

Appendix. Transportation Costs and Batch Capacities

In this appendix, we consider the OWMR problem, but with batch capacities and a correspondingly more

complex cost structure. Instead of ordering costs we consider transportation costs. Usually, transportation
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is based on trucks with given capacities. We model this in the following way. For each warehouse-retailer i

segment we consider trucks/batches each with capacity U i and cost Ki (i = 1, . . . ,N). In addition, in the

supplier-warehouse segment, we consider trucks/batches each with capacity U0 and cost K0. Each order

consists now of several complete batches, say w (w ∈ Z+), that can provide a capacity of wU i units and

incurs a cost of wKi (i = 0, . . . ,N). The batch-based ordering structure is sometimes called ordering with

soft capacities.

We first modify the linear program (P ) presented in Section 3 to capture the new model. For each period

r = 1, . . . , T we add the constraint
∑N

i=1

∑
t≥r

∑
s∈[r,t] x

it
rsdit ≤ y0

r U0 . For each i = 1, . . . ,N and s = 1, . . . , T

we add the constraint
∑

t≥s

∑
r≤s xit

rsdit ≤ yi
sU

i . Observe that the variables yi
s and y0

r can be larger than 1.

Consider now the corresponding dual program:

maximize
N∑

i=1

T∑
t=1

bi
t (D1)

subject to bi
t ≤H it

rs + list + zi
rt + δisdit + θrdit, i = 1, . . . ,N, t = 1, . . . , T, (9)

s = 1, . . . , t, r = 1, . . . , s.

T∑
t=s

list + δisU
i ≤Ki, i = 1, . . . ,N, s = 1, . . . , T, (10)

N∑
i=1

T∑
t=r

zi
rt + θrU

0 ≤K0, r = 1, . . . , T, (11)

list, zi
rt, δis, θr ≥ 0, i = 1, . . . ,N, t = 1, . . . , T, (12)

s = 1, . . . , t, r = 1, . . . , t.

Note that weak duality implies that, each feasible solution (b, l, z, δ, θ) for the above dual program (D1)

provides a lower bound on the optimal cost of the primal LP; thus, it provides a lower bound on the optimal

cost of the OWMR problem with batch capacities. Suppose now that we set the value of each dual variable

δis to be equal to Ki

2Ui , and of each dual variable θr to be equal to K0

2U0 , and consider the induced modified

LP. It is straightforward to verify that the modified LP is the dual program of the following primal LP

(recall that H it
rs = hit

rsdit):

minimize
N∑

i=0

T∑
s=1

1
2
Y i

s Ki +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

Xit
rsdit(hit

rs +
1
2
(
Ki

U i
+

K0

U0
)) (P2)

subject to
∑

r,s:r≤s≤t

Xit
rs = 1, i = 1, . . . ,N, t = 1, . . . , T, dit > 0, (13)
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∑
r:r≤s

Xit
rs ≤ Y i

s , i = 1, . . . ,N, t = 1, . . . , T, s = 1, . . . , t (14)

∑
s:r≤s≤t

Xit
rs ≤ Y 0

r , i = 1, . . . ,N, t = 1, . . . , T, r = 1, . . . , t (15)

Xit
rs, Y i

r ≥ 0, i = 0, . . . ,N, s = 1, . . . , T, (16)

r = 1, . . . , s, t = s, . . . , T.

However, (P2) is an LP relaxation of an uncapacitated OWMR problem, where the ordering and the

holding cost parameters are modified accordingly. Thus, the modified dual program has an optimal solution

which we denote by (b̂, l̂, ẑ) In particular, by strong duality
∑N

i=1

∑T

t=1 b̂i
t is equal to the optimal value of

(P2) that we denote by optLP2. It is also clear that the modified holding cost parameters hit
rs + 1

2
(Ki

Ui + K0

U0 )

still obey all of the assumptions discussed in Section 2. Hence, we can use the algorithms described in Section

4 to find an integer solution to this uncapacitated OWMR problem, denoted by (X̄, Ȳ ), with the following

property:

N∑
i=0

T∑
s=1

1
2
Ȳ i

s Ki +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

X̄it
rsdit(hit

rs +
1
2
(
Ki

U i
+

K0

U0
))≤ 1.8optLP2 =

1.8
T∑

i=1

T∑
t=1

b̂i
t

Next we define a feasible solution to the original OWMR problem with batch capacities. For each

(i, t) and r ≤ s, we set x̄it
rs = X̄it

rs. For each r = 1, . . . , T , we set ȳ0
r = d 1

U0

(∑N

i=1

∑
t≥r

∑
s∈[r,t] X̄

it
rs

)
e.

For each i = 1, . . . ,N and s = 1, . . . , T , we set ȳi
s = d 1

Ui

(∑
t≥s

∑
r≤s X̄it

rs

)
e. It follows that ȳ0

r ≤ Ȳ 0
r +

1
U0

(∑N

i=1

∑
t≥r

∑
s∈[r,t] X̄

it
rs

)
(for each r = 1, . . . , T ), and ȳi

s ≤ Ȳ i
s + 1

Ui

(∑
t≥s

∑
r≤s X̄it

rs

)
(for each i = 1, . . . ,N

and s = 1, . . . , T ). This implies that:

N∑
i=0

T∑
s=1

ȳi
sK

i +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

x̄it
rsH

it
rs ≤

2

(
N∑

i=0

T∑
s=1

1
2
Ȳ i

s Ki +
N∑

i=1

T∑
t=1

∑
r,s:r≤s≤t

X̄it
rsdit(hit

rs +
1
2
(
Ki

U i
+

K0

U0
))

)
≤

3.6
T∑

i=1

T∑
t=1

b̂i
t

Finally, we claim that
∑T

i=1

∑T

t=1 b̂i
t provides a lower bound on the optimal cost of the original OWMR

problem with batch capacities. It is sufficient to show that (D1) has a feasible solution with objective value

∑T

i=1

∑T

t=1 b̂i
t. However, by setting δ̂is = Ki

2Ui and θ̂r = K0

2U0 , the solution (b̂, l̂, ẑ) is mapped to a feasible solution

(b̂, l̂, ẑ, δ̂, θ̂) to (D1) with the same objective value. We now conclude that the following theorem holds:



Levi et al.: A Constant Approximation Algorithm for the One-Warehouse Multi-Retailer Problem
30 Article submitted to Management Science; manuscript no. MS-00565-2004.R2

Theorem 5. The algorithm provides a 3.6-approximation algorithm for the OWMR and the JRP problems

with transportation costs and batches.

Finally, we observe that by using dynamic programming the single-location lot-sizing problem can be

solved optimally for any cost parameters hst. In turn, this yields a 2-approximation algorithm for the single-

location lot-sizing problem with batches. Here we can allow a time-dependent ordering cost Ks and batch

size Us (s = 1, . . . , T ). As a byproduct we also prove a lower bound of 2 on the integrality gap of the

corresponding natural LP-relaxations. For the case where Us = U (uniform batch size), Pochet and Wolsey

(1993) have shown that the problem can be solved optimally using dynamic programming (applied directly

to the problem). Moreover, they have observed a linear program for this problem with integrality property

(i.e., an LP that describes the convex hall of the integer solutions). This LP has an exponential number of

constraints, but these constraints are separable.

Theorem 6. For the single-location lot-sizing problem with time-dependent batch size there exists a 2-

approximation algorithm.

Theorem 7. The facility location inspired LP for the single-location lot-sizing problem with time-

dependent batch size has an integrality gap of at most 2.
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