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Abstract

We analyze the computational problem of estimating financial risk in a nested simulation. In
this approach, an outer simulation is used to generate financial scenarios and an inner simulation
is used to estimate future portfolio values in each scenario. We focus on one risk measure, the
probability of a large loss, and we propose a new algorithm to estimate this risk. Our algorithm
sequentially allocates computational effort in the inner simulation based on marginal changes in
the risk estimator in each scenario. Theoretical results are given to show that the risk estimator
has a faster convergence order compared to the conventional uniform inner sampling approach.
Numerical results consistent with the theory are presented.

1. Introduction

The measurement and management of risk is an increasingly important function at financial insti-
tutions. A primary goal of risk measurement is to ensure that banks and other financial firms have
sufficient capital reserves in relation to their holdings and investment activities. The recent failures
of large and small investment and commercial banks highlight the need for better modeling and
computation of financial risk measures.

Risk measurement is typically divided into two stages: scenario generation and portfolio re-
valuation. Scenario generation refers to the sampling of risk factors over a given time horizon.
This first (or, outer) stage is often performed with Monte Carlo simulation, especially when more
realistic models with a large number of correlated risk factors are used. Portfolio re-valuation
refers to the computation of the portfolio value at the risk time horizon, given a particular scenario
of risk factors. Often the portfolio contains derivative securities with nonlinear payoffs that, in
conjunction with more realistic financial models, require Monte Carlo simulation for this second
∗This work was supported by NSF grant DMS–0914539.
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(or, inner) stage. Thus, in realistic applications, the risk measurement calculation involves a two-
level nested Monte Carlo simulation. Because nested Monte Carlo simulation can represent a
prohibitive computational challenge, various approximation approaches are often employed. The
focus of our paper is on algorithmic improvements of the direct nested Monte Carlo simulation
approach, so that risk computation can be done on portfolios of derivative securities with more
realistic multi-factor financial models.

In this paper, we consider what is perhaps the most basic risk measure, the probability that
the future portfolio value falls below a pre-specified threshold, in other words, the probability of
a large loss. When analytical formulas are available for the portfolio re-valuation step, a primary
challenge of single-level Monte Carlo is to reduce the variance of the simulation risk estimator. In
the nested setting, simulation is also used for the portfolio re-valuation step and additional sources
of variability are introduced. The second level of simulation introduces bias into the computation,
and hence both bias and variance need to be balanced and reduced to minimize the total error in
the simulation risk estimate.

The problem of estimating the probability of a loss via nested simulation was first analyzed
by Lee (1998) and Lee and Glynn (2003), and was subsequently considered by Gordy and Juneja
(2010). These authors primarily consider and analyze uniform nested simulation estimators. Such
estimators employ a constant number of inner samples across portfolio re-valuation calculations,
thus allocating computational effort uniformly across all scenarios. They demonstrate that, asymp-
totically, the bias of a uniform estimator is a function of the number of inner samples used in each
portfolio re-valuation, while the variance of a uniform estimator is a function of the number of
outer scenarios. They characterize the asymptotically optimal uniform estimator. This estimator
balances a limited computational budget between using many outer scenarios, so as to lower vari-
ance, and using many inner samples in each scenario, so as to lower bias, in a way that minimizes
the overall mean squared error (MSE) among the class of uniform estimators.

This paper seeks to exploit the fact that accurate portfolio re-valuation is not equally important
across all scenarios. Nested simulation can be made much more efficient by allocating computa-
tional effort non-uniformly across scenarios. Non-uniform estimators have been previous suggested
by others in a number of contexts (e.g., Lee and Glynn, 2003; Lesnevski et al., 2004, 2007; Lan
et al., 2008; Gordy and Juneja, 2008). Here, we propose and analyze a novel class of non-uniform
estimators based on the idea of allocating additional effort to scenarios with a greater expected
marginal change to the risk measure. Specifically, the main contributions of this paper are as
follows:

1. We propose a non-uniform nested simulation algorithm for estimating the probability of a loss.

Our algorithm proceeds by allocating the inner stage samples for portfolio re-valuation in a
sequential fashion. At each time step, it myopically selects the scenario where one additional
inner stage sample will have the greatest marginal impact to the estimated loss probability.
This algorithm is simple to implement and incurs minimal computational overhead.
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2. We provide an analysis that demonstrates the lower asymptotic bias of our approach.

Given m inner stage samples in each scenario, a uniform nested estimator has an asymptotic
bias of order m−1. We analyze a simplified variation of our non-uniform estimator, and
demonstrate that with an average of m̄ inner stage samples per scenario, the asymptotic
bias is of order m̄−2+ε, for all positive ε. Hence, for the same overall number of samples,
the non-uniform estimator reduces bias by an order of magnitude. This theoretical analysis
builds on ideas from sequential hypothesis testing, and highlights the relationship between
our non-uniform estimation algorithm and classical sequential hypothesis testing.

3. We provide an analysis that demonstrates the lower asymptotic MSE of our approach.

Given a computational budget of k, the optimal uniform nested estimator results in an asymp-
totic MSE of order k−2/3. Since non-uniform sampling provides a lower bias for the same
number of inner stage samples, some of this computational savings can be used for the gener-
ation of additional outer scenarios to lower variance. We show that our non-uniform method
has an asymptotic MSE of order k−4/5+ε, for all positive ε. Further, we demonstrate a
practical implementation of our non-uniform estimator that adaptively balances bias (inner
sampling) and variance (outer scenario generation).

4. We demonstrate the practical benefits of our method via numerical experiments.

Numerical experiments demonstrate that the performance of our non-uniform nested estima-
tion algorithm is up to two orders of magnitude better than competing methods. Hence, we
illustrate that the results achievable in practice are consistent with the gains suggested by
the theory.

The rest of the paper is organized as follows. Section 1.1 contains a brief literature review. The
problem setup and notation are given in Section 2. Results for uniform inner stage sampling are
reviewed in Section 3. A sequential non-uniform algorithm is motivated and presented in Section 4
and a theoretical analysis is given in Section 5. Section 6 gives a practically implementable adaptive
version of the sequential algorithm and numerical results are provided in Section 7. Concluding
remarks are given in Section 8 and proofs are provided in the Appendix.

1.1. Literature Review

Overviews of financial risk measurement and management are given in Crouhy et al. (2000), Jorion
(2006) and McNeil et al. (2006). There is a large literature on the properties of alternative risk
measures (see, e.g., Artzner et al., 2000; Rockafellar and Uryasev, 2002; Föllmer and Schied, 2002).
Variance reduction techniques to improve first stage sampling are given in Glasserman et al. (2000,
2002).

Most closely related to our work is that of Lee (1998) and Lee and Glynn (2003), who consider
the problem of estimating the probability of a large loss and analyze nested simulation estimators
and their convergence properties under uniform inner stage sampling. They consider two settings,
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where the underlying scenario space is either continuous or discrete.1 They establish that, given
a total computational budget of k, the optimal uniform nested estimator results on an asymptotic
MSE of order k−2/3 in the continuous case and k−1 log k in the discrete case. Independently, Gordy
and Juneja (2010) also consider estimating the probability of large loss in the continuous case, under
a different set of assumptions. They also consider two additional risk measures (the probability
of a large loss, value at risk, and expected shortfall). For each of these risk measures, they derive
asymptotic bias and variance results for uniform second stage sampling. This allows them to derive
the optimal allocation of effort between first and second stage sampling and derive the optimal
asymptotic MSE of order k−2/3. They also propose a jackknife procedure for reducing bias.

The idea of non-uniform nested estimation of risk measures dates back to at least the work of
Lee and Glynn (2003). In the discrete case, they identify a class of non-uniform nested estimators
for the probability of a large loss with asymptotic MSE of order k−1 log k. In this setting, the non-
uniform estimator achieves the same asymptotic convergence as the uniform estimator, but with a
better constant. Lesnevski et al. (2004, 2007) propose a non-uniform nested estimator for a related
discrete problem: they estimate the worst case expected loss across a finite set of scenarios. They
are able to develop confidence intervals for their estimation procedure. Lan et al. (2007, 2008) and
Liu et al. (2008) extend this work to the case of estimating expected shortfall. Contemporaneous
with the present work, Gordy and Juneja (2008) suggest a broad class of non-uniform estimators
for estimating the probability of a loss large, as in the present setting. Their description is rather
general, however, while we provide a concrete algorithm.

Note that some of the non-uniform estimators in this prior literature have similarities to the
non-uniform estimator that we propose; we discuss these in Section 4. Critically, however, none of
this prior work is able to establish theoretically that a non-uniform estimator converges at a faster
asymptotic order than is possible with uniform estimators.

There are some connections between nested simulation to estimate risk and ranking and selection
(R&S) procedures which search for the best among a finite number of systems. For an overview
of ranking and selection see Kim and Nelson (2005) and the book of Chen and Lee (2010). Each
R&S system corresponds to an outer sample and sampling a performance measure from a system
corresponds to an inner sample. Many R&S procedures rely on myopic rules to determine an
allocation of inner samples (e.g., Frazier et al., 2008) and the spirit of our procedure is similar. R&S
typically considers a finite and small number of systems, whereas our outer sampling draws from
an infinite and often multi-dimensional domain. The R&S objective of finding the best performing
system is also different than estimating a risk measure across and range of first stage outcomes.

Finally, also of interest is the work of Liu and Staum (2009); they explore an alternative approach
based on stochastic kriging for estimating a risk measure. Hong and Juneja (2009) consider the
benefits of kernel smoothing in risk estimation. Sun et al. (2009) consider nested simulation in the
context of estimating conditional variance.

1In this paper, we will consider only continuous scenario spaces. Note that the theory is qualitatively different in
the discrete case versus the continuous case.
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2. Problem Formulation: Nested Simulation

Consider the problem of measuring the risk of a portfolio of securities at some future time t = τ

(the risk horizon), from the perspective of an observer at time t = 0. Denote the current portfolio
value by X0. The value of the portfolio at time τ , Xτ , is, in general, a random variable and thus is
not known at time 0. We assume, however, that there is a probabilistic model for the uncertainty
between times 0 and τ . In particular, suppose that Ω is a set of possible future ‘scenarios’ or ‘risk
factors.’ Each scenario incorporates sufficient information so as to determine all assets prices at
time τ . Thus, in each scenario ω ∈ Ω, the portfolio has value Xτ (ω). The mark-to-market loss of
the portfolio at time τ in scenario ω is given by2 L(ω) , X0 −Xτ (ω).

A risk measure is a functional ρ that quantifies the risk of the random variable L by a scalar
ρ(L) ∈ R. Some common examples of risk measures include value-at-risk and conditional value-at-
risk. In this paper, we will focus on what is perhaps the most basic risk measure, the probability
of a large loss. That is, given a threshold c ∈ R, we are interested in estimating the probability of
the loss L exceeding c. Denote the resulting probability by α , P(L ≥ c).

In order to estimate the loss probability α, we face two challenges. First, typically, the space
of possible scenarios Ω is quite large, if not infinite. Thus, one approach is to approximate the
distribution of the loss random variable L with an empirical distribution obtained by Monte Carlo
sampling. This is referred to as the outer level (or, first stage) of the simulation. In particular, if
ω1, . . . , ωn are n independent and identically distributed samples drawn according to the physical
(or, real-world) distribution of ω, then we can approximate the loss probability by

(1) 1
n

n∑
i=1

I{L(ωi)≥c}.

However, even in a single scenario ωi, it may be difficult to exactly compute the loss L(ωi). The
portfolio may contain a collection of complex, path-dependent securities with random cashflows
between times τ and some final horizon T . Then, the loss L(ωi) must be estimated via an inner
level (or, second stage) of Monte Carlo simulation of the expected cashflows of the portfolio over
the interval [τ, T ]. The inner simulation occurs under the risk-neutral distribution, conditioned on
the scenario ωi. If Ẑi,1, . . . , Ẑi,m are m i.i.d. samples of losses generated according to this second
stage of simulation, each with mean L(ωi), then we can approximate the loss L(ωi) in scenario ωi
by

(2) L̂i ,
1
m

m∑
j=1

Ẑi,j .

The Uniform estimator of Algorithm 1 describes a nested simulation procedure that combines
the estimates from the outer and inner levels of simulation in the obvious way to produce an overall

2Without loss of generality, we assume the portfolio has no intermediate cashflows before time τ , and that the
riskless rate is 0.
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Figure 1: Illustration of uniform sampling. The outer stage generates n financial scenarios ω1, . . . , ωn.
Conditional on scenario ωi, m inner stage portfolio losses Ẑi,1, . . . , Ẑi,m are generated.

estimate of the loss probability. The estimator is a function of two parameters: n, the number of
outer stage samples, and m, the number of inner stage samples. We say that this estimator samples
uniformly in the sense that a constant number of inner stage samples is used for each outer stage
scenario. This procedure is illustrated in Figure 1.

1: procedure Uniform(m,n)
2: for i← 1 to n do
3: generate scenario ωi
4: conditioned on scenario ωi, generate i.i.d. samples Ẑi,1, . . . , Ẑi,m of portfolio losses
5: compute an estimate of the loss in scenario ωi, L̂i ← 1

m

∑m
j=1 Ẑi,j

6: end for
7: compute an estimate of the probability of a large loss, α̂← 1

n

∑n
i=1 I{L̂i≥c}

8: return α̂
9: end procedure
Algorithm 1: Estimate the probability of a large loss using a uniform nested simulation. The parameter
m is the number of inner samples per scenario. The parameter n is the number of outer scenarios.

3. Optimal Uniform Sampling

The Uniform estimator is a function of two parameters: n, the number of scenarios, and m, the
number of inner stage samples for each scenario. This raises an obvious question: what are the
best choices for the parameters m and n? This question has been addressed in the work of Lee
(1998) and Gordy and Juneja (2010). We follow the latter approach.

Denote the Uniform estimate of the probability of a large loss by α̂m,n , Uniform(m,n). The
obvious objective is to choose parameters (m,n) so as to minimize the mean squared error (MSE)
of the estimate α̂m,n, subject to the constraint of a limited budget of computational resources.
The Uniform estimator involves outer scenario generation and inner sampling. We will make the
assumption that the computational effort of this estimator is dominated by the latter.3

3This will typically be true since the risk horizon τ is often short relative to the time horizon T of realized cashflows.
In any event, the analysis in this paper can easily be extended to account for the computational effort of scenario
generation.
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Given parameters (m,n), a total of mn inner samples are generated in order to compute the
estimate α̂m,n. Thus, given a computational work budget k on the total number of inner samples,
we have the optimization problem:

(3)
minimize

m,n
E
[
(α̂m,n − α)2

]
subject to mn ≤ k,

m, n ≥ 0.

The mean squared error objective can be decomposed into variance and bias terms according to

(4) E
[
(α̂m,n − α)2

]
= E

[
(α̂m,n − E[α̂m,n])2

]
︸ ︷︷ ︸

variance

+
(
E [α̂m,n − α]

)2

︸ ︷︷ ︸
bias2

.

In order to analyze the asymptotic behavior of the MSE, first consider the following technical
assumption:4

Assumption 1. Denote by L(ω) the portfolio loss in scenario ω at time τ , and denote by L̂ an
estimator of the form (2) for L(ω), based on the average of m i.i.d. inner stage samples. Assume
that

1. The joint probability density function pm(`, ˆ̀) of (L, L̂) and its partial derivatives ∂
∂`pm(`, ˆ̀)

and ∂2

∂`2 pm(`, ˆ̀) exist for each m and (`, ˆ̀).

2. For each m ≥ 1, there exist functions f0,m(·), f1,m(·), and f2,m(·) so that

pm(`, ˆ̀) ≤ f0,m(ˆ̀),
∣∣∣∣ ∂∂`pm(`, ˆ̀)

∣∣∣∣ ≤ f1,m(ˆ̀),
∣∣∣∣∣ ∂2

∂`2
pm(`, ˆ̀)

∣∣∣∣∣ ≤ f2,m(ˆ̀),

for all (`, ˆ̀). Further,

sup
m

∫ ∞
−∞
|ˆ̀|rfi,m(ˆ̀) dˆ̀<∞, for all i = 0, 1, 2, and 0 ≤ r ≤ 4.

Gordy and Juneja (2010) establish the following:5

Theorem 1. Suppose that Assumption 1 holds, and denote by f(·) the density of the loss variable
L. As m→∞, the bias of the Uniform estimator asymptotically satisfies

E [α̂m,n − α] = θc
m

+O
(
m−3/2

)
,

4For an alternative set of assumptions, see Lee (1998).
5In what follows, given arbitrary sequences {fN} and {gN}, and a positive sequence {qN}, as N → ∞, we

will say that fN = gN + O(qN ) if lim supN→∞ |fN − gN |/qN < ∞, i.e., if the difference between f and g, is
asymptotically bounded above by some constant multiple of q. Similarly, we will say that fN = gN + o(qN ) if
lim supN→∞ |fN − gN |/qN = 0, i.e., if the difference between f and g is asymptotically dominated by every constant
multiple of q. Finally, we will say that fN = gN+Θ(qN ) if 0 < lim infN→∞ |fN−gN |/qN ≤ lim supN→∞ |fN−gN |/qN <
∞, i.e., if the difference between f and g is asymptotically bounded above and below by constant multiples of q.
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where

(5) θc , −Υ′(c), Υ(c) , 1
2f(c)E

[
σ2(ω)

∣∣∣ L(ω) = c
]
,

and σ2(ω) is the variance of the inner stage samples in scenario ω.

Theorem 1 directly provides an asymptotic analysis of the bias term in the MSE (4). Theorem 1
can immediately be employed to analyze the variance term, as in the following corollary:

Corollary 1. Under the conditions of Theorem 1, as m→∞, the variance of the Uniform estimator
satisfies

Var (α̂m,n) = α(1− α)
n

+O
(
m−1n−1

)
.

Proof. Note that

Var (α̂m,n) = Var
(

1
n

n∑
i=1

I{L̂i≥c}

)
= 1
n

Var
(
I{L̂1≥c}

)
=

E [α̂m,n]
(
1− E [α̂m,n]

)
n

,

where we have used the fact that the loss estimates {L̂i} are independent and identically distributed.
Applying Theorem 1,

Var (α̂m,n) = α(1− α)
n

+
E [α̂m,n − α]

(
1− E [α̂m,n]

)
n

+ αE [α− α̂m,n]
n

= α(1− α)
n

+O
(
m−1n−1

)
.

�

Theorem 1 and Corollary 1 provide a complete asymptotic characterization of the MSE of the
Uniform estimator. The asymptotic variance of the estimator is determined by the number of
scenarios n and decays as n−1, while the asymptotic bias of the estimator is determined by the
number of inner stage samples per scenario m and decays as m−1.

Given a computational budget of a total of k inner stage samples, a naive choice of parameters
(m,n) might be to sample equally in the outer and inner stages, i.e., set m = n = k1/2. This would
result in an asymptotic bias squared of order k−1 and an asymptotic variance of order k−1/2, and
an overall asymptotic MSE of order k−1/2. Since the variance is asymptotically dominating the bias
squared and determining the MSE, the naive Uniform estimator is clearly not optimal. One could
do better by using fewer inner stage samples per scenario and increasing the number of scenarios.

In order to find the optimal Uniform estimator, using Theorem 1 and Corollary 1, we can
approximate the minimum MSE problem (3) by the optimization problem

minimize
m,n

α(1− α)
n

+ θ2
c

m2

subject to mn ≤ k,
m, n ≥ 0.
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This suggests optimal allocations

(6) m∗ = k1/3/β∗, n∗ = β∗k2/3, where β∗ ,
(
α(1− α)

2θ2
c

)1/3
,

and the optimal asymptotic mean squared error

(7) E
[
(α̂m,n − α)2

]
= 3 (β∗)2 k−2/3 + o(k−2/3).

The optimal allocations suggested by (6) involve, asymptotically, order k2/3 outer stage scenarios
and order k1/3 inner stage samples per scenario. However, the optimal constant factors depend on
the constant θc and it is not clear how to effectively estimate θc a priori. As we will see in Section 7,
the choice of these constant factors is critical to the practical performance of a uniform estimator.

Finally, it is instructive to compare the rate of convergence of the optimal Uniform estimator
in a two-level nested Monte Carlo simulation to that of an estimator of the probability of a large
loss in a single-level Monte Carlo simulation. In the latter case, scenarios ω1, . . . , ωn are generated.
It is assumed that in each scenario ωi, the loss L(ωi) can be exactly computed, and the probability
is estimated via (1). Note that the estimator (1) is unbiased, and has a variance proportional to
n−1. In a single-level simulation, then, the amount of work is proportional to n, while the MSE of
the estimator decays proportional to n−1. In a two-level simulation, however, as shown above, the
amount of work is proportional to k, while the MSE decays at best at a rate of k−2/3. This slower
rate of decay is due to the bias introduced by the inner level of simulation.

4. Sequential Sampling

The Uniform estimator described in Sections 2 and 3 employs a constant number of inner stage
samples for each outer stage sample. It is intuitively clear to see that this may not be an efficient
strategy. As an illustrative example, consider the situation depicted in Figure 2. Here, we wish to
estimate the loss probability associated with the shaded region. There are two outer stage scenarios
ω1 and ω2, associated with the portfolio losses L(ω1) and L(ω2) respectively. These true losses are
approximated, in each scenario, by the estimated losses L̂1 and L̂2.

Suppose that, under a uniform nested simulation, the portfolio losses estimated in each scenario
are distributed according to the dashed probability distributions. Then, it is clear that it would be
advantageous to employ fewer inner stage samples at scenario ω1, and more inner stage samples at
scenario ω2. This is because the loss probability estimate α̂ is calculated according to

(8) α̂ ,
1
n

n∑
i=1

I{L̂i≥c}.

Thus, only the ordinal position of the estimates L̂1 and L̂2 relative to the loss threshold c is relevant.
Given the uncertainty in the estimate L̂1, it is fairly certain that L(ω1) < c, and, indeed, this could
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c

Probability

Loss
L(ω1)

L̂1

set m1 small

L(ω2)

L̂2

set m2 large

Figure 2: An illustration of the benefits of non-uniform sampling. The uncertainty in the loss L̂1
estimated in scenario ω1 is unlikely to impact the overall probability of large loss estimate, hence the
number of inner samples m1 in this scenario can be set small. In scenario ω2, however a large number
of inner samples m2 should be used.

likely be inferred using fewer inner samples in scenario ω1. Given the uncertainty in the estimate
L̂2, the fact that L(ω2) ≥ c, on the other hand, is much less certain. Without more inner samples
in this scenario, there may be significant risk of misclassifying L(ω2). These observations suggest
that a non-uniform sampling strategy may be superior: the number of inner samples m1 employed
at scenario ω1 should be less than the number of inner samples m2 employed at scenario ω2.

The discussion above suggests that in a scenario ω with a loss L(ω) that is much greater than c
or much less than c, few inner samples are necessary. If the loss L(ω) is close to c, however, many
inner samples are necessary. Unfortunately, a priori, it is not clear how to do this. It is impossible
to know the value of L(ω) — this is exactly what we seek to estimate via the inner Monte Carlo
simulation.

We propose a procedure that simultaneously maintains estimates of the loss in each scenario,
while sequentially attempting to allocate additional inner samples across the outer scenarios. We
will first motivate our algorithm with an informal justification, and then give a precise description.
In particular, suppose that there are n scenarios ω1, . . . , ωn. For each scenario ωi, suppose that
mi inner samples Ẑi,1, . . . , Ẑi,mi have been made, resulting in the loss estimate L̂i , 1

mi

∑mi
j=1 Ẑi,j .

This results in an overall probability of a large loss estimate α̂ given by (8).
Without loss of generality, assume that L̂i ≥ c. Suppose we wish to perform one additional

inner stage sample. If we were to perform the additional sample in scenario ωi, this would result
in a new loss estimate given by

L̂′i ,
1

mi + 1

mi+1∑
j=1

Ẑi,j = 1
mi + 1 Ẑi,mi+1 + mi

mi + 1 L̂i.

The additional sample will only impact the estimate α̂ if the L̂i is on the opposite side of the
threshold level c than L̂′i, i.e., if L̂′i < c. This is illustrated in Figure 3. In order to myopically
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maximize the impact of the single additional sample, we will seek to choose the scenario ωi which
maximizes the probability of such a sign change. Suppose that the additional sample Ẑi,mi+1 has
variance σ2

i , σ
2(ωi). Observe that

P
(
L̂′i < c

)
= P

(
Ẑi,mi+1 − L(ωi) < −mi(L̂i − c)− (L(ωi)− c)

)
≈ P

(
Ẑi,mi+1 − L(ωi) < −mi

∣∣∣L̂i − c∣∣∣) ≤
(

1 + m2
i

σ2
i

∣∣∣L̂i − c∣∣∣2
)−1

.(9)

Here, the approximation follows from the assumption that mi � 1, so that −mi(L̂i− c)− (L(ωi)−
c) ≈ −mi|L̂i − c|. The inequality follows from the one-sided Chebyshev inequality. By analogous
consideration of the symmetric case (where L̂i < c), a myopic allocation rule that seeks to maximize
the probability of a sign change estimated via the Chebyshev bound6 (9) will choose to add the
additional inner sample in scenario ωi∗ where

(10) i∗ ∈ argmin
i

mi

σi

∣∣∣L̂i − c∣∣∣ .
An alternative justification for the myopic rule (10) arises if the additional sample Ẑi,mi+1 is

drawn from a location-scale family of distributions, e.g., if Ẑi,mi+1 is normally distributed. Such a
distribution is specified by a mean L(ωi) and a variance σ2

i , so that

P
(
Ẑi,mi+1 < z

)
= G

(
z − L(ωi)

σi

)
,

where G is an increasing function. In this case,

(11) P
(
L̂′i < c

)
≈ P

(
Ẑi,mi+1 − L(ωi) < −mi

∣∣∣L̂i − c∣∣∣) = G

(
−mi

σi

∣∣∣L̂i − c∣∣∣) .
Maximizing the probability of a sign change according to (11) also results in the myopic rule (10).

We call the quantity minimized in (10), (mi/σi)|L̂i − c|, the error margin associated with the
scenario ωi. The allocation rule (10), which picks a scenario by greedily minimizing the error
margin, makes intuitive sense qualitatively. It encourages additional inner samples at scenarios
which are close to the loss boundary (i.e., |L̂i − c| is small), scenarios with few inner samples (i.e.,
mi is small), or scenarios with significant variability in the portfolio losses (i.e., σi is large). The
Sequential estimator of Algorithm 2 employs the allocation rule (10). This estimator takes a
triple (m0, m̄, n) of input parameters. Here, n is the desired number of outer stage scenarios, m0 is
the initial number of inner stage samples per scenario, and m̄ is the desired average number of inner
stages samples per scenario at the conclusion of the algorithm. The algorithm proceeds as follows:
first, n scenarios are generated, and, for each scenario, m0 inner stage samples are performed.
The remaining m̄n −m0n inner stage samples are allocated one at a time in a sequential fashion
myopically, as in (10).

6We thank an anonymous reviewer for suggesting this motivation.
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Figure 3: An additional inner sample in scenario ωi will only change the overall probability of loss
estimate if L̂i changes sign.

1: procedure Sequential(m0, m̄, n)
2: for i← 1 to n do
3: generate scenario ωi
4: conditioned on scenario ωi, generate i.i.d. samples Ẑi,1, . . . , Ẑi,m0 of portfolio losses
5: mi ← m0

6: end for
7: while

∑n
i=1mi < m̄n do

8: set i∗ ∈ argmini mi|L̂i − c|/σi, where, for each 1 ≤ i ≤ n, L̂i is the current estimate of
the loss in scenario ωi, L̂i ← 1

mi

∑mi
j=1 Ẑi,j , and σi is the standard deviation of the distribution

of losses in scenario ωi
9: generate one additional portfolio loss sample Ẑi∗,mi∗+1 in scenario ωi∗

10: mi∗ ← mi∗ + 1
11: end while
12: compute an estimate of the probability of a large loss, α̂← 1

n

∑n
i=1 I{L̂i≥c}

13: return α̂
14: end procedure

Algorithm 2: Estimate the probability of a large loss using a sequential non-uniform nested simulation.
The parameter m0 is the initial number of inner samples per scenario. The parameter m̄ is the average
number of inner samples per scenario at the conclusion of the simulation. The parameter n is the
number of scenarios.
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Note that the Sequential estimator requires access to the conditional standard deviation σ2
i

of losses in each scenario ωi, in order to compute the error margin. These are not required for
the Uniform estimator and, moreover, are typically not known in practice. However, these condi-
tional standard deviations can be estimated in an online fashion over the course of the estimation
algorithm; we discuss such variations in Section 7.4.

Further, the Sequential estimator requires additional computational overhead beyond that
of the Uniform estimator. However, this is minimal: the only additional requirement is to track
scenarios in order of error margin. This can be accomplished efficiently via a priority queue data
structure (see, e.g., Cormen et al., 2002). With a priority queue, determining the scenario with
minimum error margin (line 8 in Algorithm 2) can be accomplished in constant time (i.e., in an
amount of time independent of m and n). Once a new inner sample is generated for a scenario
(lines 9–10 in Algorithm 2), order logn time would be required to update the priority queue data
structure. In practice, this is not significant.

The Sequential estimator also requires more memory than the Uniform estimator. In par-
ticular, the Uniform estimator can be implemented in a way where scenarios are processed one-at-
a-time and never need to be simultaneously stored in memory. Such an implementation would have
a constant memory requirement (i.e., independent of m and n). For the Sequential estimator,
each of the n outer scenarios must be stored in memory over the course of the algorithm, hence the
memory requirement is of order n. In practice, even given a very large number of scenarios (e.g.,
millions), each of very high dimension (e.g., thousands), this memory requirement is well within
the reach of commodity hardware. Each inner sample may require simulating multiple steps over
a long time horizon, but the memory requirement is minimal since all intermediate computations
are discarded and only the inner sample loss is recorded.7

The Sequential estimator has some similarities to non-uniform estimators that have been
proposed in the literature. Lee and Glynn (2003) suggest a non-uniform nested estimator in the
case where the scenario space is discrete. They choose the number of inner samples mi in each
scenario ωi so as to optimize certain large deviation asymptotics. Using a Gaussian approximation
as a heuristic, this results in the allocation

(12) mi ∝
σ2
i(

L(ωi)− c
)2 .

Since the loss L(ωi) in scenario ωi is unknown, Lee and Glynn (2003) propose a two-pass algorithm:
in the first pass, a small number of inner samples are generated in each scenario and are used to
compute inner sample allocations in a second “production run.”

Our Sequential estimator differs from (12) in several fundamental ways: first, the allocation
(12) is loosely analogous to minimizing the square of the error margin, as opposed to the error
margin itself. Second, the allocation (12) is accomplished with multiple passes, while our estimator

7The non-uniform Threshold estimator that will be discussed in Section 5.1 does not require any additional
computational or memory overhead beyond that of the standard Uniform estimator.

13



is fully sequential. Indeed, in Section 5, tools from sequential analysis will prove fundamental in
the theoretical analysis of our estimators. Finally, and most importantly, in the setting of Lee and
Glynn (2003), non-uniform sampling does not provide a qualitatively different rate of convergence
than uniform sampling. Given a total computational budget of order k, both the uniform and non-
uniform methods achieve an asymptotic MSE of order k−1 log k, albeit with different constants. As
we shall see in Section 5, we will be able to establish theoretically that a non-uniform estimator
converges at a faster asymptotic order than is possible with uniform estimators.

Gordy and Juneja (2008) suggest a general class of multi-pass “dynamic allocation” schemes
for nun-uniform nested estimation. Such schemes would, for example, divide the simulation into a
sequence of J phases, where in the jth phase inner samples would only be allocated to scenarios
ωi if L̂i ≥ c− εj . Here, ε1 > ε2 > · · · > εJ are a sequence of thresholds. Gordy and Juneja (2008)
provide some numerical evidence that such schemes may provide a significant improvement over
uniform estimators, but the choice of specific parameters of the algorithm (e.g., the number of
phases J or the thresholds {εj}) is left as a future direction of research.

5. Analysis

In Section 4, we introduced the non-uniform Sequential estimator and motivated this algorithm
via an informal discussion. In this section, we will provide an analysis of non-uniform estimation.
We begin in Section 5.1 by introducing a simplified variation of the Sequential estimator. This
simplified estimator preserves the myopic and non-uniform behavior of the Sequential estimator,
but is more amenable to analysis. Moreover, the simplified estimator is reminiscent of a compound
sequential hypothesis test, and highlights connections to the classical field of sequential analysis. In
Section 5.2, we provide an asymptotic analysis of the bias and variance of simplified non-uniform
estimator. Finally, in Section 5.3, we discuss optimal parameter choices for the simplified non-
uniform estimator. We demonstrate that this estimator has asymptotic MSE of order k−4/5+ε, for
all positive ε, as a function of the computational budget k. This can be compared to the asymptotic
MSE of order k−2/3 of the optimal uniform estimator.

5.1. A Simplified Non-Uniform Estimator

Analysis of the Sequential estimator described in Section 4 presents a number of challenges.
Foremost among these is the fact that, over the course of the nested simulation of the Sequential
estimator, the loss estimates L̂1, . . . , L̂n are dependent random variables. This dependence is in-
duced by the myopic selection rule (10), which, at each point in time, simultaneously depends upon
all of the loss estimates. In order to make the analysis tractable, we will consider a modification
of the Sequential estimator which results in independent loss estimates, while maintaining the
spirit of myopic non-uniform sampling.

In particular, recall that the Sequential estimator takes as input a parameter m̄, specifying
the desired average number of inner samples in each scenario, and a parameter n, specifying the
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desired number of scenarios. Over the course of the algorithm, m̄n total inner stage samples will
be generated. These samples are allocated in a sequential fashion so as to myopically minimize the
error margin (mi/σi)|L̂i − c|, uniformly over 1 ≤ i ≤ n.

If we imagine the algorithm to be in a state where a significant number of inner samples have
been generated, i.e., mi � 1 for each i, then one would expect the error margins to be roughly
constant — if not, more inner samples would have been generated for the scenarios with lower error
margins. One could achieve a similar effect by fixing a threshold γ > 0, and continuing to add inner
stage samples to each scenario ωi until the error margin exceeds γ, i.e.,

(13) mi

σi

∣∣∣L̂i − c∣∣∣ ≥ γ.
This is precisely what is done by the Threshold estimator of Algorithm 3.

1: procedure Threshold(γ, n)
2: for i← 1 to n do
3: generate scenario ωi
4: set σi to be the standard deviation of the distribution of the losses in scenario ωi
5: mi ← 0
6: repeat
7: generate one additional portfolio loss sample Ẑi,mi+1 in scenario ωi
8: mi ← mi + 1
9: compute an estimate of the loss in scenario ωi, L̂i ← 1

mi

∑mi
j=1 Ẑi,j

10: until mi
σi

∣∣∣L̂i − c∣∣∣ ≥ γ
11: end for
12: compute an estimate of the probability of a large loss, α̂← 1

n

∑n
i=1 I{L̂i≥c}

13: return α̂
14: end procedure

Algorithm 3: Estimate the probability of a large loss using a threshold-based non-uniform nested
simulation. The parameter γ is the error margin threshold. The parameter n is the number of scenarios.

At a high level, the Sequential and Threshold estimators are quite similar. Both seek to
non-uniformly allocate inner stage samples based on minimization of the error margin. However,
they are parameterized differently. The Sequential estimator takes as an input the parameter m̄,
which is the mean number of inner stage samples. On the other hand, the Threshold estimator
takes as input the parameter γ, which is the threshold for the error margin. As argued earlier, for
large values of m̄ and γ, these two algorithms yield similar results. Further, we will see numerical
evidence for this in Section 7.

From a practical perspective, the Sequential estimator is more natural. In particular, if all
other parameters are fixed, it is easy to choose a value for m̄. This parameter explicitly specifies
the total number of inner stage samples to be generated by m̄n, and therefore determines the
running time of the algorithm. Thus, we can choose m̄ based on the available running time. In the
Threshold estimator, the parameter γ implicitly specifies the total number of inner stage samples
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Figure 4: An illustration of the threshold estimator. Given a scenario ωi, the estimator generates inner
stage samples until the partial sum S

(i)
m crosses barriers at γ or −γ. If the exit occurs through the upper

barrier at γ, as illustrated, the scenario is declared to be a loss exceeding c. If the exit occurs through
the lower barrier at −γ, the scenario is declared not to be a loss exceeding c.

to be generated, and hence indirectly determines the running time. It is not clear, however, how
to make choice of γ a priori that ensure a certain running time, for example.

From a theoretical perspective, however, the Threshold estimator proves much more amenable
to analysis. The main reason is that, at any point during the execution of the algorithm, the
loss estimates L̂1, . . . , L̂n are independent and identically distributed random variables. This i.i.d.
structure will prove crucial in the analysis of Section 5.2, as it allows the analysis of the overall
algorithm via the analysis of a single outer stage scenario.

Moreover, the Threshold estimator has another interesting interpretation. Given a threshold
γ, consider a scenario ωi with inner loss samples Ẑi,1, Ẑi,2, . . .. Examining (13), the algorithm will
generate mi inner stage samples in this scenario, with

(14) mi = inf
{
m > 0 :

∣∣∣S(i)
m

∣∣∣ ≥ γ} ,
where, for m ≥ 0, the partial sum is defined by

(15) S(i)
m ,

m∑
j=1

1
σi

(
Ẑi,j − c

)
.

Note that {S(i)
m , m ≥ 0} is a random walk with unit variance increments. Then, the number of

samples mi is determined by the first exit time of the random walk from the interval (−γ, γ). This
is illustrated in Figure 4. If the exit occurs through the upper barrier at γ, then L̂i > c and the
scenario is declared to be a loss exceeding c. If the exist occurs through the lower barrier at −γ,
then L̂i < c and the scenario is declared not to be a loss exceeding c.

The interpretation of the threshold policy in terms of the first exit of a random walk is remi-
niscent of sequential hypothesis testing (see, e.g., Siegmund, 1985). Indeed, for each scenario ωi,
the threshold estimator is defining a sequential compound hypothesis test of whether the i.i.d.
unit variance random variables {(Zi,j − c)/σi} have positive or negative mean. As we show next,

16



techniques from sequential analysis will prove helpful in theoretical analysis of our algorithm.

5.2. Asymptotic Analysis

Define α̃γ,n to be the Threshold estimate, i.e., α̃γ,n , Threshold(γ, n). As in Section 3, we
will analyze the accuracy of this estimator by decomposing the mean squared error into bias and
variance terms. We begin with an assumption:

Assumption 2. Assume that:

1. Conditional on an outer stage scenario ωi ∈ Ω, the inner stage samples Ẑi,1, Ẑi,2, . . . are i.i.d.
normal random variables. Denote the standard deviation of these samples by σ(ωi).

2. Given a scenario ω ∈ Ω, define the normalized excess loss µ(ω) , (L(ω) − c)/σ(ω). Then,
the probability density function p of µ,

p(u) , d

du
P(µ ≤ u),

exists and is continuously differentiable in a neighborhood of 0.

The second condition of Assumption 2 is a technical condition that is reminiscent of the first
condition of Assumption 1. The first condition is motivated by the random walk interpretation of
Section 5.1. In particular, consider the random walk formed by the partial sums {S(i)

m , m ≥ 0}
from (15). By the functional central limit theorem, under a proper scaling, this process converges
to a Brownian motion, i.e., a random walk with normal increments. The first condition makes the
assumption that the unscaled random walk also has normal increments.

We are interested in the accuracy of the Threshold estimator in the asymptotic regime where
the resulting estimate converges to the true value, i.e., as n→∞ (many outer stage scenarios) and
γ →∞ (many inner stage samples). Our first result is the following theorem, which characterizes
the asymptotic bias of this estimator:

Theorem 2. Under Assumption 2, as γ → ∞, the asymptotic bias of the Threshold estimator
satisfies E[α̃γ,n − α] = O(γ−2).

The proof of Theorem 2 is provided in Appendix A. It relies on the random walk interpretation
of Section 5.1 as well as techniques from sequential analysis. Specifically, exponential martingales
are used in combination with the optional stopping theorem.

The following is an immediate corollary of Theorem 2, and provides an asymptotic expression
for the variance of the simplified sequential estimator:

Corollary 2. Under the conditions of Theorem 2, as γ → ∞, the variance of the Threshold
estimator satisfies

Var (α̃γ,n) = α(1− α)
n

+O
(
γ−2n−1

)
.
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Proof. Note that

Var (α̃γ,n) = Var
(

1
n

n∑
i=1

I{L̂i≥c}

)
= 1
n

Var
(
I{L̂1≥c}

)
=

E [α̃γ,n]
(
1− E [α̃γ,n]

)
n

,

where we have used the fact that the loss estimates {L̂i} are independent and identically distributed.
Applying Theorem 2,

Var (α̃γ,n) = α(1− α)
n

+
E [α̃γ,n − α]

(
1− E [α̃γ,n]

)
n

+ αE [α− α̃γ,n]
n

= α(1− α)
n

+O
(
γ−2n−1

)
.

�

The total run-time of the Threshold estimator is proportional to the total number of inner
stage samples generated. Note, however, by the nature of the algorithm, the number of inner
samples is stochastic. Hence, define m̄(γ) to be the expected number of inner stage samples at a
single outer stage scenario, given parameter γ. That is,

(16) m̄(γ) , E
[
inf

{
m > 0 : m

σ(ω)

∣∣∣L̂(ω)− c
∣∣∣ ≥ γ}] .

Here, the expectation is over the scenario ω and the corresponding loss estimate L̂(ω). Then, given
parameters (γ, n), the Threshold estimator has expected run-time proportional to m̄(γ)n. The
following theorems, whose proof is given in Appendix A, characterizes the rate of growth of this
run-time, as a function of γ:

Theorem 3. Under Assumption 2, as γ →∞, the expected number of inner stages samples in each
scenario under the Threshold estimator satisfies m̄(γ) = O(γ log γ).

Note that Theorem 3 is intuitive given the first exit time interpretation of Figure 4. In particular,
for large values of γ, the amount of time required for a random walk starting at the origin with
drift µ 6= 0 to exit the interval (−γ, γ) is approximately γ/|µ|. If the random walk has zero drift,
the exit time is approximately γ2. In our case, the expected number of samples m̄(γ) is averaged
over various possibilities of drift given by µ(ω) , (L(ω) − c)/σ(ω). The probability of this drift
being exactly zero is zero, by the second condition of Assumption 2. However, arbitrarily small
drifts are possible and thus m̄(γ) is slightly larger than O(γ).

While Theorem 3 provides a O(γ log γ) bound on the expected number of inner stage samples
per scenario, it might be the case that the realized number of inner stage samples per scenario is
larger. The following theorem guarantees that, so long as the number of scenarios n is sufficiently
large, a O(γ log γ) bound continues to hold on the number of realized samples per scenario with
high probability. The proof can be found in Appendix A.

Theorem 4. Under Assumption 2, suppose that C0, γ0 > 0 are constants so that, for all γ ≥ γ0,
m̄(γ) ≤ C0γ log γ. (Such constants are guaranteed to exist by Theorem 3.) Further, suppose the
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number of scenarios n , n(γ) is chosen as a function of γ, and that there exist constants C1, γ1 > 0,
so that for all γ ≥ γ1, n(γ) ≥ C1γ. That is, n asymptotically grows at least linearly in γ. Then,
for any ε, δ > 0, there exists γ2 > 0 so that for all γ ≥ γ2,

P
(

1
n

n∑
i=1

mi ≥ (C0 + ε)γ log γ
)
< δ.

5.3. Optimal Non-Uniform Threshold Estimator

Theorems 2 and 3 and Corollary 2 allow a comparison between the Uniform estimator and the
non-uniform Threshold estimator. In particular, suppose α̂m,n is the Uniform estimate with
n scenarios and m inner stage samples. As discussed in Section 3, when m,n → ∞, this has
asymptotic bias and variance

(17) E [α̂m,n − α] = θc
m

+O
(
m−3/2

)
, Var (α̂m,n) = α(1− α)

n
+O

(
m−1n−1

)
.

On the other hand, suppose that α̃γ,n is the non-uniform Threshold estimator with n scenarios
and a threshold of γ. By Theorem 3, this estimator will employ, on average, m̄ , m̄(γ) = O(γ1+ε)
inner stage samples per scenario, for any positive ε. We can express the asymptotic bias and
variance results of Theorem 2 and Corollary 2 as a function of n and m̄ by

(18) E [α̃γ,n − α] = O
(
m̄−2+ε

)
, Var (α̃γ,n) = α(1− α)

n
+O

(
m̄−2+εn−1

)
,

for all positive ε.
Comparing (17) and (18), we see that, up to the dominant term, the two algorithms achieve the

same asymptotic variance of order n−1. This is consistent with the discussion in Section 3, which
suggests that the asymptotic variance is determined by the randomness in scenario generation.
This is exactly the same in the two algorithms. The inner stage sampling is different, however,
and this results in a difference in bias for the estimators. Specifically, as a function of the average
number of inner stage samples per scenario, the bias of the non-uniform Threshold estimator
decays approximately as the square of the bias of the Uniform estimator.

Given a total work budget of k (i.e., mn ≤ k), we saw in Section 3 that the optimal Uniform
estimator (in the sense of minimum MSE) would utilize a number of scenarios n of order k1/3, a
number of inner stage samples per scenario m of order k2/3, and result in an MSE of order k−2/3.
For the non-uniform Threshold estimator, from the results of Section 5.2, we can bound the MSE
by

E
[
(α̃γ,n − α)2

]
≤ α(1− α)

n
+ C

γ4 ,

for sufficiently large n and γ and an appropriate choice of the constant C. We can find a non-
uniform Threshold estimator with low MSE by minimizing this upper bound over choices of
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(γ, n), subject to an expected total work constraint. That is, we consider optimization problem

(19)
minimize

γ,n

α(1− α)
n

+ C

γ4

subject to m̄(γ)n ≤ k,
γ, n ≥ 0.

For any positive ε and given a work budget k, suppose we choose γ∗ ∝ k1/5 and n∗ ∝ k4/5−ε.
Then, we have that m̄(γ∗)n∗ = O(k1−ε log k) = o(k). Thus, for k sufficiently large, the expected
total work will be less than k. Indeed, since (γ∗, n∗) satisfy the conditions of Theorem 4, for
k sufficiently large the realized total work will also be less than k with high probability. This
choice will result in MSE of O(k−4/5+ε). Hence, the optimal non-uniform Threshold estimator
converges at a faster rate than any uniform estimator. This is accomplished by generating more
outer scenarios (k4/5−ε vs. k2/3) and perform less inner stage sampling on average in each scenario
(k1/5 vs. k1/3) than is optimal in the uniform case.

6. Adaptive Allocation Algorithm

The non-uniform Sequential estimator provides a way to determine the placement of inner stage
samples across scenarios. The decision of how to allocate computational effort between generating
more scenarios (i.e., the choice of n) and generating more inner samples across scenarios (i.e., the
choice of m̄) is unaddressed, however. The discussion in Section 5.3 suggests that, given a total work
budget of k, one should asymptotically approximately choose n ∝ k4/5 and m̄ ∝ k1/5. However, the
constants in these asymptotic expressions are unspecified. The choice of these constants may have
an enormous impact on the practical performance of these algorithms. Note that the Uniform
estimator faces the same problem — indeed, the optimal allocation (6) suggested by the analysis
of Section 3 requires knowledge of the constant θc. It is not clear, in general, how to determine this
constant.

In this section we will consider an adaptive allocation approach. This algorithm is a heuristic
that estimates the optimal choice of m̄ and n at each point in time. It refines these estimates over the
course of the simulation. The main idea of this approach is that, based on the results of Section 5,
the variance is determined by the number of scenarios (n) and the bias squared is determined by
the amount of inner sampling (m̄). The adaptive algorithm estimates these quantities and then
either increases the number of scenarios or increases the number of inner samples depending on
whether the MSE is dominated by the variance or the biased squared.

Specifically, the Adaptive estimator of Algorithm 4 proceeds as follows:

1. The simulation is initialized (lines 2–7) by generating n0 scenarios with m0 inner samples for
each scenario.

2. The work budget of the simulation k is divided into K , k/τe intervals (or, epochs) of length
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τe (note that we assume for simplicity of exposition that K is integral, and that the first
epoch is only of length τe − n0m0 due to the initialization).

3. At the beginning of the `th epoch (line 9), estimates are made for the bias squared and
variance of the loss probability estimate, given the scenarios and samples that have been
generated thus far. Specifically, given the loss probability estimate

α̂ = 1
n

n∑
i=1

I{L̂i≥c},

the bias is approximated according to

(20) E[α̂− α] ≈ B̂ , α̂− ᾱ,

where
ᾱ ,

1
n

n∑
i=1

Φ
(
mi(L̂i − c)

σi

)
.

This approximation is based on a central limit theorem heuristic: in each scenario ωi, when
the number of samples mi is large, each loss estimate L̂i can be approximated by a normal
distribution with mean equal to L(ωi) and with variance σ2

i /mi. Hence, given a fixed set of
scenarios ω1, . . . , ωn, one might estimate the bias via

E[α̂− α] = 1
n

n∑
i=1

{
P
(
L̂i ≥ c

)
− I{L(ωi)≥c}

}
≈ 1
n

n∑
i=1

{
Φ
(
mi(L(ωi)− c)

σi

)
− I{L(ωi)≥c}

}
.

Since each true loss L(ωi) is unknown in practice, we can approximate this with its realized
estimate L̂i. This results in (20). By making a similar heuristic approximation for the
variance, we arrive at the expression

(21) Var (α̂) ≈ V̂ , ᾱ(1− ᾱ)
n

.

Note that the estimators (20) and (21) are meant only as heuristics. Better estimators may be
possible and bias, in particular, is notoriously difficult to estimate. For our purposes, however,
they only need to be accurate within orders of magnitude so as to allocate computational effort
between inner samples and outer scenarios. We will see in the numerical results of Section 7
that, empirically, they suffice for this purpose.

4. Suppose there are n outer scenarios and an average of m̄ , 1
n

∑n
i=1mi inner samples per

scenario at the beginning of the `th epoch. From the results in Section 5, we expect the bias
squared to decrease according to m̄−4+ε and the variance to decrease in proportion to n−1.
Then, assume that the number of scenarios and samples at the end of the `th epoch is given
by n′ and m̄′. We can estimate the bias squared at the end of the `th epoch, as a function
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of the bias estimate B̂ at the beginning, by B̂2(m̄/m̄′)4. Similarly, the variance at the end of
the `th epoch can be estimated by V̂ (n/n

′).

Thus, at the beginning of the `th epoch, we consider the following optimization problem:

(22)

minimize
m̄′,n′

B̂2
(
m̄

m̄′

)4
+ V̂

(
n

n′

)
.

subject to m̄′n′ = m̄n+ τe,

n ≤ n′ ≤ n+ τe,

m̄′ ≥ 0.

This problem seeks to make a choice of (m̄′, n′) that results in a minimal mean squared error
at the end of the `th epoch. The first constraint ensures that the total number of inner
samples in the `th epoch will equal the epoch length τe. The second constraint ensures that
the number of scenarios at the end of the `th epoch is at least the number of scenarios at the
beginning, and increases by at most the length of the epoch.

The solution to (22) is given by

(23) n′ = min

max


(

V̂ n

4B̂2m̄4
(m̄n+ τe)4

)1/5

, n

 , n+ τe

 , m̄′ = m̄n+ τe
n′

.

After obtaining the target number of scenarios n′ (line 10), n′ − n additional scenarios are
generated.

5. Over the course of the `th epoch (lines 13–21) τe inner samples are generated. These are
distributed to ensure that every scenario has at least m0 inner samples in total (not per
epoch). Once that is the case, inner samples are allocated myopically according to minimum
error margin as in the Sequential estimator.

7. Numerical Results

In this section we present numerical results that illustrate the benefits of non-uniform nested es-
timation. We begin in Section 7.1 by describing two settings for our numerical experiments. In
Section 7.2, we compare the bias of the Uniform estimator and the non-uniform Threshold and
Sequential estimators. In Section 7.3, we compare the MSE of a number of both implementable
and idealized uniform and non-uniform estimators. Finally, in Section 7.4, we consider issues arising
from the estimation of the variance of inner stage samples.

7.1. Experimental Setting

Our numerical experiments are set in the context of the following two examples: a portfolio with
Gaussian cashflows, where both the outer stage scenarios and inner stage samples are generated
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1: procedure Adaptive(m0, n0, τe, k)
2: generate scenarios ω1, ω2, . . . , ωn0

3: n← n0

4: for i← 1 to n0 do
5: conditioned on scenario ωi, generate i.i.d. samples Ẑi,1, . . . , Ẑi,m0 of portfolio losses
6: mi ← m0

7: end for
8: for `← 1 to dk/τee do
9: estimate the current bias and variance by B̂ and V̂ from (20)–(21)

10: determine a target number of scenarios by

n′ ←

min

max


(

V̂ n

4B̂2m̄4
(m̄n+ τe)4

)1/5

, n

 , n+ τe




11: generate scenarios ωn+1, . . . , ωn′ , set mi ← 0 for i = n+ 1, . . . , n′
12: n← n′

13: while
∑n
i=1mi < `τe do

14: if mini mi < m0 then
15: set i∗ ∈ argmini mi

16: else
17: set i∗ ∈ argmini mi|L̂i − c|/σi
18: end if
19: generate one additional portfolio loss sample Ẑi∗,mi∗+1 in scenario ωi∗
20: mi∗ ← mi∗ + 1
21: end while
22: end for
23: compute an estimate of the probability of a large loss, α̂← 1

n

∑n
i=1 I{L̂i≥c}

24: return α̂
25: end procedure

Algorithm 4: Estimate the probability of a large loss using an adaptive non-uniform nested simulation.
This estimator employs a sequential algorithm to determine the placement of inner stage samples across
scenarios, and adaptively decides the number of scenarios and inner samples to add by estimating the
bias and variance. The parameters n0 and m0 are the initial number of scenarios and inner samples
per scenario, respectively. The parameter τe is the epoch length. The parameter k is the total number
of inner samples. Note that each standard deviation σi can be estimated in an online fashion over the
course of the simulation, as is discussed in Section 7.4.
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from normal distributions, and a put option example, where the portfolio consists of a single put
option on an underlying asset whose price follows a geometric Brownian motion process. For both
examples, we are interested in computing the probability of a loss. We consider loss thresholds
corresponding to 10%, 1%, and 0.1% loss probabilities.

In the Gaussian example, we consider a portfolio with normally distributed risk factors and
cashflows. This is the simplest setting in which to test any nested simulation procedure. Specifically,
we consider a portfolio with value X0 = 0 at time t = 0 and value Xτ (ω) = ω at the risk horizon
τ . We assume that the real-valued risk factor ω ∈ R is normally distributed with mean zero
and standard deviation σ2

outer = 1. Then, the loss L(ω) = X0 −Xτ (ω) = −ω is a standard normal
random variable. Given a scenario ωi, each inner loss sample takes the form Ẑi,j = −ωi+σinnerWi,j ,
where Wi,j is a standard normal random variable and σinner = 5 is the standard deviation of the
inner stage samples.

In this case, given a loss threshold c, the probability of a loss exceeding c is given by α =
Φ(−c). We choose the values 1.282, 2.326, and 3.090 for the loss threshold c, corresponding to loss
probabilities α of 10%, 1%, and 0.1%, respectively.

In the put option example, we assume that the portfolio consists of a long position in a single put
option. This example is more complex since the portfolio cashflows are non-linear and follow highly
skewed distributions which vary substantially across outer stage scenarios. Here, the underlying
asset follows a geometric Brownian motion with an initial price of S0 = 100. The drift of this
process under the real-world distribution used in the outer stage of simulation is µ = 8%. The
annualized volatility is σ = 20%. The risk-free rate is r = 3%. The strike of the put option is
K = 95 and the maturity is T = 0.25 years (i.e., three months). The risk horizon is τ = 1/52 years
(i.e., one week). With these parameters, the initial value of the put is X0 = 1.669 given by the
Black-Scholes formula.

Denote by Sτ (ω) the underlying asset price at the risk horizon τ . This random variable is
generated according to Sτ (ω) , S0e

(µ−σ2/2)τ+σ
√
τω, where the real-valued risk-factor ω is a standard

normal random variable. The portfolio loss at the risk horizon τ is given by

L(ω) = X0 − E
[
e−r(T−τ) max (K − ST (ω,W ), 0)

∣∣∣ ω] ,
where the expectation is taken over the random variable W , which is an independently distributed
standard normal, and ST (ω,W ) is given by

ST (ω,W ) , Sτ (ω)e(r−σ2/2)(T−τ)+σ
√
T−τW .

Note that, given a fixed value of ω and a standard normal W , the random variable ST (ω,W )
is distributed according to the risk-neutral distribution of underlying asset price at the option
maturity T , conditional on asset price Sτ (ω) at the risk horizon τ . Given an outer scenario ωi, each
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inner loss sample takes the form

Ẑi,j = X0 − e−r(T−τ) max (K − ST (ωi,Wi,j), 0) ,

where Wi,j is an independent standard normal random variable. Notice that outer stage scenarios
are generated using the real-world distribution governed by the drift µ, while inner stage scenarios
used to generate future put option prices are generated using the risk-neutral distribution governed
by the drift r.

It is not difficult to see that the loss L(ω) is strictly increasing in the risk factor ω. Hence, the
probability of a loss exceeding a threshold c can be computed according to α = P(L ≥ c) = P(ω ≥
ω∗) = Φ(−ω∗), where ω∗ is the unique solution to L(ω∗) = c. We choose the values 0.859, 1.221,
and 1.390 for the loss threshold c, corresponding to loss probabilities α of 10%, 1%, and 0.1%,
respectively.

7.2. Bias Comparison

As established in Section 5, the advantage of non-uniform inner stage sampling relative to uniform
sampling is that, for the same total quantity of inner samples, a lower bias is attained. In this
section, we numerically compare the Uniform estimator and the non-uniform Threshold and
Sequential estimators on the basis of bias.

For this purpose, we generate a fixed sequence ω1, . . . , ωn of n = 10,000 outer stage scenarios.
In order to eliminate any noise in our comparison due to randomness in scenario generation, we
choose the scenarios in a deterministic and stratified manner, so that P(ω ≤ ωi) = i/(n + 1), for
all 1 ≤ i ≤ n. Given the stratified scenarios, we numerically compute the bias of each estimator,
measured over 1,000 independent trials, as the total number of inner stage samples (or, the work
budget) is varied from k = 20,000 to k = 4,000,000. In the case of the Uniform estimator,
this is accomplished by varying the number of inner stage samples per scenario from m = 2 to
m = 400. For the non-uniform Sequential estimator, this is accomplished by using m0 = 2
initial inner samples per scenario, and then varying the average number of inner stage samples
per scenario from m̄ = 2 to m̄ = 400. In the case of the non-uniform Threshold estimator, the
threshold parameter γ was varied over the interval (5 × 10−5, 2 × 10−1) and the expected total
number of inner stage samples was plotted (averaged over the independent trials). This range of γ
was experimentally chosen so that the range of expected total inner samples for the Threshold
algorithm coincided with the range of total inner samples for the other algorithms.

The results for both the Gaussian example and the put option example with α = 1% are
plotted in Figure 5. In both cases, the non-uniform Threshold and Sequential estimators
exhibit a lower bias than the Uniform estimator, given the same work budget. Further, for the
Uniform estimator, the results are consistent with the bias decreasing with order k−1, as suggested
by Theorem 1. For the non-uniform Threshold estimator, the results are consistent8 with the

8The exact rates of decay (i.e., the asymptotic slopes in Figure 5) are challenging to accurately estimate numerically.
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bias decreasing according to k−2+ε for any positive ε, as suggested by the theory presented in
Section 5. Note that the performance of the Threshold and Sequential estimators is largely
indistinguishable. This strongly suggests that our theoretical analysis of the rate of convergence
of Threshold estimator in Section 5 provides a good proxy for the rate of convergence of the
Sequential estimator.

Figure 6 gives some qualitative insight into the inner sampling behavior of the non-uniform
Sequential estimator. Here, we have plotted the number of inner samples (averaged across the
1,000 independent trials) at a scenario against the loss in the scenario. Here, the amount of inner
sampling employed by the Sequential varies over two orders of magnitude across scenarios, with
much more sampling is taking place close to the loss threshold c than far away from it.

7.3. MSE Comparison

In this section, we will provide an overall comparison of the MSE achieved by various uniform and
non-uniform estimators, given a fixed computational budget of k inner stage samples. We consider
each of the following estimators:

• Optimal uniform. This is the Uniform estimator with parameters chosen optimally, as
in Section 5. The simulation budget is allocated according to m = k1/3/β∗ and n = β∗k2/3,
where the constant β∗, given in (6), is chosen to minimize MSE. Note that, in general, it is not
clear how to determine the value β∗ given the problem parameters. For both the Gaussian
and put option examples here, we are able to use closed form expressions for the probability
distribution of losses to exactly compute this constant.

• 1/3 : 2/3 uniform. This is the Uniform estimator with m = k1/3 and n = k2/3. Based on
the analysis in Section 3, this estimator has MSE that decays with same order (k−2/3) as the
optimal uniform estimator, but with a suboptimal constant. This is meant to illustrate the
case where the constant β∗ of the optimal uniform estimator is unknown, and an arbitrary
choice of constant (β∗ = 1) is made.

• Optimal sequential. This is the Sequential non-uniform sampling estimator where n is
chosen optimally to minimize MSE. Here, m0 = 2 initial samples were used. The parameters
(m̄, n) controlling the average number of inner samples and the number of scenarios were
varied over choices satisfying the simulation work budget, i.e., m̄n = k. The choice which
resulted in minimum MSE was selected. The optimal sequential estimator is an idealized
algorithm meant to capture the best possible performance than can be achieved using the
Sequential estimator.

• Adaptive. This is the Adaptive estimator of Section 6, which utilizes sequential non-
uniform sampling and adaptively allocates computational effort between outer stage scenarios

This is because it is not computationally feasible to compute the estimators over many orders of magnitude of k. The
results in Figure 5 are not intended as numerical “proof” of a particular rate of convergence, but are rather intended
to illustrate that the numerical convergence is consistent with our earlier theoretical analyses.
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Figure 5: The vertical axis shows the bias in absolute terms, i.e., the absolute value of difference between
the estimated loss probability and the true loss probability α, as a function of the total number of inner
stage samples. In the case of the Threshold algorithm, the expected total number of samples is shown.
A set of n = 10,000 stratified outer scenarios was used. The bias of the non-uniform Threshold and
Sequential estimators is consistent with the predicted theoretical decay of k−2+ε, for any positive ε.
Similarly, the bias of the Uniform estimator is consistent with the predicted theoretical decay of k−1.
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Figure 6: The number of inner stage samples as a function of the loss in each scenario, averaged
over 1,000 trials. Here, k = 4,000,000 inner stage samples are distributed across n = 10,000 stratified
scenarios. The Uniform estimator employs m = 400 inner samples for each scenario. The non-uniform
Sequential estimator varies the number of samples over two orders of magnitude, and employs many
more samples close to the loss threshold c.
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and inner stage samples. Here, n0 = 500 initial scenarios were used, with m0 = 2 initial inner
samples per scenario. An epoch length of τe = 100,000 was used.

• Adaptive (σ̂i). This is a variation of the Adaptive estimator in which the variance of inner
samples is estimated. This will be discussed shortly in Section 7.4.

The numerical results for the six test cases (the Gaussian and put option examples, each with
thresholds corresponding to three different loss probabilities) using the five estimators are summa-
rized in Table 1. In all cases, a computational budget of k = 4,000,000 inner stage samples was
used. The results in each case are computed over 1,000 independent trials.

The numerical results in Table 1 can be interpreted naturally through a series of pairwise
comparisons, as follows:

• Optimal uniform vs. 1/3 : 2/3 uniform. These are both asymptotically optimal Uniform
estimators; they differ only by the choice of constant β∗. The practical performance of
these two estimators, however, is dramatically different. This highlights the sensitivity of the
Uniform estimator in practice to the choice of constant. Note that computing the constant
β∗, as given in (6), requires knowledge of the constant θc, defined in (5). It is not clear how to
estimate this constant in practice, and this constant may vary dramatically across different
problem instances.

• Optimal uniform vs. optimal sequential. These represent the best possible performance
that can be achieved by the Uniform and Sequential estimators. Neither of these estima-
tors is implementable in practice — the former because it depends on a parameter that cannot
be readily determined from the problem data, the latter because it requires exploration over
the choice of parameters. However, by contrasting them we can see a comparison of uniform
and non-uniform sampling on an equal footing. This comparison clearly illustrates benefits
of non-uniform sampling. In every test case, the optimal sequential estimator has the lowest
MSE. The MSE improvement relative to the optimal uniform estimator is between a factor
of 4 and 10. This improvement is greatest when estimating loss probabilities that are rare
(e.g., the α = 0.1% case).

Further, note that the optimal sequential estimator employs many fewer inner stage samples
and many more outer stage scenarios. This is consistent with the theory developed in Section 5
and the experiments in Section 7.2. The optimal sequential estimator is able to achieve a
low bias with fewer inner stage samples, hence it can employ more scenarios with the same
computational budget.

• Optimal sequential vs. adaptive sequential. The optimal sequential estimator relies on
a brute force optimization over the parameters choosing the number of inner samples and
outer scenarios; this is not feasible in practice. On the other hand, the adaptive sequential
makes this choice dynamically over the course of the simulation and thus is implementable
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MSE MSE
n m̄ variance bias2 MSE std. err. norm.

Gaussian
α = 10%

1/3 :2/3 uniform 25,199 159 4.0·10−6 2.8·10−4 2.9·10−4 2.1·10−6 35.4
optimal uniform 4,499 889 2.1·10−5 8.6·10−6 3.0·10−5 1.2·10−6 3.7

adaptive (σ̂i) 14,968 281 7.0·10−6 2.7·10−6 9.7·10−6 4.7·10−7 1.2
adaptive 12,802 321 7.2·10−6 1.5·10−6 8.6·10−6 3.9·10−7 1.0

optimal sequential 12,395 323 6.8·10−6 1.4·10−6 8.2·10−6 3.7·10−7 1.0

Gaussian
α = 1%

1/3 :2/3 uniform 25,199 159 6.1·10−7 2.8·10−5 2.8·10−5 2.6·10−7 60.9
optimal uniform 5,089 786 2.3·10−6 1.0·10−6 3.3·10−6 1.5·10−7 7.2

adaptive (σ̂i) 16,177 250 7.0·10−7 3.7·10−9 7.0·10−7 3.1·10−8 1.5
adaptive 16,118 251 7.1·10−7 4.1·10−9 7.2·10−7 3.1·10−8 1.6

optimal sequential 30,860 130 3.5·10−7 1.1·10−7 4.6·10−7 1.8·10−8 1.0

Gaussian
α = 0.1%

1/3 :2/3 uniform 25,199 159 8.2·10−8 1.1·10−6 1.2·10−6 1.9·10−8 48.0
optimal uniform 7,788 514 1.7·10−7 7.9·10−8 2.5·10−7 1.3·10−8 10.0

adaptive (σ̂i) 30,798 132 3.5·10−8 4.7·10−10 3.5·10−8 1.6·10−9 1.4
adaptive 30,628 132 3.8·10−8 5.0·10−10 3.8·10−8 3.2·10−9 1.5

optimal sequential 56,686 71 1.8·10−8 6.5·10−9 2.5·10−8 1.1·10−9 1.0

Put option
α = 10%

1/3 :2/3 uniform 25,199 159 4.1·10−6 5.1·10−4 5.1·10−4 2.9·10−6 58.6
optimal uniform 5,095 785 1.9·10−5 2.4·10−5 4.2·10−5 1.6·10−6 4.8

adaptive (σ̂i) 6,671 601 1.5·10−5 4.8·10−6 2.0·10−5 9.2·10−7 2.3
adaptive 7,325 547 1.3·10−5 2.1·10−7 1.4·10−5 6.2·10−7 1.6

optimal sequential 12,395 323 7.3·10−6 1.5·10−6 8.7·10−6 3.8·10−7 1.0

Put option
α = 1%

1/3 :2/3 uniform 25,199 159 7.8·10−7 9.4·10−5 9.5·10−5 5.4·10−7 141.8
optimal uniform 3,143 1,273 3.8·10−6 1.2·10−6 5.0·10−6 2.1·10−7 7.5

adaptive (σ̂i) 10,085 401 1.2·10−6 2.0·10−7 1.4·10−6 6.2·10−8 2.1
adaptive 9,992 405 1.1·10−6 1.7·10−8 1.1·10−6 4.8·10−8 1.6

optimal sequential 19,558 205 5.4·10−7 1.5·10−7 6.9·10−7 3.0·10−8 1.0

Put option
α = 0.1%

1/3 :2/3 uniform 25,199 159 1.5·10−7 8.1·10−6 8.2·10−6 7.2·10−8 174.5
optimal uniform 2,570 1,556 4.4·10−7 3.9·10−8 4.8·10−7 2.7·10−8 10.2

adaptive (σ̂i) 14,884 274 1.1·10−7 1.8·10−8 1.3·10−7 9.0·10−9 2.8
adaptive 14,384 284 9.2·10−8 5.6·10−10 9.2·10−8 1.4·10−8 2.0

optimal sequential 26,508 151 3.9·10−8 8.0·10−9 4.7·10−8 2.3·10−9 1.0

Table 1: Numerical results for five estimation algorithms over six test cases (the Gaussian and put
option examples, each with thresholds corresponding to three different loss probabilities). The results
are computed over 1,000 independent trials, each with a total simulation budget of k = 4,000,000. The
results reported include the number of outer stage scenarios (n) and the average number of inner stage
samples per scenario (m̄) employed by each estimator, as well as the variance, the bias squared, the
mean squared error (MSE), and the standard error of the MSE for each estimator. The last column
contains MSE results normalized relative to the optimal sequential estimator.
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in practice. Comparing these two methods illustrates how much of the benefit of the optimal
sequential method can be achieved in practice.

Across our experiments, adaptive sequential estimator achieves an MSE between 1 and 2 times
that of the optimal sequential estimator. In some cases, the adaptive estimator overestimates
the true bias and uses too many inner stage samples compared to the optimal allocation.
This suggests that there is modest room for improvement in the Adaptive procedure for
allocating computational effort between inner and outer stages.

7.4. Variance Estimation

The Adaptive algorithm requires the value of σi, the standard deviation of the inner stage loss
samples Ẑi,1, Ẑi,2, . . . in scenario ωi. In practice, σi will not be known. However, one can imagine
many variations of the Adaptive algorithm where each σi is estimated over the course of the
estimation algorithm.

One such variation replaces each σi in the Adaptive algorithm with the estimate

(24) σ̂i ,
mi

mi + b
σ̃i + b

mi + b
σ̄.

Here, we define

σ̃i ,

 1
mi − 1

mi∑
j=1

(
Ẑi,j − L̂i

)2
1/2

to be the sample standard deviation of the inner stage loss samples generated in scenario ωi, and
σ̄ , 1

n

∑n
i=1 σ̃i to be the overall average of all such sample standard deviations. This procedure

balances an ensemble estimate with a local estimate so that the estimated standard deviations can
be generated more reliably, especially when there are a small number of inner stage samples at
a given scenario. For b = 0, the procedure corresponds to the usual sample standard deviation
estimator. For large values of b, the ensemble estimate is given a larger weight.

Numerical results for an adaptive estimator using this procedure for estimating σi, with b = 5,
are given in Table 1. To avoid a prohibitive computational burden, we only update the average σ̄ at
the end of each specific epoch.9 The results show that there is a modest to no loss in performance
when the estimated σ̂i is used in place of the true σi.

8. Conclusion

Two-level nested simulation can provide a more realistic assessment of financial risk, but with a
considerable computational cost. In this paper we propose a nested sequential simulation procedure

9Numerically stable and efficient algorithms are available for updating sample variance calculations (see, e.g., Chan
et al., 1983). These would allow for rapid calculation of each σ̃i in an online fashion. However, once σ̄ is updated,
every σ̂i will change. This will necessitate rebuilding the priority queue data structure for the scenarios, and may
require order n time.
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which significantly reduces the computational burden. The savings are achieved by using a non-
uniform inner sampling procedure which allocates more resources where the effect on the risk
estimation is the greatest, which in turn allows relatively more effort to be devoted to the generation
of outer scenarios. The combined effect produces a risk estimator which converges at a faster rate
to the true value. In numerical experiments, mean squared error was reduced by factors ranging
from four to over one hundred.

The sequential estimation procedure can be combined with previous research on variance re-
duction for the outer stage scenario generation to achieve further computational savings. The
algorithms and results were presented in the context of estimating the probability of a large loss,
but it may be possible to apply similar ideas to develop non-uniform algorithms for other risk
measures. This remains an open area for future research.
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A. Proofs

In this section, we provide proofs for Theorems 2, 3, and 4 of Section 5.2, which analyze the
performance of the Threshold estimator.
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A.1. Preliminaries

Consider the Threshold estimator with n scenarios and a threshold parameter γ. Each scenario
ωi has inner loss samples Ẑi,1, Ẑi,2, . . ., which, by Assumption 2, are i.i.d. normal random variables
with mean L(ωi) and standard deviation σ(ωi). The estimator will generate mi inner stage samples
in this scenario, with

(25) mi = inf
{
m > 0 :

∣∣∣S(i)
m

∣∣∣ ≥ γ} .
Here, for m ≥ 0, the partial sum S

(i)
m is defined by S

(i)
m ,

∑m
j=1(Ẑi,j − c)/σ(ωi). Each term in

this partial sum has mean µ(ωi) ,
(
L(ωi)− c

)
/σ(ωi). By considering these partial sums over all n

scenarios, the Threshold estimator can be written as α̃γ,n = 1
n

∑n
i=1 I{S(i)

mi
≥γ}. We are interested

in, as γ →∞, the asymptotic behavior of the bias,

(26) b̄(γ) , E[α̃γ,n − α] = E
[
I{S(i)

mi
≥γ} − I{L(ωi)≥c}

]
,

and the expected number of inner stage samples per scenario,

(27) m̄(γ) , E[mi].

Now, given µ ∈ R, define Pµ to be a probability measure so that, under Pµ, the random variables
Y1, Y2, . . . are a collection of i.i.d. normal random variables with mean µ and unit variance. For
each m ≥ 0, define the partial sum Sm ,

∑m
j=1 Yj . It follows from Assumption 2 that, if µ = µ(ωi),

then Sm has the same distribution as S(i)
m . Define m(γ) , inf {m > 0 : |Sm| ≥ γ}. From (25)

and (27), we have that m̄(γ), the expected number of inner stage samples for the Threshold
estimator, satisfies

(28) m̄(γ) =
∫

Eµ[m(γ)]p(µ) dµ.

Here, Eµ denotes expectation under the distribution µ. Similarly, we can define

b+(γ) , I{m(γ)<∞ and Sm(γ)≥γ}, b−(γ) , −I{m(γ)<∞ and Sm(γ)≤−γ},

b(γ) , b−(γ)I{µ≥0} + b+(γ)I{µ<0}.

Then, from (26), we have that b̄(γ), the bias of the Threshold estimator, satisfies

(29) b̄(γ) =
∫

Eµ[b(γ)]p(µ) dµ.

Finally, by Assumption 2, define δ ∈ (0, 1) so that p is continuously differentiable over the
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interval [−δ, δ], and set

(30) U0 , max
|µ|≤δ

|p(µ)|, U1 , max
|µ|≤δ

|p′(µ)|.

A.2. Asymptotic Bias

The asymptotic bias result of Theorem 2 is that, as γ →∞, b̄(γ) = O(γ−2). We will establish this
via a careful analysis of (29). In particular, consider the decomposition

|b̄(γ)| ≤
∣∣∣∣∣
∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣+

∣∣∣∣∣
∫
|µ|≤δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣

≤
∣∣∣∣∣
∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣+

∣∣∣∣∣
∫
|µ|≤δ

Eµ[b(γ)]p(0) dµ
∣∣∣∣∣+

∣∣∣∣∣
∫
|µ|≤δ

Eµ[b(γ)]µp′
(
ς(µ)

)
dµ

∣∣∣∣∣ .
(31)

Here, using Assumption 2, we have applied Taylor’s theorem, and ς is a function with |ς(µ)| ≤ δ

for all µ ∈ [−δ, δ]. By symmetry, for any µ, we have that Eµ[b(γ)] = −E−µ[b(γ)]. Then,

|b̄(γ)| ≤
∣∣∣∣∣
∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣+

∣∣∣∣∣
∫
|µ|≤δ

Eµ[b(γ)]µp′
(
ς(µ)

)
dµ

∣∣∣∣∣
≤
∣∣∣∣∣
∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣+ U1

∫
|µ|≤δ

|Eµ[b(γ)]µ| dµ.
(32)

Theorem 2 will follow by applying Lemmas 1 and 2, established below, to (32).
We begin with a preliminary proposition:

Proposition 1. If µ < 0, then

e2µγE−µ
[(

1 + 2µ(Sm(γ) − γ)
)
I{Sm(γ)≥γ}

]
≤ Pµ

(
Sm(γ) ≥ γ

)
≤ e2µγP−µ

(
Sm(γ) ≥ γ

)
.

If µ > 0, then

e−2µγE−µ
[(

1 + 2µ(Sm(γ) + γ)
)
I{Sm(γ)≤−γ}

]
≤ Pµ

(
Sm(γ) ≤ −γ

)
≤ e−2µγP−µ

(
Sm(γ) ≤ −γ

)
.

Proof. Consider the case where µ < 0. Let Fµ denote the N(µ, 1) distribution. Note that the
Radon-Nikodym derivative between the Fµ and F−µ is given by e2µy. Then,

Pµ
(
Sm(γ) ≥ γ

)
= Eµ

[
I{Sm(γ)≥γ}

]
= E−µ

[
e2µSm(γ)I{Sm(γ)≥γ}

]
= e2µγE−µ

[
e2µ(Sm(γ)−γ)I{Sm(γ)≥γ}

]
.

(33)

For x > 0, we have that 1− x ≤ e−x ≤ 1. Thus,

(
1 + 2µ(Sm(γ) − γ)

)
I{Sm(γ)≥γ} ≤ e

2µ(Sm(γ)−γ)I{Sm(γ)≥γ} ≤ I{Sm(γ)≥γ}.

The result follows after taking an expectation with respect to P−µ, and applying (33). The case

35



where µ > 0 is handled similarly. �

Lemma 1. As γ →∞, ∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ = o
(
γ−2

)
.

Proof. Note that∣∣∣∣∣
∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
δ

Eµ[b−(γ)]p(µ) dµ+
∫ −δ
−∞

Eµ[b+(γ)]p(µ) dµ
∣∣∣∣∣

≤
∫ ∞
δ

Eµ
[
|b−(γ)|

]
p(µ) dµ+

∫ −δ
−∞

Eµ
[
|b+(γ)|

]
p(µ) dµ

≤
∫ ∞
δ

Pµ
(
Sm(γ) ≤ −γ

)
p(µ) dµ+

∫ −δ
−∞

Pµ
(
Sm(γ) ≥ γ

)
p(µ) dµ.

By Proposition 1,∣∣∣∣∣
∫
|µ|>δ

Eµ[b(γ)]p(µ) dµ
∣∣∣∣∣ ≤

∫ ∞
δ

e−2µγP−µ
(
Sm(γ) ≤ −γ

)
p(µ) dµ+

∫ −δ
−∞

e2µγP−µ
(
Sm(γ) ≥ γ

)
p(µ) dµ

≤
∫ ∞
δ

e−2µγp(µ) dµ+
∫ −δ
−∞

e2µγp(µ) dµ ≤ e−2δγ
∫
|µ|>δ

p(µ) dµ = o(γ−2).

�

Lemma 2. As γ →∞, ∫
|µ|≤δ

|Eµ[b(γ)]µ| dµ = O
(
γ−2

)
.

Proof. Notice that, using Proposition 1,
∫
|µ|≤δ

|Eµ[b(γ)]µ| dµ ≤
∫ 0

−δ
|Eµ[b+(γ)]µ| dµ+

∫ δ

0
|Eµ[b−(γ)]µ| dµ

≤
∫ 0

−δ

∣∣∣e2µγP−µ
(
Sm(γ) ≥ γ

)
µ
∣∣∣ dµ+

∫ δ

0

∣∣∣e−2µγP−µ
(
Sm(γ) ≤ −γ

)
µ
∣∣∣ dµ

≤
∫ 0

−δ

∣∣∣e2µγµ
∣∣∣ dµ+

∫ δ

0

∣∣∣e−2µγµ
∣∣∣ dµ = 1

2γ2 −
e−2δγ

2γ2 −
δe−2δγ

γ
.

The result follows. �

A.3. Expected Number of Inner Samples

The asymptotic characterization of the number of inner samples provided by Theorem 3 is that, as
γ → ∞, m̄(γ) = O(γ log γ). We will establish this via an analysis of (28). In particular, we have
that

(34) m̄(γ) =
∫
|µ|>γ−1

Eµ[m(γ)]p(µ) dµ+
∫
|µ|≤γ−1

Eµ[m(γ)]p(µ) dµ.

Theorem 3 will follow by applying Lemmas 4 and 5, established below, to (34).
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To this end, the following result will be helpful.

Lemma 3. Suppose Y1, Y2, . . . are i.i.d. random variables under the probability measure Pµ, with
Eµ[Y1] = µ and Eµ[Y 2

1 ] < ∞. Define, for m ≥ 0, the partial sum Sm ,
∑m
j=1 Yj, and, for γ > 0,

the one-sided hitting times

m+(γ) , inf {m > 0 : Sm > γ} , m±(γ) , inf {m > 0 : |Sm| > γ} .

(i) (Lorden, 1970) Suppose that µ > 0. Then, if x+ , max(x, 0),

sup
γ>0

Eµ[Sm+(γ) − γ] ≤
Eµ
[
(Y +

1 )2]
µ

.

(ii) (Pruitt, 1981) There exist constants V1 and V2 (independent of the distribution of Y1) such
that, if Kµ(γ) , γ−2Eµ

[
|Y1|2I{|Y1|≤γ}

]
,

Eµ[m±(γ)] ≤ V1
Kµ(γ) , Pµ

(
max

1≤m≤n
|Sm| ≤ γ

)
≤ V2(

nKµ(γ)
)3 .

(iii) (Gut, 1974)
E
[(
Y +
m+(γ)

)2
]
≤ E[m+(γ)]E

[(
Y +

1

)2
]
.

Lemma 4. As γ →∞, ∫
|µ|>γ−1

Eµ[m(γ)]p(µ) dµ = O(γ log γ).

Proof. Note that, since Y1 has mean µ and unit variance under the distribution Pµ,

(35)
Eµ
[
(Y +

1 )2]
µ

≤
Eµ
[
|Y1|2

]
µ

= 1 + µ2

µ
.

Further, define the one-sided hitting times m+(γ) and m−(γ) as in Lemma 3. By the optional
stopping theorem,

Eµ[Sm+(γ)] = µEµ[m+(γ)], if µ > 0; Eµ[Sm−(γ)] = µEµ[m−(γ)], if µ < 0.
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Then, since m(γ) ≤ m+(γ) and m(γ) ≤ m−(γ), we have that

∫
|µ|>γ−1

Eµ[m(γ)]p(µ) dµ ≤
∫ −γ−1

−∞
Eµ[m−(γ)]p(µ) dµ+

∫ ∞
γ−1

Eµ[m+(γ)]p(µ) dµ

=
∫ −γ−1

−∞

Eµ[Sm−(γ)]
µ

p(µ) dµ+
∫ ∞
γ−1

Eµ[Sm+(γ)]
µ

p(µ) dµ

≤
∫ −γ−1

−∞

(
1 + µ2

µ2 − γ

µ

)
p(µ) dµ+

∫ ∞
γ−1

(
1 + µ2

µ2 + γ

µ

)
p(µ) dµ

=
∫
|µ|>γ−1

(
1 + 1

µ2 + γ

|µ|

)
p(µ) dµ.

(36)

Here, the final inequality follows from (35) and Part (i) of Lemma 3.
Now, without loss of generality, assume that γ > δ−1. Recalling U0 from (30), we have that∫

|µ|>γ−1
Eµ[m(γ)]p(µ) dµ

≤
∫
δ≥|µ|>γ−1

(
1 + 1

µ2 + γ

|µ|

)
p(µ) dµ+

∫
|µ|>δ

(
1 + 1

µ2 + γ

|µ|

)
p(µ) dµ

≤ 2U0

∫ δ

γ−1

(
1 + 1

µ2 + γ

µ

)
dµ+

(
1 + 1

δ2 + γ

δ

)∫
|µ|>δ

p(µ) dµ

= 2U0
(
δ − γ−1 + γ − δ−1 + γ log δ + γ log γ

)
+ 1 + δ−2 + γδ−1 = O(γ log γ).

(37)

�

Lemma 5. As γ →∞, ∫
|µ|≤γ−1

Eµ[m(γ)]p(µ) dµ = O(γ).

Proof. Here, we will apply Part (ii) of Lemma 3. Without loss of generality, assume that γ > 1.
Then, |µ| < 1 in the region of integration and thus γ − |µ| > 0. Kµ(γ) from Lemma 3 satisfies

Kµ(γ) = γ−2Eµ
[
|Y1|2I{|Y1|≤γ}

]
= γ−2E0

[
|Y1 + µ|2I{|Y1+µ|≤γ}

]
≥ γ−2E0

[
|Y1 + µ|2I{|Y1|≤γ−|µ|}

]
≥ γ−2

(
E0
[
|Y1|2I{|Y1|≤γ−|µ|}

]
+ 2µE0

[
Y1I{|Y1|≤γ−|µ|}

])
= γ−2E0

[
|Y1|2I{|Y1|≤γ−|µ|}

]
.

(38)

Here, we have used the fact that under P0, Y1 ∼ N(0, 1), hence E0
[
Y1I{|Y1|≤γ−|µ|}

]
= 0.

Then, from Part (ii) of Lemma 3, since m(γ) ≤ m±(γ),

Eµ[m(γ)] ≤ Eµ[m±(γ)] ≤ V1γ
2

E0
[
|Y1|2I{|Y1|≤γ−|µ|}

] .
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Without loss of generality, assume that γ > δ−1, and recall U0 from (30). Then,

∫
|µ|≤γ−1

Eµ[m(γ)]p(µ) dµ ≤
∫
|µ|≤γ−1

V1γ
2

E0
[
|Y1|2I{|Y1|≤γ−|µ|}

]p(µ) dµ

≤ V1γ
2

E0
[
|Y1|2I{|Y1|≤γ−δ}

] ∫
|µ|≤γ−1

p(µ) dµ ≤ 2U0V1γ

E0
[
|Y1|2I{|Y1|≤γ−δ}

] .(39)

Notice that γ > 1 > δ is assumed before. By the monotone convergence theorem,

(40) lim
γ→∞

E0
[
|Y1|2I{|Y1|≤γ−δ}

]
= E0

[
|Y1|2

]
= 1.

The result follows. �

A.4. Realized Number of Inner Samples

In this section, we will establish Theorem 4, which provides a probabilistic bound on the realized
number of inner stage samples per scenario. Our proof relies on the following lemma, which bounds
the second moment of the number of inner stage samples per scenario.

Lemma 6. As γ →∞, E
[
m(γ)2] = O(γ3).

We will defer the proof of Lemma 6 for the moment, and first employ this lemma to prove
Theorem 4.

Proof of Theorem 4. Fix ε > 0 and suppose that γ ≥ γ0. Then, by Chebyshev’s inequality,

P
(

1
n

n∑
i=1

mi ≥ (C0 + ε)γ log γ
)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

(
mi − m̄(γ)

)∣∣∣∣∣ ≥ εγ log γ
)

≤
Var

(
m(γ)

)
n (εγ log γ)2 ≤

E
[
m(γ)2]

n (εγ log γ)2 .

By Lemma 6, there exist constants C ′0, γ′0 > 0 so that if γ ≥ γ′0, E
[
m(γ)2] ≤ C ′0γ

3. Then, if
γ ≥ max{γ0, γ

′
0, γ1}, we have that

P
(

1
n

n∑
i=1

mi ≥ (C0 + ε)γ log γ
)
≤ C ′0
C1 (ε log γ)2 ,

which can be made arbitrarily small with sufficiently large γ. �

To prove Lemma 6, consider the decomposition

(41) E
[
m(γ)2

]
=
∫
|µ|>γ−1

Eµ
[
m(γ)2

]
p(µ) dµ+

∫
|µ|≤γ−1

Eµ
[
m(γ)2

]
p(µ) dµ.

Lemma 6 will follow by applying Lemmas 7 and 8, established below, to (41).
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Lemma 7. As γ →∞, ∫
|µ|>γ−1

Eµ
[
m(γ)2

]
p(µ) dµ = O(γ3).

Proof. We proceed as in the proof of Lemma 4. Using the stopping times m+(γ) and m−(γ) defined
there, we have

∫
|µ|>γ−1

Eµ
[
m(γ)2

]
p(µ) dµ ≤

∫ −γ−1

−∞
Eµ
[
m−(γ)2

]
p(µ) dµ+

∫ ∞
γ−1

Eµ
[
m+(γ)2

]
p(µ) dµ.

First, consider the case when µ > 0. By the optional stopping theorem applied to the quadratic
martingale (Sm−µm)2−m, we have that Eµ[(Sm+(γ)−µm+(γ))2] = Eµ[m+(γ)]. Now, for any real
numbers a, b ∈ R, we have that (a+ b)2 ≤ 2(a2 + b2). Therefore,

Eµ
[
m+(γ)2

]
≤ 2
µ2

(
Eµ
[(
Sm+(γ) − µm+(γ)

)2
]

+ Eµ
[
S2
m+(γ)

])
= 2
µ2

(
Eµ[m+(γ)] + Eµ

[
S2
m+(γ)

])
Using the fact that Sm+(γ) ≤ γ + Y +

m+(γ), Part (iii) of Lemma 3, and (35),

Eµ
[
m+(γ)2

]
≤ 2
µ2

(
Eµ[m+(γ)] + Eµ

[(
γ + Y +

m+(γ)

)2
])

≤ 2
µ2

(
Eµ[m+(γ)] + 2γ2 + 2Eµ

[(
Y +
m+(γ)

)2
])

≤ 2
µ2

(
Eµ[m+(γ)] + 2γ2 + 2Eµ[m+(γ)]Eµ

[(
Y +

1

)2
])

≤ 2
µ2

(
Eµ[m+(γ)] + 2γ2 + 2(µ2 + 1)Eµ[m+(γ)]

)
=
( 6
µ2 + 4

)
Eµ[m+(γ)] + 4γ2

µ2 .

By similar consideration of the symmetric case where µ < 0, we have, repeating the calculation
in (36),

∫
|µ|>γ−1

Eµ
[
m(γ)2

]
p(µ) dµ ≤

∫
|µ|>γ−1

[( 6
µ2 + 4

)(
1 + 1

µ2 + γ

|µ|

)
+ 4γ2

µ2

]
p(µ) dµ.

Without loss of generality, assume that γ > δ−1. Then, as in (37),

∫
|µ|>γ−1

Eµ
[
m(γ)2

]
p(µ) dµ ≤ 2U0

∫ δ

γ−1

[( 6
µ2 + 4

)(
1 + 1

µ2 + γ

µ

)
+ 4γ2

µ2

]
dµ

+
( 6
δ2 + 4

)(
1 + 1

δ2 + γ

δ

)
+ 4γ2

δ2 = O(γ3).

�

Lemma 8. As γ →∞, ∫
|µ|≤γ−1

Eµ
[
m(γ)2

]
p(µ) dµ = O(γ3).

Proof. We proceed as in Lemma 5. Without loss of generality, assume that γ > 1. Observe that
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m(γ) ≤ m±(γ), since the latter is an exit time for a larger set than the former. Then, using
summation by parts,

Eµ
[
m(γ)2

]
≤ Eµ

[
m±(γ)2

]
=
∞∑
n=1

n2Pµ
(
m±(γ) = n

)
= 1 +

∞∑
n=1

(2n+ 1)Pµ
(
m±(γ) > n

)
= 1 +

∞∑
n=1

(2n+ 1)Pµ
(

max
1≤m≤n

|Sm| ≤ γ
)
.

Using Part (ii) of Lemma 3, for any integer N ≥ 1,

Eµ
[
m(γ)2

]
≤

N−1∑
n=0

(2n+ 1) + V2
Kµ(γ)3

∞∑
n=N

2n+ 1
n3

≤ N2 + 3V2
Kµ(γ)3

∞∑
n=N

1
n2 ≤ N

2 + 3V2
Kµ(γ)3(N − 1) .

Since Kµ(γ) ≤ 1, we may take N , b3/Kµ(γ)c , so that N − 1 ≥ 1/Kµ(γ). Then, there exists a
constant W0 so that

Eµ
[
m(γ)2

]
≤ W0
Kµ(γ)2 ≤

W0γ
4(

E0
[
|Y1|2I{|Y1|≤γ−|µ|}

])2 ,

using (38).
Without loss of generality, assume that γ > δ−1. Then, as in (39),

∫
|µ|≤γ−1

Eµ
[
m(γ)2

]
p(µ) dµ ≤

∫
|µ|≤γ−1

W0γ
4(

E0
[
|Y1|2I{|Y1|≤γ−|µ|}

])2 p(µ) dµ ≤ 2U0W0γ
3(

E0
[
|Y1|2I{|Y1|≤γ−δ}

])2 .

The result follows from (40). �
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