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Abstract 

 

We provide explicit solutions to life-cycle utility maximization problems simultaneously 
involving dynamic decisions on investments in stocks and bonds, consumption of 
perishable goods, and the rental and the ownership of residential real estate. House prices, 
stock prices, interest rates, and the labor income of the decision-maker follow correlated 
stochastic processes. The preferences of the individual are of the Epstein-Zin recursive 
structure and depend on consumption of both perishable goods and housing services. The 
explicit consumption and investment strategies are simple and intuitive and are thoroughly 
discussed and illustrated in the paper. For a calibrated version of the model we find, among 
other things, that the fairly high correlation between labor income and house prices imply 
much larger life-cycle variations in the desired exposure to house price risks than in the 
exposure to the stock and bond markets. We demonstrate that the derived closed-form 
strategies are still very useful if the housing positions are only reset infrequently and if the 
investor is restricted from borrowing against future income. Our results suggest that 
markets for REITs or other financial contracts facilitating the hedging of house price risks 
will lead to non-negligible but moderate improvements of welfare. 
 
 
 
Keywords: Housing, labor income, portfolio choice, life-cycle decisions, recursive utility, 
REITs 
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Optimal Housing, Consumption, and Investment Decisions

over the Life-Cycle

1 Introduction

The two largest assets for many individuals are the human capital and the residential property owned
and occupied by the individual. The financial decisions of individuals over the life-cycle are bound to be
affected by the characteristics of these assets. While the early literature on dynamic consumption and
portfolio decisions (Samuelson 1969; Merton 1969, 1971) ignored such non-financial assets, progress
has recently been made with respect to incorporating and understanding housing decisions and labor
income in a life-cycle framework of consumption and portfolio choice. Due to the complexity of such
decision problems, almost all of these studies resort to rather coarse and computationally very intensive
numerical solution techniques with an unknown precision. In contrast, this paper provides closed-
form solutions for continuous-time problems involving both consumption, housing, and investment
decisions when stock prices, interest rates, labor income, and house prices vary stochastically over
time. Preferences are modeled by a two-good extension of Epstein-Zin recursive utility that allows for
a separation of the risk aversion and the elasticity of intertemporal substitution, with exact closed-
form solutions given for the two special cases of power utility and a unit elasticity of substitution
and an approximate closed-form solution for the general case. These closed-form solutions lead to a
deeper understanding of the economic forces driving individual decisions in such a complex setting.
For a calibrated version of the model we show that the solutions from the model imply fairly realistic
consumption and investment patterns over the life-cycle.

Our model has the following features. The individual derives utility from consumption of perishable
goods and of housing services and maximizes life-time utility of the Epstein-Zin type. The individual
receives an exogenous stochastic stream of labor income until a fixed retirement date after which the
individual lives for another fixed period of time. Our specification of the income process encompasses
life-cycle variations in the expected growth rate and volatility and also allows for variations in expected
income growth related to the short-term interest rate in order to reflect dependence on the business
cycle. The pure financial assets available are a stock, a bond, and short-term deposits (cash). The
short-term interest rate and the returns on the bond are modeled by the classical Vasicek model, and
for the stock price we assume a constant expected excess return, a constant volatility, and a constant
correlation with the bond price. The individual can buy and sell houses2 at a unit price that varies
stochastically with a constant expected growth rate in excess of the short-term interest rate, a constant
volatility, and constant correlations with labor income and financial asset prices. The purchase of a
house serves a dual role by both generating consumption services and by constituting an investment
affecting future wealth and consumption opportunities. We allow the individual to disentangle the two
dimensions of housing by renting the house instead of owning it (the rent is proportional to the price

2In order to keep the terminology simple we use “house” instead of the more general term “residential property.”
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of the house rented) and/or by investing in a financial asset linked to house prices. In current financial
markets, shares in REITs (Real Estate Investment Trusts) and the S&P/Case-Shiller Home Price
Indices (CSI) futures and options traded at the Chicago Mercantile Exchange offer such opportunities;
more information on these contracts is provided in Section 2.

In order to derive closed-form solutions our main model exhibits market completeness (cf., e.g., Liu
2007) so, in particular, the labor income stream has to be spanned by the traded assets. The corre-
lations between an individual’s labor income and the returns on stocks and bonds are probably quite
low.3 However, labor income tends to be highly correlated with house prices (e.g. Cocco (2005) reports
a correlation of 0.55) so that the income spanning assumption is less unrealistic in our model with
housing than in the models with labor income, but no housing, studied in the existing literature (ref-
erences given below). Still it may not be possible to find a trading strategy in stocks, bonds, deposits,
and houses that perfectly replicates the income risk. Without perfect spanning it seems impossible
to derive the optimal investment strategy in closed-form or even with a precise, numerical solution
technique. While the investment strategy we derive in this paper will then be sub-optimal, the results
presented in Bick, Kraft, and Munk (2008) for a similar, though slightly simpler, model indicate that
it will be near-optimal in the sense that the investor will at most suffer a loss corresponding to a few
percent of his initial wealth by following the closed-form sub-optimal strategy instead of the unknown
optimal strategy. The results we present below will therefore be highly relevant even without perfect
spanning.

The high correlation between labor income and house prices implies the following distinct life-cycle
pattern in the investment exposure to house price risk. When human wealth is big relative to financial
wealth (e.g. early in life), the individual should invest very little in housing so that the desired housing
consumption is mainly achieved by renting. When human wealth is low relative to financial wealth
(e.g. late in life), the optimal housing investment is quite big due to its fairly attractive risk-return
trade-off. We find that the optimal housing investment varies much more over the life-cycle than the
optimal investments in bonds and stocks.

In our main model the individual can continuously and costlessly adjust both the housing consump-
tion and the housing investment, but we also consider problems with limited flexibility in housing de-
cisions. Changes in physical ownership of housing generate substantial transaction costs not included
in our model, so continuous adjustments of housing investment must be implemented by rebalancing
the position in the house-price linked financial asset. We have to assume a perfect correlation between
the returns on that asset and house prices, which may be unattainable in actual markets but carefully
selected REITs or CSI housing contracts will come close.4 The case where both housing consumption
and housing investment are continuously adjustable can be seen as an upper bound on the life-time
utility that the individual can realistically obtain. We investigate the importance of the frequency

3The correlation between average labor income and the general stock market is usually estimated to be close to zero

(see, e.g., Cocco, Gomes, and Maenhout 2005), but it should be possible to find single stocks highly correlated with the

labor income of a particular individual.
4Tsai, Chen, and Sing (2007) report that REITs behave more and more like real estate and less and less like ordinary

stocks.
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of adjustments of the housing consumption and housing investment in two ways. First, we derive an
explicit solution to the problem where the individual consumes a constant level of housing services
through life, adjusts the housing investment position continuously, and has time-additive power utility
of consumption with no utility from terminal wealth. We find that the utility decrease due to the fixed
housing consumption is equivalent to less than 1% of total wealth. Second, we implement a Monte
Carlo simulation procedure to compute the expected utility of an individual restricted to infrequent
adjustments of (a) housing consumption, (b) housing investment, or (c) both. Again, we find that the
wealth-equivalent loss is fairly small even when the housing positions are only adjusted every five years.
Our results indicate that it is more important to adjust the housing investment position frequently
than the housing consumption position, suggesting that a well-functioning market for REITs or other
financial contracts related to house prices can lead to a non-negligible improvement in the welfare of
individual investors.

Another questionable feature of our main model is the possibility of the investor to borrow against
future labor income. The optimal unconstrained consumption and investment strategy will lead to
cases where the tangible wealth (the sum of financial wealth and the value of the housing stock owned)
will be negative but the human wealth more than outweighs that so that total wealth is positive. Such
a strategy may not be feasible in real life due to moral hazard and asymmetric information issues in
the valuation of human wealth. We introduce a minor transformation of the optimal unconstrained
consumption and investment strategy that ensures non-negative tangible wealth at all points in time.
We evaluate the expected utility generated by this transformed strategy by Monte Carlo simulation
and find that it corresponds to a wealth-equivalent loss of only about one percent compared to the max-
imum expected utility in the unconstrained case, using our benchmark parameter values. Hence, the
transformation of the closed-form solution must be at least near-optimal in the borrowing constrained
case, emphasizing the relevance of our closed-form solution in more realistic settings.

Next we briefly compare our setting and findings to some recent related papers. Cocco (2005) con-
siders a model featuring stochastic house prices and labor income with an assumed perfect correlation
between house prices and aggregate income shocks. Interest rates are assumed constant. Renting is
not possible. The individual is allowed to borrow only up to a percentage of the current value of the
house. There is a minimum choice of house size, and house transactions carry a proportional cost. The
individual has to pay a one-time fixed fee to participate in the stock market. Yao and Zhang (2005a)
add mortality risk and the possibility of renting to Cocco’s framework and do not impose a perfect
correlation between house prices and income. Van Hemert (2007) generalizes the setting further by
allowing for stochastic variations in interest rates and thereby introducing a role for bonds, and he
also addresses the choice between an adjustable-rate mortgage and a fixed-rate mortgage (ignoring the
important prepayment option, however). The latter two papers disregard the stock market entry fee
in Cocco’s model.

All these three papers apply numerical solution techniques based on a discretization of time and
the state space. Yao and Zhang (2005a) and Cocco (2005) solve the dynamic programming equation
related to the problem by applying a very coarse discretization, e.g. using binomial processes and
large time intervals between revisions of decisions. Van Hemert (2007) is able to handle a finer dis-
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cretization by relying on 60 parallel computers. It is difficult to assess the precision of such numerical
techniques and, in any case, the computational procedures are highly time-consuming and cumbersome.
The closed-form solutions derived in this paper are much easier to analyze, interpret, and implement
and thus facilitate an understanding and a quantification of the economic forces at play. Moreover,
the three above-mentioned papers assume preferences of the time-additive Cobb-Douglas style. We
build the instantaneous Cobb-Douglas utility of perishable consumption and housing services into an
Epstein-Zin recursive utility formulation allowing us to disentangle the risk aversion γ and the elastic-
ity of intertemporal substitution ψ, as has been shown to be valuable both for consumption-portfolio
choice with one consumption good (see, e.g., Campbell and Viceira (1999), Campbell, Cocco, Gomes,
Maenhout, and Viceira (2001), and Chacko and Viceira (2005)) and for equilibrium asset prices (see
Bansal and Yaron (2004)). We provide exact closed-form solutions for the special case of time-additive
Cobb-Douglas utility, corresponding to ψ = 1/γ, and for the more reasonable case where ψ = 1 and
γ > 1. Extending the log-linearization technique of Campbell (1993) and Chacko and Viceira (2005),
we derive an approximate closed-form solution for general combinations of ψ and γ.

Damgaard, Fuglsbjerg, and Munk (2003) do provide a closed-form solution for a related but much
simpler problem of an individual maximizing time-additive Cobb-Douglas utility over consumption
and owner-occupied housing, when the size of the house occupied can be continuously and costlessly
rebalanced. They ignore the possibility of renting as well as labor income and variations in interest
rates. They provide a mathematical and numerical analysis of the case with a proportional cost on
house transactions.

Some more marginally related papers deserve to be mentioned. Campbell and Cocco (2003) study
the mortgage choice in a life-cycle framework with stochastic house price, labor income, and interest
rates. By fixing the house, however, they are not able to address the interaction between housing
decisions and portfolio decisions. Moreover, their solution relies on a very coarse discretization of the
model, e.g. with two year time intervals where decisions cannot be revised. Munk and Sørensen
(2008) solve the life-cycle consumption and investment problem with stochastic labor income and
interest rates, but do not incorporate houses in neither consumption nor investment decisions. They
find a closed-form solution for a complete market version of their model, which is generalized to include
housing decisions and recursive utility in our paper. They also report results from a numerical solution
for the case where labor income risk is not spanned by traded financial assets.

While we investigate individual decision making in the presence of housing wealth and human
capital on individual decisions, the role of these two factors in equilibrium asset pricing have also
been subject to recent theoretical and empirical research. Papers on the impact of housing decisions
and prices on financial asset prices include Piazzesi, Schneider, and Tuzel (2007), Lustig and van
Nieuwerburgh (2005), and Yogo (2006), while papers such as Constantinides, Donaldson, and Mehra
(2002), Santos and Veronesi (2006), and Storesletten, Telmer, and Yaron (2004, 2007) focus on the
interaction of labor income risk and asset prices.

To summarize our contribution, we derive explicit expressions for the optimal life-cycle housing,
consumption, and investment decisions of an investor having Epstein-Zin utility in a rich model taking
into account variability in labor income, interest rates, and the prices of houses, stocks, and bonds.
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We discuss the structure of the solution and show in a numerical example that our solution generates
a life-cycle behavior with many realistic features. We also provide results suggesting that our solution
will still be close to optimal if some of the unpleasant model assumptions are relaxed.

The remainder of the paper is organized as follows. Section 2 formulates and discusses the ingre-
dients of our model and the utility maximization problem faced by the individual. Section 3 states,
explains, and illustrates the optimal housing, consumption, and investment strategies in the case when
housing decisions can be controlled continuously. Section 4 investigates the effect of limiting the flexi-
bility in revising housing decisions and provides estimates of the value of being able to make continuous
revisions for example via trade in financial contracts linked to house prices. Section 5 summarizes and
concludes. All proofs are collected in the appendices at the end of the paper.

2 The problem

The main elements of our modeling framework are specified as follows.

Consumption goods. The individual can consume two goods: perishable consumption and housing.
The perishable consumption good is taken as the numeraire so that the prices of the housing good and
of all financial assets are measured in units of the perishable consumption good.

Financial assets. The individual can invest in three purely financial assets: a money market account
(cash), a bond, and a stock (representing the stock market index). The return on the money market
account equals the continuously compounded short-term real interest rate rt, which is assumed to have
Vasicek dynamics

drt = κ[r̄ − rt] dt− σr dWrt, (2.1)

where Wr = (Wrt) is a standard Brownian motion. The price of any bond (or any other interest rate
derivative) is then of the form Bt = B(rt, t) with dynamics

dBt = Bt [(rt + λBσB(rt, t)) dt+ σB(rt, t) dWrt] , (2.2)

where σB(r, t) = −σrBr(r, t)/B(r, t) is the volatility and λB the Sharpe ratio of the bond, which is
identical to the market price of interest rate risk. In particular, if we introduce the notation

Bm(τ) =
1
m

(
1− e−mτ

)
for any positive constant m, the time t price of a real zero-coupon bond maturing at some date T > t

can be written as

BTt = e−a(T−t)−Bκ(T−t)rt , (2.3)

a(τ) =
(
r̄ − λBσr

κ
− σ2

r

2κ2

)
(τ − Bκ(τ)) +

σ2
r

4κ
Bκ(τ)2. (2.4)
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An investor will not gain from trading in more than one bond in addition to the money market account.
The stock price St has dynamics

dSt = St

[
(rt + λSσS) dt+ σS

(
ρSB dWrt +

√
1− ρ2

SB dWSt

)]
, (2.5)

where WS = (WSt) is a standard Brownian motion independent of Wr, σS is the constant volatility
and λS the constant Sharpe ratio of the stock, and ρSB is the constant correlation between the stock
and the bond returns.

Houses. The individual can also buy or rent houses. A given house is assumed to be fully character-
ized by a number of housing units, where a “unit” is some one-dimensional representation of the size,
quality, and location. Prices of all houses move in parallel. The purchase of a units of housing costs
aHt; there are no transaction costs. The unit house price Ht is assumed to have dynamics

dHt = Ht

[(
rt + λHσH − rimp

)
dt+ σH (ρHB dWrt + ρ̂HS dWSt + ρ̂H dWHt)

]
, (2.6)

where WH = (WHt) is a standard Brownian motion independent of Wr and WS , σH is the constant
price volatility and λH the constant Sharpe ratio of houses, ρHB is the constant correlation between
house and bond prices, and

ρ̂HS =
ρSH − ρSBρHB√

1− ρ2
SB

, ρ̂H =
√

1− ρ2
HB − ρ̂2

HS

where ρSH is the constant correlation between house and stock prices. Finally, rimp is the imputed rent,
i.e. the market value associated with the net benefits offered by a house (similar to the convenience
yield of commodities), which is assumed to be constant as, e.g., in Van Hemert (2007).

The unit rental cost of houses is assumed to be proportional to the current unit house price, i.e.
νHt for some constant ν. For later use, define λ′H = λH +(ν−rimp)/σH . By renting instead of owning
the house, the individual can isolate the consumption role of housing.

We assume that the individual can invest in a financial asset with a price that follows the movements
in house prices. In a number of countries, shares in REITs are publicly traded. A REIT (Real Estate
Investment Trust) is an investment company that invests in (and often operates) real estate generating
rental income and hopefully capital gains so, by construction, the prices of REIT shares will be closely
related to real estate prices.5 While REITs in general may be interesting as an asset class improving
the overall risk-return tradeoff, REITs specializing in residential real estate are particularly interesting
for existing or prospective individual homeowners as a vehicle to manage exposure to house price risk
without having to physically trade houses frequently.

5REITs were introduced in the U.S. in the 1960s and the REIT industry has experienced substantial growth since

the early 1990s. According to the website of the National Association of Real Estate Investment Trusts on November

7, 2007 (see www.nareit.com) shares in 190 U.S. REITs are publicly traded with a total market capitalization of more

than $400 billion, and (as of September 28, 2007) 14 of the companies in S&P500 index are REITs. Well-established

REIT markets also exist in countries such as Japan, Canada, France, and the Netherlands, and are under development

in many other countries, e.g. in Germany.
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If we let Rt denote the value of the REIT per unit of housing and assume that the REIT passes on
rental income to shareholders as a dividend, we will have Rt = Ht and the total instantaneous return
from a REIT is

dHt + νHt dt = Ht [(rt + λ′HσH) dt+ σH (ρHB dWrt + ρ̂HS dWSt + ρ̂H dWHt)] . (2.7)

An alternative to REITs is the housing futures (and options on housing futures) traded since 2006
at the Chicago Mercantile Exchange. The payoff of such a contract is determined by either a U.S.
national home price index or by a home price index for one of 10 major U.S. cities; the indices were
developed by Case and Shiller, hence the contracts are also referred to as CSI futures and options. See
de Jong, Driessen, and Van Hemert (2008) for a partial analysis of the economic benefits of having
access to such housing futures.

Note that when an individual physically owns a house, a negative position in the money market
account can be interpreted as an adjustable-rate mortgage, whereas a negative position in the long-
term bond resembles a fixed-rate mortgage. In order to obtain closed-form solutions we do not limit
borrowing to some fraction of the market value of the house owned.

Labor income. The individual is assumed to retire from working life at time T̃ and live until
time T ≥ T̃ . During working life the individual receives a continuous and exogenously given stream of
income from non-financial sources (e.g. labor) at a rate of Yt which has the dynamics

dYt = Yt [µY (rt, t) dt+ σY (rt, t) (ρY B dWrt + ρ̂Y S dWSt + ρ̂Y dWHt)] . (2.8)

For analytical tractability there is no idiosyncratic shock to the income process, hence the market is
complete, but as discussed in the introduction this is not a crucial assumption for the relevance of
our results. The expected percentage income growth µY and volatility σY are allowed to depend on
time (age of the individual) and the interest rate level to reflect fluctuations of labor income over the
life- and business cycle, cf., e.g., Cocco, Gomes, and Maenhout (2005) and Munk and Sørensen (2008).
ρY B is the constant correlation between income growth and bond returns, and

ρ̂Y S =
ρSY − ρSBρY B√

1− ρ2
SB

, ρ̂Y =
√

1− ρ2
Y B − ρ̂2

Y S

where ρSY is the constant correlation between house and stock prices. Due to the completeness
assumption the correlation between income growth and house prices follow from the other pairwise
correlations,

ρY H = ρHBρY B + ρ̂HS ρ̂Y S + ρ̂H ρ̂Y .

In the retirement period [T̃ , T ], the individual is assumed to have no income from non-financial sources.
The human capital of the individual is the present value of the entire future labor income stream.

In a complete market with risk-neutral probability measure Q, the human capital is unique and given
by

Lt = L(t, rt, yt) = EQ
t

[∫ T̃

t

e−
∫ s
t
ru duys ds

]
= ytE

Q
t

[∫ T̃

t

e−
∫ s
t
ru du

ys
yt
ds

]
≡ ytF (t, rt),
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using the fact that the distribution of ys
yt

is independent of yt. For general functions µY and σY , F
can be found by solving a PDE. We specialize to the case

µY (r, t) = µ̄Y (t) + br, σY (r, t) = σY (t) (2.9)

for deterministic functions µ̄Y and σY , where the next theorem gives a closed-form solution for F (t, r).
This specification allows for the well-known life-cycle pattern in expected income growth and income
volatility, see e.g. Cocco, Gomes, and Maenhout (2005), and also for a business-cycle variation in the
expected income growth via the relation to the real interest rate, see e.g. Munk and Sørensen (2008).

Theorem 2.1 (Human capital) When labor income is given by (2.8) and (2.9), the human capital
is L(t, rt, yt) = ytF (t, rt) with

F (t, r) = 1{t≤T̃}

∫ T̃

t

e−Ã(t,s)−(1−b)Bκ(s−t)r ds, (2.10)

where

Ã(t, s) = (κr̄ + σrλB)(1− b)s− t− Bκ(s− t)
κ

− ρY Bσr(1− b)
∫ s

t

σY (u)Bκ(s− u) du

− 1
2
σ2
r(1− b)2 1

κ2
[s− t− 2Bκ(s− t) + B2κ(s− t)]−

∫ s

t

µ̄Y (u) du+ λY

∫ s

t

σY (u) du,

and λY is defined in (A.3) in Appendix A. The expected future income rate is

E0[Yt] = Y0 exp
{∫ t

0

µ̄Y (u) du+ br0t+ b

(
r̄ − r0 +

bσ2
r

2κ2

)
(t− Bκ(t))

− b2σ2
r

4κ
Bκ(t)2 − bσrρY B

∫ t

0

σY (u)Bκ(t− u) du
}
,

(2.11)

and expected future human capital is E0[L(t, rt, Yt)] = F̄ (t)E0[Yt] ≈ F (t, r̄)E0[Yt], where F̄ is given
in (A.10).

For a proof, we refer the reader to Appendix A.

Wealth dynamics. The individual’s tangible wealth at any time t is denoted by Xt and defined as
the value of his current position in the money market account, the bond, the stock, and REITs, plus
the value of the house owned by the individual. Let πSt and πBt denote the fraction of tangible wealth
invested in the stock and the bond, respectively, at time t. Let ϕot and ϕrt denote the units of housing
owned and rented, respectively, at time t. Let ϕRt denote the number of shares in REITs owned at
time t. The wealth invested in the money market account is then Xt(1− πSt − πBt)− (ϕot + ϕRt)Ht.
Finally, let ct denote the rate at which the perishable good is consumed at time t. The dynamics of
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tangible wealth is then

dXt = πStXt
dSt
St

+ πBtXt
dBt
Bt

+ [Xt(1− πSt − πBt)− (ϕot + ϕRt)Ht] rt dt

+ ϕot dHt + ϕRt (dHt + νHt dt)− ϕrtνHt dt− ct dt+ 1{t≤T̃}Yt dt

=
[
Xt (rt + πStλSσS + πBtλBσBt) + ϕItλ

′
HσHHt − ϕCtνHt − ct + 1{t≤T̃}Yt

]
dt

+ (πStXtρSBσS + πBtXtσBt + ϕItHtρHBσH) dWrt

+
(
πStXtσS

√
1− ρ2

SB + ϕItHtρ̂HSσH

)
dWSt + ϕItHtρ̂HσH dWHt,

(2.12)

where
ϕCt ≡ ϕot + ϕrt, ϕIt ≡ ϕot + ϕRt, (2.13)

so that ϕCt is the total units of housing occupied by (and thus providing housing services to) the
individual and ϕIt is the total units of housing invested in either physically or indirectly through
REITs. The wealth dynamics and the welfare of the individual are thus only affected by ϕCt and ϕIt

so that, in general, there will be one degree of freedom. To obtain a unique solution we will have to
fix one of the three control variables ϕo, ϕr, and ϕI .

Preferences. We use a stochastic differential utility or recursive utility specification for the prefer-
ences of the individual so that the utility index V ωt associated at time t with a given control process
ω = (c, ϕo, ϕr, ϕR, πS , πB) over the remaining lifetime [t, T ] is recursively given by

V ωt = Et

[∫ T

t

f (zωu , V
ω
u ) du+ V̄ ωT

]
. (2.14)

Here zωu = cβuϕ
1−β
Cu is the weighted composite consumption at time u with β ∈ (0, 1) defining the

relative importance of the two consumption goods, where ϕC = ϕo+ϕr as in (2.13). A unit of housing
is assumed to contribute identically to the direct utility whether owned or rented. We assume that the
so-called normalized aggregator f is defined by

f(z, V ) =

 δ
1−1/ψ z

1−1/ψ([1− γ]V )1−1/θ − δθV, for ψ 6= 1

(1− γ)δV ln z − δV ln ([1− γ]V ) , for ψ = 1
(2.15)

where θ = (1 − γ)/(1 − 1
ψ ). The preferences are characterized by the three parameters δ, γ, ψ. It is

well-known that δ is a time preference parameter, γ > 1 reflects the degree of relative risk aversion
towards atemporal bets (on the composite consumption level z in our case), and ψ > 0 reflects the
elasticity of intertemporal substitution (EIS) towards deterministic consumption plans.6 The term
V̄ ωT represents terminal utility and we assume that V̄ ωT = ε

1−γ (Xω
T )1−γ , where ε ≥ 0 and Xω

T is
the terminal wealth induced by the control process ω. The special case where ψ = 1/γ (so that

6It is also possible to define a normalized aggregator for γ = 1 and for 0 < γ < 1 but we focus on the empirically

more reasonable case of γ > 1.
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θ = 1) corresponds to the classic time-additive utility with the Cobb-Douglas-style instantaneous

utility function7 1
1−γ

(
cβuϕ

1−β
Cu

)1−γ
.

LetAt denote the set of admissible control processes ω over the remaining lifetime [t, T ]. Constraints
on the controls are reflected by At. At any point in time t < T , the individual maximizes V ωt over
all admissible control processes given the values of the state variables at time t. The value function
associated with the problem is defined as

J(t, x, r, h, y) = sup
{
V ωt | (ωu)u∈[t,T ] ∈ At, Xt = x, rt = r,Ht = h, Yt = y

}
(2.16)

(ignoring y in the retirement phase t ∈ [T̃ , T ]). Throughout the analysis we solve the relevant utility
maximization problems applying the dynamic programming principle; see Duffie and Epstein (1992)
on the validity of this solution technique in the case of stochastic differential utility.

The above utility specification is the continuous-time analogue of the Kreps-Porteus-Epstein-Zin
recursive utility defined in a discrete-time setting. Both the discrete-time and the continuous-time
versions have been applied in a few recent studies of utility maximization problems involving a single
consumption good, cf. Campbell and Viceira (1999), Campbell, Cocco, Gomes, Maenhout, and Vi-
ceira (2001), and Chacko and Viceira (2005), and was also applied in a two-good setting related to
ours by Yao and Zhang (2005b). Other recent papers modeling related two-good utility maximiza-
tion problems apply the classic time-additive utility with a Cobb-Douglas-style instantaneous utility
function, cf. Cocco (2005), Yao and Zhang (2005a), and Van Hemert (2007).

Benchmark parameter values. When we illustrate our findings in the following sections, we will
use the parameter values listed in Table 1 unless otherwise noted. Our benchmark parameter values are
roughly in line with those used in similar studies referred to in the introduction. In our illustrations we
assume constant µ̄Y and σY . This allows us to focus on understanding the impact of the state variables
and their interactions on the life-cycle behavior and disregards the more mechanical time-dependence,
which is of secondary importance. Whenever we need to specify the bond that the individual invests
in, we take it to be a 20-year zero-coupon bond. Unless mentioned otherwise, the results reported
presume that the current value of the short-term interest rate is identical to the long-term average,
r = r̄.

Whenever we need to use levels of current or future house prices, wealth, labor income etc., we
use a unit of USD 1 scaled by one plus the inflation rate in the perishable consumption good. For
concreteness we think of houses as being fully represented by the number of square feet (of “average
quality and location”) and will later use an initial value of h = 200 corresponding to USD 200,000 for
a house of 1,000 square feet. When the short rate is at its long-term average, the expected growth rate

7With ψ = 1/γ, the recursion (2.14) is satisfied by

V ωt = δ

(
Et

[∫ T

t
e−δ(u−t)

1

1− γ
z1−γu du+

1

δ
e−δ(T−t)

ε

1− γ
(Xω

T )1−γ
])

,

which is a positive multiple of the traditional time-additive power utility specification. Note that ε = δ would correspond

to the case where utility of a terminal wealth of X will count roughly as much as the utility of consuming X over the

final year.
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of house prices is a modest 0.7% per year. This value may seem low given the house price inflation in
most developed countries over the last decade, but it is in fact very reasonable considering house price
movements over a longer period, cf. the discussions in Cocco (2005) who assumes an expected growth
rate of 1% and Yao and Zhang (2005a) who use 0%.

[Table 1 about here.]

3 Solution with fully flexible housing decisions

Assume for now that the individual can continuously and costlessly adjust both the number of housing
units consumed and the number of housing units invested in. We shall refer to this situation as “fully
flexible housing decisions.” Due to (2.13), we can assume that the individual never has any direct
ownership of housing units but continuously adjusts the investment in REITS to obtain the desired
housing investment level and continuously adjust the number of housing units rented to achieve the
desired housing consumption level. Alternatively, we can disregard REITs and assume a continuously
adjusted direct ownership of housing units (admittedly, that may involve substantial transactions costs
excluded from the theoretical framework of this paper), as well as a continuously adjusted renting
position.

In Appendix B we demonstrate that the value function under fully flexible housing decisions can
be separated as

J(t, x, r, h, y) =
1

1− γ
g(t, r, h)γ(x+ yF (t, r))1−γ , (3.1)

where g solves a partial differential equation (PDE). This form of the value function has also been found
in many simpler cases. The total initial wealth of the individual is the sum of the tangible wealth x

and the human capital which, according to Theorem 2.1, equals yF (t, r) with F given by (2.10). As
in the existing solutions to similar, but simpler, problems studied in the literature, the g function is
determined by the assumed asset price dynamics and will generally depend on variables sufficient to
describe relevant variations in the investment opportunity set; see, e.g., Liu (2007). Long-term investors
will generally want to hedge variations in investment opportunities as captured by the short-term
interest rate and the maximum Sharpe ratio, which together define the location of the instantaneous
mean-variance efficient frontier, cf. Nielsen and Vassalou (2006). Since λB , λS , and λH are assumed
constant, there are no variations in the maximum Sharpe ratio, so the short-term interest rate alone
drives investment opportunities. In addition, a long-term investor who can control her consumption
of multiple goods affecting her utility will want to hedge variations in the relative prices of those
consumption goods. In our model, the relative price of the two consumption goods is given by Ht.
This explains why g is a function of r and h in our setting.

In terms of the functions g and F , the optimal fractions of tangible wealth invested in the stock
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and the bond are

πS =
1
γ

ξS
σS

x+ yF

x
− σY ζS

σS

yF

x
, (3.2)

πB =
1
γ

ξB
σB

x+ yF

x
−
(
σY ζB
σB

yF

x
− σr
σB

yF

x

Fr
F

)
− σr
σB

gr
g

x+ yF

x
, (3.3)

respectively, while the optimal units of housing invested in (physically or through REITs) are

ϕI =
1
γ

ξI
σH

x+ yF

h
− σY ζI

σH

yF

h
+ (x+ yF )

gh
g
. (3.4)

The constants ξB , ξS , ξI are defined in (B.12)-(B.14) in Appendix B in terms of the market prices of
risk λB , λS , λ

′
H and the pairwise correlations between prices on the bond, the stock, and the house.

The constants ζB , ζS , ζI are defined in (A.4)-(A.6) in Appendix A in terms of the pairwise correlations
between the bond, the stock, the house, and the labor income.

The first terms in (3.2), (3.3), and (3.4) reflect the speculative demand well-known from the static
mean-variance analysis and are determined by wealth, relative risk aversion, variances and covariances,
and the market prices of risk.

The second terms in the equations reflect an adjustment of the investments to the risk profile
of human wealth. We can think of the individual first determining the desired exposure to all the
exogenous shocks—i.e. the standard Brownian motions Wr, WS , and WH—and then adjusting for
the exposure implicit in the human wealth in order to obtain the desired exposure of the explicit
investments towards the shocks. The appropriate adjustment is determined by the instantaneous
correlations between the assets and the labor income through the constants ζB , ζS , ζI . In addition,
human wealth is discounted future labor income and therefore interest rate dependent. From (2.10),
it follows that

Fr(t, r) = −1{t≤T̃}(1− b)
∫ T̃

t

Bκ(s− t)e−Ã(t,s)−(1−b)Bκ(s−t)r ds.

Hence, as long as the interest rate sensitivity of the expected income growth rate b is below 1, human
wealth is decreasing in the interest rate level and is thus similar to an investment in the bond. If
the expected income growth rate is strongly pro-cyclical, i.e. b > 1, human wealth is increasing in the
interest rate corresponding to an implicit short position in the bond, which is corrected for by a positive
explicit demand for the bond. For further discussion of this point, see Munk and Sørensen (2008).
The time-dependence of human wealth, as reflected by the function F (t, r), induces a non-constant
optimal stock portfolio weight. To be consistent with the popular advice of having “more stocks when
you have a long investment horizon”, we need ξS > γσY ζS , which obviously depends on the level of
risk aversion and the income volatility, but also on the market prices of risk and numerous correlations
embedded in ξS and ζS .

The last term in (3.3) hedges against variations in future investment opportunities which are
summarized by the short-term interest rate and thus hedgeable through a bond investment. At least in
the two cases below with a closed-form solution for g(t, r), we find gr/g < 0 so that the intertemporal
hedge demand for the bond is positive consistent with intuition and the existing literature. Finally, the
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last term in (3.4) represents a hedge against variations in the house price. When house prices increase,
the costs of future housing increase. To compensate for that, the individual can invest more in houses
so that an increase in house prices will also increase her wealth. Consistent with that interpretation,
gh/g is positive in the closed-form solutions below. An investment in a house is a hedge against future
costs of housing consumption.

The optimal consumption rate and the optimal units of housing consumed are given by

c = η
βν

1− β
hk(x+ yF )g−

γ(ψ−1)
1−γ , (3.5)

ϕC = ηhk−1(x+ yF )g−
γ(ψ−1)

1−γ , (3.6)

where k = (1− ψ) (1 − β) and η = (δβ)ψ
(
βν

1−β

)k−1

. This implies that the optimal total expenditure
on the two consumption goods is

c+ νhϕC = δψββ(ψ−1)

(
ν

1− β

)k
hk(x+ yF )g−

γ(ψ−1)
1−γ .

The individual distributes the total consumption expenditure to perishable consumption and housing
consumption according to the relative weights β and 1−β of the goods in the preference specification.
The optimal spending on each good is a time- and state-dependent fraction of the total wealth x+yF .

It can be shown that (substitute the above expression for total consumption into (B.15)), using the
optimal strategies, the dynamics of total wealth Wt = Xt + YtF (t, rt) will be

dWt

Wt
=
(
rt +

1
γ
λ̃>λ̃− σrλB

gr
g

+ σHλ
′
HHt

gh
g
− ην

1− β
Hk
t g
− γ(ψ−1)

1−γ

)
dt

+
1
γ
λ̃> dWt −

gr
g
σr dWrt +Ht

gh
g
σH~ρ

>
H dWt,

(3.7)

where

λ̃> =

(
λB ,

λS − ρSBλB√
1− ρ2

SB

,
1
ρ̂H

[
λ′H −

ρSH − ρSBρHB
1− ρ2

SB

λS −
ρHB − ρSHρSB

1− ρ2
SB

λB

])

is the vector of market prices of risk associated with the standard Brownian motionW = (Wr,WS ,WH)>,
and ~ρH = (ρHB , ρ̂HS , ρ̂H)>. The term 1

γ λ̃
> dWt reflects the optimal risk taking in a setting with

constant investment opportunities and the term 1
γ λ̃

>λ̃ in the drift gives the compensation in terms
of excess expected returns for that risk. The shock terms − grg σr dWrt and Ht

gh
g σH~ρ

>
H dWt are the

optimal adjustments of the exposure to interest rate risk and house price risk, respectively, due to in-
tertemporal hedging of shifts in investment opportunities, again with appropriate compensation in the
drift of wealth. The ratios gr/g and gh/g involve the risk aversion and the elasticity of intertemporal
substitution (EIS) of the individual.

The specification of the function g(t, r, h) depends on the EIS parameter ψ. When ψ is different
from 1, g has to satisfy the non-linear PDE (B.22). However, it is apparently only possible to solve
that PDE in closed form in the special case of power utility where ψ = 1/γ since the PDE is then
linear. We present and discuss that solution next. When ψ = 1 and ε > 0, so that the individual
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has some utility from terminal wealth, g has to satisfy the PDE (B.31). A closed-form solution and
the resulting optimal strategies in that case are discussed in Section 3.2. For the case where the EIS
parameter ψ is different from 1 and 1/γ, we present in Section 3.3 a closed-form approximate solution
following the approach of Chacko and Viceira (2005).

3.1 Power utility

With time-additive power utility so that ψ = 1/γ, the optimal consumption strategies simplify to

c = η
βν

1− β
hk
x+ yF

g
, (3.8)

ϕC = ηhk−1x+ yF

g
. (3.9)

The next theorem states the g function and summarizes the full solution to the problem for power
utility.

Theorem 3.1 (Solution, power utility) For the case where ψ = 1/γ, the value function is given
by (3.1), where F is defined in (2.10) and

g(t, r, h) = ε
1
γ e−Dγ(T−t)− γ−1

γ Bκ(T−t)r +
ην

1− β
hk
∫ T

t

e−d1(u−t)−β γ−1
γ Bκ(u−t)r du, (3.10)

where

Dγ(τ) =
(
δ

γ
+
γ − 1
2γ2

λ̃>λ̃

)
τ +

(
r̄ +

γ − 1
γ

σrλB
κ

)
γ − 1
γ

(τ − Bκ(τ))

− 1
2
σ2
r

κ2

(
γ − 1
γ

)2 (
τ − Bκ(τ)− κ

2
Bκ(τ)2

)
, (3.11)

d1(τ) =
(
δ

γ
+
γ − 1
2γ2

λ̃>λ̃− k
(

1
γ
σHλ

′
H − ν +

1
2

(k − 1)σ2
H

))
τ

+ β

(
r̄ +

γ − 1
γ

σrλB
κ
− kσrσHρHB

κ

)
γ − 1
γ

(τ − Bκ(τ))

− 1
2
β2σ2

r

κ2

(
γ − 1
γ

)2 (
τ − Bκ(τ)− κ

2
Bκ(τ)2

)
, (3.12)

with λ̃>λ̃ = λBξB + λSξS + λ′HξI . The optimal controls are given by (3.2)-(3.4) and (3.8)-(3.9).

In the following, we will discuss and illustrate the optimal strategies. Figure 1 shows how the ratio
of optimal perishable consumption to total wealth, c/(x+ yF (t, r)) = ηβν

1−βh
k/g(t, r, h), varies with the

length of the remaining life-time. The benchmark parameters in Table 1 are applied together with
an initial unit house price of h = 200 (USD per square foot) and an initial short-term interest rate
of r = r̄ = 0.02. The four curves differ with respect to the value of ε, which indicates the relative
preference weighting of terminal wealth and intermediate consumption: a terminal wealth of X will
roughly contribute to life-time utility ε/δ times as much as a consumption of X in the final year,
cf. footnote 7. For ε = 0, the consumption to wealth ratio goes to infinity as the time horizon goes
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to 0 since in that case the individual will want to spend everything before the end. The individual
will annually spend around 4-5% of total wealth on perishable consumption goods when young, almost
independently of the value of ε. This propensity to consume out of total wealth will then gradually
increase as the individual grows older. The consumption-wealth ratio is only little sensitive to the
interest rate level and the house price level. The optimal spending on housing consumption equals
the perishable consumption multiplied by the factor (1 − β)/β, which is 0.25 with our benchmark
parameters.

[Figure 1 about here.]

Next, we derive the expected consumption over the life-cycle. Assume for simplicity that the
individual has no utility from terminal wealth, i.e. ε = 0. In this case g(t, r, h) = ην

1−βh
kG(t, r), where

G(t, r) =
∫ T
t
e−d1(u−t)−β(1− 1

γ )Bκ(u−t)r du, and the optimal spending on consumption goods will be

ct = β
Wt

G(t, rt)
, ϕCtνHt = (1− β)

Wt

G(t, rt)
, (3.13)

and, in particular, independent of the current house price. The first-order derivatives of g that enter
the optimal portfolio weights are then

gh
g

=
k

h
= h−1(1− β)

γ − 1
γ

,
gr
g

= −β̂D(t, r),

where β̂ = β(γ − 1)/γ and D(t, r) =
(∫ T

t
Bκ(u− t)e−d1(u−t)−β̂Bκ(u−t)r du

)
/G(t, r). The dynamics of

total wealth in (3.7) simplifies to

dWt

Wt
=
(
rt +

1
γ
λ̃>λ̃+ σrλBβ̂D(t, rt) + kσHλ

′
H −G(t, rt)−1

)
dt

+
1
γ
λ̃> dWt + β̂σrD(t, rt) dWrt + kσH~ρ

>
H dWt.

(3.14)

In Appendix B.4 we compute the time 0 expectation of Wt/G(t, rt), which leads to the expected
spending on the two goods over the life-cycle. Appendix B.4 also contains similar results for ε > 0.

Figure 2 illustrates the expected consumption pattern over the life-cycle. In addition to the bench-
mark parameters, we have assumed an initial tangible wealth of X0 = 20, 000 and an initial income
rate of Y0 = 20, 000. The figure shows the expected expenditure on each of the two consumption goods
on the left scale. The expected perishable consumption grows from around 13, 000 to 36, 000 (USD per
year) over the assumed 40 year horizon. The expected expenditure on housing consumption is again
just a (1− β)/β multiple of the expected perishable consumption. The expectation of the house price
on the left-hand side is8

E0[Ht] = H0 exp
{

(r0 + λHσH − rimp)t+
(
r̄ − r0 +

σ2
r

2κ2
− σrσHρHB

κ

)
(t− Bκ(t))− σ2

r

4κ
Bκ(t)2

}
.

(3.15)

8The house price dynamics (2.6) implies that Ht = H0 exp{
∫ t
0 ru du + (λHσH − rimp − 1

2
σ2
H)t +

∫ t
0 σH~ρ

>
H dWu}.

Substituting (A.9) and taking expectations, we find the expected house price stated in the text.
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Now we can estimate the expected number of housing units consumed as (1−β)E0[Wt/G(t, rt)]/νE0[Ht],
cf. (3.13). This is illustrated by the blue curve using the right scale in Figure 2. The expected number
of housing units consumed grows from about 300 to 685 over the 40 year life-time. Recall that a hous-
ing unit can be thought to represent one square foot of housing (of “average quality”) so the above
numbers (square feet per person) are of a reasonable magnitude. Finally note that for ε > 0 a little
consumption over the life-cycle is given up to generate positive terminal wealth.

[Figure 2 about here.]

Concerning the optimal investments, note that gh/g > 0 so that the risk of higher future housing
costs is hedged by an increased investment in houses, and gr/g < 0 so that the intertemporal hedging
of shifts in investment opportunities leads to a positive bond demand. Figure 3 shows how the optimal
investments as fractions of total wealth vary with the human wealth to total wealth ratio. The fraction
of total wealth invested in the stock consists of a constant speculative position of 23.0% with an
adjustment for labor income which increases linearly from 0 to 4.4% with the relative importance of
human wealth; since the auxiliary parameter ζS is negative, the income-motivated adjustment of the
stock position is positive.

The fraction of total wealth invested in the bond consists of four terms: (i) a constant speculative
position of -42.3%, (ii) an adjustment due to the instantaneous correlation of income with financial
assets, which increases linearly from 0 to 65.8% with the human wealth to total wealth ratio, (iii) an
adjustment due to the dependence of human wealth on the interest rate varying from 0 to -35.8% as
the human/total wealth ratio goes from 0 to 1, and (iv) an intertemporal hedge against interest rate
risk which amounts to 47.6% no matter how the total wealth is decomposed.9 The total bond demand
varies from 5.3% to 35.4% as the human/total wealth is varied from 0 to 1. Here, the component (iii)
depends on Fr/F , the relative sensitivity of human wealth with respect to the interest rate. The
numbers just reported and used to generate the figure assume 20 years to retirement in which case
Fr/F ≈ −1.8, but the ratio goes to 0 as retirement is approaching which will slightly increase the
fraction of total wealth invested in the bond. The component (iv) depends on the ratio gr/g, which is
approximately -2.3 for a remaining life-time of 40 years. The ratio approaches zero relatively slowly
as time passes, which leads to a lower hedge-motivated bond position.

The fraction of total wealth invested in houses (physically or financially) consists of a constant
speculative demand of 86%, an income-adjustment term varying from 0 to approximately -100% as the
human/total wealth ratio goes from 0 to 1, and an intertemporal hedge against house price risk equal
to 15% independent of wealth composition. The large negative income-adjustment is due to the large
positive correlation between labor income and house prices. The total investment in houses varies from
roughly 100% with no human wealth to roughly 0% with only human wealth.

[Figure 3 about here.]

9The hedge demands reported for the bond here and for the house investment below are computed assuming no utility

of terminal wealth, but they are only little sensitive to the value of ε.
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For a fixed ratio of human wealth to total wealth and ε = 0, the fractions of total wealth invested
in the stock and houses are independent of the remaining lifetime, whereas the fraction invested in the
bond varies (quite slowly) due to the time-dependence of the ratios Fr/F and gr/g. The main source
of variations in portfolio weights over the life-cycle is that the human/total wealth ratio will decrease
to zero as retirement is approaching. According to Figure 3, the individual should therefore through
his life increase the fraction of total wealth invested in the house and decrease the fraction of total
wealth invested in the stock and in the bond.

Figure 4 shows how the expected total wealth, human wealth, and financial wealth vary over the
life-cycle again assuming an initial financial wealth of X0 = 20, 000 and an initial labor income rate
of Y0 = 20, 000. The graph is produced using an approximation of the expected total wealth E0[Wt]
as given in (B.27) and the approximation F (t, r̄)E0[Yt] of expected human capital, where the expected
income is given by (2.11) in Theorem 2.1. The expected financial wealth is computed residually. When
ε is assumed to be zero, all wealth is optimally consumed before the end. Human wealth dominates
initially but drops to zero at retirement of course. Financial wealth is hump-shaped since saving is
necessary when working in order to finance consumption during retirement.

[Figure 4 about here.]

Figure 5 illustrates how the investments in the stock, the bond, and housing units (physical or
through REITs) are expected to evolve over the life of the investor. Early in life human wealth is the
major part of total wealth and, in accordance with Figure 3, it is optimal to invest close to nothing
in houses and substantial amounts in stocks and long-term bonds, financed in part by short-term
borrowing. Due to the large positive correlation between house prices and labor income, the human
wealth crowds out housing investments. As human wealth decreases, the housing investment will
increase. This trend continues until retirement. At and after retirement, the housing investment is
dominated by the large speculative demand which will fall towards zero as the investor consumes out
of wealth. The expected stock investment falls steadily with age in line with the standard “more stocks
when you are young” advice. The bond demand is more sensitive to the composition of wealth than the
stock demand as seen from Figure 3, and this is reflected by variation of the expected bond investment
over the life-cycle. Note that we assume that at any date the individual trades in a zero-coupon bond
maturing 20 years later. If we had chosen a different bond (or another interest rate dependent asset,
e.g. a bond future), the optimal investment in that asset would have been a multiple of the optimal
investment in the 20-year bond in order to obtain the same overall exposure to the shocks to the
short-term interest rate.

[Figure 5 about here.]
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3.2 Unit EIS

For the case where the EIS parameter ψ equals 1, the optimal consumption strategies in (3.5)-(3.6)
simplify to

c = δβ(x+ yF ), (3.16)

ϕC =
δ(1− β)

ν

x+ yF

h
. (3.17)

The consumption share of total wealth is now constant over time in contrast to the case of power utility.
The age of the individual does not affect the consumption strategy so in a sense such an individual
does not take a life-cycle perspective. With our benchmark parameters, the individual will optimally
spend 2.4% of total wealth on perishable consumption and 0.6% on housing consumption. The next
theorem states the g function and summarizes the full solution to the problem for ψ = 1.

Theorem 3.2 (Solution, unit EIS) For the case where ψ = 1 and ε > 0 the value function is given
by (3.1), where F is defined in (2.10) and

g(t, r, h) = ε1/γhD2(T−t)e−D0(T−t)−D1(T−t)r, (3.18)

with

D2(τ) = k̂δBδ(τ), (3.19)

D1(τ) =

[
δk̂

κ
+

k̂

1− β

]
Bδ+κ(τ)− δk̂

κ
Bδ(τ), (3.20)

D0(τ) = KδBδ(τ) +Kδ+κBδ+κ(τ) +K2δB2δ(τ) +K2δ+κB2δ+κ(τ)

+K2(δ+κ)B2(δ+κ)(τ) +Kz(δBδ(τ)− 1)τ, (3.21)

where k̂ = (1 − 1
γ )(1 − β) and the coefficients in the expression for D0 are given by (B.32)–(B.37)

in the appendix. The optimal controls are given by (3.2), (3.3) with gr
g = −D1(T − t), (3.4) with

gh
g = D2(T−t)

h , and (3.16)-(3.17).

From (3.7), we find that the dynamics of optimally managed total wealth is now

dWt

Wt
=
(
rt +

1
γ
λ̃>λ̃+ σrλBD1(T − t) + σHλHD2(T − t)− δ

)
dt

+
1
γ
λ̃> dWt + σrD1(T − t) dWrt + σHD2(T − t)~ρ>

H dWt.

(3.22)

Optimally managed total wealth is lognormally distributed with an expectation given by (B.38) in
Appendix B.5.

It can be shown that (see Appendix B) D1(τ) ≥ 0 and, consequently, gr/g < 0 so that the
intertemporal hedge demand for bonds is positive. D2(τ) ≥ 0 and thus gh/g > 0 so that the risk of
higher future housing costs is hedged by an increased investment in houses. In contrast to the case of
power utility, the term hedging house price risk is time-dependent. Otherwise, the optimal investment
strategies are qualitatively and quantitatively as for power utility.
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3.3 An approximate solution for other values of the EIS parameter

When the EIS parameter ψ is different from 1 and 1/γ, the PDE (B.22) for g(t, r, h) contains the term
hkg

γψ−1
γ−1 , where the last exponent is different from 0 and 1, so that the PDE has no known closed-

form solution. However, following an idea originally put forward by Campbell (1993) in a discrete-time
setting and adapted to a continuous-time setting by Chacko and Viceira (2005), it is possible to obtain a
closed-form approximate solution. A Taylor approximation of z 7→ ez around ẑ gives ez ≈ eẑ(1+z− ẑ).
Applying that to z = k lnHt + γ(ψ−1)

γ−1 ln gt, where gt = g(t, rt, Ht), implies that

Hk
t g

γψ−1
γ−1
t = gtH

k
t g

γ(ψ−1)
γ−1

t = gte
k lnHt+

γ(ψ−1)
γ−1 ln gt

≈ gtek ln ĥ(t)+
γ(ψ−1)
γ−1 ln ĝ(t)

(
1 + k[lnHt − ln ĥ(t)] +

γ(ψ − 1)
γ − 1

[ln gt − ln ĝ(t)]
)

= gtĥ(t)kĝ(t)
γ(ψ−1)
γ−1

(
1 + k[lnHt − ln ĥ(t)] +

γ(ψ − 1)
γ − 1

[ln gt − ln ĝ(t)]
)
.

(3.23)

Using that approximation in the PDE (B.22), it will closely resemble the PDE for the case ψ = 1, and
therefore have a solution of a similar form; see Appendix B.6 for details.

Theorem 3.3 (Approximate solution, EIS different from 1 and 1/γ) For the case where ψ 6∈
{1, 1/γ} and ε > 0 the value function is given by (3.1), where F is defined in (2.10) and g is approxi-
mated by

g(t, r, h) = ε1/γhD̂2(t,T )e−D̂0(t,T )−D̂1(t,T )r, (3.24)

with

D̂2(t, T ) = ην
γ − 1
γ

∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsΘ(u) du, (3.25)

D̂1(t, T ) =
γ − 1
γ

∫ T

t

e−κ(u−t)− ην
1−β

∫ u
t

Θ(s) ds du− ην γ − 1
γ

∫ T

t

Θ(u)Bκ(u− t)e−
ην

1−β
∫ u
t

Θ(s) ds du,

(3.26)

where Θ(t) = ĥ(t)kĝ(t)
γ(ψ−1)
γ−1 . The function D̂0(t, T ) is given in (B.39).

The approximation is most precise when k lnHt + γ(ψ−1)
γ−1 ln gt is close to k ln ĥ(t) + γ(ψ−1)

γ−1 ln ĝ(t).
A promising choice is to let ln ĥ(t) = E[lnHt] = lnH0 +(r0 +λHσH−rimp− 1

2σ
2
H)t+(r̄−r0)(t−Bκ(t)),

and to determine ĝ(t) so that

ln ĝ(t) = E[ln g(t, rt, Ht)] = ln ε1/γ − D̂0(t, T )− D̂1(t, T )E[rt] + D̂2(t, T )E[lnHt].

Since D̂0(t, T ), D̂1(t, T ), and D̂2(t, T ) depend on all ĝ(u) for u ∈ [t, T ], this involves a recursive
procedure moving backwards from T .

Substituting the approximation (3.24) into the Equations (3.2)–(3.4) and (3.5)–(3.6) gives an ap-
proximation to the optimal investment and consumption strategy for general Epstein-Zin preferences.
Note that the consumption-wealth ratios will depend on the age of the individual via the g-function
so it is only in the special case of ψ = 1 considered above that the individual does not take a life-cycle
perspective.
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4 Robustness to inflexible housing and borrowing constraints

The model of Section 2 was designed with the purpose of allowing for closed-form solutions for the
optimal housing, consumption, and investment strategy as found in Section 3. Admittedly, the realism
of some of the modeling assumptions are questionable. First, until now we have assumed that the
individual was able to adjust the housing consumption and investment positions continuously over
time. Clearly, it is practically inefficient to adjust the physical ownership of housing units continuously
due to explicit and implicit transaction costs. Continuous adjustment of the investment in REITs may
be a reasonable approximation to real life, but if REITs linked to the house prices of interest to the
investor are not traded, the individual cannot continuously adjust the housing investment position. If
changes in the renting position are costly, continuous adjustment of the housing consumption position
will also be inefficient. Second, we have assumed that the investor was able to borrow against future
labor income. The optimal unconstrained consumption and investment strategy will lead to situations
where the tangible wealth (financial wealth and the value of the housing stock owned) will be negative
but the human wealth more than outweighs that so that total wealth is positive. Such a strategy may
not be feasible in real life due to moral hazard and asymmetric information issues in the valuation of
human wealth.

In this section we consider variations of the basic problem that relaxes these two assumptions. We
find strategies that either (a) involves only infrequent adjustments of the housing consumption and/or
the investment position in housing, (b) ensures non-negative tangible wealth at all points in time, or
(c) do both. Clearly, the expected utility generated by any such strategy, denoted by Ĵ(t, x, r, h, y),
is smaller than the expected utility following the optimal unconstrained strategy, i.e. J(t, x, r, h, y)
from Theorem 3.1. We measure the economic importance of the imposed constraint by the percentage
decrease in initial financial wealth and labor income (and thus in initial total wealth) necessary to
bring the optimal expected utility down to the expected utility obtained with limited flexibility:

J (t, x[1− `], r, h, y[1− `]) = Ĵ(t, x, r, h, y). (4.1)

We can interpret ` as the percentage wealth loss the individual would incur if he were restricted to
the constrained strategy or the percentage of wealth the individual is willing to sacrifice to avoid the
constraints. Due to the form of the value function in (3.1), we get

` = 1−

(
Ĵ(t, x, r, h, y)
J(t, x, r, h, y)

) 1
1−γ

. (4.2)

As we will show below, the wealth-equivalent losses associated with the strategies featuring inflexible
housing and/or no borrowing are small, which confirms the relevance of our closed-form solutions in
realistic settings.

4.1 Constant housing consumption: an explicit solution

First, we discuss a case where we can find an explicit solution to the problem with limited flexibility.
We consider a power utility investor (ψ = 1/γ) who gets no utility from terminal wealth (ε = 0) and
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is restricted to a fixed consumption of housing services given by the constant ϕ̄C . Due to (2.13) we
can assume that the individual satisfies her housing consumption through renting and does not have
direct ownership of housing, i.e. ϕot ≡ 0. The individual can then obtain the desired exposure to house
price risk by investing in REITs as captured by ϕRt. Alternatively, we can ignore REITs and let the
individual continuously adjust the direct ownership of houses, but then the housing units rented would
have to be adjusted continuously so that the sum ϕrt + ϕot equals the deterministic total housing
consumption ϕ̄C . In Appendix C we demonstrate the following result (the superscript “dc” indicates
deterministic consumption):

Theorem 4.1 Assume ψ = 1/γ, ε = 0, and a fixed housing consumption ϕ̄C . The value function is
given by

Jdc(t, x, r, h, y) =
1

1− γ̃
gdc(t, r)γ̃(x+ yF (t, r)− νhF̂ (t))1−γ̃ , (4.3)

where γ̃ = 1− β(1− γ) ∈ (1, γ), F is defined in (2.10),

F̂ (t) = ϕ̄CBν(T − t), (4.4)

gdc(t, r) = (δβ)
1
γ̃ ϕ̄

1− γγ̃
C

∫ T

t

e−Dγ̃(u−t)− γ̃−1
γ̃ Bκ(u−t)r du, (4.5)

and Dγ̃ is given by (3.11) with γ̃ replacing γ. The optimal fractions of tangible wealth invested in the
stock and the bond are

πS =
1
γ̃

ξS
σS

x+ yF − νhF̂
x

− σY ζS
σS

yF

x
, (4.6)

πB =
1
γ̃

ξB
σB

x+ yF − νhF̂
x

−
(
σY ζB
σB

yF

x
− σr
σB

yFr
x

)
− σr
σB

gdc
r

gdc

x+ yF − νhF̂
x

, (4.7)

respectively, while the optimal number of housing units invested in is

ϕI =
1
γ̃

ξI
σH

x+ yF − νhF̂
h

− σY ζI
σH

yF

h
+ νF̂ (4.8)

and the optimal consumption of the perishable good is

c =

(∫ T

t

e−Dγ̃(u−t)− γ̃−1
γ̃ Bκ(u−t)r du

)−1 (
x+ yF − νhF̂

)
. (4.9)

Relative to the form of the value function in Section 3 there are three differences. First, the relevant
g-function depends on r, which captures financial investment opportunities, but not on the relative
price of consumption goods h since the individual cannot control the consumption of housing. Second,
note that the present value of all future renting expenses is given by the risk-neutral expectation10

EQ
t

[∫ T

t

e−
∫ s
t
ru duϕ̄CνHs ds

]
= νHtϕ̄C

∫ T

t

EQ
t

[
e−

∫ s
t
ru du

Hs

Ht

]
ds

= νHtϕ̄C

∫ T

t

e−ν(s−t) ds = νHtF̂ (t).

(4.10)

10The risk-neutral drift of house prices is the real-world drift rt +λHσH − rimp minus the risk premium λ′HσH , which

equals rt − ν.
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The total initial wealth at the disposal of the individual is thus the initial tangible wealth plus the
human capital minus the present value of future rents, x+ yF (t, r)− νhF̂ (t). Third, compared to the
separation (3.1) in the previous section, γ̃ has replaced γ in the exponents of g and the total present
wealth.11

Compared to the optimal investment strategies derived in Section 3, the smaller effective relative
risk aversion and the smaller “free wealth” work in opposite directions, and the net effect depends on
precise parameter values. The adjustment for the risk exposure of human wealth is the same as before.
Concerning the demand for housing investment, the last term in (4.8) ensures that when the present
value of future renting costs increases, the tangible wealth increases by at least the same amount.
Hence, the individual will always have sufficient wealth to pay the rent. The optimal perishable
consumption is a time- and state-dependent fraction of the “free wealth”, a fraction that depends on
the constant level of housing consumption. The perishable consumption is decreasing in the housing
consumption level as expected.

Theorem 4.1 gives the value function for any constant level of housing consumption, ϕ̄C . We can
perform an initial (time t = 0) optimization over ϕ̄C to find the optimal constant consumption of
housing services. The first-order condition for the maximization of J(0, x, r, h, y) with respect to ϕC
implies

γ̃

1− γ̃
∂gdc(0, r)
∂ϕ̄C

(x+ yF (0, r)) = νhBν(T )
(
gdc(0, r) +

γ̃

1− γ̃
∂gdc(0, r)
∂ϕ̄C

ϕ̄C

)
, (4.11)

and since ∂gdc(0,r)
∂ϕ̄C

ϕ̄C = (1− γ/γ̃)gdc(0, r), we get an optimal housing consumption of

ϕ̄C = (1− β)
X0 + Y0F (0, r0)
νH0Bν(T )

, (4.12)

i.e. so that initially the expenditure on house consumption is a fraction (1− β)/Bν(T ) of total wealth.
With our benchmark parameters and X0 = Y0 = 20, 000, this gives ϕ̄C ≈ 339 corresponding initially
to 1.24% of total wealth.

The wealth-equivalent of the utility loss an individual suffers by having to stick to a constant
consumption of housing is given by (4.2) with Ĵ replaced by Jdc. With the benchmark parameters
the loss from applying the optimal constant level of housing consumption instead of the optimal
fully flexible housing consumption strategy is 0.66% of total initial wealth, i.e. an individual with
full flexibility in housing consumption decisions is willing to give up only 0.66% of his total wealth
in order to avoid being restricted to consuming the same level of housing services across time and
states. Figure 6 illustrates how the utility loss varies with the chosen fixed housing consumption. Note
that the curve is quite flat around the optimum and since the expected units of housing consumed

11The intuition is as follows: In the aggregator capturing the preferences of the individual, the consumption of the two

goods enter via the term z
1− 1

ψ =
(
cβϕ1−β

C

)1− 1
ψ

=
(
cβϕ1−β

C

) 1−γ
θ

(focusing on the case ψ 6= 1). When we can freely

choose c and ϕC , γ will be the effective relative risk aversion, and is therefore the relevant parameter in the exponents

of the separation (3.1). Now the assumption is that the individual can only choose how much of the perishable good

to consume, and since z
1− 1

ψ =
(
cβϕ̄1−β

C

) 1−γ
θ

= ϕ̄
(1−β)(1−γ)

θ
C c

β(1−γ)
θ = ϕ̄

(1−β)(1−γ)
θ

C c
1−γ̃
θ , we can see that γ̃ now plays

the same role as γ in the preceding section, i.e. γ̃ is the effective relative risk aversion.
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according to Figure 2 does not fluctuate wildly over life, it should be expected that little can be gained
by replacing the optimal constant ϕ̄C by any deterministic consumption schedule. More surprisingly,
the very small wealth loss associated with a constant housing consumption shows that little can be
gained by letting the consumption of housing services be state-dependent. The individual can almost
completely compensate for the inflexibility in housing consumption via appropriate adjustments of the
perishable consumption and the investments in stocks, bonds, and REITs.

[Figure 6 about here.]

4.2 Infrequent housing adjustments: Monte-Carlo results

Next, we implement a Monte Carlo simulation procedure to investigate the welfare loss suffered by an
individual restricted to infrequent adjustments of (a) housing consumption ϕCt, (b) housing investment
ϕIt, or (c) both ϕCt and ϕIt. We experiment with adjustment frequencies of 2 and 5 years. All other
controls are adjusted at every time step used in the Monte Carlo simulation of the state variables,
i.e. 250 times a year (roughly once per trading day).12 Whenever a control variable is adjusted, it is
reset to the optimal value stated in Theorem 3.1 using the simulated values of wealth, the interest
rate, the house price, and the labor income rate. For each simulation path we compute the life-time
utility of consumption and terminal wealth and approximate expected utility by averaging over 10,000
paths. The associated welfare loss is then computed from (4.2).13

Table 2 reports the wealth-equivalent loss for both adjustment frequencies assuming the benchmark
parameter values and ε = 0.3.14 We see that the loss is very small (below 1.2%) even when both
housing consumption and housing investments are reset only every 2 or 5 years. Naturally the loss
increases with the period between adjustments. In particular, we see that it has very little value to
be able to adjust the housing consumption position frequently, in line with the results of Section 4.1.
Frequent adjustments of the housing investment position are more valuable, which indicates that a
well-functioning market for REITs or other financial contracts facilitating the hedging of house price
risks can have a non-negligible, although relatively moderate, welfare effect. The small losses due to
infrequent housing transactions also suggest that transaction costs will be of minor importance to the
welfare of the individual in the sense that an investor resetting his housing positions (and paying the
associated transaction costs) infrequently to the positions derived in Theorem 3.1 will obtain almost
the same utility as if he could continuously adjust the housing positions at zero transaction costs.

[Table 2 about here.]

12The results are similar for 12 time steps per year corresponding to monthly rebalancing.
13For the purpose of computing the loss, we also compute the expected utility generated by the optimal unconstrained

strategy by Monte Carlo simulation using the same set of random numbers as was used to compute the utility of the

constrained strategy. This will reduce any bias in the loss due to the simulation procedure.
14The losses are slightly higher for ε = 0.03.
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4.3 Borrowing constraints

The optimal unconstrained consumption and investment strategy derived in Section 3 ensures that total
wealth stays non-negative, but there will be situations in which tangible wealth is negative so that the
individual is assumed to borrow against future income. We will transform the housing, consumption,
and investment strategy shown to be optimal without a borrowing constraint into a strategy that
will keep tangible wealth positive. For concreteness, assume time-additive power utility. As long as
the tangible wealth Xt is above some (fairly small) number X, we follow the optimal unconstrained
strategy stated in the Equations (3.2)–(3.4) and (3.8)–(3.9). Whenever Xt < X, we ignore all the
income terms in the investment strategy (i.e. put F = 0 in (3.2)–(3.4)). Following this transformed
strategy, the tangible wealth will never drop below zero.15

[Table 3 about here.]

We evaluate the transformed strategy by Monte Carlo simulation as explained in the preceding
subsection. We assume again that initial wealth and initial annual income both equal 20,000. We set
the critical wealth level X to 6,000. The first row of Table 3 shows that following our transformed
strategy ensuring positive tangible wealth (updating the strategy “almost-continuously”, i.e. at the
simulation frequency) instead of the optimal unconstrained strategy leads to a wealth-equivalent loss
of only 0.8%. Clearly this is an upper bound on the loss incurred by following the transformed
strategy compared to the optimal constrained strategy. Hence, our transformation of the closed-form
solution must be near-optimal in the constrained setting, emphasizing the relevance of our closed-form
solution in more realistic settings. The remaining part of the table shows that limiting the investor
to adjustments of the housing consumption and/or investment positions only every 2 or 5 years has a
small impact on his expected utility, also in the presence of borrowing constraints.

5 Conclusion

We have provided explicit solutions to quite complicated life-cycle utility maximization problems having
many important and realistic features. The explicit consumption and investment strategies are very
simple and intuitive and have been discussed and illustrated in the paper. For a calibrated version
of the model we find, among other things, that the fairly high correlation between labor income and
house prices imply much larger life-cycle variations in the desired exposure to house price risks than in
the exposure to the stock and bond markets. While our model involves continuous adjustments of the

15With truly continuous rebalancing, the critical wealth level X could be put equal to zero, but due to the simulation

discretization a positive X is needed to make sure that wealth does not turn negative over the next time interval in the

simulation. Strictly speaking, even when the investment strategy is modified as explained, tangible wealth could become

negative if the total consumption expenditures would exceed current income. If that should happen, the consumption

would have to be cut back to ensure that tangible wealth stays non-negative. However that never happened in our

simulations. This can be explained as follows. Violations of the imposed tangible wealth constraint will typically occur

early in life where human wealth is large and the individual still has not built up tangible wealth for consumption after

retirement. But early in life the optimal consumption expenditures are below current income.
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consumption of housing services and the exposure of wealth to house price risk, we have demonstrated
that the derived strategies are still very useful if the housing positions are only reset infrequently and
borrowing constraints are imposed. Our results suggest that markets for REITs or other financial
contracts facilitating the hedging of house price risks will lead to moderate improvements of welfare.

25



A Human capital: Proof of Theorem 2.1

In a complete market the human capital is equivalent to a financial asset paying a continuous dividend
equal to the income rate. In absence of arbitrage the human capital function L(t, r, y) will therefore
satisfy the partial differential equation (PDE)

∂L

∂t
+µQ

r (r)Lr +
1
2
σr(r)2Lrr + yµQ

Y (r, t)Ly +
1
2
y2σY (r, t)2Lyy − ρyBσr(r)σY (r, t)yLry + y = rL (A.1)

for all (r, y) and t < T̃ with L(T̃ , r, y) = 0.
The process W = (Wr,WS ,WH)> is a 3-dimensional standard Brownian motion under the real-

world probability measure. Let λ = (λB , λS , λ′H)> and

Σ =


1 0 0

ρSB
√

1− ρ2
SB 0

ρHB ρ̂HS ρ̂H

 . (A.2)

Under the risk-neutral measure, the process WQ = (WQ
r ,W

Q
S ,W

Q
H)> defined by initial value zero and

dWQ
t = dWt + Σ−1λ dt

is then a standard Brownian motion. Letting ~ρY = (ρY B , ρ̂Y S , ρ̂Y )>, the risk-neutral income dynamics
is thus

dYt = Yt [µY (rt, t) dt+ σY (rt, t)~ρ>
Y dWt]

= Yt

[(
µY (rt, t)− σY (rt, t)~ρ>

Y Σ−1λ
)
dt+ σY (rt, t)~ρ> dWQ

t

]
= Yt

[
(µY (rt, t)− σY (rt, t)λY ) dt+ σY (rt, t)~ρ>

Y dW
Q
t

]
,

where

λY = ζBλB + ζSλS + ζIλ
′
H , (A.3)

ζB = ρY B − ρSB
ρ̂H ρ̂Y S − ρ̂Y ρ̂HS
ρ̂H
√

1− ρ2
SB

− ρHB
ρ̂Y
ρ̂H

, (A.4)

ζS =
ρ̂H ρ̂Y S − ρ̂Y ρ̂HS
ρ̂H
√

1− ρ2
SB

, (A.5)

ζI =
ρ̂Y
ρ̂H

. (A.6)

The assumed homogeneity of the income process implies that the human capital will have the form
L(t, r, y) = yF (t, r) for some function F . Substituting this into the above PDE, we conclude that F
must satisfy

∂F

∂t
+ Fr (κ[r̄ − r] + σrλB − ρY BσrσY (t)) +

1
2
Frrσ

2
r − F (r − µY (r, t) + λY σY (t)) + 1 = 0 (A.7)

with F (T̃ , r) = 0 for all r.
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For the case where
µY (r, t) = µ̄Y (t) + br,

where µ̄Y is a deterministic function and b is a constant, and the income volatility σY (t) is a deter-
ministic function,

F (t, r) =
∫ T̃

t

EQ
t

[
e−

∫ s
t

(ru−µ̄Y (u)−bru+λY σY ) du
]

︸ ︷︷ ︸
=G(t,s,r)

ds,

where
drt = κ(r̃(t)− rt)dt− σr dWQ

rt

and r̃(t) = r̄ + (σrλB − ρY BσrσY (t))/κ. Therefore, for any given s, G(t, s, r) satisfies the PDE (A.7)
without the 1 on the left-hand side. Upon substitution into that PDE we find that a solution of the
form

G(t, s, r) = e−Ã(t,s)−B̃(t,s)r

works if the functions Ã and B̃ must satisfy

∂B̃

∂t
= κB̃ − 1 + b,

∂Ã

∂t
= −κr̃(t)B̃ + 0.5σ2

rB̃
2 + µ̄Y (t)− λY σY .

Therefore,

B̃(t, s) = (1− b)Bκ(s− t),

Ã(t, s) = (κr̄ + σrλB)
∫ s

t

B̃(u, s) du− ρY Bσr
∫ s

t

σY (u)B̃(u, s) du

− 1
2
σ2
r

∫ s

t

B̃2(u, s) du−
∫ s

t

µ̄Y (u) du+ λY

∫ s

t

σY (u) du

= (κr̄ + σrλB)(1− b)
∫ s

t

Bκ(s− u) du− ρY Bσr(1− b)
∫ s

t

σY (u)Bκ(s− u) du

− 1
2
σ2
r(1− b)2

∫ s

t

B2
κ(s− u) du−

∫ s

t

µ̄Y (u) du+ λY

∫ s

t

σY (u) du

= (κr̄ + σrλB)(1− b)τ − Bκ(τ)
κ

− ρY Bσr(1− b)
∫ s

t

σY (u)Bκ(s− u) du

− 1
2
σ2
r(1− b)2 1

κ2
[τ − 2Bκ(τ) + B2κ(τ)]−

∫ s

t

µ̄Y (u) du+ λY

∫ s

t

σY (u) du,

where τ = s− t and we have applied some of the results in Appendix D.
The assumed income dynamics implies that

Yt = Y0 exp
{∫ t

0

µ̄Y (u) du+ b

∫ t

0

ru du−
1
2

∫ t

0

σY (u)2 du+
∫ t

0

σY (u)~ρ>
Y dWu

}
. (A.8)

The interest rate dynamics (2.1) implies that∫ t

0

ru du = r0t+ (r̄ − r0) (t− Bκ(t))−
∫ t

0

σrBκ(t− u) dWru. (A.9)
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Substituting that into the preceding equation and taking expectations, we get (2.11).
The time 0 expectation of the human capital at time t is

E0[YtF (t, rt)] = E0

[
Yt1{t≤T̃}

∫ T̃

t

e−Ã(t,s)−(1−b)Bκ(s−t)rt ds

]
.

Since F is relatively insensitive to the interest rate, F (t, rt) ≈ F (t, r̄) and the expected human capital is
approximated by F (t, r̄)E0[Yt]. However, we can also obtain an exact, but more complicated, expression
for the expected human capital by substituting (A.8) and

rt = e−κtr0 + r̄(1− e−κt)−
∫ t

0

σre
−κ(t−u) dWru

into the relation above. The future human capital is lognormally distributed and tedious computations
lead to the expected value E0[YtF (t, rt)] = F̄ (t)E0[Yt], where

F̄ (t) = 1{t≤T̃} exp
{
−b

2σ2
r

2κ2
(t− Bκ(t)) +

b2σ2
r

4κ
Bκ(t)2 + bσrρY B

∫ t

0

σY (u)Bκ(t− u) du
}

×
∫ T̃

t

exp

{∫ s

t

µ̄Y (u) du− λY
∫ s

t

σY (u) du− (1− b)r̄Bκ(s− t)− (1− b)e−κt(r0 − r̄)Bκ(s− t)

−
(
r̄ +

σrλB
κ

)
(1− b)(s− t− Bκ(s− t)) +

σ2
r

2κ2
(1− b)2(s− t− 2Bκ(s− t) + B2κ(s− t))

+
σ2
r

2
Bκ(s− t)2B2κ(t)− σr

κ
bBκ(s− t)

(
Bκ(t)− e−κ(s−t)B2κ(t)

)
+

σ2
r

2κ2
b2
(
t− Bκ(s) + Bκ(t)− κ

2
(
Bκ(s)2 − Bκ(s− t)2

))
+ σrρY B

(∫ s

t

σY (u)Bκ(s− u) du− b
∫ s

0

σY (u)Bκ(s− u) du+ Bκ(s− t)
∫ t

0

σY (u)e−κ(t−u) du

)}
ds.

(A.10)

B Proofs for fully flexible housing decisions

B.1 The HJB equation

Define the scaled controls αS = πSσSx, αB = πBσBx, and αI = ϕIσHh. Let Z = (r, Y,H)> be the
vector of state variables with drift µZ =

(
κ[r̄ − r], yµY (r, t), h(r + λHσH − rimp)

)>. Define the vectors
λ = (λB , λS , λ′H)> and α = (αB , αS , αI)>, the matrix Σ as in (A.2), and

ΣZ =


−σr 0 0

0 yσY 0

0 0 hσH




1 0 0

ρY B ρ̂Y S ρ̂Y

ρHB ρ̂HS ρ̂H

 =


−σr 0 0

yσY ρY B yσY ρ̂Y S yσY ρ̂Y

hσHρHB hσH ρ̂HS hσH ρ̂H

 .

Σ contains the correlations between the assets P = (B,S,H)>, and ΣZ contains the volatilities and
correlations of the state variables Z = (r, Y,H). Now the dynamics of the state variables and the
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wealth dynamics from (2.12) can be written compactly as

dZt = µZ(Zt) dt+ ΣZ(Zt) dWt, (B.1)

dXt =
(
rtXt + α>

t λt − ϕCtνHt − ct + 1{t<T̃}Yt
)
dt+ α>

t Σ dWt, (B.2)

where W = (Wr,Ws,WH)>.
The Hamilton-Jacobi-Bellman equation (HJB) associated with the problem can be written as

0 = L1J + L2J + L3J, (B.3)

where

L1J = max
c,ϕC

{
f
(
cβϕ1−β

C , J
)
− Jx(c+ hνϕC)

}
,

L2J = max
α

{
Jxα

>λ+
1
2
Jxxα

>ΣΣ>α+ α>ΣΣ>
ZJxz

}
,

L3J =
∂J

∂t
+ Jx

(
rx+ 1{t<T̃}y

)
+ J>

z µz +
1
2

tr (JzzΣZΣ>
Z) .

Note that the first-order conditions for c and ϕC imply that

∂f

∂z

(
cβϕ1−β

C , J
)
βcβγ−1ϕ

(1−β)γ
C = Jx,

∂f

∂z

(
cβϕ1−β

C , J
)

(1− β)cβγϕ(1−β)γ−1
C = νhJx. (B.4)

In particular, c = β
1−β νhϕC so that the relation between optimal perishable consumption and optimal

housing consumption is proportional to the relative price of the two goods with a proportionality factor
determined by the utility weights of the two goods. To proceed with the computation of L1J , below
we consider the different specifications of the aggregator separately. However, we first derive L2J and
the associated optimal α.

B.2 Computation of L2J.

The first-order condition reads

Jxλ+ JxxΣΣ>α+ ΣΣ>
ZJxz = 0

or

α = − Jx
Jxx

(ΣΣ>)−1λ− 1
Jxx

(ΣΣ>)−1ΣΣ>
ZJxz = − Jx

Jxx
(ΣΣ>)−1λ− 1

Jxx
(ΣZΣ−1)>Jxz. (B.5)

The dynamics of tangible wealth is then

dXt =
(
rtXt −

Jx
Jxx

λ̃>λ̃− λ̃>Σ>
Z

Jxz
Jxx
− [ct + νHtϕCt] + 1{t<T̃}Yt

)
dt

− Jx
Jxx

λ̃> dWt −
J>
xz

Jxx
ΣZ dWt,

(B.6)

where λ̃ = Σ−1λ. By Itô’s Lemma and (A.7),

dF (t, rt) = (−1 + F (t, rt) [rt − µY (rt, t) + λY σY (t)]− Fr(rt, t) [σrλB − ρY BσrσY ]) dt−Fr(rt, t)σr dWrt.
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The dynamics of total wealth, Wt = Xt + YtF (t, rt), now becomes

dWt =
(
rtWt −

Jx
Jxx

λ̃>λ̃− λ̃>Σ>
Z

Jxz
Jxx
− [ct + νHtϕCt] + YtF (t, rt)λY σY (t)− YtFr(t, rt)σrλB

)
dt

− Jx
Jxx

λ̃> dWt −
J>
xz

Jxx
ΣZ dWt − YtFr(t, rt)σr dWrt + YtFtσY ~ρ

>
Y dWt.

(B.7)

Substituting the optimal α back into L2J leads to

L2J = −1
2
J2
x

Jxx
λ̃>λ̃− Jx

Jxx
J>
xzΣZΣ−1λ− 1

2
1
Jxx

J>
xzΣZΣ>

ZJxz, (B.8)

where λ̃>λ̃ = λ>(ΣΣ>)−1λ. Next, we compute the relevant matrix products. Firstly, since
1 a b

a 1 c

b c 1


−1

=
1
det


1− c2 bc− a ac− b
bc− a 1− b2 ab− c
ac− b ab− c 1− a2

 ,

where det = 1 + 2abc− a2 − b2 − c2, and

ΣΣT =


1 ρSB ρHB

ρSB 1 ρSH

ρHB ρSH 1

 ,

we have

(ΣΣT )−1 =
1
det


1− ρ2

SH −ρSB,H −ρBH,S
−ρSB,H 1− ρ2

HB −ρSH,B
−ρBH,S −ρSH,B 1− ρ2

SB


where det = 1+2ρSBρHBρSH−ρ2

SB−ρ2
HB−ρ2

SH and for any three variables x, y, z we use the notation
ρxy,z = ρxy − ρxzρyz.

Secondly, disregarding the volatility matrix, Σ and ΣZ are equal except for the second row. We
are thus interested in

1 0 0

f g h

c d e




1 0 0

a b 0

c d e


−1

=


1 0 0

f − a eg−dhbe − che
eg−dh
be

h
e

0 0 1


Therefore,

ΣZΣ−1 =


−σr 0 0

0 yσY 0

0 0 hσH




1 0 0

ζB ζS ζI

0 0 1

 =


−σr 0 0

yσY ζB yσY ζS yσY ζI

0 0 hσH

 ,

where ζB , ζS , ζI were defined in (A.4)-(A.6).
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Thirdly, simple multiplications lead to

ΣZΣ>
Z =


−σr 0 0

0 yσY 0

0 0 hσH




1 ρY B ρHB

ρY B 1 ρY H

ρHB ρY H 1



−σr 0 0

0 yσY 0

0 0 hσH



=


σ2
r −ρY BσryσY −ρHBσrhσH

−ρY BσryσY y2σ2
Y ρY HyσY hσH

−ρHBσrhσH ρY HyσY hσH h2σ2
H

 .

Substitution of these matrix products into (B.5) gives

αB = − Jx
Jxx

ξB −
yJxy
Jxx

σY ζB +
Jxr
Jxx

σr, (B.9)

αS = − Jx
Jxx

ξS −
yJxy
Jxx

σY ζS , (B.10)

αI = − Jx
Jxx

ξI −
yJxy
Jxx

σY ζI −
Jxh
Jxx

hσH . (B.11)

where

ξB =
1
det

(
λB(1− ρ2

SH)− ρSB,HλS − ρBH,Sλ′H
)
, (B.12)

ξS =
1
det

(
λS(1− ρ2

BH)− ρSB,HλB − ρSH,Bλ′H
)
, (B.13)

ξI =
1
det

(
λ′H(1− ρ2

SB)− ρSH,BλS − ρBH,SλB
)
. (B.14)

Note that
λ̃>λ̃ = λ>(ΣΣ>)−1λ = λBξB + λSξS + λ′HξI .

B.3 Simplifications when J has the form in (3.1)

It turns out to be useful to express the derivatives of J in terms of J itself:

Jx =
(1− γ)J
x+ yF

, Jxx = −γ(1− γ)J
(x+ yF )2

,

Jy = (1− γ)J
F

x+ yF
, Jyy = −γ(1− γ)J

F 2

(x+ yF )2
,

Jh = γJ
gh
g
, Jhh = γ(1− γ)J

[
1

1− γ
ghh
g
−
(
gh
g

)2
]
,

Jxy = −γ(1− γ)J
F

(x+ yF )2
, Jxh = γ(1− γ)J

1
x+ yF

gh
g
,

Jhy = γ(1− γ)J
gh
g

F

x+ yF
, Jr = (1− γ)J

[
γ

1− γ
gr
g

+
yFr

x+ yF

]
,
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Jrr = (1− γ)J

[
γ

1− γ
grr
g
− γ

(
gr
g

)2

+ 2γ
gr
g

yFr
x+ yF

− γ
(

yFr
x+ yF

)2

+
yFrr
x+ yF

]
,

Jxr = γ(1− γ)J
[
gr
g

1
x+ yF

− yFr
(x+ yF )2

]
,

Jry = (1− γ)J
[
γ
gr
g

F

x+ yF
+

Fr
x+ yF

− γ yFFr
(x+ yF )2

]
,

Jrh = γ(1− γ)J
[

1
1− γ

grh
g
− grgh

g2
+

yFr
x+ yF

gh
g

]
,

∂J

∂t
= (1− γ)J

[
γ

1− γ
∂g

∂t

1
g

+
y

x+ yF

∂F

∂t

]
.

Note that

Jx
Jxx

= − 1
γ

(x+ yF ),
Jxr
Jxx

= yFr −
gr
g

(x+ yF ),
Jxy
Jxx

= F,
Jxh
Jxx

= −gh
g

(x+ yF ).

Substituting into (B.9)-(B.11), we get the optimal portfolio weights in (3.2) and (3.3) and the optimal
housing investment reflected by (3.4). The dynamics of total wealth in (B.7) simplifies to

dWt

Wt
=
(
rt +

1
γ
λ̃>λ̃− σrλB

gr
g

+ σHλ
′
HHt

gh
g
− ct + ϕCtνHt

Wt

)
dt

+
1
γ
λ̃> dWt −

gr
g
σr dWrt +Ht

gh
g
σH~ρ

>
H dWt,

(B.15)

Substituting the relevant derivatives into (B.8) and simplifying, we obtain

L2J = (1− γ)J

{
λ̃>λ̃

2γ
+ σrλB

(
yFr

x+ yF
− gr

g

)
− σY λY

yF

x+ yF
+ σHλ

′
Hh

gh
g

+
γ

2
σ2
r

(
gr
g
− yFr
x+ yF

)2

+
γ

2
σ2
Y

y2F 2

(x+ yF )2
+
γ

2
σ2
Hh

2

(
gh
g

)2

− γρY BσrσY
yF

x+ yF

(
yFr

x+ yF
− gr

g

)
+ γρHBσrσHh

gh
g

(
yFr

x+ yF
− gr

g

)
− γρHY σHσY

yF

x+ yF
h
gh
g

}
.

Substituting the relevant derivatives into L3J yields a long expression where a lot of terms are of
the form (1− γ)Jy/(x+ yF ) multiplied by one of the terms in the PDE (A.7) for F . Due to the PDE,
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all these terms can be reduced to (1− γ)J [σY λY F − σrλBFr]y/(x+ yF ). In total, we get

L3J = (1− γ)J

{
σY λY

yF

x+ yF
− σrλB

yFr
x+ yF

+
γ

1− γ
∂g

∂t

1
g

+ r +
γ

1− γ
κ[r̄ − r]gr

g

+
γ

1− γ
(r + λ′HσH − ν)h

gh
g

+
γ

2
σ2
r

[
1

1− γ
grr
g
−
(
gr
g
− yFr
x+ yF

)2
]

− γ

2
σ2
Y

y2F 2

(x+ yF )2
+
γ

2
σ2
Hh

2

[
1

1− γ
ghh
g
−
(
gh
g

)2
]

− γρY BσrσY
yF

x+ yF

(
gr
g
− yFr
x+ yF

)
+ γρY HσY σHh

gh
g

yF

x+ yF

− γρHBσrσHh
[

1
1− γ

grh
g

+
gh
g

(
yFr

x+ yF
− gr

g

)]}
.

Summing up, we get

L2J + L3J = γJ
1
g

{
1
2
σ2
rgrr +

1
2
σ2
Hh

2ghh − ρHBσrσHhgrh +
(
κ[r̄ − r] +

γ − 1
γ

σrλB

)
gr

+
(
r +

1
γ
λ′HσH − ν

)
hgh +

∂g

∂t
− γ − 1

γ

(
r +

λ̃>λ̃

2γ

)
g

}
.

B.4 The case ψ 6= 1: Proof of Theorem 3.1

In this case, solving (B.4) for c and ϕC yields

c = η
βν

1− β
hkJ−ψx [(1− γ)J ]ψ(1−1/θ), (B.16)

ϕC = ηhk−1J−ψx [(1− γ)J ]ψ(1−1/θ), (B.17)

where k = (1− ψ)(1− β) and η = δψβψ
(
βν

1−β

)β(ψ−1)−ψ
, so that

L1J =
ην

1− β
1

ψ − 1
hkJ1−ψ

x [(1− γ)J ]ψ(1−1/θ) − δθJ. (B.18)

Substituting in the conjectured form for J , we get

c = η
βν

1− β
hk(x+ yF )g−

γ(ψ−1)
1−γ , (B.19)

ϕC = ηhk−1(x+ yF )g−
γ(ψ−1)

1−γ (B.20)

and
L1J = (1− γ)J

1
g

(
ην

(ψ − 1)(1− β)
hkg

γψ−1
γ−1 − δ

1− 1/ψ
g

)
(B.21)

so that the full HJB-equation reduces to

0 =
1
2
σ2
rgrr +

1
2
σ2
Hh

2ghh − ρHBσrσHhgrh +
(
κ[r̄ − r] +

γ − 1
γ

σrλB

)
gr +

∂g

∂t

+
(
r +

1
γ
λ′HσH − ν

)
hgh +

ην(1− γ)
γ(ψ − 1)(1− β)

hkg
γψ−1
γ−1 +

γ − 1
γ

(
δ

1− 1/ψ
− r − λ̃>λ̃

2γ

)
g

(B.22)
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For general γ, ψ, this PDE is non-linear and it seems impossible to find a closed-form solution. However
when ψ = 1/γ, corresponding to power utility, the non-linearity disappears since g

γψ−1
γ−1 = g0 = 1.

With power utility we get

c = η
βν

1− β
hk
x+ yF

g
, (B.23)

ϕC = ηhk−1x+ yF

g
(B.24)

and the PDE (B.22) for g reduces to

0 =
1
2
σ2
rgrr +

1
2
σ2
Hh

2ghh − ρHBσrσHhgrh +
(
κ[r̄ − r] +

γ − 1
γ

σrλB

)
gr

+
(
r +

1
γ
λ′HσH − ν

)
hgh +

∂g

∂t
+

ην

1− β
hk +

γ − 1
γ

(
δ

1− γ
− r − λ̃>λ̃

2γ

)
g

(B.25)

with the terminal condition g(T, r, h) = ε1/γ . Conjecturing a solution of the form

g(t, r, h) = ε
1
γ e−d0(T−t)−d̃0(T−t)r +

ην

1− β
hk
∫ T

t

e−d1(u−t)−d̃1(u−t)r du,

we find that d0 and d̃0 must satisfy the ODEs

d̃′0(τ) + κd̃0(τ) =
γ − 1
γ

,

d′0(τ) = −1
2
σ2
r d̃0(τ)2 +

(
κr̄ +

γ − 1
γ

σrλB

)
d̃0(τ) +

δ

γ
+
γ − 1
2γ2

λ̃>λ̃

with d0(0) = d̃0(0) = 0, and d1 and d̃1 must satisfy the ODEs

d̃′1(τ) + κd̃1(τ) =
γ − 1
γ
− k = β

γ − 1
γ

,

d′1(τ) = −1
2
σ2
r d̃1(τ)2 +

(
κr̄ +

γ − 1
γ

σrλB − kσrσHρHB
)
d̃1(τ)

+
δ

γ
+
γ − 1
2γ2

λ̃>λ̃− 1
2
k(k − 1)σ2

H − k
[

1
γ
σHλ

′
H − ν

]
with d1(0) = d̃1(0) = 0. The solutions for d̃0 and d̃1 are

d̃0(τ) =
γ − 1
γ

1
κ

(
1− e−κτ

)
=
γ − 1
γ
Bκ(τ),

d̃1(τ) = β
γ − 1
γ

1
κ

(
1− e−κτ

)
= β

γ − 1
γ
Bκ(τ).

Straightforward integration yields

d0(τ) =
(
δ

γ
+
γ − 1
2γ2

λ̃>λ̃

)
τ − 1

2
σ2
r

(
γ − 1
γ

)2 ∫ τ

0

Bκ(u)2 du

+
(
κr̄ +

γ − 1
γ

σrλB

)
γ − 1
γ

∫ τ

0

Bκ(u) du,

which—exploiting the integration results in Appendix D—gives d0(τ) = Dγ(τ) defined in (3.11). The
expression (3.12) for d1(τ) follows analogously.

34



Expected consumption and wealth. With ψ = 1/γ and ε = 0, the total wealth dynamics is
given in (3.14), optimal perishable consumption is ct = βWt/G(t, rt), and optimal expenditure on
housing consumption is ϕCtνHt = (1− β)Wt/G(t, rt). We will use Itô’s Lemma to find the dynamics
of Wt/G(t, rt) and then compute expectations.

First we establish the dynamics of G(t, rt) =
∫ T
t
Mu
t du, where Mu

t = exp{−d1(u−t)−β̂Bκ(u−t)rt}.
Since

dMu
t = Mu

t

{(
β̂rt +

(
γ − 1
γ

σrλB − kσrσHρHB
)
β̂Bκ(u− t)

+
δ

γ
+
γ − 1
2γ2

λ̃>λ̃− 1
2
k(k − 1)σ2

H − k
[

1
γ
σHλ

′
H − ν

])
dt+ β̂Bκ(u− t)σr dWrt

}
,

we get16

dG(t, rt)
G(t, rt)

=

[
− 1
G(t, rt)

+
(
β̂rt +

δ

γ
+
γ − 1
2γ2

λ̃>λ̃− 1
2
k(k − 1)σ2

H − k
[

1
γ
σHλ

′
H − ν

])

+ β̂

(
γ − 1
γ

σrλB − kσrσHρHB
)
D(t, rt)

]
dt+ β̂σrD(t, rt) dWrt.

Now Itô’s Lemma implies

d(Wt/G(t, rt))
Wt/G(t, rt)

=
dWt

Wt
− dG(t, rt)

G(t, rt)
+
(
dG(t, rt)
G(t, rt)

)2

− dWt

Wt

dG(t, rt)
G(t, rt)

=
[(

1− β̂
)
rt +

1 + γ

2γ2
λ̃>λ̃+ kσHλ

′
H −

δ

γ
+

1
2
k(k − 1)σ2

H + k

(
1
γ
σHλ

′
H − ν

)]
dt

+
1
γ
λ̃> dWt + kσH~ρ

>
H dWt. (B.26)

We can write Wt

G(t,rt)
= W0

G(0,r0)e
z̃ and use (A.9) to conclude that the random variable z̃ is normally

distributed. Taking expectations, we get

E0

[
Wt

G(t, rt)

]
=

W0

G(0, r0)
eA(t),

where

A(t) = exp

{[(
1− β̂

)
r0 +

1 + γ

2γ2
λ̃>λ̃+ kσHλ

′
H −

δ

γ
+

1
2
k(k − 1)σ2

H + k

(
1
γ
σHλ

′
H − ν

)]
t

+
(

1− β̂
)[

(r̄ − r0) +
σ2
r(1− β̂)

2κ2
− σr

κ

(
1
γ
λB + kσHρHB

)]
(t− Bκ(t))

−
(

1− β̂
)2 σ2

r

4κ
Bκ(t)2

}
.

16If dMu
t = µut du+ σut dWt and Gt =

∫ T
t Mu

t du, then dGt =
(
−Mt

t +
∫ T
t µut du

)
dt+

(∫ T
t σut du

)
dWt.
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The expected consumption rate at time t is then E0[ct] = β W0
G(0,r0)e

A(t) and the expected spending on
housing consumption is E0[ϕCtνHt] = (1− β) W0

G(0,r0)e
A(t).

It is apparently not possible to find a precise explicit expression for the expected total wealth,
E0[Wt], when total wealth dynamics is given in (3.14), but we can derive an approximate expression
as follows. Experiments show that D(t, rt) and G(t, rt) are very little sensitive to rt so we replace
them by D(t, r̄) and G(t, r̄), respectively. Again applying (A.9), we find that future (approximate)
total wealth is lognormally distributed with

E0[Wt] ≈ W0 exp

{(
r0 +

1
γ
λ̃>λ̃+ kσHλ

′
H

)
t+

(
r̄ − r0 −

σr
κ

[
λB
γ

+ kσHρHB

])
(t− Bκ(t))

+ σrλBβ̂

∫ t

0

D(u, r̄) du−
∫ t

0

G(u, r̄)−1 du

+
1
2
σ2
r

κ2

(
t− Bκ(t)− 1

2
κBκ(t)2

)
− β̂σ2

r

∫ t

0

D(u, r̄)Bκ(t− u) du

}
,

(B.27)

where the integrals have to evaluated numerically.
With ε > 0, the optimal perishable consumption at time t is

ct = η
βν

1− β
WtH

k
t

g(t, rt, Ht)
= η

βν

1− β
Wt

ε
1
γH−kt e−Dγ(T−t)− γ−1

γ Bκ(T−t)rt + ην
1−βG(t, rt)

,

where g is defined in (3.10) and G(t, rt) is the same as above. Tedious computations along the same
lines as above yield that

d
(
WtH

k
t

g(t,rt,Ht)

)
WtHkt

g(t,rt,Ht)

=
[(

1− β̂
)
rt +

1 + γ

2γ2
λ̃>λ̃+ kσHλ

′
H −

δ

γ
+

1
2
k(k − 1)σ2

H + k

(
1
γ
σHλ

′
H − ν

)]
dt

+
1
γ
λ̃> dWt + kσH~ρ

>
H dWt,

analogously to (B.26). Therefore, we can conclude that

E0

[
WtH

k
t

g(t, rt, Ht)

]
=

W0H
k
0

g(0, r0, H0)
eA(t),

where A(t) is as defined above, from which the time 0 expectations of time t consumption follows
easily. Expected wealth itself can be approximated similarly as above.

B.5 The case ψ = 1: Proof of Theorem 3.2

In the case γ 6= 1, ψ = 1 the first-order conditions imply

c = δβ
(1− γ)J

Jx
, ϕC =

δ(1− β)
ν

h−1 (1− γ)J
Jx

(B.28)

and

L1J = γδJ

(
1− γ
γ

[ln η̃ − 1] +
1− γ
γ

(β − 1) lnh− ln(1− γ)− ln J − 1− γ
γ

ln Jx

)
, (B.29)
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where η̃ = δβ (βν/[1− β])β−1. With the conjectured form of J , we get

− ln J − 1− γ
γ

ln Jx = − ln g + ln(1− γ)

and thus
L1J = γδJ

(
1− γ
γ

[ln η̃ − 1] + k̂ lnh− ln g
)
, (B.30)

where k̂ = (1− 1
γ )(1− β). The full HJB equation now reduces to the following PDE for g

0 =
1
2
σ2
rgrr +

1
2
σ2
Hh

2ghh − ρHBσrσHhgrh +
(
κ[r̄ − r] +

γ − 1
γ

σrλB

)
gr +

∂g

∂t

+
(
r +

1
γ
λ′HσH − ν

)
hgh +

(
δk̂ lnh− δ ln g − γ − 1

γ

[
r +

λ̃>λ̃

2γ
+ δ(ln η̃ − 1)

])
g

(B.31)

with boundary condition g(T, r, h) = ε1/γ . Substituting in a candidate solution of the form (3.18), we
obtain the following system of ODEs:

D′2(τ) + δD2(τ) = δk̂,

D′1(τ) + (δ + κ)D1(τ) = −D2(τ) +
[
1− 1

γ

]
,

D′0(τ) + δD0(τ) = A− 1
2
σ2
rD1(τ)2 − 1

2
σ2
HD2(τ) (D2(τ)− 1)− ρHBσrσHD1(τ)D2(τ)

+
(
κr̄ +

[
1− 1

γ

]
σrλB

)
D1(τ)−

(
1
γ
λ′HσH − ν

)
D2(τ),

where A = δ
γ ln ε +

[
1− 1

γ

] [
λ̃>λ̃
2γ + δ(ln η̃ − 1)

]
. To fulfill the boundary condition on g, we need

D2(0) = D1(0) = D0(0). It can be verified that the solutions to the first two of these ODEs are given
by (3.19)-(3.20). Integrating the ODE for D0 leads to

D0(τ) = (1) + (2) + (3) + (4) + (5) + (6),

where

(1) =
∫ τ

0

Ae−δ(τ−u) du = ABδ(τ),

(2) = −1
2
σ2
r

∫ τ

0

e−δ(τ−u)D1(u)2 du

= −1
2
σ2
r

{[δk̂
κ

+ 1− 1
γ

]2 2
δ + κ

[ δ + κ

κ(δ + 2κ)
Bδ(τ)− 1

κ
Bδ+κ(τ) +

1
δ + 2κ

B2(δ+κ)(τ)
]

− 2
k̂

κ(δ + κ)

[δk̂
κ

+ 1− 1
γ

][( κ

δ + κ
+
δ

κ

)
Bδ(τ)− δ + κ

κ
Bδ+κ(τ) +

2δ + κ

δ + κ
B2δ+κ(τ) + (δBδ(τ)− 1)τ

]
+ 2

(
k̂

κ

)2

[B2δ(τ) + (δBδ(τ)− 1)τ ]
}
,
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(3) = −1
2
σ2
H

∫ τ

0

e−δ(τ−u)D2(u)2 du = −σ2
H k̂

2[B2δ(τ) + (δBδ(τ)− 1)τ ],

(4) = −ρHBσrσH
∫ τ

0

e−δ(τ−u)D1(u)D2(u) du

= −ρHBσrσH
{
− 2k̂2

κ
[B2δ(τ) + (δBδ(τ)− 1)τ ]

+
[δk̂
κ

+ 1− 1
γ

] k̂

δ + κ

[( κ

δ + κ
+
δ

κ

)
Bδ(τ)− δ + κ

κ
Bδ+κ(τ) +

2δ + κ

δ + κ
B2δ+κ(τ) + (δBδ(τ)− 1)τ

]}
,

(5) = [κr̄ +
γ − 1
γ

σrλB ]
∫ τ

0

e−δ(τ−u)D1(u) du

=
κr̄ + γ−1

γ σrλB

κ

{[δk̂
κ
− k̂ +

γ − 1
γ

]
Bδ(τ)−

[δk̂
κ

+
γ − 1
γ

]
Bδ+κ(τ)− k̂(δBδ(τ)− 1)τ

}
,

and

(6) = [
1
2
σ2
H − λ′HσH/γ + ν]

∫ τ

0

e−δ(τ−u)D2(u) du = k̂[
1
2
σ2
H − λ′HσH/γ + ν][Bδ(τ) + (δBδ(τ)− 1)τ ].

Here we have used properties of the B-function summarized in Appendix D. We can thus write D0 as

D0(τ) = KδBδ(τ)+Kδ+κBδ+κ(τ)+K2δB2δ(τ)+K2δ+κB2δ+κ(τ)+K2(δ+κ)B2(δ+κ)(τ)+Kz(δBδ(τ)−1)τ,

where the constants are given by

Kδ = A− 1
κ(δ + 2κ)

K2σ2
r +

k̂

δ + κ

( κ

δ + κ
+
δ

κ

)
Kσr

(σr
κ
− ρHBσH

)
+
κr̄ + γ−1

γ σrλB

κ
(K − k̂) + k̂[

1
2
σ2
H − λ′HσH/γ + ν] (B.32)

Kδ+κ =
1

κ(δ + κ)
K2σ2

r − k̂K
σr
κ

(σr
κ
− ρHBσH

)
−
κr̄ + γ−1

γ σrλB

κ
K (B.33)

K2δ = 2
k̂2

κ
ρHBσrσH −

(
k̂

κ

)2

σ2
r − k̂2σ2

H (B.34)

K2δ+κ =
k̂(2δ + κ)
(δ + κ)2

Kσr

(σr
κ
− ρHBσH

)
(B.35)

K2(δ+κ) = − 1
(δ + κ)(δ + 2κ)

K2σ2
r (B.36)

Kz = σ2
r

k̂

κ

(
K

δ + κ
− 1
δ

)
+K

k̂

δ + κ
− k̂2σ2

H + 2
k̂2

κ
ρHBσrσH − k̂

κr̄ + γ−1
γ σrλB

κ

+ k̂[
1
2
σ2
H − λ′HσH/γ + ν] (B.37)

with

K =
δk̂

κ
+
γ − 1
γ

.
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In order to see that D1(τ) ≥ 0, note that this will be the case if and only if(
1 +

κ

δ(1− β)

)
1

δ + κ

(
1− e−(δ+κτ)

)
≥ 1
δ

(
1− e−δτ

)
or, equivalently,

κ
β

1− β
≥ e−δτ

[(
δ +

κ

1− β

)
e−κτ − (δ + κ)

]
.

The left-hand side is clearly positive. The maximum of the right-hand side is obtained for τ = τ∗

satisfying
(
δ + κ

1−β

)
e−κτ

∗
= δ, so that the maximum equals −κe−δτ∗ , which is negative.

Expected wealth, expected consumption. With ψ = 1, the total wealth dynamics in (3.7)
simplifies to

dWt

Wt
=
(
rt +

1
γ
λ̃>λ̃+ σrλBD1(T − t) + σHλHD2(T − t)− δ

)
dt

+
1
γ
λ̃> dWt + σrD1(T − t) dWrt + σHD2(T − t)~ρ>

H dWt.

Write time t wealth on the form Wt =W0e
z̃ and use (A.9) to conclude that the random variable z̃ is

normally distributed. Taking expectations, we get

E0[Wt] =W0 exp

{(
r0 +

1
γ
λ̃>λ̃− δ

)
t+ (r̄ − r0)(t− Bκ(t)) + σrλB

∫ t

0

[
D1(T − u)− 1

γ
Bκ(t− u)

]
du

+ σH

∫ t

0

D2(T − u) [λH − ρHBσrBκ(t− u)] du

+
1
2
σ2
r

∫ t

0

Bκ(t− u)2 du− σ2
r

∫ t

0

D1(T − u)Bκ(t− u) du

}
.

(B.38)

With ∫ t

0

Bb(T − u) du =
t− Bb(t) + bBb(t)Bb(T − t)

b∫ t

0

Bb(T − u)Bc(t− u) du =
t− Bc(t)− (1− bBb(T − t))(Bb(t)− Bb+c(t))

bc
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this representation becomes explicit

E0[Wt] = W0 exp
(

(r0 + λ̃>λ̃/γ − δ)t+ (r̄ − r0)(t− Bκ(t))

+σrλB
{[δk̂

κ
+

k̂

1− β

] 1
δ + κ

[t− Bδ+κ(t) + (δ + κ)Bδ+κ(t)Bδ+κ(T − t)]

− k̂
κ

[t− Bδ(t) + δBδ(t)Bδ(T − t)]−
t− Bκ(t)

γκ

}
+σH

{
λH k̂[t− Bδ(t) + δBδ(t)Bδ(T − t)]

−ρHBσrk̂
κ

[t− Bκ(t)− (1− δBδ(T − t))(Bδ(t)− Bδ+κ(t)]
}

+
σ2
r

2κ2

{
t− 2Bκ(t) + B2κ(t)

}

−σ2
r

{[δk̂
κ

+
k̂

1− β

] 1
(δ + κ)κ

[t− Bκ(t)− (1− (δ + κ)Bδ+κ(T − t))(Bδ+κ(t)− Bδ+2κ(t)]

− k̂

κ2
[t− Bκ(t)− (1− δBδ(T − t))(Bδ(t)− Bδ+κ(t)]

})
.

B.6 The case ψ /∈ {1, 1/γ}: Proof of Theorem 3.3

Substitute the approximation (3.23) into the PDE (B.22), apply the conjecture (3.24), and collect
terms involving lnh, terms involving r, and the remaining terms. This shows that the functions D̂0,
D̂1, and D̂2 have to satisfy the following differential equations, where Θ(t) = ĥ(t)kĝ(t)

γ(ψ−1)
γ−1 :

∂D̂2(t, T )
∂t

− ην

1− β
Θ(t)D̂2(t, T ) = −ην γ − 1

γ
Θ(t),

∂D̂1(t, T )
∂t

−
(
κ+

ην

1− β
Θ(t)

)
D̂1(t, T ) = D̂2(t, T )− γ − 1

γ
,

∂D̂0(t, T )
∂t

− ην

1− β
Θ(t)D̂0(t, T ) = Â(t) +

1
2
σ2
rD̂1(t, T )2 +

1
2
σ2
HD̂2(t, T )[D̂2(t, T )− 1]

+ρHBσrσHD̂1(t, T )D̂2(t, T )−
(
κr̄ +

γ − 1
γ

σrλB

)
D̂1(t, T ) +

(
1
γ
λ′HσH − ν

)
D̂2(t, T ).

The terminal conditions are D̂0(T, T ) = D̂1(T, T ) = D̂2(T, T ) = 0. Here, we have introduced

Â(t) =
ην(1− γ)Θ(t)
γ(ψ − 1)(1− β)

(
1− k ln ĥ(t)− γ(ψ − 1)

γ − 1
ln ĝ(t) +

ψ − 1
γ − 1

ln ε
)

+
γ − 1
γ

(
δ

1− 1
ψ

− λ̃>λ̃

2γ

)
.
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The solutions to the first differential equations are stated in (3.25) and (3.26), while the solution to
the last is

D̂0(t, T ) = −
∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsÂ(u) du− σ2
r

2

∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsD̂1(u, T )2 du

− σ2
H

2

∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsD̂2(u, T )[D̂2(u, T )− 1] du

− ρHBσrσH
∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsD̂1(u, T )D̂2(u, T ) du

+
(
κr̄ +

γ − 1
γ

σrλB

)∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsD̂1(u, T ) du

−
(

1
γ
λ′HσH − ν

)∫ T

t

e−
ην

1−β
∫ u
t

Θ(s) dsD̂2(u, T ) du.

(B.39)

C Proof of Theorem 4.1 (constant housing consumption)

The HJB equation is again of the form (B.3) with L2J still given by (B.8), while

L1J = max
c

{
f
(
cβϕ̄1−β

C , J
)
− cJx

}
,

L3J =
∂J

∂t
+ Jx

(
rx+ 1{t<T̃}y

)
+ J>

z µz +
1
2

tr (JzzΣZΣ>
Z)− Jxhνϕ̄C .

With a conjecture of the form (4.3) for the value function, the derivatives of J can be written in terms
of J as follows:

Jx =
(1− γ̃)J

x+ yF − νhF̂
, Jxx = − γ̃(1− γ̃)J

(x+ yF − νhF̂ )2
,

Jy = (1− γ̃)J
F

x+ yF − νhF̂
, Jyy = −γ̃(1− γ̃)J

F 2

(x+ yF − νhF̂ )2
,

Jh = −(1− γ̃)J
νF̂

x+ yF − νhF̂
, Jhh = −γ̃(1− γ̃)J

(
νF̂

x+ yF − νhF̂

)2

,

Jxy = −γ̃(1− γ̃)J
F

(x+ yF − νhF̂ )2
, Jxh = γ̃(1− γ̃)J

νF̂

(x+ yF − νhF̂ )2
,

Jhy = γ̃(1− γ̃)J
νF F̂

(x+ yF − νhF̂ )2
, Jr = (1− γ̃)J

[
γ̃

1− γ̃
gr
g

+
yFr

x+ yF − νhF̂

]
,

∂J

∂t
= (1− γ̃)J

[
γ̃

1− γ̃
∂g

∂t

1
g

+
1

x+ yF − νhF̂

(
y
∂F

∂t
− νhF̂ ′

)]
,

Jrr = (1− γ̃)J

[
γ̃

1− γ̃
grr
g
− γ̃

(
gr
g

)2

+ 2γ̃
gr
g

yFr

x+ yF − νhF̂

− γ̃
(

yFr

x+ yF − νhF̂

)2

+
yFrr

x+ yF − νhF̂

]
,
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Jxr = γ̃(1− γ̃)J

[
gr
g

1
x+ yF − νhF̂

− yFr

(x+ yF − νhF̂ )2

]
,

Jry = (1− γ̃)J

[
γ̃
gr
g

F

x+ yF − νhF̂
− γ̃ FyFr

(x+ yF − νhF̂ )2
+

Fr

x+ yF − νhF̂

]
,

Jrh = (1− γ̃)J

[
−γ̃ gr

g

νF̂

x+ yF − νhF̂
+ γ̃

νF̂ yFr

(x+ yF − νhF̂ )2

]
.

Note that

Jx
Jxx

= − 1
γ̃

(x+ yF − νhF̂ ),
Jxr
Jxx

= yFr −
gr
g

(x+ yF − νhF̂ ),
Jxy
Jxx

= F,
Jxh
Jxx

= −νF̂ .

The first-order conditions for αB , αS , and αI are still given by (B.9)-(B.11). Substituting in the
relevant derivatives from above, we obtain (4.6)–(4.8).

Substituting the relevant derivatives into (B.8) and simplifying, we obtain

L2J = (1− γ̃)J

{
λ̃>λ̃

2γ̃
+ σrλB

(
yFr

x+ yF
− gr

g

)
− σY λY

yF

x+ yF − νhF̂
+ σHλ

′
H

νhF̂

x+ yF − νhF̂

+
γ̃

2
σ2
r

(
gr
g
− yFr

x+ yF − νhF̂

)2

+
γ̃

2
σ2
Y

y2F 2

(x+ yF − νhF̂ )2
+
γ̃

2
σ2
H

(
νhF̂

x+ yF − νhF̂

)2

− γ̃ρY BσrσY
yF

x+ yF − νhF̂

(
yFr

x+ yF − νhF̂
− gr

g

)
−γ̃ρHBσrσH

νhF̂

x+ yF − νhF̂

(
gr
g
− yFr

x+ yF − νhF̂

)
− γ̃ρHY σHσY

yFνhF̂

(x+ yF − νhF̂ )2

}
.

Substituting the relevant derivatives into L3J and applying the PDE (A.7) for F and the fact that
F̂ ′(t) = −ϕ̄C + νF̂ (t), we obtain

L3J = (1− γ̃)J

{
σY λY

yF

x+ yF − νhF̂
− σrλB

yFr − νhF̂
x+ yF − νhF̂

− σHλ′H
νhF̂

x+ yF − νhF̂

+
γ̃

1− γ̃
∂g

∂t

1
g

+ r +
γ̃

1− γ̃
κ[r̄ − r]gr

g
+
γ̃

2
σ2
r

[
1

1− γ̃
grr
g
−
(
gr
g
− yFr

x+ yF − νhF̂

)2
]

− γ̃

2
σ2
Y

y2F 2

(x+ yF − νhF̂ )2
− γ̃

2
σ2
H

(
νhF̂

x+ yF − νhF̂

)2

+ γ̃ρY BσrσY
yF

x+ yF − νhF̂

(
yFr

x+ yF − νhF̂
− gr

g

)
+ γ̃ρHBσrσH

νhF̂

x+ yF − νhF̂

(
gr
g
− yFr

x+ yF − νhF̂

)
+ γ̃ρY HσY σH

yFνhF̂

(x+ yF − νhF̂ )2

}
.

Summing up, we get

L2J + L3J = γ̃J
1
g

{
1
2
σ2
rgrr +

(
κ[r̄ − r] +

γ̃ − 1
γ̃

σrλB

)
gr +

∂g

∂t
− γ̃ − 1

γ̃

(
r +

λ̃>λ̃

2γ̃

)
g

}
.
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Since ψ = 1/γ we have

L1J = max
c

{
δ

1− γ
cβ(1−γ)ϕ̄

(1−β)(1−γ)
C − δJ − cJx

}
giving a first-order condition implying that

c = (δβ)1/γ̃ϕ̄
1−γ/γ̃
C J−1/γ̃

x (C.1)

from which we obtain
L1J =

γ̃

1− γ̃
(δβ)1/γ̃ϕ̄

1−γ/γ̃
C J1−1/γ̃

x − δJ.

With the conjecture for J , we get the expression (4.9) for c and

L1J = γ̃J
1
g

{
− δ
γ̃
g + (δβ)

1
γ̃ ϕ̄

1− γγ̃
C

}
.

Substituting into 0 = L1J + L2J + L3J , we see that g must satisfy the PDE

0 =
1
2
σ2
rgrr +

(
κ[r̄ − r] +

γ̃ − 1
γ̃

σrλB

)
gr +

∂g

∂t
−

(
δ

γ̃
+
γ̃ − 1
γ̃

[
r +

λ̃>λ̃

2γ̃

])
g + (δβ)

1
γ̃ ϕ̄

1− γγ̃
C (C.2)

with the terminal condition g(T, r) = 0 (since ε = 0). Since this resembles the pricing PDE for an
asset with a zero terminal payment and a continuous dividend of (δβ)

1
γ̃ ϕ̄

1− γγ̃
C , we try a solution of the

form

g(t, r) = (δβ)
1
γ̃ ϕ̄C(s)1− γγ̃

∫ T

t

e−d(s−t)−d̃(s−t)r ds.

We need d(0) = d̃(0) = 0 and

d̃′(τ) + κd̃(τ) = 1− 1
γ̃
,

d′(τ) = −1
2
σ2
r d̃(τ)2 +

(
κr̄ +

γ̃ − 1
γ̃

σrλB

)
d̃(τ) +

δ

γ̃
+
γ̃ − 1
γ̃

λ̃>λ̃

2γ̃
.

The solution to the first ODE is d̃(τ) = γ̃−1
γ̃ Bκ(τ) and then d(τ) follows from the second ODE by

integration:

d(τ) = −1
2
σ2
r

(
γ̃ − 1
γ̃

)2 ∫ τ

0

Bκ(u)2 du+
γ̃ − 1
γ̃

(
κr̄ +

γ̃ − 1
γ̃

σrλB

)∫ τ

0

Bκ(u) du+

(
δ

γ̃
+
γ̃ − 1
γ̃

λ̃>λ̃

2γ̃

)
τ.

Using the integration results of Appendix D we obtain d(τ) = Dγ̃(τ) defined through (3.11).

D Some properties of the B-function

Recall the definition
Bm(τ) =

1− e−mτ

m
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Lemma D.1 (Multiplying Bs) The following equations hold

BbBc =
bBb + cBc − (b+ c)Bb+c

bc
(D.1)

Bb+c =
bBb + cBc − bcBbBc

b+ c

Proof. Follows from the definition of B. 2

Remark. Equation (D.1) shows that second-order terms of the form BbBc can be transformed into
a sum of first-order terms. Note that, in particular, B2b = Bb − b

2B
2
b .

We set τ = T − t.

Lemma D.2 (Integrating Bs) (i) Assuming a 6= 0, we obtain17

∫ T

t

e−a(s−t)Bb(T − s) ds =

{
Ba(τ)−Bb(τ)

b−a if b 6= a,
Ba(τ)+(aBa(τ)−1)τ

a if b = a,
(D.2)

∫ T

t

e−a(s−t)Bb(T − s)Bc(T − s) ds

=


1
bc

[
bc(b+c−2a)

(b−a)(c−a)(b+c−a)Ba(τ)− b
b−aBb(τ)− c

c−aBc(τ) + b+c
b+c−aBb+c(τ)

]
if b 6= a 6= c,

1
ab

[(
b−a
b + a

b−a

)
Ba(τ)− b

b−aBb(τ) + a+b
b Ba+b(τ) + (aBa(τ)− 1)τ

]
if b 6= a = c,

2
a2 [B2a(τ) + (aBa(τ)− 1)τ ] if b = a = c.

(D.3)

(ii) Furthermore, ∫ T

t

Bb(T − s) ds =
τ − Bb(τ)

b∫ T

t

Bb(T − s)Bc(T − s) ds =
τ − Bb(τ)− Bc(τ) + Bb+c(τ)

bc
(D.4)

Proof. Equation (D.2) follows by simple integration. To show (D.3), one can use (D.1) and then
apply (D.2). The proof of (ii) works similarly. 2

Remarks. a) In the special case a 6= b = c, equation (D.3) simplifies into

2
b

[
b

(b− a)(2b− a)
Ba(τ)− 1

b− a
Bb(τ) +

1
2b− a

B2b(τ)
]
.

b) In the special case b = c, equation (D.4) simplifies into

1
b2

[τ − 2Bb(τ) + B2b(τ)] =
1
b2

[
τ − Bb(τ)− b

2
Bb(τ)2

]
.

17Note that b 6= a 6= c does not exclude cases with b = c.
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c) We can use (D.1) to rewrite (D.3) as follows:∫ T

t

e−a(s−t)Bb(T − s)Bc(T − s) ds

=


1

b+c−a

[
b+c−2a

(b−a)(c−a)Ba(τ)− 1
b−aBb(τ)− 1

c−aBc(τ)− Bb(τ)Bc(τ)
]

if b 6= a 6= c,

1
ab

[
b

b−aBa(τ)− a
b−aBb(τ)− aBa(τ)Bb(τ) + (aBa(τ)− 1)τ

]
if b 6= a = c,

1
a2 [(2− aBa(τ))Ba(τ) + 2(aBa(τ)− 1)τ ] if b = a = c.

45



References

Bansal, R. and A. Yaron (2004). Risks for the Long Run: A Potential Resolution of Asset Pricing
Puzzles. The Journal of Finance 59 (4), 1481–1509.

Bick, B., H. Kraft, and C. Munk (2008, December). Investment, Income, and Incompleteness. Work-
ing paper, Goethe University Frankfurt and University of Southern Denmark.

Campbell, J. Y. (1993). Intertemporal Asset Pricing without Consumption Data. American Eco-
nomic Review 83 (3), 487–512.

Campbell, J. Y. and J. F. Cocco (2003). Household Risk Management and Optimal Mortgage Choice.
The Quarterly Journal of Economics 118 (4), 1449–1494.

Campbell, J. Y., J. F. Cocco, F. Gomes, P. J. Maenhout, and L. M. Viceira (2001). Stock Market
Mean Reversion and the Optimal Equity Allocation of a Long-Lived Investor. European Finance
Review 5 (3), 269–292.

Campbell, J. Y. and L. M. Viceira (1999). Consumption and Portfolio Decisions when Expected
Returns are Time Varying. The Quarterly Journal of Economics 114, 433–495.

Chacko, G. and L. M. Viceira (2005). Dynamic Consumption and Portfolio Choice with Stochastic
Volatility in Incomplete Markets. The Review of Financial Studies 18, 1369–1402.

Cocco, J. F. (2005). Portfolio Choice in the Presence of Housing. The Review of Financial Stud-
ies 18 (2), 535–567.

Cocco, J. F., F. J. Gomes, and P. J. Maenhout (2005). Consumption and Portfolio Choice over the
Life Cycle. The Review of Financial Studies 18 (2), 491–533.

Constantinides, G. M., J. B. Donaldson, and R. Mehra (2002). Junior Can’t Borrow: A New Per-
spective on the Equity Premium Puzzle. Quarterly Journal of Economics 117, 269–296.

Damgaard, A., B. Fuglsbjerg, and C. Munk (2003). Optimal Consumption and Investment Strategies
with a Perishable and an Indivisible Durable Consumption Good. Journal of Economic Dynamics
and Control 28 (2), 209–253.

de Jong, F., J. Driessen, and O. Van Hemert (2008, July). Hedging House Price Risk: Portfolio
Choice with Housing Futures. Working paper, Tilburg University, University of Amsterdam, and
NYU Stern.

Duffie, D. and L. G. Epstein (1992). Stochastic Differential Utility. Econometrica 60 (2), 353–394.

Liu, J. (2007). Portfolio Selection in Stochastic Environments. The Review of Financial Stud-
ies 20 (1), 1–39.

Lustig, H. N. and S. G. van Nieuwerburgh (2005). Housing Collateral, Consumption Insurance, and
Risk Premia: An Empirical Perspective. The Journal of Finance 60 (3), 1167–1219.

Merton, R. C. (1969). Lifetime Portfolio Selection Under Uncertainty: The Continuous-Time Case.
Review of Economics and Statistics 51, 247–257.

46



Merton, R. C. (1971). Optimum Consumption and Portfolio Rules in a Continuous-Time Model.
Journal of Economic Theory 3, 373–413.

Munk, C. and C. Sørensen (2008). Dynamic Asset Allocation with Stochastic Income and Interest
Rates. Working paper, University of Southern Denmark and Copenhagen Business School.

Nielsen, L. T. and M. Vassalou (2006). The Instantaneous Capital Market Line. Economic Theory 28,
651–664.

Piazzesi, M., M. Schneider, and S. Tuzel (2007). Housing, Consumption and Asset Pricing. Journal
of Financial Economics 83 (3), 1355–1383.

Samuelson, P. A. (1969). Lifetime Portfolio Selection by Dynamic Stochastic Programming. Review
of Economics and Statistics 51, 239–246.

Santos, T. and P. Veronesi (2006). Labor Income and Predictable Stock Returns. The Review of
Financial Studies 19 (1), 1–44.

Storesletten, K., C. I. Telmer, and A. Yaron (2004). Cyclical Dynamics in Idiosyncratic Labor Market
Risk. Journal of Political Economy 112 (3), 695–717.

Storesletten, K., C. I. Telmer, and A. Yaron (2007). Asset Pricing with Idiosyncratic Risk and
Overlapping Generations. Review of Economic Dynamics 10 (4), 519–548.

Tsai, I.-C., M.-C. Chen, and T.-F. Sing (2007, November). Do REITs behave More like Real Es-
tate Now? Working paper, Southern Taiwan University of Technology, National Sun Yat-sen
University of Taiwan and National University of Singapore.

Van Hemert, O. (2007, August). Household Interest Rate Risk Management. Working paper, NYU
Stern.

Yao, R. and H. H. Zhang (2005a). Optimal Consumption and Portfolio Choices with Risky Housing
and Borrowing Constraints. The Review of Financial Studies 18 (1), 197–239.

Yao, R. and H. H. Zhang (2005b, November). Optimal Life-Cycle Asset Allocation with Housing as
Collateral. Working paper, Baruch College and University of Texas at Dallas.

Yogo, M. (2006). A Consumption-Based Explanation of Expected Stock Returns. The Journal of
Finance 61 (2), 539–580.

47



0%

10%

20%

30%

40%

50%

60%

70%

80%

0 10 20 30 40 50

lifetime in years

c
o

n
s
u

m
p

ti
o

n
 /

 t
o

ta
l 

w
e
a
lt

h

eps=0

eps=0.003

eps=0.03

eps=0.3

Figure 1: Optimal consumption/wealth ratio and the time horizon. The figure shows how
the optimal ratio between perishable consumption and total wealth varies over the life-cycle. Time-
additive power utility is assumed with different weights associated with utility of terminal wealth as
indicated by ε. The benchmark parameters in Table 1 are used. The current short rate is set to the
long-term level, r0 = r̄, and the current unit house price is set to h = 200.
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Figure 2: Expected consumption over a life-time. The figure shows the expectation of optimal
consumption over the life-time of the individual. Time-additive power utility is assumed with no utility
from terminal wealth. The benchmark parameters in Table 1 are used. The current short rate is set
to the long-term level, r0 = r̄, the current unit house price is set to H0 = 200, the current tangible
wealth is set to X0 = 20, 000, and the current income rate is set to Y0 = 20, 000. The solid [dashed]
lines are for the case without [with] utility of terminal wealth.
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Figure 3: Optimal investments and the composition of wealth. The figure shows how the
optimal fractions of total wealth invested in bonds, stocks, and houses (physically or financially) vary
with the ratio of human wealth yF (t, r) to total wealth W = x + yF (t, r). Time-additive power
utility is assumed with no utility of terminal wealth. The benchmark parameters in Table 1 are used.
The ratios Fr/F and gr/g are computed assuming 20 years to retirement and a retirement period of
20 years. The current short rate is set to the long-term level, r = r̄.
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Figure 4: Expected wealth over the life-cycle. The figure shows the initial expectations of total
wealth, financial wealth, and human wealth over the life-cycle. Time-additive power utility is assumed
with no utility of terminal wealth. The benchmark parameters in Table 1 are used. The current short
rate is set to the long-term level, r0 = r̄, the current unit house price is set to H0 = 200, the current
tangible wealth is set to X0 = 20, 000, and the current income rate is set to Y0 = 20, 000. The solid
[dashed] lines are for the case without [with] utility of terminal wealth.
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Figure 5: Expected investments over the life-cycle. The figure shows the initial expectations of
the investments in bonds, stocks, and housing units over the life-cycle. Time-additive power utility
is assumed with no utility of terminal wealth. The benchmark parameters in Table 1 are used. The
current short rate is set to the long-term level, r0 = r̄, the current unit house price is set to H0 = 200,
the current tangible wealth is set to X0 = 20, 000, and the current income rate is set to Y0 = 20, 000.
The solid [dashed] lines are for the case without [with] utility of terminal wealth.
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Figure 6: The utility loss due to a fixed level of housing consumption. The figure shows how the
utility loss measured by the ` defined in (4.2) with Ĵ = Jdc varies with an assumed fixed level of housing
consumption throughout life. Benchmark parameters and initial state variables X0 = Y0 = 20, 000,
r0 = 0.02, and H0 = 200 are used.
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The preferences

δ γ ψ β T̃ T γ̃

0.03 4 0.25 or 1 0.8 20 40 3.4

The interest rate and the bond

κ r̄ σr λB Tbond σB ξB ζB

0.2 0.02 0.02 0.1 20 0.0982 -0.1661 -0.6462

The stock

σS λS ρSB ξS ζS

0.2 0.25 0.1 0.1840 -0.0870

Housing

σH λH rimp ν ρHB ρHS λ′H ξI ζI

0.12 0.35 0.055 0.055 0.6 0.2 0.35 0.4129 1.2582

The labor income

b µ̄Y σY ρY B ρY S ρHY λY

0.5 0.01 0.1 0.1 0.1 0.8531 0.3540

Table 1: Benchmark parameter values. Exogenous parameters are stated to the left of the double
vertical line, while the parameters to the right are derived from the exogenous parameters.
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Adjustment frequency

2 years 5 years

infrequent ϕC , frequent ϕI 0.05% 0.12%

infrequent ϕI , frequent ϕC 0.29% 1.08%

infrequent ϕC and ϕI 0.35% 1.19%

Table 2: Loss due to infrequent adjustments of housing consumption and investment. The
benchmark parameters in Table 1 are assumed together with ψ = 1/γ and ε = 0.3. The current short
rate is set to the long-term level, r0 = r̄, the current unit house price is set to H0 = 200, the current
tangible wealth is set to X0 = 20, 000, and the current income rate is set to Y0 = 20, 000. The loss
is defined in (4.2), where Ĵ is computed using Monte Carlo simulations. “Frequent” means that the
control is updated at the simulation frequency, i.e. 250 times per year. The results are based on 10,000
simulated paths.
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Adjustment frequency

2 years 5 years

frequent ϕC and ϕI 0.80% 0.80%

infrequent ϕC , frequent ϕI 0.91% 0.96%

infrequent ϕI , frequent ϕC 1.11% 1.73%

infrequent ϕC and ϕI 1.30% 1.93%

Table 3: Loss due to borrowing constraints and infrequent adjustments of housing con-
sumption and investment. The benchmark parameters in Table 1 are assumed together with
ψ = 1/γ and ε = 0.3. The current short rate is set to the long-term level, r0 = r̄, the current unit
house price is set to H0 = 200, the current tangible wealth is set to X0 = 20, 000, and the current
income rate is set to Y0 = 20, 000. The investment strategy is transformed to make sure that tangible
wealth stays positive. In the transformation we put X = 6, 000. The loss is defined in (4.2), where
Ĵ is computed using Monte Carlo simulations. “Frequent” means that the control is updated at the
simulation frequency, i.e. 250 times per year. The results are based on 10,000 simulated paths.
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