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Abstract

A central decision maker allocates resources to each of n players who derive utility
from their allocation. Consequently, her actions may be viewed as choosing an allo-
cation of utilities u = (u1, u2, . . . , un) from some set of feasible allocations U ∈ R

n
+.

Consider a decision maker that chooses an allocation u ∈ U to maximize

n
∑

j=1

u1−α
j

1− α.

The above family of objective functions proposed originally by Atkinson and parame-
terized by α ∈ R+, permits the decision maker to tradeoff efficiency (by lowering α)
for fairness (by increasing α). The family of Atkinson utility functions is canonical
in that it captures the efficient or “utilitarian” allocation (α = 0), the “max-min”
fair allocation (α → ∞), and the proprotionally fair (or Nash bargaining) allocation
(α→ 1).

This paper characterizes the tradeoff between efficiency and fairness in this general
setting. In particular, we demonstrate that under reasonable assumptions on U , the
total utility to players under a fair allocation, FAIR(U,α), and the total utility to
players under a perfectly efficient allocation, FAIR(U, 0) , SYSTEM(U), must satisfy

SYSTEM(U)− FAIR(U,α)

SYSTEM(U)
≤ 1−Θ

(

n−
α
α+1

)

,

and moreover, that this bound is essentially tight.

1. Introduction

Consider the following resource allocation problem: Due to unexpected weather, we must
re-allocate landing and take-off slots to airlines operating in some region. The change in
available capacity that calls for this re-allocation naturally leads to airline delays, both on
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the ground and in the air. Since airline delays translate to well documented dollar figures per
passenger-hour, it is tempting to consider accomplishing the said re-allocation in a manner
that minimizes total dollar costs. While this objective is natural, a somewhat surprising
fact is that existing practice (at least within the United States) does not take into account
delay costs in making such re-allocation decisions. The emphasis rather, is on an allocation
that may be viewed as equitable or fair to the airlines concerned. This natural dichotomy,
between “efficiency” of the one hand and “fairness” on the other is a staple of many real
world resource allocation problems including the one above. How one chooses to address
this dichotomy can have far reaching policy impacts. This state of affairs begs for a broad
understanding of the inherent tradeoff between efficiency on the one hand and fairness on the
other; an understanding of such a tradeoff would, in principle, inform policy decisions such
as the one above. Our goal here is to provide a mathematical foundation for characterizing
this tradeoff.

Consider a resource allocation problem, in which a central decision maker (CDM) needs
to decide on the allocation of scarce resources among n players. Each player derives a
nonnegative utility, depending on the allocation decided by the CDM (e.g., via means of a
utility function). For a given allocation of resources, there is thus a corresponding utility
allocation u ∈ Rn+, with uj equal to the utility derived by the jth player, j = 1, . . . , n.

A utility allocation u ∈ Rn+ is feasible if and only if there exists an allocation of resources
for which the utilities derived by the players are u1, u2, . . . , un accordingly. We define the
utility set U ⊂ Rn+ as the set of all feasible utility allocations. Encapsulated in the notion
of the utility set are the preferences of the players and the way they derive utility, as well as
individual constraints of the players or the CDM, constraints on the resources, etc. Thus,
the utility set provides a condensed way of describing the problem. Given the utility set,
the CDM then needs to decide which utility allocation among the players to select, or,
equivalently which point from the utility set to select.

The above setup has been studied within the research areas of fair bargaining and wel-
fare economics (see [13], [19]). Numerous applications can also be cast under the above
general framework, for example bandwidth allocation problems [9], scheduling, facility lo-
cation problems [10], etc. The most prominent way of addressing the described resource
allocation problem has been the identification of a real-valued social welfare function of the
utility allocation, which is used by the CDM to rank allocations. In the next section, we
review social welfare functions that give rise to “efficient” and “fair” allocations.

2. Efficiency-maximizing and fair allocations

A natural objective for the central decision maker is to maximize an efficiency metric of
the system (defined appropriately). On the other hand, in the case of a competitive en-
vironment, where self-interested players are involved, such practice might result in great
inequalities among the utilities derived by different players. Then, the incorporation of fair-
ness considerations in the allocation decision would be highly desirable. The introduction
of fairness, however, will most likely have a negative impact on the efficiency of the system.
Indeed, the efficiency-fairness tradeoff is a central issue of resource allocation problems [8].
We next discuss efficiency-maximizing and fair allocations.
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Efficiency-maximizing allocation. In this work, we adopt the sum of utilities (derived
by the players) as the system efficiency metric. Although in some cases idiosyncratic char-
acteristics of a problem might suggest otherwise, the sum of utilities is commonly a natural
way of quantifying efficiency. The sum of utilities is also among the most well studied social
welfare fucntions, known as the (Bentham) utilitarian function.

Given a utility set U , an allocation of utilities that maximizes efficiency (also known as
utilitarian) then corresponds to an optimal solution of the problem

maximize 1Tu
subject to u ∈ U,

with u ∈ Rn+ and 1 is the vector of all ones. We denote the optimal value of this problem
with SYSTEM (U), i.e.,

SYSTEM (U) = sup
{

1Tu
∣

∣

∣ u ∈ U
}

,

which corresponds to the highest possible system efficiency.
The utilitarian principle of maximizing sum of utilities, however, is neutral towards in-

equalities among the utilities derived by the players. As a result, it is considered to lack
fairness considerations [19].

Fair allocation. Due to the subjective nature of fairness and different possible interpre-
tations of equity, there is no principle that is universally accepted as “the most fair”. In par-
ticular, there has been a plethora of proposals in the literature under axiomatic bargaining,
welfare economics, as well as in applications ranging from networks, air traffic management,
healthcare and finance. We refer the reader to [19] and [4] for a more detailed exposition.

A fairness scheme of particular interest, and one on which we will focus our attention
in this work, is the α-fairness scheme, which was introduced in the work by Atkinson [1]
(see also [13] and [2] for more details). According to α-fairness, the CDM decides on the
allocation by maximizing the constant elasticity social welfare function Wα, parameterized
by α ≥ 0, and defined for u ∈ Rn+ as

Wα(u) =



























n
∑

j=1

u1−α
j

1− α, for α ≥ 0, α 6= 1,

n
∑

j=1

log(uj), for α = 1.

A resulting utility allocation, denoted by z(α), is such that

z(α) ∈ argmax
u∈U

Wα(u), (1)

and is referred to as an α-fair allocation.
Under the constant elasticity welfare function, the proportional increase in welfare at-

tributed to a given player for a given proportional increase of her utility, is the same at all
utility levels. Moreover, since the constant elasticity function is concave and component-wise
increasing, it exhibits diminishing marginal welfare increase as utilities increase. The rate
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at which marginal increases diminish is controlled by the parameter α, which is called the
inequality aversion parameter for that reason.

The α-fairness scheme can be useful in practice for a CDM, as it facilitates the efficiency-
fairness tradeoff. In particular, a higher value of the inequality aversion parameter is thought
to correspond to a “fairer” scheme (see [18], [2], [12]). Note that for the smallest value of
α = 0, we recover the utilitarian principle, which is neutral towards inequalities. Thus, the
CDM can adjust attitudes towards inequalities by means of a single parameter.

Furthermore, the α-fairness scheme captures as special cases two important fairness
schemes, which have been studied extensively in the literature; for α = 1, the scheme corre-
sponds to proportional fairness [16], [9], whereas for α→∞, the α-fair allocation converges
to the utility allocation suggested by max-min fairness [7], [13].

Although the α-fairness scheme has been studied both from a theoretical and a practical
perspective, prominently in networks (see [15], [5], [11], [14], [17]), the underlying efficiency-
fairness tradeoff is still not well understood. Recent work has been devoted to theoretically
characterizing what it actually means for a higher value of α to be more fair [12]. The impact
of a higher value of α on the system efficiency has also received a lot of attention. In [4] the
authors present tight upper bounds on the efficiency loss for the special cases of proportional
and max-min fairness. For the more interesting general case of varying α (and thus giving
the CDM the flexibility of the efficiency-fairness tradeoff), however, only empirical studies
are available that suggest that a higher value of α results in higher efficiency loss, although
counterexamples exist (see [18] and references therein).

This paper sheds light on exactly this matter, by quantifying what the maximum effi-
ciency loss can be for a fixed value of α. We next formally define the notion of the efficiency
loss, and present the main results in the following sections.

Efficiency loss. As the central decision maker incorporates fairness considerations, the
efficiency of the system (measured as the sum of utilities), is likely to decrease, compared to
the efficiency under the utilitarian solution.

Suppose the CDM adopts α-fairness, using a fixed value for the inequality aversion pa-
rameter α, and the utility set U is such that an α-fair allocation exists (e.g., U is compact).
Then, the efficiency of the system under the α-fairness scheme will be the sum of the com-
ponents of the α-fair utility allocation z(α) (as in (1)), and denoted by

FAIR (U ;α) = 1T z(α).

The efficiency loss is the difference between the maximum system efficiency, SYSTEM (U),
and the efficiency under the fair scheme, FAIR (U ;α). The efficiency loss relative to the
maximum system efficiency is the so called price of fairness [4], defined in this case

POF (U ;α) =
SYSTEM (U)− FAIR (U ;α)

SYSTEM (U)
.

The price is a number between 0 and 1, and corresponds to the percentage efficiency loss
compared to the maximum system efficiency. It is a key quantity to understanding the
efficiency-fairness tradeoff.
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3. Our contributions

In this section, we summarize the main results of this paper: upper bounds on the price
of α-fairness, which are applicable under mild assumptions. An important quantity is the
maximum achievable utility of each player, defined (for the jth player) as

u?j = sup {uj | u ∈ U} , for all j = 1, . . . , n.

The bounds depend on the inequality aversion parameter α, the number of players involved,
and their maximum achievable utilities (in case they are not equal). Section 4 includes the
results with more technical details and proofs. Section 5 deals with near worst-case examples.

Consider a resource allocation problem, as described in Section 1. We make the following
assumption:

Assumption 1. The utility set is compact and convex.

Assumption 1 is standard in the literature of fair bargains and also very frequently sat-
isfied in practice. In particular, compactness of the utility set follows from limited resources
and bounded and continuous functions that map resource allocations to utility for each
player. Also, in case of nonconvex utility sets, randomization over possible utility alloca-
tions results in a convex set (of expected utilities). For an extended discussion of Assumption
1 we refer the reader to [19] and [4].

Under Assumption 1, and in case the maximum achievable utilities of the players are
equal, we show that the price of α-fairness is bounded,

POF (U ;α) ≤ 1−Θ
(

n−
α
α+1

)

, (2)

where n is the number of players. In Section 4, we provide an exact formula for the bound,
and also generalize the result in case players have unequal maximum achievable utilities.
The former case, however, (equal maximum achievable utilities) is particularly important,
since utility levels of different players are commonly normalized, so as the intercomparison
of utilities between them becomes meaningful [13].

Figure 1 depicts the bound on the price of fairness described above. The graph illustrates
the dependence of the bound on the number of players, for different values of α and in case
all players have equal maximum achievable utilities.

Our results capture special cases presented in the literature. In particular, in [4] it is
shown that the price of proportional fairness (i.e., for α = 1) is bounded by 1 − Θ(n−1/2),
and the price of max-min fairness (i.e., for α →∞) is bounded by 1−Θ(n−1). Both those
results are compatible with (2); Section 4 includes more technical details.

Finally, we are able to construct examples that achieve a price of fairness very close to
the bounds. The structure of the examples is simple and not pathological by any means; it
corresponds to the case of having two types of players, with one consuming resources at a
higher rate than the other to derive a unit of utility. More details are included in Section 5.

The results of this paper are particularly important since they

• can be used by a central decision maker in order to make a quantitative decision on
which value of α to choose, in case she decides to employ the α-fairness scheme and
would like a guarantee on the maximum possible efficiency loss,
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Figure 1: Bounds on the price of α-fairness for different values of α in case players have equal
maximum achievable utilities. The bounds are plotted as functions of the number of players n.

• shed light on the principle that a higher value of α (in most cases) incurs a higher
efficiency loss,

• illustrate that the efficiency loss is very small for a small number of players n, and/or
a small value of α,

• allow one to identify near worst-case examples (see Section 5),

• answer the question of how the price of fairness is affected by different parameters. In
particular, a crude analysis suggests that a higher value of α, a higher value of number
of players and asymmetry in the way players utilize the available resources all possibly
result in higher efficiency loss. The bounds on the price of fairness can be used to better
understand the dependence/sensitivity of the efficiency loss on those parameters.

4. The price of fairness

We present the results of this paper, namely near-tight bounds on the price of α-fairness, in
more detail. In the following subsections, we illustrate how this work connects with results
in the literature on the important special cases of proportional and max-min fairness, by
providing a unifying characterization of the price of fairness. Finally, we discuss properties
of the bounds and auxiliary results.

For α = 0, the α-fairness scheme corresponds to the utilitarian principle, since W0 is the
sum of utilities, W0(u) = 1Tu. Hence, for any utility set U that satisfies Assumption 1, the
efficiency of the system is the same under both schemes, i.e., SYSTEM (U) = FAIR (U ; 0),
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and
POF (U ; 0) = 0.

We define a parameterized function that will be useful for the theorems presented below.
For any α > 0, n ∈ N \ {0, 1} and r ≥ 1, let f1 : [1, n]→ R be defined as

f1(x;α, n, r) =
r

1
αx1+ 1

α + n− x
r

1
αx1+ 1

α + (n− x)rx
.

In Section 4.2.1 we show that −f1 is unimodal1 over [1, n] for any α > 0.
We now present the first main result. Recall that the maximum achievable utility of

player j, is defined as

u?j = sup {uj | u ∈ U} , for all j = 1, . . . , n.

Theorem 1. Consider a resource allocation problem with n players, n ≥ 2. Let the utility set,
denoted by U ⊂ Rn+, be compact and convex. If the players have equal maximum achievable
utilities (greater than zero) and α > 0, the price of α-fairness is bounded by

POF (U ;α) ≤ 1− f1(ξ?1 ;α, n, 1),

where

f1(x;α, n, 1) =
x1+ 1

α + n− x
x1+ 1

α + (n− x)x
,

and ξ?1 is the unique value at which f1( . ;α, n, 1) attains its minimum over [1, n].

Note that since −f1 is differentiable and unimodal over [1, n] (by Proposition 2), the
above bound can be routinely calculated. The proof of Theorem 1 is omitted, as it is a
special case of the more general Theorem 2 that follows, in which we relax the constraint of
equal maximum achievable utilities.

Bounds implied by Theorem 1 are shown in Figure 1, for different values of α and as
functions of the number of players n.

In Section 4.2.1 we present a result that illustrates the impact of the inequality aversion
parameter α on the price of fairness in a more clear way. In particular, we show that under
the setup of Theorem 1, the price of α-fairness is bounded by

POF (U ;α) ≤ 1−Θ
(

n−
α
α+1

)

.

We now relax the constraint in Theorem 1 of all players having equal maximum achievable
utilities. Similarly to Theorem 1, we first define a parameterized function that will be useful
to present the result below. For any α ∈ (0, 1), n ∈ N \ {0, 1} and B > 0, let f2 : R+ → R

be defined as

f2(x;α, n,B) =
1

B

(

x+ (n− 1)−
α

1−α

(

Bx−α − x1−α
)

1
1−α

)

.

In Section 4.2.1, we show that f2 is convex.

1For a, b ∈ R with a ≤ b, a function f : [a, b]→ R is unimodal if for some value m, it is strictly increasing
for a ≤ x ≤ m and strictly decreasing for m ≤ x ≤ b. The maximum of f over [a, b] is f(m).
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Theorem 2. Consider a resource allocation problem with n players, n ≥ 2. Let the utility
set, denoted by U ⊂ Rn, be compact and convex. If the maximum achievable utilities of the
players, u?1, . . . , u

?
n, satisfy

L ≤ min
j=1,...,n

u?j ≤ max
j=1,...,n

u?j = B,

for some 0 < L ≤ B, the price of α-fairness is bounded by

POF (U ;α) ≤
{

1−min
{

f1(ξ?1 ;α, n, B
L

), f2(ξ
?
2 ;α, n,B)

}

, if 0 < α < 1,

1− f1(ξ?1 ;α, n, B
L

), if α ≥ 1,

where ξ?1 is the unique value at which f1 attains its minimum over [1, n], and ξ?2 a value at

which f2 attains its minimum over





B
n
, B

( LB )
1−α
α (n−1)+1



.

Proof. Without loss of generality, we assume that U is monotone2. This is because both
schemes we consider, namely utilitarian and α-fairness yield Pareto optimal allocations. In
particular, suppose there exist allocations a ∈ U and b /∈ U , with allocation a dominating
allocation b, i.e., 0 ≤ b ≤ a. Note that allocation b can thus not be Pareto optimal. Then,
we can equivalently assume that b ∈ U , since b cannot be selected by any of the schemes.

Note that the monotonicity assumption and the fact that the jth player has a maximum
achievable utility of u?j also imply that u?jej ∈ U , for all j = 1, . . . , n.

Fix α > 0 and let z = z(α) ∈ U be the unique allocation under the α-fairness criterion
(since Wα is strictly concave for α > 0), and assume, without loss of generality, that

z1 ≥ z2 ≥ . . . ≥ zn. (3)

The necessary first order condition for the optimality of z can be expressed as

∇Wα(z)T (u− z) ≤ 0 ⇒
n
∑

j=1

z−αj (uj − zj) ≤ 0, ∀u ∈ U,

or equivalently
γTu ≤ 1, ∀u ∈ U, (4)

where

γj =
z−αj

∑

i z
1−α
i

, j = 1, . . . , n.

Note that (3) implies
γ1 ≤ γ2 ≤ . . . ≤ γn. (5)

Also, since u?jej ∈ U for all j, (4) yields that

u?jγj = γT (u?jej) ≤ 1 ⇒ γj ≤
1

u?j
, j = 1, . . . , n. (6)

2A set A ⊂ R
n

+ is called monotone if {b ∈ R
n | 0 ≤ b ≤ a} ⊂ A, ∀a ∈ A, where the inequality sign notation

for vectors is used for componentwise inequality.
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We now use (4), and the fact that each player has a maximum achievable utility to bound
the system efficiency under the utilitarian principle as follows:

SYSTEM (U) = max
{

1Tu
∣

∣

∣ u ∈ U
}

≤ max
{

1Tu
∣

∣

∣ 0 ≤ u ≤ u?, γTu ≤ 1
}

. (7)

Using the above inequality,

POF (U ;α) =
SYSTEM (U)− FAIR (U ;α)

SYSTEM (U)

= 1− FAIR (U ;α)

SYSTEM (U)

= 1−
∑n
j=1 zj

SYSTEM (U)

≤ 1−
∑n
j=1 zj

max {1Tu | 0 ≤ u ≤ u?, γTu ≤ 1} . (8)

For a fixed allocation z, the optimal value of the optimization problem in the bound above
is componentwise nondecreasing in u?, since the feasible set expands for higher values of u?.
Thus, to obtain the wost-case bound we consider the case in which u?j attains its highest
value possible, for every j = 1, . . . , n, and satisfy the assumptions of the Theorem. Since
u?j ≤ B and u?j ≤ 1

γj
(by (6)), we deal with the problem with maximum achievable utilities

ū?, such that

ū?j = min

{

B,
1

γj

}

, j = 1, . . . , n, (9)

and
L ≤ min

j=1,...,n
ū?j ≤ max

j=1,...,n
ū?j = B.

The optimization problem in (8) is the linear relaxation of the well-studied knapsack
problem, a version of which we review next. Let v ∈ Rn+ and w ∈ Rn+ be such that
0 < w1 ≤ . . . ≤ wn, and w1v1 ≤ 1. Then, one can show (see [3]) that the linear optimization
problem

maximize 1T y
subject to wTy ≤ 1

0 ≤ y ≤ v,
(10)

has an optimal value equal to
∑`(v,w)
j=1 vj + δ(v, w), where

`(v, w) = max







i

∣

∣

∣

∣

∣

∣

i
∑

j=1

wjvj ≤ 1, i ≤ n− 1







∈ {1, . . . , n− 1} (11)

δ(v, w) =
1−∑`(v,w)

j=1 wjvj

w`(v,w)+1

∈ [0, v`(v,w)+1]. (12)
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We can apply the above result to compute the optimal value of the problem in (8), since
γ and the selected ū? satisfy (5) and (6). Then,

max
{

1Tu
∣

∣

∣ 0 ≤ u ≤ ū?, γTu ≤ 1
}

=
`(ū?,γ)
∑

j=1

ū?j + δ(ū?, γ). (13)

In the above expression, ū?1 is equal to B (as the largest component of ū?). Moreover, all the
remaining components of ū? in the summation are also equal to B. To see this, note that
by the definition of ` we get

`(ū?,γ)
∑

j=1

γjū
?
j ≤ 1.

Suppose that ū?i is not equal to B for some 1 < i ≤ `(ū?, γ). By (9) it follows that ū?i = 1
γi

,
and

`(ū?,γ)
∑

j=1

γjū
?
j > γiū

?
i = γi

1

γi
= 1,

a contradiction. Then, (13) can be further simplified to

max
{

1Tu
∣

∣

∣ 0 ≤ u ≤ ū?, γTu ≤ 1
}

= B`(ū?, γ) + δ(ū?, γ).

The bound from (8) can now be rewritten,

POF (U ;α) ≤ 1−
∑n
j=1 zj

B`(ū?, γ) + δ(ū?, γ)
. (14)

Consider the set S in the (n+ 3)-dimensional space, defined by the following constraints
with variables d ∈ R, λ ∈ N and x1, . . . , xλ, xλ+1, xλ+1, xλ+2, . . . , xn ∈ R:

0 ≤ d ≤ 1 (15a)

1 ≤ λ ≤ n− 1 (15b)

0 ≤ xn ≤ . . . ≤ xλ+2 ≤ xλ+1 ≤ xλ+1 ≤ xλ ≤ . . . ≤ x1 ≤ B (15c)

Lx−αn ≤ x1−α
1 + . . .+ x1−α

λ + d x1−α
λ+1 + (1− d) x1−α

λ+1 + x1−α
λ+2 + . . .+ x1−α

n (15d)

B
(

x−α1 + . . .+ x−αλ + d x−αλ+1

)

≤
x1−α

1 + . . .+ x1−α
λ + d x1−α

λ+1 + (1− d) x1−α
λ+1 + x1−α

λ+2 + . . .+ x1−α
n . (15e)

We show that
∑n
j=1 zj

B`(ū?, γ) + δ(ū?, γ)
≥ min

(d,λ,x)∈S

x1 + . . .+ xλ + d xλ+1 + (1− d) xλ+1 + xλ+2 + . . .+ xn
Bλ+Bd

.

(16)
We pick values for d, λ and x that are such that (a) they are feasible for S, and (b) the
function argument of the minimum, if evaluated at (d, λ, x), is equal to the left-hand side of
(16). In particular, let

d =
δ(ū?, γ)

B
, λ = `(ū?, γ),

xj = zj , j 6= λ+ 1, xλ+1 = xλ+1 = zλ+1.
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Then, (15a), (15b) and (15c) are satisfied because of (12), (11) and (3) respectively. By the
definition of γ and the selected value of x, (15d) can be equivalently expressed as

γn ≤
1

L
,

which is implied by ū?j ≥ L and (5). Similarly, (15e) is equivalent to

Bγ1 + . . .+Bγ`(ū?,γ) + δ(ū?, γ)γ`(ū?,γ)+1 ≤ 1,

which again holds true (by (12)). The function argument of the minimum, evaluated to the
selected point, is clearly equal to the left-hand side of (16). Finally, the minimum is attained
by the Weierstrass Theorem, since the function argument is continuous, and S is compact.
Note that (15d) in conjunction with (15c) bound xn away from 0. In particular, if α ≥ 1,
we get

Lx−αn ≤ x1−α
1 + . . .+ x1−α

n ≤ nx1−α
n ⇒ xn ≥

L

n
.

Similarly, for α < 1 we get

xn ≥
(

L

n

)

1
α

B
α−1
α .

To evaluate the minimum in (16), one can assume without loss of generality that for a
point (d′, λ′, x′) ∈ S that attains the minimum, we have

x′1 = . . . = x′λ = x′λ+1, x′λ+1 = x′λ+2 = . . . = x′n. (17)

Technical details are included in Section 4.2.2. Using this observation, we can further simplify
(16). In particular, consider the set T ⊂ R3, defined by the following constraints (with
variables x1, x2 and y):

0 ≤ x2 ≤ x1 ≤ B (18a)

1 ≤ y ≤ n (18b)

Lx−α2 ≤ yx1−α
1 + (n− y)x1−α

2 (18c)

Byx−α1 ≤ yx1−α
1 + (n− y)x1−α

2 . (18d)

We show that

min
(d,λ,x)∈S

x1 + . . .+ xλ + d xλ+1 + (1− d) xλ+1 + xλ+2 + . . .+ xn
Bλ +Bd

≥ min
(x1,x2,y)∈T

yx1 + (n− y)x2

By
.

(19)
Let (d′, λ′, x′) ∈ S be a point that attains the minimum of the left hand side above, satisfying
(17). We construct a point (x1, x2, y) ∈ T , for which the objective of the minimum on the
right hand side of (19) is equal to the minimum of the left hand side. Let x1 = x′1, x2 = x′n
and y = λ′ + d′. Using (17) and the selected values for x1, x2 and y, we have that (15c)
implies (18a) and that (15a - 15b) imply (18b). Similarly, (15d - 15e) imply (18c - 18d)
respectively. To show that the minimum of the right hand side of (19) is attained, one can
use a similar argument as in showing (16).
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If we combine (14), (16), (19) we get

POF (U ;α) ≤ 1− min
(x1,x2,y)∈T

yx1 + (n− y)x2

By
. (20)

The final step is the evaluation of the minimum above. Let (x?1, x
?
2, y
?) ∈ T be a point

that attains the minimum. Then, we have

y? < n, x?2 < x?1. (21)

To see this, suppose that x?2 = x?1. Then, the minimum is equal to
nx?1
By?

. But, constraint (18d)

yields that nx?1 ≥ By?, in which case the minimum is greater than or equal to 1. Then, (20)
yields that the price of fairness is always 0, a contradiction. If y? = n, (18d) suggests that

x?1 = B. Also, the minimum is equal to
x?1
B

, thus equal to 1, a contradiction.
We now argue for α ≥ 1 and α < 1 separately.

α ≥ 1 : Suppose that both (18c-18d) are inactive at (x?1, x
?
2, y
?). Then, a small enough reduction

in the value of x?2 preserves feasibility (with respect to T ), and also yields a strictly
lower value for the minimum (since y? < n, by (21)), thus contradicting that the point
attains the minimum. If α = 1 and one of (18c-18d) is inactive, the right-hand side of
both is equal to n. Then, we can simply reduce the variable that figures in the inactive
constraint, preserving feasibility, and achieving a strictly lower value for the minimum.
If α > 1, then we can jointly reduce x?1 and x?2, possibly by different amounts, such
that the active of the two constraints remains active. We again have preservation of
feasibility (since also 0 < x?2 < x?1, by (21)) for small enough reductions, and a strictly
lower value for the minimum. It follows that (x?1, x

?
2, y
?) satisfies (18c) and (18d) with

equality.

Since for any point that attains the minimum constraints (18c-18d) are active, we can
use the corresponding equations to solve for x1 and x2. We get

x1 =

(

yB
L

)
1
α L

n− y + y
1
α

(

B
L

)
1
α
−1

(22)

x2 =
L

n− y + y
1
α

(

B
L

)
1
α
−1
. (23)

Note that for 1 ≤ y ≤ n, we clearly have that 0 ≤ x2 ≤ x1 ≤ B. Also, the objective of
the minimum evaluates to

(

B
L

)
1
α y1+ 1

α + n− y
(

B
L

)
1
α y1+ 1

α + (n− y)
(

B
L

)

y
= f1

(

y;α, n,
B

L

)

,

if we substitute for x1, x2. Thus, (20) can be rewritten as

POF (U ;α) ≤ 1− min
(x1,x2,y)∈T

yx1 + (n− y)x2

By
= 1− f1

(

ξ?1 ;α, n,
B

L

)

. (24)

Note that ξ?1 is unique, since by Proposition 2, −f1 is unimodal.
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α < 1 : Suppose that (18d) is inactive at (x?1, x
?
2, y
?). Then, we can increase y? by a small

positive value ε, such that (18d) and (18b) are still satisfied. Constraint (18c) is then
relaxed, since (x?1)1−α > (x?2)

1−α. The minimum then has a strictly lower value, a
contradiction. Hence, (18d) is active at any point that attains the minimum.

We now show that at least one of the following is true: y? = 1, or (18c) is active at
(x?1, x

?
2, y
?). Since (18d) holds with equality, we can solve for y and substitute back its

value. The objective of the minimum then becomes

x1 + xα2 (Bx−α1 − x1−α
1 )

B
, (25)

and the constraints defining the set T simplify to

0 ≤ x2 ≤ x1 ≤ B (26a)

Bx−α1 − x1−α
1 + x1−α

2 ≤ nx1−α
2 (26b)

Bx−α1 − x1−α
1 + x1−α

2 ≤ n
B

L
x−α1 x2. (26c)

In particular, constraints (26b) and (26c) correspond to constraints y ≥ 1 and (18c)
accordingly. Note that if x2 = 0 at a point that attains the minimum, we get x1 ≥ B
from (26b) and the minimum is equal to x1

B
≥ 1, a contradiction. If both (26b-26c) are

not active at a point that attains the minimum, we can simply reduce x2 by a small
amount to preserve feasibility and achieve a strictly lower objective, a contradiction.

If (18c) is active, i.e., (26c) also, then we recover the case analyzed above for a ≥ 1; in
particular, x1 and x2 take the form as in (22-23), and the price of fairness is bounded
as in (24).

If y ≥ 1 is active, i.e., (26b) is active, we can solve for x2:

x2 = (n− 1)−
1

1−α

(

Bx−α1 − x1−α
1

)
1

1−α , (27)

in which case the objective (25) is equal to f2(x1;α, n,B). Similarly, constraints (26a)
and (26c) become

x1 ≥
B

n
, and

x1 ≤
B

(

L
B

)
1−α
α (n− 1) + 1

respectively. Thus, (20) can be rewritten as

POF (U ;α) ≤ 1− min
(x1,x2,y)∈T

yx1 + (n− y)x2

By

= 1− min
B
n
≤x1≤

B

( LB )
1−α
α (n−1)+1

f2 (x1;α, n,B)

= 1− f2 (ξ?2 ;α, n,B) .
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Figure 2: Bounds on the price of α-fairness for different values of α as implied by Theorems
1, 2. On the left, players have equal maximum achievable utilities and the bounds are plotted
as functions of the number of players n. On the right, the bounds are plotted as functions of
B/L, for the case of n = 5 players and B = 1.

By combining the two cases for α < 1, we get

POF (U ;α) ≤ 1−min
{

f1

(

ξ?1 ;α, n,
B

L

)

, f2 (ξ?2 ;α, n,B)
}

.

Note that the result from Theorem 1 follows from the fact that for L = B we get ξ?2 = B
n

and f2(ξ
?
2 ;α, n,B) = 1. �

Figure 2 depicts the bounds on the price of fairness implied by Theorems 1 and 2, for some
choices of the parameters they depend on. The graph on the left illustrates the dependence
of the bound on the number of players, for different values of α and in case all players have
equal maximum achievable utilities. The graph on the right, illustrates the dependence on
potential asymmetry of the maximum achievable utilities (i.e., B/L greater than 1), for
different values of α and in case of n = 5 players, B = 1.

Note that one can very efficiently evaluate the bound on the price of fairness for a fixed
α, number of players n and the bounds on the maximum achievable utilities of the players B
and L, since it involves only to evaluate the minima of at most two diffentiable functions over
an interval, with one function being convex and the negative of the other being unimodal
(see Proposition 2).

4.1. The special cases of proportional and max-min fairness

In this section, we show that our results capture special cases presented in the literature.
In particular, the price of proportional and max-min fairness is studied in [4], primarily for
the case of equal maximum achievable utilities. Since proportional and max-min fairness
are both captured within the α-fairness framework, for α = 1 and α →∞ respectively (see
Section 2), the price of proportional fairness is equal to POF (U ; 1), whereas we denote the

14



price of max-min fairness with POF (U ;∞). The results in [4] imply that, in case of equal
maximum achievable utilities,

POF (U ; 1) ≤ 1− 2
√
n− 1

n
, POF (U ;∞) ≤ 1− 4n

(n + 1)2
.

The following proposition shows that our analysis recovers those results as special cases.

Proposition 1. Consider a resource allocation problem with n players, n ≥ 2. Let the util-
ity set, denoted by U ⊂ Rn, be compact and convex. If the players have equal maximum
achievable utilities (greater than zero),

POF (U ; 1) ≤ 1− 2
√
n− 1

n
. (price of proportional fairness)

Let {αk ∈ R | k ∈ N} be a sequence such that αk →∞ and αk ≥ 1, ∀k. Then,

lim sup
k→∞

POF (U ;αk) ≤ 1− 4n

(n + 1)2
. (price of max-min fairness)

Proof. Using Theorem 1 for α = 1 we get

POF (U ; 1) ≤ 1− min
x∈[1,n]

f1(x; 1, n, 1)

= 1− min
x∈[1,n]

x2 + n− x
nx

= 1− 2
√
n− 1

n
.

Similarly, for any k ∈ N and α = αk

POF (U ;αk) ≤ 1− min
x∈[1,n]

f1(x;αk, n, 1),

which implies that

lim sup
k→∞

POF (U ;αk) ≤ lim sup
k→∞

(

1− min
x∈[1,n]

f1(x;αk, n, 1)

)

≤ 1− lim inf
k→∞

min
x∈[1,n]

f1(x;αk, n, 1). (28)

Consider the set of (real-valued) functions {f1( . ;αk, n, 1) | k ∈ N} defined over the com-
pact set [1, n]. We show that the set is equicontinuous, and that the closure of the set
{f1(x;αk, n, 1) | k ∈ N} is bounded for any x ∈ [1, n]. Boundedness follows since 0 ≤
f1(x;α, n, 1) ≤ 1 for any α > 0 and x ∈ [1, n]. The set of functions {f1( . ;αk, n, 1) | k ∈ N}
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shares the same Lipschitz constant, as for any k ∈ N, αk ≥ 1 and x ∈ [1, n] we have

|f ′1(x;αk, n, 1)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1− 1
αk

)

x
2+ 1
αk + n+1

αk
x

1+ 1
αk − n

(

1 + 1
αk

)

x
1
αk − (x− n)2

(

x
1+ 1
αk + (n− x)x

)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

(

1− 1

αk

)

x
2+ 1
αk +

n+ 1

αk
x

1+ 1
αk − n

(

1 +
1

αk

)

x
1
αk − (x− n)2

∣

∣

∣

∣

≤
(

1− 1

αk

)

x
2+ 1
αk +

n + 1

αk
x

1+ 1
αk + n

(

1 +
1

αk

)

x
1
αk + (x− n)2

≤ n3 + (n+ 1)n2 + 2n2 + n2 = 2(n3 + 2n2).

As a result, the set of functions {f1( . ;αk, n, 1) | k ∈ N} is equicontinuous.
Using the above result,

lim
k→∞

min
x∈[1,n]

f1(x;αk, n, 1) = min
x∈[1,n]

lim
k→∞

f1(x;αk, n, 1).

Thus, (28) yields

lim sup
k→∞

POF (U ;αk) ≤ 1− lim inf
k→∞

min
x∈[1,n]

f1(x;αk, n, 1)

= 1− min
x∈[1,n]

lim
k→∞

f1(x;αk, n, 1)

= 1− min
x∈[1,n]

lim
k→∞

x
1+ 1
αk + n− x

x
1+ 1
αk + (n− x)x

= 1− min
x∈[1,n]

n

x+ (n− x)x

= 1− 4n

(n+ 1)2
. �

4.2. Auxiliary results

In this section, we provide technical details for the auxiliary results that were presented and
used above without proof.

4.2.1. Properties of the bounds

First, we show that the parameterized functions, f1 and f2, used to present the main results
have properties that allow one to efficiently calculate the bounds provided.

Proposition 2. Let n ∈ N \ {0, 1}. Then,

(a) −f1 is unimodal over [1, n], for any α > 0 and r ≥ 1,

(b) f2 is convex, for any α ∈ (0, 1) and B > 0.
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Proof. (a) We drop the parameters α, n and r from the argument of f1 to simplify notation.
The derivative of f1 is

f ′1(x) =
g(x)

(

r
1
αx1+ 1

α + (n− x)rx
)2 ,

where

g(x) =
(

1− 1

α

)

r1+ 1
αx2+ 1

α +
r

1
α

α
(nr + 1)x1+ 1

α − n
(

1 +
1

α

)

r
1
αx

1
α − r (x− n)2 .

Note that the sign of the derivative is determined by g(x), since the denominator is positive
for 1 ≤ x ≤ n, that is,

sgn f ′1(x) = sgn g(x). (29)

We will show that g is strictly increasing over [1, n]. To this end, we have

g′(x) = r
1
αx

1
α
−1q(x) + 2r(n− x),

where

q(x) =
(

2 +
1

α

)(

1− 1

α

)

rx2 +
(

1 +
1

α

)(

nr + 1

α

)

x− n

α

(

1 +
1

α

)

.

Since we are interested in the domain [1, n], it suffices to show that q(x) > 0 over it. For
α > 1, q is a convex quadratic, with its minimizer being equal to

−
(

1 + 1
α

) (

nr+1
α

)

2
(

2 + 1
α

) (

1− 1
α

)

r
< 0.

Hence, q(x) ≥ q(1) for x ∈ [1, n]. Similarly, for α < 1, q is a concave quadratic, and as such,
for x ∈ [1, n] we have q(x) ≥ min{q(1), q(n)}. For α = 1, q(x) = 2(nr + 1)x− 2n, which is
positive for x ≥ 1. Then, q(x) > 0 in [1, n] for all α > 0, if and only if q(1) > 0 and q(n) > 0.
Note that for r = 1, we get q(1) = 2 and q(n) = 2n2, and

dq(1)

dr
= 2 > 0,

dq(n)

dr
= 2n2 > 0,

which demonstrates that q(1) and q(n) are positive. Furthermore,

g(n) = r
1
αn1+ 1

α (rn− 1) > 0.

Using the above, the fact that g is continuous and strictly increasing over [1, n] and (29), we
deduce that if g(1) < 0, there exists a unique m ∈ (1, n) such that

sgn f ′1(x)

{

< 0, if 1 ≤ x < m,
> 0, if m < x ≤ n.

Similarly, if g(1) ≥ 0, f1 is strictly increasing for 1 ≤ x ≤ n. It follows that −f1 is unimodal.
(b) For α ∈ (0, 1) and x > 0, x−α is convex and x1−α concave. It follows that Bx−α−x1−α

is convex. Moreover, x
1

1−α is convex and nondecreasing. Hence, the composition of those

two functions, (Bx−α − x1−α)
1

1−α , is convex (see Section 3.2.4 in [6]). It follows that f2 is
convex. �

17



The next result deals with an asymptotic analysis of the bound implied by Theorem 1.
The analysis illustrates the dependence of the bound on the risk aversion parameter α in a
more clear way.

Proposition 3. Under the setup of Theorem 1, the price of α-fairness is bounded by

POF (U ;α) ≤ 1−Θ
(

n−
α
α+1

)

.

Proof. Let θn = n
α
α+1 . Using the mean value Theorem, for every n ≥ 2, there exists a

ψn ∈ [θn, ξ
?
1 ] (or [ξ?1, θn], depending on if θn ≤ ξ?1), such that

f1(θn;α, n, 1) = f1(ξ?1;α, n, 1) + f ′1(ψn;α, n, 1)(θn − ξ?1),

or, equivalently,
f1(ξ?1 ;α, n, 1)

f1(θn;α, n, 1)
= 1− f ′1(ψn;α, n, 1)(θn − ξ?1)

f1(θn;α, n, 1)
.

We will show that, for a sufficiently small ε > 0

(a) f ′1(ψn;α, n, 1) = O
(

n−
min{1,α}+2α

α+1
+2ε
)

,

(b) θn − ξ?1 = O
(

n
α
α+1

+ε
)

,

(c) f1(θn;α, n, 1) = Θ
(

n−
α
α+1

)

.

Using the above facts, it is easy to see that

f1(ξ
?
1 ;α, n, 1)

f1(θn;α, n, 1)
= 1− f ′1(ψn;α, n, 1)(θn − ξ?1)

f1(θn;α, n, 1)
= 1−O

(

n−
min{1,α}
α+1

+3ε
)

→ 1,

and thus f1(ξ?1 ;α, n, 1) = Θ
(

n−
α
α+1

)

, which will complete the proof.

(a) We first show that for any sufficiently large n,

n
α
α+1
−ε ≤ ξ?1 ≤ n

α
α+1

+ε. (30)

By Proposition 2, ξ?1 is the unique root of g (defined therein) in the interval [1, n]. Moreover,
g is strictly increasing. The dominant term of

g
(

n
α
α+1
−ε
)

=
(

1− 1

α

)

n(2+ 1
α)( α

α+1
−ε) +

1

α
n1−α+1

α
ε +

1

α
n2−α+1

α
ε

−
(

1 +
1

α

)

n1+ 1
α+1
− 1
α
ε − n2 − n 2α

α+1
−2ε + 2n1+ α

α+1
−ε,

is −n2, and hence, for sufficiently large n we have g
(

n
α
α+1
−ε
)

< 0. Similarly, the dominant

term of g
(

n
α
α+1

+ε
)

is 1
α
n2+α+1

α
ε, and for sufficiently large n we have g

(

n
α
α+1

+ε
)

> 0. The claim

then follows. Using the above bound, for sufficiently large n, we also get that ψn ≥ n
α
α+1
−ε.
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We now provide a bound for the denominator of f ′1(ψn;α, n, 1). In particular, for sufficiently
large n, we get that for x ≤ n

α
α+1

+ε,

d

dx

(

x1+ 1
α + nx− x2

)

=
(

1 +
1

α

)

x
1
α + n− 2x > 0,

which shows that the denominator is strictly increasing. Hence, using the lower bound on
ψn,

1
(

ψ
1+ 1
α

n + nψn − ψ2
n

)2 ≤
1

(

n( α
α+1
−ε)(1+ 1

α) + n1+ α
α+1
−ε − n 2α

α+1
−2ε
)2

≤ n−2− 2α
α+1

+2ε

(

n−
α
α+1
− 1
α
ε + 1− n− 1

α+1

)2 = O
(

n−2− 2α
α+1

+2ε
)

.

We now provide a bound for the numerator. Since g is strictly increasing and ξ?1 is a root,
we get

|g (ψn)| ≤ |g (θn)|

=
∣

∣

∣

∣

(

1− 1

α

)

α
2α+1
α+1 n−

1
α+1

+2 + n−
(

1 +
1

α

)

α
1
α+1n−

α
α+1

+2 − α 2α
α+1n−

2
α+1

+2 + 2α
α
α+1n−

1
α+1

+2
∣

∣

∣

∣

= O
(

n−
min{1,α}
α+1

+2
)

.

If we combine the above results, we get f ′1(ψn;α, n, 1) = O
(

n−
min{1,α}+2α

α+1
+2ε
)

.

(b) Follows from (30).
(c) We have

f1(θn;α, n, 1) =
n+ n− n α

α+1

n + n1+ α
α+1 − n 2α

α+1

=
n
(

2− n− 1
α+1

)

n1+ α
α+1

(

n−
α
α+1 + 1− n− 1

α+1

) = Θ
(

n−
α
α+1

)

. �

4.2.2. Characterization of the central optimization problem in Theorem 2

We conclude by providing technical details about the simplifying assumption (17), used in
the proof of Theorem 2.

Proposition 4. For a point (d, λ, x) ∈ S that attains the minimum of (16),

(a) if λ+ 1 < n, then without loss of generality

xλ+1 = xλ+2 = . . . = xn, and,

(b) without loss of generality
x1 = . . . = xλ = xλ+1.
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Proof. (a) We drop the underline notation for xλ+1 to simplify notation. Suppose that
xj > xj+1, for some index j ∈ {λ+ 1, . . . , n− 1}. We will show that there always exists a
new point, (d, λ, x′) ∈ S, for which x′i = xi, for all i ∈ {1, . . . , n} \ {j, j + 1}, and which
either achieves the same objective with x′j = x′j+1, or it achieves a strictly lower objective.

If j = λ + 1 and d = 1, we set x′j = x′j+1 = xj+1. The new point is feasible, and the
objective attains the same value.

Otherwise, let x′j = xj − ε, for some ε > 0. We have two cases.

α ≥ 1: Let x′j+1 = xj+1 and pick ε small enough, such that x′j ≥ x′j+1. Moreover, for the new
point (compared to the feasible starting point) the left-hand sides of (15d) and (15e)
are unaltered, whereas the right-hand sides are either unaltered (for α = 1) or greater,
since x1−α

j < (xj − ε)1−α for α > 1. Hence, the new point is feasible. It also achieves a
strictly lower objective value.

α < 1: Let x′j+1 = xj+1 + ρbε, where

b =

{

1− d, if j = λ+ 1,
1, otherwise,

ρ ∈
(

x−αj
x−αj+1

, 1

)

.

For ε small enough, we have x′j ≥ x′j+1. For the new point, the left-hand side of (15d)
either decreases (if j + 1 = n), or remains unaltered. The left-hand side of (15e)
remains also unaltered. For the right-hand sides, since the only terms that change are
those involving xj and xj+1, we use a first order Taylor series expansion to get

b
(

x′j
)1−α

+
(

x′j+1

)1−α
= b (xj − ε)1−α + (xj+1 + ρbε)1−α

= bx1−α
j − bε(1− α)x−αj + x1−α

j+1 + ρbε(1− α)x−αj+1 +O(ε2)

=
(

bx1−α
j + x1−α

j+1

)

+ b(1− α)
(

ρx−αj+1 − x−αj
)

ε+O(ε2).

By the selection of ρ, the coefficient of the first order term (with respect to ε) above is
positive, and hence, for small enough ε we get

b
(

x′j
)1−α

+
(

x′j+1

)1−α
> bx1−α

j + x1−α
j+1 .

That shows that the right hand side increases, and the new point is feasible. Finally,
the difference in the objective value is −bε+ ρbε, and thus negative.

(b) We drop the overline notation for xλ+1 to simplify notation. Suppose that xj > xj+1,
for some index j ∈ {1, . . . , λ}.

We will show that there always exists a new point, (d, λ, x′) ∈ S, for which x′i = xi, for
all i ∈ {1, . . . , n} \ {j, j + 1}, and which either achieves the same objective with x′j = x′j+1,
or it achieves a strictly lower objective.

If j + 1 = λ + 1 and d = 0, we set x′j = x′j+1 = xj . The new point is feasible, and the
objective attains the same value.
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Otherwise, let

x′j = xj − ε
x′j+1 = xj+1 + ρcε,

for some ε > 0, where

ρ ∈
(

xj+1

xj
,
x−αj+1

x−αj

)

c =
x−αj
bx−αj+1

b =

{

d, if j + 1 = λ+ 1,
1, otherwise.

For ε small enough, we have x′j ≥ x′j+1. For the new point, the left-hand side of (15d)
remains unaltered. For the left-hand side of (15e) we use a first order Taylor series expansion
(similarly as above) to get

(

x′j
)−α

+ b
(

x′j+1

)−α
= (xj − ε)−α + b (xj+1 + ρcε)−α

= x−αj + εαx−α−1
j + bx−αj+1 − bρcεαx−α−1

j+1 +O(ε2)

=
(

x−αj + bx−αj+1

)

+ εαx−α−1
j − ρεαx−αj x−1

j+1 +O(ε2)

=
(

x−αj + bx−αj+1

)

+ αx−α−1
j

(

1− ρ xj
xj+1

)

ε+O(ε2).

By the selection of ρ, the coefficient of the first order term (with respect to ε) above is
negative, and hence, for small enough ε we get that the left-hand side decreases.

For the right-hand side of (15d) and (15e), we similarly get that

(

x′j
)1−α

+ b
(

x′j+1

)1−α
= (xj − ε)1−α + b (xj+1 + ρcε)1−α

= x1−α
j − ε(1− α)x−αj + bx1−α

j+1 + bρcε(1− α)x1−α
j+1 +O(ε2)

=
(

x1−α
j + bx1−α

j+1

)

+ (1− α)x−αj (ρ− 1) ε+O(ε2).

If for α > 1 we pick ρ < 1, and for α < 1 we pick ρ > 1, the first order term (with respect to
ε) above is positive, and hence, for small enough ε we get that the right-hand side increases
for α 6= 1. For α = 1, the right-hand side remains unaltered.

In all cases, the new point is feasible, and the difference in the objective value is

−ε+ ρcbε = (ρcb− 1) ε =

(

ρ
x−αj
x−αj+1

− 1

)

ε,

and thus negative (by the selection of ρ). �
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5. Near worst-case examples

In this section, we demonstrate how one can construct near worst-case examples, for which
the price of fairness is very close to the bounds implied by Theorems 1 and 2, for any values
of the problem parameters; the number of players n, the value of the inequality aversion
parameter α, and the bounds on the maximum achievable utilities of the players, B and L.
In the following subsection, we provide an application for illustration purposes.

In [4], the authors demonstrate that, primarily for equal maximum achievable utilities,
the bounds on the price of fairness are tight for the special cases of proportional fairness, if√
n is an integer, and for max-min fairness, for all n. In this work we deal with the more

general case of α-fairness and unequal maximum achievable utilities. The examples suggest
that the bounds are very strong, near-tight. In particular, in the presented cases below, the
bounds are greater than the actual price of fairness by at most 0.005 on average, and by
0.023 at most.

For any n ∈ N \ {0, 1}, α > 0 and 0 < L ≤ B we create a utility set using Procedure 1.

Procedure 1 Creation of near worst-case utility set

Input: n ∈ N \ {0, 1}, α > 0, 0 < L ≤ B
Output: utility set U

1: compute ξ?1 and f1 (ξ?1;α, n,B/L) (as in Theorem 2)
2: if α < 1 then

3: compute ξ?2 and f2 (ξ?2 ;α, n,B) (as in Theorem 2)
4: end if

5: if α < 1 and f2 (ξ?2 ;α, n,B) < f1 (ξ?1 ;α, n,B/L) then

6: y ← 1
7: x1 ← ξ?2

8: x2 ← (n− 1)−
1

1−α

(

Bx−α1 − x1−α
1

)
1

1−α (as in (27))
9: else

10: y ← ξ?1

11: x1 ← ( yBL )
1
αL

n−y+y
1
α (BL )

1
α−1

(as in (22))

12: x2 ← L

n−y+y
1
α (BL )

1
α−1

(as in (23))

13: end if

14: `← min {round(y), n− 1}
15: γi ← x−α

i

yx1−α
1 +(n−y)x1−α

2

for i = 1, 2

16: u?j ← B for j = 1, . . . , `

17: u?j ← min
{

1
γ2
, B
}

for j = `+ 1, . . . , n

18: U ←
{

u ∈ Rn+

∣

∣

∣ γ1u1 + . . .+ γ1u` + γ2u`+1 + . . .+ γ2un ≤ 1, uj ≤ u?j ∀j
}

The following proposition demonstrates why Procedure 1 creates utility sets that achieve
a price of fairness very close to the bounds implied by Theorem 2.
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Proposition 5. For any n ∈ N \ {0, 1}, α > 0, 0 < L ≤ B, the output utility set U of
Procedure 1 satisfies the conditions of Theorem 2. If y ∈ N, the output utility set U satisfies
the bound of Theorem 2 with equality.

Proof. The output utility set U is a bounded polyhehron, hence convex and compact.
Boundedness follows from positivity of γ1 and γ2.

Note that the selection of x1, x2 and y in Procedure 1 corresponds to a point that attains
the minimum of (20), hence all properties quoted in the proof of Theorem 2 apply. In
particular, by (15d) we have Lγ2 ≤ 1 and (18d) is tight, Byγ1 = 1. Moreover, the bound
from Theorem 2 can be expressed as

POF (U ;α) ≤ 1− yx1 + (n− y)x2

By
.

The maximum achievable utility of the jth player is equal to u?j . To see this, note that the
definition of U includes the constraint uj ≤ u?j , so it suffices to show that u?jej ∈ U . For j ≤ `,

u?j = B, and γ1B ≤ γ1yB = 1. For j > `, u?j = min
{

1
γ2
, B
}

and γ2 min
{

1
γ2
, B
}

≤ γ2
1
γ2

= 1.

Note also that min
{

1
γ2
, B
}

≥ L, since B ≥ L and Lγ2 ≤ 1. It follows that U satisfies the
conditions of Theorem 2.

Suppose that y ∈ N. By (21) and the choice of ` in Procedure 1, we get ` = y. Consider
the vector z ∈ Rn with z1 = . . . = z` = x1 and z`+1 = . . . = zn = x2. Then, the sufficient
first order optimality condition for z to be the α-fair allocation of U is satisfied, as for any
u ∈ U
n
∑

j=1

z−αj (uj − zj) = x−α1 (u1 + . . .+ u`) + x−α2 (u`+1 + . . .+ un)− yx1−α
1 − (n− y)x1−α

2 ≤ 0,

since γ1(u1 + . . .+ u`) + γ2(u`+1 + . . .+ un) ≤ 1. Hence,

FAIR (U ;α) = 1T z = yx1 + (n− y)x2.

For the efficiency-maximizing solution, since Byγ1 = 1, we get

SYSTEM (U) = By.

Then,

POF (U ;α) = 1− yx1 + (n− y)x2

By
,

which is exactly the bound from Theorem 2. �

The above result illustrates that one should expect Procedure 1 to generate examples
that have a price of fairness very close to the established bounds. In particular, Proposition
5 shows that the source of error between the price of fairness for the utility sets generated
by Procedure 1 and the bound is the (potential) non-integrality of y. In case that error is
“large”, one can search in the neighborhood of parameters γ1 and γ2 for an example that
achieves a price closer to the bound, for instance by using finite-differencing derivatives and
a gradient descent method (respecting feasibility).
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Figure 3: The price of α-fairness for the examples of Section 5 (markers), for different values of
α. The corresponding bounds are also plotted (lines). On the left, players have equal maximum
achievable utilities, B = L, and the values / bounds are plotted as functions of the number of
players n. On the right, the values / bounds are plotted as functions of B/L, for the case of
n = 5 players and B = 1.

Figure 3 illustrates the results of the above method. In particular, we use Procedure
1 to generate examples, and if the price is smaller than the bound minus 0.025, we use a
gradient descent method to get a better example. In both graphs, the lines illustrate the
bounds, whereas the markers show the price of the generated utility set examples. The graph
on the left deals with the case of all players having equal maximum achievable utilities, for
different values of α and n. The graph on the right, deals with cases of assymetry of the
maximum achievable utilities (i.e., B/L greater than 1), for different values of α and in case
of n = 5 players, B = 1. Out of the 152 examples depicted (as markers), the gradient descent
improvement was employed 26 times. The average discrepancy between the bound and the
values is 0.005, and the largest discrepancy is 0.023.

Finally, note that the structure of the near worst-case examples above pertains to a case
of a single resource shared by n players, who can be of two types. Players of the first type
consume the resource at a lower rate, for a unit of utility, compared to players of the second
type (the rates in the examples above are γ1 and γ2, respectively). In the next section,
we further illustrate the structure of the worst-case examples for a problem of bandwidth
allocation on a communication network

5.1. Near worst-case bandwidth allocation

We illustrate the structure of the worst-case examples for the price of α-fairness via means
of a bandwidth allocation problem in a network.

The network consists of hubs (nodes) that are connected via capacitated links (edges).
Clients, or flows, wish to establish transmission from one hub to another over the network,
via a pre-specified and fixed route. The network administrator needs to decide on the
transmission rate assigned to each flow, subject to capacity constraints. The resources to be
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Figure 4: The network flow topology in case of n = 5 and y = 3, for the example in Section
5.1.

allocated in this case are the available bandwidth of the links, the players are the flows, and
the central decision maker is the network administrator. The utility derived by each player
is equal to his assigned transmission rate.

In the above setup, if all links have capacity of 1, then, each player has a maximum
achievable utility of 1, which is trivially achieved if all other flows are assigned zero rates.
Thus, Theorem 1 applies. Moreover, one can utilize Proposition 5 and Procedure 1 to
construct near worst-case network topologies. In particular, one can show that the line-
graph discussed below, actually corresponds to a worst-case topology in this setup.

Suppose that we fix the number of players n ≥ 2, the desired inequality aversion pa-
rameter α > 0, and follow Procedure 1. Further suppose that y ∈ N, as in Proposition 5.
Consider then a network with y links of unit capacity, in a line-graph topology: the routes
of the first y flows are disjoint and they all occupy a single (distinct) link. The remaining
n− y flows have routes that utilize all y links. The described network topology is shown in
Figure 4, for y = 3 and n = 5. Each flow derives a utility equal to its assigned nonnegative
rate, which we denote u1, . . . , un. We next show that the price of α-fairness for this network
is equal to the bound of Theorem 1.

The output utility set of Procedure 1 achieves the bound, by Proposition 5, since y ∈ N.
Moreover, since B = L = 1 in this setting, we also get that yγ1 = 1 and γ2 = 1. Hence, the
output utility set that achieves the bound can be formulated as

U = {u ≥ 0 |u1 + . . .+ uy + y (uy+1 + . . .+ un) ≤ y, u ≤ 1} .

The utility set corresponding to the line-graph example above can be expressed using
the nonnegativity constraints of the flow rates, and the capacity constraints on each of the
y links as follows,

U = {u ≥ 0 |uj + uy+1 + . . .+ un ≤ 1, j = 1, . . . , y} .

Clearly, the maximum system efficiency under both sets is equal to y, simply by setting
the first y components of u to 1. It suffices then to show that the two sets also share the
same α-fair allocation. In particular, by symmetry of U and strict concavity of Wα, if uF is
its α fair allocation, then uF1 = . . . = uFy , and uFy+1 = . . . = uFn . As a result, it follows that

uF ∈ U . Finally, noting that all inequalities in the definition of U are also valid for U , it
follows that U ⊂ U and that uF is also the α-fair allocation of U .
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