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he recent financial crisis highlights the importance of market crashes and the subsequent market illiquidity

for optimal portfolio selection. We propose a tractable and flexible portfolio choice model where market
crashes can trigger switching into another regime with a different investment opportunity set. We characterize
the optimal trading strategy in terms of coupled integro-differential equations and develop a quite general itera-
tive numerical solution procedure. We conduct an extensive analysis of the optimal trading strategy. In contrast
to standard portfolio choice models, changes in the investment opportunity set in one regime can affect the
optimal trading strategy in another regime even in the absence of transaction costs. In addition, an increase in
the expected jump size can increase stock investment even when the expected return remains the same and the
volatility increases. Moreover, we show that misestimating the correlation between market crashes and market

illiquidity can be costly to investors.
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1. Introduction

The recent financial crisis highlights several poten-
tially important fundamental elements for optimal
portfolio choice. First, event risks such as a market
crash may be significant; second, market liquidity
may dry up after a crash; third, the probability of
another crash may increase after a crash; and fourth,
other investment opportunity set parameters (e.g.,
market volatility) may also change after a crash. How-
ever, the optimal trading strategy in the presence of
market crashes that can trigger changes in the invest-
ment opportunity set has not been studied in the
existing literature.

In this paper, we develop a flexible portfolio choice
model for a small investor that incorporates correlated
market crashes and changes in the investment oppor-
tunity set. For example, both liquidity and volatil-
ity may change after a crash and crashes themselves
may be correlated in our model. This model captures
the essence of all the above-mentioned important fea-
tures but still remains tractable. More specifically,
we consider the optimal trading strategy of a con-
stant relative risk averse (CRRA) investor who derives
utility from terminal wealth and can trade a risk-
less asset and a risky stock continuously. Stock price
crashes in a liquid regime can trigger switching into
an illiquid regime where other parameters such as
crash intensity, expected return, and volatility can

also change. Similarly, large upward price jumps in
the illiquid regime can trigger regime switching into
the liquid regime.!

Because of the possibility of price jumps, the
coupled Hamilton—Jacobi-Bellman (HJB) equations
become integro-differential variational equations,
which makes our problem much more difficult to
solve, even numerically than that of Jang et al. (2007),
who do not consider event risks. Remarkably, we are
able to develop an iterative procedure that solves
for the value function as a sequence of solutions
to ordinary differential equations, which significantly
reduces computation intensity. This iterative proce-
dure can be readily applied to many other optimal
portfolio choice problems and significantly simplifies
computation, especially for those involving coupled
nonlinear HJB equations. As in the pure diffusion
case, the no-transaction region is characterized by
two regime-dependent boundaries within which the
investor maintains the ratio of the dollar amount in
the riskless asset to the dollar amount in the risky

! We take these changes after a market crash as exogenously given.
There is a large literature on why liquidity and other parameters
may change after a crash (see, for example, Geanakoplos 2003,
Diamond and Rajan 2011). Our model can also be consistent with a
model where investors learn from crashes and update their beliefs
about the investment opportunity set after a crash, although we do
not explicitly model this learning process to keep tractability.
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asset whenever possible. In contrast to the pure diffu-
sion case, however, this ratio can jump outside these
boundaries, which requires an immediate discrete
transaction back to the closest boundary. We charac-
terize the value function and provide some analytical
comparative statics and an extensive numerical anal-
ysis to illustrate how various elements of our model
affect the optimal trading strategy.

In contrast to standard portfolio choice models,
changes in the investment opportunity set in one
regime can affect the optimal trading strategy in
another regime even in the absence of transaction
costs. This is because the correlation between a mar-
ket crash (or an upward jump) and regime switching
makes the impact of stock investment in one regime
dependent on the investment opportunity set in the
other regime. In absence of this correlation and trans-
action costs, the portfolio choice is independent of
changes in the investment opportunity set of a differ-
ent regime. Thus, our model differs from those with
investment opportunity set changes that are indepen-
dent of the stock price risk (e.g., Merton 1971, Jang
et al. 2007).2

We illustrate quantitative conditions under which
an investor should sell stock after a crash even when
the market becomes less liquid. Not surprisingly, this
sale typically occurs when the investment opportu-
nity set significantly worsens after a market crash
(e.g., much higher volatility or much greater further
crash intensity) and the worsened environment may
persist for a period of time. Intuitively, this is because
a significantly worsened investment opportunity set
and the expected long duration of the illiquid regime
make the marginal benefit of selling the stock out-
weigh the marginal cost of incurring the necessary
transaction cost. This finding is consistent with “flight
to quality” after a crash, but in sharp contrast to
the contrarian style prediction of the standard port-
folio selection models with independent and identi-
cally distributed (i.i.d.) returns (e.g., Merton 1971).
We show that even a small increase in the after-crash
volatility (e.g., from 12% to 20%) may trigger a shift
from stock to the risk-free asset. On the other hand, it
may also be optimal to buy more stock or not to trade
at all upon a crash. In general, to determine the opti-
mal trading strategy after a crash, the investor trades
off the benefit of rebalancing due to the change in
the investment opportunity set and the cost of trans-
action. Loosely speaking, the greater the change in
the investment opportunity set and the greater the

2 Although we present the model with two regimes, our methodol-
ogy extends to more regimes in which all the parameters as well
as jump distributions can change across regimes. Therefore, our
methodology can be used to solve optimal portfolio problems with
transaction costs where the stock price risk is correlated with a
wide variety of changes in the investment opportunity set.

expected duration of the illiquid regime, the greater
the benefit of rebalancing. Depending on the relative
magnitude of the benefit and cost, the investor may
choose to sell, to buy, or to wait out the illiquid regime
after a crash.

We show that an increase in the expected jump
size may increase the optimal stockholding even
if the expected return remains the same and the
return volatility increases. Intuitively, increasing the
expected jump size (but keeping the expected return
constant) may help an investor by making returns less
negatively skewed and price jumps can help reduce
rebalancing costs across regimes. To understand the
latter effect, suppose a large price drop triggers the
illiquid regime and the optimal fraction of wealth that
should be invested in stock decreases. With a large
price drop, the fraction of wealth invested in stock is
already lower, so a transaction may be no longer nec-
essary. Therefore, this transaction cost reduction effect
may make the investor hold more stock in the liquid
regime.

In addition, we show that misestimating the cor-
relation between market crashes and market illiquid-
ity can be costly to investors. For example, if an
investor underestimates the correlation between mar-
ket crashes and market illiquidity and adopts the
corresponding “optimal” trading strategy under the
wrong estimation, the certainty equivalent wealth loss
from this trading strategy can be as high as 3.5% of the
investor’s initial wealth in some reasonable scenarios.

Closely related works include the literature on
portfolio selection with transaction costs but with-
out event risks (e.g., Constantinides 1986, Davis and
Norman 1990, Dumas and Luciano 1991, Shreve and
Soner 1994, Liu and Loewenstein 2002), and the lit-
erature on portfolio selection with event risks but
without transaction costs (Liu et al. 2003). The closest
works to ours are Liu et al. (2003), Jang et al. (2007),
Framstad et al. (2001), and Oksendal and Sulem
(2005). Liu et al. (2003) examine the optimal trading
strategy when the stock price follows a jump diffu-
sion process with stochastic volatility. However, they
do not consider the joint impact of the correlated mar-
ket crashes and market illiquidity. Jang et al. (2007)
use a regime switching model to show that transac-
tion costs can have a first-order effect when an invest-
ment opportunity set varies through time. In contrast
to our model, they do not consider the effect of
market crashes on trading strategies. Framstad et al.
(2001) study the optimal consumption/investment
problem with an infinite horizon in a jump diffusion
setting with constant proportional transaction costs.
However, they do not examine the effect of crash-
triggered investment opportunity set changes, which
are important features for understanding the optimal
trading strategy in a financial crisis. In addition, they



>
©
£
2
Z
(0]
e
|—
e
e
(0]
2
p—
(@]
(%]
o]
>S5
(]
=
C
S
g
>
=
=
()]
£
o
IS
2
Qo
©
g
©
(0]
©
©
£
R
<
S
N
:
<
S
()]
.
(0]
>
(0]
Q
8
>
ie]
<
i
1]
Q
S
o~
o
<
R
ey
=
o
IS
=
N
©
S
>
Q.
o
(&]
()]
S
o
<
(7))
=
o
o)
L
=z
>
=
(2]
=
>
[}
[«]
o

o
=
=
(2]
£
=
Kol
=
®
(2]
c
o
(]
2
IS
fun
(0}
o
o
—
>
Q
©
o
)
<
+—
(o))
=
e
=
©
(o))
[0}
=
(2]
c
ie]
=1
[0}
()
>
(o
>
C
©
©
c
[0}
()
[0}
0
[3]
i)
o
)
=
()
ow
[
o
<
-—
>
©
(0
<
=
()]
=
e
=
o
i=
)
=
[0}
o]
(9}
=
—
()
{5
-—
o
>
=
©
c
o
e
[}
—
[0}
o
o
(0
o]
-
[e]
c

Liu and Loewenstein: Market Crashes, Correlated Illiquidity, and Portfolio Choice

Management Science, Articles in Advance, pp. 1-18, ©2012 INFORMS

3

do not offer a numerical procedure to solve for the
optimal strategy. Qksendal and Sulem (2005) pro-
vide theoretical results on some types of optimal con-
trol problems with jump diffusions and offer some
examples to illustrate the application of their theory.
However, they do not provide theoretical or numer-
ical analysis on the portfolio choice problem in the
presence of market crashes and correlated changes
in the investment opportunity set. The correlation
significantly complicates the theoretical and numeri-
cal analysis and the theoretical methods provided by
Qksendal and Sulem (2005) no longer apply with-
out significant changes, because the optimal trading
strategy in one regime can depend on the investment
opportunity set after a crash even in the absence of
transaction costs.

The rest of this paper is organized as follows. In §2
we describe our portfolio choice model in a two-
regime framework. We provide characterization of
the value function and the no-transaction region. Sec-
tion 3 describes an iterative procedure to compute
the optimal trading strategy. Section 4 provides some
analytical comparative statics on the optima trading
boundaries. We conduct an extensive numerical anal-
ysis, on the optimal trading strategy in §5. We con-
clude in §6 and provide proofs in the appendix.

2. The Basic Model

2.1. The Asset Market

An investor can trade two assets in the financial mar-
ket: one risk free (“the bond”) and one risky (“the
stock”). There are two regimes with different liquid-
ity: regime 0 (liquid, lower transaction costs) and
regime 1 (illiquid), across which other parameter val-
ues may also change. We use ¢, € {0,1} as a state
variable to indicate the regime at time f. The time ¢
interest rate is 7(t;). The investor can buy the stock at
the ask price (1+ 6(¢;))S, and sell it at the bid price
(1 —a(t,))S;, where 6(¢) >0 and 0 < a(t) <1 represent
the proportional transaction cost rates in regime ¢, and
S; denotes the stock price without transaction costs.
We assume that the stock price S, may jump. To cap-
ture the idea that a downward jump may have a dif-
ferent impact compared to an upward jump, we sort
a stock price jump into an up jump (“U”) and a down
jump (“D”), occurring at the jump times of indepen-
dent Poisson processes N’/ with intensities n/(¢) for j €
{U, D}, respectively, and random jump sizes J° —1¢
(=1,0), J¥ =1 €0, o). The stock price process then
evolves as

dS, = (u(t) —v(y))S,_ dt + o ()5, dw,
+ (' =1DS_dN!+ (P -1S,_dNP, (1)
where

(1) =" (E[J" = 1]+ 0" (WE[J” - 1] )

represents the expected return compensation for the
presence of jumps so that the instantaneous stock
expected return is w(v) with u(e) > r(¢), w is a one-
dimensional Brownian motion, o (¢) is the stock return
volatility, and J'" are the time t realizations of JUP.
We assume for simplicity that the jump sizes are
drawn from identical independent distributions at
each time.® Let ] be the greatest lower bound that sat-
isfies Prob{J"' " > ]} =1.

To capture the idea that liquidity changes may be
correlated with price jumps (e.g., downward jumps
may be positively correlated with switching into an
illiquid regime), we decompose each of the jump
processes into two independent components. Specifi-
cally, let

NI=Ni+Ny,  NP=Nj+Ny,

where if Nf or N} jumps then the current regime
switches into the other regime, and N,/ and N,; are
independent of regime switching. In addition, N, has
an intensity of 7/(¢,) with n}(¢) + n5(t) = /(1) for i =
1,2, 1€ {0,1} and j € {U, D}. To model the possi-
bility that regimes can also change because of other
factors such as general macroeconomic conditions,
we assume that regime also switches into a differ-
ent regime at the jump times of another independent
Poisson jump process N® with intensity &(v). With
these assumptions, we have that the state variable ¢,
evolves (almost surely) as

_aND+aNg ife,_ =0,

div, =
“T) —(@NY £ dNF) if o, =1.

®)

To understand Equation (3), suppose the current
regime is liquid (i.e., ¢,_ = 0). Equation (3) then indi-
cates that if NP jumps then we have a downward
jump in the stock price and the regime switches into
the illiquid regime (;, = 1). On the other hand, if N®
jumps, then the regime also shifts but there is no jump
in the stock price. Finally, if N jumps then there is
a downward jump in the stock price but the mar-
ket stays in the liquid regime. Similarly, suppose the
current regime is illiquid (i.e., t,_ = 1). Equation (3)
implies that if NJY jumps then we have an upward
jump in the stock price and the regime switches into
the liquid regime (1, = 0). On the other hand, if N®
jumps, then the regime also shifts but the stock price
does not jump. Finally, if N} jumps then there is an
upward jump in the stock price but the market stays
in the illiquid regime.

Thus, we have a fairly parsimonious model that
nests many possible submodels and allows the
investment opportunity set including liquidity to be

% Alternatively, maintaining the independence of jump sizes
through time, we could let the jump distribution vary with the state
variable ¢,.
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correlated with stock prices in many interesting ways.
For example, a pure jump diffusion model with con-
stant proportional transaction costs is obtained by set-
ting 7 = = £ =0. Our model also allows regime
switching and changes in the other parameter values
to be correlated with stock price jumps. For example,
after a downward price jump, the regime may switch,
and the volatility, expected return, or further crash
intensity may become higher.

When a(t) 4+ 6(¢) > 0, the above model gives rise
to equations governing the evolution of the dol-
lar amount invested in the bond, x,, and the dollar
amount invested in the stock, v,:

dx, = r(e)x, dt — (1+6(c)) dl; + (1 - () dD;,  (4)

dy, = (u(y) —v()y, dt + o (v)y,_ dw,
+ (]tu Dy, dNY + (LD =Dy, dNtD +dl,—dD,, (5)

where the processes D and I represent the cumulative
dollar amount of sales and purchases of the stock,
respectively. These processes are nondecreasing, right
continuous adapted processes with D(0) =1(0) =0.

Let x, and y, be the given initial dollar amounts in
the bond and the stock, respectively. We let O(x,, o)
denote the set of admissible trading strategies (D, I)
such that (4) and (5) are satisfied given (3) and the
investor is always solvent, ie*

x;+ (1 —max(a(0), a(1)))y />0, Vt>=0, (6)

which, as in Liu et al. (2003), restricts the ratio x,/y,.

2.2. The Investor’s Problem

The investor’s problem is to choose admissible trad-
ing strategies D and [ so as to maximize E[u(x, +
(1—a(t,))y,)] for an event that occurs at the first jump
time 7 of a standard, independent Poisson process
with intensity A. Thus, 7 is exponentially distributed
with parameter A, i.e.,

P{r e dt} = e Mdt.

This formulation can capture bequest, accidents,
retirement, and many other events that happen on
uncertain dates.” If 7 is interpreted to represent the
investor’s uncertain lifetime (as in Merton 1971), the
investor’s average lifetime is then 1/A and the vari-
ance of the investor’s lifetime is accordingly 1/A%.

* Because the jump size is not bounded above, to maintain solvency,
the investor cannot short and so y > 0.

® We also used the method proposed by Liu and Loewenstein (2002)
to solve the case with a deterministic horizon. The solution shows
that the exponentially distributed horizon case is a close approxi-
mation to the case with a long horizon (about 20 years). Because
this finding is similar to that in Liu and Loewenstein (2002), we do
not report it in the paper to save space.

Assuming a CRRA preference, we can then write
the value function as

u(x,y,t)
_ 1-y
— e Erm+u alt,)y,) %:% )
(D, Ded(x, ) 1-vy

As shown in the appendix, similar to Merton (1971),
Liu and Loewenstein (2002), and Jang et al. (2007),
Equation (7) can be rewritten as the following recur-
sive form:

u(x,y,t)
= Sup E|:/°° oVt (n?(b)v(xw vl 1—0)
(D, Ned(x,y) 0
+ n?(‘)v(xt/ yt]tD/ L)+ nil(b)v(xn yt]tur 1—4)
+n5 (Wo(x, v 0+ EQo(x, v, 1—1)
_ 1-y
bt (= a)y) )m} -
1—vy
where

8(W) =2+ +n" (W) +1° ). ©)

2.3. Optimal Policies with No Transaction Costs
For the purpose of comparison, we first consider the
case without transaction costs (i.e., a(t) =6(t) =0, 1 €
{0, 1}). Define the total wealth W, =x, +y, and let =,
be the fraction of wealth invested in the stock. The
investor’s problem becomes

oo 1-v
o(W, )= sup /\E[/O e"”;/vt— dt

{7 >0} -

=t,Wy= W] ,
(10)
subject to (3), the dynamic budget constraint
AW, = (r(v) + m_(uly) —v(y) — (1)) W,_dt
+m_o ()W, dw,
+ Wt—Wt—((]tu -1 dNtu + (]tD -1 dNtD)/ (11)

and the solvency constraint W, > 0. Without transac-
tion costs, the optimal trading strategy is to invest a
constant fraction 7(t) of wealth in stock in regime ¢
and the value function in regime ¢ is of the form
Wiy
o(W, 1) =M() .
L—y
From the HJB partial differential equation, it is
straightforward to show that for ¢ =0, 1, (M(v), 7(¢))
solves

a(mw(v), M)+ h(m(), )Ml —)+A1=0 (12)

and

(1) = argmax

w

(u(ﬂ', OM() + h(m, )M(1 — 1) + )\) ,

1-vy
(13)
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where

a(m, 1) = (r()) + 7 () = () = v(v) - 3770 (1)°)
(1=9)=8() +my WE[A+7(J" 1)) 7]
+ny WE[A+7(J” =1))'7], (14)

and

h(m, v) =0 WE[A+ (" —1))'7]
+ 0 WE[A+7(J” = 1)) 7]+ £(). (15)

Equations (12) and (13) yield four equations for four
unknowns (M(t), w(t)) (¢ =0,1) that can be easily
solved numerically. As in Merton (1971) and Liu et al.
(2003), conditions on the parameters and the jump
distribution are required for the existence of the opti-
mal solution.

AssuMPTION 1. The solution (M(t), w(v)) to (12)
and (13) is such that M(v) >0 for 1 =0, 1.

The positivity of M(t) rules out the case where the
investor can achieve bliss levels of utility and ensures
the existence of an optimal portfolio.® We summarize
the main result for this no-transaction-cost case in the
following theorem.

THEOREM 1. Suppose that «a(0) = 6(0) = «(1) =
6(1) =0. Then under Assumption 1, for 0 <t < 7 the opti-
mal stock investment policy m} in regime 1, is equal to
w(v,) as defined in (13) and the lifetime expected utility is

Wiy
UW,L ZML 7
W, 0 =MW;—

where (M(v), w(v)) solves (12) and (13) for 1 =0, 1.

In addition to the standard trade-off between the
excess return and variance, in determining the opti-
mal trading strategy the investor also takes into
account the impact of stock price jumps in choosing
the optimal portfolio. More interestingly, in contrast to
Jang et al. (2007), the optimal trading strategy in one
regime can depend on the investment opportunity set
in the other regime even in the absence of transaction
costs. This cross-regime dependence comes from the
dependence of h(mw, ) in Equation (13) on 7, which
is due to the key feature of our model: the correla-
tion between price jumps and regime switching. With-
out this correlation (e.g., i(7, ) = £(1), or h(m, ) =0),
h(w, ) would not depend on 7 and the portfolio
choice would be unaffected by the investment
opportunity set in the other regime. Intuitively, the
impact of price jumps is regime dependent and with
the correlation between jumps and regime switching,

(16)

It can be easily verified that Assumption 1 reduces to the well-
known Merton condition in the absence of jumps and regime shifts.

this impact becomes dependent on the investment
opportunity sets in both regimes. Because of the cross-
regime dependence, the optimal portfolio consists of
an extra regime hedging component compared to the
existing literature (e.g., Merton 1971, Jang et al. 2007).

ReMARK 1. If J=0, then the investor never lever-
ages (i.e.,, m < 1). In general, when ] < 1, leverage is
limited because solvency requires x +yJ >0 or 7 <
1/(1—])). This is why Equation (13) is not written in
terms of the first-order conditions.

2.4. Optimal Policies with Transaction Costs
Suppose now that a(t) + 6(t) >0 for ¢t =0,1. As in
Liu and Loewenstein (2002), the value functions are
homogeneous of degree 1 — vy in (x, y). This implies
that for t =0, 1,

o(x,y,0) =y "P(z,1), where z= 5 (17)
for some concave function : (a(t) —1, c0) x {0, 1} — R.

In the presence of transaction cost, the solvency
region in each regime splits into three regions: buy
region, sell region, and no-transaction (NT) region.
Because of the time homogeneity of the value func-
tion, these regions can be identified by two critical
numbers (instead of functions of time) z(v) and z(t)
in regime t. The buy region corresponds to z > z(v),
the sell region to z < z(t), and the NT region to z(t) <
z < z(v). We illustrate these three regions in regime ¢
in Figure 1. As in the pure diffusion case, the investor
does not trade as long as the ratio z remains inside the
NT region. However, as soon as the ratio z moves out
of the NT region, the investor immediately trades a
minimum amount to get back to the NT region. Thus,
the investor only trades on a measure zero set of times
and follows a singular control strategy in stock trad-
ing.” However, in contrast to the pure diffusion cases
previously studied, the ratio z can jump out of the
NT region, which is followed by an immediate lump-
sum transaction to the closest boundary of the NT
region. Moreover, when the regime shifts, an investor
might also need to make a lump-sum trade to the new
boundary in the new regime.

Following Jang et al. (2007), we have the following
coupled HJB equation:®

max{Zv, (1 - a())v, — v, —(1+0())v, +2,} =0,
t=0,1, (18)

7 Although singular controls are a tractable way to solve for optimal
portfolio strategies with transaction cost, they require trading at an
infinite rate on a measure zero set of time points.

8 The HJB equation follows from the fact that
t _ 1-y
e—ﬁ(t)tv(xt, Yi, L) +/ e*ﬁ(t)s <f(xs/ Y, L) +A (xs + (1 a(l‘))ys) )dS
0 1—vy
is a martingale for the optimal policy. The expression of f(x,y,t)
follows directly from (8).
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Figure 1 The Solvency Region in Regime ¢
X
z(y
G(,J/
No-transaction z(y
0 Sey y
So/l/
encybou
"dag/

where

v = %U(L)zyzvyy +r()xv, + (1) —v()yv, —8(v)o

(+1—a@)y)'™

e 19)

+f(x,y,0)+A

f,y, 0 = WEPE,y]Y, 1=+ 05 OE[e(x, ], )]
+17 (WE[v(x, y]”, 1= )]
+m7 (WE[v(x, yJ°, v
+EéWou(x,y, 1—0). (20)
Using (17), we can simplify (18) to get the following
integro-differential variational equations:
max{gl'j’/ (Z +1- a("))'vl/z(zr l') - (1 - 7)'7[/(21 L)/
—(Z+1+0W).(z, )+ (A =1¥(z, 0} =0, (21)

where

Lip = 300’20 (2, ) + B (1242, 1)

+B1WY(z, 1) +8(z, 1),
8(z, ) = n WE[W(z/]", 10 (J)' ]

+n; WE[Y /Y, o) ]

+n7 WE[P(z/]7, 1=y (J°) 7]

+m7 WE[(z/]7, 0(J°) 7]
z+1—a(@)'”

1—vy !

Bi(t) = =8(t) = L=y (1)’ /2= (W) + (1)),
Ba(t) = yor (1)* — (1) + (1) +v(v). (22)

+EWY(z,1—0)+A

3. An Iterative Procedure to Find

Optimal Trading Strategy
The fact that the ratio z can jump out of the NT region
(reflected by the presence of the term g(z, ¢) in Equa-
tion (22)) and the regime can shift complicates the
problem significantly. We now develop an iterative
technique that solves the investor’s problem using a
sequence of closed-form expressions.

First, we choose an initial function ©°(x, y, ¢) that is
finite, concave, increasing, and homogeneous such
that v°(x, y, ¢) > v(x, y, ¢) for t =0, 1. For concreteness
and ease of boundary conditions, we assume that

(x+y'"
1—vy
where M(v) are the coefficients for the no-transaction-
cost case.
Then to compute vt (x,y,1), fori=0,1,2,..., we
can solve the following recursive structure:

ol (x,y,1) = sup E[/ e“s(‘)t<fi(xt,yt, t)
(D, I)ed(x,y) -0

Y (x+ (1 —a)y,)
1-vy

o(x, ¥, 1) = M(1 (23)

)dt], (24)
where
i,y ) =0 00" (v, 1= 04+ 08 ()0 (&, v o)
+ 1P ()0 (x,, v, P, 1—1)
+17 ()0 (x, v, )0, )
+ WV (x,, Y, 1—0). (25)

Lemma 1 in the appendix guarantees the conver-
gence of this iterative procedure and the concavity
of the limit function o (=1lim,_,  v'). To facilitate the

1— 00

proof that ¢ is indeed the value function, note that
as before, for 1 =0, 1, because of the homogeneity of
v'(x, vy, ), there exists a function ¢’ such that

o'(x, ¥, 1) = yl‘wi(;' L)'

Solving (24) reduces to finding functions (z, t) for
t=0, 1 such that

Lo (22, + Bo0)z + By (W + 87 (2,0 =0,
i=1,...,n, (26)
where
87z, ) = WEW ' (z/]", 1-0(J")']
+05 WE[™ (z/]%, 9 ()]
+ 07 WEW T (z/]P, 1= 0(J") 7]
+n7 WE[Y ™ (z/]°, ) (JP) 7]

(z+1—a(@)"?

FEW N 1)+ AT :
-7
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and B4(t) and B,(v) are the same as in (21). We then
have the following result:

THEOREM 2. As i — oo, the functions v'(x,y,i) =
Yyt (x/y, o) converge to the value function v(x,y, u) for
t=0,1.

Proor. See the appendix.

Theorem 2 shows that the iterative procedure can
indeed closely approximate the value function and
the corresponding optimal trading strategy. The basic
intuition for the convergence of this iterative pro-
cedure is the monotonicity of the value function:
vi(x,y,1) < v (x,y,1), as directly implied by the
optimization structure (24) and the fact that v'(x, y, )
is bounded by the value function ©v%(x,y, ) for the
no-transaction-cost case and the value function for
investing only in the risk-free asset. The iterative pro-
cedure is formally similar to that used to solve a
discrete time infinite horizon dynamic programming
problem, where a time period in our model corre-
sponds to the time between adjacent Poisson jumps.
The proof of Theorem 2 implies that this iterative pro-
cedure can be readily applied to many other optimal
portfolio choice problems and can significantly sim-
plify computation especially for those problems that
involve coupled nonlinear HJB equations.’

4. Analytical Comparative Statics

The optimal trading strategy in regime ¢ is no trading
if z(t) <z <z(v), selling stock to the boundary z(t)
if z < z(t), and buying stock to the boundary z(t) if
z > z(1). In contrast to a diffusion model, it is possi-
ble that z jumps out of the NT region, which would
be followed by an immediate transaction back to the
closest boundary. When the regime shifts, the opti-
mal strategy may or may not involve an immediate
transaction depending on how the boundaries change
across regimes. It is helpful to discuss three possible
types of NT regions across regimes we will encounter
in our numerical work later.

Case 1: Separated. For example, z(0) < z(0) <
2z(1) < z(1). In this case investors may sell some stock
and buy more of the risk-free asset right after a stock
price crash. This is consistent with the so-called flight-
to-quality phenomenon, but in sharp contrast with the
contrarian strategy predicted by a model with ii.d
returns. This case occurs if the regime shifts from the
liquid regime (v = 0) to the illiquid regime (v = 1) after
a downward price jump and the new ratio z right

° For example, one could have a model with n regimes in which the
coefficients and the jump distributions vary across regimes. This
procedure can then solve an optimal portfolio problem with trans-
action costs with correlated stock price risk and investment oppor-
tunity set.

after the crash stays in the sell region of the illig-
uid regime. This case will typically obtain when the
shift in the investment opportunity set across regimes
is large and the expected time spent in the new
regime is long so that the required transaction cost is
justified.

Case 2: Nested. For example, z(1) < z(0) < z(0) <
Z(1). In this case, if the regime shifts from the liquid
regime and the jump magnitude at this time is not too
large, then the investor will optimally not rebalance.
However, if the regime shifts from the illiquid regime
to the liquid regime, then the investor may buy or
sell stock even without a price jump. In this case an
investor optimally reduces transaction frequency until
market conditions improve. Intuitively, this case will
occur when the difference in the investment oppor-
tunity set is relatively small, the time spent in the
illiquid regime is relatively short, and the transaction
costs are relatively large.

Case 3: Overlapping but nonnested. For example,
z(0) < z(1) < z(0) < z(1). In contrast to Case 2, in the
absence of upward jumps, the investor never sells the
stock when the regime shifts from the illiquid regime
to the liquid regime. This case lies between Cases 1
and 2 and typically occurs when the difference in the
investment opportunity set is moderate and the trans-
action costs are relatively small.

We now present an upper bound on the lowest sell
boundary of the two regimes in terms of the Merton
lines (i.e., the optimal portfolio in the no-transaction-
cost case).

ProrosiTION 1. Let z*(v) = 1/7* () — 1, where 7*(1)
is the optimal portfolio in the no-transaction-cost case in
regime v. Then

1. for an i.id. returns case, if h(m, 1) =0, then z(1) <
(1 —a(V)z*(v);

2. for a general case, if h(w, ) #0, then

min{z(s), z(1—1)}

<max{(1 —a()z*(), 1 —a(l—1)z*(1—-1v)}. (27)

Our next result provides lower bounds on the trans-
action boundaries in the regime with the highest
utility.

PROPOSITION 2. Suppose either h(w, ) =0 (i.i.d. case)
or v(x,y, 1) >v(x,y,1—1) with r(t) = r(1 —1).1° Then
the buy boundary satisfies

2
yo(v) 1)/ (28)

2=+ O(L))(zw(o )

0 Sufficient conditions for v(x,y,t) > v(x,y,1 — ) are given in
Proposition 3 in the appendix. The method of proof uses the itera-
tive construction of the value function and can be used to provide
a variety of comparative statics.



>
©
£
2
Z
(0]
e
|—
e
e
(0]
2
p—
(@]
(%]
o]
>S5
(]
=
C
S
g
>
=
=
()]
£
o
IS
2
Qo
©
g
©
(0]
©
©
£
R
<
Q
N
:
<
S
()]
.
(0]
>
(0]
Q
8
>
ie]
<
i
1]
Q
S
o~
o
<
R
ey
=
o
IS
=
N
©
S
>
Q.
o
(&]
()]
S
o
<
(7))
=
o
o)
L
=z
>
=
(2]
=
>
[}
[«]
o

o
=
=
(2]
£
=
Kol
=
®
(2]
c
o
(]
2
IS
fun
(0}
o
o
—
>
Q
©
o
)
<
+—
(o))
=
e
=
©
(o))
[0}
=
(2]
c
ie]
=}
[0}
()
>
(o
>
C
©
©
c
[0}
()
[0}
0
[3]
i)
o
)
=
()
ow
[
o
<
-—
>
©
(0
<
=
()]
=
e
=
o
i=
)
=
[0}
o]
(9}
=
—
()
{5
-—
o
>
=
©
c
o
e
[}
—
[0}
o
o
(0
o]
-
[e]
c

Liu and Loewenstein: Market Crashes, Correlated Illiquidity, and Portfolio Choice

Management Science, Articles in Advance, pp. 1-18, ©2012 INFORMS

and the sell boundary satisfies

oo
20— () 1)‘ @)

Propositions 1 and 2 give useful bounds on the
transaction boundaries. In the i.i.d. case or in the re-
gime with the highest utility, if 7*(¢) > 0, then the sell
boundary is always below the Merton line, the opti-
mal ratio of bond to stock with no transaction costs.
However, the sell boundary is not always a decreas-
ing function of the transaction cost rate. For example,
if 7*(1) > 1 (i.e., with leverage), then the sell boundary
can be above the Merton line for a large enough trans-
action cost rate. This can be seen from the extreme
case where a(t) =1 and thus the sell boundary has to
be on or above zero by (29). The bounds obtained in
Propositions 1 and 2 can be also useful for validating
numerically computed boundaries.

2= a(n))(

5. Numerical Results

To gain some understanding of how the various ele-
ments of our model are optimally traded off, we now
present a baseline case and perform comparative stat-
ics to see how the optimal boundaries behave.

To capture the idea that large price jumps likely
have greater correlations with changes in the invest-
ment opportunity set than small jumps, for our
numerical analysis we consider a slightly more gen-
eral setting where large jumps can have different
correlations from small jumps. More specifically, we
divide jumps into large downward jumps, large
upward jumps and moderate (upward or downward)
jumps and allow large jumps to be correlated with
regime switching. In other words, we assume

dS, = (u(y) —v(t)S,— dt + o (,)S,_ dw,
+ (]tu —-1)S,_ dNtu + (]tD —-1)S,_ dNtD
+ (M -1)S,_dNM, (30)

where

v(t) = ' WE[J" =1+ 1" (E[J® ~1]
+nM(WEJY - 1], (31)

and the moderate jump Poisson process NM is inde-
pendent of all other jumps. All the previous results
are easily extended to this case.!!

For our numerical analysis, we use as our default
parameters a(0) =0.5%, a(1) =2.5%, 6(0) =6(1) =0,
@(0) =pu(l) =7%, r(0) =r(1) =1%, y =5, and A =
0.04. These parameters represent an equity premium

"' The analytical results for this generalized case are presented in
an earlier version of the paper that is available from the authors.

of 6% in both regimes and an expected horizon of
25 years. The round-trip transaction cost is 0.5% in the
liquid regime and 2.5% in the illiquid regime. We also
assume in the baseline case volatilities are the same
in both regimes, i.e., o(0) = o(1).

In our baseline case we assume that a jump arrives
on average once every two years and jump intensities
do not change across regimes, that is, n/ + M + 7P =
0.5 with 7 (0) = n'(1) = n", n*(0) = n*(1) = 7™, and
n°(0) = 1" (1) =" }

For i e {U, M, D}, log jump size log(]J*) is assumed
to be truncated normal with parameters u; and o; and
support interval [a', b'], where a! = R > 0, b¥ = oo,
aM=R <0, M=R, a° = —c0, and b° = R.

To determine the remaining baseline parameters,
we calibrate the model to match the variance (0.0082),
skewness (—1.33), and excess kurtosis (34.92) reported
in Campbell et al. (1996, p. 21) for daily log returns.
This procedure leads to o (0) = o(1) = 0.1190, u; =
—0.0259, and o; = 0.0666. As default parameter val-
ues, we set R = —0.03 and R = 0.03, which implies the
average large up jump size is 7.0%, the average large
down jump size is —7.8%, and the average moderate
jump size is 0.0%. Using these parameter values, we
obtain that n* =0.1003, n° = 0.2377, and 7™ = 0.1620.
These parameters indicate that the probability of a
large down jump is greater than the probability of a
large up jump, consistent with the negative skewness
of the stock returns.

We assume regime 0 switches to regime 1 if and
only if a large down jump occurs. To accomplish this,
we set £(0) =0, 1{'(0) =0, 15'(0) = 0", n{’(0) = 1”, and
12 (0) = 0. These choices capture the idea that wors-
ened liquidity conditions are usually accompanied by
large downward jumps in the stock price. Thus, the
ratio x/y will jump up whenever there is a shift from
the liquid to the illiquid regime.

Our baseline assumption is that the expected dura-
tion of the illiquid regime is one year. To accomplish
this, we set £(1) = 0.9367 and nY(1) = 0.0633, which
implies that the correlation between a large upward
jump and switching into the liquid regime is 20%.
Our remaining parameters are set to be consistent
with our assumptions that the jump intensities, do not
vary across regimes. The relation that ni'(1) + n¥(1) =
n¥ = 0.1003 dictates that n5(1) = 0.0370. The mod-
erate jump intensity remains fixed at n™ = 0.1620.
For the large down jump intensities, we set nP(1) =0
so that the regime does not shift back to the lig-
uid regime coincident with a large down jump. Thus,
nP =72 (1) =0.2377.

The default parameter values are summarized in
Table 1.

12 We also conducted analysis on different baseline cases with lower
jump frequencies, which implies larger jump sizes on average. The
qualitative results are the same.
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Table 1 Default Parameter Values

Parameters Ly g, a0y o(1) w0 u() r

Values —0.0259 0.0666 0.1190 0.1190 0.07 0.07 0.01
Parameters A v £(0) £(1) 6(0) 6(1) a(0)
Values 0.04 5 0 0.9367 0 0 0.005
Parameters  a(1)  2{(0) n7(1) 720 =70 Y /()
Values

0.025 0 0 0.1003 0.1003 0.0370
y _

0
Parameters (1) 7 70 71 ° R R
Values 0.0633 0.1620 0.2377 0.2377 0.2377 —-0.03 0.03

We now examine the optimal portfolio policies for
our model. For ease of comparison with the no-
transaction-cost case, we will present the transac-
tion boundaries in terms of the fraction of wealth
invested in the risky asset: # =y/(x +y). Let (1) =
1/(2(1)+1) and () =1/(z(t) +1). The optimal policy
is equivalent to maintaining the fraction = between
a(¢) and 7 (v).

5.1. Without Transaction Costs

For our baseline case with no transaction costs it is
optimal to hold 70.8% of wealth in the risky asset
in both regimes. In the absence of jumps (the ii.d.
Merton case), the optimal fraction of wealth invested
in stock is 84.7%. The reduction in the stock invest-
ment compared to the ii.d. case is caused by the
jumps that result in higher volatility and negative
skewness. We now graphically illustrate the cross-
regime hedging effect in the absence of transaction
costs in both regimes, as discussed in §2. In Fig-
ure 2, we plot the regime 0 optimal fraction of wealth
7*(0) against the volatility in regime 1 for two cases:
(1) =7% and u(l) = 9%, in the absence of trans-
action costs in both regimes. Figure 2 shows that

Figure 2

Optimal Portfolio in Regime 0, 7*(0), as a Function of ¢(1)
Without Transaction Costs

0.15 0.20 0.25 0.30
llliquid regime volatility o (1)

Notes. This figure shows how the optimal fractions vary with the volatility in
the illiquid regime o(1) for parameters u, = —0.0259, ¢, = 0.0666, ¢(0) =
0.1190, u(0) = 0.07, r =0.01, A=0.04, y =5, £(0) =0, £(1) = 0.9367,
8(0) = (1) =0, @(0) = a(1) =0, R = —0.03, R = 0.03, nY(0) = 7’ (1) =
72(0) = 0, n¥(0) = n¥ = 0.1003, (1) = 0.0370, n¥(1) = 0.0633, n" =
0.1620, and 17(0) = 72 (1) = n° = 0.2377.

in contrast to standard models (e.g., Merton 1971,
Jang et al. 2007), the optimal trading strategy in
regime 0 depends on the investment opportunity set
in regime 1 even when both regimes are perfectly
liquid. For example, the optimal fraction of wealth
invested in stock in the liquid regime decreases from
70.8% to 69.6% when the volatility in the illiquid
regime increases from 11.9% to 20%. On the other
hand, if the expected return in regime 1 is also higher
(e.g., 0.09), then the net hedging demand may be pos-
itive or negative depending on whether the expected
return increase or the volatility increase dominates.

5.2. Changes in the Volatility in the
Illiquid Regime

Next, we examine the effect of the post-crash changes
in market volatility and liquidity. It is well docu-
mented that both volatility and illiquidity tend to
be greater after a crash. Accordingly, in Figure 3 we
show how the optimal transaction boundaries vary
when volatility rises and a market becomes less lig-
uid after a crash. In the absence of transaction costs, it
is optimal to always keep 70.8% (in both regimes) of
the wealth in stock in our baseline case. With positive
transaction costs, this policy is no longer optimal. Fig-
ure 3 implies that it is optimal to keep the fraction of
wealth invested in stock between 66.1% and 72.5% in
the liquid regime and between 63.5% and 87.5% in the
illiquid regime. The transaction boundaries of the two
regimes are thus nested. In other words, the investor
does not transact when the regime shifts from the lig-
uid regime to the illiquid regime unless the price drop
is too large in magnitude. The trading frequency in

Figure 3 Optimal Trading Boundaries as a Function of o'(1)

0.15 0.20 0.25 0.30
llliquid regime volatility o (1)

Notes. This figure shows how the optimal trading boundaries vary with the
volatility in the illiquid regime o (1) for parameters u, = —0.0259, o, =
0.0666, o(0) = 0.1190, u(0) = u(1) =0.07, r =0.01, A = 0.04, y =5,
£(0) =0, ¢(1) = 0.9367, 6(0) = 6(1) = 0, «(0) = 0.5%, a(1) = 2.5%,
R =-0.03, R =0.03, 7!(0) = n7(1) = 72(0) = 0, n¥(0) = 5 = 0.1003,
n¥(1) = 0.0370, n¥(1) = 0.0633, n" = 0.1620, and 77(0) = »2(1) =
n? =0.2377.
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the illiquid regime is lower, as implied by the wider
no-transaction region due to greater transaction costs.

As the volatility in the illiquid regime increases,
all transaction boundaries move downward, which
implies that the investor decreases stock investment
not only in the illiquid regime but also in the lig-
uid regime, because of the cross-regime hedging. As
expected, the transaction boundaries in the illiquid
regime are much more sensitive to the illiquid regime
volatility increase than those in the liquid regime.
Figure 3 shows that even for modest increases in
volatility in the illiquid regime, the NT region in the
illiquid regime can move well below that in the liquid
regime. This implies that even small increases in the
after-crash volatility can make investors sell stock and
buy more of the risk-free asset right after the price
crash, behaving like flight to quality, that was com-
monly observed after a market crash. For example,
after a 5% price crash, if the price crash reflects sig-
nificantly worsened fundamentals (e.g., much greater
uncertainty of the stock payoff) and as a result the
after-crash stock volatility increases from 11.9% to
20%, then the investor will keep the fraction of wealth
invested in stock between 56.0% and 63.7% in the lig-
uid regime, and between 23.5% and 43.7% in the illig-
uid regime. Therefore, upon the crash, the investor
will sell stock so that the stock fraction becomes
43.7% after rebalancing. In contrast, standard port-
folio choice models with ii.d. returns (e.g., Merton
1971) predict the opposite: After a price drop, the
investor should buy more to rebalance. Thus, the
deterioration of investment opportunity set after a
crash may contribute to the flight to quality behavior.

5.3. Changes in the Intensity of a Large
Downward Jump in the Illiquid Regime

Our baseline case assumes that only liquidity changes
after a market crash. However, after a market crash,
the probability of another crash might also change.
Figure 4 shows how the optimal trading boundaries
vary as we vary the intensity of a large downward
jump in the illiquid regime (17 (1)). For higher values
of the intensity of another market crash in the illiquid
regime, the investor is more likely to sell right after
a market crash in the liquid regime, all else equal.
Recall that varying the jump parameters does not
affect the expected return but affects variance, skew-
ness, and kurtosis. A large negative jump accompa-
nied by the transition into the illiquid regime where
large downward jumps occur more frequently rep-
resents a significant deterioration of the investment
opportunity set. Thus, the investor might optimally
incur the transaction cost to sell some stock upon a
crash, similar to the effect of increased volatility. For
example, if the intensity of further crash increases to
2.0 after a crash (i.e., on average one crash every six

Figure 4 Optimal Trading Boundaries as a Function of nJ (1)
0.9
08 [
07 F

7(0)
06 [

(0)
0.5 (1)
04|
03Ff (1)

0.5 1.0 1.5 2.0

Large down jump intensity in regime 115 (1)
Notes. This figure shows how the optimal trading boundaries vary with the
intensity of the downward jump n2(1) for parameters u, = —0.0259, ¢, =
0.0666, 0(0) =o(1) = 0.1190, w(0) = u(1 ) =0.07, r =0.01, A = 0.04,
y=5, £(0)=0, £(1) =0.9367, 6(0) = 0(1) =0, a(0) = 0.5%, a(1) =2.5%,
R =003, he 0.03, 5(0) = 77(1) = 78(0 )—o 7(0) = 7° = 0.1003,

n¥(1) = 0.0370, n¥(1) = 0.0633, 5" = 0.1620, and n?(0) = n° = 0.2377.

months), then the investor will keep the fraction of
wealth invested in stock between 56.8% and 64.5%
in the liquid regime, and between 32.6% and 55.1%
in the illiquid regime. Therefore, upon a crash, the
investor may sell some stock to reach 55.1%.

In addition, Figure 4 suggests that in anticipation
of this increase in the crash intensity, the investment
in the liquid regime is also reduced.

5.4. Changes in the Expected Return in the
Illiquid Regime

Figure 5 shows how the transaction boundaries vary
as a function of the illiquid-regime expected return
w(1). If the after-crash expected return goes up (as
found in empirical studies; e.g.,, Fama and French
1989, Ferson and Harvey 1991), the NT region can be
higher in the illiquid regime than in the liquid regime,
which implies that the investor would hold more
stock in the illiquid regime. In this case the investor
will always buy more of the risky asset to take advan-
tage of the higher expected return when the regime
shifts from the liquid to the illiquid regime and lig-
uidate the position when the market becomes more
liquid. For example, if the after-crash expected return
increases to 9%, then it is optimal for the investor to
keep the fraction of wealth in stock between 68.1%
and 75.4% in the liquid regime and between 80.1%
and 95.3% in the illiquid regime. Figures 3-5 suggest
that the effect of the increased expected return on the
optimal trading strategy counteracts the effect of the
increased volatility and the increased crash intensity.
The flight to quality behavior ensues when the volatil-
ity and the crash intensity effects dominate.

As the expected return in the illiquid regime
increases, the NT region shrinks. Intuitively, when
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Figure 5 Optimal Trading Boundaries as a Function of »(1) Figure 6 Optimal Trading Boundaries as a Function of «(1)
(1)
7 (1)
0.8 -
I - 7(0)
08 07T
r m(0)
| m(0)
07} 08T
I 7(0) (1)
PR L 1 P | L L L 1 L 1 P | L 1 L 1 5 * * * * 5 * * * * 5 * * * * 5 * * * * 5
0075 0080 0085 0090 0095  0.100 0.01 0.02 0.03 0.04 0.05

Expected return in regime 1 u(1)

Notes. This figure shows how the optimal trading boundaries vary with the
expected return in the illiquid regime u(1) for parameters u, = —0.0259,
0, =0.0666, ¢(0) = (1) = 0.1190, u(0) = 0.07, r =0.01, A =0.04, y =
5, £(0) =0, (1) = 0.9367, 6(0) = 6(1) = 0, «(0) = 0.5%, a(1) = 2.5%,
R =-0.03, R = 0.03, nY(0) = #?(1) = 75(0) = 0, n¥(0) = n¥ = 0.1003,
n¥(1) = 0.0370, n¥(1) = 0.0633, »" = 0.1620, and 77(0) = »2(1) =
n? =0.2377.

an investor determines the no-transaction region size,
he trades off the transaction cost payment and the
risk exposure variation (i.e., the variation in the frac-
tion of wealth invested in stock). As the expected
return increases, the stock price tends to go up faster
and therefore the dollar amount invested in the stock
tends to increase faster. As a result, the probability
of hitting the lower boundary and incurring trans-
action costs at the lower boundary becomes lower.
In addition, because the investor sells at the upper
boundary when the price and thus his wealth goes
up and buys at the lower boundary when the price
and thus his wealth goes down, the marginal utility
cost of transaction cost payment at the upper bound-
ary is lower than that at the lower boundary. There-
fore, to avoid too much risk exposure variation, the
investor can increase the lower boundary more than
the upper boundary without significantly increasing
the marginal utility cost of transaction cost payment.
This causes the no-transaction region to decrease with
the expected return in the illiquid regime, as also
shown in Liu and Loewenstein (2002, Figure 6). When
the expected return in the illiquid regime is much
higher than that in the liquid regime, the probability
of hitting the lower boundary becomes much lower
in the illiquid regime, and thus the no-transaction
region can become even smaller than that in the lig-
uid regime even though the transaction cost rate is
much higher in the illiquid regime.

5.5. Changes in the Illiquidity in

the Illiquid Regime
Figure 6 shows how the transaction boundaries
change as the transaction costs vary in the illiquid

Transaction cost in illiquid regime «(1)

Notes. This figure shows how the optimal trading boundaries vary with the
transactions cost in the illiquid regime «(1) for parameters u, = —0.0259,
a;, =0.0666, ¢(0) = ¢ (1) =0.1190, u(0) = u(1) = 0.07, r = 0.01, A = 0.04,
y=25,&(0)=0, {(1) =0.9367, 6(0) = 6(1) =0, «(0) = 0.5%, R = —0.03,
R =003, 7¢(0) = 77(1) = 79(0) = 0, 7¢(0) = 7° = 0.1003, n¥(1) =
0.0370, n¥(1) = 0.0633, " = 0.1620, and n?(0) = (1) = n° = 0.2377.

regime. The illiquid regime NT region nests the liquid
regime NT region. For large transaction costs in the
illiquid regime, the investor significantly widens the
NT region in the illiquid regime to reduce trading fre-
quency. Thus, for large transaction costs, it is optimal
to try to wait out the illiquid regime. As transaction
costs in the illiquid regime increase, the investor also
optimally holds less stock in the liguid regime.

5.6. Changes in Mean of the Log Jump Size

The next set of results addresses the sensitivity to
the jump size distribution. For this we return to our
baseline model and maintain the assumption that the
unconditional log jump size log(J) is normally dis-
tributed with mean u; and volatility o;. As we vary
w; or o;, we change the values of 7!, n", and 7" so
that as before large up jumps correspond to a greater
than 3% jump size, moderate jumps between —3%
and 3%, and large down jumps to less than —3%.
We maintain all other assumptions. Note that as u;
goes down, the jumps tend to be more negatively
skewed and, in addition, the possibility of a large
down jump goes up while the possibility of a large
up jump decreases. Thus, as we decrease u;, in our
baseline model, it becomes more likely that the liquid
regime shifts to the illiquid regime.

Figure 7 shows how the optimal transaction bound-
aries vary against u; when the expected return
remains the same at 7% in both the liquid and the illig-
uid regimes. This figure reveals, similar to the findings
in Liu et al. (2003), that the optimal trading bound-
aries are nonmonotonic with some asymmetry across
positive and negative jumps. It also implies that an
increase in the expected jump size may increase the
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Figure 7 Optimal Trading Boundaries as a Function of
ﬁ_\w(ﬂ
0.7}
/
05}
—010  -005 005 "0.10

Unconditional expected log jump size u,
Notes. This figure shows how the optimal trading boundaries vary with p,
for parameters g, = 0.0666, ¢(0) = (1) = 0.1190, w(0) = u(1) = 0.07,
r=0.01,1=0.04, y=5, {(0) =0, ¢(1) = 0.9367, 6(0) = 6(1) =0, a(0) =
0.5%, a(1) = 2.5%, R = —0.03, R = 0.03, n¢(0) = 2(1) = n2(0) =0, and
n¥(1) = 0.0633.

optimal stockholding even if the expected returns are
held constant and the total return volatility increases.
Intuitively, when the expected value of a jump is posi-
tive, the jump helps the investor by introducing a posi-
tive skew to returns. However, the jump also increases
return volatility. Whether the optimal stock invest-
ment increases or decreases depends on whether the
skewness effect or the volatility effect dominates. The
asymmetry occurs because downward jumps tend to
introduce a negative skew, which tends to bring the
investor closer to the solvency boundary and the asso-
ciated higher marginal utility.

Figure 8 shows how the optimal trading bound-
aries vary as we change u; as before, but instead

Figure 8 Optimal Trading Boundaries as a Function of 1, with
a(1) =20%
0.7k
i 7(0)
0.5 - 7(0)
0af s
0.3 -
02 _ (1)
01F
-0.10 -0.05 0.05 0.10

Unconditional expected log jump size u,

Notes. This figure shows how the optimal trading boundaries vary with
w, for parameters g, = 0.0666, ¢(0) = 0.1190, (0) = u(1) =0.07, r =
0.01, A =0.04, y =5, £(0) =0, £(1) = 0.9367, 6(0) = 6(1) =0, «(0) =
0.5%, a(1) = 2.5%, R =—0.03, R = 0.03, nY(0) = 7(1) = n2(0) = 0, and
n¥(1) = 0.0633.

we assume that the after-crash volatility is 20% in
the illiquid regime. Again we see the nonmono-
tonic transaction boundaries, but now they are almost
always separated and the NT region is lower in the
illiquid regime than in Figure 7, which is driven by
the worsened investment opportunity set in the illig-
uid regime. Interestingly, in the liquid regime the NT
region in Figure 8 is quite similar to that in Fig-
ure 7 except for large negative jump sizes. This occurs
because even though the investor knows he will hold
less of the risky asset in the illiquid regime following
a market crash, he also knows that a market crash will
already make him hold less of the risky asset even
without any trading, and thus the required transac-
tion cost payment may be small when the regime
switches. Therefore, it is less costly to hold more of the
risky asset in the liquid regime with a larger expected
jump size.

5.7. Changes in Volatility of the Log Jump Size
Figure 9 shows how the optimal transaction region
varies with the unconditional log jump size volatility
oy (with the same expected return in both regimes).
When o gets large, the transaction boundaries gener-
ally go down because the increase in volatility makes
the stock less attractive.

5.8. How Other Parameters Affect the Optimal
Trading Boundaries and Hedging Demands

We show how other parameters affect the optimal
trading boundaries in the top section of Table 2. The
“baseline” row corresponds to the baseline case and
the other rows correspond to a change in the stated
parameter alone from the baseline case. Consistent
with Liu and Loewenstein (2002), as the expected
investment horizon 1/A decreases, the investor invests

Figure 9 Optimal Trading Boundaries as a Function of o,

7(1)

0.1 0.2

0.3 0.4 0.5
Unconditional log jump size volatility o,

Notes. This figure shows how the optimal trading boundaries vary with g,
for parameters p, = —0.0259, ¢(0) = ¢(1) = 0.1190, u(0) = (1) = 0.07,
r=0.01,1=0.04, y=5, £(0) =0, £(1) =0.9367, 6(0) =6(1) =0, «(0) =
0.5%, a(1) = 2.5%, R =—0.03, R = 0.03, 7Y(0) = 7(1) = n2(0) = 0, and
n¥(1) = 0.0633.
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Table 2 Boundaries and Hedging Demands as Other Parameter
Values Change

With TC Without TC
Parameters 7(0) 7(0) (1) (1) 7(0) (1)
Baseline 0.661 0.725 0635 0875 0.708 0.708
A=0.05 0.657 0722 0630 0877 0.708 0.708
r=0.005 0.719 0778 0.698 0907 0.765 0.765
y=4 0.839 0.88 0812 0952 0.883 0.883
1(0)=0.08 0.743 0.800 0.631 0.883 0.815 0.708
a(0)=0.1 0.813 0.861 0.633 0.893 0.917 0.708
a(0) =0.1%, 0.688 0.724 0683 0742 0.708 0.708

a(1)=0.25%
p(1)=0.1 0.658 0.723 0.633 0.870 0.708 0.708
p(0)=0.6 0.666 0.732 0.636 0.884 0.708 0.708
Percentage hedging demand
Baseline -1.2 -1.5 4.0 16.9 0 0
1=0.05 17 -19 3.6 17.3 0 0
r=0.005 -15 -16 3.2 13.3 0 0
y=4 -16 -15 3.3 5.3 0 0
©(0)=0.08 -56  -541 34 18.1 -0.8 0.0
a(0)=0.1 -93 -80 3.8 194 09 0.0
«(0) =0.1%, -0.1 -0.2 0.6 1.6 0 0
a(1)=0.25%

Note. TG, transaction costs.

less in the stock to reduce the impact of transaction
costs. As expected, with a decrease in interest rate,
risk aversion, volatility, the correlation between the
large downward jump and switching into the illig-
uid regime (p(0)), or an increase in expected return,
stock investment increases. With a decrease in the cor-
relation between the large upward jump and switch-
ing into the liquid regime (p(1)), stock investment
decreases. Similar to the effect of increasing the trans-
action cost rate in the illiquid regime, the NT regions
widen in both regimes when the liquidity in the lig-
uid regime increases.

The bottom section of Table 2 examines how
hedging demands vary with parameter values. It is
difficult to come up with a precise measure of hedg-
ing demands in a model with transaction costs and
jumps. However, a reasonable way to measure hedg-
ing demands is to compare the optimal portfolio pol-
icy when changes in the investment opportunity set
are correlated with the jumps to that when the cor-
relation is zero (i.e., n7(0) = n(1) = £(0) = £(1) = 0).
The bottom part of Table 2 reports the percentage
difference between these portfolios. As expected, to
hedge against changes in the investment opportu-
nity set from regime shifts, the investors increase
(decrease) stock investment when regime switching
into a better (worse) investment opportunity set is
possible. It is interesting to note that the magnitude
of the changes in the transaction boundaries is much
higher than those in the no-transaction-cost case.

Figure 10 Certainty Equivalent Wealth Loss as a Function of ¢(1)

Two years

0.035
0.030
0.025
0.020 One year
0.015
0.010

0.005

0.25 0.30 0.35 0.40
llliquid regime volatility o (1)

Notes. This figure shows how the certainty equivalent wealth loss from using
wrong estimates as a fraction of the initial wealth varies with o (1) for true
parameters u, = —0.0259, ¢, = 0.0666, ¢(0) = 0.1190, u(0) = p(1) =
0.07, r=0.01, A =0.04, y=5, £(0) =0, (1) = 0.9367, 6(0) = 6(1) =0,
a(0) = 0.5%, a(1) = 25%, R = —0.03, R = 0.03, nY(0) = #7(1) =
79(0) = 0, n¥(0) = n¥ = 0.1003, 7Y(1) = 0.0370, n¥(1) = 0.0633,
7™ =0.1620, and n?(0) = nJ (1) = n® = 0.2377. The wrong estimates are
7?(0) = 0.12 x n?, and 72 (0) = (1 — 0.12) x n°.

5.9. Certainty Equivalent Wealth Loss from
Misestimation of the Correlation Between
Market Crash and Market Illiquidity

So far we have been focusing on the analysis of

the optimal trading strategies. Next, as an exam-

ple, we show the economic significance of correctly
taking into account the correlation between market
crash and market illiquidity. Specifically, suppose an
investor underestimates the correlation between mar-
ket crashes and market illiquidity to be 0.1, although
the true correlation is 1, and adopts the optimal trad-
ing strategy that is based on the wrong estimate. We

compute the certainty equivalent wealth loss as a

fraction of his initial wealth from this misestimation.

Figure 10 plots this loss against the volatility in the

illiquid regime for two cases, one with expected illig-

uid regime duration of one year and the other two
years. Figure 10 shows that misestimation of the cor-
relation is costly to the investor. For example, the
equivalent wealth loss can be as high as 2% for the
one-year case and about 3.6% for the two-year case.

This finding indicates the economic importance of

correctly taking into account the correlation between

market crashes and market illiquidity.

6. Conclusions

In this paper, we develop a tractable workhorse
model of optimal portfolio choice with market crashes
and correlated changes in the investment opportu-
nity set (e.g., higher illiquidity, greater volatility). Our
analysis demonstrates that the presence of these risks
can be an important factor in determining an optimal
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portfolio. We also provide an efficient iterative solu-
tion procedure that can be applied to a wide class
of models with coupled integro-differential equations
with free boundaries. Given its incorporation of many
of the important determinants of portfolio selection
and its tractability, our model provides an attrac-
tive framework for studying the joint qualitative and
quantitative impact of event risks, liquidity risks, and
time-varying return dynamics.

Several extensions to our analysis are immediate.
For example, one can examine the effects of a deter-
ministic horizon by using the methodology proposed
in Liu and Loewenstein (2002). Although our model
is formulated with two regimes, the extension to n
regimes with differing jumps distributions is concep-
tually straightforward.
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Appendix. Proofs

Proor oF EQuaTION (8). Consider the special case where
only nP(0) and A are nonzero and the current regime is
regime 0. Let 7 denote the random downward jump time.
Upon the downward jump, the stock amount becomes y; ]E
and the regime becomes regime 1. Therefore, the value func-
tion becomes v(x;,y:JP, 1) right after the jump. Then the
value function in regime 0 can be rewritten as

(x’T + (1 - a(l’f))yﬁ')l_y]
1—vy '

sup E[1?<Tv(x?/ y?]'fpr 1) + 11<?
(D, Neb(x, y)

(32)
Because 7 and 7 follow independent exponential distribu-
tions with parameters 7P (0) and A, (32) becomes

sup E[/ e O (0)o(x,, y,JP, 1) dt
(D, eB(x, y) 0

o0 — 1—y
+/ e—"hD(O)f,nlD (O) (x’T + (1 : a(LT))yT) dt:|
- -7

F [/o e_”</o e OD Oy (x,, y,J2, 1) dt

= sup
(D, e0d(x, y)
+ e—nlD(O)s (xs + (1 - a("s))ys)liy ds
T-y
— * —(A POt [ oD D
= sup E e (0o, vy, 1)
(D, eOd(x, y) 0

AU e )y

after integrating out s by interchanging s and f.

The same procedure leads to Equation (8) in the paper
when other intensities are also nonzero. Q.E.D.

Proor oF THEOREM 1. To save space, we only provide the
main steps for the proof because the details are standard.
Let v(W, t) be as defined in (16) and define

W=7

M, = T—y

Then using (12), (13), and the generalized It6’s lemma (see

e.g., Harrison 1985, §4.7), one can show that M, is a super-

martingale for any admissible policy 7 that is bounded

away from the solvency constraint and a martingale for the

claimed optimal policy =}, which implies that M, > E[M,]
by the optional sampling theorem, i.e.,

Lipery +0(We, 1)1 (34)

1-y
o(W, 1) > E[ W,
1-vy

and with equality for the claimed optimal policy. Q.E.D.

Wo=W, = Lj|, (35)

The following result is useful for proving the validity of
the iterative approach.

LemMA 1. For 1 =0,1and i=0,1,...,n, v' is increasing,
concave, and satisfies
A
v > -
A— (1 —vy)min(r(r), r(1 —1))
(@t (1 —a@)y)
1—vy '

vi(x, Y, L) > ZJi+1 (.X', Y,

(36)

In addition, v' satisfies v'(px, py) = p'~7v'(x, y) for any p > 0.
Thus, these functions converge to concave functions 0(x,y,t).
The convergence is uniform on compact subsets of the interior of
the solvency region.

ProOF. Monotonicity, concavity, and homogeneity are
fairly obvious for v!, which inherits these properties from
v? and subsequently v'*! inherits these properties from o'
(e.g., see Shreve and Soner 1994). The inequalities

i > A
v'(x,y,0) = A— (1 —y)(min(r@x), r(1 —1)))

(x+(1-a@)y)'”
. =y
follow from the fact that an investor must have greater
utility than that obtained from liquidating the risky asset
investment and investing all wealth in the riskless asset
until time 7. The other inequalities v'(x, y, ) > v™*(x, y, )
are deduced as follows. Observe that for ¢« =0, 1, we have

(37)

ol(x,y,0) = sup E[/we_‘s(”' (fo(xt, Vi, )
(D, D)eB(x, y) 0
_ 1-y
+/\(xt+(1 a(1)y;) )dt]
1-vy
< supE /we_a(m f(x L)+)\—(xt+yt)lﬂ/ dt
— 71_p o tlyt/ 1—')’
=9(x,y,1), (38)

where the first equality follows from the dynamic pro-
gramming principle for the no-transaction-cost case and the
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inequality holds because admissible trading policies with
transaction costs are also admissible in the no-transaction-
cost case. Now assume 0'(x,y,t) < v'"!(x, y,t). Then this
implies that

v,y ) = sup E[ [eer (f (X Yo t)
(D, eBd(x, y) 0
- a(a))y»lﬂ) dt]

)\(xt+(1
1—vy

< sup E[/we’m)(f"’l(xt,yt, v)
(D, Ded(x,y) L70
_ 1-
a7 o)
1-vy
=o'(x,y,1). (39)

The last statements of the lemma follow from (Rockafellar
1970, Theorem 10.8). Q.E.D.

ProOF OF THEOREM 2. Assumption 1 implies that
B1(t) <0. Thus, the homogeneous solution to (26) is given
by ¥,(z, 1) = |z|"W and ¢ (z, v) = |z|"2V, where

”1,2(‘)

_(0®?2=By(W) £ V(0 (1)*/2 = B> (1) —

o(1)?

with 7,(¢) > 0 and #,(t) < 0. This leads to the general solu-
tion to (26) (see Boyce and DiPrima 2001):

¥z, ) =Wz )+ GO ) +i(z0), (41

where C{(t) and Cj(v) are integration constants and ,,(z, )
is the particular solution

Uiz, ) =ui(z, O (2,0 + 5z, Oa(z,0),  (42)

4, (¢)

(40)

where
oo [ ACD) 287y
w0 = V(e 0008, 0 — (s, 003 ) o
1_ - . dll (S, L) 2gi71(s, L) ds:
uy(z, 1) = f Yi(s, (s, v) — P (s, )P (s, 1) o (1)?s? s;
equivalently,

i i z l/jl(sr”)l//z(zr”)_‘ljl(zr ")‘//Z(Srb)
b =y e+ e e vy

2(8(s,0) — 8, D) 4

o (1)2s?
For ¢ =0, 1, the HJB equations imply that

(z+1+0@)
1—

Gl (z, ) + Gz, 1) + ¥, (2, 1)
if max(z'(1),0) <z < Z'(1),
Cl(z, 1)+ WYz, ) + iz, 0)

if min(z'(1),0) <z <0,

(z+1 oz(L))1 Y

Al(r)

if z>Zi(1),

W(Z/ ") =

if a(t) —1<z<z(),

B'(1)

for some constants A’(L) Bi(1), Ci(v), Ci(v), C’(L) and C’(L)
and the boundaries z'(:) and Z'(v).

For + =0, 1, because (i) > (), the buy boundary must
lie in the region y > 0. If the buy and sell boundaries z'(¢)
and z'(1) are positive, then the third branch is vacuous and
the value function is C? in the entire solvency region. How-
ever, the sell boundary z'(1) can be nonpositive whereas
the buy boundary z'(1) is positive. In this case, the homo-
geneous solution suggests that C’(L) must take the same
value as Ci(1), which must be equal to —lim,_,u}(z, ) to
keep the value function finite. In addition, one can show by
L'Hopital’s rule that lim,_,,¢'(z, t) = —¢'1(0, t)/B1 (1).

The case where z'(1) = oo only arises when it is optimal
to never buy stock. Intuitively, this can happen when the
transaction cost is large and the investor’s expected lifetime
is short, as shown in Liu and Loewenstein (2002). A simi-
lar, albeit more complex, set of conditions will arise in our
model. In this case, to keep the value function finite, we
must have Ci (1) = —lim,_, . #}(z, t). One can show that

1y i X y' g (x/y, )

iy v (54) =i S 2 S
which agrees with the direct computation in (24) if it is
optimal to never buy stock given an initial position 100%
in cash.

Using a similar approach to those in Shreve and Soner
(1994) or Framstad et al. (2001), one can show that there
exist constants A’ (L) Bi(u), C’(L) Ci(v), C’(L) and Cl(b) and
the boundaries z'(t) and z'(t), which make #i(z,t) a C?
function in the solvency region except at z=0 or z = co.
We can thus iteratively compute the optimal boundaries
and value functions for each i by following the approach
described in Liu and Loewenstein (2002).

Lemma 1 implies that by passing to a subsequence if
necessary we must have as i — oo, A’(L) — A(L), Bi(1) —
B(), Ci(t) = C,(v), Ci(t) — Gy(v), C’(L) - G (), Z() = Z(v),
and z (L) — z(v), for some constants A(t), B(v), C;(v), C,(v),
él(b), z(t), and z(¢). Note that z(v) > a(t) — 1 and z(¢) > z(v).
For a complete proof one would need to provide verifica-
tion theorems for the functions obtained in each iteration as
well as for the limiting value function. Because this part is
fairly long, involved, and very similar to those in Jang et al.
(2007), Shreve and Soner (1994), and Framstad et al. (2001),
we omit it to minimize repetition. We proceed to show that
in all possible cases the limiting value function in Lemma 1
is a solution to the HJB equation with boundary conditions
for the investor’s problem and thus satisfy the conditions
in the verification theorem for the limiting value function.'®

First for a fixed ¢, suppose 0 < z(t) < Z(1) < oo. Define

(z+146()"7

A() T if z>2(1),
G (z, 1) + GWa(z, 1) + '//p(zr v
U(z,1) = . _
if z(v) <z<z(v),
B )% if al)—1<z< z().

3By construction, corresponding conditions are satisfied for each
iteration.
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Then by the convergence of the constants, we have that
' converges uniformly to ¢ on any compact set of the sol-
vency region, in particular in [z(t), Z()]. The functions g’
are concave and converge uniformly on compact sets to a
limiting concave function g as defined in (23), Rockafellar
(1970, Theorem 10.8), and Lemma 1. Observe that l//;, and
its first and second derivatives also converge uniformly on
compact sets. Thus, we see that for z € (z(t), z(¢)), the func-
tion C (1) (z, ) + G(Vha(z, 1) + ¢,(z, ¢) solves (21) in the
NT region.

Observe from the C? property of the ¢y we have (sup-
pressing the fixed ¢ dependence)

AE +140)7 =CYi(2) + G (Z) + ¢, (Z),  (43)
Bz +1—a) " =Cigj(2) + Cigh(2) + 95 (2),  (44)
—YAE +140)77 = (&) + Gy (2) + 4, (2),  (45)
—YB(Z'+1—a) " = Cly () + g (2) + ¢ (2). (46)

So thanks to the uniform convergence of d/;, in the limit, we
have

AC+1+60) 7" =C (D) + G +9,(),  47)
B(z+1-a) 7" =C¢i(2) + G (2) +¥,(2),  (48)
—YAG+1+0)7 =CY{ (@) + G (D) + ¥, (2),  (49)
=0 (D) + G (D +) (). (50)

So ¢ is a solution to the HJB Equation (21) with the bound-
ary conditions.

Next, assume for a fixed ¢ that 0 = z(v) < z(t) < co. The
basic approach above still works. However, we must recog-
nize that because /"/(z) converge to a finite valued concave
function, we must have C,(v) = —1lim, ,;u,(z, t) to keep the
value function finite. Otherwise, the situation above still
applies.

The case z(1) <0 < z(t) < oo is also similar to the above.
In this case, we can write the limiting function as

—vyB(z4+1—a) !

(z+1+6(@)
1-
G (O (z, 1) + Gy (z, 1) + (2, v)

if 0<z<z(1),

A1) if z>2(1),

l/’(Z/ ") = N
G (O (z, 1) + G(W)a(z, 1) + (2, 0)
if z(1) <z <0,
B(L)(ZJrll__—‘)‘("))l_y if a(t)—1<z< 2(1),
where we must recognize that C,(v) = —lim,_,u,(z, ) to

keep the value function finite.

Finally, we must also consider the possibility that
Z(1) = co. Again the proof is similar to the above argu-
ments once we recognize this requires restrictions on C;(¢).
We leave the details to the determined reader. Q.E.D.

ProOF oF ProrosiTION 2. We will prove the proposition
for the case h(m, 1) #0. The case where h(, ) =0 follows

from identical arguments. Evaluating Equation (18) at z(t)
and some algebra gives

—%0’(&)2(1 = a(1)*B() + (1) = (1) (1 = a(W)(z(v)

11— a(b))B(a)+(L+r( )B(1) — B(‘))(z()+1 a(v)?

Sy ) E W W)olx, v, )y, (x,y,9re)
y (01— a(@) -

(51)
which, defining 7 () = (1 — a(v))/(z(t) + 1 — a(t)) becomes

—%U(L)ZW(L)ZB(L) + (@) = r(@)BH)7 (1)

- B ) - )‘B(”)
1—vy

. fxy,0—E@W+n" (b)+nD(b))v(X,y, )=y, (x,y,)v() 0
v (z()+1-a(w)r o
(52)
Because v(x,y,1—t) <v(x,y,u),
f,y, 0 <€@olx,y, 0+ (E[(, y]Y, )]
+1°(WE[v(x, y]”, V)], (53)

and the inequality v(x, yJ, ) <ov(x,y, ) +yv,(x, vy, )(J —1)
gives us

fy,)—(EQ+n" ) +n"W) oy, 0 —yo,(x, y,b)V(L)
Yy (2@ +1-a@)'

(54)
Therefore,
Lo P mWPBO) + (40 — H)BW () + %
+r (B — ”‘_‘7) ~0. 55)

Because A/(1—1y) + r(t)B(t) — AB(v)/(1—7v) <0 (r is con-
stant), we have

—%U(L)ZW(L)ZB(L) + @) —r@)BH7() =0,  (56)

and the bound follows. The bound on the buy boundary
follows from similar arguments. Q.E.D.

The following proposition provides some sufficient con-
ditions for v(x, y,v)>v(x,y,1—1).

ProrosrtioN 3. Suppose HOE §(1 —u0)=0,7(t)= r(1 —u),
0(1) =81 1), mi'(1) < my'(1 =), m' (1) 2 7y’ (1 —0), WP (1) <
(1 —0), W) 21—, p) = pl-1), o) <ol -y,
a(t) < a(l — ), and 6() < 0(1 — v). Then v(x,y,t) >
v(x,y,1—1).

Proor. Under the conditions stated in the proposition,
one can show that M(t) > M(1 — ), so recalling notation
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from Equation (25), we have f°(x,y,1) > f°(x,y,1—1). By
construction, on NT, we have

%U(L)Zyzv;y(b) + (020, (1) + (1(1) = v()y o, (1) — ()0 (1)
(x+ (1 —a@)n'
1-vy

Therefore, using Ito’s Lemma, for any trading strategy

m+azf?%rﬂ>]

+ O, y, )+ A =0.

oy = B[ e (04
0

- E[/oo e,a(yb)t(fO(xt, Vi, 1—1)
0

x4+ (1—al- L)yt)liy>j| (57)

A
+ 11—y

o'(x,y, 1) >

sup E|:/0 eia(lﬂ)t<f0(xt/ Y, 1—1)

(D, Ned(x, y)

+A

x+(1—-a(l- L)yt)liy
1-vy
=o' (x,y,1—1).
We now observe that this implies that f'(x,y,¢) >
fix,y,1 — 1), which using the above arguments gives
v*(x,y,t) > v*(x,y,1 — ). Iterating the above arguments,
we find that v'(x, y, t) > v'(x, y, 1 —4) for all i, which implies
v(x,y,v)>v(x,y,1—1) from Theorem 2. Q.E.D.

The following lemma is used to prove Proposition 1.

LEMMA 2. For all x,y in the solvency region, we have

1oy, 0)= - ()u+u )y, (58)
MG B0
. mzm (59)

ProoF oF LEMMA 2.

Statement 1. It is always feasible to trade to the sell
region. Indeed, the quantity to sell to reach the sell bound-
ary is Ay, which is the solution to

x4+ (1—a()Ay

A 20, (60)
SO
_ z(y—x
Therefore,
u(x, Y, v) > o(x+(1- a(b))A]/, y—Ay, )
= P (= A+ (- @) - An)
_ B@) _
= L a7 ()

Statement 2. Suppose, to the contrary, M(v)/(1—7) <
B(t)/(1 — ). Then we have

M(b) B()

(X+ A—a@)y'™ 1oy (x+(1-a@)y'”

§v(x,y,L), (63)

where the last inequality follows from Statement 1. How-
ever, for y =0, this gives

M(v)

- (x)1 Y <o(x,0,1), (64)

which cannot hold because the value function with no trans-
action costs must be at least as big as the value function
with transaction costs. Q.E.D.

ProOF oF ProrosiTION 1. Evaluate the HJB equation (18)
at z(v), define m(z) = (1 — a(t))/(z+1 — a(v)), and use (2) to
get for all z < z(v)

a(m(z), v)B(t) + h(m(z), )B(1—1v) + A

T <0 (65)

with equality when z = z and a, h are the same as the no-
transaction-cost case. Recall

a(m(z), VM) + h(7(z), YM(1 — 1) + A

Ty <0  (66)

with equality when 7(z) = 7*(¢).
If h =0 as in the pure jump diffusion model in State-
ment 2 of Lemma 2, and a(w, t) <0 imply

a(m*(v), YyM(t) + A —0< a(m*(v), v)B(v) + /\. 67)
11—y 1-vy
If the inequality is strict, the right-hand side must be
less than or equal to zero from Equation (65), and this
implies that 7(z(t)) > 7*(¢). If the inequality is an equality,
then 7(z(t)) = 7*(¢). In either case this implies that z(1) <
(1—a()z*(v).

If h is not zero, then because a <0, we have for all z in
the sell region,

B() _ —h(m(2), YB(1—1)— A

(N (S EC e 9
In regime 1 — ¢ we have

B(1—1) - —h(m(z),1—1)B(t) — A

1=y = e, 19 )

The two inequalities (68) and (69) then imply for all z;
and z, in the sell regions,

B(v)
1-vy

A((7(21), 1) —a(m(2,),1-1))
= =) a(m(z), 0a(m(z,), 10— h(m(zr), h((), 1-0)
(70)

B(1—v)
1-vy

A(h(m(2;),1—1) —a(m(21),1))
= T a(m(z), 0a(m(z,), 10— h(m(z), Oh(m(z),1-0)
(71)

where the numerator and denominator are positive from
Assumption 1. These must hold for every choice of z; in the
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sell region of regime ¢ and z, in the sell region in regime
1 — . We also have from Statement 2 of Lemma 2,

B(v) _ M(v)
1-y 71—y
Ah(7* (1), ) —a(m*(1—1),1—1))

= 1 =y)(a(m* (1), )a(m*(1=1),1—1) = h(m* (), )h(m*(1—1),1—1)) "

(72)
B(1—1v) _ M1 —1)
T—vy T—vy
Ah(m*(1—=1),1—10) —a(m*(v), 1))

= A=) @(m @), va(r-(1—1),1—0)— h(7 (), ) h(m (1—1), 1—1))

(73)
Therefore, for all choices of z; and z, in the sell regions, we
have
a(m(zq), )yM@) + A
T—vy
. h(m(z1), YA(h(7(25), 1 1) —a(7(21), 1))
(I=y)(a(m(z1),Ya(7(z;), 1 =) = h(7(21), Y h(7(2,), 1 =)
_ a(m(zq), v)B(v) + h(m(z1), )B(1 —) + A -
= T—y =<
If z*(1—¢) is in the sell region for regime 1 —, then evaluting
the above expression at z, =z*(1 —) and z; = z*(v) gives
a(m*(v), yM(t) + A
I—y
n h(m (1), )A(h(7* (1 —1), 1 —1) —a(7" (1), 1))
(1=y)(a(m*(v), a(m*(1—1),1—1) = h(m* (1), Yh(7*(1—1), 1))
0< a(m*(v), v)B(t) + h(m*(t), )B(1 —v)+ A _
=< T—y =
Therefore, the inequality cannot be strict. If it is an equality,
then 7(z(v)) = 7(z*(v)), otherwise we must have 7 (z(t)) >
m(z*(¢)); in other words z*(v) cannot be in the sell region
for regime t. A symetrict argument in regime 1 — says that
if z*(1) is in the sell region for regime, then z(1 — ) cannot
be in the sell region for regime 1 — . This then gives the
bounds. Q.E.D.

0. (74)

0.
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