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Abstract:  
The extended Kalman filter, which linearizes the relationship between security prices 
and state variables, is widely used in fixed income applications. We investigate if the 
unscented Kalman filter should be used to capture nonlinearities, and compare the 
performance of the Kalman filter to that of the particle filter. We analyze the cross 
section of swap rates, which are mildly nonlinear in the states, and cap prices, which are 
highly nonlinear. When caps are used to filter the states, the unscented Kalman filter 
significantly outperforms its extended counterpart. The unscented Kalman filter also 
performs well when compared to the much more computationally intensive particle filter. 
These findings suggest that the unscented Kalman filter may prove to be a good 
approach for variety of problems in fixed income pricing. 
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1 Introduction

Multifactor affine term structure models (ATSMs) have become the standard in the literature on

the valuation of fixed income securities, such as government bonds, corporate bonds, interest rate

swaps, credit default swaps, and interest rate derivatives. Even though we have made significant

progress in specifying these models, their implementation is still subject to substantial challenges.

One of the challenges is the proper identification of the parameters governing the dynamics

of the risk premia (see Dai and Singleton (2002)). It has been recognized in the literature that

the use of contracts that are nonlinear in the state variables, such as interest rate derivatives, can

potentially help achieve such identification. Nonlinear contracts can also enhance the ability of

affine models to capture time variation in excess returns and conditional volatility (see Bikbov and

Chernov (2009) and Almeida, Graveline and Joslin (2011)).

Given the potentially valuable information content of nonlinear securities, efficient implementa-

tion of ATSMs for these securities is of paramount importance. One of the most popular techniques

used in the literature, the extended Kalman filter (EKF), relies on a linearized version of the mea-

surement equation, which links observed security prices to the models’ state variables. Our paper

is the first to extensively investigate the impact of this linearization. We find that when the states

are extracted using securities that are mildly nonlinear in the state variables, such as swaps, the

EKF is adequate. When extracting states using securities that are highly nonlinear in the state

variables, such as interest rate derivatives, the approximation used by the EKF leads to significant

noise and biases in the filtered state variables as well as the forecasts of security prices. We ex-

tensively analyze the properties of the unscented Kalman filter (UKF) when implementing affine

term structure models for highly nonlinear securities, and we compare its performance with that of

the EKF. The main advantage of the unscented Kalman filter is that it accounts for the non-linear

relationship between the observed security prices and the underlying state variables.

We use an extensive Monte Carlo experiment that involves a cross-section of LIBOR and swap
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rates as well as interest rate caps, to investigate the quality of the EKF and UKF filters as well

as their in- and out-of-sample forecasting ability. We also benchmark the performance of the EKF

and the UKF using the particle filter. The performance of both filters is roughly similar when

interest rate caps are not included in the filtering exercise, and their performance compares well

with that of the particle filter. When interest rate caps are included in the filtering exercise, the

UKF robustly outperforms the EKF in two different exercises. First, for the purpose of filtering

the unobserved state variables, the UKF outperforms the EKF, using the root-mean-square-error

(RMSE) of the filtered state variables as a gauge for the performance of the filters. We also find

that the UKF is numerically much more stable than the EKF, exhibiting a much lower dispersion

of the RMSE across the Monte Carlo trajectories. Second, the improved precision of the UKF in

filtering the state variables in this case translates into more accurate forecasts for LIBOR rates,

swap rates, and cap prices. It is also critically important that the superior performance of the UKF

comes at a reasonable computational cost. In our application, the computational time required

for the unscented Kalman filter was about twice that required for the extended Kalman filter.

Finally, when interest rate caps are included in the filtering exercise, the UKF also performs well

when compared to the particle filter for most models and securities, but its relative performance

worsens somewhat for highly nonlinear securities. Moreover, in our implementation, the UKF is

approximately 500 times faster than the particle filter.

Throughout this paper we keep the structural parameters fixed at their true values. However, the

poor results obtained when using the EKF to filter states when caps are used suggest that parameter

estimation based on this technique would be highly unreliable, as the filter is unable to correctly fit

rates and prices even when provided with the true model parameters. The dramatic improvements

brought by the UKF suggest that it will also improve parameter estimation when derivative prices

are used to estimate the parameters, which is of critical importance in the identification of the risk

premium parameters.
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Even though the use of the unscented Kalman filter has become popular in the engineering

literature (see for instance Julier (2000) and Julier and Uhlmann (2004)), it has not been used

extensively in the empirical asset pricing literature.1 Our results suggest that the unscented Kalman

filter may prove to be a good approach for tackling a number of problems in fixed income pricing

where the relationship between the state vector and the observations is highly nonlinear. Given the

modest computational burden, the UKF may also represent a viable alternative in mildly nonlinear

fixed income problems, such as the estimation of term structure models using a cross section of

coupon bonds or the estimation of quadratic term structure models.2

The paper proceeds as follows. Section 2 briefly discusses the pricing of LIBOR, swaps, and

caps in affine term structure models. Section 3 discusses Kalman filtering in ATSMs, including the

extended Kalman filter and the unscented Kalman filter, and also discusses our implementation of

the particle filter. Section 4 reports the results of our Monte Carlo experiments. Section 5 discusses

implications for parameter estimation, and Section 6 concludes.

2 Affine Term Structure Models

In this section, we define the risk-neutral dynamics in ATSMs, a pricing kernel and the pricing

formulas for LIBOR rates, swap rates, and cap prices. We follow the literature on term structure

models and assume that the swap and LIBOR contracts as well as the interest rate caps are default-

free. See Dai and Singleton (2000), Collin-Dufresne and Solnik (2001), Feldhutter and Lando (2008),

and Andersen and Benzoni (2010) for further discussion.
1See Carr and Wu (2007), Bakshi, Carr and Wu (2008), and Li (2013) for applications to equity options. van

Binsbergen and Koijen (2012) use the unscented Kalman filter to estimate present-value models.

2See Fontaine and Garcia (2012) for a recent application of the unscented Kalman filter to the estimation of term

structure models for coupon bonds. See Chen, Cheng, Fabozzi, and Liu (2008) for an application of the unscented

Kalman filter to the estimation of quadratic term structure models.
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2.1 Risk-Neutral Dynamics

Affine term structure models (ATSMs) assume that the short rate is given by rt = δ0 + δ′1xt, and

the state vector xt follows an affine diffusion under the risk-neutral measure Q

dxt = κ̃
(
θ̃ − xt

)
dt+ Σ

√
StdW̃t, (1)

where W̃t is an N−dimensional vector of independent standard Q-Brownian motions, κ̃ and Σ are

N ×N matrices and St is a diagonal matrix with a ith diagonal element given by

[St]ii = αi + β′ixt. (2)

Following Duffie and Kan (1996), we write

ψQ(u, t, τ) = EQ
t

[
e−

R t+τ
t rsdseu

′xt

]
= exp

{
Au(τ)−B′

u(τ)xt

}
, (3)

where τ is the time to maturity, and Au(τ) and Bu(τ) satisfy the following Ricatti ODEs

dAu(τ)
dτ

= −θ̃′κ̃Bu(τ) +
1
2

N∑
i=1

[ΣBu(τ)]2i αi − δ0 (4)

and

dBu(τ)
dτ

= −κ̃Bu(τ) +
1
2

N∑
i=1

[ΣBu(τ)]2i βi + δ1. (5)

Equations (4) and (5) can be solved numerically with initial conditions Au(0) = 0 and Bu(0) = −u.

The resulting zero-coupon bond price is exponentially affine in the state vector

P (t, τ) = ψQ(0, t, τ) = exp
{
A0(τ)−B′

0(τ)xt

}
. (6)

2.2 Pricing Kernel

The model is fully specified once the dynamics of the state price are known. The dynamic of the

pricing kernel πt is assumed to be of the form

dπt

πt
= −rtdt− Λ′

tdWt, (7)
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where Wt is a N−dimensional vector of independent standard P−Brownian motions and Λt denotes

the market price of risk. The dynamics of the state vector under the actual measure P can be

obtained by subtracting Σ
√
StΛt from the drift of equation (1).

The market price of risk Λt does not depend on the maturity of the bond and is a function

of the current value of the state vector xt. We study completely affine models which specify the

market price of risk as follows

Λt =
√
Stλ0. (8)

See Cheridito, Filipović and Kimmel (2007), Duffee (2002), and Duarte (2004) for alternative

specifications of the market price of risk.

2.3 LIBOR and Swap Rates

In ATSMs, the time-t LIBOR rate on a loan maturing at t+ τ is given by

L(t, τ) =
1− P (t, τ)
τP (t, τ)

(9)

= τ−1
[
exp(−A0(τ) +B′

0(τ)xt)− 1
]
.

while the fair rate at time t on a swap contract with semi-annual payments up to maturity t + τ

can be written as

SR(t, τ) =
1− P (t, τ)

0.5×
∑2τ

j=1 P (t, 0.5j)
(10)

=
1− exp(A0(τ)−B′

0(τ)xt)
0.5×

∑2τ
j=1 exp(A0(0.5j)−B′

0(0.5j)xt)
.

As mentioned earlier, A0(τ) and B0(τ) can be obtained numerically from equations (4) and (5).

2.4 Cap Prices

Computing cap prices is more computationally intensive. Given the current latent state x0, the

value of an at-the-money cap CL on the 3-month LIBOR rate L(t, 0.25) with strike R̄ = L(0, 0.25)
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and maturity in T years is

CL(0, T, R̄) =
T/0.25∑
j=2

EQ

[
e−

R Tj
0 rsds 0.25

(
L(Tj−1, 0.25)− R̄

)+
]

=
T/0.25∑
j=2

cL
(
0, Tj , R̄

)
, (11)

where Tj = 0.25j. The cap price is thus the sum of the value of caplets cL
(
0, Tj , R̄

)
with strike R̄

and maturity Tj .

The payoff ΠTj−1 of caplet cL
(
0, Tj , R̄

)
is known at time Tj−1 but paid at Tj . It is given by

ΠTj−1 = 0.25
(
L(Tj−1, 0.25)− R̄

)+

= 0.25

(
1− P (Tj−1, 0.25)
0.25P (Tj−1, 0.25)

− R̄

)+

=
1 + 0.25R̄

P (Tj−1, 0.25)

(
1

1 + 0.25R̄
− P (Tj−1, 0.25)

)+

. (12)

Since the discounted value of the caplet is a martingale under the risk-neutral measure, we have

for K = 1
1+0.25R̄

cL
(
0, Tj , R̄

)
= EQ

[
e−

R Tj
0 rsds ΠTj−1

]
=

1
K
EQ

[
e−

R Tj−1
0 rsds

(
K − P (Tj−1, 0.25)

)+
]

=
1
K
P(0, Tj−1, Tj ,K) (13)

Equation (13) represents the time-0 value of 1/K puts with maturity Tj−1 and strike K on a zero-

coupon bond maturing in Tj years. Duffie, Pan, and Singleton (2000) show that the price of such

a put option is given by

P(0, Tj−1, Tj ,K) = EQ

[
e−

R Tj−1
0 rsds

(
K − exp

{
A0(0.25)−B′

0(0.25)xTj−1

} )+
]

= eA0(0.25)EQ

[
e−

R Tj−1
0 rsds

(
e−A0(0.25)K − exp

{
−B′

0(0.25)xTj−1

} )+
]

= eA0(0.25)
[
cG0,d(log c, 0, Tj−1)−Gd,d(log c, 0, Tj−1)

]
, (14)

where c = e−A0(0.25)K, d = −B0(0.25), and

Ga,b(y, 0, Tj−1) =
1
2
ψQ(a, 0, Tj−1)−

1
π

∫ ∞

0

1
κ

Im
[
ψQ(a+ iκb, 0, Tj−1)e−iκy

]
dκ (15)
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In general, the integral in (15) can only be solved numerically. Note that this requires solving the

Ricatti ODEs for Au(τ) and Bu(τ) in (4) and (5) at each point u = a+ iκb.

Empirical studies of cap pricing and hedging can be found in Li and Zhao (2006) and Jarrow,

Li and Zhao (2007).

At this point we have specified the state variable dynamics and the pricing kernel. We have also

provided model-based formulas for LIBOR and swaps rates as well as cap prices. We are now ready

to discuss methods for filtering the unobserved state variables using observed rates and prices.

3 Kalman Filtering the State Vector

Consider the following general nonlinear state-space system

xt+1 = F (xt, εt+1) , (16)

and

yt = G(xt) + ut (17)

where yt is a D-dimensional vector of observables, εt+1 is state noise and ut is observation noise

that has zero mean and a covariance matrix denoted by R. In term structure applications, the

transition function F is specified by the dynamic of the state vector and the measurement function

G is specified by the pricing function of the fixed income securities being studied. In our application,

the transition function F follows from the affine state vector dynamic in (1), yt are the LIBOR,

swap rates, and cap prices observed weekly for different maturities, and the function G is given by

the pricing functions in (9), (10), and (11).

The transition equation (16) reflects the discrete time evolution of the state variables, whereas

the measurement equation provides the mapping between the unobserved state vector and the

observed variables. If xt is an affine diffusion process, a discrete expression of its dynamics is

only available for Gaussian processes. When the state vector is not Gaussian, one can obtain an
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approximate transition equation by exploiting the existence of the two first conditional moments in

closed-form and replacing the original state vector with a new Gaussian state vector with identical

two first conditional moments. While this approximation results in inconsistent estimates, Monte

Carlo evidence shows that its impact is negligible in practice (see Duan and Simonato (1999) and

de Jong (2000)).

3.1 The Extended Kalman Filter

The most popular implementation of the Kalman filter in economics and finance is the extended

Kalman filter (EKF).3 For the models we are interested in, the conditional expectation of the state

vector is an affine function of the state.4 Using (1) and an Euler discretization, the transition

equation (16) can therefore be rewritten as follows

xt+1 = F (xt, εt+1) = a+ bxt + εt+1, (18)

where εt+1|t ∼ N (0, v (xt)) and v (xt) is the conditional covariance matrix of the state vector.

Given that yt is observed and assuming that it is a Gaussian random variable, the Kalman filter

recursively provides the optimal minimum MSE estimate of the state vector. The prediction step

consists of

xt|t−1 = a+ bxt−1|t−1, (19)

Pxx(t|t−1) = bPxx(t−1|t−1)b
′ + v

(
xt−1|t−1

)
(20)

Kt = Pxy(t|t−1)P
−1
yy(t|t−1), (21)

and

yt|t−1 = Et−1 [G(xt)] . (22)

3For early applications of the extended Kalman filter in finance see Chen and Scott (1995), Duan and Simonato

(1999), Duffee (1999), and Lund (1997).

4It is straightforward to derive analytical expressions for the first two conditional moments. See the internet

appendix available at http://papers.ssrn.com/abstract=2322760.
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Updating is done using

xt|t = xt|t−1 +Kt

(
yt − yt|t−1

)
, (23)

and

Pxx(t|t) = Pxx(t|t−1) −KtPyy(t|t−1)K
′
t, (24)

When G in (22) is a linear function, e.g. if the observations are zero-coupon yields, then the co-

variance matrices Pxy(t|t−1) and Pyy(t|t−1) can be computed exactly and the only approximation

is therefore induced by the Gaussian transformation of the state vector used in (18). When the

relationship between the state vector and the observation is nonlinear, as is the case when swap

contracts, coupon bonds, or interest rate options are used, then G(xt) needs to be well approxi-

mated in order to obtain good estimates of the covariance matrices Pxy(t|t−1) and Pyy(t|t−1). The

most important difference between the unscented and extended Kalman filter is their treatment

of nonlinearities in the measurement equation. The extended Kalman filter (EKF) relies on a

first order Taylor expansion of the measurement equation around the predicted state xt|t−1. The

measurement equation is then rewritten as follows

yt = G(xt|t−1) + Jt

(
xt − xt|t−1

)
+ ut, (25)

where

Jt =
∂G

∂xt

∣∣∣∣
xt=xt|t−1

denotes the Jacobian matrix of the nonlinear function G(xt|t−1) computed at xt|t−1.

The covariance matrices Pxy(t|t−1) and Pyy(t|t−1) are then computed as

Pxy(t|t−1) = Pxx(t|t−1)Jt, (26)

and

Pyy(t|t−1) = JtPxx(t|t−1)J
′
t +R. (27)

The estimate of the state vector is then updated using (23), (24), and

Kt = Pxx(t|t−1)JtP
−1
yy(t|t−1). (28)
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3.2 The Unscented Kalman Filter

Unlike the extended Kalman filter, the unscented Kalman filter uses the exact nonlinear function

G(xt) and does not linearize the measurement equation. Rather than approximating G(xt), the

unscented Kalman filter approximates the conditional distribution of xt using the scaled unscented

transformation (Julier (2000)), which can be defined as a method for computing the statistics of

a nonlinear transformation of a random variable. Julier and Uhlmann (2004) prove that such an

approximation is accurate to the third order for Gaussian states and to the second order for non-

Gaussian states. It must also be noted that the approximation does not require computation of the

Jacobian or Hessian matrices and that the computational burden associated with the unscented

Kalman is comparable to that of the extended Kalman filter. In our application below, the com-

putation time for the unscented Kalman filter is on average twice that of the extended Kalman

filter.

Consider the random variable x with mean µx and covariance matrix Pxx, and the nonlinear

transformation y = G (x). The basic idea behind the scaled unscented transformation is to generate

a set of points, called sigma points, with the first two sample moments equal to µx and Pxx. The

nonlinear transformation is then applied at each sigma point. In particular, the N -dimensional

random variable is approximated by a set of 2N + 1 weighted points given by

X0 = µx, (29)

Xi = µx +
(√

(N + ξ)Pxx

)
i
, for i = 1, · · · , N (30)

Xi = µx −
(√

(N + ξ)Pxx

)
i
, for i = N + 1, · · · , 2N (31)

with weights

Wm
0 =

ξ

(N + ξ)
, W c

0 =
ξ

(N + ξ)
+

(
1− ρ2 + γ

)
(32)

Wm
i = W c

i =
1

2 (N + ξ)
, for i = 1, · · · , 2N, (33)
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where ξ = ρ2 (N + χ)−N, and where
(√

(N + ξ)Pxx

)
i
is the ith column of the matrix square root

of (N + ξ)Pxx. The scaling parameter ρ>0 is intended to minimize higher order effects and can be

made arbitrary small. The restriction χ>0 guarantees the positivity of the covariance matrix. The

parameter γ≥0 can capture higher order moments of the state distribution; it is equal to two for

the Gaussian distribution. The nonlinear transformation is applied to the sigma points (29)-(31) ,

thus generating

Yi = G (Xi) , for i = 0, · · · , 2N.

The unscented Kalman filter relies on the unscented transformation to approximate the covariance

matrices Pxy(t|t−1) and Pyy(t|t−1). The state vector is augmented with the state white-noise ξt =

εt/
√
v(xt).5 With N state variables this results in the Na = 2N dimensional vector

xa
t =

[
x′t ξ′t

]′
. (34)

The unscented transformation is applied to this augmented vector in order to compute the sigma

points.

As shown by equations (30) and (31), implementation of the unscented Kalman filter requires

computation of the square root of the variance-covariance matrix of the augmented state. There

is no guarantee that the variance-covariance matrix will be positive definite. Positive definiteness

of the variance-covariance matrix is also not guaranteed with the extended Kalman filter which in

turn can affect its numerical stability. In the unscented case, a more stable algorithm is provided

by the square-root unscented Kalman filter proposed by van der Merwe and Wan (2002). The basic

intuition behind the square-root implementation of the unscented Kalman filter is to propagate

and update the square-root of the variance-covariance matrix rather than the variance-covariance
5The state vector could further be augmented with the measurement noise ut. However, the models we consider

have additive measurement errors that can easily be dealt with by simply including the covariance matrix R of the

error term when updating the conditional covariance matrix of y. This reduces the number of sigma points by 2D

and considerably speeds up computation. We are grateful to an anonymous referee for pointing this out.
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matrix itself.6

If we denote the square-root matrix of P by S, the square-root implementation of the unscented

Kalman filter can be summarized by the following algorithm:

0. Initialize the algorithm at t = 0 using unconditional moments

xa
0|0 =

[
E [xt]

′ 0
]′

Sxx(0|0) =
√
var [xt] Sξξ(0|0) = I

For t = 1, . . . , T :

1. Compute the 2Na + 1 sigma points:

X a
t−1|t−1 =

[
xa

t−1|t−1 xa
t−1|t−1 ±

√
(Na + ξ)Sa

t−1|t−1

]
,

where Sa
t−1|t−1 is a block-diagonal matrix with Sxx(t−1|t−1) and Sξξ(t−1|t−1) on the diagonal.

2. Prediction step:

X x
t|t−1 = a+ bX x

t−1|t−1 +
√
v(X x

t−1|t−1)
′X ξ

t−1|t−1 , xt|t−1 =
2N∑
i=0

Wm
i X x

i,t|t−1 ,

Sxx(t|t−1) = cholupdate

{
qr

{√
W c

1

(
X x

1:2N,t|t−1 − xt|t−1

) √
v

(
xt|t−1

)}
,X x

0,t|t−1 − xt|t−1,W
c
0

}
,

Yt|t−1 = G
(
X x

t|t−1

)
and yt|t−1 =

2N∑
i=0

Wm
i Yi,t|t−1,

where (i) qr{A} returns the Q matrix from the ‘QR’ orthogonal-triangular decomposition

of A, and (ii) Scu = cholupdate {S, z,±ν} is a rank-1 update (or downdate) to Cholesky

factorization: Assuming that S is the Cholesky factor of P , then Scu is the Cholesky factor

of P ± νzz′. If z is a matrix, the update (or downdate) is performed using the columns of z

sequentially.
6While the square-root implementation of the unscented Kalman filter is numerically more stable, its computational

complexity is similar to that of the original unscented Kalman.
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3. Measurement update:

Pxy(t|t−1) =
2N∑
i=0

W c
i

[
X x

i,t|t−1 − xt|t−1

] [
Yi,t|t−1 − yt|t−1

]′
Syy(t|t−1) = cholupdate

{
qr

{√
W c

1

(
Y1:2N,t|t−1 − yt|t−1

) √
R

}
,Y0,t|t−1 − yt|t−1,W

c
0

}
where R is the variance of the measurement error. Then

Kt =
(
Pxy(t|t−1)/S

′
yy(t|t−1)

)
/Syy(t|t−1), xt|t = xt|t−1 +Kt

(
yt − yt|t−1

)
,

Sxx(t|t) = cholupdate
{
Sxx(t|t−1),KtSyy(t|t−1),−1

}
,

where ‘/’ denotes the efficient least-squares solution to the problem Ax = b. The estimate of

the state vector is then updated using equations (23) and (24) .

3.3 The Particle Filter

To benchmark the performance of the UKF and the EKF, we also investigate the performance of

the particle filter (PF). Our implementation of the PF follows Li (2011) who proposes a sequential

particle filter with a proposal density that is generated by the unscented Kalman filter.7 The

algorithm is as follows:

0. Initialize at t = 0. Draw a set of particles {x(i)
0 , i = 1, . . . , Np} from the prior p(x0) and give

each particle a weight of one.

For t = 1, . . . , T :

1. Apply the square-root UKF update to xt−1, as discussed in the previous section, obtain a

(global) proposal distribution π̃ with mean x̄t and variance S′tSt.8

7We are grateful to an anonymous referee for suggestions that considerably reduced the computational demands

of this algorithm in our framework.

8Li’s (2011) algorithm is developed in order to address a general non-Gaussian model. In this context, the UKF
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2. Sample { x(i)
t , i = 1, . . . , Np} from π̃(x(i)

t |y1:t) = N (x̄t, S
′
tSt). Note that this can be done effi-

ciently by drawing three-dimensional standard normal variables ε
(i)
t and setting

x
(i)
t = x̄t + S′tε

(i)
t .

3. Update the weight of each particle according to

w
(i)
t = w

(i)
t−1

p(yt|x(i)
t )p(x(i)

t , x
(i)
t−1)

π̃(x(i)
t |y1:t)

(35)

and normalize the weights, i.e. w̃(i)
t = w

(i)
t /

∑Np

i=1w
(i)
t .

4. Resample the weights (Liu and Chen (1998))

• Retain N ′
i = bNpw̃

(i)
t c copies of x(i)

t ;

• Uniformly sample the remaining N ′′
t = Np −

∑Np

i=1N
′
i with new weights

(Npw̃
(i)
t −N ′

i)/N
′′
t ;

• Reset the weights to 1/Np.

4 Monte Carlo Analysis

We are now ready to conduct a Monte Carlo study comparing the UKF and the EKF to the

benchmark PF for the purpose of filtering states and forecasting fixed income security rates and

prices. We want to focus on the numerical stability of each filtering algorithm and the potential

biases caused by a linear approximation of LIBOR, swap rates, and especially cap prices, which

are very nonlinear in the states. By design, the comparison below is not affected by the issue of

parameter estimation as we keep the parameters fixed at their true values throughout.

update must be applied to each particle. In our framework, given conditional normality, the UKF provides a good

global proposal. This requires pricing each instrument only (2Na + 1) + Np times at a given time step, rather than

(2Na + 1)×Np, where (2Na + 1) is the number of sigma points used in the UKF and Np is the number of particles

used in the PF.
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4.1 Monte Carlo Design

Table 1 summarizes the parameter values used in the Monte Carlo experiment. Empty entries

represent parameters that have to be set to zero for the purpose of model identification. Grey-

shaded entries represent parameters that are set to zero to obtain closed-form solutions for the

Ricatti ODEs. Our application involves pricing the cap contracts a large number of times for each

model, and pricing each caplet requires solving the Ricatti ODEs at every integration point in

(15). Numerically solving the Ricatti ODEs in this setup is therefore prohibitively expensive. We

reduce the computational burden by following Ait-Sahalia and Kimmel (2010) and restrict some

of the model parameters in order to obtain closed-form solutions for the Ricatti ODEs. These

restrictions are such that the models are specified with N −M correlated Gaussian processes that

are uncorrelated with M square-root processes, which themselves are uncorrelated.9

With some exceptions, the parameters in Table 1 are from Table 8 in Ait-Sahalia and Kimmel

(2010). The exceptions, all motivated by numerical considerations, are as follows. The δ0 parameter

is set to 3% for all models. Ait-Sahalia and Kimmel (2010) find zero values for the κ11 parameter

in the A1 (3) and A2 (3) models. To enhance numerical stability in the matrix inversions we have

shifted these parameter values by one standard error. Ait-Sahalia and Kimmel (2010) also have

zero values for the mean θj of some of the volatility factors. We set these parameters equal to

5%, which enhances the stability of the simulations. Note that these changes result in parameters

estimates that are well inside the estimated confidence intervals in Ait-Sahalia and Kimmel (2010)

when using conventional significance levels.

Our choice of parameters does not materially affect our findings below. In each case, we have

chosen conservative parameterizations that reduce the nonlinearities of bond and cap prices in the

state variables compared with previous parameterizations. As a result, for most realistic parame-
9Restrictions on the parameters in ATSMs are also imposed in Balduzzi, Das, Foresi and Sundaram (1996), Chen

(1996), and Dai and Singleton (2000).
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terizations, the benefits of the proposed UKF method will generally be more substantial than what

we document.

For each canonical model, we simulate 500 samples of LIBOR rates with maturities of 3 and

6 months, swap rates with maturities of 1, 2, 5, 7, and 10 years, and at-the-money interest rate

caps on 3-month LIBOR with maturities of 1 and 5 years. Each sample contains 260 weekly

observations.10 We use an Euler discretization of the stochastic differential equation of the state

vector and divide the week into 100 time steps. Weekly observations are then extracted by taking

the 100th observation within each week.

For each simulated sample, the filtered values of the unobserved state variables and the rate

or price implied by each filter are compared to the simulated data under various scenarios. The

unscented Kalman filter is implemented with rescaling parameters ρ = 1, χ = 0, and γ = 2.11

Figure 1 shows the unconditional term structure of interest rates implied by the parameters

in Table 1 for each of the four models. Note that the parameters generate quite different term

structures across models, and note in particular that the implied term structure for the A3(3)

model is fairly flat.
10To investigate if sample length affects our conclusions, we subsampled, for the A1 (3) model, 10 paths (k) with

median ratios RMSEEKF
k /RMSEUKF

k (using caps) and extended them to 520 and 1300 weeks instead of 260. Our

conclusions were not affected by this change.

11We set γ = 2 because it implies a Gaussian state. This assumption therefore induces a bias in our implementation

of the UKF which is identical to the EKF bias. This ensures that our comparison is focused on the implications

of nonlinearities in the measurement equation. Setting χ = 0 is the standard for state estimation (van der Merwe

and Wan (2002), Julier and Uhlmann (2004)). The parameter ρ, 0 ≤ ρ ≤ 1, controls the size of the sigma-point

distribution; setting it to 1 reflects a diffuse prior on the distribution of the (volatility) states. See Dunik, Simandel

and Straka (2012) for further discussion of the scaling parameters.
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4.2 State Vector Extraction

We begin by assessing the ability of each filter to accurately extract the unobserved path of the

state variables. For each simulated time series, we compare the filtered state variables implied by

each method to the actual state observations. As a gauge for the goodness of fit, we calculate the

root mean squared error (RMSE) over 260 weeks for each Monte Carlo sample as follows

RMSEF
k (i) =

√√√√ 1
260

260∑
t=1

(
xi,k,t − xF

i,k,t

)2

where xi,k,t denotes the true but unobserved state variable i in sample k at time t. The filtered

state variable is denoted by xF
i,k,t where F stands for the EKF, UKF or PF. For each model we

compute the RMSE for each state variable and on each of 500 Monte Carlo samples.

Tables 2 and 3 provide the mean, median, and standard deviation of the RMSE for each state

variable across the 500 simulated paths. For example, for the mean RMSE we compute

Mean(RMSEF
k (i)) =

1
500

500∑
k=1

RMSEF
k (i) .

For the EKF and UKF we also report for each statistic its ratio with that from the PF.

Panel A presents results for the A0 (3) model, Panel B for the A1 (3) model, Panel C for the

A2 (3) model, and Panel D for the A3 (3) model. Table 2 provides results for the case where

state filtering is done without caps, while Table 3 additionally uses cap prices to extract the state

variables. Our prior is that because the cap prices are more nonlinear in the states, the relative

performance of the UKF versus the EKF should be better in Table 3 compared with Table 2.

Table 2, which does not use caps to filter states, yields two important conclusions. First, the

performance of the EKF and the UKF is very similar. Second, the performance of both filters is

very similar to the performance of the PF, which requires more than 400 times the computations in

the EKF, and more than 200 times the computations in the UKF.12 Evidently, when caps are not
12These numbers are based on the 3000-particle PF used when filtering based on rates only. The computational

burden of pricing caplets can easily be 1000 times that of computing a LIBOR rate, since the computation involves
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used to filter states, the nonlinearities are not very pronounced and the performance of the three

filters is similar.

Table 3 provides results for the case where caps are included in filtering. The UKF now signif-

icantly outperforms the EKF in every dimension. The mean and median RMSE are smaller for all

models, often by a large amount. The mean and median RMSE for the UKF also compare fairly

well with that of the PF. The standard deviation of the RMSE is also uniformly larger for the EKF

compared to the UKF, in some cases dramatically so. This is a clear indication that the UKF is

numerically more stable. The UKF is also very stable when using our PF implementation as a

benchmark.

Comparing Tables 2 and 3, it is clear that for the EKF, the mean and median state RMSEs are

dramatically larger when caps are included in filtering. As discussed earlier, the EKF performs a

first order Taylor expansion around the predicted state variables. The quality of the EKF filtering

thus crucially depends on the numerical gradient used in this first order approximation. The

increased RMSEs demonstrate that when the highly nonlinear caps are used, the gradient offers a

very poor approximation of the impact that variations in states have on the measurement equation.

The UKF’s median RMSEs in Table 3 are typically, but not always, smaller than those in Table

2. When judged by the mean RMSEs, the picture is mixed. These results on the UKF’s mean and

median RMSEs suggest that state extraction does not work well for some outliers when caps are

used to extract states.

Figures 2 and 3 provide further insight in these results by showing scatter plots of the state

RMSEs of the EKF and UKF against the RMSEs of the particle filter. For each model, each row

of panels shows results for a different state variable. The two left-most columns of panels in each

numerical integrals. For the 3000-particle PF, this leads to a very high computational burden. Fortunately, the

observed cap prices are very informative on the states (see Li, 2011), and we can use fewer particles, namely 300. The

resulting PF still requires more than 40 times the computations in the EKF and more than 20 times the computations

in the UKF.
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figure show the case where caps are excluded from the filtering algorithm, while the two right-side

columns are obtained by also including caps in the cross-section of observed securities. The right-

side panels of Figures 2 and 3 clearly illustrate the superiority of the UKF in dealing with securities

that are highly nonlinear in the state variables. Importantly the EKF is also numerically much less

stable, as evidenced by the high number of outliers in the scatter plots.

Overall the results on the UKF in Tables 2-3 and Figures 2-3 are quite striking, and indicate

that the UKF is usually able to incorporate the additional information contained in caps to extract

the underlying states more precisely. The EKF, however, actually suffers from the additional

information in caps because of the linearization. This initial Monte Carlo exercise therefore leaves

little doubt that the UKF is much superior in filtering the state variables than the EKF when highly

nonlinear securities are used. The UKF’s outperformance is of course model-dependent, because

different models and different model parameterizations imply different degrees of nonlinearity. The

UKF also performs well when compared with the PF. When securities are only mildly nonlinear in

the state variables as in Table 2, the performance of the EKF is adequate.

Our first main conclusion is that the UKF offers a clear improvement over the EKF in extracting

states, in particular when caps are used to filter the states, and that the UKF performs well

compared to the (optimal) PF, at a significantly lower computational cost.

4.3 Implications for Rates and Prices

In order to assess the economic implications of the two filtering methods, we now investigate the

filters’ ability to match observed LIBOR and swap rates as well as cap prices. We compare the

fitted LIBOR, swap rates, and cap prices implied by states from each filter to the actual rates and

prices computed from the true states. We also provide the fitted LIBOR, swap rates, and cap prices

provided by the PF as a benchmark.

Tables 4 and 5 compare the security prices implied by the filtered states to the simulated true
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values. We provide RMSEs as well as Bias. For each security the RMSE for filter F is computed

as

RMSEF =
1

500

500∑
k=1

RMSEF
k =

1
500

500∑
k=1

√√√√ 1
260

260∑
t=1

(
yk,t − yF

k,t

)2

where yk,t is the true price or rate in sample k at week t, yF
k,t is the value obtained using a filtered

state vector and F stands for the UKF, EKF, or PF. Bias is defined by

BiasF =
1

130, 000

500∑
k=1

260∑
t=1

(
yk,t − yF

k,t

)
All estimates are in basis points. Table 4 provides results when cap prices are not used in the

filtering step, while Table 5 provides results when cap prices are included to filter the states.

Table 4 indicates that the UKF usually provides a lower RMSE than the EKF, even if the UKF

bias is sometimes larger. The lower RMSE is robust across securities but not across models: the

UKF underperforms the EKF for the A2 (3) model. The differences in RMSE between the UKF

and the EKF are small, which is to be expected given the very similar performance in extracting

the states documented in Table 2. Table 4 also confirms the finding from Table 2 that the relative

performance of the UKF compared to the EKF is indeed the worst in the case of the A2 (3) model.

Finally, Table 4 indicates that the performance of both the EKF and the UKF is satisfactory when

benchmarked against the PF.

Table 5 indicates that the UKF dramatically outperforms the EKF when caps are also included

in state filtering. Compared to Table 4, the RMSE implied by the UKF is substantially smaller for

cap prices, and somewhat larger overall for LIBOR and swap rates. This result is not surprising

because the states filtered on all securities represent a compromise between fitting rates and cap

prices. Interestingly, the performance of the EKF relative to Table 4 deteriorates for the majority

of securities and models. In terms of bias, the UKF generally outperforms the EKF in Table 5.

The degree of outperformance of the UKF over the EKF in Table 5 is model-dependent and

security-dependent. The RMSE ratio is the largest for LIBOR. The EKF’s RMSE for 3-month

LIBOR is roughly eight times higher in the case of the A1 (3) model, and more than three times
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higher in the case of the A0 (3) model. For the 6-month LIBOR, the corresponding ratios are

approximately five and three. The improvements offered by the UKF are less dramatic in the case

of the A3(3) model where the nonlinearities are less pronounced.

While the UKF substantially outperforms the EKF when highly nonlinear caps are used for

extracting states, Table 5 indicates that it does not perform as well as the PF for pricing the caps.

The differences are small for the 1-yr cap, but for the 5-yr cap the RMSE for the UKF is on average

twice as large. The UKF’s performance in fitting the more linear LIBOR and swap rates is better

than our implementation of the PF, again suggesting a trade-off between pricing the more and less

linear securities.

Our second main conclusion is that when caps are used to extract states, the UKF’s improvement

over the EKF in extracting states carries over to improvements in securities pricing. Furthermore,

while adding nonlinear securities generally improves the performance of the nonlinear UKF filter in

state vector extraction, the economic benefits are not evenly distributed across securities. However,

the benefits are clear for the pricing of highly nonlinear securities. Overall the UKF also performs

well compared to the PF.

4.4 Dynamic Implications: Rate and Price Forecasts

Dynamic term structure models are used not only for the valuation of securities at present but also

to forecast future rates and prices (see for example Backus, Foresi, Mozumdar and Wu (2001) and

Egorov, Hong and Li (2006)). The usefulness of the model for this purpose depends crucially on

the accuracy of the state vector filter.

Table 6 summarizes the relative performance of the EKF and UKF for predicting LIBOR, swap

rates, and cap prices for various forecasting horizons in each of our four models. For each security

we compute the forecast RMSE for each horizon, h, defined by

RMSEF
k (h) =

√√√√ 1
260− h

260−h∑
t=1

(
yk,t+h − yF

k,t+h|t

)2
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where yF
k,t+h|t is the price or rate of the security computed using the filter-dependent h-week

ahead state vector forecast, xF
k,t+h|t. In Table 6, Panel A reports the EKF to UKF ratios for

Mean
(
RMSEF

k (h)
)
, Panel B reports ratios for Median

(
RMSEF

k (h)
)
, and Panel C reports ratios

for Stdev
(
RMSEF

k (h)
)
. The moments are computed for h = 1, 4, and 12 week horizons across the

500 samples, which are denoted by k. Forecasts are based on states filtered using LIBOR, swap

rates, and cap prices.13

Table 6 confirms the conclusions from the contemporaneous fit in Tables 4-5: when considering

forecasts based on states filtered using LIBOR, swap rates, and caps, the UKF clearly outperforms

the EKF. This confirms the EKF’s problems in handling securities that are highly nonlinear in

the states. The magnitude of the improvement is smallest in the case of the A2 (3) and A3 (3)

models. As previously discussed, this is not due to the nature of these models, but rather to the

parameterization in Table 1, which determines the extent of nonlinearity in the states for each

model.

Figures 4 and 5 provides more perspective by scatter plotting the 500 individual RMSEUKF
k (h)

on the y-axis against the corresponding RMSEEKF
k (h) on the x-axis for the one-week forecast

horizon (h = 1) when caps are included in the filtering of states. The UKF outperforms the EKF

when the plots fall below the 45-degree line. Figures 4 and 5 are quite striking. Note that there

are few observations above the 45-degree line. These figures provide a more visual and intuitive

assessment of the performance of the two filtering methods. The figures confirm that the UKF-

implied forecasts substantially outperform the EKF-implied forecasts.

Our third main conclusion is that the UKF generally delivers forecast RMSEs that are lower
13To save space, Table 6 only reports on results when caps are included in filtering, and we report ratios of RMSE

statistics only. The levels are available upon request. They are consistent with those observed in Tables 4 and 5 and

tend to be increasing with the forecast horizon, as expected. For forecasts based on states filtered using LIBOR and

swap rates only, the EKF to UKF ratios are either one or a bit greater than one, consistent with the evidence in

Table 4.
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than those obtained using the EKF when caps are included to filter states.

4.5 Implications for Long-Maturity Caps

So far we have run two versions of each Monte Carlo experiment for each filter: One where only

LIBOR and swap rates are used in filtering, and another one where in addition 1-yr and 5-yr caps

are used. All results in Tables 4-6 are based on pricing the same securities that are used in filtering.

We now instead consider an application of the term structure models in which 7-yr caps must

be priced. These contracts have not been used in any of the filters when extracting states. We

restrict attention to contemporaneous pricing just as in Tables 4-5. We report results for the EKF

and the UKF, as well as for the PF.

Table 7 contains the results. We again compute pricing RMSE and Bias computed from the

true rates and prices as well as the extracted rates and prices obtained from each filter. In Panel

A we report the results for the EKF and UKF when states are filtered on only LIBOR and swap

rates. Not surprisingly in light of the previous results, the performance of the EKF and the UKF

is similar, and not very different from the PF.

In Panel B of Table 7 we report on 7-yr cap pricing when states are filtered using 1-yr and 5-yr

caps as well as the LIBOR and swap rates. Once again, the UKF outperforms the EKF in this

case. The improvement in performance is again model-specific, and largest for the A0(3) and A1(3)

models. Contrary to the results in Panel A, the PF outperforms the UKF for pricing the 7-yr caps

in Panel B.

Our fourth main conclusion is that when caps are used in filtering, the UKF outperforms the

EKF for the pricing of nonlinear securities, even when these securities have not been used in filtering

the underlying state vectors.
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5 Parameter Estimation

Our Monte Carlo experiments show that the extended Kalman filter is ill-suited to optimally exploit

the rich information in securities that are nonlinear in the state variables. We propose the unscented

Kalman filter as an alternative to address the nonlinearity in the measurement equation. In our

Monte Carlo analysis, we have deliberately kept the structural parameters fixed at their true values.

However, our results suggest that the choice of filter will also affect parameter estimation. The

inclusion of caps in the sample makes it difficult to investigate this issue in a full-fledged Monte

Carlo analysis. We therefore reduce the computational burden of the Monte-Carlo analysis using

asymptotic arguments.14

The literature contains a large number of empirical methods that can be used to estimate

multifactor affine models, including indirect inference, simulated method of moments (SML), and

the efficient method of moments (EMM). Most papers use either quasi maximum likelihood (QML)

or the Kalman filter with a likelihood based criterion.15 These techniques are popular because

they are relatively easy to implement and because Duffee and Stanton (2004) demonstrate in

an extensive Monte Carlo experiment that QML and Kalman filtering outperform more complex

estimation techniques (EMM and SML) in finite samples.

In our Monte Carlo analysis we consider the quasi log-likelihood function assuming that yk,t is

14We are very grateful to an anonymous referee for suggesting this approach.

15See for example Babbs and Nowman (1999), Chen and Scott (1995), Dai and Singleton (2000), Duan and

Simonato (1999), Duffee (1999), Duffie and Singleton (1997), and Pearson and Sun (1994). See Thompson (2008) for

an alternative approach using Bayesian filtering.
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normally distributed with mean yk,t|t−1 and covariance matrix Pk,yy(t|t−1), that is:16

`k(Θ) = −1
2

T∑
t=1

N log 2π + log
∣∣Pyy(t|t−1)

∣∣
+

(
yk,t − yk,t|t−1

)′
P−1

yy(t|t−1)

(
yk,t − yk,t|t−1

)
. (36)

The analysis of the quasi log-likelihood at the optimal parameter values sheds light on the potential

impact of the filter on estimation via maximum likelihood, assuming that all rates are observed

with error. Table 8 summarizes the results. To keep the analysis manageable, we focus on just one

model, the A1 (3) model.

On each of the 500 simulated trajectories, we approximate the score vector s(Θ) at the optimum

parameter value Θ0, computing the numerical gradient of the quasi log likelihood ` with respect

to the optimal parameters. That is, for each parameter Θi, we keep the optimal value for all other

parameters, use the filters to extract the states at Θ0,i ± ε, compute the log-likelihood as in (36),

and approximate the scores by

sk,KF (Θ0,i) = (∇`k)i '
`k(Θ0,i + ε)− `k(Θ0,i − ε)

2ε
, KF ∈ {EKF, UKF} .

We use ε = 10−6 in implementation. Using the optimal filter, the likelihood should be maximized

at the optimal parameters; hence, consistency requires pseudo-scores with an expected value of

zero. The results (not reported) indicate that for all parameters, the distribution of the scores is

centered around zero, but the median score for the UKF is always closer to zero than for the EKF.

In fact, the entire distribution of the scores obtained using the UKF is more concentrated around

zero, while the scores for the EKF are much more dispersed.

We now use these simulation results to comment on parameter estimation errors, using an

asymptotic argument. The parameter estimation error can be expressed as

Θ̂k,KF −Θ0 ' H−1(Θ0) sk,KF (Θ0) , (37)

16The predictive covariance matrix for the EKF is given by equation (27); for the UKF, the measurement update

yields Syy(t|t−1) and Pyy(t|t−1) = S′
yy(t|t−1)Syy(t|t−1).
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where H(Θ0) is the Hessian matrix at Θ0. Table 8 reports the distribution of the estimation

errors based on (37). Note that one could take into account the dependence of the Hessian on the

filter. However, this would require second-differencing in Θ, and therefore repeatedly re-filtering

the states, which is extremely costly computationally. Instead, we perform the second-differencing

assuming perfect filtering (i.e. using the simulated states xt) and use the same (optimal) Hessian

matrix for both Kalman filters.

Table 8 indicates that the median estimation error is virtually zero for all parameters for both

filters. However, the distribution of the estimation errors for the EKF is much more dispersed than

the distribution of the UKF-based errors. These results strongly suggest that the UKF will be

superior to the EKF for the purpose of parameter estimation. Given that our analysis in Section

4 indicates that the UKF performs well compared with the PF for most models, both in terms of

state extraction and of fit to the observed yields, we conjecture that the UKF will yield estimation

results reasonably close to the PF, obtained at much lower computational cost.

6 Conclusion

The extended Kalman filter has become the standard tool to analyze a number of important

problems in financial economics, and in term structure modeling in particular. While there is no

need to look beyond the extended Kalman filter for some term structure applications, it is not clear

how well the method performs for many situations of interest, when the measurement equation is

nonlinear in the state variables. Examples include the pricing of fixed income derivatives such as

caps, floors and swaptions, as well as modeling the cross section of swap yields. The unscented

Kalman filter is moderately more costly from a computational perspective, but better suited to

handling these nonlinear securities.

We use an extensive Monte Carlo experiment to investigate the performance of the extended

and unscented Kalman filter and compare them to the PF benchmark. We study three-factor affine
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term structure models for LIBOR and swap rates, which are mildly nonlinear in the underlying

state variables, and cap prices, which are highly nonlinear. We find that when caps are used,

the filtering performance of the unscented Kalman filter is much superior to that of the extended

Kalman filter. It filters the states more accurately, which leads to improved fitting of security

prices and more accurate forecasts. We conduct a small-scale experiment that suggests that these

advantages result in improved properties for parameter estimates obtained using the UKF. We

also compare the performance of the UKF to that of the particle filter, and find that the UKF’s

performance is often very close to that of the PF, at a fraction of the computational cost.

These results therefore suggest that the UKF may prove to be a good approach for implementing

term structure models in a wide variety of applications, including the estimation of term structure

models using interest rate derivatives, the estimation of nonlinear term structure models such

as quadratic models, and the estimation of the term structure of default risk (Benzoni, Collin-

Dufresne, Goldstein, and Helwege (2011)). The unscented Kalman filter may also prove useful for

estimating other types of term structure models, such as the unspanned stochastic volatility models

of Collin-Dufresne and Goldstein (2002), and Collin-Dufresne, Goldstein, and Jones (2009), and

more broadly for other financial applications that involve nonlinear state-space systems.
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Figure 1: Unconditional Term Structures of Interest Rates. AM(3) Models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: We display the unconditional term structure of interest rates implied by the four AM(3) models we 

consider, using the parameter values in Table 1. 
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Figure 2: Filtered State RMSEs. EKF & UKF versus Particle Filter. A0(3) & A1(3) Models 
 

 
 

 
Notes: We scatter plot the fittered state RMSE of the Kalman filters against that of the particle filter for 

the A0(3) model (top three rows) and A1(3) model (bottom three rows). Errors are in basis points. Each 

row of panels depicts a different state variable. The two left-side columns show states filtered using 

LIBOR and swap rates only; the two right-side columns show filtered states obtained using the rates as 

well as the cap prices. The PF outperforms the Kalman filter when marks are above the dashed 45-degree 

line. 



Figure 3: Filtered State RMSEs. EKF & UKF versus Particle Filter. A2(3) & A3(3) Models 
 

 
 

 
Notes: We scatter plot the fittered state RMSE of the Kalman filters against that of the particle filter for 

the A2(3) model (top three rows) and A3(3) model (bottom three rows). Errors are in basis points. Each 

row of panels depicts a different state variable. The two left-side columns show states filtered using 

LIBOR and swap rates only; the two right-side columns show filtered states obtained using the rates as 

well as the cap prices. The PF outperforms the Kalman filter when marks are above the dashed 45-degree 

line. 



 
Figure 4: Rate and Price Forecast RMSEs. UKF versus EKF. States Filtered using LIBOR, Swap Rates and Caps. A0(3) & A1(3) Models 
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Notes: For each of the nine rates and prices, we scatter the 500 simulated one-week-ahead forecast RMSEs of the UKF model against the 
corresponding RMSEs for the EKF. The UKF outperforms the EKF when marks fall below the dashed 45-degree line. The state variables are 
filtered using LIBOR, swap rates and caps.  



Figure 5: Rate and Price Forecast RMSEs. UKF versus EKF. States Filtered using LIBOR, Swap Rates and Caps. A2(3) & A3(3) Models 
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Notes: For each of the nine rates and prices, we scatter the 500 simulated one-week-ahead forecast RMSEs of the UKF model against the 
corresponding RMSEs for the EKF. The UKF outperforms the EKF when marks fall below the dashed 45-degree line. The state variables are 
filtered using LIBOR, swap rates and caps. 
 



A0(3) A1(3) A2(3) A3(3)
Parameter Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

δ0 0.030 0.030 0.030 0.030
δ1j 0.0048 -0.0130 0.0241 0.0028 0.0052 0.0281 0.0194 0.0028 0.0391 0.0028 0.0002 0.0145
κ1j 0.0168 0.0390 0.1600 0 0.0370 0 0
κ2j 0.4000 2.9600 0 0.8800 0 0.0380 0 5.7100 0
κ3j -0.6400 -2.5600 0.8410 0 -2.3200 2.6900 0 0 5.6500 0 0 0.8100
θj 0.05 0.05 0.05 0.05 0.05 1.00
λ0j -0.190 0.610 -0.970 0.001 -0.120 -0.970 0.680 -0.035 -1.100 -0.034 -0.010 -0.100
αj 1 1 1 1 1 1
β1 1 0 0 1 0 1
β2 1 0 1
β3 1

Table 1: Parameters for the AM(3) Models

Notes: We report the parameter values used in the Monte Carlo simulations for the four AM(3) models. Empty entries indicate zero parameter values that are implicit to the normalized

form of the models or imposed for identification. Grey-shaded zero entries indicate restrictions placed on the parameters in order to obtain closed-form solutions to the Ricatti

equations. With some exceptions, the parameters are from Table 8 in Ait-Sahalia and Kimmel (2010). The exceptions are motivated by numerical considerations in the simulations and

filtering. See Section 4.1 for the details.



EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.0378 0.0382 0.0380 0.0640 0.0650 0.0645 0.0207 0.0208 0.0208
Ratio with PF 0.99 1.00 1.00 0.99 1.01 1.00 0.99 1.00 1.00

Median(RMSE) 0.0352 0.0356 0.0354 0.0631 0.0641 0.0635 0.0206 0.0207 0.0207
Ratio with PF 0.99 1.01 1.00 0.99 1.01 1.00 0.99 1.00 1.00
Stdev(RMSE) 0.0099 0.0098 0.0099 0.0050 0.0049 0.0050 0.0012 0.0012 0.0012
Ratio with PF 1.00 0.99 1.00 1.01 0.99 1.00 0.99 1.00 1.00

EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.1352 0.1348 0.1356 0.0476 0.0478 0.0478 0.0328 0.0331 0.0331
Ratio with PF 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00

Median(RMSE) 0.1305 0.1280 0.1293 0.0457 0.0461 0.0459 0.0327 0.0331 0.0331
Ratio with PF 1.01 0.99 1.00 1.00 1.01 1.00 0.99 1.00 1.00
Stdev(RMSE) 0.0557 0.0550 0.0539 0.0097 0.0094 0.0092 0.0014 0.0014 0.0014
Ratio with PF 1.03 1.02 1.00 1.06 1.02 1.00 1.00 1.00 1.00

EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.0445 0.0448 0.0438 0.0954 0.0956 0.0940 0.0438 0.0454 0.0435
Ratio with PF 1.02 1.02 1.00 1.02 1.02 1.00 1.01 1.04 1.00

Median(RMSE) 0.0440 0.0440 0.0431 0.0915 0.0931 0.0903 0.0430 0.0443 0.0425
Ratio with PF 1.02 1.02 1.00 1.01 1.03 1.00 1.01 1.04 1.00
Stdev(RMSE) 0.0098 0.0102 0.0102 0.0334 0.0337 0.0333 0.0070 0.0074 0.0079
Ratio with PF 0.95 0.99 1.00 1.00 1.01 1.00 0.89 0.94 1.00

EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.1016 0.1023 0.1001 0.0652 0.0652 0.0710 0.0357 0.0360 0.0354
Ratio with PF 1.02 1.02 1.00 0.92 0.92 1.00 1.01 1.02 1.00

Median(RMSE) 0.0952 0.0959 0.0939 0.0598 0.0598 0.0668 0.0339 0.0344 0.0336
Ratio with PF 1.01 1.02 1.00 0.90 0.90 1.00 1.01 1.02 1.00
Stdev(RMSE) 0.0393 0.0395 0.0388 0.0227 0.0227 0.0207 0.0088 0.0088 0.0087
Ratio with PF 1.01 1.02 1.00 1.10 1.10 1.00 1.01 1.01 1.00

Panel D: A3(3) Model

Factor 1 Factor 2 Factor 3

Notes: For each model, we report the mean, median, and standard deviation of the state RMSEs from the extended and the

unscented Kalman filters, and for the particle filter (3000 particles) using 500 simulated paths. For each statistic, the ratio of

the KF to PF RMSE is also reported. In each of the 500 simulations, 260 weekly LIBOR and swap rates are generated using

the parameters from Table 1. States are filtered using LIBOR and swap rates only. The total number of rates evaluated is (in

millions) 25.5 using EKF, 47.3 using UKF, and 10,967 using PF. 

Factor 1 Factor 2 Factor 3

Panel C: A2(3) Model

Factor 1 Factor 2 Factor 3

Table 2: State RMSEs from States Filtered using LIBOR and Swap Rates Only

Panel A: A0(3) Model

Factor 1 Factor 2 Factor 3

Panel B: A1(3) Model



EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.1227 0.0385 0.0396 0.2172 0.0854 0.0863 0.1541 0.0376 0.0379
Ratio with PF 3.10 0.97 1.00 2.52 0.99 1.00 4.07 0.99 1.00

Median(RMSE) 0.0396 0.0342 0.0352 0.1002 0.0596 0.0599 0.0392 0.0199 0.0199
Ratio with PF 1.12 0.97 1.00 1.67 1.00 1.00 1.97 1.00 1.00
Stdev(RMSE) 0.1707 0.0173 0.0178 0.2479 0.0504 0.0505 0.2273 0.0360 0.0367
Ratio with PF 9.59 0.97 1.00 4.91 1.00 1.00 6.19 0.98 1.00

EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.1859 0.1304 0.1437 0.2496 0.0546 0.0567 0.3875 0.0460 0.0426
Ratio with PF 1.29 0.91 1.00 4.40 0.96 1.00 9.10 1.08 1.00

Median(RMSE) 0.1448 0.1225 0.1370 0.0730 0.0431 0.0454 0.0481 0.0232 0.0184
Ratio with PF 1.06 0.89 1.00 1.61 0.95 1.00 2.61 1.26 1.00
Stdev(RMSE) 0.1450 0.0557 0.0527 0.3124 0.0467 0.0514 0.5276 0.0872 0.0940
Ratio with PF 2.75 1.06 1.00 6.08 0.91 1.00 5.61 0.93 1.00

EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.0570 0.0415 0.0415 0.1213 0.0917 0.0924 0.0556 0.0381 0.0328
Ratio with PF 1.37 1.00 1.00 1.31 0.99 1.00 1.69 1.16 1.00

Median(RMSE) 0.0511 0.0400 0.0402 0.1087 0.0882 0.0889 0.0514 0.0363 0.0312
Ratio with PF 1.27 0.99 1.00 1.22 0.99 1.00 1.65 1.16 1.00
Stdev(RMSE) 0.0221 0.0113 0.0107 0.0547 0.0329 0.0310 0.0173 0.0093 0.0097
Ratio with PF 2.07 1.05 1.00 1.77 1.06 1.00 1.77 0.95 1.00

EKF UKF PF EKF UKF PF EKF UKF PF
Mean(RMSE) 0.1204 0.0832 0.0818 0.0661 0.0655 0.0767 0.0496 0.0266 0.0259
Ratio with PF 1.47 1.02 1.00 0.86 0.85 1.00 1.91 1.03 1.00

Median(RMSE) 0.1076 0.0764 0.0754 0.0603 0.0599 0.0731 0.0467 0.0249 0.0241
Ratio with PF 1.43 1.01 1.00 0.83 0.82 1.00 1.93 1.03 1.00
Stdev(RMSE) 0.0575 0.0354 0.0349 0.0225 0.0227 0.0204 0.0200 0.0087 0.0090
Ratio with PF 1.65 1.01 1.00 1.10 1.11 1.00 2.21 0.96 1.00

Panel D: A3(3) Model

Factor 1 Factor 2 Factor 3

Notes: For each model, we report the mean, median, and standard deviation of the state RMSEs from the extended and the

unscented Kalman filters, and for the particle filter (300 particles) using 500 simulated paths. For each statistic, the ratio of the

KF to PF is also reported. In each of the 500 simulations, 260 weekly LIBOR and swap rates are generated using the parameters

from Table 1. States are filtered using LIBOR, swap rates, and caps. The total number of rates and caplets priced under each

method is (in millions) 25.5 and 80.1 using EKF, 47.3 and 148.7 using UKF, and 1139 and 3581 using PF. 

Factor 1 Factor 2 Factor 3

Panel C: A2(3) Model

Factor 1 Factor 2 Factor 3

Table 3: State RMSEs from States Filtered using LIBOR, Swap Rates and Cap Prices

Panel A: A0(3) Model

Factor 1 Factor 2 Factor 3

Panel B: A1(3) Model



EKF UKF PF EKF UKF PF EKF UKF PF EKF UKF PF

Bias 0.0589 0.0298 0.0456 -0.0090 -0.3150 -0.0461 0.2669 -1.0762 0.0539 0.0979 -0.2204 0.0577
RMSE 2.8807 2.6780 2.9228 2.7410 2.6076 2.7985 2.6107 3.1009 2.8845 4.0919 4.0478 4.1311

RMSE/PF 0.99 0.92 1.00 0.98 0.93 1.00 0.91 1.08 1.00 0.99 0.98 1.00
6-mo LIBOR

Bias 0.0713 0.0344 0.0582 0.0866 -0.2896 0.0302 0.1807 -0.9708 0.0092 0.0801 -0.2223 0.0389
RMSE 4.3794 4.3662 4.3876 4.1631 4.1719 4.1887 4.3363 4.6642 4.2718 4.2374 4.2179 4.2610

RMSE/PF 1.00 1.00 1.00 0.99 1.00 1.00 1.02 1.09 1.00 0.99 0.99 1.00
1-yr Swap

Bias 0.1020 0.0596 0.0896 0.1616 -0.2532 0.0930 0.1144 -0.8136 -0.0173 0.0619 -0.2079 0.0234
RMSE 4.2251 4.1191 4.2376 4.0565 3.9915 4.1088 4.5292 4.6827 4.4915 4.4865 4.4852 4.4937

RMSE/PF 1.00 0.97 1.00 0.99 0.97 1.00 1.01 1.04 1.00 1.00 1.00 1.00
2-yr Swap

Bias 0.0866 0.0450 0.0752 0.0880 -0.2868 0.0267 0.0163 -0.6854 -0.0833 -0.0193 -0.2420 -0.0512
RMSE 4.4751 4.3969 4.4864 4.0292 3.9868 4.0604 4.6604 4.7472 4.6378 4.6911 4.6912 4.6914

RMSE/PF 1.00 0.98 1.00 0.99 0.98 1.00 1.00 1.02 1.00 1.00 1.00 1.00
5-yr Swap

Bias 0.1115 0.0764 0.1009 -0.0484 -0.2962 -0.0817 -0.0403 -0.4890 -0.1091 -0.0823 -0.2388 -0.1038
RMSE 4.8206 4.8017 4.8263 4.6495 4.6077 4.6639 4.8262 4.8356 4.8397 4.8364 4.7803 4.8465

RMSE/PF 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00
7-yr Swap

Bias 0.1045 0.0714 0.0941 -0.0958 -0.3041 -0.1207 -0.0653 -0.4500 -0.1264 -0.1112 -0.2488 -0.1297
RMSE 4.6647 4.6237 4.6735 4.7391 4.6627 4.7625 4.8280 4.8063 4.8641 4.8310 4.7520 4.8465

RMSE/PF 1.00 0.99 1.00 1.00 0.98 1.00 0.99 0.99 1.00 1.00 0.98 1.00
10-yr Swap

Bias 0.0954 0.0640 0.0853 -0.1282 -0.3029 -0.1466 -0.0852 -0.4180 -0.1400 -0.1338 -0.2555 -0.1498
RMSE 4.4746 4.4012 4.4870 4.7899 4.6866 4.8236 4.8104 4.7632 4.8650 4.8350 4.7373 4.8560

RMSE/PF 1.00 0.98 1.00 0.99 0.97 1.00 0.99 0.98 1.00 1.00 0.98 1.00
1-yr Cap

Bias -0.6545 -0.6483 -0.6542 -0.0276 -0.0673 -0.0399 -0.1438 0.1145 -0.1071 -0.0064 0.0201 -0.0011
RMSE 6.6074 6.6645 6.7035 7.6802 7.8455 7.7070 6.5112 6.4334 6.2677 5.2711 5.4185 5.3739

RMSE/PF 0.99 0.99 1.00 1.00 1.02 1.00 1.04 1.03 1.00 0.98 1.01 1.00
5-yr Cap

Bias -0.4960 -0.4493 -0.4880 -0.1368 -0.1290 -0.1128 -0.9026 1.6071 -0.5310 -0.4481 -0.0352 -0.4221
RMSE 27.7210 28.7350 27.7130 46.5200 46.6780 46.3120 17.8450 18.8800 17.4990 11.7840 11.9470 11.7340

RMSE/PF 1.00 1.04 1.00 1.00 1.01 1.00 1.02 1.08 1.00 1.00 1.02 1.00

Notes: RMSE and Bias estimates are obtained from 300,000 simulated rates and prices (500 trajectories, 260 weeks), and the corresponding fitted values using the EKF, the UKF

or the PF. The RMSE ratio of the filters to the PF is also reported. Caps are not used when filtering the states in this table, only LIBOR and swap rates are used for filtering.

Table 4: Rate and Price Fit of AM(3) Models. States Filtered using LIBOR and Swap Rates Only.

A0(3) A1(3) A2(3) A3(3)

3-mo LIBOR



EKF UKF PF EKF UKF PF EKF UKF PF EKF UKF PF

Bias 10.1520 0.7175 0.5191 16.6930 0.5515 0.5683 -1.5280 -0.5461 -0.0163 -0.2374 -0.0167 -0.0072
RMSE 33.3070 8.9777 9.3658 54.0460 6.9102 7.6562 7.6306 3.5063 4.4995 6.0769 4.4107 4.5636

RMSE/PF 3.56 0.96 1.00 7.06 0.90 1.00 1.70 0.78 1.00 1.33 0.97 1.00
6-mo LIBOR

Bias 5.5900 0.3637 0.2949 8.7181 0.1562 0.2845 -0.3165 -0.6816 -0.0108 -0.1942 -0.0437 -0.0151
RMSE 19.3050 6.5922 6.7378 29.1880 5.7043 5.8876 5.9207 4.6463 4.6207 5.8629 4.4898 4.6013

RMSE/PF 2.87 0.98 1.00 4.96 0.97 1.00 1.28 1.01 1.00 1.27 0.98 1.00
1-yr Swap

Bias 0.8067 0.0374 0.0892 0.8806 -0.2271 0.0219 0.4927 -0.7029 -0.0023 -0.1032 -0.0749 -0.0094
RMSE 5.7578 4.2562 4.4439 7.0156 4.1431 4.3708 5.2823 4.6991 4.6926 5.5401 4.6478 4.7158

RMSE/PF 1.30 0.96 1.00 1.61 0.95 1.00 1.13 1.00 1.00 1.17 0.99 1.00
2-yr Swap

Bias -2.5148 -0.1705 -0.0695 -3.0517 -0.4767 -0.1448 0.6853 -0.6598 -0.0547 -0.0285 -0.1742 -0.0525
RMSE 10.6490 4.9183 5.0696 13.2450 4.6535 4.8939 5.0824 4.7661 4.7992 5.1960 4.7604 4.7992

RMSE/PF 2.10 0.97 1.00 2.71 0.95 1.00 1.06 0.99 1.00 1.08 0.99 1.00
5-yr Swap

Bias -4.1305 -0.1653 -0.0864 -2.4759 -0.4708 -0.1118 0.5728 -0.4975 -0.0794 0.1218 -0.2606 -0.0614
RMSE 14.9080 5.3275 5.4338 11.2470 5.0117 5.1677 5.1082 4.8391 4.9404 5.1675 4.8630 4.9290

RMSE/PF 2.74 0.98 1.00 2.18 0.97 1.00 1.03 0.98 1.00 1.05 0.99 1.00
7-yr Swap

Bias -4.3090 -0.1594 -0.0915 -1.9633 -0.4530 -0.1017 0.5052 -0.4626 -0.0976 0.1478 -0.2941 -0.0760
RMSE 15.2360 5.1308 5.2791 9.6844 4.9644 5.1554 5.1557 4.8175 4.9655 5.2173 4.8556 4.9449

RMSE/PF 2.89 0.97 1.00 1.88 0.96 1.00 1.04 0.97 1.00 1.06 0.98 1.00
10-yr Swap

Bias -4.3584 -0.1542 -0.0951 -1.5432 -0.4288 -0.0944 0.4446 -0.4332 -0.1122 0.1629 -0.3178 -0.0885
RMSE 15.1570 4.8770 5.0730 8.3952 4.9139 5.1353 5.1714 4.7820 4.9676 5.2866 4.8664 4.9719

RMSE/PF 2.99 0.96 1.00 1.63 0.96 1.00 1.04 0.96 1.00 1.06 0.98 1.00
1-yr Cap

Bias -0.6059 -0.7926 -0.6474 -0.2408 -0.3000 -0.1103 1.0803 -0.1672 -0.0027 0.0512 0.0005 0.0083
RMSE 6.9819 5.6874 4.9379 10.3270 6.7769 5.2854 6.0638 5.3421 5.6532 5.4416 5.3687 5.3305

RMSE/PF 1.41 1.15 1.00 1.95 1.28 1.00 1.07 0.94 1.00 1.02 1.01 1.00
5-yr Cap

Bias 6.8152 -0.8712 -0.1509 6.2130 -0.6298 0.7970 4.7040 -0.0021 -0.1763 0.5735 -0.6274 -0.1753
RMSE 51.4360 25.3060 9.6486 93.0390 44.6070 14.7130 16.3620 12.7500 8.5306 9.0795 7.6691 6.8271

RMSE/PF 5.33 2.62 1.00 6.32 3.03 1.00 1.92 1.49 1.00 1.33 1.12 1.00

Notes: RMSE and Bias estimates are obtained from 300,000 simulated rates and prices (500 trajectories, 260 weeks), and the corresponding fitted values using the EKF, the UKF

or the PF. The RMSE ratio of the filters to the PF is also reported. Caps as well as LIBOR and swap rates are used when filtering the states in this table.

Table 5: Rate and Price Fit of AM(3) Models. States Filtered using LIBOR, Swap Rates and Cap Prices.

A0(3) A1(3) A2(3) A3(3)

3-mo LIBOR



Forecast horizon 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks
1.47 1.12 1.00 1.96 1.24 1.00 1.01 1.00 1.00 1.02 1.00 1.00
1.22 1.03 1.00 1.45 1.06 1.01 1.01 1.00 1.00 1.02 1.00 1.00
1.01 1.00 1.01 1.03 1.03 1.05 1.01 1.00 1.00 1.01 1.00 1.00
1.13 1.05 1.03 1.29 1.14 1.09 1.01 1.00 1.00 1.01 1.00 1.00
1.31 1.12 1.06 1.41 1.20 1.11 1.01 1.01 1.00 1.02 1.01 1.00
1.35 1.14 1.06 1.39 1.20 1.11 1.02 1.01 1.00 1.02 1.01 1.00
1.37 1.15 1.06 1.35 1.19 1.11 1.03 1.02 1.01 1.03 1.02 1.01
1.10 1.07 1.05 1.13 1.10 1.07 1.03 1.01 1.01 1.05 1.05 1.04
1.16 1.12 1.07 1.15 1.14 1.09 1.02 1.01 1.02 1.05 1.02 1.02

Forecast horizon 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks
1.04 1.03 1.01 1.06 1.05 1.00 1.01 1.00 1.00 1.01 1.01 1.00
1.04 1.02 1.00 1.05 1.03 1.01 1.00 1.00 1.00 1.01 1.00 1.00
1.01 1.00 1.01 1.02 1.02 1.04 1.01 1.01 1.00 1.01 1.00 1.00
1.04 1.03 1.02 1.06 1.05 1.04 1.01 1.00 1.00 1.01 1.00 1.00
1.05 1.05 1.04 1.08 1.08 1.07 1.01 1.01 1.00 1.02 1.00 1.01
1.05 1.06 1.05 1.11 1.09 1.07 1.02 1.01 1.01 1.01 1.01 1.00
1.06 1.06 1.05 1.11 1.09 1.07 1.02 1.02 1.01 1.03 1.02 1.01
1.01 1.02 1.02 0.97 1.00 1.00 1.02 1.01 1.02 1.00 1.00 1.00
1.04 1.01 1.02 0.87 0.98 1.00 1.01 1.01 1.02 1.04 1.02 1.03

Forecast horizon 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks 1 week 4 weeks 12 weeks
8.83 3.74 1.01 8.37 5.29 1.03 1.06 1.01 1.01 1.05 1.02 1.02
7.76 1.48 1.00 9.01 2.03 1.05 1.04 1.00 1.01 1.05 1.02 1.02
1.03 1.00 1.02 2.16 1.37 1.37 1.02 1.00 1.01 1.04 1.01 1.02
4.18 1.69 1.13 7.58 3.62 1.79 1.01 1.00 1.00 1.03 1.01 1.02
7.92 3.19 1.38 6.73 3.80 1.80 1.02 1.00 1.01 1.06 1.02 1.02
8.54 3.48 1.43 5.79 3.27 1.67 1.06 1.01 1.01 1.09 1.03 1.01
8.61 3.58 1.44 4.94 2.71 1.51 1.11 1.02 1.01 1.12 1.03 1.01
1.30 1.16 1.09 1.40 1.41 1.35 1.20 1.04 1.09 1.51 1.61 1.44
1.29 1.23 1.15 1.31 1.36 1.33 1.03 1.04 1.09 1.13 1.10 1.17

10-yr Swap
1-yr Cap
5-yr Cap

Notes: We forecast rates and cap prices using the EKF and UKF filters. For each of 500 simulations, we compute the forecast RMSE. The EKF to UKF ratio of

the mean, median, and standard deviation of these RMSEs is reported. States are using LIBOR, swap rates and cap prices.

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel C:  Forecast RMSE Standard Deviation (ratios)

 A0(3) Model  A1(3) Model  A2(3) Model  A3(3) Model

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

10-yr Swap
1-yr Cap
5-yr Cap

Panel B:  Median Forecast RMSE (ratios)

 A0(3) Model  A1(3) Model  A2(3) Model  A3(3) Model

3-mo LIBOR
6-mo LIBOR

1-yr Swap
2-yr Swap
5-yr Swap
7-yr Swap

Table 6: Rate and Price Forecasting Performance. States Filtered using LIBOR, Swap Rates and Cap Prices

Panel A:  Average Forecast RMSE (ratios)

 A0(3) Model  A1(3) Model  A2(3) Model  A3(3) Model



7-yr Cap EKF UKF PF EKF UKF PF EKF UKF PF EKF UKF PF
Bias -0.454 -0.348 -0.400 -0.210 -0.086 -0.151 -1.259 2.325 -0.714 -0.669 -0.007 -0.594

RMSE 40.193 41.460 39.922 64.756 64.868 64.411 22.547 24.141 22.257 15.580 15.782 15.543
RMSE/PF 1.01 1.04 1.00 1.01 1.01 1.00 1.01 1.08 1.00 1.00 1.02 1.00

7-yr Cap EKF UKF PF EKF UKF PF EKF UKF PF EKF UKF PF
Bias 15.447 -0.662 0.274 13.208 -0.416 1.484 6.026 0.206 -0.257 0.910 -0.943 -0.263

RMSE 88.811 40.422 17.666 141.490 64.675 24.153 22.875 17.017 13.484 13.979 11.517 10.986
RMSE/PF 5.03 2.29 1.00 5.86 2.68 1.00 1.70 1.26 1.00 1.27 1.05 1.00

Panel B: States Filtered using LIBOR, Swap Rates and 1-yr and 5-yr Caps

A0(3) A1(3) A2(3) A3(3)

Notes: Estimates of RMSE and Bias are obtained from 130,000 simulated 7-year cap prices (500 trajectories, 260 weeks), and the corresponding fitted prices using

the EKF, the UKF or the PF. In Panel A only LIBOR and swap rates are used when filtering the underlying states; the PF uses 3000 particles. In Panel B, 

1-year and 5-year caps are used in addition when filtering the state; the PF uses 300 particles. 7-year caps are not used in the filtering step.

Table 7: Fit of 7-Year Cap Prices. AM(3) Models

Panel A: States Filtered using LIBOR and Swap Rates Only

A0(3) A1(3) A2(3) A3(3)



5th 10th 25th 50th 75th 90th 95th

EKF -7.56 -1.07 -0.05 0.00 0.12 4.26 24.37
UKF -0.02 0.00 0.00 0.00 0.00 0.00 0.01

δ11 
EKF -11.38 -1.12 -0.01 0.00 0.00 0.51 5.42
UKF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

δ12 
EKF -1.35 -0.09 0.00 0.00 0.00 0.09 1.35
UKF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

δ13 
EKF -1.56 -0.14 0.00 0.00 0.00 0.08 0.95
UKF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

κ11 
EKF -7773.80 -1106.00 -30.85 0.00 51.55 1554.90 9238.50
UKF -8.65 -2.63 -0.38 -0.01 0.49 3.07 7.21

κ22 
EKF -961.18 -150.88 -2.94 0.01 4.17 280.49 1213.90
UKF -2.16 -0.13 -0.02 0.00 0.01 0.07 0.73

κ32 
EKF -2447.10 -544.96 -10.29 0.00 7.60 414.53 2178.60
UKF -1.91 -0.26 -0.04 0.00 0.04 0.22 2.78

κ33 
EKF -3100.40 -970.22 -16.64 0.00 9.61 598.31 3205.90
UKF -2.23 -0.26 -0.06 0.00 0.09 0.54 6.70

θ1 
EKF -13058.00 -2790.90 -47.67 -0.01 54.79 1585.40 7708.60
UKF -14.67 -3.47 -0.36 0.00 0.21 1.81 7.90

λ01 
EKF -12046.00 -2175.60 -48.04 0.00 28.47 989.17 6933.60
UKF -7.25 -2.95 -0.49 0.00 0.41 3.17 10.80

λ02 
EKF -541.94 -63.69 -0.74 0.00 0.35 35.99 193.60
UKF -0.25 -0.06 0.00 0.00 0.00 0.07 0.23

λ03 
EKF -1475.40 -254.16 -4.55 0.00 12.16 809.33 4262.30
UKF -1.96 -0.45 -0.07 0.00 0.04 0.29 1.60

Table 8: Estimation Errors (Hessian-Scaled Scores) for the A1(3) Model

Percentiles

δ0 

Notes: This table reports the distribution of asymptotic estimation errors for the A1(3) model at

the optimal parameters. In each of 500 simulations, we use the EKF or the UKF to filter the states
using caps for the optimal and perturbed parameters (ε=10-6). Given the obtained rates and
prices, we then compute the gradient of the log-likelihood associated with the observation
equation. The Hessian matrix used to scale the scores is the same for both Kalman filters as it is

obtained assuming perfect filtering (i.e. using the simulated states xt).


