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The Assortment Packing Problem:

Multiperiod Assortment Planning for Short-Lived Products

Felipe Caro∗ Victor Mart́ınez-de-Albéniz† Paat Rusmevichientong‡

January 16, 2012

Abstract

Motivated by retailers’ frequent introduction of new items to refresh product lines and main-
tain their market share, we present the assortment packing problem in which a firm must decide,
in advance, the release date of each product in a given collection over a selling season. Our for-
mulation models the trade-offs among profit margins, preference weights, and limited life cycles.
A key aspect of the problem is that each product is short-lived in the sense that, once intro-
duced, its attractiveness lasts only a few periods and vanishes over time. The objective is to
determine when to introduce each product to maximize the total profit over the selling season.
Even for two periods, the corresponding optimization problem is shown to be NP-complete. As
a result, we study a continuous relaxation of the problem that approximates the problem well
when the number of products is large. When margins are identical and product preferences
decay exponentially, its solution can be characterized: it is optimal to introduce products with
slower decays earlier. The relaxation also helps us to develop several heuristics, for which we
establish performance guarantees. Numerical experiments show that these heuristics perform
very well, yielding profits within 1% of the optimal in most cases.

1. Introduction

Keeping customers interested is one of the challenges in industries with short-lived products. Firms

launch products frequently in order to keep their presence in the market place and capture the

attention of customers. This forces firms to plan their assortments over time. Indeed, carrying

a static assortment – one that remains the same over time – becomes ineffective and possibly

unprofitable because consumers are quickly “bored” with the choices within assortment and they

divert their purchases to other consumption options. In other words, the customers’ preference for

a particular product in the assortment decays over time, as it ages on the shelf. Moreover, due to

substitution effects, it might not be optimal for a firm to release all the products at once because

it dilutes its market share, so timing product entry becomes relevant.

An industry where assortment renewal strategies have been massively adopted is apparel retail-

ing. The industry traditionally used to launch two collections a year and push them to the stores

at the beginning of the Spring and Autumn (specifically, once the discounting season is over). Over

the last decade, powerful players such as the Swedish clothing retailer H&M has chosen to continu-

ously release their products into the stores. H&M claims that it introduces new products into stores

daily (H&M 2007). Interestingly, the timing of release is not necessarily linked to when a product is
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†IESE Business School, University of Navarra, Barcelona, Spain, valbeniz@iese.edu
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designed or produced. Indeed, H&M is well known for selling mostly basic and fashion-basic items,

which are respectively products with low or medium fashion content, e.g., neutral colors such as

black and white, standard cuts and few embellishments such as ribbons (see Abernathy et al. 1999

for a more detailed discussion on basics and fashion-basics). These products are typically designed

and ordered long in advance, but are only required at the store in the middle of the selling season.

Similarly, Florida-based Chico’s claims that “You’ll find something new every day at Chico’s.”, and

the new products introduced in store have a six-month lead-time, which means that the company

decouples design decisions and introduction timing (Tiplady 2006).

Besides apparel, other industries exhibit similar dynamics. Book stores typically announce and

promote “recent arrivals” but then move them to less prominent locations because the attractiveness

of the product quickly drops after introduction. Restaurants also frequently change the items on

their menu to avoid customer satiation, with some restaurants committing to completely change the

menu every three months (Moskin 2011). Finally, motion picture distributors schedule the release

dates of their movies over a season. Since customers and theaters tend to prefer new releases,

it is important to avoid having too many movies in the theaters at the same time to prevent

cannibalization of ticket sales (The Economist 2007).

While this trend seems to provide better value to consumers from a marketing standpoint, it

leads to a more complex execution from an operations perspective because the firm needs to decide

how to deploy a catalog of products in stores over a season. Traditionally, the entire catalog was

pushed to the store in the first day of the season, and would not be changed over time. However,

such a strategy is no longer appropriate when products are short-lived. Indeed, under this strategy,

the store would have big spike in sales at the beginning of the season but then it would see its

market share drastically shrink. In contrast, a strategy of continuously releasing a few products

every period would keep some products’ valuation high, balancing the low valuation of items that

were introduced long ago, maintaining the firm’s market share later in the season.

With a large number of products, determining each product’s release date in order to maximize

the total profit over a season is challenging. In practice, companies typically solve this problem

manually, with a qualitative assessment of the value of the assortment for each week. For example,

we have interacted with a Spanish accessories retailer that introduced a large number of items

at the beginning of the season and then added a few items to the assortment each week. The

decision process was completely manual, and it was based purely on price and visual characteristics

of the items. How to arrange product introductions over time constitutes a difficult multiperiod

assortment planning problem. Our objective in this paper is to shed some light on the issue, and
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requires us (i) to develop a model to capture the trade-offs related to product introductions, (ii) to

provide exact or approximate solutions to support introduction decisions, and (iii) to derive some

managerial insights to guide retailers on these issues.

For this purpose, we present the assortment packing problem in which a planner must decide, in

advance, when to introduce each product in a given collection over a selling season. The products

have different profit margins, preference weights, and life cycle patterns. Once a product is intro-

duced to the store, the product becomes stale and its attractiveness decays over time. The objective

is to determine if and when to release each product to maximize the total profit over the selling

season. We model demand in the form of market shares following an attraction model (Bell et al.

1975). The model takes as its inputs each product’s profit margin, its initial preference weight (i.e.,

the value of the product in the attraction model when it is introduced), and its preference decay

(i.e., the decay of the product’s preference weight over time). As an output, the model determines

the the release date of each product over the season that maximizes the firm’s discounted market

share.

When the season has a single period, the assortment packing problem reduces to a classical

static assortment optimization problem under the attraction demand model, which can be solved

efficiently (see, for example, Talluri and van Ryzin 2004, Kök et al. 2008). However, even with just

two periods, the problem becomes NP-hard and the particular structure found in the one-period

assortment problem is lost. As a result, we study a relaxation of the problem that corresponds to the

situation where there are many different products of each type, and we show that it approximates

the original problem well. We can characterize the optimal solution of this relaxation and find that,

when margins are identical and product preferences decay exponentially, it is optimal to introduce

products sequentially, in a decreasing order of preference decay, i.e., always introduce a product

with slower decay first. We then build several heuristics to solve the original problem, for which

a performance guarantee can be derived. As shown in our numerical experiments, these heuristics

perform remarkably well, yielding profits within 1% of the optimal in most cases.

Our work thus contributes to the literature in three dimensions: modeling, methodological

development and managerial insights. While there has been a number of papers on understanding

the benefits of frequent assortment changes on demand learning (see, for example, Caro and Gallien

2007, Alptekinoglu et al. 2011), there has been less attention on multiperiod assortment planning

when learning is not a predominant issue. In that context, we provide a formulation that explicitly

models when each product is introduced, and determines the optimal assortment in each period

taking into account the natural decay that occurs over time.
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2. Literature Review

This paper is closely related to the literature on assortment planning and product roll-over in op-

erations management. Our work extends the static assortment planning problem to a multiperiod

setting. Kök et al. (2008) provide an excellent review of the literature in this area. The assortment

optimization problem is typically driven by the trade-off between product margins and sales. In-

deed, a larger assortment induces a higher sales probability, but at the same time, it also includes

lower-margin items. Talluri and van Ryzin (2004) first show in a single-period revenue management

setting that the optimal assortment is a set comprising of highest-margin products. In more general

contexts, the assortment problem does not have a simple solution. For instance, Bront et al. (2009)

show that when there is an heterogenous population the single-period problem becomes NP-Hard.

An important stream of operations papers focus on the relationship between variety benefits and

inventory costs, and they typically assume a certain product substitution structure when stockouts

occur (see, for example, van Ryzin and Mahajan 1999, Smith and Agrawal 2000). Cachon et al.

(2005) explicitly account for customer search in the assortment planning process and show that

ignoring customer search in demand estimation can lead to sub-optimal assortment decisions and

lower expected profits. Kök and Fisher (2007) also develop a method for estimating demand

under substitution. In most of these papers, the inventory decision follows the assortment decision,

in the sense that a newsvendor-type formula is used to compute the inventory cost for a given

assortment. As a result, the evolution of the assortment (as some products “die”) is ignored. There

are some exceptions: Mahajan and van Ryzin (2001) show that when substitution is stockout-based,

the problem quickly becomes intractable and profits are no longer concave in inventory levels;

Honhon et al. (2010) propose a dynamic programming formulation to find the optimal stocking

levels when there is a fixed proportion of customer types and random demand; Bernstein et al.

(2010) dynamically adjust the assortment over time, depending on each customer’s preferences

and the remaining inventory, so as to “hide” products with low inventories to reserve them for

future customers. Furthermore, pricing decisions have also been considered: Aydin and Porteus

(2008) study the joint inventory and pricing decision for an assortment. The competitive aspect

of these assortment and price decisions has been studied in Besbes and Sauré (2010), under the

multinomial logit (MNL) model. In our paper, we consider the assortment decision only, in a

multiperiod environment.

Dynamic assortments have been studied before, usually in a context where the underlying de-

mand function is unknown and must be estimated, and inventory is ignored. Caro and Gallien

(2007) apply a finite-horizon multi-armed bandit model with Bayesian learning to a dynamic as-
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sortment problem for seasonal goods, and derive a closed-form dynamic index policy that captures

the key exploration versus exploitation tradeoffs. Rusmevichientong et al. (2010) and Sauré and

Zeevi (2008) consider the case of MNL demand model with a capacity constraint, and present an

assortment planning algorithm that simultaneously learns the underlying MNL parameters and

optimizes profit. Farias and Madan (2011) consider the setting where a product cannot be used

once it is removed from the assortment. Farias et al. (2010) consider the problem of estimating

a choice model that is defined as a distribution over all permutations, where each permutation

defines a preference-ordered list of products. Alptekinoglu et al. (2011) also learn about customer

preferences in a locational model by dynamically adjusting the assortment. Honhon and Kök (2011)

study the impact of variety-seeking customers and identify cyclical patterns in the optimal assort-

ment. All of the papers mentioned thus far assume that the attractiveness of each product remains

the same over time. To our knowledge, we are the first to explicitly model the reduction of a prod-

uct’s attractiveness over its life cycle: we propose an attraction model in which product preference

weights decay over time. A similar approach has been used in Ainslie et al. (2005), where box-office

sales are modeled as a MNL demand model where the market attractiveness of each movie follows a

Gamma distribution of its age in the theaters (and hence eventually decays over time). That paper

provides the empirical methodology that can potentially be used to calibrate the decay parameters

in our assortment packing model. It does not study how to time movie releases, which is the focus

of our work.

In addition, product introduction timing has also been studied by the product rollover litera-

ture. Most of the work relevant to this paper studies the trade-off between the market expansion

associated with a new product and the saturation effect, i.e., how the older product is cannibalized

by the new one. Lim and Tang (2006) study whether introducing a new product and removing an

older one should be done simultaneously or not, and characterize the best product prices associated

with these strategies. Demand diffusion models have also been used to analyze the timing decision.

For instance, Kalish et al. (1995) study whether two markets need to be entered simultaneously or

sequentially. With a similar diffusion pattern, Savin and Terwiesch (2005) study the timing of en-

try for a new product competing against an established one. Druehl et al. (2009) analyze the pace

of product introduction over multiple product generations with market growth, cannibalization,

margin decays and pace-dependent introduction costs.

3. The Assortment Packing Problem

In this section, we describe the assortment packing problem and discuss the features of our model

in detail, with examples to demonstrate the qualitative nature of the solution. We then study its
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computation complexity. Note that all the proofs are contained in the Appendix.

3.1 Model Formulation. Consider a retailer that is planning the assortment for a season

consisting of T periods (e.g., weeks). The retailer has n products available, and must decide when

to introduce each product i ∈ I := {1, . . . , n}. For i ∈ I and t = 1, . . . , T , let xit be the binary

variable that is equal to 1 if product i is introduced in period t, and 0 otherwise. Each product can

only be introduced once; after it is introduced, it remains in the assortment for several consecutive

periods. Let ri denote the unit gross margin of product i. Without loss of generality, assume that

the products are numbered so that such that r1 ≥ r2 ≥ . . . ≥ rn> 0. Period t has a discount or

seasonality factor αt.

We assume an attraction demand model, where each product’s market share contribution is

proportional to its preference weight or attractiveness in each period. Let vi denote the weight of

product i when it is first introduced. As the product remains in the store, however, its attractiveness

changes over time. For instance, the product might become stale, in which case its attractiveness

decays as time goes by. If product i is introduced in period ti, then we assume that its weight in

period t ≥ ti is given by κi,t−tivi, where κi,d ∈ [0, 1] is a product-specific decay parameter.1 In

particular, if the item has a planned life cycle of `i periods, then κi,d = 0 for d ≥ `i. In any period,

a customer can choose not to purchase from the assortment. This outside option has a weight v0,

independent of time. As a result, the assortment packing problem (APP ) can be formulated as the

following nonlinear combinatorial optimization problem:

(APP ) V ∗ = max
T∑

t=1

αt

n∑

i=1

ri ×
(

vi
∑t

u=1 κi,t−uxiu

v0 +
∑n

j=1 vj
∑t

u=1 κj,t−uxju

)
(1)

s.t.
∑T

t=1 xit ≤ 1 ∀ i ∈ I, (2)

xit ∈ {0, 1} ∀ i ∈ I, t = 1, . . . , T. (3)

The objective function (1) is the sum of the discounted (gross) profits over all products from each

of the T periods in the season. The expression in the parentheses represents the market share of

product i in period t. Constraint (2) ensures that each product is introduced at most once, and

constraint (3) imposes the binary requirement on the decision variables.

For notational convenience, let zit :=
t∑

u=1

κi,t−uxiu denote the contribution of product i to the

assortment’s attractiveness or load in period t. Clearly, zit = 0 if product i is introduced after period

t. On the same lines, we define zt :=
n∑

i=1

vizit as the total load in period t and φt := zt/(v0 + zt) as

1We refer to κi,d as a decay parameter, but in general the model allows for life cycles that are not necessarily de-
creasing.
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the firm’s market share in period t. Throughout the paper, we say that two products i and j have

the same type if they have exactly the same decay pattern, i.e., κi,d = κj,d, for d ≥ 0. In particular,

we refer to products with no decay as basics. In other words, a product i belongs to the basic

type if κi,d = 1 for all d ≥ 0. This represents products with an attractiveness that might be low

but remains constant from the release date until the end of the season, which is characteristic of

basic apparel items as pointed out in the introduction. Interestingly, it is easy to show that when

a basic product i is such that ri ≥ rj for all j, then it is optimal to introduce it in the first period,

and hence this product can be omitted from the analysis (although i’s preference weight will still

appear in the fractional terms of the objective functions).

3.2 Model Discussion. We review here the model’s features, justify our modeling assump-

tions, and describe settings where our model might be applicable. We believe that this model

strikes a good balance between maintaining tractability and capturing important constraints faced

by the retailers in planning their product introductions.

First, we can see that the problem formulation requires that an open-loop policy is used. In

other words, one must decide in advance when to introduce the different products, and cannot

adjust release dates during the selling season. This assumption is motivated by applications where

products have a long production lead time and a relatively short selling season, making it impractical

to re-order products during the season. As pointed out in the introduction, this is a reasonable

assumption for basic and fashion-basic apparel, books, accessories or movies. As a result, since

there is no possibility of adjusting the assortment for demand learning (in contrast to Caro and

Gallien 2007), any uncertain demand can be translated into its deterministic counterpart, i.e.,

its expectation.

One key characteristic of our model is the formulation of the demand function. We use an

attraction model where the sales of product j in time t is given by αt × vizit

v0 +
∑n

j=1 vjzjt
. Such

form is one of the most commonly used demand models in marketing and operations management

to capture assortment-based substitution (Kök et al. 2008). In period t, a number αt of consumers

are ready to buy a product, and then choose product i with probability
vizit

v0 +
∑n

j=1 vjzjt
. There are

well-established techniques for estimating the initial attractiveness vi associated with each product

(see e.g., Talluri and van Ryzin 2004). In addition, Ainslie et al. (2005) discuss the empirical

toolbox for estimating the decay parameters κi,d; it is worth pointing out that, in their case, the

weight of blockbuster movies decays exponentially, a functional form of κi,d which we study in

depth later.

In contrast with single-period models, where zit is either one if the product is introduced, or
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zero if it is not. In our model, the contribution of each product depends on when the product

was introduced. Specifically, if the product has not been introduced yet at time t, then zit = 0; if

the product has just been introduced at t, then zit = 1; otherwise, the product has been in the

assortment for a few periods, since ti, and zit = κi,t−ti ≤ 1, which implies that the value of the item

in the consumers’ eyes is lower than at introduction. This feature captures the customers’ preference

for new items, which is prevalent for apparel, books, restaurant menus or movie consumptions. As

a result, it is clearly sub-optimal to introduce all the items in the first period. Indeed, if that was

the chosen solution, sales would be high in the beginning of the horizon, but limited due to strong

product competition; in contrast, they would be low at the end of the horizon, since the load of

later periods zt would be much reduced compared to the outside option.

Furthermore, note that each product is introduced only once; it stays in the assortment until the

end of the horizon. Limited product life cycles can be modeled by setting κi,d = 0 for d ≥ `i where

`i is the planned life of the item. This implies that the product introduction decision is irrevocable,

similar to Farias and Madan (2011). Although sometimes it may be possible to show a product to

the customers, then remove it from the assortment and then reintroduce it again, this is usually not

the case in retail settings: it would be too complex and expensive to execute, involving handling,

logistics and merchandizing costs. For instance, most apparel retailers introduce a product only

once, and keep it in the stores for a number of periods.

Finally, to keep the problem tractable and focused on the product introduction question, we do

not consider inventory decisions. In practice, this is a decision that is taken after assortment plans

are finalized, and hence can be set sufficiently high later on so as to avoid losing sales. Similarly,

we do not consider budget or shelf-space constraints, e.g., a maximum number of products to be

introduced over the horizon or a maximum number of items per period. We discuss how these

change our analysis and results in Section 7.

3.3 Computational Complexity. When there is no outside option (v0 = 0) and αt = 1 for

all t, the APP is trivial because it is optimal to introduce the most profitable product r1 in the

first period and to have it as the sole product in the assortment for the entire duration of its life

cycle. The reason is that having an assortment with more products yields a per-period profit that

is a weighted average of the individual margins r1, . . . , rn, which clearly cannot exceed r1. Once

the attractiveness of the first product declines to zero, it is optimal to introduce the second most

profitable product r2, and so on and so forth.

Another case that can be solved efficiently is when all products are basic, with κi,d = 1 for

all i and d. In this case, the optimal solution is myopic, and the problem is equivalent to a single-
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period setting with T = 1. Talluri and van Ryzin (2004) show that for a single-period setting

it is optimal to introduce products with the highest margins, corresponding to a revenue-ordered

subset Ak = {1, . . . , k} for some product k. As shown in the following example, the nice structure

is not present in the APP with decay parameters, and in general, it may be beneficial to introduce

products with lower margins in the beginning of the season.

Example 1 (Lower Margin Products May Be Introduced First). Suppose that α1 = α2 =

1, n = 2, T = 2, r1 = $10, r2 = $9, v0 = 1, v1 = 3, v2 = 7, and κ1,d = κ2,d = 0.4d for d = 0, 1. For

this instances it can be verified that the optimal release schedule is to first introduce product 2

with lower margin in period 1 and only release the higher margin product (product 1) in period

2. Intuitively, by releasing product 1 later, it preserves its attractiveness, which allows for a higher

profit from offering both products together.

The example above suggests that the general APP is computationally intractable, which is

formally established below: Theorem 1 shows that, even when there is only two periods, no discount,

all products have equal margin, and a single-period life cycle with κi,0 = 1 and κi,d = 0 for all

i and d ≥ 1, the problem remains NP-hard. The proof follows from a reduction from the well

known NP-complete Partition problem. We first formulate a decision-theoretic version of our

two-period APP .

Two-Period Equal-Margin Assortment Packing with One-Period Life Cycle

Inputs: The set of products indexed by i; the preference weights v1, v2, . . . , vn, where vi ∈ Z+ for

i = 1, . . . , n; a no-purchase weight v0 ∈ Z+; and the target profit K ∈ Q+;

Question: Is there a partition S1 and S2 such that S1∩S2 = ∅ and S1∪S2 = {1, . . . , n} such that
∑

j∈S1
vj

v0 +
∑

j∈S1
vj

+

∑
j∈S2

vj

v0 +
∑

j∈S2
vj
≥ K.

Theorem 1. For any v0∈ Z+, the Two-Period Equal-Margin Assortment Packing with

One-Period Life Cycle is NP-complete.

4. The Continuous Relaxation

In the previous section, we observe that the APP is computationally intractable even in the simplest

setting, making it difficult to establish managerial insights and structural properties of the optimal

solution, and to develop an algorithm for solving this problem. In this section, we introduce a

continuous relaxation of the original problem, by replacing the binary constraints xit ∈ {0, 1}
by xit ≥ 0 for all i and t. The corresponding continuous optimization problem is given by:

V = max

{
T∑

t=1

αt

n∑

i=1

ri ×
(

vi
∑t

u=1 κi,t−uxiu

v0 +
∑n

j=1 vj
∑t

u=1 κj,t−uxju

) ∣∣∣∣∣
T∑

t=1

xit ≤ 1 ∀i, xit ≥ 0 ∀i, t
}

, (4)
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and let {xit : i = 1, . . . , n, t = 1, . . . , T} be an optimal solution to the above problem.

When all products have equal margins, the above objective function is concave because the mar-

ket share
(∑n

i=1 vi
∑t

u=1 κi,t−uxiu

) /(
v0 +

∑n
j=1 vj

∑t
u=1 κj,t−uxju

)
=

∑n
i=1 vizit/

(
v0 +

∑n
j=1 vjzjt

)

in each period t is a concave function, and therefore the maximization can be carried out efficiently.

When products have unequal margins, however, the continuous relaxation becomes a particular case

of fractional programming known as the linear sum-of-ratios problem, see Schaible and Shi (2003),

for which there is still no general polynomial optimization method but several branch-and-bound

(b&b) schemes have been developed, e.g., Kuno (2002) and Benson (2007).

Note that the continuous relaxation provides an upper bound V for the optimal value V ∗ of the

original APP . However, it should be noted that there are instances where the objective value V

is far from V ∗. This happens when there is a “fat” item that is significantly more attractive that

the rest, i.e., its weight vi is significantly larger than the weight of the other items (see Section 6

for some examples).

Another interesting feature of the relaxation problem is that all products of the same type

with the same margin can be bundled together. Thus, if ri = rj and κi,d = κj,d for all d ≥ 0,

then we can replace combine products i and j and replace it with a new product having weight

vi + vj , reducing the number of variables in the relaxation problem by one. Thus, the continuous

relaxation can be seen as a strategic version of the original APP because it deals only with product

types. The original APP is more of a tactical planning model, which might be used to determine

when to release each specific product. The bundling of products with the same type and margin

suggests that when we have a lot of products of each type, the continuous relaxation provides a

good approximation to the original APP , as shown in the following section.

4.1 A Fluid Approximation. The continuous relaxation has a fundamental interpretation

as a fluid approximation of the APP . To see this, consider a sequence of APP instances indexed

by k, which we call APPk, k = 1, 2, . . . ,∞, in which each original product i is subdivided into k

subproducts with equal attractiveness vi/k. Let Vk be the optimal value of instance k.

(APPk) Vk = max
T∑

t=1

αt

n∑

i=1

ri ×




vi

k

t∑

u=1

κi,t−u

k∑

q=1

νiuq

v0 +
n∑

j=1

vj

k

t∑

u=1

κj,t−u

k∑

q=1

νjuq




s.t.
T∑

t=1

νitq ≤ 1 ∀ i ∈ I, q = 1, . . . , k,

νitq ∈ {0, 1} ∀ i ∈ I, t = 1, . . . , T, q = 1, . . . , k.
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All instances in the sequence APPk have the same continuous relaxation, so Vk ≤ V for all k. As

the (sub)products become infinitesimally small, i.e, as they become a fluid, the objective value Vk

gets arbitrarily close to V . The following theorem established the convergence rate to V .

Theorem 2 (Fluid Approximation). For any k ≥ 1,

0 ≤ V − Vk ≤



max
j=1,...,n

vj

k v0 + max
j=1,...,n

vj


 V ,

which implies that limk→∞ Vk/V = 1.

Theorem 2 tells us that when there are a lot of products of the same type with similar decay

profiles, then we can obtain a good approximation to the APP by solving the continuous relaxation

problem. Given the fluid interpretation, we proceed to analyze the continuous relaxation as a

way to shed some light on the structure of the APP , which we later use as guideline to develop

general heuristics.

4.2 Exponential Preference Decay. We can provide structural results when the preference

decay parameters are given by κi,d = κd
i with 0 < κi ≤ 1 and for all i and d ≥ 0. As discussed in

Section 3.2, this is one of the most prevalent decay patterns observed in practice. In what follows,

we first assume that all products have equal margins with ri = 1 for all i. Towards the end we

discuss an extension with unequal margins.

Recall that for any product i and time period t, zit =
t∑

u=1

κi,t−uxiu denote the load of product i

in period t. For any t, let Dt =
αtv0

(v0 + zt)2
. Note that there is a one-to-one correspondence between

zt =
n∑

i=1

vizit and Dt. We can roughly interpret Dt as the marginal contribution to the total profit

in period t. To see this, if J : [0, 1]n×T → R+ denotes the objective function of the continuous

relaxation problem, then

Ji,t :=
∂J

∂xit
= vi

T−1∑

l=0

κl
iDt+l = viDt + κiJi,t+1.

By studying the dual variables associated with the constraint of each product, we can determine

which product will be introduced first. Since the continuous relaxation with equal margins is a

concave optimization problem, we can use the Karush-Kuhn-Tucker (KKT) conditions with the

dual variable λi ≥ 0 associated with the constraint
T∑

t=1

xit ≤ 1. At optimality, we then have the

following system of equations:

λi ≥ Ji,t i = 1, . . . , n, t = 1, . . . , T, and 0 = λi

(
1−

T∑

t=1

xit

)
i = 1, . . . , n,

11



along with the complementary slackness constraints that xit (λi − Ji,t) = 0 for all i and t. This

implies that xit > 0 only if Ji,t = vi

T−1∑

l=0

κl
iDt+l = λi, and xit = 0 if vi

T−1∑

l=0

κl
iDt+l < λi (letting

Dt = 0 if t > T ). In other words, at optimality

λi

vi
= max

t≥1

{
T−1∑

l=0

κl
iDt+l

}
, i = 1, . . . , n. (5)

Suppose κ1 > κ2, e.g., type 1 are regular staple items while type 2 are fashion items such that their

attractiveness is expected to fade away faster. Then Equation (5) implies that λ1/v1 > λ2/v2. This

means that when there is a constraint on the total number of products that can be offered, the

firm should choose those with the highest κi, which is intuitive. In addition, one finds that product

1 should be introduced earlier than product 2. This structure can be generalized to n types of

products: products are introduced in decreasing order of κi over time, as shown in the following

theorem.

Theorem 3 (Staggered Product Introduction). With equal margins, if κ1 > . . . > κn and

αt = αt−1 for all t, then for each product i ∈ I there exists a time window [Si, Ei] such that in the

optimal solution of the continuous relaxation: xit > 0 if Si ≤ t < Ei, xiEi ≥ 0, and xit = 0 for

all t /∈ [Si, Ei]. Moreover, S1 = 1, Ei ≤ Si+1 for all i, and optimality, Dt is strictly decreasing after

En, i.e. DEn > DEn+1 > · · · > DT .

This result demonstrates that, when products have equal margins and exponential decays, they

are introduced earlier if they stay “fresh” for longer (i.e., they have a higher κi). Theorem 3 requires

a strict ordering of the decay parameters, but when there are several products of the same type

(i.e., that share the same decay factor κi), the staggered product introduction property still applies:

there is one optimal solution with such structure. As shown in the following example, the intervals

[S1, E1], [S2, E2], . . . , [Sn, En] may be disjoint.

Example 2 (Non-overlapping intervals). Suppose that n = 2, T = 4, r1 = r2 = $1, α =

0.95, v0 = 1, v1 = 10, v2 = 1, κ1 = 0.8 and κ2 = 0.4. The unique solution of the relaxation is to set

x11 = 1, x1t = 0 for t 6= 1, x23 = 1, x2t = 0 for t 6= 3. Thus, [S1, E1] = [1, 1] and [S2, E2] = [3, 3].

When there is a single product type, the solution of the continuous relaxation can be char-

acterized even further, as shown in the next two results. We know from Theorem 3 that there

is a cut-off period E1 after which no product is introduced. Let us denote this cut-off period by

E1(κ) to emphasize its dependence on κ, since the cut-off period will change with κ. The following

theorem shows that this cut-off period is non-increasing in κ.

12



Proposition 4 (More Fashionable Products are Introduced over Longer Periods). As-

sume a single product type and αt = αt−1 for all t. Then, E1(κ) is non-increasing in κ.

Note that when κ = 1, we have a truly basic product and there is no decay. In this case, it

is easy to verify that it is optimal to introduce everything in the first period, that is, E1(1) = 1.

Proposition 4 shows that as the product becomes more fashionable, with κ decreasing to zero, it

would gradually be introduced over a longer horizon. In fact, with κ = 0, we have a single-period

life cycle, and in this case, E1(0) = T . As a consequence of the above proposition, we see that basic

products are always introduced earlier than fashion products.

The next result shows that the market share under the optimal product introduction is declining

over time. The optimal market share in period t is given by zt/(v0 + zt). The following proposition

shows that zt is decreases with t.

Proposition 5 (Decreasing Optimal Market Share). Assume a single product type and αt =

αt−1 for all t. In the optimal solution of the continuous relaxation the market share decreases over

time, that is, z1 ≥ z2 ≥ · · · ≥ zT .

The previous results assume that all products have equal margins. With unequal margins the

problem is hard to analyze because the continuous relaxation is not even concave. An exception

is when there is a basic item j with a margin rj ≥ 1 and all other items have equal margins

normalized to 1. If v0 ≥ vj(rj − 1), then the problem remains concave and the results in Theorem

3 and Proposition 5 continue to hold. In other words, the optimal solution of the continuous

relaxation will follow the staggered introduction property; and if all items i 6= j have the same

type, then the optimal market share will be decreasing.

5. Approximation Algorithms for the APP

In this section we introduce three approximation algorithms to solve the APP . The first two

assume equal margins while the last one is for the general case and allows for products with

different margins. Though these are approximate methods, we are able to establish performance

guarantees.

5.1 Two Heuristics under Equal Margins. Here we consider the case when all products

have the same gross margin, which as before we normalize to one, i.e., ri = 1, ∀ i = 1, . . . , n. The

objective function of the APP becomes J :=
T∑

t=1

αtzt

v0 + zt
. Since each fractional term

αtzt

v0 + zt
is

increasing in zt, it follows that with equal margins it is optimal to introduce all products (this

is not necessarily the case with unequal margins). The two heuristics that we introduce next are

based on the structure of the continuous relaxation (4) when margins are equal.
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5.1.1 Greedy Heuristic. To solve the APP with equal margins, consider the partial derivative

of the objective function J with respect to xit:

∂J

∂xit
= v0

T∑
s=t

αsviκi,s−t

(v0 + zs)2
. (6)

Motivated by the concavity of the objective function J , we propose the following Greedy heuristic:

sequentially assign products to periods (bins), each time selecting the product-period pair with

the highest partial derivative (6) among those products that have not been previously assigned.

Intuitively, we use the index (6) because this is a measure of the marginal increase in profits, and

products are introduced according to this index in a greedy fashion. Note that this heuristic does

not require solving the continuous relaxation. Its computation time is O(n2T 2) for general decay

patterns but can be computed more efficiently for specific structures such as exponential decay.

While the performance of Greedy is generally hard to evaluate analytically, when all products

have a single-period life cycle, a performance guarantee can be developed. This corresponds to the

case where κi,d = 0 when d ≥ 1, i.e., products completely lose their attractiveness one period after

being introduced. This can be seen as an extreme case of exponential preference decay in which

the decay parameter tends to zero for all products, or it can also represent the situation when all

products have the same planned life cycle, i.e., `i = `, ∀ i = 1, . . . , n (in this case the horizon T

should be a multiple of `).

Without loss of generality, as all products have the same margin, we sort the items by decreasing

sizes, v1 ≥ . . . ≥ vn, and we assume that α1 ≥ . . . ≥ αT ≥ 0. Let V ∗ be the optimal solution to the

APP , and let z∗t =
∑n

i=1 vix
∗
it be the load for period t in an optimal solution. Note that because

αt is decreasing in t, it must be true that z∗t is also decreasing in t. Otherwise, if z∗t1 < z∗t2 with

t1 ≤ t2, the products allocated to t1 and t2 could be exchanged and profits would be increased.

Hence, we observe that the decreasing market share property that was shown in Proposition 5 for

the continuous relaxation holds here for the optimal integral solution of the APP .

With single-period life cycles, the Greedy heuristic simplifies to the following procedure. First,

sort the items in decreasing size. Second, allocate items to periods (bins) in a greedy fashion:

place item i in the period with the highest current index
αt

(v0 + zt)2
where zt is the current load.

Clearly the heuristic runs in polynomial time. Moreover, we can provide the following performance

guarantee.

Theorem 6. When all products have a single-period life cycle and αt = 1 for t = 1, . . . , T , let

V Greedy be the objective value of the Greedy solution. Then 1 ≤ V ∗

V Greedy
≤ 9

8
.

14



Remarkably, when there is no seasonality or discounting, Theorem 6 provides a 9/8-approximation

for the APP . This result can then be used for more general situations.

Corollary 7. When all products have a single-period life cycle, compute the solution provided by

the Greedy heuristic applied to the problem with αt = 1 for t = 1, . . . , T . Then this heuristic is a
9
8Λ-approximation for the APP , where Λ = maxt αt

mint αt
.

5.1.2 EarlyEntry Heuristic. The second heuristic, which we call EarlyEntry, is moti-

vated by the staggered entry property shown in Theorem 3 for exponential preference decay. The

procedure is simple: solve the continuous relaxation and determine the time window in which each

product is released. Then, in the APP , introduce each product at the beginning of its time win-

dow. In other words, introduce product i in the earliest period t such that xit > 0, where xit

represents the optimal solution of the continuous relaxation. When the values of κi are large, the

EarlyEntry heuristic generates solutions that are close to the optimum of the APP .

Theorem 8. When all products have exponential preference decay and αt = αt−1 for all t, let

[Si, Ei] denote the release time window in the optimal solution of the continuous relaxation for

product i ∈ I. Let V EarlyEntry be the objective value of the EarlyEntry solution. Then 1 ≤
V ∗

V EarlyEntry
≤ max

i=1,...,n

{
1

κEi−Si
i

}
,where κi is the decay parameter of product i ∈ I.

This performance bound depends on the actual solution to the continuous relaxation, through

the values Si and Ei. Hence, if Ei = Si for all i, then the heuristic leads to the optimum, because

the relaxation solution is integral. When the number of products is large, the time windows are

compressed, so Ei − Si is small for all i, which leads to a performance bound that only depends

on the decay parameters κi. The performance bound is tighter when all κi are high. Hence, the

EarlyEntry heuristic is an appropriate complement to Greedy, which performs well when all

κi tend to zero.

5.2 A Randomized Heuristic under General Margins. The two previous heuristics

were developed for the case of equal margins. Note that these heuristics provide a feasible solution

and an upper bound for the general case if one replaces the margins ri by its maximal value.

For a heuristic that can work with different margins directly, we resort to a randomized approach

(Raghavan and Thompson 1987). Here we use the fact that the constraint (2) in the APP allows

giving a probabilistic interpretation to the solution of the continuous relaxation.

As before, let (xi,t : i ∈ I, t = 1, . . . , T ) denote the solution to the continuous relaxation problem

and let V be its objective value. Let Qi denote a random variable that represents the time period
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when product i ∈ I is introduced. The probability distribution of Qi is given by the solution to the

continuous relaxation. To be precise, let Pr(Qi = t) = xi,t, ∀i ∈ I, t = 1, . . . , T . Since with unequal

margins constraint (2) might not be binding, we consider a fictitious period T + 1 to represent

the non-release option with probability mass Pr(Qi = T + 1) = 1 − ∑
t=1,...,T xi,t, ∀ i ∈ I. Let

f(Q1, . . . , Qn) denote the (random) profit associated with the random vector (Q1, . . . , Qn), i.e.,

f(Q1, . . . , Qn) :=
T∑

t=1

αt

∑t
u=1

∑n
i=1 riκi,t−uvi1l[Qi=u]

v0 +
∑t

u=1

∑n
i=1 κi,t−uvi1l[Qi=u]

, (7)

where 1lA is the indicator function for event A. The following theorem gives a performance

guarantee associated with the random vector (Q1, . . . , Qn).

Theorem 9. Let ρ :=
v0

v0 + maxj=1,...,n vj
. Then, 1 ≤ V ∗

E
[
f(Q1, . . . , Qn)

] ≤ V

E
[
f(Q1, . . . , Qn)

] ≤ 1
ρ
.

Based on the probabilistic interpretation described above, we define a Randomized heuristic

that consists in sampling a fixed number of solutions for the APP according to the probability

distribution of (Q1, . . . , Qn) and keeping the best one. Note that the inequality E
[
f(Q1, . . . , Qn)

] ≥
ρV in Theorem 9 ensures that sampling the distribution of (Q1, . . . , Qn) will eventually yield a

solution with an objective value greater than ρV , where ρ =
v0

v0 + maxj=1,...,n vj
. This solution

is guaranteed to be within percentage 1 − ρ of the optimal value V ∗. Clearly, the performance

guarantee for the Randomized heuristic is tighter when ρ is larger, which occurs when the outside

option has significant weight v0 vis-a-vis the attractiveness of the products the firm can offer. This

situation usually occurs when the market is competitive and customers have many other alternatives

where to purchase. For instance, if v0 ≥ vi, ∀i ∈ I, which is a common assumption found in the

literature (e.g., Allon et al. 2010), then the Randomized solution is guaranteed to be within 50%

of the optimum.

As mentioned in Section 4, solving the continuous relaxation with unequal margins is challenging

and one of the prevalent methods used is b&b. Given the substantial computational effort that

is required, in practice the b&b procedure is usually terminated when a feasible solution is found

that satisfies a sub-optimality tolerance. If that is the case, the performance guarantee of the

Randomized heuristic can be modified according to the following corollary.

Corollary 10. Let (x̃i,t : i ∈ I, t = 1, . . . , T ) represent the incumbent solution in the branch-

and-bound procedure and let J̃ be its objective value. Let Ṽ be the current upper bound and let

Γ := (Ṽ − J̃)/Ṽ be the sub-optimality gap. Then, the Randomized heuristic using probability

weights x̃i,t guarantees that 1 ≤ V ∗

E
[
f(Q1, . . . , Qn)

] ≤ 1
(1− Γ)ρ

, where ρ is defined as in Theorem 9.
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6. Numerical Study

Our numerical study has two parts. First, in Section 6.1 we describe in detail a small illustrative

example to shed further light on the problem, its structure, and the merits of the approximation

algorithms. In Section 6.2 we consider larger instances trying to replicate real situations that firms

face.

Throughout this section we compare the performance of the three approximation algorithms.

As a benchmark, we also include a fourth heuristic that consists in just rounding the solution of the

continuous relaxation, which is the most common approach used in practice to solve problems with

integer variables. Specifically, for each product i, identify the period t such that xit is the largest

in the optimal solution of the continuous relaxation, and then introduce product i in period t in

the APP , which amounts to setting xit = 1. Following the probabilistic interpretation discussed

in Section 5.2, this rounding procedure is equivalent to introducing product i in the period that

represents the mode of the probability distribution (xi,t : i ∈ I, t = 1, . . . , T ). Hence, we refer to it

as ModeRounding.

6.1 Small Illustrative Example. Here we consider a small instance with four products and

ten periods. The products have equal margins (ri = 1, i = 1, 2, 3, 4) and attractiveness v1 = v2 =

v3 = 1, v4 = 100, so it corresponds to a situation with three minor items and one “fat” product.

We assume exponential decay with parameters: κ1 = 0.9, κ2 = 0.6, κ3 = 0.5, κ4 = 0.4. The weight

of the outside option is v0 = 1.

Table 1 show the results for this small instance. The objective value of the different solutions

is reported on left hand side of the table, while the actual solution is shown to the right. The first

entry of the table is the optimal solution to the continuous relaxation, which has a objective value

of 9.457. This value is a very loose upper bound for the APP due to the presence of the fat item.

Therefore, we did ten b&b steps — branching on the release period for product 4 — which reduced

the upper bound to 8.269. This result is shown as the second entry in Table 1. The third entry is

the optimal integer solution, which we were able to find by exhausting the b&b tree for this small

example. Though there is a 0.54% gap between the optimal integer solution and the partial b&b

upper bound, we assess the sub-optimality of the approximation algorithms with respect to the

latter emulating the fact that the true integer optimum would be computationally prohibitive to

find for any real-size instance. The remaining three entries in Table 1 report the performance of

the heuristics described in Section 5. Note that for this example, ModeRounding provided the

same solution as EarlyEntry so it is not reported.

As expected, the continuous relaxation solution has the staggered entry property shown in

17



Algorithm Objective Solution xit

(% gap) i,t 1 2 3 4 5 6 7 8 9 10

Continuous 9.457 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
relaxation 2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.120 0.096 0.099 0.102 0.103 0.104 0.104 0.105 0.105 0.063

Partial b&b 8.269 1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
upper bound 2 0.000 0.000 0.000 0.000 0.000 0.685 0.315 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000 0.176 0.391 0.413 0.021
4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Optimal 8.224 1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
(0.54%) 2 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Greedy 8.198 1 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
(0.85%) 2 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EarlyEntry 6.836 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(17.33%) 2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Randomized 8.067 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2.50%) 2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 1: Small numerical example with 4 products and 10 periods. The gaps are with respect to
the upper bound (8.269).

Theorem 3, with the first three items released only in the first period while the fat item is released

continuously throughout the horizon, which makes the solution very fractional. In general, we

observed this behavior whenever there was a fat item, i.e., a product that was significantly more

attractive than the rest. In those cases, the optimal continuous solution has a large integrality

gap. For the purpose of this example, we reduced the gap through b&b, first partially and then

exhaustively. The idea of doing partial b&b is to show that typically branching on the fat item(s)

is enough to narrow the integrality gap to a reasonable level, which can be very useful in practice.

In contrast to the continuous relaxation, the optimal integral solution has the fat item as the sole

product introduced in the first period despite the fact that it has the fastest decay. The remaining

products are introduced only once the attractiveness of the fat item has vanished. The Greedy

solution has this same structure — i.e., the fat item first and the rest later — and it achieves

the best performance among the solutions considered. In fact, except for product 2, the Greedy

solution introduces all items optimally, which shows that the partial derivative (6) is indeed a good

optimality indicator. The EarlyEntry and Randomized solutions are based on the continuous

relaxation, which we know has a large integrality gap. In particular, EarlyEntry solution is

misguided by the fractional values of the fat item, so in this case it has very poor performance. The
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Randomized algorithm is able to detect that it would be better to introduce the fat item later, so

it has a much better performance, though in terms of structure it is exactly the opposite from the

optimal integer solution. Note that once the release of the fat item is fixed by doing partial b&b,

the continuous solution for the remaining items also has the staggered entry property. Hence, the

performance of EarlyEntry and Randomized usually can be improved by using the partial b&b

solution as the input instead of the original continuous solution.

6.2 Large Instances. The previous small instance serves as an illustrative example of the

APP and the solutions provided by the approximation algorithms. In order to test our methods

further on real-size instances, we constructed a problem consisting of 200 products. To use realistic

parameters, we use a data set of DVD titles from Rusmevichientong et al. (2010) which provide the

values for attractiveness (vi’s). The attractiveness of the DVDs ranged from 0.005 to 0.03, with a

total sum equal to 1.92, and the weight of the outside option was v0 = 1. We considered a 52-week

horizon with discount αt = αt−1, ∀ t ≥ 1, and we assumed equal margins (ri = 1, ∀ i ∈ I) in order

to make the continuous relaxation tractable. For the life cycle pattern we assumed exponential

decay, which we believe is reasonable since the DVDs were movies or series that had already been

released in theaters or on TV so they were past their peak in popularity. We did not have data

as in Ainslie et al. (2005) to estimate the decay parameters, so instead, we generated the decay

parameters κi randomly to ensure that there was no correlation with the weights vi. The decay

parameters ranged from 0.6 to 0.999, with an average value of 0.82. We also considered the cases

when the decay κi and the weighs vi were positively and negatively correlated, but the result were

the same so we do not report them in the paper. The continuous relaxation was coded in GAMS

and solved using the commercial non-linear solver MINOS5, while the approximation algorithms

were coded in Perl. The running times in all cases did not surpass a few minutes.

We first explore the properties of the continuous relaxation (cf. Section 4.2). Figure 1 shows the

product release time windows and the market share trajectory φt/φ1 for three different parameter

sets (recall that φt =
zt

v0 + zt
). The DVDs are sorted in decreasing order of the decay parameter

κi, and therefore we observe a staircase shape that follows from the staggered product introduction

property in Theorem 3. Plot (a) in Figure 1 is the base case with v0 = 1 and α = 1. In plot (b) the

weight of the outside option is ten times higher so the firm prefers to introduce more items early to

boost its initial market share. Plot (c) has a more pronounced discount rate that reduces the value

of later-period profits, which again pushes the items to be introduced earlier. It is interesting to

see that with multiple products the market share is also decreasing in the same way it was shown

in Proposition 5 for a single product type.
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(a) v0 = 1, α = 1 (b) v0 = 10, α = 1 (c) v0 = 1, α = 0.9
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Figure 1: Market share trajectory φt/φ1 (top curve) and product release time windows (bottom
curve) for the instance with 200 DVDs, 52 periods and exponential decay.

Table 2 shows the suboptimality gap of the solutions from the approximation algorithms and

the ModeRounding heuristic. The suboptimality is measured with respect to the upper bound

given by the optimal value of the continuous relaxation. (Here there is no fat item so b&b was not

necessary.). The top part of the table shows the sensitivity of the gaps with respect to the discount

parameter α and the bottom part shows the sensitivity with respect to the attractiveness of the

outside good v0. For each set of parameters, the algorithm with the best performance is shown in

boldface. The first remark is that the all the algorithms perform very well, with all gaps below 2%.

In contrast with the small example described in the previous section, here Greedy has a slightly

worse performance, whereas EarlyEntry, Randomized and ModeRounding have gaps below

0.005%. The main reason is that in this case the number of products (200) is large with respect

to the number of periods (52). From the staggered entry property in Theorem 3, packing many

products in a few periods forces the time windows [Si, Ei] to be very narrow, which means that the

optimal solution of the continuous relaxation is not too fractional. This observation is also in line

with the fluid interpretation of the continuous relaxation discussed in Section 4.1.

The instance with DVD data has a large number of products so the approximation algorithms

based on the continuous relaxation perform very well. To show what happens when there are fewer

products, we generated a random instance in which a planner has to introduce a small number

of products each period. The planner could represent a movie distributor or a category manager

20



Discount α v0 Relaxation Greedy EarlyEntry Randomized ModeRounding

1.0 1 13.27 0.980% 0.003% 0.001% 0.001%
0.999 1 12.96 0.859% 0.003% 0.001% 0.001%
0.99 1 10.65 0.225% 0.003% 0.001% 0.001%
0.95 1 6.16 0.008% 0.001% 0.000% 0.000%
0.9 1 4.15 0.003% 0.000% 0.000% 0.000%

1.0 10 1.74 0.143% 0.000% 0.000% 0.000%
1.0 2 7.63 0.698% 0.001% 0.001% 0.001%
1.0 1 13.27 0.980% 0.003% 0.001% 0.001%
1.0 0.3 27.66 1.125% 0.003% 0.002% 0.002%
1.0 0.03 47.78 0.296% 0.001% 0.001% 0.001%
1.0 0.005 51.24 0.056% 0.000% 0.000% 0.000%

Table 2: Sub-optimality gaps when varying the discount parameter α (top) and the weight of the
outside good v0 (bottom) for an instance consisting of 200 DVDs and 52 weeks. The gaps are
measured with respect to the optimal value of the continuous relaxation.

in apparel or accessories, as those described in Section 1. For that, we considered 52 products

and the same number of periods. We assumed no discounting or seasonality, and we generated

the attractiveness vi from a uniform [0,1] distribution for all items except one, which had an

attractiveness of 10. The idea was to represent the situation in which there was a big disparity

among products and one was substantially more appealing. For the outside option, we considered

three different values of v0 (0.5, 1 and 101). The results are shown in Table 3. The first three rows

assume exponential decay — with the κi parameters again generated randomly, between 0 and 1

— and the last three rows correspond to the case when all products have a single-period life cycle,

i.e., when κi → 0, ∀ i ∈ I. To tighten the upper bound, we did partial b&b branching on the “fat”

item, as in the small example described in the previous section. With exponential decay, all the

approximation algorithms continue to perform very well. In contrast, when all products have a

single-period life cycle and the weight of the outside good is low, the performance of the algorithms

is very poor except for Greedy, which as expected achieves sub-optimality gaps within 1/8 given

by the performance guarantee in Theorem 6.

v0 Life cycle Relaxation Upper bound Greedy EarlyEntry Randomized ModeRounding

0.5 52 44.47 44.06 0.265% 1.420% 0.795% 1.603%
1 52 38.84 38.25 0.385% 1.971% 1.108% 2.202%

101 52 1.48 1.47 0.067% 0.274% 0.098% 0.207%
0.5 1 30.95 27.29 9.569% 25.306% 15.417% 15.417%
1 1 22.03 18.67 7.648% 16.856% 9.144% 9.144%

101 1 0.38 0.37 0.123% 0.208% 0.123% 0.123%

Table 3: Sub-optimality gaps for a randomly generated instance with 52 periods and 52 products
including a “fat” item. Here there is no discounting or seasonality (αt = 1 for t = 1, . . . , T ).
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7. Discussion and Conclusions

We have presented the APP for a firm that has to decide when to release a set of products

throughout a season. Our formulation assumes that the attractiveness and decay pattern of each

product are known in advance. This would be the case if the products have already been designed

and produced, like basics and fashion-basics in apparel, and their attractiveness has been estimated,

for instance, through marketing techniques, such conjoint analysis, regression models or focus

groups. Though the assortment decision for these types of products is usually made only a few

times a year, planners are constantly evaluating different scenarios. Hence, it pays to have efficient

methods to solve the APP . We have presented here three approximation algorithms for the APP

and we have shown analytically as well as numerically that the overall performance is close to

optimal. In particular, the EarlyEntry and Randomized algorithms perform very well when

the solution of the continuous relaxation is not too fractional, which is the case whenever there is

a large number of products or the decay pattern is exponential. In contrast, when the continuous

relaxation is highly fractional, the Greedy algorithm tends to do well.

We conclude the paper by discussing a few possible extensions to the APP . One of the implicit

assumptions in the original model formulation is that the number of product introduced in a given

period is only restricted by how many are available. In practice, it could occur that there is

limitation that prevents the firm from releasing more than a certain number of new items. For

instance, category managers in apparel some times are given a budget and there is an operational

cost associated to each new introduction, so they have to be more selective and not all products are

released. This situation can be included in the model by considering the constraint
T∑

t=1

n∑

i=1

xit ≤ N

or a variation of it, where N represents the total number of products that can be introduced (if

the budget is B and the introduction cost is c, then N = bB/cc). Another reason that could limit

the number of products is some sort of shelf space constraint, which could be incorporated in the

model by imposing the inequality
n∑

i=1

t∑

u=1

Si,t−uxiu ≤ S, ∀ t ≥ 1, where S is the available space for

display and Si,l is the space that product i takes l periods after its introduction.

Adding a budget or shelf space constraint is likely to affect the structure of the problem.

However, it is interesting to notice that the fluid interpretation of the continuous relaxation and

Theorem 2 remain valid. With equal margins, the Greedy and EarlyEntry can be modified to

accommodate the additional constraint but the performance guarantees in Section 5.1 are lost, or

at least they would require a different proof. In contrast, with general margins, the performance

bound for the Randomized algorithm in Theorem 9 continues to hold. Generating the randomized

solution would have to incorporate the product introduction limitation, but this can be achieved
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by sampling the variables sequentially and resolving the APP each time a variable is fixed to

update the probability distributions, or alternatively one can try to adapt the dependent rounding

algorithms described in Bertsimas et al. (1999).

Finally, our model assumes that all parameters are well-known to the firm. In particular, the

attractiveness and decay patterns are taken as given. If the parameters are highly uncertain and

there is an opportunity to gain additional information between decision periods, then a dynamic

programming (DP) or closed-loop approach might be more suitable. However, DPs are rarely

solvable in practice so researchers resort to approximate methods. One of the most common tech-

niques is the certainty-equivalence approximation that replaces the uncertain parameters by their

expected values and resolves the deterministic problem in a rolling horizon fashion (see Bertsimas

and Popescu 2003). Hence, this method relies on repeatedly solving the open-loop formulation, for

which our model and algorithms would come in handy.

Appendix: Proofs

Proof of Theorem 1

Proof. Let v0 be given. We show that 2-Period Equal-Margin Assortment Packing is in

NP, because we can transform an arbitrary instance of Partition, which is a well-known NP-

complete problem, to an equivalent 2-Period Equal-Margin Assortment Packing problem.

The Partition problem is defined as follows.

Partition

Inputs: The set of items indexed by 1, . . . , n and the size ci ∈ Z+ associated with each item.

Question: Is there a subset S ⊆ {1, . . . , n} such
∑

i∈S ci =
∑

i/∈S ci?

Let C = 1
2

∑n
i=1 ci ∈ Z+. Since

∑
i∈S ci =

∑
i/∈S ci if and only if

∑
i∈S ci = C, we may assume

without loss of generality that C ∈ Z+. An instance of Partition can be solved by solving the

following instance of 2-Period Equal-Margin Assortment Packing: define the preference

weights as vi = ci for i = 1, 2, . . . , n , and set the target profit as K = 2C/(v0 + C). The

Partition problem indeed has a solution if and only if there exists a partition X1 and X2 such

that

∑
j∈X1

vj

v0 +
∑

j∈X1
vj

+

∑
j∈X2

vj

v0 +
∑

j∈X2
vj
≤ max

y∈[0,2T ]

{
y

v0 + y
+

2T − y

v0 + 2T − y

}
=

2C

v0 + C
= K . This is

true because G(y) = y
v0+y + 2C−y

v0+2C−y is concave in y over the interval [0, 2C] and achieves a unique

maximum at y = C.

Proof of Theorem 2

Proof. This proof makes use of a later result, Theorem 9, which is proved independently of this

theorem. Fix an arbitrary k. Clearly the relaxations of APPk and APP are identical: Vk = V .
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Given the optimal solution (νitq : i = 1, . . . , n, t = 1, . . . , T, q = 1, . . . , k) associated with the contin-

uous relaxation of APPk, let (Qitq : i = 1, . . . , n, t = 1, . . . , T, q = 1, . . . , k) denote the randomized

rounding solution as defined by Theorem 9. It follows that
(

v0

v0 + maxj=1,...,n vj/k

)
Vk ≤ E

[
f (Qitq : i = 1, . . . , n, t = 1, . . . , T, q = 1, . . . , k)

] ≤ Vk

where the first inequality follows from the fact that in APPk, the weight of each product i is

subdivided into k equal parts and each subproduct has a weight of vi/k. Then, we have the

following series of inequalities:

V = Vk ≥ Vk ≥
(

v0

v0 + maxj=1,...,n vj/k

)
Vk =

(
v0

v0 + maxj=1,...,n vj/k

)
V ,

which gives the desired result.

Proof of Theorem 3

Proof. Without loss of generality, we can use in this proof v` = 1 for all ` (otherwise, we can

redefine λ` below as λ`/v`). To avoid confusion with the subindices, in this proof we write xit as

xi,t. Recalling that zi,t =
∑t

s=1 κt−s
i xi,s, we have zi,t = xi,t + κizi,t−1 and zi,0 = 0. As J denotes

the objective function of the continuous relaxation, with preference weights equal to one, we have

Ji,t :=
∂J

∂xi,t
=

T−1∑

l=0

κl
iDt+l = Dt + κiJi,t+1.

We know from the KKT conditions that there exists nonnegative dual variables λ1, . . . , λn such

that xi,t ≥ 0 when Ji,t = λi and xi,t = 0 when Ji,t < λi. We will hence prove that for any λ1, . . . , λn,

the optimal solution to the relaxed problem has the desired property.

Claim 1: If all n products are introduced, then we can restrict our attention to the case where

λ1 > . . . > λn and λ1(1− κ1) < . . . < λn(1− κn).

Proof of Claim 1: Indeed, suppose that λi ≤ λi+1 for some i. Then it is easy to see that for all i and

all values of D1, . . . , DT > 0 Ji,t > Ji+1,t for t < T . Since Ji,t ≤ λi, this implies that Ji+1,t < λi+1

and hence xi+1,t = 0, for all t, i.e., product i+1 will never be introduced (except possibly in period

T , in which case it can be replaced by product i without loss of optimality). Hence λ1 > . . . > λn.

Similarly, suppose that λi(1−κi) ≥ λi+1(1−κi+1) for some i. Then we prove by induction that

for all t, λi−Ji,t > λi+1−Ji+1,t. This is indeed true for t = T because λi > λi+1 and Ji,T = Ji+1,T =

DT .If the result is true for t + 1, then it must also be true for t because Ji,t = Dt + κiJi,t+1, which

implies that λi−Ji,t = λi(1−κi)−Dt+κi(λi−Ji,t+1) > λi+1(1−κi+1)−Dt+κi+1(λi+1−Ji+1,t+1) =

λi+1 − Ji+1,t , where the inequality follows from the induction hypothesis. This completes the

induction and thus, λi − Ji,t > 0 for all t, and product i will never be introduced.
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Claim 2: If xi,t > 0 for some i and t, then Dt−1 ≤ λi(1− κi) ≤ Dt.

Proof of Claim 2: Since Ji,t = Dt + κiJi,t+1, xi,t > 0 implies that Ji,t = λi and hence Dt =

λi − κiJi,t+1 ≥ λi(1− κi) and Dt−1 = Ji,t−1 − κiλi ≤ λi(1− κi).

Claim 3: If Dt > Dt+1 for some t, then Dt > Dt+1 > · · ·DT and no product is introduced after

period t.

Proof of Claim 3: It suffices to show that Dt+1 > Dt+2 because the proof for other cases is similar.

Suppose on the contrary that Dt+2 ≥ Dt+1. Then, we have that Dt > Dt+1 and Dt+2 ≥ Dt+1,

which implies that D2
t+1 < DtDt+2, or equivalently,

(
αt

(v0 +
∑n

i=1 zi,t+1)
2

)2

<
αt−1

(v0 +
∑n

i=1 zi,t)
2 ·

αt+1

(v0 +
∑n

i=1 zi,t+2)
2 ≤

αt−1

(v0 +
∑n

i=1 zi,t)
2 ·

αt+1

(v0 +
∑n

i=1 κizi,t+1)
2 ,

where the last inequality follows from the fact that zi,t+2 = xi,t+2+κizi,t+1 ≥ κizi,t+1 for all i. Since

Dt > Dt+1, it follows that xi,t+1 = 0 for all i by Claim 2. Thus, zi,t+1 = κizi for all i, and the above

inequality implies that

(
αt

(v0 +
∑n

i=1 κizi,t)
2

)2

<
αt−1

(v0 +
∑n

i=1 zi,t)
2

αt+1

(
v0 +

∑n
i=1 κ2

i zi,t

)2 , which im-

plies that

(
v0 +

n∑

i=1

κizi,t

)2

>

(
v0 +

n∑

i=1

zi,t

)(
v0 +

n∑

i=1

κ2
i zi,t

)
or in other words

(
n∑

i=1

κizi,t

)2

>

(
n∑

i=1

zi,t

)(
n∑

i=1

κ2
i zi,t

)
+ v0

(
n∑

i=1

(1− κi)2zi,t

)
>

(
n∑

i=1

zi,t

)(
n∑

i=1

κ2
i zi,t

)
.

However, an application of Cauchy-Schwarz inequality to to vectors (√z1,t, . . . ,
√

zn,t) and

(κ1
√

z1,t, . . . , κn
√

zn,t) implies the opposite, which is a contradiction. Thus, Dt is strictly decreasing

after t. Moreover, it follows immediately that no product is introduced after period t.

To complete the proof of Theorem 3, we consider the periods when product i is introduced.

Define Ei the latest period in which Ji,Ei = λi. Note that xi,Ei ≥ 0. Since Ji,Ei = DEi +κiJi,Ei+1,

it follows that DEi = λi − κiJi,Ei+1 ≥ λi(1 − κi). Let S̃i be the highest t earlier than Ei such

that Dt ≥ λi(1−κi), i.e., S̃i = min {t : t ≤ Ei and Dt ≥ λi(1− κi)} . By definition, for any t < S̃i,

Dt < λi(1−κi), which implies that xi,t = 0 by Claim 2. Similarly, for S̃i ≤ t < Ei, Dt = λi(1−κi),

and xi,t ≥ 0. Since λi(1− κi) < λi+1(1− κi+1), then we must have that S̃i+1 ≥ Ei.

Furthermore, we now prove that we can define Si ≥ S̃i such that xi,t > 0 for Si ≤ t < Ei

and xi,t = 0 for S̃i ≤ t < Si. Indeed, suppose that there is a period t such that S̃i < t < Ei

and xi,t = 0. Since only product i could be introduced at t, we have xj,t = 0 for all j = 1, . . . , n.

Since Dt−1 = Dt = λi(1 − κi) ≤ Dt+1, we have that D2
t ≤ Dt−1Dt+1. Using the fact that

zi,t = κizi,t−1 and zi,t+1 ≥ κizi,t = κ2
i zi,t−1 for all i, we have that

(
αt−1

(v0 +
∑n

i=1 κizi,t−1)
2

)2

≤

25



αt−2

(v0 +
∑n

i=1 zi,t−1)
2

αt

(
v0 +

∑n
i=1 κ2

i zi,t−1

)2 which generates a contradiction again unless zj,t = 0 for

all j = 1, . . . , n, using the same argument as in Claim 3 above. As a result, it must be true that

product i is not introduced before time period t. Hence we can define Si as the first period after

S̃i and before Ei such that xi,t > 0. Finally, note that S1 = 1 because otherwise D1 =
1
v2
0

> Dt for

all t ≥ 2, which would mean that no product is introduced at all.

We have thus shown that each product i is introduced during the interval [Si, Ei] with xit > 0

for Si ≤ t < Ei, xi,Ei ≥ 0, and xit = 0 for all t /∈ [Si, Ei]. Moreover, we have shown that S1 = 1,

Ei ≤ Si+1 for all i. The last part of Theorem 3 follows from Claims 2 and 3, and the fact that

xn,En−1 > 0, xn,En ≥ 0, and xj,t = 0 for all j and t > En.

Proof of Proposition 4

Proof. Fix an arbitrary κ. To simplify our notation, we will refer to E1(κ) as simply E. We

make use of an equivalent continuous relaxation problem given in terms of z = (z1, . . . , zT ) where

zt =
∑t

u=1 κt−uxu = xt + κzt−1, for any t ≥ 1. Note that there is a one-to-one correspondence

between x and z. The optimization problem is given by:

max

{
H(z1, . . . , zT ) :=

T∑

t=1

αtzt

v0 + zt

∣∣∣∣
T∑

t=1

(zt − κzt−1) ≤ v1 and zt − κzt−1 ≥ 0, t = 1, . . . , T

}

which in turn is equivalent to the optimization problem:

max

{
H(z1, . . . , zT )

∣∣∣∣ zT + (1− κ)
T−1∑

t=1

zt ≤ v1 and κzt−1 − zt ≤ 0 t = 1, . . . , T

}

Let z = (z1, z2, . . . , zT ) denote an optimal solution associated with the above optimization problem,

and let x = (x1, x2, . . . , xT ) denote the corresponding optimal product schedule.

By associating the dual variable λ ≥ 0 with the constraint zT + (1 − κ)
∑T−1

t=1 zt ≤ v1, and

the variable ηt ≥ 0 with the constraint κzt−1 − zt ≤ 0, it follows from the KKT condition that z

satisfies the following set of equations:

0 =
∂H

∂z1
(z)− λ(1− κ) + η1 − κη2 ⇔ λ(1− κ) + κη2 = η1 + D1

...

0 =
∂H

∂zT−1
(z)− λ(1− κ) + ηT−1 − κηT ⇔ λ(1− κ) + κηT = ηT−1 + DT−1

0 =
∂H

∂zT
(z)− λ + ηT−1 ⇔ λ = ηT + DT
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and we have the following complementary slackness condition: λ
(
zT + (1− κ)

∑T−1
t=1 zt − v

)
= 0

and ηt(zt − κzt−1) = 0 for all t.

From Theorem 3, we know that xt > 0 for t = 1, . . . , E and xt = 0 for t > E. We claim that

0 = η1 = η2 = · · · = ηE < ηE+1 < ηE+2 < · · · < ηT . Indeed, it follows immediately from the

complementary slackness condition that η1 = η2 = · · · = ηE = 0. To prove the strict inequalities, we

start showing that 0 = ηE < ηE+1. Indeed, if this was not true and ηE+1 = 0, then ηE+1 +DE+1 <

ηE + DE , because, from Theorem 3 we know that DE > DE+1 > · · · > DT . But we know from the

KKT condition that ηE+1 + DE+1 = λ(1− κ) + κηE+2 ≥ λ(1− κ) = λ(1− κ) + ηE+1 = ηE + DE ,

which would be a contradiction. We then prove that ηE+1 < ηE+2 < · · · < ηT . Suppose on the

contrary that ηE+2 ≤ ηE+1. This means that ηE+2 +DE+2 ≤ ηE+1 +DE+1. By the KKT condition

once again, λ(1−κ)+κηE+3 = ηE+2+DE+2 ≤ ηE+1+DE+1 = λ(1−κ)+κηE+2 , which implies that

ηE+3 ≤ ηE+2. Continuing in this fashion, it follows that ηT ≤ ηT−1 ≤ · · · ≤ ηE+2 ≤ ηE+1. However,

the last two equations in the KKT condition imply that ηT = ηT−1 + DT−1 −DT > ηT−1 because

DT < DT−1. This is again a contradiction. Therefore, it must be the case that ηE+2 > ηE+1. The

same argument shows that ηE+3 > ηE+2, and so on.

Since the above result holds for an arbitrary κ, it follows that

E(κ) =
{

min {t : ηt(κ) > 0} − 1, if ηt(κ) > 0 for some t,
T, otherwise.

It is easy to verify that if κ = 0, then xt(κ) > 0 for all t, which implies that E(κ) = T . Since

the dual variables are monotone, as κ increases, the first dual variable that will become positive is

ηT (κ), corresponding to E(κ) = T − 1. Then, the next dual variable that will become positive is

ηT−1(κ), corresponding to E(κ) = T −2. Continuing in this fashion, we observe that as κ increases,

the cut-off period E(κ) will gradually decrease from T to T − 1 to T − 2, and so on.

Proof of Proposition 5

Proof. We proceed as in the proof of Proposition 4 to derive the KKT conditions:

0 =
∂H

∂z1
(z)− λ(1− κ) + η1 − κη2 ⇔ λ(1− κ) + κη2 = η1 +

v0α1

(v0 + z1)2

...

0 =
∂H

∂zT−1
(z)− λ(1− κ) + ηT−1 − κηT ⇔ λ(1− κ) + κηT = ηT−1 +

v0αT−1

(v0 + zT−1)2

0 =
∂H

∂zT
(z)− λ + ηT−1 ⇔ λ = ηT +

v0αT

(v0 + zT )2
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with the following complementary slackness conditions: λ
(
zT + (1− κ)

∑T−1
t=1 zt − v

)
= 0 and

ηt(zt − κzt−1) = 0 for all t.

Since we have a single product, we know from Theorem 3 that there exists E such that xt > 0

for t ≤ E and xt = 0 for t > E. It follows that for any k ≥ 1, zE+k = κkzE , which implies that

zE ≥ zE+1 ≥ zE+2 ≥ · · · ≥ zT . So, it suffices to show that z1 ≥ z2 ≥ · · · ≥ zE . We will prove the

desired result by contradiction. Suppose on the contrary that zk−1 < zk for some k ∈ {2, 3, . . . E}.
There are two cases to consider: k < T and k = T .

If k < T , since xk−1 > 0 and xk > 0, we have ηk−1 = ηk = 0, which implies that λ(1 − κ) =
v0αk−1

(v0 + zk−1)2
and λ(1 − κ) + κηk+1 =

v0αk

(v0 + zk)2
. Subtracting the first equation from the second

yields 0 ≤ κηk+1 =
v0αk

(v0 + zk)2
− v0αk−1

(v0 + zk−1)2
= v0αk−1

(
α

(v0 + zk)2
− 1

(v0 + zk−1)2

)
< 0 , where

the last inequality follows from the fact that zk > zk−1. This is a contradiction.

If k = T , then again ηT−1 = ηT = 0. A similar argument as above implies that 0 ≤ κλ =
v0αT

(v0 + zT )2
− v0αT−1

(v0 + zT−1)2
= v0αT−1

(
α

(v0 + zT )2
− 1

(v0 + zT−1)2

)
< 0 ,, yielding again a contra-

diction.

Proof of Theorem 6

Proof. Assuming αt = 1 for all t = 1, . . . , T , the continuous relaxation of the problem can be recast

as an equivalent convex minimization problem:

min
T∑

t=1

1
v0 + zt

s.t.
T∑

t=1

zt = W, zt ≥ 0, ∀ t,

where W =
∑n

i=1 vi. The minimum is achieved by setting zt = W/T .

Denote V h and zh
1 , . . . , zh

T the value and loads in each period provided by the heuristic. Note

that when αt = 1 and products last for one period only, items are introduced in decreasing order

of vi. Without loss of generality, we can assume that no periods are such that they contain the

same items in the optimal solution and the heuristic solution, because if so, the ratio V ∗/V h would

become (V ∗ + a)/(V h + a) ≥ V ∗/V h where a is the profit obtained in the periods where the two

solutions coincide.

Since there are T periods with total load of W =
∑n

i=1 vi (more generally W would be the total

load of the items where optimum and heuristic solution do not coincide), there must be at least

one with load equal or larger than W/T , and at least one with load equal or smaller than W/T .

First, we have a lower bound of V ∗ ≤ V = T − v0T
2

v0T + W
=

TW

v0T + W
.

Second, we show that zh
t ∈ [W/(2T ), 2W/T ]. If zh

t > 2W/T then it is not possible that period

t only contains one item, because if so this would also be part of the optimal solution (indeed,
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because if it had two items in the optimal solution, then it would be possible to increase V ∗ by

moving one item to another bin with load smaller than W/T ), contradicting the fact that no bins

coincide in the heuristic and optimal solution. Hence, period t has at least two items. Since there

is at least a bin with zh
t′ ≤ W/T , then one should not have added the last item to that bin because

there was a bin less full. Hence zh
t ≥ 2W/T . If zh

t < W/(2T ) then we can examine all the bins

such that zh
t ≥ W/T (there is at least one like that). If none of them has more than one item,

then again it must be true that all those are part of the optimal solution, which contradicts our

initial assumption. We can then find one with at least two items. Select the smallest item there,

vi ≤ W/(2T ). This item was introduced into the bin when the size of the bin was larger than

W/(2T ), which contradicts the way the heuristic inserts items into periods.

As a result, we have that

V h ≥ T −max
zt

{
T∑

t=1

v0

v0 + zt

∣∣∣∣
W

2T
≤ zt ≤ 2W

T
and

T∑

t=1

zt = W

}
. (8)

Since the objective is convex, the maximum is achieved by setting some zt = W
2T and some others

to zt = 2W
T and the last one to another value. Letting Zt = (2Tzt/W − 1)/3, we can transform the

maximization above into

max

{
2T

3W

T∑

t=1

v0

2Tv0/W+1
3 + Zt

∣∣∣∣ 0 ≤ Zt ≤ 1 and
T∑

t=1

Zt = T/3

}

≤ Tv0

3W

(
T
3

2Tv0/W+1
3 + 1

+
2T
3

2Tv0/W+1
3

)
=

T 2v0(2Tv0 + 3W )
(Tv0 + 2W )(2Tv0 + W )

.

Hence,

1 ≤ V ∗

V h
≤

TW
Tv0+W

T − T 2v0(2Tv0+3W )
(Tv0+2W )(2Tv0+W )

=

(
Tv0
W + 2

) (
Tv0
W + 1

2

)
(

Tv0
W + 1

)2 ≤ 9
8

because the function φ(z) =
(z + 2)(z + 1/2)

(z + 1)2
= 1 +

z

2(z + 1)2
is first increasing until z = 1 and

then decreasing.

Proof of Theorem 8

Proof. Let zit = xit + κizit−1 and zh
it = xh

it + κiz
h
it−1 where xit and xh

it are the optimal solution

to the relaxation and the EarlyEntry decision respectively. From Theorem 3, we know that

for each product i there exists Si, Ei where the product is introduced during the interval [Si, Ei].

The heuristic sets xh
it = 1 for t = Si and zero otherwise. Hence, for t < Si, zit − zh

it = 0; for

Si ≤ t ≤ Ei, zit − zh
it ≤ 1 − κt−Si

i : for t > Ei, zit − zh
it ≤ (1 − κEi−Si

i )κt−Ei
i . As a result,
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zit − zh
it

zith
≤ 1t>Si

(
1

κEi−Si
i

− 1

)
and hence

0 ≤ V − V h =
T∑

t=1

(
αt

∑n
i=1 viz

h
it

v0 +
∑n

i=1 vizh
it

) (
v0

v0 +
∑n

i=1 vizit

∑n
i=1 vi(zit − zh

it)∑n
i=1 vizh

it

)
≤ V h max

i=1,...,n

{
1

κEi−Si
i

− 1

}
.

which leads to the final result.

Proof of Theorem 9

Proof. We only need to show that E
[
f(Q1, . . . , Qn)

] ≥ ρV . For this purpose, note that

E
[
f(Q1, . . . , Qn)

]
=

T∑

t=1

αt

n∑

i=1

riE

[ ∑t
u=1 κi,t−uvi1l[Qi=u]

v0 + vi
∑t

u=1 κi,t−u1l[Qi=u] +
∑

j 6=i vj
∑t

u=1 κj,t−u1l[Qj=u]

]

≥
T∑

t=1

αt

n∑

i=1

riEQi

[ ∑t
u=1 κi,t−uvi1l[Qi=u]

v0 + vi
∑t

u=1 κi,t−u1l[Qi=u] +
∑

j 6=i vj
∑t

u=1 κj,t−uEQj

[
1l[Qj=u]

]
]

=
T∑

t=1

αt

n∑

i=1

riEQi

[ ∑t
u=1 κi,t−uvi1l[Qi=u]

v0 + vi
∑t

u=1 κi,t−u1l[Qi=u] +
∑

j 6=i vj
∑t

u=1 κj,t−uxju

]

≥
T∑

t=1

αt

n∑

i=1

riEQi

[ ∑t
u=1 κi,t−uvi1l[Qi=u]

v0 + vi +
∑

j 6=i vj
∑t

u=1 κj,t−uxju

]
.

The first inequality follows from the fact that the random variables Qj ’s are independent, and from

applying Jensen’s Inequality where we use the fact that the function x → a
b+x is convex in x. The

second equality follows from the fact that EQj

[
1l[Qj=u]

]
= Pr(Qj = u) = xju, and the last inequality

follows because
∑t

u=1 κi,t−u1l[Qi=u] ≤ 1 almost surely.

To complete the proof, note that for each product i, we have

EQi

[ ∑t
u=1 κi,t−uvi1l[Qi=u]

v0 + vi +
∑

j 6=i vj
∑t

u=1 κj,t−uxju

]
=

∑t
s=1 xisκi,t−svi

v0

(
1 + vi

v0

)
+

∑
j 6=i vj

∑t
u=1 κj,t−uxju

≥
(

v0

v0 + vi

)( ∑t
s=1 κi,t−svixis

v0 +
∑n

j=1

∑t
s=1 κj,t−svjxjs

)

≥
(

v0

v0 + max
j=1,...,n

vj

)( ∑t
s=1 κi,t−svixis

v0 +
∑n

j=1

∑t
s=1 κj,t−svjxjs

)
,

which implies the desired result.
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