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The feasibility of using field experiments to optimize marketing decisions remains relatively unstudied. We
investigate category pricing decisions that require estimating a large matrix of cross-product demand elas-

ticities and ask the following question: How many experiments are required as the number of products in the
category grows? Our main result demonstrates that if the categories have a favorable structure, we can learn
faster and reduce the number of experiments that are required: the number of experiments required may grow
just logarithmically with the number of products. These findings potentially have important implications for the
application of field experiments. Firms may be able to obtain meaningful estimates using a practically feasible
number of experiments, even in categories with a large number of products. We also provide a relatively simple
mechanism that firms can use to evaluate whether a category has a structure that makes it feasible to use field
experiments to set prices. We illustrate how to accomplish this using either a sample of historical data or a
pilot set of experiments. We also discuss how to evaluate whether field experiments can help optimize other
marketing decisions, such as selecting which products to advertise or promote.
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1. Introduction
The increased availability of demand data has been
widely reported and many firms have been inves-
tigating how best to use “big data” to improve
their marketing decisions. One option is to ana-
lyze historical data. However, historical data are not
always available, and it can be difficult to determine
causation. An alternative approach is to use field
experiments that can provide an exogenous source
of variation that establishes causation. Yet conduct-
ing field experiments is often costly, and optimizing
marketing decisions may require a lot of experiments
if there are many parameters to optimize and/or if
the parameters can take a wide range of values. The
feasibility of using field experiments to improve mar-
keting decisions in practice remains relatively unstud-
ied. We investigate this issue by considering settings
in which firms must estimate the elasticity of demand
in response to price changes. We ask how many

experiments are required to estimate these elasticities
as the number of products grows.

Using experiments to optimize marketing decisions
may be relatively straightforward when there are few
products. Experimentally manipulating variables can
allow retailers to quickly optimize their decisions
using just a handful of experiments. However, in large
categories containing many products with interdepen-
dent demands, the problem is more challenging.1 The

1 Interdependencies between products are now well documented.
For example, Anderson and Simester (2001) report that placing
“sale” signs on products can increase demand for those products
by up to 60%, but can decrease sales of other products by similar
amounts. Manchanda et al. (1999) report own-price elasticities for
laundry detergent and fabric softener of −0040 and −0070 (respec-
tively). The cross-price elasticities are −0006 (the price of softener
on demand for detergent) and −0012. For cake mix and frosting, the
own-price elasticities are −0017 and −0021, whereas the cross-price
elasticities are −0011 (frosting price on cake mix demand) and 0015.
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number of parameters to estimate grows quickly with
the number of products, and so the number of field
experiments required may be impractically large.

We consider a large set of n products and assume
that there may be complementary or substitute rela-
tionships between them. As a result, varying the price
of one product may affect the demand of not just
that item but also other products sold by the firm. As
the number of products (n) increases, the number of
parameters to estimate grows at the rate of n2 (and
may grow even faster for nonlinear models). On the
other hand, if each experiment reveals the demand for
each item, we learn n pieces of information from each
experiment. This suggests that the number of exper-
iments required to learn all of the parameters will
grow at least linearly with the number of products.

Our main result shows that if the problem has a
favorable structure, we can learn faster and reduce
the number of experiments that are required. In par-
ticular, we will show that if the number of comple-
mentary or substitute relationships affecting any one
product is bounded, then the number of required
experiments grows instead logarithmically with the
number of products. This result holds even if the firm
is not sure which of the products have complemen-
tary or substitute relationships, as long as there is
a limit on the number of cross-product relationships
that each product has. We also obtain a similar result
if the joint impact of own- and cross-product effects
on any single product is bounded.

We also provide a practical method for evaluating
whether a product category has a favorable struc-
ture that makes it feasible to use field experiments
to set category prices. Although the method is prob-
ably too technical to be used directly by most man-
agers, the techniques should be accessible to analysts
tasked to provide advice to managers on this issue.
The method does not provide an estimate of how
many experiments are required. Instead, it provides
a means of estimating whether the product category
exhibits structural characteristics that make it possible
to obtain accurate results within a realistic number of
experiments. The method can be implemented using
either a pilot set of experiments or historical data.

These findings potentially have important implica-
tions for the application of field experiments in set-
tings where there is a large number of parameters
to estimate. Because the number of required experi-
ments may grow logarithmically rather than linearly
with the number of products, firms may be able to
obtain meaningful estimates from a realistic number
of experiments, even in categories where the number
of complementary or substitutable products is large.

Although we focus on pricing decisions in this
paper, the range of marketing decisions on which
firms can experiment is broad. Experiments may be

used to choose which products to promote, as well as
to optimize the length of product lines and to choose
creative copy and media plans. We discuss how to
extend our results to make promotional decisions, and
in the Conclusions section discuss possible extensions
to other types of marketing decisions.

1.1. Related Work
The feasibility of learning a large number of parame-
ters through experimentation is relatively unstudied,
particularly in social science settings. However, the
topic does relate to at least two literatures.

First, there is the line of research on optimal exper-
imental design. In the marketing literature, there is
work focusing on efficient experimental design for
conjoint studies (see Louviere et al. 2000, Chap. 5;
2004 for reviews of this literature). Recent contribu-
tions to this literature have focused on adaptively
designing experiments (Toubia et al. 2003) or on opti-
mal designs when customers’ utility functions depart
from a standard compensatory specification (see, e.g.,
Hauser et al. 2010, Liu and Arora 2011). An often
used measure of the efficiency of an experimental
design is the D-error: det 6I4� �X57−1/m, where I is the
information matrix, � are the unobserved parameters,
X is the experimental design matrix, and m is the
dimension of I . The information matrix is calculated
from the variance of the first-order derivatives of the
log-likelihood with respect to � (Huber and Zwerina
1996). Optimizing this criterion with respect to X
yields locally optimized designs for any �. Because
� is not known when designing the experiments,
Bayesian approaches can be used to minimize the
D-error over the prior distribution of the parameter
values (Sandor and Wedel 2001).

When each experiment generates an explicit reward
or cost, an alternative formulation of the experimen-
tal design problem is as a multi-armed bandit prob-
lem, where the objective is to choose a sequence of
experiments to maximize the total reward over some
time horizon. In this context, each experiment can be
thought of as choosing and pulling an arm of the
multi-armed bandit, and the reward could be sales,
advertising click-through rates, or some other mea-
sure. Because we learn the reward distribution of each
arm of the bandit only after pulling it, there exists
a trade-off between exploiting the best arm currently
known by pulling it every time and exploring new
arms in search of something even better. In the clas-
sic bandit model, the reward distributions of each
arm are assumed to be independent, and so anything
learned from pulling one arm does not reveal any-
thing about a different arm. As a result, when there is
a large number of parameters (and therefore a large
number of arms), many pulls, or experiments, are
required to learn the reward distributions of all the
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arms. Recent work has proposed an alternative model
in which the arms have statistically dependent reward
distributions, and therefore pulling one arm also gives
information about other arms. In this setting, the cor-
relation between payoffs of different arms allows for
faster learning, even when the number of arms is very
large (Dani et al. 2008, Mersereau et al. 2009).

This focus on the information learned from exper-
iments is a common feature of both this literature
and the research in this paper. However, we do not
focus on identifying optimal experimental designs.
Instead we use random experimental designs, which
ensure independence across experiments and allow
us to apply a series of results that rely on this inde-
pendence. Because it will generally be possible to
improve upon these designs, our guarantees on the
information learned will continue to hold when opti-
mal designs are used.

We investigate the practical value of field exper-
iments by studying the number of experiments
required. Other studies have investigated the required
size of field experiments. For example, Lewis and Rao
(2013) conducted a set of 25 field experiments involv-
ing large display advertising campaigns, each one
including over 500,000 unique users and totaling over
$2.8 M worth of impressions. Even with such large
experiments, the data generated little meaningful
information about the ROI of the campaigns, demon-
strating that in settings where the effect sizes are small
and the response measures are highly stochastic, very
large field experiments may be required to generate
information.

The second related literature is that on estimation
and learning under assumptions of sparsity. Begin-
ning with variable selection in regressions, research
has focused on determining which subset of potential
predictors should be included in the “best” model.
This can equivalently be thought of as selecting a
subset of predictors to be zero, thereby giving rise
to a sparse model. Various approaches have been
proposed, including the use of regularization, such
as the “Lasso” of Tibshirani (1996) and the Stochas-
tic Search Variable Selection procedure developed in
George and McCulloch (1993).

More recently, the assumption of sparse structures
has been used to show that if an unknown vector
x ∈�N is sparse, then it can be recovered using mea-
surements of the form y =êx, even with much fewer
than N measurements. Results in the field, which is
often referred to as “compressive sensing,” generally
characterize conditions on (i) the sparsity index (i.e.,
the number of nonzero entries of x), (ii) the number of
measurements, and (iii) the ambient dimension N , to
guarantee recovery of x. We refer the reader to Candès
(2006) for a short survey and to Candès and Tao (2005)
and Candès et al. (2006) for a deeper treatment.

More directly relevant to our work are the results
on information-theoretic limits of sparsity recovery
in Wainwright (2009). For a noisy linear observation
model based on sensing matrices drawn from the
standard Gaussian ensemble, a set of both sufficient
and necessary conditions for asymptotically perfect
recovery is derived. Our theoretical findings are best
thought of as an application of Wainwright (2009)
results. Although this application required some theo-
retical developments, these are best considered adap-
tations and extensions rather than fundamentally new
developments. The exception is the estimation of the
sparsity parameters in §4 and the investigation of how
these parameters vary with the size of the problem
(the number of products). This is the first paper that
we know of that addresses these issues.

Originating from and motivated by applications in
signal processing, coding theory, and statistics, com-
pressive sensing results also have a variety of other
relevant applications. Previous applications related to
marketing include Farias et al. (2013), which intro-
duces a paradigm for choice modeling where the
problem of selecting an appropriate model of choice
(either explicitly, or implicitly within a decision mak-
ing context) is itself automated and data-driven. For
this purpose, the sparsest choice model consistent
with observed data is identified.

In this work, we leverage sparsity to obtain a dra-
matic improvement in the rate of learning. If each
product is substitutable by or complementary with a
limited number of other products (and therefore the
matrix capturing the substitution and complementar-
ity effects is sparse), we show that the number of
required experiments grows logarithmically with the
number of products.

1.2. Overview
We consider pricing decisions for a firm with a large
assortment of products. The firm would like to know
how price changes will affect demand. We propose
a model for the demand function that tells us the
quantities demanded under any pricing decision. To
learn the parameters of this function, we perform
experiments by varying the prices of certain prod-
ucts and observing the quantities demanded. Because
each experiment is costly to run, the firm would like
to learn the parameters using as few experiments as
possible.

The experiments that we contemplate include both
a treatment group and a control group. The con-
struction of these groups will vary depending upon
the nature of the firm. For a direct marketing firm,
the groups may be constructed by randomly assign-
ing individual customers to the two groups. For a
bricks and mortar retailer, the groups might be con-
structed by randomly assigning stores. In a business
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to business setting, the firm might randomly assign
regions, or distributors and resellers. We assume that
the results of the experiment are analyzed by aggre-
gating the customers in each group and comparing
the mean response between the two groups. Essen-
tially all firms are capable of performing this aggre-
gate analysis (as long as they can vary prices and
measure the response).2 This aggregation also ensures
that the error terms are Gaussian.

Our findings can also apply in settings where
the firms vary prices across different time periods.
Demand in the different time periods could in prin-
ciple be adjusted to account for seasonality or day-
of-week differences (before submitting the data to
our model), perhaps using demand for a sample of
unrelated products or demand in different stores. We
caution that we will assume that errors are inde-
pendent between experiments (though not between
products in the same experiment), and this inde-
pendence assumption may be threatened when a
common set of measures is used to adjust for season-
ality. The independence assumption is more likely to
hold when randomization occurs separately for each
experiment, and when the control group provides an
accurate control for any intervening events (such as
seasonality).

We also caution that our results are not well suited
to experiments where firms randomly assign prod-
ucts to treatment and control groups if the demands
for those products are possibly related. For exam-
ple, a firm may vary prices on half of the items in
a product category and leave the other half of the
prices unchanged. Recall that the goal of the paper
is to investigate how a firm can estimate the entire
matrix of cross-price elasticities and so the second
half of the products cannot function as controls. There
is another reason to be concerned about this exper-
imental design: unless the cross-price elasticities are
zero between products in the two groups, then the
experimental manipulation of prices for products in
the treatment group will confound the demands for
products in the control group.

We recognize that it is possible to augment exper-
imental data with more complex econometric anal-
ysis (e.g., as in Manchanda et al. 1999). This raises
an interesting but distinct topic: what is the value
of sophisticated analysis in evaluating experimen-
tal data? This question is beyond the scope of the
present work. Instead, our results can be interpreted
as describing the “information” that is revealed by
experimental data. Conditions under which experi-
mental data are more informative are likely to yield

2 Even though direct marketing firms can often analyze experimen-
tal results at the individual customer level, in our experience most
firms simply aggregate the results and compare the mean response
between treatment and control groups.

better estimates both when using simple comparisons
and when augmenting the data with sophisticated
econometric analysis.

The rest of this paper is structured as follows: In §2,
we propose a model for demand that captures the
effects of cross-product demand elasticities. In §3, we
develop a method for estimating the demand func-
tion and provide bounds on the number of experi-
ments required to achieve accurate estimates. In §4,
we propose a method for estimating how sparse the
price elasticities are, which provides a practical way
for managers to evaluate whether it is feasible to set
prices using field experiments. We also investigate
how sparsity is affected by the size of the category.
In §5, we present simulation results that illustrate the
rate at which we acquire information, as the number
of products and number of experiments vary. Finally,
in §6, we conclude and describe directions for exten-
sions and future research.

2. Model
In this section, we introduce our model of demand.
Throughout this paper, we consider each experiment
as a comparison between two conditions. The first
condition is a control under which the firm takes
“standard” actions; in the second treatment condition,
the firm varies prices. For ease of exposition (and
without loss of generality), we will assume that prices
are set at a “baseline” level in the control condition.

2.1. Modeling Own- and Cross-Price Elasticities
The response in demand to a firm’s action is difficult
to predict because there are multiple effects at play
as a result of cross-product substitute and comple-
mentary relationships. In the following sections, we
present a model that captures these effects.

2.1.1. Individual and Pairwise Effects. Changing
the price of product i may have two effects:

(i) It may change demand for the product itself.
(ii) It may also affect the demand for other prod-

ucts through substitution away from the focal product
or complementarity with the focal product.

For the first effect, we introduce a quantity aii to
indicate the percentage change in demand for product
i if the price of product i itself is increased by 100%.3

For the second effect, we first consider a pair of prod-
ucts in isolation. Intuitively, there are three possible
scenarios:

1. If products i and j are substitutes, decreasing the
price of j may decrease the demand for i if customers
substitute purchases of j for purchases of i.

3 This is not to say that we propose increasing prices by 100% in
our experiments.
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2. If i and j are complements, decreasing the price
of j may increase the demand for i as more demand
for j leads to more demand for i.

3. Varying the price of j may also have no effect on
the demand for i.

For each pair of products i and j , we introduce
a quantity aij to indicate the percentage change in
demand for product i if the price of product j is
increased by 100%. The quantity aij would be posi-
tive, negative, and zero, in cases 1, 2, and 3 above,
respectively.

2.1.2. Cumulative Effects. We are interested in
settings in which there are dozens of products with
hundreds of interactions at play. If multiple prices are
varied simultaneously, how do these changes combine
and interact to produce an overall effect on demand?

To capture the cumulative effects, we propose a
linear additive model of overall substitution and com-
plementarity effects. Specifically, to calculate the over-
all percentage change in demand for product i, we
take all of the products j whose prices are varied
and sum together each one’s individual effect on the
demand for i.

Let ãqi be the overall percentage change in the
demand for i, and let us express the percentage
change in the price of product j from the baseline as

xj =
xt
j − xb

j

xb
j

1

where xt
j and xb

j are the treatment and baseline prices,
respectively, of product j . We denote the number of
products by n. Then, by our model, we can write the
overall percentage change in demand for i as

ãqi =
n
∑

j=1

aijxj 0

By assuming a linear model, we are implicitly
assuming that the elasticities are the same at all
points on the demand curve. The model also assumes
additive separability in the impact of multiple price
changes on the demand for product i. This is con-
venient for analytical tractability. In §EC.1 of the
e-companion (available as supplemental material at
http://dx.doi.org/10.1287/mnsc.2014.2066), we show
that it is relatively straightforward to extend our find-
ings to a log-linear (multiplicative) demand model.
Log-linear demand models have been widely used in
both academia and the marketing analytics industry.

Although this functional form may be appropriate
for small price changes, it is unlikely to be true for
large price changes. We can ensure that price changes
are small by bounding the size of the price changes
in the experiments. However, we caution that this is
not without cost. Greater variation in the size of the
price changes can increase the rate of learning.

In some cases a firm may want to focus on improv-
ing just a subset of prices in the category. This could
occur if some items sell relatively low volumes and
optimizing these prices is not a priority (or if the retail
prices are set by the manufacturer of the brand). This
may also arise if too many experiments are required
to optimize all of the prices in the category, and so
the firm would like to focus on just those prices that
it considers most important.4 We can easily accommo-
date this possibility by identifying the products that
the firm does not want to experiment with and col-
lapsing these products into a single “other” product.
Sales of this “other” product is simply the sales of
the products within it. We could also construct a price
index for the “other” product by averaging the prices
of the corresponding items (because the firm does not
want to experiment with these prices, the value of
the corresponding xj ’s will always equal zero). This
allows the firm to focus on a subset of products in
the category, while continuing to take into account the
impact on sales across the entire category.

We can further simplify notation by collecting all of
the pairwise effects as elements of a matrix A, where
(as suggested by the notation) the entry in the ith row
and jth column, aij , gives the percentage change in
demand for product i in response to a 100% increase
in the price of product j .5 Similarly, we can collect
price variation decisions into a vector x whose jth ele-
ment, xj , is equal to the percentage change in the price
of product j from the baseline, and we can also col-
lect the overall percentage change in demand for each
product into a vector ãq.

The overall percentage change in each product’s
demand as a result of price changes x is therefore
given by the product

ãq = Ax0

The elements aij of the matrix A may be positive (indi-
cating a substitute relationship between i and j), neg-
ative (indicating a complementary relationship), or
zero (indicating no relationship).

4 We thank an anonymous reviewer for this suggestion.
5 We do not impose symmetry (i.e., aij = aji) or transitivity (i.e.,
aij > 0, ajk > 0 ⇒ aik > 0) on the A matrix for two reasons. First,
there are examples where these constraints are intuitively unlikely
to hold (e.g., price decreases on cameras may increase battery sales
but not vice versa, violating symmetry; price decreases on milk may
increase sales of cereal, and price decreases on cereal may increase
sales of soymilk, but price decreases on milk may not increase sales
of soymilk, violating transitivity). Second, neither symmetry nor
transitivity is a necessary assumption for our analysis, and impos-
ing these constraints would only make our results weaker and less
applicable. Instead, we want the space of “allowable” A matrices to
be as large as possible. Furthermore, if the true A matrix is indeed
symmetric or transitive, then because our method gives accurate
estimates, the estimated matrix would also be close to symmetric
or transitive with high probability.
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We also assume that the matrix A is constant. It
is possible that there may be time dependencies or
seasonal effects that could lead to changes in the
A matrix. The model could accommodate these pos-
sibilities as long as these dynamics are known so that
we can continue to estimate a static set of parameters.
If the parameters themselves change in a manner that
is not known, then the results of an experiment per-
formed at some time t may not provide much infor-
mation about the value of the parameters in future
periods. Note that this limitation is obviously not spe-
cific to our model.

We emphasize that the matrix A captures percentage
changes in demand. To calculate actual demand quan-
tities, we also need a baseline level of demand for
each product. Recall that we assume there is a fixed
set of firm actions, corresponding to the control con-
dition, that achieves a certain level of demand. We let
this be the baseline demand and denote it by the vec-
tor qb. The overall change in demand for a product
in response to the price changes is then given by the
product of the baseline demand and the percentage
change in demand.

2.2. Noiseless Model
Let qt be the vector of actual demand levels in
response to a decision x, which we refer to as the
treatment demand level. We then have the following
equation for our model:

qt
= qb

+ qb
� 4ãq5= qb

� 4e + Ax51 (1)

where � denotes component-wise multiplication, and
e is the vector of all 1’s. In words, price changes x will
cause some percentage change in demand through
the elasticity matrix A that when combined with the
baseline demand qb gives the observed treatment
demand qt . Note that this model has the desired prop-
erty that when prices are the same as the baseline
prices (i.e., x = 0), the treatment demand is the same
as the baseline demand (i.e., qt = qb) because there is
effectively no treatment.

We can also rewrite Equation (1) as

ãq =
qt − qb

qb
= Ax1 (2)

where the division is performed component-wise. The
left-hand side gives the percentage change in demand
for each product, and the right-hand side gives the
model of how that change is caused by the decision
vector. This arrangement emphasizes the fact that A
captures the percentage change in demand. It also
suggests a way of learning A: for each experiment,
choose a decision vector x, observe the resulting qb

and qt , and calculate ãq. This gives a system of linear
equations from which we can recover A, ideally using
as few experiments as possible.

2.3. Noisy Model
In reality, the demand function is not captured per-
fectly by Equation (1), and the demand that we
observe will also be subject to measurement noise.
Therefore, Equation (1) gives only an idealized model.
To capture the presence of error, we introduce an
additive noise term w, which is a vector of ran-
dom variables (w11w21 0 0 0 1wn). Our complete model
is then given by

qt
= qb

� 4e + Ax + w51 (3)

which can also be written as

ãq =
qt − qb

qb
= Ax + w0 (4)

Equations (3) and (4) are analogous to Equations (1)
and (2) with the additional noise vector w. The
observed treatment demand is modeled as a deviation
from the baseline demand as a result of price changes
and noise.

2.3.1. Statistics of the Noise Terms. For our anal-
ysis, we make the following assumptions on the noise
terms:

Assumption 1 (Zero-Mean, Sub-Gaussian Noise,
i.i.d. Across Experiments). For any experiment, each
wi has zero mean and is sub-Gaussian with parameter c
for some constant c ≥ 0. Furthermore, the random vec-
tor w = 4w11 0 0 0 1wn5 is independent and identically dis-
tributed across different experiments.

We assume that the noise terms have zero mean,
and therefore that our model has no systematic bias.
We also assume that the noise terms across dif-
ferent experiments are independent and identically
distributed. However, we do not assume that the
noise terms are independent across different prod-
ucts within the same experiment. In other words,
each experiment gets an independent draw of w =

4w11 0 0 0 1wn5 from a single joint distribution in which
the wi’s can be dependent. Indeed, the noise terms
within the same experiment may be correlated across
products (e.g., between products within the same
category). Fortunately, our analysis does not require
independence at this level.

Sub-Gaussian random variables are a generaliza-
tion of Gaussian random variables, in the sense that
their distributions are at least as concentrated around
their means as Gaussian distributions.

Definition 1. A random variable X is sub-Gaussian
with parameter � > 0 if

Ɛ6exp4�4X − Ɛ6X7557≤ exp4�2�2/251 ∀� ∈�0
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A sub-Gaussian random variable X with parameter
� satisfies the following concentration bound:

P4�X − Ɛ6X7� ≥ �5≤ 2 exp
(

−
�2

2�2

)

1 ∀ � ≥ 00

As suggested by the notation, the parameter �
plays a role similar to that of the standard devi-
ation for Gaussian random variables. Examples of
sub-Gaussian random variables with parameter �
include Gaussian random variables with standard
deviation � and bounded random variables sup-
ported on an interval of width 2� . Therefore, by using
sub-Gaussian noise terms, we encompass many possi-
ble distributions. In all cases, sub-Gaussianity assures
us that the noise will be concentrated around its
mean.

2.4. High-Dimensional Problems
Now that we have presented our model, we reiter-
ate the high-dimensional nature of the problem in
more specific terms. In our model, with n products,
A would be an n× n square matrix, and hence there
would be n2 unknown parameters to be estimated.
Even with 50 products, a reasonable number for many
product categories, there would be 2,500 parameters.
To estimate all of these parameters accurately, we
expect to need to perform many experiments.

Unfortunately, each experiment is costly to the firm
in terms of not only time and resources needed to run
it, but also opportunity costs. Therefore, our goal is to
estimate the parameters accurately and to make good
decisions using as few experiments as possible.

Although we are faced with a difficult problem, our
main insight is that even though there are many prod-
ucts, each one is likely to interact with only a small
fraction of the remaining products. In terms of our
model, this means that the A matrix is likely to have
many entries equal to zero. Our main result shows
that if A exhibits this sparse structure, we can greatly
reduce the number of experiments needed to learn A
and to find a good decision vector x, even if the loca-
tions of the nonzero terms are not a priori known.

2.5. Summary of Baseline Model
Before we present our results, we first review the
baseline model that we will be considering. Our
demand model is given by the following equation:

ãq =
qt − qb

qb
= Ax + w0

The functional form ãq = Ax + w is convenient
for analytical tractability. However, our analysis does
not place any limitations on how ãq is defined.
Indeed, we could use different variations, including
alternatives that ensure symmetry in the measures of
demand increases and decreases. Table 1 summarizes
the relevant terms of our model.

Table 1 Summary of Notation

Term Description

A A matrix capturing the substitution and complementarity effects—
the element aij represents the effect on the demand for product i
as a result of a 100% increase in the price of product j

xt A vector of treatment prices
xb A vector of baseline prices
x A decision vector, whose entries are percentage changes in price

from the baseline
w The random error or noise vector
qt The observed treatment demand
qb The baseline demand that is assumed to be known from the control

condition
Â An estimate of the true matrix A
n The number of products
s The number of experiments

3. Estimating the Matrix A
To find an optimal set of firm actions, we will first
estimate the substitute and complementary relation-
ships between products that are modeled by the
matrix A. In this section, we describe a general
technique for estimating A, introduce our structural
assumptions, present bounds on the number of exper-
iments needed to learn A accurately, and discuss our
results. The theoretical results on the rate of learn-
ing that follow are motivational and illustrate that
favorable structures in substitute and complementary
relationships can dramatically decrease the number of
experiments needed. However, the actual values of
the derived bounds are not meant to be used as the
actual number of experiments to run in practice.

3.1. Random Experimental Design
Our goal is to learn A as quickly as possible and so we
would like to design experiments (i.e., x vectors) that
give as much information as possible. One approach
is to design decision vectors deterministically to max-
imize some orthogonality measure between decision
vectors. However, because we do not make any
assumptions about how the locations or values of
the entries of A are distributed, for any deterministic
design, there will be classes of A matrices for which
the design is poor.

As an alternative, we use random experiments: the
decision of how much to change the price of a partic-
ular product for a given experiment will be a random
variable. Moreover, if we make these decisions inde-
pendently across products and across experiments,
we achieve approximate orthogonality between all of
our experiments. By using randomization, we are also
able to take advantage of the extensive body of prob-
ability theory and prove that we can learn every ele-
ment of A to high accuracy with high probability, for
any A matrix. Next, we describe our estimation pro-
cedure in more detail.
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3.2. Unbiased Estimators, Convergence, and
Concentration Bounds

For each parameter aij , we define a statistic yij that
is a function of the random decision vector and the
resulting (random) observed demands. This statistic
is therefore also a random variable, and we design it
so that its mean is equal to aij . In other words, we
find an unbiased estimator for each parameter.

If we perform many independent experiments and
record the statistic yij for each one, the law of large
numbers tells us that the sample mean of these statis-
tics converges to the true mean, which is exactly the
parameter aij that we are trying to estimate. This sam-
ple mean is a random variable, and its probability
distribution will become more and more concentrated
around aij as we collect more samples (i.e., perform
more experiments). To get a sense of the speed of
convergence, we calculate a bound on the concentra-
tion of the distribution around aij after each addi-
tional sample. This bound will in turn allow us to
prove results on the number of experiments needed
to achieve accurate estimates with high confidence.

3.3. Uniformly �-Accurate Estimates
Our goal is to learn the A matrix accurately to within
a certain bound with high probability. To be precise,
let âij be our estimator of aij , an arbitrary element in
the matrix A. We adopt a conservative criterion that
requires

P
(

max
i1 j

�âij − aij � ≥ �
)

≤ �1

where � > 0 is the tolerance in our estimates and
1 − � ∈ 40115 is our confidence. In other words, we
would like the probability that our estimates devi-
ate substantially from their true values to be low, no
matter what the true A matrix is. Because of the max-
imization over all entries in the matrix, we require
that every single entry meets this criterion. Hence,
we refer to this as the uniform �-accuracy criterion.
This notion of error is known as “probably approxi-
mately correct” in the machine learning field that also
aims to learn accurately with high probability (see
Valiant 1984).

Ideally we would like both � and � to be small so
that we have accurate estimates with high probability,
but to achieve smaller � and �, intuitively we would
need to run more experiments to gather more data.
Our first objective is to determine, for a given num-
ber of products n and fixed accuracy and confidence
parameters � and �, a bound on how many experi-
ments are needed to achieve those levels uniformly.
This answer in turn tells us how the number of exper-
iments needed scales with the number of products.

3.3.1. Interpretation and Discussion. As has been
described, uniform �-accuracy is an intuitive measure
of accuracy. It is also a conservative measure because
it requires every entry of A to be accurate. Alterna-
tively, we can consider other criteria, such as bound-
ing the root-mean-square error (RMSE):

P

(

√

1
n2

n
∑

i1 j=1

4âij − aij5
2
≥ �

)

≤ �0

This is a relaxation of the uniform �-accuracy crite-
rion: if estimators âij satisfy uniform �-accuracy, then
they also satisfy the RMSE criterion. Therefore, any
positive results on the speed of learning under uni-
form �-accuracy also hold under weaker criteria, such
as the RMSE criterion. Our results then give a worst-
case upper bound, in the sense that the number of
experiments required to achieve a weaker criterion
would be no more than the number of experiments
required to achieve the stricter uniform �-accuracy
criterion.6

3.4. Asymptotic Notation
To judge different learning models, we compare how
many experiments are needed to achieve uniform
�-accuracy. Because we are interested in the regime
where the number of products is large, we focus
on how quickly the number of experiments needed
increases as the number of products increases. To cap-
ture the scale of this relationship, we use standard
asymptotic notation (see §EC.2 of the e-companion for
a detailed description).

3.5. Estimation of General A Matrices
We first consider the problem of estimating general
A matrices, without any assumptions of additional
structure. Following the technique outlined in §3.2,
our precise estimation procedure is the following:

1. Perform independent experiments. For each ex-
periment, use a random, independent decision vec-
tor x, where for each product, xj is distributed
uniformly on [−�1�], where 0 < � < 1. Observe the
resulting vector of changes in demand ãq.

2. For the tth experiment and for each aij , compute
the statistic

yij4t5¬ � ·ãqi · xj1

where �¬ 3/�2.

6 A similar point can be made about the method used to design
the experiments and estimate the parameters. Improvements on
our random experimental design and our relatively simple compar-
isons of the treatment and control outcomes should lead to further
improvements in the amount of information learned and therefore
decrease the number of experiments required to achieve uniform
�-accuracy.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.4

.7
1.

84
] 

on
 1

3 
N

ov
em

be
r 

20
15

, a
t 0

6:
24

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Li et al.: The Value of Field Experiments
1730 Management Science 61(7), pp. 1722–1740, © 2015 INFORMS

3. After s experiments, for each aij compute the
sample mean

âij =
1
s

s
∑

t=1

yij4t51

which is an unbiased estimator of aij .
The following theorem gives a bound on the accu-

racy of this estimation procedure after s experiments.

Theorem 1 (Estimation Accuracy with Sub-
Gaussian Noise for General A Matrices). Under
Assumption 1, for any n×n matrix A and any � ≥ 0,

P
(

max
i1 j

�âij − aij � ≥ �
)

≤ 2n2 exp
{

−
s�2

maxi 364
∑n

l=1 a
2
il + c2/�25

}

0 (5)

The proof is given in §EC.3 of the e-companion.
To ensure uniformly �-accurate estimates with

probability 1 − �, it suffices for the right-hand side
of (5) to be less than or equal to �. Therefore, with a
simple rearrangement of terms, we find that s exper-
iments are sufficient if s satisfies

s ≥
maxi 364

∑n
l=1 a

2
il + c2/�25

�2
log

(

2n2

�

)

0

The aforementioned bound tells us that if there is
more noise (larger c) or if we desire more accurate
estimates (smaller � and �), then more experiments
may be required, which agrees with intuition. How-
ever, the term

∑n
l=1 a

2
il may be quite large and, as it is

a sum of n quantities, may also scale with n. In that
case, our estimation procedure may in fact require
O4n logn5 experiments to achieve uniform �-accuracy,
which can be prohibitively large.

3.6. Introducing Structure
The previous result allows for the possibility that
with general A matrices, many experiments may be
required to estimate the underlying parameters. For-
tunately, we recognize that our problem may have an
important inherent structure that allows us to learn
the A matrix much faster than we would otherwise
expect.

We consider three different types of structure on the
matrix A. In the following sections, we motivate these
assumptions, state the number of experiments needed
to learn A in each case, and interpret our results.

3.6.1. Bounded Pairwise Effects. Motivation: Our
first assumption is based on the idea that a prod-
uct can affect the demand for itself or for any other
product only by some bounded amount. In other
words, varying the price of a product cannot cause
the demand for itself or any other product to grow
or diminish without limit. In terms of our model, we
can state the assumption precisely as follows.

Assumption 2 (Bounded Pairwise Effects). There
exists a constant b such that for any n, any n×n matrix A,
and any pair 4i1 j5, �aij � ≤ b.

This is our weakest assumption as we do not place
any other restrictions on A. In particular, we allow
every product to have an effect on every other prod-
uct. By not imposing any additional assumptions, we
can use this variation of the problem as a benchmark
to which we can compare our two subsequent varia-
tions. Because all elements of A may be nonzero, we
refer to this as the case of “dense” A matrices.
Result: With this additional assumption, we show

that our estimation procedure as described in §3.5 can
learn all elements of A to uniform �-accuracy with
O4n logn5 experiments.

Corollary 1 (Sufficient Condition for Uni-
formly �-Accurate Estimation of Dense A). Under
Assumptions 1 and 2, for any n × n matrix A and any
� ≥ 0,

P
(

max
i1 j

�âij − aij � ≥ �
)

≤ 2n2 exp
{

−
s�2

364nb2 + c2/�25

}

0

Therefore, to ensure uniformly �-accurate estimates with
probability 1 − �, it suffices for the number of experiments
to be O4n logn5.

This result also gives an upper bound on the num-
ber of experiments needed to learn the entries of A,
in the sense that with the best estimation method,
the asymptotic scaling of the number of experiments
needed to achieve uniform �-accuracy will be no
worse than O4n logn5. However, this upper bound is
again not practical as it suggests that in the worst
case, the number of experiments needed may scale
linearly with the number of products. Because we
would like to keep the number of experiments small,
we hope to achieve a sublinear rate of growth with
respect to the number of products. Fortunately, this is
possible if the A matrix is “sparse,” as we discuss in
the next section.

3.6.2. Sparsity. Motivation: Although a category
may include many items, not all items will have rela-
tionships with one another. For example, varying the
price of a nighttime cold remedy may not affect the
demand for a daytime cold remedy.

Under our model of demand and cross-product
elasticities, a pair of items having no interaction cor-
responds to the respective entry being zero in the
A matrix. If many pairs of items have no relation-
ship, then our A matrix will have many zero entries;
this is referred to as a “sparse” matrix. In terms of
our model, we express the assumption of sparsity as
follows.
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Assumption 3 (Sparsity). For any n, there exists an
integer k such that for any n × n matrix A and any i,
�8j2 aij 6= 09� ≤ k.

For each row of A, we bound the number of entries
that are nonzero to be no more than k. Interpreting
this in terms of products, for each product, we assume
that there are at most k products (including itself) that
can affect its demand. Note that we do not assume
any knowledge of how these nonzero entries are dis-
tributed within the matrix. This is important as it
means we do not need to know a priori which prod-
ucts have a demand relationship with one another
and which do not.
Result: As long as the underlying matrix A exhibits

this sparsity structure, we have the following result
on the number of experiments needed to estimate
A with uniform �-accuracy using our estimation
method.

Corollary 2 (Sufficient Condition for Uni-
formly �-Accurate Estimation of Sparse A). Under
Assumptions 1, 2, and 3, for any n×n matrix A and any
� ≥ 0,

P
(

max
i1 j

�âij − aij � ≥ �
)

≤ 2n2 exp
{

−
s�2

364kb2 + c2/�25

}

0

Therefore, to ensure uniformly �-accurate estimates with
probability 1 − �, it suffices for the number of experiments
to be O4k logn5.

This result shows that if the A matrix is sparse, the
number of experiments needed scales on the order
of O4k logn5, instead of O4n logn5 as for the case of
dense A matrices. Thus, the number of experiments
needed grows logarithmically (hence, sublinearly) in
the number of products n and linearly in the sparsity
index k. As long as k does not increase too quickly
with n, this may be a significant improvement over
O4n logn5. As anticipated in the introduction, sparsity
can yield much faster learning. The gap between a
theoretical requirement of O4k logn5 and a theoretical
requirement of O4n logn5 experiments could be dra-
matic for practical purposes in settings with a large
number of products, and therefore in estimation prob-
lems with a large number of parameters. Of course
this requires that k does not grow too quickly with n.
We will investigate this possibility in §4.

By thinking about the amount of abstract “infor-
mation” contained in a sparse matrix as opposed to
in a dense matrix, we can gain some intuition as to
why a sparse matrix is easier to estimate. When try-
ing to learn a model, if we know that the true model
lies in a restricted class of possible models, then we
expect to be able to learn the true model faster than
if no such restrictions were known. Our assumptions
of sparsity effectively reduce the universe of possible

A matrices in this manner. If A could be any n × n
matrix, then for each row of A, there would be on the
order of n bits of unknown information (i.e., a con-
stant number of bits for the value of each entry in
the row). On the other hand, if we knew that the row
has only k nonzero entries, there would instead be
on the order of k bits of unknown information (i.e., a
constant number of bits for the value of each nonzero
entry in the row). There would also be uncertainty in
the location of the nonzero entries. There are

(

n
k

)

ways
of choosing k entries out of n to be the nonzero ones,
and therefore there are

(

n
k

)

possible locations of the
nonzero entries within the row, which can be encoded
as an additional log2

(

n
k

)

bits of unknown information
that is approximately of order O4k logn5 bits. Based
on these rough calculations, we can see that knowing
that a matrix is sparse with only k nonzero entries
reduces the degrees of freedom and amount of uncer-
tainty and therefore allows for faster estimation.

3.6.3. Bounded Influence (Weak Sparsity). Moti-
vation: Assumptions 2 and 3 are both based on the
intuition that the substitution and complementarity
effects between products are bounded. This was done
through placing hard bounds on the magnitude of
each pairwise effect (i.e., the magnitude of each ele-
ment of A) and by limiting the number of possible
relationships a product can have (i.e., the number of
nonzero elements in each row of A).

An alternative approach, in the same spirit, is
instead to bound the aggregate effect on each prod-
uct’s demand as a result of all price variations. The
intuition here is that although there may be many
products, the demand for any individual product can-
not be swayed too much, no matter how many other
products there are or which products’ prices are var-
ied. This can be thought of as a “weak” sparsity
assumption: we do not assume that many elements of
A are zero; instead we assume that the overall sum
across any row of A stays bounded. We express this
assumption in terms of our model as follows.

Assumption 4 (Bounded Influence). For any n,
there exists a constant d such that for any n×n matrix A,
the following inequality is satisfied for every i:

n
∑

j=1

�aij � ≤ d0

As another interpretation, Assumption 3 can be
thought of as bounding the l0 “norm” of the rows of
A: �ai�0 ≤ k. Assumption 4 can be thought of as a
relaxation that instead bounds the l1 norm of the rows
of A: �ai�1 ≤ d.
Result: Using similar analysis, we show that the

number of experiments needed to achieve uni-
formly �-accurate estimation under the assumption of
bounded influence is on the order of O4d2 logn5.
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Corollary 3 (Sufficient Condition for Uni-
formly �-Accurate Estimation Under Bounded
Influence). Under Assumptions 1 and 4, for any n× n
matrix A and any � ≥ 0,

P
(

max
i1 j

�âij − aij � ≥ �
)

≤ 2n2 exp
{

−
s�2

364d2 + c2/�25

}

0

Therefore, to ensure uniformly �-accurate estimates with
probability 1 − �, it suffices for the number of experiments
to be O4d2 logn5.

The previous result shows that even with a weaker
sparsity condition, where we allow all parameters to
be nonzero, we are still able to achieve an order of
growth that is logarithmic in the number of prod-
ucts. Note that if Assumptions 2 and 3 are satisfied
with constants k and b, respectively, then Assump-
tion 4 will also be satisfied with d ¬ kb, and so
the bounded influence assumption can subsume the
combination of bounded pairwise effects and spar-
sity assumptions. However, using the more general
bounded influence assumption to capture sparsity
leads to a weaker result because it does not leverage
all of the structural details of the sparsity assumption.
Specifically, with d = kb, Corollary 3 would give a
scaling of O4k2 logn5 for learning a k-sparse A matrix
(where the dependence on b has been suppressed),
which is slower than the scaling of O4k logn5 given
by invoking Corollary 2.

3.7. Standard Errors and Confidence Intervals
Besides providing a result on the speed of learn-
ing, Theorem 1 also allows us to construct confidence
intervals for the elasticity estimates by rearrang-
ing (5). Specifically, for

� =

√

maxi 364
∑n

l=1 a
2
il + c2/�25

s
log

(

2n2

�

)

1

we have that P4�âij −aij � ≤ �5≥ 1−�0 Under each struc-
tural assumption, we can also replace the (unknown)
sum

∑n
l=1 ail with the appropriate bound.

Although this confidence interval has an analytical
form given by our theory, it will be loose because we
have used upper bounds of quantities in the deriva-
tion of (5). It also depends on parameters that we do
not know, namely the aij ’s and c. An alternative is
to use the jackknife or bootstrap to estimate standard
errors and use these to construct confidence inter-
vals. For each experiment t we obtain a measurement
yij4t5 for a particular unknown elasticity parameter
aij , and our estimator âij is the sample mean of these
yij ’s. Therefore, to estimate the standard error of our
estimator after s experiments, we can resample from
our s measurements of yij ’s and calculate the sample
mean of this resample. By resampling many times, we
obtain a distribution of sample means, from which
we can estimate the standard deviation of our sample
mean estimator.

3.8. Lower Bound
The previous results provide upper bounds on the
number of experiments needed for accurate estimates.
For example, in the case of sparsity, using our esti-
mation method, no more than O4k logn5 experiments
are needed to achieve uniform �-accuracy. However,
these results do not tell us whether there exists
another estimation method that requires even fewer
experiments. Given our demand model, the bounds
on the allowable price variations, and the noise in
the data, information theory tells us the maximum
amount of information about the aij ’s that can be
learned from a single experiment. This fundamental
limit in the “value” of each experiment in estimat-
ing the A matrix then allows us to calculate a lower
bound on the number of experiments required. We
do not actually need to develop a specific estimator
that achieves this lower bound, but we know that no
estimator can do better than this lower bound.

For the special case of i.i.d. Gaussian noise, we
now present such a lower bound on the number of
experiments needed that shows that no matter what
estimation procedure we use, there is a minimum
number of experiments needed to achieve uniform
�-accuracy. The only requirement we impose on the
estimation procedure is that it relies on experiments
with bounded percentage price changes. The bounds
we impose on the percentage price changes can be
justified by practical considerations: the natural lower
bound on price changes comes from the fact that
prices cannot be negative, whereas the upper bound
on the percentage changes captures that the manager
of a store is likely to be opposed to dramatic price
increases for the purposes of experimentation.

Theorem 2 (Necessary Condition for Uni-
formly �-Accurate Estimation Under Sparsity
with Gaussian Noise). For �> 0, let

An1k4�5¬
{

A ∈�n×n2 �8j2 aij 6= 09� = k1

∀i = 11 0 0 0 1n3 min
i1 j2 aij 6=0

�aij � ≥ �
}

be the class of n× n A matrices whose rows are k-sparse
and whose nonzero entries are at least � in magnitude. Let
the noise terms be i.i.d. N401 c25 for some c > 0. Suppose
that for some � ∈ 401�/25 and � ∈ 4011/25, we have an
estimator that:

(a) Experiments with percentage price changes x ∈

6−11 �̃7, for some �̃≥ 1 (i.e., the price of each product can-
not fall below 0 and cannot increase by more than 100�̃%),
and

(b) For any A matrix in An1k4�5 achieves uniformly
�-accurate estimates with probability 1 − �.
Then, the number of experiments used by the estimator
must be at least

s ≥
k log4n/k5− 2

log41 + k2�2�̃2/c25
0
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The proof is given in §EC.4 of the e-companion.
As the number of products grows, the asymptoti-

cally dominant scaling terms are

s ≥ì

(

k log4n/k5
log k

)

0

Because log k is small compared to k and logn, we
have an essentially matching lower bound to the
O4k logn5 upper bound given in Corollary 2; this
shows that our estimation procedure achieves close to
the best possible asymptotic performance.

3.9. Discussion
The previous results demonstrate the power of spar-
sity in multiple flavors. Without any assumptions on
the structure of the problem, the number of experi-
ments needed may grow linearly with the number of
products. For our target regime of large numbers
of products, this leads to a solution that appears to
be practically infeasible. However, by recognizing the
inherent properties of the problem, we show that
even with randomly designed experiments we are
able to learn A using a number of experiments that
scales only logarithmically with the number of prod-
ucts. With a large number of products, the differ-
ence between linear and logarithmic is tremendous:
for n = 100, log41005 ≈ 406. This gives hope that we
can indeed learn the A matrix in a practically feasible
number of experiments.

Although our findings help reveal how many ex-
periments are required, it is also helpful to ask how
many experiments are feasible. When firms are using
field experiments to set policy (rather than academics
using them to test theories) we have found they are
often willing to run a rather large number of exper-
iments. The answer will clearly depend upon the
nature of the firm’s actions and the particular setting.
Varying advertising or pricing decisions in online or
direct marketing settings can often be implemented at
low cost, making it feasible to implement hundreds
or even thousands of experiments. For example, Cap-
ital One reportedly implements tens of thousands of
randomized field experiments each year. In traditional
retail formats, the cost of making in-store changes is
generally higher, and randomization must often occur
at the store level rather than the individual customer
level (introducing an additional source of measure-
ment error). However, even in traditional retail set-
tings, firms with multiple locations can implement a
large number of experiments in different samples of
stores to test pricing, product placement, and other
merchandising decisions. For example, one of the
authors has worked with a large bricks and mortar
retailer who was quickly able to run 200 between-
store pricing experiments to decide how to price pri-
vate label items when national brands are promoted.

Documented examples of high-volume experimen-
tation in traditional retail settings include Bank of
America varying actions between bank branches, and
Harrah’s varying a wide range of practices across its
casinos. In other settings, implementing field experi-
ments is more challenging. For example, when decid-
ing how to manage a distribution network, a firm
may be limited to only a handful of experiments every
few years, as these experiments will tend to disrupt
existing relationships and require extended periods to
observe the outcome.

3.10. Other Marketing Decisions
Besides setting prices, firms make many other types
of marketing decisions, including which products to
advertise or promote. Although our model and anal-
ysis have focused on pricing decisions, the model can
easily be adapted to advertising or promotion deci-
sions. As with setting prices, promoting a product will
(for most products) increase its demand. The substi-
tution and complementarity effects between products
will also carry over to promotion decisions. There-
fore, we can again use a matrix A to represent the
own- and cross-product elasticities and a vector ãq to
represent the percentage change in demand for each
product. However, some modifications are required to
extend the model to promotion applications.

If we interpret the decision to advertise or promote
a product as a binary decision, then the decision vari-
ables become

x̃j =

{

11 if j is promoted1
01 if j is not promoted0

For ease of exposition (and without loss of general-
ity), we will assume that there are no promotions in
the control condition. We can then model the percent-
age change in demand in response to the promotion
decisions as

ãq =
qt − qb

qb
= Ax̃ + w0

In this model, we capture in the A matrix own-
and cross-product promotion responses. This model
retains the same form as in Equation (4), where x̃
takes the place of x.

Given that the model under promotion decisions
has the same form as the model under pricing deci-
sions, we can apply a modified form of our estima-
tion procedure to obtain similar results. Specifically,
instead of making continuous pricing decisions, we
instead make 0/1 Bernoulli decisions for each x̃i in the
promotion setting. This is essentially the same setup
and we can again find estimators for each aij such that
Theorem 1 holds (with slightly different constants).
Therefore, we would still be able to achieve uni-
formly �-accurate estimation with O4k logn5 exper-
iments under sparsity and O4d2 logn5 experiments
under bounded influence.
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4. Estimating Sparsity
In order for a retailer to evaluate whether it is feasible
to make pricing decisions using field experiments, the
retailer needs an estimate of the sparsity parameter
(k or d). In this section, we describe two approaches
for estimating these parameters: (1) from a “pilot” set
of experiments and (2) from historical data. Under
both approaches, we use what is essentially a model
selection approach. We divide the data into calibra-
tion and validation subsamples. We then repeatedly
estimate the A matrix using the calibration subsam-
ple for different values of the sparsity parameter, and
we choose the sparsity parameter for which the esti-
mated A matrix has the best fit with the validation
subsample.

Different variants of this general approach are
available, including different measures of “goodness-
of-fit” of the validation subsample. We can also
use different approaches to cross-validate, including
m-fold cross-validation where we randomly split the
data into m buckets and rotate which of the buckets
we treat as the validation sample. In the discussion
that follows, we describe the two approaches more
formally and present results of both simulations and
empirical analysis to illustrate their performance.

In addition to describing how to estimate k and d,
our analysis in this section also has a second pur-
pose. Although we have shown that sparsity and
weak sparsity ensure that the number of experiments
required to obtain accurate estimates grows at a log-
arithmic rate with n, we must also consider how
the sparsity parameters (k and d) grow with n. If k
and d grow quickly with n, then the O4k logn5 and
O4d2 logn5 growth rates will again mean that it may
be infeasible to use experiments to set prices in large
categories.

4.1. Methodology
Let ai be the (unknown) 1×n row vector of elasticities
for the ith product. Suppose we have s data points:
ãqi is a 1 × s vector of changes in demand for the ith
product, and X is an n× s matrix of pricing decisions.
For some value � , we solve the following optimiza-
tion problem (the “Lasso”; see Tibshirani 1996), which
looks for the ai that best fits the data but is still con-
strained to be “sparse”:

min
ai

�ãqi − a′
iX�2

2

s0t0 �ai�1 ≤ �0

Alternatively, we can express the problem as the
following:

min
ai

�ãqi − a′

iX�
2
2 +��ai�10 (6)

Here, � and � are tuning parameters that control the
level of sparsity of the resulting solution. For each

choice of the tuning parameters, we obtain one solu-
tion, âi, to the optimization problem. To assess the
quality of each solution, we cross-validate it using
the given data and select the one that gives the low-
est cross-validation error as the best solution. From
this best solution, we recover its “sparsity” and pro-
pose that measure as an estimate of the true level of
sparsity. As we obtain additional data, we can repeat
this procedure to update our estimates of the sparsity
parameters.

Although this methodology focuses on a single
product/row i, the same procedure can be performed
on each row independently, with the same set of data,
to obtain estimates of k or d for each row. This proce-
dure then gives us even finer-grained estimates, not
just a single k or d bound for the entire A matrix. Our
model calls for a k or d that bounds the sparsity of
the entire matrix. Therefore, to arrive at estimates of
the overall sparsity parameters for the entire matrix,
we take the maximum over the individual row esti-
mates. Note that this approach is valid for either hard
sparsity (k) or bounded influence (d). We will test the
methodology on both cases.

4.2. Pilot Experiments
To perform the procedure described in the previous
subsection, we first require some data. One possible
source of data is a set of “pilot” experiments: a rela-
tively small sequence of pricing experiments and cor-
responding observed demand.

In this subsection, we simulate pilot experiments
by generating synthetic experimental data. To ensure
that our simulations use realistic parameters, we ini-
tialize them using data from a large-scale pricing
experiment that was conducted for another purpose
(Anderson et al. 2010). The experiment was imple-
mented at a large chain of stores that sells prod-
ucts in the grocery, health and beauty, and general
merchandise categories. Eighteen of the chain’s stores
participated in the study, in which prices were exper-
imentally manipulated on 192 products for seventeen
weeks, with the treatments randomly rotated across
the eighteen stores (see Anderson et al. 2010 for addi-
tional details). From this study, we obtained distri-
butions for the diagonal and off-diagonal entries of
the A matrix. The simulation is meant to illustrate
our estimation methodology and is not something
that managers would do; in practice, managers would
conduct actual pilot experiments to collect data for x
and ãq. The simulation proceeds as follows:

1. Choose fixed values of n and d (or k) and gen-
erate the true A matrix randomly from the seed dis-
tributions. Choose a fixed value of � , the standard
deviation of the normal error term w. These parame-
ters are not used in the estimation.
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Figure 1 An Example of the Result of Fivefold Cross-Validation
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Cross-validated mean-squared error (MSE) of Lasso fit

Notes. The value of � highlighted with the large dot gives the lowest cross-
validation error. Large values of � (to the right) heavily penalize nonzero
entries, resulting in the zero vector as the solution, which does not fit the
data well. As � is lowered, we begin to get some nonzero entries in the solu-
tion, providing a better fit of the data. However, as � becomes even smaller,
past the value marked with the large dot, we obtain dense solutions that tend
to overfit, resulting in a higher cross-validation error.

2. For any given s:
(a) Randomly generate x and w for s experi-

ments and calculate ãq.
(b) For a range of �’s, find the optimal solutions

to (6).
(c) Perform fivefold cross-validation7 on the

solutions to identify the one with the lowest cross-
validation error; call this a∗

i . (Figure 1 illustrates the
cross-validation process.)

(d) Calculate �a∗
i �1 and �a∗

i �0. For the latter, we
count only those entries that are above a certain
threshold (set at 0.01) in magnitude.

(e) For each s, replicate this 10 times and average
the results. Propose the averaged values of �a∗

i �1 and
�a∗

i �0 as estimates of d and k, respectively.
3. Plot the estimates of d and k versus a range of

values of s, giving a sense of how many experiments
are needed to obtain an accurate estimate of the level
of sparsity.

As Figure 2 illustrates, our methodology provides
reasonable estimates of k and d with relatively few
experiments, and these results hold for different
values of the true underlying sparsity parameters.
These results suggest that using pilot experiments can
indeed provide initial estimates of k and d. Know-
ing these sparsity parameters, we then have a sense
of the feasibility of using our main methodology to

7 Split the data set into five buckets. Estimate ai on data from four
buckets and cross-validate on the fifth. Rotate and do this for all
five buckets and calculate the average error.

estimate A. In addition to providing estimates of the
sparsity parameters, the data generated in these pilot
experiments can also serve as additional data that can
be used to estimate A using our main methodology.
Furthermore, if the pilot experiments involve varia-
tion in n (e.g., by experimenting on multiple stores
with different category sizes), we can also investigate
how the sparsity parameters grow with n.

4.3. Empirical Analysis
Running 80 to 100 pilot experiments is not without
cost, and so ideally a firm would like to be able to
estimate k and d using its existing data. One possi-
bility is to use historical variation in prices to esti-
mate these parameters. Our proposed cross-validation
method can be adapted to do so.

We use 195 weeks of historical data from a chain
of 102 convenience stores, describing prices and unit
sales of products in the cold remedies category. The
number of products sold in each store varies, due pri-
marily to differences in the square footage size of each
store (larger stores offer wider product ranges). We
will exploit this variation to illustrate how our esti-
mates of k and d vary with the number of items in
the category (n).

4.3.1. Setup. We begin with the 195 weeks of sales
data from 102 stores, which we then group into
48 four-week periods to reduce the amount of noise in
the data. We focus on a specific category (cold reme-
dies) and perform the following procedure for each
store independently:

1. If a product is not sold in a given period, no
data is available for that product during that period,
which means that we do not know the retail price for
that product during that period. We fill in this price
data by linearly interpolating between the prices for
that product during the two most adjacent periods for
which we do have data.

2. However, we know that if no data is available,
the quantity sold during that period is zero.

3. After this processing, we have a complete set of
sales and price data for each product, for each of the
48 four-week periods.

4. For each product i, we compute the average
quantity sold per period and the average price, over
the 48 periods. These will serve as the baseline
demand (qbi ) and price levels (xb

i ), respectively.
5. To further reduce noise, we consider only those

products that (i) sold over a certain threshold of units
per period on average, (ii) sold at least one unit
during the first four periods and last four periods
(to ensure they were not introduced or discontinued
during the middle of the 195 weeks), and (iii) had
variations in prices above a certain threshold over the
course of the 48 periods.
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Figure 2 Plot of the Estimates of k and d vs. the Number of Experiments, s
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Notes. The estimates are near the true values even with relatively few experiments, for different choices of the true sparsity parameters. For all plots, n = 11000.

6. We collect all products that do not pass through
the previous filter and combine them into a single
aggregated “product” that is included together with
all other products in the analysis that follows.

7. We calculate category-level seasonality factors
for each period that are used to deseasonalize the raw
demand quantities.

8. Using the price data and the (deseasonalized)
sales data for each period, we then calculate their per-
centage change from the previously established base-
line levels, as indicated by our model.

9. Equipped with ãq and x, we then use these as
input to the Lasso optimization program (6):

(a) Lasso estimates vectors, so we estimate A
row-by-row.

(b) For each row i, we try a sequence of � param-
eters and perform fivefold cross-validation to identify
the value of � that gives the lowest cross-validation
error; call this estimate â∗

i . Calculate �â∗
i �1 and �â∗

i �0

as estimates of ki and di for row i.
(c) Because k and d are sparsity parameters for

the complete A matrix, we take the maximum over
all of the rows’ ki and di to obtain the overall estimate
of k and d.

(d) For robustness, we repeat this entire proce-
dure ten times and average the results.

10. By performing this analysis for each store, we
obtain 102 pairs of (n1k) and (n1d) data points, which
give us a relationship between the number of prod-
ucts and the sparsity parameters.

11. We fit a quadratic model and verify whether the
second-order coefficient is negative and significant,
indicating that the sparsity index does not increase
linearly with the number of products.

4.3.2. Results. Figure 3 presents the estimates of
k and d across all of the stores (each point repre-
sents the estimates for a single store). Recall that
the number of items in each category varies across
the stores, and this allows us to investigate the rela-
tionship between the sparsity parameters and n. The
figures also show the fitted quadratic relationships
between the data points, which allow us to evalu-
ate whether the growth in the sparsity parameters is
slower than linear. In Table 2, we report the results of
these quadratic fit models.

The estimates of k reveal a relatively distinct pat-
tern: the estimates grow with n but the growth rate
is slower than linear. In the fitted quadratic equa-
tion, the quadratic term is negative and highly sig-
nificant. We can speculate on the reasons for this. It
is possible that customers eliminate products from
their consideration sets that do not share certain
attributes. For example, on a specific trip customers
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Figure 3 Plots of n vs. Estimated k and d, Including the Quadratic Fit
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Notes. Sales threshold: one unit per period on average; standard deviation
of price variations threshold: 0.08.

may focus only on nighttime cold remedies or day-
time cold remedies. If this is the case, then introduc-
ing a new daytime product may not increase k (which
is an upper bound on the number of interdependent
products) because it only affects demand for the

Table 2 Summary of Quadratic Fit Models for Four-Week Periods
with a Sales Threshold of One Unit Sold per Period on
Average and a Minimum Standard Deviation of Price
Variations of 0.08

Coefficient Estimate Std. error t value

Estimating k (Intercept) 10118 00607 10843
First-order term 00661 00059 110169

Second-order term −00007 00001 −70461
Estimating d (Intercept) 150280 110696 10306

First-order term 50068 10142 40438
Second-order term −00070 00018 −30959

Note. The second-order coefficients are negative and significant for both k

and d.

subset of items that share that attribute (i.e., day-
time remedies). It was this type of behavior that
Tversky (1972) anticipated when proposing that cus-
tomers eliminate alternatives by aspects.

The estimates of k are relatively small (around fif-
teen) even in large categories. This suggests that in
the cold remedies category, the matrix of cross-price
elasticities is sufficiently sparse to make estimation
using field experiments feasible. This demonstrates
the feasibility of using historical data to obtain ini-
tial estimates of k to evaluate when a firm can use
experiments to set prices. The data that we have
used is readily available to most retailers. Notably,
because we obtain estimates of the sparsity parame-
ters for each category in each store, it does not require
that retailers have a large number of stores (although
having many stores obviously makes experimentation
easier).

Notice that for many of the stores we observe only
approximately ten items in the cold remedies cat-
egory. This reflects two things: both the relatively
small size of these stores, and the screening of prod-
ucts based on their sales volumes and the level of
price variation. Because of this screening, we estimate
the findings using the items that have the highest
sales volumes and the largest price variation (the fil-
tered items are combined into a single “other” item).
To evaluate the robustness of our findings, we have
repeated the analysis for different minimum sales and
price variation thresholds. We also replicated the find-
ings when grouping the data into ten-week periods.
The findings replicate the pattern of results reported
in Figure 3 and Table 2. In all of these combinations,
the quadratic coefficient regressing k on n is negative
and highly significant.

We also report the estimates of d. The fitted
quadratic function indicates that the growth of d with
n is also sublinear.8 However, the findings reveal a
much less distinct pattern. Notably some of the esti-
mates of d are very large (exceeding 100). Moreover,
although our estimates of k are relatively robust, the
estimates of d are much less robust and are sensitive
to variation in the filtering parameters. One interpre-
tation is that within the “cold remedies” category, the
weak sparsity structure is not sufficient to make it
feasible to use experiments to set prices. A second
interpretation is that our estimation procedure is not
accurate enough to provide reliable estimates of d.

8 In the case of d, sublinear growth could simply reflect customer
loyalty or state dependence (see, e.g., Dubé et al. 2008, Erdem 1996,
Keane 1997, Seetharaman et al. 1999, Anderson and Simester 2013).
If even just a subset of customers is loyal to an existing product
(or brand), then the introduction of additional products will have
a bounded impact on sales of the existing products. The more cus-
tomers who are loyal, the less growth we expect in d as n grows.
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4.4. Endogeneity
A limitation of using historical variation in control
variables is that past variation is often not random.
Endogeneity in the control variables may raise con-
cerns that the resulting elasticity estimates will be
biased (Villas-Boas and Winer 1999). These limita-
tions may be less relevant in this setting, where we
are unconcerned about bias in elasticity estimates
and instead merely seek a preliminary estimate of k
and d. However, to investigate this issue we used two
approaches.

First, we developed a model of endogeneity based
on Villas-Boas and Winer (1999), used simulations to
generate synthetic data, and then estimated both the
A matrix (the cross-price elasticities) and the spar-
sity parameters. The results confirm that the elasticity
estimates are biased due to endogeneity but that the
estimates of the sparsity parameters, k and d, are rel-
atively robust even in the presence of endogeneity.
Next, we returned to the historical data and used an
instrumental variables approach to account for endo-
geneity. In particular, we use wholesale price as an
instrument for retail price. After controlling for endo-
geneity using this instrument, we obtain estimates of
the sparsity parameters that are approximately the
same as those obtained using our original approach.
We also confirm that the relationship between the
sparsity parameters and n is sublinear when using
this instrumental variables approach. A detailed dis-
cussion of the analysis and findings can be found
in Li (2014).

4.5. Summary
We have described how to estimate the sparsity
parameters k and d either from a pilot set of exper-
iments or from historical data. Through simulations,
we demonstrated that our estimation procedure can
accurately recover k and d using relatively few exper-
iments. Using a sample of historical sales data, we
also obtained actual estimates of k and d from the
cold remedies category. These estimates revealed that
the sparsity parameters increase with n but that the
growth is sublinear. Changing the price of an item
within the cold remedies category appears to affect
the demand for no more than fifteen other items, sug-
gesting that the A matrix of elasticities is sparse. The
findings illustrate a practical method that managers
can use to evaluate whether a product category has a
favorable structure to make it feasible to set category
prices using field experiments.

5. Simulations
The theoretical results presented so far have focused
on the speed of learning. In this section, we present
the results of simulations that confirm the relevance
of the theoretical asymptotic bounds.

5.1. Simulation Setup
To ensure that our simulations use realistic parame-
ters, we initialize them using data from a large-scale
pricing experiment that was conducted for another
purpose (Anderson et al. 2010). This is the same setup
that we used for the simulations in §4.2.

We also specify a collection of parameters that
define the simulation: the number of products (n),
structural parameters for the A matrix (b, k, and d),
the noise distribution parameter (c), and the error cri-
teria (� and �). We refer to these parameters together
as the simulation definition. To compare the dense
and sparse cases, we first generate a full matrix for
the dense case and then randomly set all but k entries
in each row to zero for the associated sparse case.
Instead of selecting an arbitrary value for k, we use
the empirical results from §4.3.2: for any given n, we
use the quadratic fit (plus some additive noise) to cal-
culate the associated value of k.

5.2. Estimation of A
Given an n×n matrix A generated using the distribu-
tions described previously, along with a definition of
parameters, we can then use the procedure described
in §3.5 to estimate A.

To simulate one experiment, we generate a ran-
dom decision vector x and random noise variables wi.
Using the true underlying A matrix, we then calcu-
late the vector of percentage changes in demand ãq =

Ax + w and the statistics yij , which are unbiased esti-
mators of the aij ’s. As we perform more experiments,
we keep a running sum of the yij ’s and compute the
sample mean to obtain our estimate âij . By compar-
ing these estimates to the true A matrix, we can cal-
culate the maximum absolute error across all entries:
maxi1j �âij − aij �.

Because our criterion of uniform �-accuracy
requires the probability that the maximum absolute
error is less than � to be at least 1 − �, we run 100
parallel sequences of experiments. Each sequence is
essentially an independent instance of the estimation
procedure. We incrementally generate more experi-
ments for each sequence, compute updated estimates,
and calculate maximum absolute errors. After any
number of experiments, each sequence therefore has
its own set of estimates and corresponding maximum
absolute error. We say that we have achieved uni-
form �-accuracy when at least a 1 − � fraction of the
sequences have maximum absolute errors that are less
than or equal to �.

5.3. Estimation Performance
Using the preceding procedure, we can simulate
the number of experiments needed to achieve uni-
form �-accuracy for any given simulation definition.
Because we are interested in how the number of exper-
iments needed scales with the number of products, we
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fix a particular definition of parameters (except for n)
and generate a sequence of matrices 8An9 that increase
in size. For each matrix An, we determine the number
of experiments needed to achieve uniform �-accuracy.
For robustness, we replicate the entire simulation 20
times and, for each n, calculate 95% confidence inter-
vals for the number of experiments needed.

In the case of sparse matrices, the resulting plot
(Figure 4(a)) exhibits the logarithmic scaling predicted
by our theoretical results. As the number of products
grows, the number of experiments required grows
much more slowly than the linear benchmark. Addi-
tional products require fewer and fewer additional
experiments to achieve accurate estimates. On the

Figure 4 When the A Matrix Is Sparse, the Number of Experiments
Needed to Achieve Uniform �-Accuracy Grows Only
Logarithmically with the Number of Products

Notes. When the A matrix is dense, the number of experiments needed to
achieve uniform �-accuracy grows at least linearly with the number of prod-
ucts. Comparing the cases of sparse and dense A shows that learning is
much faster in the sparse case. The bars represent 95% confidence intervals.
Parameters used for this plot: �= 005, c = 005, b = 5, � = 105, �= 001.

other hand, Figure 4(b) shows that the dense case
requires many more experiments than the sparse case
to achieve the same level of estimation accuracy.9

6. Conclusion
Although many firms lack the capabilities to esti-
mate sophisticated econometric models, almost any
firm can compare the results between experimental
treatment and control groups. We have investigated
whether conducting these simple comparisons can
help firms improve their profits even as the com-
plexity of the problem grows. In particular, we con-
sider settings where actions taken to impact the sales
of one product tend to spill over and also affect
sales of other products. As the number of products n
grows, the number of parameters to estimate grows
as O4n25. This suggests that the number of exper-
iments required to estimate these parameters will
quickly grow beyond what is feasible.

However, we show that if a category exhibits a
favorable structure, then firms can learn these param-
eters accurately using a relatively small number of
experiments. We investigate two such structures. The
first is sparsity, in which any one product can be
affected by at most k products. An important point is
that we do not need to know which specific products
affect that one product’s demand, only that there is
a limit to how many such products there are. Given
this restriction, the number of experiments required
to estimate the matrix of parameters drops from
O4n logn5 to O4k logn5.

We also describe a second restriction that yields
similar results. Rather than limiting the number of
products that can affect any one product, it may be
more appropriate to restrict how much the total per-
centage change in sales of one product can be affected
by actions on all of the products. As long as there is a
limit to the aggregate magnitude of these interactions,
then we can again achieve relatively quick improve-
ments in parameter estimates with a feasible number
of experiments.

To investigate whether these favorable structures
exist, we propose a method for estimating the level
of sparsity in a given category. We use this method to
analyze actual historical sales data and estimate the
sparsity parameters for the “cold remedies” category.
The empirical results show that sparse structures do
appear to exist. In estimating the sparsity parameters,
we also obtain estimates of elasticities. Using these
preliminary elasticity estimates to help design subse-
quent experiments is an interesting opportunity for
future research.

9 The results for the “sparse” case in Figure 4(b) are identical to the
results in Figure 4(a). (The only difference is the change in the scale
of the y axis.)
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Our findings provide guarantees about the rate
of learning from experiments. These guarantees are
obtained using randomized experiments and simple
comparisons of outcomes between treatment and con-
trol conditions. Firms may increase the rate of learn-
ing by optimizing the experimental designs and/or
using more sophisticated analyses to estimate the
parameters. Although our guarantees will continue
to hold under these alternative approaches, future
research may investigate the extent to which the
bounds can be improved in these circumstances.

We have framed our findings by focusing on the
category pricing decisions. However, the results can
be easily extended to other marketing decisions in
which actions targeted at an individual product spill
over to affect other products as well. In the context
of learning demand elasticities, we have extended
our findings to selecting which products to promote.
Other applications could include the allocation of
sales force resources across products or the focus of
future investments in product development. It may
also be possible to extend the results to settings in
which marketing actions targeted at one customer (or
group of customers) also impact the decisions of other
customers. Spillovers between customers may arise
when customers can observe the decisions of other
customers, or when their decisions depend on the
recommendations of other customers. Extending our
results to these forms of externalities may present fer-
tile opportunities for future research.
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