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Abstract

Applying tests for jumps to financial data sets can lead to an important

number of spurious detections. Bursts of volatility are often incorrectly

identified as jumps when the sampling is too sparse. At a higher fre-

quency, methods robust to microstructure noise are required. We argue

that whatever the jump detection test and the sampling frequency, a highly

relevant number of spurious detections remain because of multiple testing

issues. We propose a formal treatment based on an explicit thresholding

on available test statistics. We prove that our method eliminates asymp-

totically all remaining spurious detections. In Dow Jones stocks between

2006 and 2008, spurious detections can represent up to 90% of the jumps

detected initially. For the stocks considered, jumps are rare events, they

do not cluster in time, and no cojump affects all stocks simultaneously,

suggesting jump risk is diversifiable. We relate the remaining jumps to

macroeconomic news, prescheduled company-specific announcements, and

stories from news agencies which include a variety of unscheduled and un-

categorized events. The vast majority of news do not cause jumps but

may generate a market reaction of the form of bursts of volatility.
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1 Introduction

Evidence of stochastic skewness and kurtosis of asset return distributions has led

to the development of models with jumps to better incorporate these dynamics.

Jumps are rare and larger events than what can be explained by a continuous

diffusion process. Detecting jumps and studying their dynamics is important

because of the consequences in applications including derivatives pricing and

risk management. However, determining from discrete observations whether

a large return should be considered as a jump is no trivial task1. Numerous

statistical methods to test for the presence of jumps in high-frequency data

have been introduced in recent years. When studying the dynamics of jump

arrivals, the jump detection tests have to be applied over a period of time, i.e.,

over a series of days simultaneously. Such a procedure results in performing

multiple testing, and leads by construction to making a significant number of

spurious detections, regardless of the underlying test. For instance, if the jump

tests are carried out at the 5% significance level over a one-year period (i.e., 252

trading days) with no single jump, on average more than 12 days are still going

to be erroneously selected as containing a jump. As we show in a Monte Carlo

study provided in the supplemental file, the presence of spurious detections

can seriously bias the estimated proportion of jump days and results on jump

dynamics, e.g., tests of clustering of jump arrivals. In this paper, we propose

a new methodology to resolve such erroneous detection problems. The Monte

Carlo results show that it performs well in finite samples. Our thresholding

technique reveals a low frequency of jumps but more frequent bursts of volatility.

We study their dynamics and investigate whether they can be explained by news

(including stories from news agencies).

Our first contribution is to propose a method to eliminate spurious de-

tections due to multiple testing via an explicit thresholding on available test

statistics. We are the first to provide a formal treatment of the multiple testing

bias when applying jump detection tests over a sample of many days. We prove

that if we consider test statistics above a certain threshold level only, the like-

lihood of making such spurious detections disappears asymptotically. Monte

Carlo results show that our approach behaves also well in finite samples. Our

theoretical results legitimize the ad hoc response to the multiple testing issue

taken in some studies, which is to use very conservative critical values, e.g.,

at a 0.1% significance level for one-sided tests (Bollerslev, Law and Tauchen

1The recent literature, e.g., Aı̈t-Sahalia (2004) and Lee and Hannig (2010), distinguishes
between big Poisson-type jumps and small possibly infinite-activity jumps. We concentrate
on the first kind in order to study the relation with important news announcements.
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(2008), Giot, Laurent and Petitjean (2010)). In our analysis, we focus on very

liquid large-capitalization U.S. stocks. We collect high-frequency returns from

the Trades and Quotes (TAQ) database for the Dow Jones Industrial Average

Index (DJIA) constituents, over the three-year period of January 2006 to De-

cember 2008. We also study the presence of jumps in the index, which we proxy

with the Diamonds exchange-traded fund (ETF) and a price-weighted portfolio

of the 30 Dow Jones constituents. We consider 2 minutes and 10 seconds sam-

pling frequencies, and use the adjusted ratio statistic of Barndorff-Nielsen and

Shephard (2006) (BNS) and the estimator of Christensen, Oomen and Podol-

skij (2011) (COP) as the underlying tests to detect jumps. Nevertheless, our

method to eliminate spurious detections can be applied just as easily on other

existing jump detection techniques, such as Aı̈t-Sahalia and Jacod (2009), or

Andersen, Bollerslev and Dobrev (2007). To summarize this analysis, first, we

find significantly less jumps in the 10 seconds case than in the 2 minutes case.

This confirms the results of COP, who argue that stock price processes exhibit

bursts of volatility that are incorrectly captured as jumps when the sampling

grid is too sparse. Second, we find that up to 90% of the jumps found at the 10

seconds frequency are spurious detections due to multiple testing2. This illus-

trates the important bias induced by multiple testing, making our thresholding

technique essential for a proper analysis of jumps. Our results bring the high

number of jumps detected by existing tests down to an amount more in line

with the intuition that jumps are rare events.

The second contribution is the investigation of the dynamic features of du-

rations between jumps in equity prices. We run simulations which show that

the true dynamics of jump arrivals can only be uncovered once erroneous de-

tections are removed with our thresholding technique. The empirical series do

not reveal a clustering in time of jump occurrences. Our results are in favor

of the hypothesis that jump arrivals follow a simple low intensity Poisson pro-

cess and, hence, support the jump process used by Merton (1976) to correct

the discrepancies between market prices and the Black-Scholes value of options.

During the three years of our study, we find no day where the 30 stocks all

jump simultaneously and we detect a jump in more than 20% of the stocks

only on two occasions. The absence of cojumps affecting all stocks supports

the assumption in Merton (1976) that the jump component is nonsystematic

or diversifiable. One consequence of the diversifiability is that the jump risk

2We assess the robustness of our results by repeating the procedure at 5 minutes and 20
seconds sampling frequencies with the BNS and COP estimators, respectively. We obtain
similar results, but the effect of bursts of volatility is even more pronounced at a 5 minutes
frequency.
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does not require a risk premium. Also, we do not observe a number of cojumps

significantly larger than if the stocks jumped independently when we consider

industry sectors separately.

The third contribution of the paper is to relate the few jumps that remain

after we apply our thresholding technique to news announcements. Early papers

have conjectured that jumps are caused by the arrival of important new infor-

mation, most often specific to the firm, and occasionally more general economic

or market news. Market-level news can cause jumps in many stocks simultane-

ously which can propagate even to a diversified index. Examining what type

of information is dynamically related to jumps helps better explaining market

phenomena and improving pricing models. We start by investigating the effect

of macroeconomic announcements and observe no significant effect, even when

accounting for the surprise component of the news. Our results differ from the

findings in other markets, e.g., Dungey, McKenzie and Smith (2009) find that

two thirds of cojumps in bond prices coincide with a scheduled US news release,

albeit the authors do not control for multiple testing and do not consider the

same frequency of data. Next, we look at prescheduled announcements specific

to each stock. We observe no increase in the occurrence of jumps neither on

quarterly earnings nor on dividend announcements. Finally, we consider sto-

ries from two news agencies: Reuters News and Dow Jones News Service. By

examining the content of news stories, we can analyze the impact of a variety

of unscheduled and uncategorized events, and are not limited to a predeter-

mined set of event types such as earnings announcements, mergers, or analyst

recommendations. We use the Factiva database to retrieve the news stories. To

our knowledge, we are the first to perform an extensive analysis of the relation

between stories from news agencies and sudden market moves. Given the huge

quantity of information archived in the Factiva repository, one major challenge

is to get everything relevant while eliminating erroneous and unimportant sto-

ries. Our results show that news releases are not likely to cause jumps neither.

Companies purposefully shift most important announcements after the bell or

early in the morning in order to avoid uncontrolled investor reactions and the

consequent impact on the stock price. These results are consistent with the

fact that we find a very limited number of actual jumps once we correct for the

different sources of bias. Our conclusions differ from the findings of Lee and

Mykland (2008) who examine the association of news with jumps on a small

sample of stocks over only three months, and find a story for each jump they

detect. However, if we loosely define a burst of volatility as a jump detection

at a relatively low frequency that is not captured at high frequency, we iden-
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tify a link between news and volatility. For instance, we find that the press

releases following scheduled Federal Open Market Committee (FOMC) meet-

ings increase the likelihood of bursts of volatility, although not to a statistically

significant extent. Also, announcements concerning share repurchase programs,

therefore directly related to the balance sheet of the company, have a significant

impact on the volatility of the share price.

2 Eliminating spurious jump detections

2.1 Setting and assumptions

The Black-Scholes option pricing model assumes that stock prices follow a

stochastic process that generates a continuous trajectory. This requirement im-

plies that over a short period of time, the stock price cannot suddenly change

by much. This assumption is challenged by the too many outliers observed in

empirical studies and the behavior of option prices3. One solution to capture

the skewness and kurtosis of asset returns is to include jumps, i.e., to allow

for stock price variations of extraordinary magnitude, no matter how small the

interval between successive observations. As explained by Merton (1976), in-

cluding jumps also allows to solve the discrepancy between market prices of

options and their Black-Scholes value. The stock price is then written as a

combination of two types of changes. The continuous part models normal vari-

ations in price. The jump part captures abnormal variations. In Merton (1976),

the latter are supposed to be due to the arrival of new important information

about the stock. Typically, such information is most often specific to the firm

or its industry.

Let Xt for continuous time t ≥ 0 denote the log-price of the asset. The

workhorse model of modern asset pricing theory assumes that the log-price

follows an Itô semimartingale. A semimartingale can be decomposed into the

sum of a drift, a continuous Brownian-driven part, and a discontinuous, or

jump, part:

dXt = btdt+ σtdWt︸ ︷︷ ︸
continuous part

+ dJt︸︷︷︸
jump part

,

where Wt denotes a standard Brownian motion and Jt is a pure jump pro-

cess. We follow the assumption that jumps are relatively rare and large events

(Merton (1976), Barndorff-Nielsen and Shephard (2006)), and do not consider

infinite-activity jumps (Aı̈t-Sahalia (2004)).

3See Aı̈t-Sahalia (2002), Carr and Wu (2003), who test whether a diffusion is sensible to
model asset prices.
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Identifying jumps empirically is difficult because only discretely sampled

data are available. In reality, detecting jumps amounts to answering the fol-

lowing question. Given that we observe in discrete data a change in the asset

return of a large magnitude, what does that tell us about the likelihood that

such a change involves a jump, as opposed to just a large realization of the

Brownian part?

2.2 Thresholding technique

Numerous jump detection methods have been developed since high-frequency

data have become easily available. In a typical empirical application, the jump

tests are applied to detect the jump days over a sample period. For each day, a

test statistic S is computed to test the null hypothesis of no jump. The problem

is that performing the tests for many days simultaneously results in conducting

multiple testing, which by nature leads to making a proportion of spurious

detections equal to the significance level of the individual tests. For example,

if the individual tests are performed at the 5% significance level during a one-

year period with no single jump, by construction on average more than 12 days

are going to be erroneously selected as containing a jump. As we show in our

simulation experiments, it is essential to remove these spurious detections when

studying the proportion of jump days and jump dynamics. Not accounting for

spurious detections leads to wrong calibration of risk management and option

pricing models. An ad hoc response to the multiple testing issue has been the

use of critical values further in the tails, i.e., 0.1% critical values in Bollerslev,

Law and Tauchen (2008) and Giot, Laurent and Petitjean (2010).

The major methodological contribution of the present paper is to propose a

formal treatment to the multiple testing issue. We are the first to explicitly ac-

count for multiple testing when applying jump tests over many days. Applying

the jump detection methods of Andersen, Bollerslev and Dobrev (2007) and Lee

and Mykland (2008) on a single day leads to a multiple testing situation that

is taken into account by both methods. Their approaches require performing a

number of tests simultaneously within the day when computing one individual

test statistic. Andersen, Bollerslev and Dobrev (2007) control for the size of

the multiple jump tests using a Bonferroni correction. Lee and Mykland (2008)

use the extreme value theory. To our knowledge, however, there is no empirical

and theoretical literature on the issues arising when applying a jump detection

test on a sample containing a large number of days. Lee and Hannig (2010)

perform a multiple test adjustment only when assessing small Lévy jumps but

make no adjustment when looking at big jumps.
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Our thresholding technique allows to eliminate the spurious detections,

based on the following theoretical result developed in detail in the appendix.

Denote by N the number of days in the study, and by n the number of observa-

tions per day used to compute each individual test statistic. We obtain a series

of daily statistics which can be written as (Sn1 , . . . , S
n
N ). For most available tests,

under the null hypothesis of no jumps, the statistics converge to independent

standard normal random variables. Theorem 1 of the appendix states that, un-

der some technical conditions about the relative rate of convergence of n with

respect to N and about the underlying price process, we get, under the null

hypothesis of no jumps, P

[
sup
t
|Snt | ≤

√
2 logN

]
→ 1, as N,n → ∞. This

means that, if there are no jumps, the event that the largest and the smallest

of the entries of the vector (Sn1 , . . . , S
n
N ) stay within

[
−
√

2 logN,
√

2 logN
]

be-

comes certain for large n and N . The bound
√

2 logN is the so-called universal

threshold for a sample of size N . As explained in Donoho and Johnstone (1994),

it is asymptotically a common, i.e., universal, upper bound on the root mean

square error of thresholded estimates in multivariate normal decision theory.

Using the theorem, we obtain a method to eliminate spurious detections

that can be applied very easily on top of most existing jump detection tests. In

the first step, we compute the test statistics individually for each day. In the

second step, we discard statistics in the band
[
−
√

2 logN,
√

2 logN
]
. This way,

spurious detections of jumps become negligible with high probability. Our the-

oretical results legitimize the ad hoc choice of more conservative critical values.

The precise statement and the proof of the theorem are in the appendix, for a

general test statistic, as well as for the specific example of the BNS statistic.

The theorem provides a theoretically appropriate significance level, which de-

pends on the number N of tests, instead of an ad hoc one. Indeed, we can map

the universal threshold
√

2 logN into a significance level αN by using the char-

acterization of the quantile of a standard Gaussian. We just need to compute

αN/2 = (1− Φ(
√

2 logN)), where Φ is the cdf of a standard Gaussian random

variable. By solving 0.2%/2 = (1 − Φ(
√

2 logN)), we deduce that an a priori

ad-hoc rule based on 0.2% for two-sided tests is misguided when N is differ-

ent from exp((Φ−1(1 − .002/2))2/2) ' 118, a little bit less than a half year of

data. If N > 118, we need to use a larger threshold
√

2 logN (larger bands), or

equivalently a smaller probability level αN , to get an adequate multiple testing

control. One-sided tests give the same size and power if you use half of the

significance level, for example 0.1%.
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2.3 FDR thresholding

In addition to the universal threshold, we also report results using the data-

adaptive thresholding scheme of Abramovich, Benjamini, Donoho and John-

stone (2006), based on the control of the false discovery rate (FDR). FDR

control is a relatively recent innovation in simultaneous testing, which ensures

that at most a certain expected fraction of the rejected null hypothesis cor-

respond to spurious detections. Barras, Scaillet and Wermers (2010) use the

FDR in the context of mutual fund performance assessment, and Bajgrowicz

and Scaillet (2012) to account for data snooping while assessing performance of

technical trading rules. Throughout the paper, we set the FDR target level at

10%, which results in a less conservative threshold level than with the universal

threshold, and eliminates fewer jump days. When we set the control of the

FDR at 10%, we are more liberal and admit that 10% of the rejected null hy-

potheses, i.e., detected jump days, will be by construction spurious. We obtain

qualitatively similar results with an FDR level between 5% and 20%. Setting

the FDR target level to zero is equivalent to using the universal threshold. The

FDR approach results in a threshold inherently adaptive to the data. The FDR

threshold is higher when there are few true jumps, i.e., the signal is sparse, and

lower when there are many jumps, i.e., the signal is dense.

The choice of which threshold to use—universal or FDR—depends on the

application. If, for example, we are interested in the probability of a jump

conditional on a news release, the FDR threshold is more appropriate as it

reduces the likelihood of missing true jumps. On the other hand, if the goal

is to study what kind of news cause jumps, it is better to apply the universal

threshold in order to avoid looking vainly for a news when in fact the detection

is spurious.

2.4 Jump detection techniques

Our thresholding technique can be applied to most existing jump detection

tests. In the present paper, we use the standard tests of BNS and COP, with

respective frequencies of 2 minutes and 10 seconds4.

The essence of the BNS jump detection method is to compare the real-

ized quadratic variation which incorporates volatility originating from jumps

4Determining from high-frequency data whether an asset return process has jumps has
been considered by a number of authors, see e.g., Carr and Wu (2003), Barndorff-Nielsen and
Shephard (2006), Andersen, Bollerslev, Diebold and Labys (2003), Andersen, Bollerslev and
Diebold (2007), Huang and Tauchen (2005), Andersen, Bollerslev and Dobrev (2007), Lee
and Mykland (2008), Fan and Wang (2007), Jiang and Oomen (2008), Aı̈t-Sahalia and Jacod
(2009), Andersen, Dobrev and Schaumburg (2012), Mancini (2009), Lee and Hannig (2010)
and Christensen, Oomen and Podolskij (2011).
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(if present) to the realized bipower variation which is robust to jumps. Each

day t = 1, . . . , N , we observe the log price process X at the discrete times

i∆n, i = 1, . . . , n + 1, where ∆n is the sampling interval and n is large.

We denote by Xt,i∆n the ith intraday price observation on day t, and by

∆Xn
t,i ≡ Xt,(i+1)∆n

− Xt,i∆n the ith intraday return on day t, i = 1, . . . , n.

The realized quadratic variation (RV ) and the realized bipower variation (BV )

of X are defined as follows and converge to different quantities of the underlying

jump-diffusion process.

RV n
t ≡

n∑
i=1

(∆Xn
t,i)

2 −−−→
n→∞

∫ t

t−1
σ2
sds+

Nt∑
i>Nt−1

c2
i ,

BV n
t ≡

n∑
i=2

|∆Xn
t,i||∆Xn

t,i−1| −−−→n→∞
µ2

1

∫ t

t−1
σ2
sds,

where µ1 =
√

2/
√
π, Nt is a simple counting process and the ci are nonzero

random variables so that Jt =
∑Nt

i=1 ci . If the jumps are of finite activity, the

probability of observing jumps in two consecutive returns approaches zero. Con-

sequently, the product of any two consecutive returns is asymptotically driven

by the diffusion component only and the contribution of jumps is eliminated in

the bipower variation. The assumption underlying the BNS test that jumps are

large and rare events makes it particularly well-suited for our analysis of the

impact of important news.

One of the statistic we use in the remaining of the paper is the adjusted ratio

statistic of BNS defined below. It is the preferred test in Huang and Tauchen

(2005) who investigate size, jump detection rate, and power properties. Up to

a scaling factor, the ratio
µ−2
1 BV nt
RV nt

− 1 converges to a standard normal random

variable under the null hypothesis of no jumps:

∆
−1/2
n√

ϑmax ((n∆n)−1, QV n
t /(BV

n
t )2)

(
µ−2

1 BV n
t

RV n
t

− 1

)
→ N (0, 1),

whereQV n
t ≡ ∆−1

n

∑n
i=4 |∆Xn

t,i||∆Xn
t,i−1||∆Xn

t,i−2||∆Xn
t,i−3|, is the realized quad-

power variation, and ϑ = (π2/4) + π − 5.

COP show that low frequency analysis, i.e. when the sampling interval ∆n

is not sufficiently small, seriously overestimate the number of jumps because

of frequent bursts of volatility. They advocate the use of high frequency data

with an adequate estimator, which is robust to microstructure noise. The BNS

estimator does not have this robustness property and its size is biased at high

frequencies, in particular (see, e.g., Huang and Tauchen (2005)). We consider
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noise-robust versions of RV and BV denoted by R̄V
n
t and B̄V

n
t , for which noise is

smoothed out with a pre-averaging technique. We follow the suggestion of COP

and use the weighting function g : [0, 1] → R defined by g(x) ≡ min(x, 1 − x).

These noise-robust estimators have the same respective probability limits as

the noise-free analogs RV n
t and BV n

t . For this reason, we can use the distance

between R̄V
n
t and B̄V

n
t to test for the presence of jumps. Precisely, COP show

that under some regularity conditions, the following convergence in distribution

holds:

n1/4√
Σ̄11 + Σ̄22 − 2Σ̄12/(µ

−2
1 B̄V

n
t )

ln

(
R̄V

n
t

µ−2
1 B̄V

n
t

)
→ N (0, 1),

where
(
Σ̄ij

)
1≤i,j≤2

denote individual entries of the asymptotic covariance matrix

of the bivariate vector n1/4(R̄V
n
t −
∫ t
t−1 σ

2
sds, µ

−2
1 B̄V

n
t −
∫ t
t−1 σ

2
sds). In practice,

this matrix is not known and we estimate it using the subsampling technique

of COP. Additionally, we implement the threshold filter proposed by COP in

order to estimate B̄V
n
t . Our Monte Carlo simulation study confirms that it

is primordial to pre-trim the data to reduce the small sample bias5. The data

generating process for the log-price is the two-factor stochastic volatility model6

with rare jumps as in Chernov, Gallant, Ghysels and Tauchen (2003) and Huang

and Tauchen (2005). This choice allows us to check the impact of sudden bursts

of volatility which might alter our jump detection technique. The conclusions of

the Monte Carlo study is that implementation of the COP estimator corrected

for multiple testing provides excellent statistical properties for empirical work.

3 Empirical results on true proportion of jump days

We conduct our analysis over the three-year period from January 2006 to De-

cember 2008, on the 30 stocks composing the Dow Jones Industrial Average

(DJIA) index between November 21, 2005 and February 19, 2008. Most stocks

are listed on the NYSE, except for Microsoft and Intel which are listed on

the NASDAQ. The cleaning of high-frequency data has been highlighted in

e.g. Dacorogna, Gencay, Muller, Olsen and Pictet (2001), and Hansen and

5We refer to COP for further details on the filtering technique and on the precise definition
of R̄V

n
t and B̄V

n
t , as well as for a detailed explanation of the asymptotic covariance matrix

estimation and the threshold filter used to estimate the BV. Notice that Podolskij and Vetter
(2009a) propose an alternative element by element estimator of the asymptotic covariance
matrix, but their approach does not guarantee positive semi-positiveness, which is particularly
problematic with small samples.

6An alternative choice to have a persistent component and a rapidly moving component in
the diffusion part could be a volatility driven by a diffusive component and a jump component
as in Eraker, Johannes and Polson (2003).
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Lunde (2006). We closely follow Barndorff-Nielsen, Hansen, Lunde and Shep-

hard (2009) and also discard ‘bounce back’ outliers as defined in Aı̈t-Sahalia,

Mykland and Zhang (2011). The supplemental file gives a detailed description

of the data and the cleaning procedure.

[Figure 1]

Table 1 shows the average number of detections per year for each stock

at 2 minutes and 10 seconds frequencies. For the latter, the results are given

respectively before thresholding, after applying the universal threshold, and

after applying the FDR threshold7. The table reveals two different sources

of bias when we try to detect jumps. First, we find many less jumps at the

higher frequency than at the lower frequency. This result is consistent with

the findings of COP, who argue that the frequent bursts of volatility in asset

prices are incorrectly interpreted as jumps when the sampling grid is too sparse.

Indeed, financial series tend to have a highly dynamic conditional volatility,

which leads to fast but continuous price changes. A high frequency sampling

captures intermediary price steps and avoids these spurious detections. Second,

Table 1 reveals an even more severe source of spurious detections due to multiple

testing. In average, the FDR threshold removes more than 75% of the residual

jump dates of the 10 seconds case. The universal threshold gets rid of even more

jump dates. The average number of actual jumps per year amounts to less than

5. This means that both biases should be considered for a jump analysis; we

need to use high frequency sampling and to correct for spurious detections. For

this reason, we consider a 10 seconds frequency and a FDR threshold in the

following. We always present results at the 2 minutes frequency and without

thresholding for comparison purpose.

The Monte Carlo study shows the good properties of the underlying jump

detection method and of our thresholding technique. Although the power de-

teriorates with diminishing jump size and sampling frequency, the simulation

results are very good. In practice, the results can be heavily influenced by dif-

ferent phenomena acting simultaneously. Not knowing which effect is stronger

(e.g. very small jumps, microstructure noise) renders the analysis of the re-

sults even more difficult. One illustration of the difficulty to run the tests on

real data is the low intersection between jumps detected by different tests. For

example, Gilder (2009) shows that the methods of Andersen, Bollerslev and

Dobrev (2007) and BNS agree on only 50% of detected jump days, and COP

7We obtain similar results with the COP estimator at 5 and 20 seconds frequency. Results
are available on request.
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get very limited jump days in common with BNS. Part of this discrepency is

due to erroneous detections.

[Table 1]

As an illustration, Figure 1 shows the thresholding process for Boeing (BA)

during the first six months of 2007. For each day in the sample, the points show

the value of the COP statistic at the 10 seconds minutes frequency. Dashed

lines show the critical value of the individual tests, the FDR threshold, and the

universal threshold. The dates selected after applying the FDR threshold are

shown by asterisks, and the corresponding spurious detections are depicted by

circles.

4 Dynamics of jump occurrences

In this section, we study the dynamics of jump arrivals and show how impor-

tant it is to remove the spurious detections in order to obtain correct results.

Since the work of Merton (1976) on the application of jump processes in op-

tion pricing, the inclusion of jumps in financial modeling has gained a lot of

attention amongst academics and practitioners. The empirical literature shows

that deep-in-the-money, deep-out-of-the-money, and shorter-maturity options

tend to sell for more than their Black-Scholes price, and longer-maturity and

marginally in-the-money options sell for less. Merton (1976) suggests to cor-

rect the discrepancies between market prices and the Black-Scholes value of

options by including a jump component. For deep-out-of-the-money call op-

tions, there is relatively little probability that the stock price exceeds the strike

price prior to expiration if we exclude the possibility of jumps. However, the

possibility of a jump in price significantly increases this probability, and hence,

makes the option more valuable. Similarly, for deep-in-the-money call options,

there is little chance that the stock will decline below the exercise price prior

to expiration if the underlying process is continuous. However, this event be-

comes non-negligible if we allow for the possibility of jumps. The phenomenon

is exacerbated with short-maturity options

The widely used assumption is that jump arrival times follow a simple Pois-

son process, or equivalently that durations between successive jumps are inde-

pendent and exponentially distributed. In the present section, we study the

dynamics of jump arrivals to assess whether this assumption is realistic, or

whether there is a dependency between successive jump arrivals. The jump

tests of BNS and COP indicate whether one or more jumps occurred on a given
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day but do not give the exact number of jumps. As a result, we cannot observe

the durations between successive jumps and are unable to test whether they

follow an exponential distribution. For the same reason, because we do not

know the probability of more than one jump in a day, we cannot use the stan-

dard methods to test whether jump occurrences are driven by a simple Poisson

process. To circumvent this difficulty, we use the runs test developed by Mood

(1940)8. As we show in the supplemental file by performing a Monte Carlo

study, the runs test is a powerful method to detect clustering of jumps in time.

Removing the spurious detections, e.g., with our thresholding technique, is es-

sential in order to get a correct picture of the jumps dynamics. Table 2 reports

the results of the runs test for the 30 Dow Jones stocks over the period from

January 2006 to December 2008. With no account for spurious detections, ap-

proximately 10% of the stocks reveal clustering in jumps at both 2 minutes and

10 seconds frequencies but they do not agree on the stocks because of spurious

jump detections. In the 2 minutes case, American International Group, Mi-

crosoft and AT&T are rejected by the runs test, whereas Boeing and Procter &

Gamble are rejected at the 10 seconds frequency. This is not surprising as COP

show that the jump dates are very different depending on the estimator and

the frequency considered. Additionally, many detections are spurious because

of multiple testing. Applying the FDR threshold or the universal threshold in

the high frequency case corrects for these errors and removes remaining rejec-

tions of the runs test. Additionally, looking at our two index proxies, the runs

test indicates that neither DIA nor PWI do cluster in time. Since jump occur-

rences are very rare after controlling for multiple testing, we observe a strong

non-rejection of the null hypothesis of no clustering. Overall, our results do not

invalidate the assumption that jump are driven by a simple Poisson process.

[Table 2]

Even if we do not observe exactly the durations between successive jumps, in

particular if there are many jumps within the same day, we can still estimate the

parameters of the simple Poisson process that would have most likely generated

the observations. If we suppose that the durations between jumps follow an

8The runs test compares the number of sequences of consecutive days with jump and
without jump, or runs, against its sampling distribution under the hypothesis of random
arrival. For example, a particular sequence of 10 jump tests may be represented by 0011101001,
containing three runs of 1s, and three runs of 0s. In contrast, the sequence 1111100000 contains
the same number of 0s and 1s, but only two runs. Too few runs indicate the presence of
clustering. Too many runs indicate an oscillation. The runs test has been used in Fama
(1965) to test the random walk hypothesis of stock returns. See Section 2.2.2 of Campbell, Lo
and MacKinlay (1996) for details and the exact test statistic. We use the runstest function
from the MATLAB Statistics Toolbox.

14



exponential distribution with parameter λ, then the probability of one or more

jumps occurring on a given day is 1 − e−λ. Hence, even if we do not observe

the exact number of jumps within days, we can estimate λ as λ̂ = − ln(1− p̂),
where p̂ denotes the estimated probability of occurrence of a jump, obtained as

the ratio of the number of days with jumps over the total number of days. We

find intensities between 0.0040 and 0.0244, or equivalently average durations of

250.0 and 41.0 days.

5 Cojumps

Among other explanations, jumps in individual stocks can be due to stock-

specific news or common market-level news. Market-level news can cause jumps

in many stocks simultaneously, which can in theory propagate even to a diver-

sified index. In this section, we study simultaneous jumps (cojumps) in the

Dow Jones stocks and their relation to jumps in the index. We examine in

detail the relation between jumps and news announcements in the next section.

Other empirical studies of cojumps include Bollerslev, Law and Tauchen (2008)

who examine the relationship between jumps in a sample of forty large-cap

U.S. stocks and the corresponding aggregate market index, Lahaye, Laurent

and Neely (2011a) who investigate cojumps between stock index futures, bond

futures, and exchange rates, and Dungey, McKenzie and Smith (2009) who

consider simultaneous jumps across the term structure.

We define cojumps with the univariate tests as simultaneous significant

jumps, i.e., occurring on the same day, rather than using the multivariate tests

proposed e.g. by Bollerslev, Law and Tauchen (2008), or Jacod and Todorov

(2009). We detect a jump in more than 20% of the stocks on only two occasions

when applying the FDR threshold or the universal threshold (February 15, 2008

and May 29, 2008). Those two events happen during the subprime crisis, but

interestingly, there appears to be no date where more than 20% of the stocks

jump together during the highly volatile second semester of 2008. Considering

a 2 minutes frequency with no thresholding gives a totally different picture of

the joint structure of jump events. Because of the positive bias inherent to this

method, the results incorrectly suggest that cojumps involving a large portion

of the market constituents are frequent. For instance, jumps occurring in more

than 40% of the data occur in 17% of the jump detection dates, whereas the

COP estimator corrected for multiple-testing detects no single cojump affecting

more than 40% of Dow Jones constituents during the three years of our study.

The same pattern is revealed when we group stocks by industry sectors.

Many cojumps are identified at a 2 minutes frequency without multiple testing
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correction but disappear at higher frequency and with thresholding. Table 3

shows the repartition of our thirty stocks among the different Global Industry

Classification Standard9 (GICS) sectors, and Table 4 displays the number of

cojumps within each sector for respectively, no account for spurious detections

at 2 minutes and 10 seconds frequencies, and use of the universal threshold and

FDR threshold at 10 seconds frequency. An asterisk indicates that there are

significantly more cojumps than if the stocks jumped independently10. For all

but one sectors the number of cojumps is significant at a 2 minutes frequency.

However, correcting for both biases using the thresholded COP estimator at

a 10 seconds frequency again confirms that cojumps are extremely rare. The

data reveal no day where there are significantly more cojumps than if the stocks

jump independently.

[Tables 3 and 4]

Then, we investigate the relation between jumps in our index proxies and

jumps in the individual Dow Jones stocks. Table 5 shows the likelihood of a

jump in DIA or PWI conditional on the proportion of stocks cojumping. We

find that cojumps affecting less than 10% of the stocks are very unlikely to have

a market-wide impact. DIA and PWI jump in 1.1% and 1.5% of these dates

when we apply the FDR threshold, respectively; the universal threshold is even

more severe as it detects less than 0.5% of market jumps in this case. This is

a significant result as it means that not only jumps are extremely rare events,

but they also generally do not induce market-wide jumps. This is a strong

argument in favor of diversifiability of the jump risk.

Table 6 displays information on the distribution of the proportion of stocks

jumping simultaneously, depending on whether or not there is a jump in the

index. When applying the FDR threshold, the average percentage of stocks

jumping raises from 1.0% to 3.3% when there is a jump in DIA, and can reach

23.3%. With no jump in the index, the percentage of stocks jumping on the

same day never exceeds 16.7%. Our results agree with the findings of Bollerslev,

Law and Tauchen (2008), who report that the index jumps less often than the

individual stocks, and conclude that the idiosyncratic jumps are diversified away

in the aggregate portfolio. They also examine the puzzling fact that jumps in

the index are uncorrelated with jumps in its constituents.

9The Global Industry Classification Standard (GICS) is an industry taxonomy developed
by Morgan Stanley Capital International (MSCI) and Standard & Poor’s.

10Under the null hypothesis that stocks jump independently, the probability that the stocks
jump simultaneously on a given day is the product of the jump probabilities of the individ-
ual stocks. The distribution of the corresponding test statistic is obtained from a simple
application of the Central Limit Theorem and the Delta method.
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[Tables 5 and 6]

6 Relation to news releases

Having removed the spurious detections with our thresholding technique, we

now investigate to which extent the few residual jumps are caused by the ar-

rival of news. We cover three different categories of news. We first consider

macroeconomic news, which can in theory explain the rare simultaneous jumps

in multiple stocks. Next, we look at prescheduled announcements specific to

each stock. Finally, we analyze the impact of stories from news agencies, i.e.,

Reuters and Dow Jones News Service. We show thanks to our methodology that

the popular belief in a relationship between jumps and these three categories is

not supported by high-frequency data.

6.1 Relation to macroeconomic news release

In this section, we investigate the impact of macroeconomic announcements,

which are the most likely sort of news to cause simultaneous jumps among

many stocks. Our results confirm the findings of the previous section that co-

jumps are a very rare event. There is a long literature on the market reaction

to macroeconomic news. Cutler, Poterba and Summers (1989) estimate the

fraction of the variance in aggregate stock returns that can be attributed to

various kinds of news, including major political and world events. Ederington

and Lee (1993) and Ederington and Lee (1996) are the first to investigate the

intraday reaction of bond prices to macro announcements. More recently, An-

dersen, Bollerslev, Diebold and Vega (2007) show using high-frequency data

that reaction times to news are very short, and Aı̈t-Sahalia, Andritzky, Jobst,

Nowak and Tamirisa (2012) examine the market response to policy initiatives

during the recent financial crisis. To our knowledge, however, the only papers

studying the link between jumps in assets and macroeconomic news are Dungey,

McKenzie and Smith (2009), Lahaye, Laurent and Neely (2011b), and Huang

(2007). Numerous other studies which mention the relation of jumps to macroe-

conomic announcements merely investigate the timing of jumps to see whether

an unusual pattern corresponds to a regularly scheduled news announcement.

For all announcements except the target Fed funds rate, we use the Interna-

tional Money Market Services (MMS) data on expected (surveyed) and realized

(announced) macroeconomic fundamentals. MMS conducts a Friday telephone

survey of about 40 money managers, collects forecasts of all indicators to be

released during the next week, and reports the median forecasts from the sur-

17



vey. One of the first article to use the MMS survey data is Andersen, Bollerslev,

Diebold and Vega (2003). The authors study the effect of macro announcements

on U.S. dollar spot exchange rates but do not look at jumps. The target Fed

funds rate forecasts are obtained from Action Economics, which also gathers

estimates on economic data once a week from economists, strategists, and a few

traders. We obtain the data from Haver Analytics. As of December 16, 2008,

the funds target rate is a range, i.e., zero to 0.25%, rather than a specific rate.

The Federal Open Market Committee (FOMC) can also surprise the market by

changing the Fed funds target between scheduled meetings. In our sample, the

decisions following such unscheduled meetings are always released early on the

next morning and therefore do not cause jumps during market hours.

[Tables 7 and 8]

We consider only the announcements released during the trading hours,

listed in Table 7. Table 8 presents the results with the BNS estimator at 2

minutes frequency, and the COP estimator at 10 seconds frequency with re-

spectively no thresholding, use of the universal threshold, and use of the FDR

threshold. For each macroeconomic news, the table displays the number of

announcement days in our sample, the average probability of a jump in individ-

ual stocks on an announcement day, the probability of a jump in the Diamonds

ETF, and the probability of a jump in our PWI portfolio. The last row presents

corresponding results based on all days in our sample independently on the pres-

ence or absence of news.

The impact of the sampling frequency is notable. At a 2 minutes frequency,

most macroeconomic news announcement types generate a significant proba-

bility of jump in stocks and also at the index level. At a 10 seconds frequency

with COP though, the significance disappears even before correcting for multi-

ple testing. The FDR threshold and universal threshold only make this result

stronger by removing most of the residual jump detections on announcement

days. This result suggests that macroeconomic news generate financial reac-

tions of the form of sudden rises of volatility, which are incorrectly interpreted

as jumps when the sampling is not fine enough. In order to go further with

this intuition, we define a burst of volatility as a jump that is identified at a

relatively low frequency but is not at high frequency. This concept is already

put forward by COP. We consider the thresholded version of the BNS estima-

tor at a 2 minutes frequency and compare the jump dates with the thresholded

version of COP a 10 seconds frequency. We find that the only announcement

which actually increases the likelihood of a burst of volatility is the target Fed

funds rate.
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It may not be the act of releasing information to the market itself that is im-

portant. Rather, it may be the extent to which the actual announcement differs

from the market expectation, i.e., the surprise content of each announcement,

that determines whether assets jump in reaction to the information release.

We capture the surprise content of the announcements using the survey data

from MMS and Action Economics. To account for the discrepancies across

the various news items, we compute the standardized surprise, defined as the

difference between expectations and realizations, divided by the standard de-

viation. We do not observe any effect caused by the surprise component of

macro news announcements, even if we consider separately surprises above and

below expectations. The detailed analysis of the above results is available upon

request.

6.2 Relation to scheduled company-specific announcements

In this section, we look at two types of scheduled company-specific announce-

ments. First, we investigate whether dividends can cause the stock price to

jump. We obtain data from COMPUSTAT and CRSP (for the declaration

date). We do not observe significantly more jumps on the ex-dividend date.

This result is not surprising, given that companies usually commit to a divi-

dend policy for the long run, that the amounts are known in advance, and that

dividends are settled after the bell. The likelihood of a jump increases slightly

on the dividend declaration date, but this is not statistically significant. Pool-

ing all the stocks together, the observed probability of a jump on a dividend

declaration day is 2.0% against 1.2% when applying the FDR threshold.

Second, using data from I/B/E/S, we perform a similar analysis for quar-

terly earnings announcements. Patton and Verardo (2012) show that the beta

of individual stocks increases by an economically significant amount on quar-

terly earnings announcement days. We do not, however, detect any effect on the

likelihood of a jump in the price. This is explained by the fact that earnings are

most often published outside of the trading hours. Using the Factiva database,

Bagnoli, Clement and Watts (2005) find that between 2000 and 2003, only 27%

of earnings announcements occur during trading hours on the major New York

stock exchanges. That figure was higher in the past, i.e., 67% in the 1970s.

Managers choose the release time of news strategically to minimize the impact

of the news on share prices. Therefore, managers attempt to release bad news

when investors have limited opportunities to act on it. Another explanation is

that managers delay the release of bad news so investors anticipate it, thus mit-

igating the drop in stock price at the announcement itself. Finally, we focus on
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the 15 announcements made during trading hours, which represent only 4.2%

of all the announcements for the 30 stocks during our three-year sample, and

find that it does not increase the likelihood of a jump neither. The detailed

analysis of the impact of dividends and quarterly earnings announcements is

available upon request.

6.3 Relation to stories from news agencies

We investigate whether jumps can be explained by news stories from two major

newswires, i.e., Dow Jones News Service (DJNS) and Reuters News. By ex-

amining the content of news stories, we can analyze the impact of a variety of

unscheduled and uncategorized events and are not limited to a predetermined

set of event types such as earnings announcements, mergers, or analyst recom-

mendations. To our knowledge, the present study is the first to perform an

extensive study of news stories and investigate whether they can cause jumps

in stock prices. Previous attempts to study the impact of news are much less

detailed, e.g., Cutler, Poterba and Summers (1989) or Lee and Mykland (2008)

who consider a small sample of three stocks over three months. Tetlock (2007)

and Tetlock, Saar-Tsechansky and Macskassy (2008) also analyze financial news

stories, though their goal is to quantifying the language in an attempt to extract

investor sentiment.

We access the DJNS and Reuters News newswires through Factiva. Factiva

is a news database that aggregates content from thousands of leading news and

business sources. Retrieving information effectively from such a huge repository

is a difficult task. The perfect mix of getting everything and avoiding irrelevant

or erroneous stories is difficult to achieve. The technology to automatically

quantifying language content is not ripe for the scope of our study11. Therefore,

we rely on the taxonomy applied by Factiva which provides a hierarchy of

company names, industries, regions, and subjects. Such an indexing allows to

narrow search results on a specific topic, or retrieve stories which are actually

about a particular company, and not all the stories where the company name

merely occurs.

The Factiva web interface does not allow to perform queries on the “pub-

lication time” field, and it is not possible to automate or customize queries.

To circumvent this problem, we export all the news stories in XML format.

11Tetlock (2007) and Tetlock, Saar-Tsechansky and Macskassy (2008) are only able to con-
struct a simple indicator of media pessimism, or look at the fraction of negative words. In the
industry, the Thomson Reuters News Analytics service claims to be able to interpret news by
providing sentiment analysis. However, each news is merely attributed a -1, 0, or 1 sentiment
indication and no study is available on how relevant this indication really is.
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We then parse the XML files and reconstruct our own database. Although the

“publication time” field is not searchable using the web interface, it is encoded

properly when exporting documents in XML format. As we can download the

full articles with indexing, we do not loose any information. This process also

allows us to perform text analysis inside the articles, and run custom searches

efficiently. Keeping news published in the US only, we are left with 30,071

DJNS stories and 31,228 Reuters stories about our thirty companies during our

three-year sample12. The stocks we consider are large multinational companies

and are the subject of one or more important stories almost every day. We

further eliminate irrelevant stories by selecting news published during market

hours only and by requiring that the company name appears in the headline13.

This allows us to reduce the number of stories to 8,498 for DJNS and 6,520 for

Reuters News, which corresponds to around one story every three days for each

stock.

Having eliminated the irrelevant stories, we analyze the probability of jumps

occurring on specific news types using the Factiva indexing hierarchy. We also

investigate the impact of news flagged as “Dow Jones/Reuters Top Wire News”

in order to capture any uncategorized and unusual story. An important pro-

portion of the “Top Wire News” are stories about earnings. The majority of

them is discarded, however, when we eliminate news released outside market

hours. Table 9 presents results for a selection of news types susceptible to

cause jumps. Results for further kinds of news are available upon request. As

one additional precaution, we require that a particular news appears simul-

taneously on both the DJNS and Reuters News wires. For each news type,

the first two columns indicate the total number of stories and the number of

stories published during market hours. 78 percent of the announcements are

made outside market hours. Once again, only by importing the news stories

into our own database are we able to filter out news outside market hours auto-

matically. The remaining columns show the conditional pooled probability of a

jump on days a news is released, for each type of news. After applying the FDR

threshold, the unconditional probability of a jump computed over all days and

stocks is 1.4 percent. The news types for which we observe an increased prob-

12These numbers are obtained by using the Factiva option to remove duplicates and ex-
clude republished news, recurring pricing and market data, and non-business stories such as
obituaries, sports or calendars.

13The Factiva indexing system does not solve the aboutness vs occurrence issue perfectly.
For instance, an article containing a “Top Wire News” story about Microsoft and secondarily
mentioning Intel will also be retrieved in a search for “Top Wire News” and Intel, although
the information might be not very important for Intel. When imposing that the headline
mentions the company name, we must account for the fact that one company can have different
denominations. For example, Bank of America appears as BofA, Bank of Amer, or B of A.
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ability of jumps are “Government Contracts” (4.5%), “Dividends” (2.2%) and

“Divestitures / Asset Sales” (7.1%) (a subcategory of “Ownership Changes”).

However, none of these increases are statistically significant, which shows that

news stories are not very likely to cause jumps. Companies purposefully shift

most important announcements after the bell or early in the morning in order

to avoid uncontrolled investor reactions and the consequent impact on the stock

price.

[Table 9]

Our findings differ from the conclusions of Lee and Mykland (2008). First,

Lee and Mykland (2008) sample at the low 15-minute frequency and keep the

opening transactions, which leads them to systematically detect jumps in the

first return of a day. The opening transactions of each day are very erratic and

do not correspond to normal returns as they result from information accumu-

lated over the night. Second, the companies under consideration are the subject

of news articles every day. It is therefore not surprising that Lee and Mykland

(2008) are able to find a story for each day they detect a jump. If all such

events would systematically induce jumps, we should observe jumps scattered

across the day, and not just when the market opens.

In the preceding sections, we have investigated the likelihood that a news

release causes a jump, i.e., P(jump|news). In Table 10, we report what propor-

tion of jumps is associated with a particular type of news, i.e., P(news|jump).

When searching for news on jump days, we consider the news investigated in the

preceding sections, i.e., macroeconomic announcements, eanrnings announce-

ments, dividend declaration dates, and Reuters or DJNS news. The number

of announcements corresponds to the total over the 30 stocks. Considering the

number of stocks affected, macroeconomic news are much more frequent than

other types of announcements. As a consequence, we find a macroeconomic

announcement on approximately 30% of jump days. However, no single type

of macroeconomic news we consider significantly increases the likelihood of a

jump.

[Table 10]

7 Conclusion

This paper introduces a method to eliminate spurious detections of jumps in

high-frequency data via an explicit thresholding on available test statistics. Our
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theoretical result is the first to provide a formal treatment of the multiple test-

ing issue when identifying jumps over a long period of time. A Monte Carlo

study shows that our technique behaves well in finite sample, and illustrates

the importance of removing spurious detections when investigating the dynam-

ics of jump arrivals. Applying our method on high-frequency data for the 30

Dow Jones stocks over the three-year period between 2006 and 2008, we find

that up to 90% of days selected initially as containing a jump are spurious de-

tections. Overall, our tests do no detect time clustering phenomena of jumps

arrivals, and, hence, do not reject the hypothesis that jump arrivals are driven

by a simple Poisson process. We do not detect cojumps affecting all stocks

simultaneously, which supports the assumption in Merton (1976) that jump

risk is diversifiable. The main empirical contribution of the paper is to study

the relation between jumps and information arrival. We find that scheduled

macroeconomic announcements and company-specific announcements do not

increase the likelihood of a jump to a statistically significant extent. Using the

Factiva database, we also study the impact of Reuters and Dow Jones News

Service news and find that it does not cause jumps neither. Those results show

that the conjecture about jumps coming from announcements is not supported

by the data. This does not mean announcements have no market impact. Our

results indicate that they may induce bursts of volatility. We consider only U.S.

large capitalization stocks in our empirical study. It would be interesting to in-

vestigate the jump behavior of stocks with different characteristics, especially

when studying liquidity issues as an explanation for jumps.

Appendix: Proof of asymptotic control

We prove Theorem 1 with BNS for simplicity here but it can be applied to

COP. We can also apply it to other strategies yielding jump detection tests,

such as Aı̈t-Sahalia and Jacod (2009) in a similar way. The proof is available

on request. Under the null hypothesis of no jumps, Section 3 of BNS shows

that the asymptotic distribution of jump test statistics converges to indepen-

dent standard normal random variables from a classical use of infill asymptotics.

These standard results follow from showing asymptotic negligibility of the drift

contributions and application of a CLT for triangular arrays of martingale dif-

ferences.

For each integer n ≥ 1, let the real-valued random variables Y n
t,i, 1 ≤ t ≤ N ,

1 ≤ i ≤ n, form N square integrable martingale difference sequences w.r.t. the

σ-fields Fnt,0 ⊂ Fnt,1 ⊂ . . . ⊂ Fnt,n, that is, suppose that Y n
t,i is measurable w.r.t.

Fnt,i with E[(Y n
t,1)2] < ∞ and E[Y n

t,i|Fnt,i] = 0 a.s. for all n, i and t. We apply a
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CLT to quantities written as Snt =
n∑
i=1

Y n
t,i. In the following theorem, we show

that the event that the largest and the smallest of the entries of the vector

(Sn1 , . . . , S
n
N ) stay within [−

√
2 logN,

√
2 logN ] becomes certain for large n and

N . We use two conditions on higher moments, which imply the conditions to

apply the CLT for triangular arrays of martingale differences when n goes to

infinity, and require that N is not too large w.r.t. the asymptotics in n.

Theorem 1. Let Snt =
n∑
i=1

Y n
t,i, 1 ≤ t ≤ N . If, for 0 < γ <∞,

Lnt,2γ = E

[
n∑
i=1

|Y n
t,i|2+2γ

]
→ 0, as n→∞, (1)

Mn
t,2γ = E

∣∣∣∣∣
n∑
i=1

E
[
(Y n
t,i)

2|Fnt,i
]
− 1

∣∣∣∣∣
1+γ
→ 0, as n→∞, (2)

and

(1 +
√

2 logN)3+6γN ≤ α(Lnt,2γ +Mn
t,2γ)−1, (3)

with α > 0. Then,

P

[
sup
t
|Snt | ≤

√
2 logN

]
→ 1, as N,n→∞. (4)

Proof. Conditions (1) and (2) imply the conditions of the CLT for triangu-

lar arrays of martingale differences, and we get the weak convergence of the

distribution P [Snt ≤ x] to the standard normal distribution Φ(x) as n → ∞.

Now P

[
sup
t
|Snt | ≤

√
2 logN

]
= P

[
|Sn1 | ≤

√
2 logN, . . . , |SnN | ≤

√
2 logN

]
=

N∏
t=1

P
[
|Snt | ≤

√
2 logN

]
by independence. We have independence since a mar-

tingale difference sequence has no serial correlation by construction (see e.g.

Hayashi (2000) p. 104 for a proof), the entries Snt are linear combinations

of Y n
t,i forming martingale difference sequences, all σ-fields indexed by i and

t are increasing, and the equivalence between zero correlation and indepen-

dence for Gaussian vectors. From Grama (1997) Theorem 2.1, Condition (3)

ensures that we can use exact bounds for the departure from normality of

P
[
Snt ≥

√
2 logN

]
and P

[
Snt ≤ −

√
2 logN

]
(see also Hauesler (1988) Theo-

rem 2 for exact uniform bounds, and Lipster and Shiryayev (1989) Section 5.7

Theorems 1 and 2 for uniform bounds, i.e., Berry-Esseen type bounds, instead

of the exact nonuniform bounds for moderate deviations that we use here). We
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get
∏N
t=1 P

[
|Snt | ≤

√
2 logN

]
=
∏N
t=1

[
1− 2Φ(−

√
2 logN) {1 +Rt(α, γ,N)}

]
,

where Rt(α, γ,N) = θC(α, γ)
{

(1 +
√

2 logN)3+6γN(Lnt,2γ +Mn
t,2γ)

}1/(3+2γ)
is

the remainder term, with |θ| < 1 and C(α, γ) being a constant only depending

on α and γ. Using Φ(−
√

2 logN) ≤ φ(
√

2 logN)/
√

2 logN with φ denoting the

density of the standard normal distribution, we deduce the stated result from∏N
t=1

[
1− 2Φ(−

√
2 logN)

]
→ 1, as N →∞, and the asymptotic negligibil-

ity of the contribution of the remainder term as N,n→∞ since Rt(α, γ,N) is

bounded by θC(α, γ)α3+6γ because of (3).

Condition (3) is rather weak as clearly illustrated in the case of independent

random variables by Grama (1997). Let Y n
t,i = ηt,i/

√
n, where ηt,i form N

given independent sequences of i.i.d. random variables which satisfy E[ηt,1] = 0,

E[(ηt,1)2] = 1, m2γ = E[|ηt,1|2+2γ ] <∞ with 0 < γ <∞. In this case Mn
t,2γ = 0

and Lnt,2γ = n−γm2γ . Thus for standard Gaussian ηt,1, condition (3) is easily

met for various (n,m,α, γ) since m2γ = (2+2γ)!
21+γ(1+γ)!

.

BNS test: We can write the linear test statistic of Barndorff-Nielsen and

Shephard (2006) (based on the difference µ−2
1 BV n

t − RV n
t ) in the above form

using Y n
t,i := (ϑµ−4

1 ∆nQV
n
t )−1/2

(
µ−2

1 |∆X
n
t,i||∆Xn

t,i−1| − |∆Xn
t,i|2
)
. Since

|Y n
t,i|2+2γ ≤ (ϑµ−4

1 ∆nQV
n
t )−(1+γ)

∞∑
l=0

(
2 + 2γ

l

)(
|∆Xn

t,i||∆Xn
t,i−1|

)2(2+2γ−l)

|∆Xn
t,i|2l,

where

(
2 + 2γ

l

)
=

1

l!

l−1∏
k=0

(2 + 2γ − k), Condition (1) holds from the con-

vergence of ∆−1/2
n ∆1−2(1+γ)

n

n∑
i=2

(
|∆Xn

t,i||∆Xn
t,i−1|

)2(2+2γ−l) |∆Xn
t,i|2l in law to

Gaussian variables for X continuous, the equality ∆
−(1+γ)
n = ∆

−1/2
n ∆

1−2(1+γ)
n

∆
2+γ−3/2
n , and ∆n → 0. Condition (2) holds since

n∑
i=2

E
[
(µ−2

1 |∆X
n
t,i||∆Xn

t,i−1|−

|∆Xn
t,i|2)2|Fnt,i

]
converges to

∫ t
t−1 σ

4
sds (see e.g. Barndorff-Nielsen, Graversen,

Jacod and Shephard (2006)). The reasoning is similar for the adjusted ratio

statistic based on
µ−2
1 BV nt
RV nt

− 1.
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2-minute 10-second
No No Universal FDR

Ticker Company name thresholding thresholding threshold threshold
Dow Jones stocks:
AA Alcoa 73.3 16.3 2.0 1.7
AIG American International Group 75.3 21.3 3.7 4.3
AXP American Express 72.0 22.7 2.7 3.0
BA Boeing 57.7 21.7 5.0 6.0
C Citigroup 57.7 11.7 3.0 3.3
CAT Caterpillar 59.0 15.7 2.7 3.7
DD DuPont 81.0 19.7 4.3 5.7
DIS Walt Disney 86.7 20.0 3.7 4.0
GE General Electric 76.7 18.0 2.7 3.3
GM General Motors 77.0 31.0 2.7 4.3
HD The Home Depot 70.7 16.7 2.0 2.7
HON Honeywell 61.7 22.0 0.3 1.3
HPQ Hewlett-Packard 66.7 18.3 2.0 2.0
IBM IBM 55.0 22.3 2.7 2.7
INTC Intel 89.0 17.7 3.3 3.3
JNJ Johnson & Johnson 68.0 20.7 3.3 3.0
JPM JPMorgan Chase 60.0 15.0 1.0 1.0
KO Coca-Cola 73.7 19.3 1.3 1.3
MCD McDonald’s 75.7 22.3 1.7 2.0
MMM 3M 62.7 16.7 2.0 2.7
MO Altria Group 73.3 20.7 2.3 3.0
MRK Merck 69.3 21.3 2.7 2.3
MSFT Microsoft 94.0 20.0 2.7 2.0
PFE Pfizer 93.0 17.3 2.7 2.7
PG Procter & Gamble 61.0 19.0 2.0 1.7
T AT&T 82.0 20.7 3.3 4.0
UTX United Technologies Corporation 59.3 15.7 2.0 2.3
VZ Verizon Communications 75.0 19.0 3.0 3.0
WMT Wal-Mart 50.3 15.3 2.0 2.3
XOM ExxonMobil 43.7 15.7 3.0 4.7

Index:
DIA Diamonds Trust 91.7 18.3 1.3 3.0
PWI Price-weighted index 72.7 15.3 1.6 4.7

Summary for stocks:
Mean 70.0 19.1 2.7 4.7
Median 71.3 19.1 2.7 3.0
Minimum 43.7 11.7 0.3 1.0
Maximum 94.0 31.0 5.0 6.0

Table 1: Average number of jumps per year. This table reports the average
yearly number of jumps over the three-year period between 2006 and 2008, for
the 30 Dow Jones stocks, the Diamonds ETF (DIA), and a price-weighted index
portfolio of the 30 stocks (PWI). We use the BNS jump detection test at a 2-
minute sampling frequency and the COP test at a 10-second frequency. Results
for the latter are reported for respectively, no account for spurious detections,
use of the universal threshold, and use of the FDR threshold.
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2-minute 10-second
No No Universal FDR

Ticker Company name thresholding thresholding threshold threshold
Dow Jones stocks:
AA Alcoa 0.93 1.00 1.00 1.00
AIG American International Group 0.00∗ 0.63 1.00 1.00
AXP American Express 0.14 1.00 1.00 1.00
BA Boeing 0.89 0.03∗ 1.00 1.00
C Citigroup 0.08 0.34 1.00 1.00
CAT Caterpillar 0.49 0.35 1.00 1.00
DD DuPont 0.65 0.61 1.00 1.00
DIS Walt Disney 0.40 1.00 1.00 1.00
GE General Electric 0.40 0.44 1.00 1.00
GM General Motors 0.09 0.71 1.00 1.00
HD The Home Depot 0.15 0.45 1.00 1.00
HON Honeywell 0.14 0.70 1.00 1.00
HPQ Hewlett-Packard 0.55 0.73 1.00 1.00
IBM IBM 0.51 1.00 1.00 1.00
INTC Intel 0.23 1.00 1.00 1.00
JNJ Johnson & Johnson 0.36 0.24 1.00 1.00
JPM JPMorgan Chase 0.29 0.43 1.00 1.00
KO Coca-Cola 0.45 0.29 1.00 1.00
MCD McDonald’s 0.52 0.05 1.00 1.00
MMM 3M 0.70 0.84 1.00 1.00
MO Altria Group 0.16 0.77 1.00 1.00
MRK Merck 0.92 1.00 1.00 1.00
MSFT Microsoft 0.00∗ 0.50 1.00 1.00
PFE Pfizer 0.12 0.20 1.00 1.00
PG Procter & Gamble 0.49 0.01∗ 1.00 1.00
T AT&T 0.02∗ 1.00 1.00 1.00
UTX United Technologies Corporation 0.17 0.35 1.00 1.00
VZ Verizon Communications 0.49 0.50 1.00 1.00
WMT Wal-Mart 0.47 0.60 1.00 1.00
XOM ExxonMobil 0.35 0.66 1.00 1.00

Index:
DIA Diamonds Trust 0.10 0.14 1.00 1.00
PWI Price-weighted index 0.21 1.00 1.00 1.00

Summary for stocks:
Percentage of stocks with clustering 10.0 6.7 0.0 0.0

Table 2: Runs tests. This table reports p-values from the runs test of the
Null hypothesis that jump arrivals do not cluster in time. Results are presented
for the 30 Dow Jones stocks, the Diamonds ETF (DIA), and a price-weighted
index portfolio of the 30 stocks (PWI), over the three-year period between
2006 and 2008. We use the BNS jump detection test at a 2-minute sampling
frequency and the COP test at a 10-second frequency. Results for the latter are
reported for respectively, no account for spurious detections, use of the universal
threshold, and use of the FDR threshold.
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Industry sector Dow Jones constituents

Energy ExxonMobil
Materials Alcoa, DuPont
Industrials Boeing, Caterpillar, General Electric,

Honeywell, 3M, United Technologies Corporation
Consumer Discretionary Walt Disney, General Motors, The Home Depot,

McDonald’s
Consumer Staples Coca-Cola, Altria Group, Procter & Gamble,

Wal-Mart
Health Care Johnson & Johnson, Merck, Pfizer
Financials American International Group, American Express,

Citigroup, JPMorgan Chase
Information Technology Hewlett-Packard, IBM, Intel, Microsoft
Telecommunication Services AT&T, Verizon Communications

Table 3: Global Industry Classification Standard industry sectors. This
table shows the repartition of the 30 Dow Jones stocks among the different
sectors.
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Proportion of stocks Number of P(jump in P(jump in
jumping simultaneously occurrences DIA) (%) PWI) (%)

2-minute, no thresholding:
0–10% 20 5.0 0.0
10–20% 128 15.6 10.9
20–40% 469 36.0 27.3
40–60% 121 63.6 55.4
60–80% 8 87.5 100.0
80–100% 1 100.0 100.0

10-second, no thresholding:
0–10% 438 3.2 1.6
10–20% 273 11.7 10.6
20–40% 35 22.9 25.7
40–60% 0 - -
60–80% 1 100.0 100.0
80–100% 0 - -

10-second, universal threshold:
0–10% 736 0.4 0.3
10–20% 9 0.0 11.1
20–40% 2 50.0 100.0
40–60% 0 - -
60–80% 0 - -
80–100% 0 - -

10-second, FDR threshold:
0–10% 733 1.1 1.5
10–20% 12 0.0 8.3
20–40% 2 50.0 100.0
40–60% 0 - -
60–80% 0 - -
80–100% 0 - -

Table 5: Probability of a jump in the index conditional on the propor-
tion of stocks jumping simultaneously. This table shows the probability
of a jump in the Diamonds ETF (DIA), and in the price-weighted index port-
folio of the 30 Dow Jones stocks (PWI), conditional on the proportion of stocks
jumping simultaneously. We use the BNS jump detection test at a 2-minute
sampling frequency and the COP test at a 10-second frequency. Results for the
latter are reported for respectively, no account for spurious detections, use of
the universal threshold, and use of the FDR threshold.
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Proportion of stocks Jump in DIA: Jump in PWI:
jumping simultaneously No Yes No Yes

2-minute, no thresholding:
Mean (%) 25.1 33.4 25.3 35.0
Median (%) 23.3 30.0 26.7 33.3
Maximum (%) 60.0 93.3 53.3 93.3

10-second, no thresholding:
Mean (%) 7.2 13.6 7.2 15.3
Median (%) 6.7 13.3 6.7 13.3
Maximum (%) 36.7 63.3 33.3 63.3

10-second, universal threshold:
Mean (%) 0.8 3.0 0.8 4.2
Median (%) 0.0 3.3 0.0 3.3
Maximum (%) 16.7 20.0 13.3 20.0

10-second, FDR threshold:
Mean (%) 1.0 3.3 1.0 4.3
Median (%) 0.0 3.3 0.0 3.3
Maximum (%) 16.7 23.3 13.3 23.3

Table 6: Proportion of stocks jumping simultaneously conditional on
a jump in the index. This table displays the distribution of the proportion
of stocks jumping simultaneously, depending on whether or not we detect a
jump in the index. Results are reported for the Diamonds ETF (DIA), and the
price-weighted index portfolio of the 30 Dow Jones stocks (PWI). We use the
BNS jump detection test at a 2-minute sampling frequency and the COP test
at a 10-second frequency. Results for the latter are reported for respectively, no
account for spurious detections, use of the universal threshold, and use of the
FDR threshold.
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Announcement Source Announcement time

Monthly announcements:
Consumer credit FRB 3:00 p.m.
Construction spending BC 10:00 a.m.
Factory orders BC 10:00 a.m.
Business inventories BC 10:00 a.m.
Government budget deficit FMS 2:00 p.m.
Consumer confidence index CB 10:00 a.m.
ISM manufacturing composite index ISM 10:00 a.m.

Six-week announcements:
Target federal funds rate FRB 2:15 p.m.

Table 7: Macroeconomic news announcements. This table displays the
most important U.S. macroeconomic announcements published during market
hours. The sources are: Federal Reserve Board (FRB), Bureau of the Census
(BC), Financial Management Service (FMS), Conference Board (CB), Institute
for Supply Management (ISM).

36



Nb of P(jump P(jump P(jump
Announcement ann. in stocks) in DIA) in PWI)
2-minute, no thresholding:
Consumer credit 35 28.6 (7.6) 42.9 (8.4) 34.3 (8.0)
Construction spending 35 27.9 (7.6) 20.0 (6.8) 11.4 (5.4)
Factory orders 35 29.7 (7.7) 40.0 (8.3) 31.4 (7.8)
Business inventories 36 28.7 (7.5) 41.7 (8.2) 25.0 (7.2)
Government budget deficit 36 25.3 (7.2) 36.1 (8.0) 33.3 (7.9)
Consumer confidence index 36 24.6 (7.2) 33.3 (7.9) 27.8 (7.5)
ISM manufacturing composite index 35 28.4 (7.6) 34.3 (8.0) 25.7 (7.4)
Target federal funds rate 23 29.3 (9.5) 34.8 (9.9) 34.8 (9.9)

All days 747 28.1 (1.6) 36.9 (1.8) 29.2 (1.7)

10-second, no thresholding:
Consumer credit 35 6.0 (4.0) 11.4 (5.4) 2.9 (2.8)
Construction spending 35 6.9 (4.3) 5.7 (3.9) 8.6 (4.7)
Factory orders 35 7.6 (4.5) 2.9 (2.8) 5.7 (3.9)
Business inventories 36 9.1 (4.8) 5.6 (3.8) 11.1 (5.2)
Government budget deficit 36 7.0 (4.3) 2.8 (2.7) -
ISM manufacturing composite index 35 8.1 (4.6) 8.6 (4.7) 8.6 (4.7)
Target federal funds rate 23 3.9 (4.0) - -

All days 747 7.7 (1.0) 7.4 (1.0) 6.2 (0.9)

10-second, universal threshold:
Consumer credit 35 0.2 (0.7) - 2.9 (2.8)
Construction spending 35 1.0 (1.7) - -
Factory orders 35 1.1 (1.8) - -
Business inventories 36 1.4 (2.0) - 2.8 (2.7)
Government budget deficit 36 1.0 (1.7) - -
Consumer confidence index 36 0.9 (1.6) - -
ISM manufacturing composite index 35 1.0 (1.7) 2.9 (2.8) -
Target federal funds rate 23 0.4 (1.4) - -

All days 747 1.0 (0.4) 0.5 (0.3) 0.7 (0.3)

10-second, FDR threshold:
Consumer credit 35 0.3 (0.9) - 2.9 (2.8)
Construction spending 35 1.3 (1.9) - 2.9 (2.8)
Factory orders 35 1.3 (1.9) 2.9 (2.8) -
Business inventories 36 1.3 (1.9) - 2.8 (2.7)
Government budget deficit 36 1.5 (2.0) - -
Consumer confidence index 36 0.9 (1.6) - -
ISM manufacturing composite index 35 1.2 (1.9) 5.7 (3.9) 2.9 (2.8)
Target federal funds rate 23 0.4 (1.4) - -

All days 747 1.2 (0.4) 1.2 (0.4) 1.9 (0.5)

Table 8: Probability of a jump on macroeconomic news announce-
ments. This table presents the probability (%) of a jump on announcement
days for the 30 Dow Jones stocks, the Diamonds ETF (DIA), and the price-
weighted index portfolio of the 30 Dow Jones constituents (PWI). We use the
BNS jump detection test at a 2-minute sampling frequency and the COP test
at a 10-second frequency. Results for the latter are reported for respectively,
no account for spurious detections, use of the universal threshold, and use of
the FDR threshold. An asterisk indicates that the likelihood of a jump is sig-
nificantly larger after a news is released than on days with no news of the same
type. Numbers in parentheses correspond to standard deviations.
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Nb. of P(news if P(news if P(news if
Announcement ann. days jump in stocks) jump in DIA) jump in PWI)
2-minute, no thresholding:
Dividends declaration 329 1.2 (0.1) - -
Earnings announcements 15 0.1 (0.0) - -
Macroeconomic news 30×236? 31.4 (0.6) 32.4 (2.8) 32.6 (3.2)
Reuters/DJNS news 629 2.8 (0.2) - -

All news 1209? 33.9 (0.6) - -

10-second, no thresholding:
Dividends declaration 329 2.3 (0.4) - -
Earnings announcements 15 0.1 (0.1) - -
Macroeconomic news 236 29.1 (1.1) 25.5 (5.9) 23.9 (6.3)
Reuters/DJNS news 629 3.1 (0.4) - -

All news 1209 32.4 (1.1) - -

10-second, universal threshold:
Dividends declaration 329 2.1 (0.9) - -
Earnings announcements 15 0.0 (0.0) - -
Macroeconomic news 236 27.5 (2.9) 25.0 (21.7) 40.0 (21.9)
Reuters/DJNS news 629 5.2 (1.4) - -

All news 1209 32.6 (3.1) - -

10-second, FDR threshold:
Dividends declaration 329 2.6 (1.0) - -
Earnings announcements 15 0.0 (0.0) - -
Macroeconomic news 236 27.6 (2.7) 33.3 (15.7) 28.6 (12.1)
Reuters/DJNS news 629 4.9 (1.3) - -

All news 1209 32.5 (2.9) - -

Table 10: Probability (%) of finding a news story on jump days. This
table displays the probability that a jump is caused by one of the announcements
we consider. The table shows the number of announcement days, and the
probability of finding a news explaining jumps in the 30 Dow Jones stocks, the
Diamonds ETF (DIA), and the price-weighted index portfolio of the 30 Dow
Jones constituents (PWI). We use the BNS jump detection test at a 2-minute
sampling frequency and the COP test at a 10-second frequency. Results for the
latter are reported for respectively, no account for spurious detections, use of
the universal threshold, and use of the FDR threshold. A star highlights that,
except for macroeconomic news, the number of announcements corresponds to
the total over the 30 stocks. An asterisk indicates that the likelihood of a news
is significantly larger on days with jump than on days with no jump. Numbers
in parentheses correspond to standard deviations.
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Figure 1: Thresholding test statistics. This figure displays daily COP test
statistics (points) for Boeing, over the period between January and June 2007,
using a 10-second sampling frequency. The spurious detections and the true
jumps identified when applying the FDR threshold are depicted respectively by
circles and asterisks.
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