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Abstract

Different models of uncertainty aversion imply strikingly different economic be-

havior. The key to understanding these differences lies in the dichotomy between

first-order and second-order ambiguity aversion which I define here. My definition

and its characterization are independent of specific representations of decisions under

uncertainty. I show that with second-order ambiguity aversion a positive exposure

to ambiguity is optimal if and only if there is a subjective belief such that the act’s

expected outcome is positive. With first-order ambiguity aversion, zero exposure to

ambiguity can be optimal. Examples in finance, insurance and contracting demon-

strate the economic relevance of this dichotomy.

JEL classifications: D01, D81, D82, G11

Keywords: Ambiguity, Uncertainty Aversion, Smooth Ambiguity Aversion, Sub-

jective Beliefs, Kinked preferences

1 Introduction

Many decisions are made under uncertainty or ambiguity. Therefore – following the sem-

inal contribution by Schmeidler (1989) – many models of uncertainty-averse preferences

have been proposed. Recently, Cerreia-Vioglio et al. (2011) axiomatize an intriguingly

general representation encompassing a wide set of uncertainty-averse preferences, in par-

ticular, Maxmin-Expected Utility (MEU), Choquet-Expected Utility with convex capac-

ities (CEU), Smooth Ambiguity-Averse Preferences (KMM), Variational and Multiplier

Preferences. Naively, one might expect uncertainty aversion to predict similar behavior

in relevant economic applications independently of the specific representation. Yet, dif-

ferent models of uncertainty aversion arrive at strikingly different conclusions regarding

economic behavior. For example, Mukerji and Tallon (2001) show with CEU preferences

and idiosyncratic risk that uncertainty aversion implies no trade and incomplete markets,

while Gollier (2011) derives unique equilibrium prices with Smooth Ambiguity-Averse
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1. Introduction
Utility

in state 1
Utility

in state 1

Utility in state 2 Utility in state 2

Figure 1: First-Order and Second-Order Ambiguity Aversion

Preferences. In addition, Rinaldi (2009) shows that the results of Mukerji and Tallon

(2001) are not always true for Variational Preferences.

As I demonstrate in this paper, the shape of the indifference curves explains why

predictions vary between different models of uncertainty aversion. In particular, the

key distinction is whether indifference curves are kinked or smooth, as illustrated in

Figure 1. This dichotomy relates to first-order and second-order risk aversion introduced

by Segal and Spivak (1990). Second-order risk aversion implies approximately risk-neutral

behavior, when small risks are concerned, while first-order risk aversion allows for risk-

averse behavior, even if the stakes are small. (See Appendix A.2 for details.) I define

first-order and second-order ambiguity aversion in a similar way. For this purpose, I

introduce a general ambiguity premium and define first-order and second-order ambiguity

aversion depending on the speed of convergence of the ambiguity premium as ambiguity

disappears. This definition relates first-order and second-order ambiguity aversion to an

intuitive and potentially identifiable behavioral concept, the ambiguity premium.

In addition, I characterize first-order and second-order ambiguity aversion based on

the differentiability of indifference surfaces. Though intuitively appealing, this approach,

however, turns out to be cumbersome, as the formal notion of differentiability of indif-

ference surfaces is not trivial. Finally, I relate first-order and second-order ambiguity

aversion to subjective beliefs a la Rigotti et al. (2008), a common concept from the lit-

erature on uncertainty-averse preferences. Unique subjective beliefs imply second-order

ambiguity aversion. My definition and the characterizations are independent of any spe-

cific representation of decisions under uncertainty.

I provide a variety of examples to illustrate first-order and second-order ambiguity

aversion. Some representations, such as MEU or CEU with convex capacities (pessimism),

imply first-order ambiguity aversion, while others, like Smooth Ambiguity-Averse Prefer-

ences and Multiplier Preferences, imply second-order ambiguity aversion. Other represen-

tations, such as Variational or Uncertainty-Averse Preferences, exhibit both: depending

on the parameters, these representations imply either first-order or second-order ambigu-

ity aversion.
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2. Basic Definitions

First-order and second-order ambiguity aversion are economically important, as second-

order ambiguity aversion implies approximately uncertainty-neutral behavior for small

amounts of ambiguity. This applies to, for example, investment decisions, insurance, and

contracting. In contrast to second-order ambiguity aversion, first-order ambiguity aver-

sion generally implies strikingly different predictions even if small amounts of ambiguity

are involved. The dichotomy allows us to understand why the aforementioned papers

arrive at different conclusions and how robust these conclusions are.

The remainder of the paper is organized as follows. Section 2 introduces the decision-

theoretic framework and a general ambiguity premium. Section 3 defines first-order and

second-order ambiguity aversion and provides two alternative characterizations. Section 4

explores the consequences of the dichotomy for the optimal exposure to ambiguity and

analyzes some applications of this result. Finally, Section 5 concludes. The proofs are

given in Appendix A.1.

2 Basic Definitions

2.1 Decision-Theoretic Framework

Consider an individual with uncertainty-averse preferences. I operate on an Anscombe

and Aumann (1963) domain with a finite state space Ω, an algebra Σ containing subsets

of Ω, the set of consequences R, the set of simple lotteries over consequences ∆R and the

set of lotteries over states ∆Ω. An act f is a measurable mapping from the state space

into the simple lotteries, f : Ω → ∆R. Denote by F the set of all acts. Given f ∈ F ,

f(ω) is a probability measure on R for any ω ∈ Ω, while f(x|ω) denotes the probability

of consequence x under f(ω) for any x ∈ R and ω ∈ Ω. Notice that any constant act is

unambiguous in the sense that the act yields the same lottery l ∈ ∆R in every state of

the world. With the usual slight abuse of notation, given l ∈ ∆R, define l ∈ F to be the

constant act such that l(ω) = l for all ω ∈ Ω. Similarly, given x ∈ R, define x ∈ F to

be the constant act such that x(x|ω) = 1 and x(y|ω) = 0 for all y 6= x and all ω ∈ Ω.

I model the individual’s preferences on F by a binary relation �. As usual, � and ∼
denote respectively the asymmetric and symmetric components of �.

Assumption 1. The individual’s preferences admit an uncertainty-averse representation

in the sense of Cerreia-Vioglio et al. (2011, Theorem 3) with a continuously differentiable

utility index u.

In particular, the axioms in Cerreia-Vioglio et al. (2011) guarantee that the individ-

ual’s preferences over constant acts can be represented by a von-Neumann-Morgenstern

utility index u: R → R. Differentiability of u implies second-order risk attitude as stud-

ied in detail by Nielsen (1999). For f ∈ F , u ◦ f denotes ω 7→
∑

x: f(x|ω)>0 u(x)f(x|ω).

Denote the set of acts in utility space by F̄ = {u ◦ f |f ∈ F}. Assumption 1 ensures that
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2. Basic Definitions

there is a representing utility function U : F̄ → R. Denote by id the identity function

with id(x) = x for all x ∈ R. For λ ∈ [0, 1] and f, g ∈ F , λf + (1 − λ)g denotes the

mixture act, i.e., (λf + (1 − λ)g)(x|ω) = λf(x|ω) + (1 − λ)g(x|ω) for all x ∈ R and all

ω ∈ Ω. For y ∈ R and f ∈ F , y⊕f denotes the act shifting all consequences upward by y,

i.e., (y⊕ f)(x|ω) = f(x− y|ω) for all x ∈ R and all ω ∈ Ω. Assumption 1 allows for thick

indifference surfaces. Thick indifference surfaces would make the exposition considerably

more complex. Therefore, I exclude thick indifference surfaces:

Assumption 2. ε⊕ f � f for all f ∈ F and all ε > 0.

Finally, for any act f ∈ F , define the act t ∗ f as (t ∗ f)(x|ω) = f(x/t|ω) for all

x ∈ R, ω ∈ Ω, and t 6= 0. For t = 0, define (0 ∗ f) as the degenerate distribution at 0 for

all states, i.e., (0 ∗ f)(0|ω) = 1 for all ω ∈ Ω and (0 ∗ f)(x|ω) = 0 for all x 6= 0 and ω ∈ Ω.

Hence, t ∗ f denotes the act with every consequence rescaled by t.

2.2 Ambiguity Premium

The challenge in defining the ambiguity premium lies in disentangling the risk premium

and the ambiguity premium. Therefore it is impossible to follow the approach by Pratt

(1964) directly. The idea is to use a benchmark lottery that captures the risk. Then the

ambiguity premium of an act is the transfer that makes the individual indifferent between

this benchmark lottery and the act in combination with the transfer.

For the benchmark lottery, consider wealth w ∈ R, a probability measure ν ∈ ∆Ω and

an act f ∈ F . Now construct the constant act lν ∈ ∆R, such that the measure ν assigns

any outcome x ∈ R the same probabilities under f and the lottery lν

lν(x) =
∑

ω∈Ω
f(x|ω)ν(ω) (1)

for all x ∈ R. Thus, a subjective expected utility maximizer with beliefs ν is indifferent

between the act f and the benchmark lottery lν . Denote the certainty equivalent at w of

the lottery lν by CEw(lν), such that (w − CEw(lν))⊕ lν ∼ w. Notice that this definition

of the certainty equivalent CEw(lν) depends on the wealth level w.

Definition. The ambiguity premium of an act f ∈ F at wealth w ∈ R and beliefs ν ∈ ∆Ω

is a transfer πνf,w ∈ R, such that w ∼ (w + πνf,w − CEw(lν))⊕ f.

The ambiguity premium is the transfer πνf,w that makes the individual indifferent be-

tween her endowment w and the act f in combination with her endowment and a transfer

of πνf,w −CEw(lν). Compare this to the risk premium π̂f,w of an act f at wealth w, com-

monly defined as w ∼ (w+π̂f,w−E(f))⊕f in a state space with objective probabilities. In

the definition of the ambiguity premium, the certainty equivalent of the lottery lν replaces

the expectation. The certainty equivalent ensures that the ambiguity premium does not

cover the risk, but only captures the ambiguity. As lν depends on the measure ν, the am-

biguity premium πνf,w also depends on ν. This definition is also consistent with definitions
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3. First-Order and Second-Order Ambiguity Aversion

for particular representations, like Maccheroni et al. (2013) for Smooth Ambiguity-Averse

Preferences. To vary the amount of ambiguity, consider the ambiguity premium πνf t,w of

the act f t = tf+(1−t)lν for t ∈ [0, 1]. The ambiguity premium vanishes as the ambiguity

disappears for t↘ 0.

Lemma 1. lim
t↘0

πνf t,w = 0 for all beliefs ν ∈ ∆Ω, acts f ∈ F , and wealth levels w ∈ R.

Although the ambiguity premium is defined for general beliefs, it is necessary for the

results in this paper to restrict beliefs. In particular, consider the subjective beliefs by

Rigotti et al. (2008) which I introduce below. The subjective beliefs are the odds at which

the individual is willing to make small bets. Ramsey (1931), de Finetti (1937), and Savage

(1954) consider this kind of beliefs. In the absence of ambiguity, Yaari (1969) formalizes

them. In my framework, subjective beliefs by Rigotti et al. (2008) are defined as follows:

Definition. The subjective beliefs for an act f̄ ∈ F̄ are the set of (normalized) supporting

hyperplanes of the upper contour set of f̄ , i.e.,{
P ∈ ∆Ω

∣∣∣∣∑
ω∈Ω

f̄(ω)P (ω) ≤
∑
ω∈Ω

ḡ(ω)P (ω) for all ḡ ∈ F̄ with U(ḡ) ≥ U(f̄)

}
. (2)

To simplify the exposition, define subjective beliefs at a wealth level.

Definition. The subjective beliefs at wealth w ∈ R are the subjective beliefs for u ◦ w.

The notion of subjective beliefs allows to relate uncertainty-averse preferences to am-

biguity aversion in the sense of Ghirardato and Marinacci (2002). Cerreia-Vioglio et al.

(2012) show that uncertainty-averse preferences are ambiguity averse in the sense of Ghi-

rardato and Marinacci (2002) if the intersection of the subjective beliefs at all wealth

levels is nonempty.

3 First-Order and Second-Order Ambiguity Aversion

Following the ideas in Segal and Spivak (1990) for risk, I use the ambiguity premium

to define first-order and second-order ambiguity aversion. The definition depends on the

speed of convergence for small amounts of ambiguity. In order to distinguish between

first-order and second-order ambiguity aversion, consider the following limit

Lνf,w = lim
t↘0

1

t
πνf t,w.

I will distinguish Lνf,w = 0 and Lνf,w 6= 0. I interpret Lνf,w = 0 as ‘fast’ convergence of

the ambiguity premium and Lνf,w 6= 0 as ‘slow’ convergence of the ambiguity premium.

Notice that Lνf,w 6= 0 implies lim supt↘0
1
tπ

ν
f t,w > 0, but does not imply Lνf,w > 0. The

definition of second-order risk aversion in Segal and Spivak (1990), in addition, requires
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3. First-Order and Second-Order Ambiguity Aversion

a positive second derivative of the risk premium to distinguish even higher orders of risk

aversion. It is, however, common to subsume all higher risk orders under second-order

risk aversion and neglect this condition. I will do similarly and provide a definition, so

that preferences are either first-order or second-order ambiguity averse. Yet, in principle,

the ambiguity premium allows to define higher orders of uncertainty aversion.

Definition. There is second-order ambiguity aversion at a wealth w ∈ R if and only if

Lνf,w = 0 for all subjective beliefs ν at wealth w and all acts f ∈ F .

Hence, there is first-order ambiguity aversion at w if Lνf,w 6= 0 for a subjective belief

ν at wealth w and an act f . To simplify the determination of first-order and second-

order ambiguity aversion and to characterize their properties, I provide two different

characterizations of first-order and second-order ambiguity aversion. The first one is

based on subjective beliefs as discussed at the end of Section 2.2. Here, uniqueness of the

subjective beliefs matters.

Theorem 1. Suppose Assumption 1 and 2 hold. There is second-order ambiguity aversion

at wealth w ∈ R if and only if there is a unique subjective belief at wealth w.

Hence, I refer to the subjective beliefs at a wealth w from now on if there is second-

order ambiguity aversion at that wealth. Theorem 1 ensures that this notion is well

defined. In addition, the theorem shows that there is first-order ambiguity aversion at a

wealth w if and only if there are several subjective beliefs at that wealth.

The second alternative is based on the differentiability of the indifference surface in the

contingent utility space in which simple lotteries are represented by their utilities. This

characterization follows the intuition in Figure 1 in the introduction. For this purpose,

we need to define a notion of differentiability of an indifference surface. An indifference

surface is differentiable at an act f̄ ∈ F̄ if there is a function η: R|Ω| → R, so that the

indifference surface is the level set of η at the value η(f̄) and η is differentiable at f̄ with

a gradient ∇f̄η 6= 0. If an indifference surface is not differentiable at f̄ , I call it kinked

at f̄ .

Theorem 2. Suppose Assumption 1 and 2 hold. There is second-order ambiguity aversion

at wealth w ∈ R if and only if the indifference surface is differentiable at the act u ◦ w.

Hence, there is first-order ambiguity aversion if the indifference surface is kinked at

the constant act u ◦ w confirming the intuition in Figure 1. Consider a couple of spe-

cific representations. The dichotomy is defined locally at a given wealth level, but most

representations exhibit either first-order ambiguity aversion or second-order ambiguity

aversion. I begin with Maxmin-Expected Utility by Gilboa and Schmeidler (1989). Π is

a nonempty and closed set of probability measures P ∈ ∆Ω on the state space Ω. The

representation is

min
P∈Π

∫
Ω
u ◦ fdP.
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3. First-Order and Second-Order Ambiguity Aversion

This representation also covers the case of Choquet-Expected Utility with a convex ca-

pacity by Schmeidler (1989).

Lemma 2. Suppose the set Π of priors is a nonsingleton. Then MEU preferences exhibit

first-order ambiguity aversion.

The intuition is the following. Whenever the ordering of the payoffs changes, this might

yield different priors minimizing and maximizing expected utility. Hence, the ambiguity

premium converges slowly for some acts. I restrict attention to MEU preferences and do

not consider α-MEU preferences by Ghirardato et al. (2004) here, because not all α-MEU

preferences satisfy Assumption 1. In particular, these preferences might violate convexity

(Cerreia-Vioglio et al., 2011, Axiom A.3).

The next model is Smooth Ambiguity-Averse Preferences by Klibanoff et al. (2005)

which is frequently used in applications (See, e.g., Kellner (2015), Maccheroni et al. (2013),

or Gollier (2011)). Again Π is a set of first-order probability measures P ∈ ∆Ω on the

state space Ω. µ denotes a second-order probability measure defined on the set of priors Π.

In addition, there is an increasing and concave ambiguity index φ. The representation is∫
Π
φ

(∫
Ω
u ◦ fdP

)
dµ.

Lemma 3. Suppose φ is differentiable and concave. Then Smooth Ambiguity-Averse

Preferences exhibit second-order ambiguity aversion.

Now consider Uncertainty-Averse Preferences by Cerreia-Vioglio et al. (2011). This

is the most general representation in my framework. The Uncertainty-Averse Preference

model uses a quasiconvex and linearly continuous ambiguity index G: u(R) × ∆Ω → R
that is increasing in the first argument. The representation is

inf
P∈∆Ω

G

(∫
Ω
u ◦ fdP, P

)
.

Lemma 4. Uncertainty-Averse Preferences exhibit second-order ambiguity aversion at

wealth w if and only if the set arg infP∈∆ΩG(u(w), P ) is a singleton.

Hence, Uncertainty-Averse Preferences feature second-order ambiguity aversion at a

wealth level if G has a unique infimum in its second argument at this wealth. Otherwise,

these preferences feature first-order ambiguity aversion at this wealth. In particular,

the order of uncertainty aversion might change with the wealth. Table 1 also categorizes

Variational Preferences by Maccheroni et al. (2006), Multiplier Preferences and Constraint

Preferences by Hansen and Sargent (2001), Confidence Preferences by Chateauneuf and

Faro (2009) and other representations of ambiguity-averse preferences. The proofs of

these results are available from the author upon request. Now consider the behavioral

consequences of the dichotomy between first-order and second-order ambiguity aversion.
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4. First/Second-Order Ambiguity Aversion in Applications

First-Order Ambiguity Aversion Second-Order Ambiguity Aversion

Maxmin-Expected Utility Multiplier Preferences
Choquet-Expected Utility with convex capacities Smooth Ambiguity-Averse Preferences

Constraint Preferences
Variational Preferences Variational Preferences
Confidence Preferences Confidence Preferences

Uncertainty-Averse Preferences Uncertainty-Averse Preferences

Most representations feature either first-order or second-order ambiguity aversion. In some representa-
tions, the order of ambiguity aversion depends on parameters. Those representations are listed in both
columns. The preferences in Nau (2006), Chew and Sagi (2008), Seo (2009), and Ergin and Gul (2009)
are second-order ambiguity averse.

Table 1: Examples for First-Order and Second-Order Ambiguity Aversion

4 First/Second-Order Ambiguity Aversion in Applications

It turns out that second-order ambiguity aversion with respect to specific decisions is

locally well approximated by an expected-value criterion. This local similarity is is analog

to similar properties of second-order risk aversion. To formalize this idea, consider an act

f ∈ F . Remember that t ∗ f denotes the act with every consequence rescaled by t. An

individual with an endowment of w ∈ R chooses the optimal t ≥ 0 for the act

w ⊕ (t ∗ f).

In addition, I assume that the individual is risk-averse.

Assumption 3. The utility index u is strictly concave.

Theorem 5 in the appendix shows which results are feasible without Assumption 3. It is

useful to consider also this case, because empirical research shows that not everyone has

a concave utility function and prospect theory assumes S-shaped utility.

Theorem 3. Suppose Assumption 1-3 hold and id◦f is not constantly zero. With second-

order ambiguity aversion at w, t > 0 is optimal if and only if the subjective belief ν at

wealth w yields a positive expectation of the act, Eν(id◦f) > 0. With first-order ambiguity

aversion at w, if t > 0 is optimal, any subjective beliefs ν at wealth w yield a positive

expectation of the act, Eν(id ◦ f) > 0.

Remember that Theorem 1 shows that there is a unique subjective belief for second-

order ambiguity aversion. Therefore the condition in the first statement of Theorem 3 is

well defined. First-order ambiguity aversion has additional behavioral implications.

Theorem 4. Suppose Assumptions 1-3 hold. With first-order ambiguity aversion at w,

there are acts g ∈ F such that the individual facing the act w ⊕ (t ∗ g) chooses t = 0

and there is a subjective belief ν at wealth w that yields a positive expectation of the act,

Eν(id◦ g) > 0. For any atomless measure with full support on F , the set of these acts has

positive mass.
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4. First/Second-Order Ambiguity Aversion in Applications

Theorem 4 implies that an individual might prefer a zero exposure to ambiguity by

choosing t = 0 even if the act’s expected outcome is positive given one of the individual’s

subjective beliefs. Notice that uncertainty aversion changes the individual’s optimal ex-

posure t to ambiguity, independently of first-order or second-order ambiguity aversion. I

now turn to some applications of the dichotomy in which I suppose Assumption 1-3 hold.

4.1 Investment

Consider an asset f ∈ F . An individual with an endowment of w ∈ R can buy or sell t

units of the asset f at an exogenously given price per unit, p. Suppose that the remaining

part of the individual’s wealth is invested in an unambiguous asset with return r > 0.

Hence the individual chooses the optimal t ∈ R for the act

r(w − pt)⊕ (t ∗ f)

Now hold the price p and the individual’s endowment fixed and vary the asset f .

Lemma 5. With second-order ambiguity aversion at rw, the individual generically buys

or sells a positive amount of the asset. With first-order ambiguity aversion at rw, the

individual does not buy or sell some assets. The set of these assets has positive mass

in F .

The notion ‘generically’ excludes a set of assets of measure zero where the individual

is indifferent between trading and not trading. The proof of the lemma is based on

the following corollary of Theorem 3 where the individual chooses the optimal t ≥ 0.

The result of the corollary for the special case of Smooth Ambiguity-Averse Preferences

corresponds to Lemma 1 in Gollier (2011).

Corollary 1. Suppose id ◦ f is not constant. With second-order ambiguity aversion

at rw, the individual invests in an asset if and only if under the subjective beliefs the

expected return of the asset is higher than the unambiguous return r. First-order ambiguity

aversion at rw can make the individual avoid any investment in the asset, even if under a

subjective belief the expected return of the asset is higher than the unambiguous return r.

With second-order ambiguity aversion, the assets that the individual does not buy

coincides with the individual’s indifference surface at her endowment. These assets are

negligible compared to all assets, as these assets have no mass in the asset space. Hence,

uncertainty aversion in general does not yield no-trade results. See also Rigotti and

Shannon (2012) and Mandler (2013) who, for example, document and discuss the effects

of uncertainty aversion for asset markets for specific representations. In addition, Epstein

and Schneider (2010, pp. 316, 337) discuss the robustness of no-trade results depending on

the representation. This corollary, in particular, implies that the no-trade results in Dow

and Werlang (1992) and the incompleteness of financial markets in Mukerji and Tallon

(2001) require first-order ambiguity aversion. The next section considers insurance.
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4. First/Second-Order Ambiguity Aversion in Applications

4.2 Insurance

Consider an individual who faces a potential loss L ∈ F that is ambiguous, i.e., id ◦ L is

not constant. Her endowment is w ∈ R. She can buy an insurance contract covering a

fraction α ≥ 0 of the loss. The insurer requests a constant premium p per unit of coverage

α. Therefore buying an insurance contract with a coverage α corresponds to the act

(w − αp)⊕ ((1− α) ∗ L).

Lemma 6. With second-order ambiguity aversion at w − p, full insurance coverage is

demanded at a unique premium. With first-order ambiguity aversion at w − p, demand

for full insurance coverage is consistent with an interval of premium levels.

Again the proof uses a corollary of Theorem 3.

Corollary 2. Consider a subjective belief ν at wealth w−p. Suppose Eν(id◦L) < 0. With

second-order ambiguity aversion at w − p, (at least) full insurance coverage is demanded

if and only if the premium p is lower than |Eν(id ◦L)|. Exactly full insurance coverage is

demanded at the premium p = |Eν(id ◦L)|. With first-order ambiguity aversion at w− p,

demand for full insurance coverage is consistent with premium levels p above |Eν(id ◦L)|.

Notice that, according to the corollary, Mossin’s (1968) Theorem on the optimality

of full coverage versus partial coverage still holds with second-order ambiguity aversion.

Similar results are valid if the individual can self-insure or invest into prevention effort. I

assume that prevention effort is costly with strictly increasing, convex and differentiable

costs c(·). Thus, the individual chooses e ∈ [0, 1] for the act

(w − c(e))⊕ ((1− e) ∗ L).

Corollary 3. Consider a subjective belief ν at wealth w − c(1). Suppose Eν(id ◦ L) < 0.

With second-order ambiguity aversion at wealth w − c(1), the risk of a potential loss will

be completely eliminated if and only if the marginal costs of the last prevention effort are

lower than |Eν(L)|. With first-order ambiguity aversion at wealth w− c(1), the individual

might be willing to avoid the loss completely, even if the marginal costs are higher than

|Eν(L)|.

4.3 Contracting

The informativeness principle of Holmström (1979) states that more informative signals

help the principal. In particular, the principal’s costs of implementing a given level of

effort by the agent decrease with more informative signals. Holmström (1979) proves the

informativeness principle for subjective expected utility maximizers. Ghirardato (1994)

was the first to point out that more informative signals might hurt the principal if the agent

is uncertainty averse with CEU preferences. This result violates the informativeness prin-

ciple. Defining rigorously an informative signal in my general setting is beyond the scope
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4. First/Second-Order Ambiguity Aversion in Applications

of this paper. Yet, I show that some contracts that make second-order ambiguity-averse

agents implement positive effort fail to incentivize first-order ambiguity-averse agents.

Consider an uncertainty-averse agent working for a risk-neutral and uncertainty-neutral

principal. They can enter a contract that specifies the agent’s wage W (y) depending on

the performance y ∈ Y ⊂ [0, 1] with a finite set Y . After signing such a contract, the

agent chooses effort level e ≥ 0, which is unobservable by the principal. The effect of the

agent’s effort e on performance y is summarized in acts ye ∈ F for e ≥ 0. By assumption,

any realization of ye has to be an element of Y . With a slight abuse of notation, I write

w(ye) for the act that pays a wage W (ye) for each realization of ye. The agent’s payoffs

are w(ye)− c(e). The disutility of performing effort c(·) is increasing and strictly convex

with c(0) = 0 and c′(0) = 0. In addition, c is twice differentiable. The agent’s preferences

satisfy Assumption 1-3. In addition, assume that y0 is constant and that for every ε > 0

there is a δ > 0 such that ||u ◦ (−c(e) ⊕ w(ye)) − u ◦ w(y0)|| < ε for all e ∈ [0, δ] with

|| · || the Euclidean norm. The principal’s objective function is Eµe(y −W (y)) given her

prior µe on Y. Finally, I assume that the principal’s prior µe is consistent with the agent’s

subjective beliefs at all wealth levels. Hence the agent chooses her optimal e ≥ 0 for the

act
−c(e)⊕ w(ye).

Corollary 4. Suppose that there is a δ > 0 such that a subjective expected utility max-

imizer with risk index u and beliefs µe prefers −c(e) ⊕ w(ye) to w(y0) for all e ∈ [0, δ].

Then the agent exerts positive effort if she is second-order ambiguity averse at wealth

Eµ0W (y). With first-order ambiguity aversion at wealth Eµ0W (y), it may be optimal for

the agent not to exert any effort.

This corollary conveys the intuition that providing incentives for sufficiently small

effort levels is more expensive with first-order ambiguity aversion than with second-order

ambiguity aversion. To determine the optimal wage schedule, further assumptions on the

preferences are necessary. Consider the following example with MEU preferences. Let

Y = {0, 1} and c(e) = e2/2. The agent receives a reservation wage of w̄ if she rejects the

principal’s offer. Instead of specifying the acts ye, I use a reduced form here and directly

consider beliefs about y. Assume that the set of the agent’s probabilities of y = 1 is

Π(e) = [1
2µ(e), 1

2µ(e) + 1
2 ] with the principal’s prior µ(e) = 1 − p̃ exp(−e) and p̃ ∈ (0, 1).

The optimal wage scheme to implement effort e is w0 = c(e) + w̄ − µ(e) e
µ′(e) for low

performances, y = 0, and w1 = w0 + 2e
µ′(e) for high performances, y = 1. The principal’s

expected profits are µ(e)(1− e
µ′(e))− c(e)− w̄ and are decreasing in e if p̃ <

√
5−1
2 . Then

a constant wage is optimal and the principal does not give the agent any incentives.

Hence, optimality of a constant wage is consistent with first-order ambiguity aversion.

In contrast, a subjective expected utility maximizer, who is by definition second-order

ambiguity averse, would be offered wages of wN0 = w0 and wN1 = w0 + e
µ′(e) . In this case,

the principal’s expected profits are increasing in e for sufficiently small e.
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Mukerji and Tallon (2004) analyze a similar cause for incomplete contracts under

uncertainty aversion. They consider wage indexation with aggregate and idiosyncratic

price shocks. Aggregate price shocks affect the prices of all goods in the economy, while

idiosyncratic price shocks just affect a good not consumed or produced by the firm and

the agents. Agents have CEU preferences with convex capacities. If idiosyncratic price

shocks are sufficiently ambiguous and aggregate price shocks are sufficiently small, wages

are contracted in absolute terms and no wage indexation takes places. This result requires

first-order ambiguity aversion according to the previous considerations. With second-

order ambiguity aversion it is optimal to have some wage indexation. The reason is that

wage indexation allows hedging some ambiguity about aggregate price shocks and the

ambiguity premium for doing so is negligible.

There is another line of reasoning in the literature why uncertainty aversion makes

incomplete contracts optimal. Mukerji (1998) considers a bilateral hold-up setting with

CEU preferences and convex capacities. Although the first-best is implementable in a

complete contract for risk-neutral agents, it is unattainable for uncertainty-averse agents.

This result is robust with respect to the representation of uncertainty-averse preferences.

A formal proof with second-order ambiguity aversion would proceed along the lines of

Section 5 in Williams and Radner (1988), who show that for subjective expected utility

maximizers the first-best is unattainable with second-order risk aversion.

5 Conclusion

This paper defines first-order and second-order ambiguity aversion and shows implications

for decisions. In addition, it provides two alternative characterizations. The definition

and its characterization are independent of specific representations of decisions under un-

certainty. They unify a variety of ideas expressed in the literature, and show how the

intuitive notion of kinked indifference curves can be expressed in subjective beliefs – a

common notion in the literature on uncertainty aversion – and in a potentially behaviorally

identifiable item such as my ambiguity premium. First-order and second-order ambiguity

aversion and the ambiguity premium are novel concepts. In particular, there is no alter-

native notion of a general ambiguity premium available in the literature. In addition, the

definition of first- and second-order ambiguity aversion refines previous crude distinctions

such as those between different representations, in particular Smooth Ambiguity-Averse

Preferences and MEU. Table 1 on page 8 shows how the dichotomy applies to common

representations of decisions under uncertainty.

Notice that there are other relevant distinctions between ambiguity models which are

independent of the dichotomy between first-order and second-order ambiguity aversion.

As an example, consider the second thought experiment of Epstein (2010). A decision

maker has to choose one of two acts. Ambiguity is independent, but symmetric. As
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an example think of a draw from one of two Ellsberg urns. Due to the symmetry, the

decision maker is indifferent between both acts. Now consider a mixture of the two acts

in the sense that the toss of a fair coin determines which of the two acts is chosen. In the

MEU representation, the decision maker is indifferent between these acts and the mixture

of them. In Smooth Ambiguity Aversion, the decision maker prefers the mixture of the

acts. Now, turn to Variational Preferences. It is straightforward to construct Variational

Preferences that exhibit first-order ambiguity aversion and at the same time prefer the

mixture of the two acts to the acts themselves. Therefore First-order and second-order

ambiguity aversion introduce a new dichotomy to the literature which is relevant for many

economic applications. In addition, there is empirical support for the implications of this

dichotomy. Ahn et al. (2014) use bunching patterns in portfolio choices to discriminate

between kinked and smooth ambiguity preferences in an experiment. Their data seems

to support both kind of preferences for different individuals. As discussed before, the

distinction between kinked and smooth ambiguity preferences is an imperfect proxy for

the distinction between first-order and second-order ambiguity aversion. This emphasizes

the importance of my definition of first-order and second-order ambiguity aversion and

shows that the dichotomy is open to empirical scrutiny.

I show that second-order ambiguity aversion does not change the decision whether to

accept some exposure to ambiguity compared to a subjective expected utility maximizer.

It does affect how much exposure the individual is willing to accept, though. This gen-

eral result is applied to an investment and an insurance setting. Moreover, I study the

implications of this result for contracting problems.

Finally, the definition here applies only to constant acts. It seems interesting to

extend first-order and second-order ambiguity aversion to non-constant acts. In the MEU

representation, for example, there could be kinks at any act that yields the same utility

in at least two states of the world. Theorem 1 allows for a straightforward generalization

of first-order and second-order ambiguity aversion to any act in my framework. Notice,

however, that in the proofs I use the fact that the definition is restricted to constant acts.

Therefore it is unclear whether all implications are still valid for such a general definition.

A Appendix

A.1 Proofs

Proof of Lemma 1: By definition of the certainty equivalent CEw(lν), the individual

is indifferent between the constant acts w and (w − CEw(lν))⊕ lν . Therefore πνf0,w = 0.

Notice that πνf t,w is defined by U
(
u◦ ((w−CEw(lν)+πνf t,w)⊕ tf + (1− t)lν)

)
=U(u◦w).

Brouwer’s fixed-point theorem ensures existence of πνf t,w, because U is continuous under

Assumption 1 (Cerreia-Vioglio et al., 2011, Lemma 57). Assumption 2 together with an

implicit function theorem, like Kudryavtsev (1990), guarantees continuity of πνf t,w in t.

By continuity, the limit of the ambiguity premium equals zero.
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Proof of Theorem 1: Consider a wealth w and an act f ∈ F . Define w̄ = u(w).

The upper contour set of U at a f̄0 ∈ F̄ is denoted B(f̄0) = {f̄ ∈ F̄|U(f̄) ≥ U(f̄0)}.
Without loss of generality suppose 0 /∈ B(w̄). Now define the function W̃ : F̄ → R̄ with

W̃ (f̄) =

− inf{α ∈ R+|αf̄ ∈ B(w̄)} if ∃α ∈ R+ : αf̄ ∈ B(w̄)

−∞ otherwise.
(3)

Notice that F̄ ⊆ RΩ is homeomorphic to a corresponding subspace of R|Ω|. Hence,

addition, scalar-multiplication, and the inner product in F̄ are well-defined.

To verify that W̃ is concave, consider f̄1, f̄2 ∈ F̄ with W̃ (f̄1), W̃ (f̄2) > −∞ first.

Cerreia-Vioglio et al. (2011, Lemma 57) show that the representing utility function U

is monotone, quasiconcave and continuous under Assumption 1. A quasiconcave and

continuous function has closed and convex upper contour sets. Therefore B(w̄) is a closed

and convex set. As F̄ is a Hilbert space, the closest point theorem ensures (−W̃ (f̄i))f̄i ∈
B(w̄) for i = 1, 2. Convexity of B(w̄) implies −λW̃ (f̄1)f̄1 − (1 − λ)W̃ (f̄2)f̄2 ∈ B(w̄) for

all λ ∈ [0, 1]. Moreover,

−(λW̃ (f̄1) + (1− λ)W̃ (f̄2))
(
λ′f̄1 + (1− λ′)f̄2

)
= −λW̃ (f̄1)f̄1 − (1− λ)W̃ (f̄2)f̄2

with λ =
λ′W̃ (f̄2)

λ′W̃ (f̄2) + (1− λ′)W̃ (f̄1)
∈ [0, 1] for all λ′ ∈ [0, 1]. Hence, there is a α̃ =

λW̃ (f̄1) + (1− λ)W̃ (f̄2) such that

− α̃
(
λ′f̄1 + (1− λ′)f̄2

)
∈ B(w̄). (4)

Notice that

λ ≥ λ′ ⇔ λ′W̃ (f̄2)

λ′W̃ (f̄2) + (1− λ′)W̃ (f̄1)
≥ λ′

⇔W (f̄2) ≤ λ′W̃ (f̄2) + (1− λ′)W̃ (f̄1)⇔ W̃ (f̄2) ≤ W̃ (f̄1).

Therefore,

λ′W̃ (f̄1) + (1− λ′)W̃ (f̄2) ≤ λW̃ (f̄1) + (1− λ)W̃ (f̄2) = α̃ ≤ W̃ (λ′f̄1 + (1− λ′)f̄2).

The last inequality follows from (4). λ′W̃ (f̄1) + (1− λ′)W̃ (f̄2) ≤ W̃ (λ′f̄1 + (1− λ′)f̄2) is

also valid if W̃ (f̄i) = −∞ for i = 1 or 2. Consequently, W̃ is a proper concave function.

According to Rockafellar (1970, p. 308) the superdifferential at an act f̄0 ∈ F̄ is the

convex set of all supergradients ḡ at f̄0 and a supergradient ḡ of a concave function W :

F̄ → R at f̄0 is any ḡ ∈ F̄ with the property W (f̄) −W (f̄0) ≤ 〈ḡ, f̄ − f̄0〉 for all f̄ ∈ F̄ .

Here 〈ḡ, f̄〉 =
∑

ω∈Ω ḡ(ω)f̄(ω) denotes the inner product. Rockafellar (1970, Theorem

23.4) ensures that the superdifferential of W̃ at w̄ exists.

Assume to the contrary that there is a supergradient ḡ ∈ F̄ of W̃ at w̄ with ḡ(ω′) < 0

for a ω′ ∈ Ω. Consider the act f̄x ∈ F̄ with f̄x(ω′) = x ∈ R and f̄x(ω) = w̄ for all ω 6= ω′.

By the definition of the supergradient W̃ (f̄x) − W̃ (w̄) ≤ 〈ḡ, f̄x − w̄〉 = g(ω′)(x − w̄) for
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all x ∈ R. Hence, W̃ (f̄x) < W̃ (w̄) = −1 for all x > w̄. Yet, W̃ (f̄x) < −1 for all x > w̄

implies f̄x 6∈ B(w̄) for all x > w̄ contradicting monotonicity of U according to Cerreia-

Vioglio et al. (2011, Lemma 57). Therefore ḡ(ω) ≥ 0 for all ω ∈ Ω for all supergradients

ḡ ∈ F̄ of W̃ at w̄.

Suppose the subjective beliefs at wealth w are a singleton. Denote these subjective

beliefs by ν. Assume to the contrary that there are two different supergradients ḡ, ḡ′ ∈ F̄
of W̃ at w̄ with ḡ 6= ḡ′. The two-sided directional derivative of W̃ at w̄ with respect to

1 = (1, 1, . . . , 1) is well-defined and equals lim
ε→0

1
ε (W̃ (w̄ + ε)− W̃ (w̄)) = lim

ε→0

1
ε (1−

w̄
w̄+ε) =

1/w̄. Then according to Rockafellar (1970, Theorem 23.2)
∑

ω∈Ω ḡ(ω) ≤ 1
w̄ ≤

∑
ω∈Ω ḡ(ω)

and, hence,
∑

ω∈Ω ḡ(ω) = 1
w̄ for all supergradients ḡ of W̃ at w̄. Therefore ḡ and ḡ′

cannot be parallel and ḡ, ḡ′ 6= 0. Normalize both supergradients such that
∑

ω∈Ω ḡ(ω) =∑
ω∈Ω ḡ

′(ω) = 1. As ḡ, ḡ′ 6= 0 and ḡ(ω) ≥ 0 and ḡ′(ω) ≥ 0 for all ω ∈ Ω as proven in the

last paragraph, this normalization is feasible. In addition, the normalized supergradients

are probability measures. If after normalization ḡ = ḡ′, this implies that initially ḡ

and ḡ′ were parallel – contradicting our assumption. Therefore also after normalization

ḡ 6= ḡ′. Following the definition of the supergradients, W̃ (f̄) − W̃ (w̄) ≤ 〈ḡ, f̄ − w̄〉 and

W̃ (f̄) − W̃ (w̄) ≤ 〈ḡ′, f̄ − w̄〉 for all f̄ ∈ B(w̄). Yet, f̄ ∈ B(w̄) implies W̃ (f̄) ≥ −1 and

W̃ (f̄) − W̃ (w̄) ≥ 0. Therefore 0 ≤ 〈ḡ, f̄ − w̄〉 and 0 ≤ 〈ḡ′, f̄ − w̄〉 for all f̄ ∈ B(w̄).

Consequently, ḡ and ḡ′ are subjective beliefs at wealth w contradicting my assumption

that the subjective beliefs at wealth w are a singleton. This contradiction proves that the

superdifferential of W̃ at w̄ is a singleton.

Rockafellar (1970, Theorem 25.1) shows that a concave function has a unique super-

gradient at w̄ if and only if the function is differentiable at w̄. Therefore the function W̃

is differentiable at w̄. The gradient equals 1
w̄ν 6= 0 as we have shown above.

Denote by f t1 ∈ F the act (w − CEw(lν)) ⊕ tf + (1 − t)lν and by f̄ t1 = u ◦ f t1 its

projection into F̄ . Notice that

f̄ t1 : ω 7→
∑

{x∈R|min{f(x|ω),lν(x)}>0}

u(w − CEw(lν) + x)
(
tf(x|ω) + (1− t)lν(x)

)
=

= t
∑

{x∈R|f(x|ω)>0}

u(w − CEw(lν) + x)f(x|ω) + (1− t)
∑

{x∈R|lν(x)>0}

u(w − CEw(lν) + x)lν(x).

Hence, f̄ t1 = tf̄ t=1
1 + (1− t)f̄ t=0

1 = tf̄ t=1
1 + (1− t)w̄.

Consider the distance d1(t) between f̄ t1 and the upper contour set B(w̄) in direction f̄ t1

d1(t) = inf
{
β ∈ R+

∣∣βf̄ t1 + f̄ t1 ∈ B(w̄)
}
||f̄ t1|| =

=
(
inf
{
α ∈ R+

∣∣αf̄ t1 ∈ B(w̄)
}
− 1
)
||f̄ t1|| = (W̃ (w̄)− W̃ (f̄ t1))||f̄ t1||

for W̃ (·) as defined in (3) and || · || the Euclidean norm. Figure 2 depicts this distance.

Suppose f̄ t1 = w̄, then f̄ t=1
1 = w̄ and, hence, f̄ t1 = w̄ for all t ∈ [0, 1]. In addition, d1(t) = 0

for all t ∈ [0, 1]. Therefore I can focus on f̄ t1 6= w̄. The first part of the proof shows that
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Utility in state 2 Utility in state 2

Utility
in state 1

Utility
in state 1

f̄ t1

w̄

π̄
ν
f
t ,w

d1(t
)

f̄ t1

w̄ = f̄ t=0
1

f̄ t=1
1

π̄νf t,w

The figure depicts a contingent utility space for two states of the world. w̄ denotes the constant
act with utility u(w), while f̄ t1 denotes the act u ◦ ((w − CEw(lν)) ⊕ tf + (1 − t)lν). π̄νft,w =

||u ◦ (πνft,w ⊕ f t1)− f̄ t1|| is the adjusted ambiguity premium πνft,w.

Figure 2: The Ambiguity Premium

W̃ is differentiable at w̄ with a gradient 1
w̄ν. Then

lim
t↘0

W̃ (w̄)− W̃ (f̄ t1)

||f̄ t1 − w̄||
= − lim

t↘0

W̃ (f̄ t1)− W̃ (w̄)

||f̄ t1 − w̄||
= − lim

t↘0

〈 1
w̄ν, f̄

t
1 − w̄〉

||f̄ t1 − w̄||

As f̄ t1 = tf̄ t=1
1 + (1− t)w̄ as proven in the beginning of this proof,

− lim
t↘0

〈 1
w̄ν, f̄

t
1 − w̄〉

||f̄ t1 − w̄||
= − lim

t↘0

〈 1
w̄ν, t(f̄

t=1
1 − w̄)〉

t||f̄ t=1
1 − w̄||

=
− limt↘0 〈ν, f̄ t=1

1 − w̄〉
w̄||f̄ t=1

1 − w̄||
=
−〈ν, f̄ t=1

1 − w̄〉
w̄||f̄ t=1

1 − w̄||
.

Yet
〈ν, f̄ t=1

1 − w̄〉 = 〈ν, f̄ t=1
1 〉 − w̄ =

= −w̄ +
∑
ω∈Ω

∑
{x∈R|f(x|ω)>0}

u(w − CEw(lν) + x)ν(ω)f(x|ω) =

= −w̄ +
∑

{x∈R|lν(x)>0}

u(w − CEw(lν) + x)lν(x) = −w̄ + w̄ = 0,

because lν(x) =
∑

ω∈Ω ν(ω)f(x|ω) by the definition of lν in (1). Consequently,

1

||f̄ t=1
1 − w̄||

lim
t↘0

W̃ (w̄)− W̃ (f̄ t1)

t
= lim

t↘0

W̃ (w̄)− W̃ (f̄ t1)

||f̄ t1 − w̄||
= 0.

Yet limt↘0(W̃ (w̄)− W̃ (f̄ t1))/t = 0 yields limt↘0 d1(t)/t = 0. Assumption 1 and 2 ensure

existence of the inverse utility function u−1. Denote the sum of the distances in wealth

terms by

d∗1(t) =
∑
ω∈Ω

(
u−1

(
d1(t)

||f̄ t1||
f̄ t1(ω) + f̄ t1(ω)

)
− u−1(f̄ t1(ω))

)
.

Recall that Assumption 1 ensures that U is continuous and monotone as shown in Cerreia-

Vioglio et al. (2011, Lemma 57). Hence, (d1(t)/||f̄ t1|| + 1)f̄ t1 ∈ B(w̄) by the definition of

d1(t) and continuity of U . By monotonicity and continuity of U , u ◦ (d∗1(t)⊕ f t1) ∈ B(w̄),

because the definition of d∗1(t) guarantees (u ◦ (d∗1(t) ⊕ f t1))(ω) ≥ (d1(t)/||f̄ t1|| + 1)f̄ t1(ω)

for all ω ∈ Ω. The ambiguity premium equals πνf t,w = inf{β ∈ R+|u ◦ (β ⊕ f t1) ∈ B(w̄)}.
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Hence, d∗1(t) ≥ πν
f t1,w
≥ 0. Assumption 1 and the inverse function theorem guarantee that

the inverse utility function u−1 is differentiable. Then, by l’Hôpital’s rule

lim
t↘0

d∗1(t)

t
= lim

t↘0

∂d∗1(t)

∂t
=
∑
ω∈Ω

∂u−1

∂x
(w̄) lim

t↘0

d1(t)
f̄ t1(ω)

||f̄ t1||

t
+
∂f̄ t1(ω)

∂t
− ∂f̄ t1(ω)

∂t

 =

=
∑
ω∈Ω

∂u−1

∂x
(w̄)

(
lim
t↘0

d1(t)
f̄ t1(ω)

||f̄ t1||t

)

As f̄ t1 = tf t=1
1 + (1− t)w̄, the last line equals

∂u−1

∂x
(w̄)

∑
ω∈Ω

lim
t↘0

(
d1(t)w̄

||f̄ t1||t
+ d1(t)

f t=1
1 (ω)− w̄
||f̄ t1||

)
=
∂u−1

∂x
(w̄)

w̄

||f̄ t=0
1 ||

∑
ω∈Ω

lim
t↘0

d1(t)

t
= 0,

limt↘0 d1(t) = 0 yields the penultimate equality and limt↘0 d1(t)/t = 0 yields the last

equality. Consequently, limt↘0 d
∗
1(t)/t = 0 and limt↘0 π

ν
f t,w/t = 0. This ensures that

Lνf,w = 0 for the subjective belief ν and all acts f . Therefore there is second-order

ambiguity aversion.

Assumption 1 and Cerreia-Vioglio et al. (2011, Lemma 57) ensure that U is quasi-

concave. Hence, upper contour sets are convex. Therefore there is a subjective belief at

each wealth by Rockafellar (1970, Corollary 11.5.2 and 11.6.1), because analogously to

the previous reasoning it is easy to show that such a separating hyperplane is componen-

twise nonnegative and normalization is feasible. See also Rigotti et al. (2008, p. 1169). In

particular, the negation of the statement ‘subjective beliefs at wealth w are a singleton’

is ‘there are several subjective beliefs at wealth w.’

Finally, consider the case of several subjective beliefs at wealth w. Pick two different

subjective beliefs λ 6= ν at wealth w. In particular, there is a state of the world ω∗ ∈ Ω,

such that
ν(ω∗) > λ(ω). (5)

Now turn to the ambiguity premium πνf t,w = inf{β ∈ R+|u ◦ (β ⊕ f t1) ∈ B(w̄)} for an act

f ∈ F . The ambiguity premium in utility terms π̄νf t,w = ||u ◦ (πνf t,w ⊕ f
t
1)− f̄ t1|| is at least

as high as the distance between the act f̄ t1 and the upper contour set B(w̄),

π̄νf t,w ≥ inf{||f̄ t1 − ḡ||
∣∣ḡ ∈ B(w̄)}.

By definition of the subjective beliefs (2), the upper contour set is contained in the

halfspace created by the hyperplane determined by the subjective beliefs. In particular,

for any subjective belief P∑
ω∈Ω

(f̄(ω)− w̄)P (ω) ≥ 0 ∀f̄ ∈ B(w̄)

and

B(w̄) ⊆

{
f̄ ∈ F̄

∣∣∣∣∑
ω∈Ω

(f̄(ω)− w̄)P (ω) ≥ 0

}
.
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Therefore, the distance between any act f̄ ∈ F̄ and the upper contour set is at least as

high as the distance between f̄ and the halfspace. According to Krantz (2015, Proof of

Theorem 2.34, p. 49) the distance to the halfspace is just the length of the orthogonal

projection and equals max{0, −1
||P ||

∑
ω∈Ω(f̄(ω)− w̄)P (ω)}. Therefore,

π̄νf t,w ≥ inf{||f̄ t1−ḡ||
∣∣ḡ ∈ B(w̄)} ≥ inf

{
||f̄ t1 − ḡ||

∣∣∣∣ḡ ∈
{
f̄ ∈ F̄

∣∣∣∣∑
ω∈Ω

(f̄(ω)− w̄)P (ω) ≥ 0

}}

and

π̄νf t,w ≥ max{0, −1

||P ||
∑
ω∈Ω

(f̄ t1(ω)− w̄)P (ω)} = max{0, −1

||P ||
∑
ω∈Ω

t(f̄ t=1
1 (ω)− w̄)P (ω)}

for any subjective beliefs P . Now consider the act f that yields 1 with probability 1 in

state of the world ω∗ and 0 with probability 1 in all other states of the world. Remember

that (5) determines ω∗. Then the lottery lν equals

lν(x) =


ν(ω∗), if x = 1

1− ν(ω∗), if x = 0

0, otherwise

and f̄ t=1
1 (ω) =

u(w − CEw(lν) + 1), if ω = ω∗

u(w − CEw(lν)), otherwise.

Inserting into −
∑

ω∈Ω(f̄ t=1
1 (ω)− w̄)P (ω) yields

−
∑
ω∈Ω

(f̄ t=1
1 (ω)− w̄)P (ω) = w̄ −

∑
ω∈Ω

f̄ t=1
1 (ω)P (ω) =

=

(
ν(ω∗)u(w − CEw(lν) + 1) + (1− ν(ω∗))u(w − CEw(lν))

)
−
∑
ω∈Ω

f̄ t=1
1 (ω)P (ω) =

=
(
ν(ω∗)− P (ω∗)

)
u(w − CEw(lν) + 1)−

(
ν(ω∗)− P (ω∗)

)
u(w − CEw(lν)) =

= (ν(ω∗)− P (ω∗))

(
u(w − CEw(lν) + 1)− u(w − CEw(lν))

)
> 0

The first bracket is positive by (5) for P = λ. The second bracket is also positive by

Assumption 2. Therefore −
∑

ω∈Ω(f̄ t=1
1 (ω)− w̄)λ(ω) > 0 and

lim
t↘0

π̄νf t,w/t ≥ lim
t↘0

1

t
max{0, −1

||λ||
∑
ω∈Ω

t(f̄ t=1
1 (ω)− w̄)λ(ω)} =

= lim
t↘0

1

t

−1

||λ||
∑
ω∈Ω

t(f̄ t=1
1 (ω)− w̄)λ(ω) =

−1

||λ||
∑
ω∈Ω

(f̄ t=1
1 (ω)− w̄)λ(ω) > 0

for the act f . Assumption 1 ensures that u′ is continuous. Hence, u′ is bounded on

any compact set. In particular, there is a B ∈ R with u′(x) ≤ B for all x in the

closure of the convex hull of the union of w and the support of the simple lotteries

f t=1
1 (ω), (f t=1

1 + πνf t,w)(ω), and (f t=0
1 + πνf t,w)(ω) for all ω ∈ Ω and t ∈ [0, 1]. Therefore

πνf t,w ≥ π̄νf t,w/(B||1||). Consequently, Lνf,w > 0 for an act f and there is first-order

ambiguity aversion at w.
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Proof of Theorem 2: Consider a given wealth w ∈ R. Set w̄ = u(w). The upper

contour set of U at f̄0 ∈ F̄ is denoted B(f̄0) = {f̄ ∈ F̄|U(f̄) ≥ U(f̄0)}. Without loss of

generality suppose 0 /∈ B(w̄). Notice that F̄ ⊆ RΩ is homeomorphic to a corresponding

subspace of R|Ω|. Therefore I can identify acts f ∈ F̄ with vectors in R|Ω| and vice versa.

Assume second-order ambiguity aversion at w. By Theorem 1, there is a unique

subjective belief ν at wealth w. The proof of Theorem 1 shows that the function W̃

defined in (3) is differentiable at w̄ with a gradient 1
w̄ν 6= 0. Obviously, the indifference

surface is contained in the upper contour set, i.e.,

{f̄ ∈ F̄|U(f̄) = U(w̄)} ⊆ {f̄ ∈ F̄|U(f̄) ≥ U(w̄)}.

Therefore W̃ (f̄) ≥ −1 for all f̄ ∈ F̄ with U(f̄) = U(w̄). Cerreia-Vioglio et al. (2011,

Lemma 57) show that the representing utility function U is monotone and continuous

under Assumption 1. Assumption 2 ensures strict monotonicity of U . Therefore the

upper contour sets are closed and W̃ (f̄) = −1 for all f̄ ∈ F̄ with U(f̄) = U(w̄). Now

suppose to the contrary that there is a f̄ ∈ F̄ with U(f̄) 6= U(w̄) and W̃ (f̄) = −1. Then,

by definition of W̃ , 1f̄ = f̄ is contained in the closure of B(w̄). As the upper contour sets

are closed, the closure of B(w̄) equals B(w̄). Therefore f̄ ∈ B(w̄). Yet, f̄ ∈ B(w̄) and

U(f̄) 6= U(w̄) implies U(f̄) > U(w̄). By continuity of U , there is a neighborhood N of f̄

such that U(f̄ ′) > U(w̄) for all f̄ ′ ∈ N . In particular, there is a α < 1 such that αf̄ ∈ N
contradicting W̃ (f̄) = −1.

In summary, the indifference surface is the level set of W̃ at the value −1 = W̃ (w̄).

Thus, the indifference surface is differentiable at w̄.

Now assume first-order ambiguity aversion at w. By Theorem 1, there are several

subjective beliefs at w. Pick two different subjective beliefs ν 6= λ at w. Assume to the

contrary that the indifference surface is differentiable. Hence, there is a function η, so that

the indifference surface is the level set of η at the value η(w̄) and η is differentiable at w̄

with a gradient ∇w̄η 6= 0. Suppose without loss of generality that 〈∇w̄η , (1, 1, . . . , 1)〉 ≥ 0.

By definition of the subjective beliefs, f̄ 6∈ B(w̄) for all f̄ ∈ F̄ with 〈f̄ , ν〉 < w̄. In

particular, the intersection between the indifference surface and the set of all f̄ ∈ F̄ with

〈f̄ , ν〉 < w̄ must be empty. Assume to the contrary there is no β ∈ R with ν = β∇w̄η .

Then there is a ḡ ∈ F̄ such that 〈ḡ, ν〉 < w̄ and 〈ḡ,∇w̄η 〉 > 0. By definition of the

gradient, limt↘0
η(w̄+tf̄)−η(w̄)−t〈f̄ ,∇w̄η 〉

t = 0 for any f̄ ∈ F̄ . Hence, there is a t′ > 0 with

η(w̄ + tḡ) > η(w̄) for all t ∈ (0, t′). Hence, the intersection between the indifference

surface and the set of all f̄ ∈ F̄ with 〈f̄ , ν〉 < w̄ cannot be empty. Therefore ν and ∇w̄η
are parallel, i.e., there is β ∈ R with ν = β∇w̄η . Analogously, we can prove that λ and

∇w̄η are parallel, i.e., there is β ∈ R with λ = β∇w̄η . This result contradicts the fact that

ν 6= λ and the fact that probability measures are normalized. Therefore there is no such

function η and the indifference surface is kinked at w̄.

Proof of Lemma 2: Denote the closure of the convex hull of Π by Π̄. This repre-
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sentation is a special case of Uncertainty Averse Preferences with G(w,P ) = w + c(P )

with c(P ) = 0 if P ∈ Π̄ and c(P ) = ∞ if P 6∈ Π̄. By Lemma 4, the subjective beliefs

are arg infP∈∆ΩG(w,P ) = Π̄ for every w ∈ R. Hence, there are several subjective beliefs

if Π is not a singleton. By Theorem 1, MEU preferences exhibit first-order ambiguity

aversion.

Proof of Lemma 3: Rigotti et al. (2008, Proposition 5) show that there is a unique

subjective belief at each wealth, namely EµP . By Theorem 1, the preferences exhibit

second-order ambiguity aversion. Maccheroni et al. (2011) discuss the orders of risk and

ambiguity aversion in Smooth Ambiguity-Averse Preferences in detail. Cerreia-Vioglio

et al. (2015) characterize subjective beliefs for any locally Lipschitz preferences.

Proof of Lemma 4: Consider a wealth level w. Cerreia-Vioglio et al. (2011, Proposi-

tion 11(i)) show that the subjective beliefs at wealth w equal arg infP∈∆ΩG(w̄, P ). Notice

that the proof of Cerreia-Vioglio et al. (2011, Proposition 11(i)) does not require their

axiom A.6. Therefore my framework satisfies all the required conditions. Theorem 1

yields the statement of the proposition.

Consider an endowment of w ∈ R and an act f ∈ F . An individual chooses the

optimal t ≥ 0 for the act w ⊕ (t ∗ f).

Theorem 5. Suppose Assumption 1-2 hold. If the individual chooses t > 0, there is a

t′ > 0, such that Eν(u ◦ (w ⊕ (t′ ∗ f))) ≥ u(w) for any subjective belief ν at w. If there

is second-order ambiguity aversion at w and the subjective beliefs ν at w yields a positive

expectation of the act, Eν(id ◦ f) > 0, the individual chooses t > 0.

Proof of Theorem 5: Consider an individual who prefers w ⊕ (t′ ∗ f) to w with

t′ > 0. Then u ◦ (w ⊕ (t′ ∗ f)) ∈ B(u(w)). The proof of Theorem 1 shows that there is a

subjective belief at wealth w. By definition of the subjective belief ν at w,

∑
ω∈Ω

ν(ω)(u ◦ (w ⊕ (t′ ∗ f)))(ω) ≥
∑
ω∈Ω

ν(ω)u(w) = u(w)

Therefore Eν(u ◦ (w ⊕ (t′ ∗ f))) ≥ u(w). This proves the first part of the theorem.

For the second part of the theorem, assume second-order ambiguity aversion at w

and that there is a subjective belief ν at w that yields a positive expectation of the act,

Eν(id ◦ f) =
∑

ω∈Ω(ν(ω)(
∑

x : f(x|ω)>0 xf(x|ω))) > 0. Without loss of generality, suppose

u(w) > 0. The proof of Theorem 1 shows that the function W̃ is differentiable at u(w)

with a gradient 1
u(w)ν. By the definition of the gradient, W̃ (u◦ (w⊕ (t′ ∗f))) is increasing

in t for small t if

〈 1

u(w)
ν,
∂u ◦ (w ⊕ (t ∗ f))

∂t

∣∣∣∣
t=0

〉 > 0.
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By Assumption 1 u is differentiable and

∂
∑

x : f(x|ω)>0 u(w + tx)f(x|ω)

∂t

∣∣∣∣∣
t=0

=
∑

x : f(x|ω)>0

u′(w + tx)xf(x|ω)

∣∣∣∣∣∣
t=0

=

= u′(w)
∑

x : f(x|ω)>0

xf(x|ω) = u′(w)(id ◦ f)(ω)

for all ω ∈ Ω. Therefore

〈 1

u(w)
ν,
∂u ◦ (w ⊕ (t ∗ f))

∂t

∣∣∣∣
t=0

〉 =
1

u(w)
〈ν, ∂u ◦ (w ⊕ (t ∗ f))

∂t

∣∣∣∣
t=0

〉 =
u′(w)

u(w)
Eν(id ◦ f) > 0

by assumption. Hence, there is a t′ > 0 with W̃ (u◦(w⊕(t′∗f))) > W̃ (u(w)). Assumption 2

ensures that the individual then prefers t′ to her endowment. This concludes the second

part of the proof.

Proof of Theorem 3: Suppose the individual chooses t > 0. Theorem 5 above shows

that Eν(u ◦ (w ⊕ (t ∗ f))) ≥ u(w) for any subjective belief ν at wealth w. Assumption 3

ensures that u is concave. Jensen’s inequality ensures

u(Eν(id ◦ (w ⊕ (t ∗ f)))) ≥ Eν(u ◦ (w ⊕ (t ∗ f))) ≥ u(w). (6)

If, on the one hand, at least one of the inequalities in (6) is a strict inequality, we have

u(Eν(id◦ (w⊕ (t∗f)))) > u(w). Then, as u is increasing under Assumption 2, (6) implies

Eν(id ◦ (w ⊕ (t ∗ f))) > w and, hence, Eν(id ◦ f) > 0.

If, on the other hand, u(Eν(id ◦ (w ⊕ (t ∗ f)))) = u(w), Eν(id ◦ (w ⊕ (t ∗ f))) = w

because u is strictly increasing under Assumption 2. In particular, Eν(id ◦ f) = 0.

As id ◦ f 6= 0 by assumption, there are states ω1, ω2 ∈ Ω with (id ◦ f)(ω1) < 0 and

(id ◦ f)(ω2) > 0. Then the strict concavity of u by Assumption 3 and Jensen’s inequality

yield u(Eν(id◦(w⊕(t∗f)))) > Eν(u◦(w⊕(t∗f))) contradicting u(Eν(id◦(w⊕(t∗f)))) =

u(w). This proves that the condition is necessary.

Theorem 5 above proves the sufficiency part for second-order ambiguity aversion. For

the sufficiency part for first-order ambiguity aversion assume to the contrary that any

subjective beliefs ν at wealth w yield a positive expectation of the act, Eν(id◦f) > 0, but

t = 0 is optimal. Then the individual (weakly) prefers w to any w⊕ (t∗f) with t > 0. By

Assumptions 1 and 2, there is a P ∈ ∆Ω, such that EP (id◦f) = 0 and U(u◦g) < U(u◦w)

for all g ∈ F with EP (id ◦ g) < w. This implies that EP (id ◦ g) ≥ w for all g ∈ F with

U(u ◦ g) ≥ U(u ◦ w). Therefore by definition P is a subjective belief at wealth w with

EP (id ◦ f) = 0. This yields a contradiction.

Proof of Theorem 4: Finally, consider an individual who is first-order ambiguity

averse at wealth w and risk averse with a concave u. Then by Theorem 1 there are at

least two subjective beliefs at w. Denote them by λ and ν. In particular, there is a state

of the world ω∗ with λ(ω∗) < ν(ω∗). Notice that 1−ν(ω∗)
ν(ω∗) < 1−λ(ω∗)

λ(ω∗) . Pick a x ∈ R with
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1−ν(ω∗)
ν(ω∗) < x < 1−λ(ω∗)

λ(ω∗) . Now consider the act g ∈ F that pays x with probability 1 in the

state ω∗ and otherwise pays -1 with probability 1. The act g has a positive expectation

under the subjective belief ν

Eν(id ◦ g) = ν(ω∗)x− (1− ν(ω∗)) > 0,

but a negative expectation under the subjective belief λ

Eλ(id ◦ g) = λ(ω∗)x− (1− λ(ω∗)) < 0.

Jensen’s inequality ensures

Eλ(u ◦ (w ⊕ (t ∗ g))) ≤ u(Eλ(id ◦ (w ⊕ (t ∗ g)))) = u(w + tEλ(id ◦ g)) < u(w)

for t > 0 because Eλ(id◦ g) < 0, u is concave by assumption and strictly increasing under

Assumption 2. By the definition of the subjective belief λ, therefore u ◦ (w ⊕ (t ∗ g)) /∈
B(u(w)) for all t > 0 and the individual chooses t = 0. By continuity of the expectation,

there is a open neighborhood N of g, such that Eν(id ◦ g′)) > 0 and Eλ(id ◦ g′)) < 0 for

all acts g′ ∈ N . Hence, u ◦ (w⊕ (t ∗ g′)) /∈ B(u(w)) for all t > 0 and g′ ∈ N . As the set N

is nonempty and open, N has positive mass for any atomless measure with full support

on F .

Proof of Lemma 5: Suppose ν is a subjective belief at wealth rw. The expected

return under the subjective belief ν of the asset f at price p equals Eν(id ◦ f)/p and is

either higher, equal or lower than the the return r of the risk-free asset. According to

Corollary 1, the individual either buys or sells a fraction of the asset f at price p with

second-order ambiguity aversion at rw whenever Eν(id◦f) 6= rp and id◦f is not constant.

The set of assets f with Eν(id◦f) = rp or constant id◦ (−rp⊕f) is a null set in the asset

space F . Hence, the individual generically buys or sells a positive amount of the asset f .

With first-order ambiguity aversion at rw, Theorem 4 and Corollary 1 guarantee that

there is a set of assets with positive mass so that the individual avoids any investment in

these assets.

Proof of Corollary 1: Suppose ν is a subjective belief at wealth rw. The expected

return under the subjective belief ν of the asset f at price p equals Eν(id◦f)/p. Consider

the act g = (−rp) ⊕ f . Then id ◦ g is not constant, as id ◦ f is not constant. Applying

Theorem 3 to the act g at wealth rw shows that the individual with second-order ambi-

guity aversion at rw buys the asset if and only if Eν(id ◦ f) > rp. Theorem 4 at wealth

rw yields the statement of the corollary for first-order ambiguity aversion at rw.

Proof of Lemma 6: Suppose ν is a subjective belief at wealth w − p. According

to Corollary 2, the individual with second-order ambiguity aversion at w − p buys full

insurance coverage, α = 1 if and only if |Eν(id ◦ L)| = p. With first-order ambiguity

aversion at w − p, Theorem 4 and Corollary 2 guarantee that there are losses such that
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full insurance, α = 1, is optimal at |Eν(id ◦ L)| 6= p.

Proof of Corollary 2: Suppose ν is a subjective belief at wealth w−p. Consider the

act g = p⊕ L. Then id ◦ g is not constant, as id ◦ L is not constant. Applying Theorem

3 to the act g at wealth w− p with second-order ambiguity aversion at w− p shows that

α < 1 if and only if |Eν(id ◦ L)| < p. In addition, it shows that α > 1 if and only if

|Eν(id ◦ L)| > p. Therefore full insurance, α = 1, is only feasible for |Eν(id ◦ L)| = p.

Notice that full insurance, α = 1, here corresponds to t = 0 in the theorem. Theorem 4

at wealth w − p shows that full insurance, i.e., α = 1, is optimal for some losses L with

|Eν(id ◦ L)| 6= p and first-order ambiguity aversion at w − p.
Proof of Corollary 3: Suppose ν is a subjective belief at wealth w − c(1). By

convexity of c, c(e) ≥ c(1) + (1 − e)c′(1) for all efforts e ∈ [0, 1]. Consider the act

g = c′(1)⊕L. Then id ◦ g is not constant, as id ◦L is not constant. Applying Theorem 3

to the act g at wealth w−c(1) for second-order ambiguity aversion at w−c(1) shows that

t > 0 if and only if c′(1) > |Eν(id◦L)|. Assumption 1 ensures monotonicity of preferences.

By monotonicity of preferences and convexity of c, e < 1 only if t > 0. Suppose to the

contrary, that for the linear act t > 0 is optimal and for the convex act e = 1 is optimal.

Then there is an ε > 0 such that c′(1− ε) > |Eν(id ◦L)| and, hence, also t > 0 is optimal

when facing the new act g′ = c′(1 − ε) ⊕ L. Yet, c(e) ≤ c(1) + (1 − e)c′(1 − ε) for e in

a neighborhood of 1. Monotonicity of preferences yields an optimal e < 1 contradicting

the initial assumption. Consequently, e < 1 if and only if t > 0. Theorem 4 at wealth

w − c(1) shows that perfect prevention, i.e., e = 1, is optimal for some losses L with

c′(1) > |Eν(id ◦ L)| and first-order ambiguity aversion at w − c(1).

Proof of Corollary 4: Consider second-order ambiguity aversion at wealth Eµ0W (y)

with subjective beliefs ν at wealth Eµ0W (y). Analogously to the proof of Theorem 5,

differentiability of W̃ ensures that W̃ (u ◦ (−c(e)⊕w(ye))) is increasing in e for small e if

there is an ε′ > 0 such that

∑
ω∈Ω

ν(ω)
(
(u ◦ (−c(e)⊕ w(ye)))(ω)− (u ◦ w(y0))(ω)

)
> 0

for all e ∈ (0, ε′). Consistency guarantees that µe equals the distribution of ye under ν.

Therefore the previous condition is equivalent to existence of an ε′ > 0 such that

∑
y∈Y

µe(y)u(W (y)− c(e))− (u ◦ w(y0))(ω) > 0

for all e ∈ (0, ε′). This condition is exactly for a subjective expected utility maximizer with

risk index u and beliefs µe to prefer −c(e)⊕w(ye) to w(y0) for all e ∈ [0, ε′]. Therefore W̃

is increasing in this direction. The condition on ||u ◦ (−c(e)⊕w(ye))−u ◦w(y0)|| ensures

that we are getting close enough to u ◦ w(y0) ∈ F̄ for small e. Consequently, there is an

ε′ > 0 such that W̃ (u◦ (−c(e)⊕w(ye))) > W̃ (u◦w(y0)) for all e ∈ (0, ε′). The agent with
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second-order ambiguity aversion prefers to exert positive effort.

With first-order ambiguity aversion, however, it may be optimal for the agent to choose

zero effort. Theorem 1 shows that there are several subjective beliefs. In particular, there

might be a subjective belief λ and an ε′ > 0 with∑
ω∈Ω

λ(ω)
(
(u ◦ (−c(e)⊕ w(ye)))(ω)− (u ◦ w(y0))(ω)

)
< 0

for all e ∈ (0, ε′). The definition of the subjective beliefs ensures that the agent chooses

e = 0.

A.2 Orders of Risk Aversion

Consider a classical expected utility representation with a twice differentiable von-Neu-

mann-Morgenstern utility index and a lottery l. Then the risk premium is proportional to

the variance for small risks, as already recognized by Pratt (1964, p. 126). Consequently,

the risk premium only contains terms of second order. This yields risk-neutral behavior for

small stakes and is called second-order risk aversion. Segal and Spivak (1990) introduce

the notion of first-order risk aversion if the risk premium is proportional to the standard

deviation. They consider a lottery l with E(l) = 0. Assume a risk-averse individual chooses

between a zero payoff and the lottery l. Given her risk aversion, the individual prefers the

certain payoff to the lottery, 0 < l. If preferences are continuous in wealth, there exists a

payment π̂l,0, such that the individual is indifferent between 0 and the lottery π̂l,0 ⊕ l:

0 ∼ π̂l,0 ⊕ l

π̂l,0 is called the risk premium of the lottery l. There are different definitions of the risk

premium. Sometimes it is the transfer that is subtracted from the endowment in order to

make the individual indifferent to the lottery. See also Schlesinger’s (1997) footnote 2 for

a discussion of the different definitions. To capture small risks, consider t ≥ 0 and π̂t∗l,0,

such that 0 ∼ π̂t∗l,0 ⊕ (t ∗ l). Thus, the payment π̂t∗l,0 makes the individual indifferent

between the lottery t∗ l and the sure zero payoff. If the risk disappears, the risk premium

vanishes and π̂t∗l,0 → 0 for t ↘ 0. According to Segal and Spivak (1990), the individual

exhibits first-order risk aversion if

lim
t↘0

1

t
π̂t∗l,0 > 0.

On the other hand, she is second-order risk averse if the risk premium is proportional to

the variance and declines quadratically. Then

lim
t↘0

1

t
π̂t∗l,0 = 0 and lim

t↘0

1

t2
π̂t∗l,0 > 0.

It is common to subsume all higher risk orders under second-order risk aversion and

neglect the second condition. Consequently, an individual is second-order risk averse if

and only if she behaves in a risk-neutral way with regard to infinitesimal risks. Segal
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and Spivak (1990) prove that expected utility theory with a differentiable utility index

implies second-order risk aversion. If the utility index is nondifferentiable at wealth w,

expected utility theory features first-order risk aversion. Risk aversion implies a concave

utility index u. Hence, there are right and left derivatives of u at w and

∂π̂t∗l,0
∂t

∣∣∣∣
t=0+

=

(
1−

u′+(w)

u′−(w)

)∫
{x∈R|x>0}

xdl(x).

The same holds in the setting of Machina (1982), in which local utility functions allow

approximating non-standard behavior in an expected-utility framework. Segal and Spivak

(1997) show that also in this case non-differentiability of the local utility functions is

equivalent to first-order risk aversion. See also Nielsen (1999) for a detailed discussion of

the effect of a differentiable risk index u on the order of risk aversion.
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