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Abstract

We study the problem of optimal dynamic pricing for a monopolist selling a product

to consumers in a social network. In the proposed model, the only means of spread

of information about the product is via Word of Mouth communication; consumers’

knowledge of the product is only through friends who already know about the product’s

existence. Both buyers and non-buyers contribute to information diffusion while buyers

are more likely to get engaged. By analyzing the structure of the underlying endogenous

process, we show that the optimal dynamic pricing policy for durable products with

zero or negligible marginal cost, drops the price to zero infinitely often. By attracting

low-valuation agents with free-offers and getting them more engaged in the spread,

the firm can reach out to potential high-valuation consumers in parts of the network

that would otherwise remain untouched without the price drops. We provide evidence

for this behavior from smartphone app market, where price histories indicate frequent

free-offerings. Moreover, we show that despite infinitely often drops of the price to

zero, the optimal price trajectory does not get trapped near zero. We demonstrate

the validity of our results in face of strategic forward-looking agents, homophily-based

engagement in word of mouth, network externalities, and consumer inattention to price

changes. We further unravel the key role of the product type in the drops by showing

that the price fluctuations disappear after a finite time for a nondurable product.
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1 Introduction

How should a monopolist offering a product in a social network price its product over time?

Does the profit-maximizing strategy always keep the prices monotone? Is there a steady state

price? This paper introduces a new framework to investigate these questions by considering

the mechanism by which information about a product diffuses in networks. In particular,

our goal is to investigate the role of word of mouth (WOM) communication of consumers1,

in the optimal pricing policy of the monopoly firm. The multibillion-dollar growing market

for smartphone applications, where word of mouth is often the only means of spread of

information about the product, is a great real world example of such a scenario.

During the last decade, there has been significant growth in the market for smartphone

applications. These applications (apps) are typically cheap, and often the only low-budget2

means by which many of these apps spread is the word of mouth communication of their

users. Many apps ask users for permission to send notifications about the product to contacts

in their address books or to post a message on their online social media, when they purchase

or start using the app. A good evidence for the effectiveness of word of mouth is the

smartphone application WhatsApp which was sold to facebook in early 2014 for $19 billion.

WOM was the key to WhatsApp popularity. As noted by Bloomberg (Satariano (2014)),

“They [WhatsApp management] eschewed marketing and did not employ a public relations

person, relying on the word of mouth recommendations of its users instead”.3

The price an app developer offers for its product is also a big driver for spreading the

information. As such, posting time-varying prices is a common marketing tool for spreading

information about the existence of a new app among the users. Figure 1 depicts the price

history for Tadaa SLR, an iPhone photo and video application since its release.4 An interest-

ing observation from this chart is the frequent drops of the price to zero. The same pattern

can be seen in the price trends of many other smartphone applications (e.g., XnShape, The

Curse, Equalizer PROTM, Color Vacuum, ContactFlow, Coyn, and IBSnap, only to name a

few5).

1“Word of mouth communication involves the passing of information between a non-commercial com-
municator (i.e. someone who is not rewarded) and a receiver concerning a brand, a product, or a service”,
Dichter (1966).

2A recent survey by AppFlood (McCloughan (2013)) over 1000 independent small, medium and large app
developers shows that the majority (78%) of developers surveyed had a per app marketing budget of $5000
or less.

3This example is solely meant to show the effectiveness of WOM in app marketing.
4The price data is gathered from “www.appshopper.com”.
5These examples are chosen from various app categories of Photos & Videos, Games, Music, Education,
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Figure 1: Price history for the iPhone application Tadaa SLR since its debut on Aug. 16,
2013.

Motivated by the above observations, we study the problem of optimal dynamic pricing

of a profit-maximizing firm selling a product in a large social network where agents can only

get informed about the product via Word of Mouth of previously informed friends. A key

feature of this work is the explicit modeling of the effect of the price on the information

diffusion via WOM. The (dynamic) price is a control variable by which the firm directly

affects the information diffusion of its new product through the underlying social network.

Firm’s problem is then to decide, at each time step, between optimally exploiting the existing

informed network or charging a lower price in favor of a higher spread of information.

The main contribution of this paper is to study pricing in social networks through the

channel of information diffusion. We show that when the spread of a durable product is only

via word of mouth, the optimal pricing policy is neither monotone nor reaches a steady state.

Rather, the optimal policy fluctuates, dropping the price to zero infinitely often, essentially

giving away the immediate profit in full to expand the informed network in order to exploit

it in future. This is consistent with the real world evidence from smartphone applications6

described above.

The key intuition behind this result is that frequent zero-price sales allow the firm to

attract consumers who would not buy the product unless offered for free. Giving the product

Finance, and Utilities. See Appendix C for the price plots of some of these apps.
6We deal with smartphone applications as durable products. This is because when a user buys an app,

she usually does not need to buy the same product any more.
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for free to these low-valuation agents and getting them more engaged in the spread, the firm

is able to reach sizeable parts of the network that would remain otherwise uninformed. By

properly timing the drop in price, the firm can ensure that the marginal gain in future profit

by selling the product in this previously unexplored part of the network prevails the loss in

the immediate profit caused by offering the product for free, making the drop of the price

to zero a profitable course of action. We also show that, although the optimal policy drops

the price to zero infinitely often, price will not get trapped near zero.

More importantly, we show that the results remain valid in face of forward-looking

agents, homophily-based7 engagement in word-of mouth, network externalities, and con-

sumer inattention to price changes, under surprisingly mild assumptions. Beside the WOM

nature of information diffusion, we further show that the durability of the product is also a

key driver for these frequent price drops. For a nondurable product, although the firm may

initially make some free offers to expand its network, after a finite time it will fix the price

at a level that extracts the maximum profit from the already informed population.

1.1 Literature

This paper makes contributions to four bodies of literature: WOM marketing, dynamic

pricing, zero pricing, and strategic information diffusion in networks.

Since the landmark paper of Katz and Lazarsfeld (1955) in which the authors show

that people rarely act on mass-media information unless it is also transmitted through per-

sonal ties, WOM has been a major focus of research in the marketing literature (Bass (1969),

Godes and Mayzlin (2004), Chevalier and Mayzlin (2006), Besbes and Scarsini (2013)). WOM

communication strategies are appealing because they combine the prospect of overcoming

consumer resistance with significantly lower costs and fast delivery – especially through the

Internet social networking (Trusov et al. (2008)). Although much of the work studying WOM

communications focused on behavioral factors affecting information transfer (Herr et al.

(1991), Chevalier and Mayzlin (2006), Berger and Schwartz (2011)), the rapid development

of Internet social networking and communication technologies, e.g. smartphones, have

boosted WOM research that is primarily concerned with network effects of social influence

(see e.g., Watts and Dodds (2007), Goldenberg et al. (2009), Stephen and Toubiaz (2010),

Katona et al. (2011), Campbell et al. (2013), Hervas-Drane (2015)). Our work also belongs

7Homophily refers to a tendency of various types of individuals to associate with others who are similar
to themselves (Golub and Jackson (2012)).
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to this latter category of WOM marketing literature. Recently, Campbell et al. (2013) study

how far information about a product eventually diffuses through the population when con-

sumers desire to signal their type to others. By focusing on a signaling equilibrium, they

show that increasing asymmetry among consumers by restricting information of low-typed

agents can boost the spread of WOM.8 As a consequence, they find that advertising may

crowd out the incentives for consumers to engage in WOM. In contrast to all of these works,

we provide an analytical tractable model to analyze the impact of dynamic pricing as a

marketing tool to control information diffusion via WOM.

Dynamic pricing has a rich history in economics and operation research.9 In general,

varying prices over time may have different causes. It might be because of the inability

of the firms to commit to future actions (e.g. Conlisk et al. (1984), Sobel (1991)), or due

to learning new experience goods (e.g. Bergemann and Välimäki (1997, 2000), Ifrach et al.

(2011, 2013))10 or the result of the inability of boundedly rational buyers to pay immediate

attention to price changes (e.g. Radner et al. (2013)). Scarcity of the products with regard to

the number of buyers (e.g. Gallego and van Ryzin (1994), Gershkov and Moldovanu (2009)),

network externalities (e.g. Cabral et al. (1999)), stochastic incoming demand (e.g. Board

(2008)), and time-varying values of buyers (e.g. Garrett (2013)) are among other causes

suggested in the literature for varying prices over time. In particular, Garrett (2013) studies

profit-maximizing prices in an environment where buyers arrive over time and have values

for the good which evolve stochastically. The author shows that for a range of parameter

values, optimal prices fluctuate over time. Prices gradually fall up to sales dates and jump

thereafter, mainly due to the inter-temporal price discrimination effect introduced by Stokey

(1979). In contrast to the present paper, none of these works relate pricing to the extent of

the information diffusion.

How can firms profitably give away free products? Several branches of literature

yield insight for this phenomenon. For example, multi-product pricing in two-sided mar-

kets (Rochet and Tirole (2003), Parker and Alstyne (2005)), forward-looking consumers and

durable-goods monopolies with zero marginal cost (Coase (1972), Stokey (1981) and Gul et al.

8In this vein, Hervas-Drane (2015) presents a model of customer search to explain the impact of product
recommendations on customer product discovery and the concentration of sales. He shows while recommen-
dations benefit mainstream customers, when recommender systems are based on WOM and social filtering,
there is a positive effect in the tail of the sales distribution on customers interested in niche products.

9Talluri and van Ryzin (2004) and Phillips (2005) provide an extensive review of this topic.
10These models are typically either two sided or one sided. Bergemann and Välimäki (1997, 2000),

Ifrach et al. (2013), and Yu et al. (2013) consider two-sided learning models where buyers and sellers both
learn the true value of a new product through consumer experiences. Papanastasiou et al. (2013) and
Ifrach et al. (2011) analyze one-sided learning models when firm knows the product quality, buyers report
their experiences and subsequent customers learn from these reports.
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(1981)), and to a lesser extent bundle pricing (Hanson and Martin (1990)) are potential

causes for this phenomenon. In our model the optimal price scheme sets the price to zero

infinitely many times. However, the principal probing factor, in contrast to all the afore-

mentioned works, is to control the extent of information diffusion.

The main focus here is durable products with zero or negligible marginal cost. Markets

for digital goods and, in particular, smartphone applications are real world examples of this

scenario. Market for smartphone applications (apps) is quite large and still rapidly growing.

Before 2013 mobile apps had an economy with a market size of $25 billion. It is estimated

that one billion smartphones will be sold by the end of 2015. Given that %46 of app users

report having paid for their apps, the app market is expected to have 268 billion downloads

that generate $77 billion worth of revenue by 2017.11 Frequent zero-pricing of apps is already

noticed by the app industry. In fact there are websites that provide lists of the paid apps that

become free on a daily basis.12 Our work is the first analytical approach to this phenomenon

in the app market which suggests controlling the extent of information diffusion via dynamic

prices as a potential cause for the zero price drops in this market.

This paper is also related to the growing literature on strategic interactions in social net-

works (e.g. Ballester et al. (2006), Bramoullé and Kranton (2007), Galeotti et al. (2010)).13

For the most part, in these models prices are static. Su (2007), Nocke and Peitz (2007), and

Hörner and Samuelson (2011) consider dynamic pricing with strategic customers, however,

in contrast to our work, the price paths are found to be monotone.

The closest result in literature to ours is the work in Campbell (2012), where the author

studies pricing for a nondurable product under word of mouth communications. Campbell

shows price fluctuations for a nondurable product during the introductory stages. This is in

line with our result for the nondurable product where we show that the firm may use price

drops to zero during the early stages in order to expand the informed network. However, we

show that fluctuations disappear as the size of the spread gets sufficiently large. Campbell

models the word of mouth as a branching process, in which each new buyer informs a fixed

number of new agents in average. The model neither considers the overlap among the

friends of new buyers nor the fact that some of their friends may have already heard about

the product. As Campbell emphasizes in his paper, such a model is valid only at the early

11See “entrepreneur.com/article/236832” for more statistics on the app market.
12For instance, see “www.appsliced.co”, “www.appaddict.net” and “www.appspy.com”.
13Other relevant studies include: strategic information exchange in social networks (e.g. Acemoglu et al.

(2014)), optimal static pricing under presence of local network effect (Sundararajan (2008), Hartline et al.
(2008), Candogan et al. (2012)), and optimal advertising strategies in social networks (Galeotti and Goyal
(2009), Galeotti and Mattozzi (2011)).
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stages of introducing a product to the network, when the size of the informed population

is still very small. Our model, on the other hand, captures both the diminishing marginal

contribution of new buyers to diffusion caused by the overlap among their friends, and the

slowdown of diffusion caused by the growing size of the agents who have already heard about

the product.

This work is also related to the literature on diffusion dynamics in social networks. One

of the main challenges in information diffusion in social networks is developing tractable

models. The combinatorial nature of networks with heterogeneity often makes analysis

prohibitively difficult. Several modeling approaches have been developed to reduce the in-

herent complexity. An early model of diffusion is the Bass (1969) model. Although the

proposed model does not capture any explicit social network structure, it still incorporates

imitation from others. Some recent models use the concept of mean field theory to model

diffusion over the network. The main idea of this approach is to replace all interactions

to an agent with an average or effective interaction. These tractable models have been

used by Jackson and Rogers (2007b) to relate stochastic dominance properties of the degree

distribution of the network to the depth of diffusion, by Young (2009) to provide methodolo-

gies for characterizing different models of social influence by the time path of adoption, by

Jackson and Rogers (2007a) to infer how the formation process affects average utility in the

network, and by Jackson and Yariv (2007) and López-Pintado (2008) to evaluate strategic

adoption decisions of individuals.14

From the methodological point of view, our work is also related to the literature on

random graph theory. The theory of random graph has been used as a convenient modeling

abstraction, which can facilitate modeling and analysis of the information diffusion in net-

works. Random networks find their origin in studies of random graph by Rapoport (1957)

and Erdős and Rényi (1959, 1960, 1961). Random graph theory is also widely used by net-

work scientists. For instance, it has been used by Watts and Strogatz (1998) to present their

seminal small-world idea by creating highly clustered networks with small diameters, by

Newman et al. (2001) to model the world-wide web and collaboration networks of company

directors and scientists, and by Watts (2002) to model collective actions and the diffusion of

norms and innovations. The current paper develops an endogenous network model by using

selling prices as dynamic controls for the information diffusion in a social network whose

structure is captured by a Poisson random graph (Bollobás (2001)). The proposed model

allows a firm to strategically affect the information diffusion about the existence of a new

14Mean field theory is also used in revenue management, in particular, to study and model complex dynamic
demand systems with the objective of maximizing performance, e.g. Gallego and van Ryzin (1994).
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product within the social network by means of dynamic prices.

The rest of the paper is organized as follows. Section 2 presents a tractable model

for strategic information diffusion via WOM in a large social network whose structure is

represented by a Poisson random graph. Section 3 discusses the main challenge of the firm

as deciding between spreading and exploiting, and presents the main results of the paper.

In Section 4, we examine the robustness of the frequent zero-price drops in the face of

forward-looking agents, homophily-based engagement in WOM, and network externalities.

We unravel the key role of the type of the products in the price drops by studying the

problem for a nondurable product in Section 5. Finally, our conclusions are presented in

Section 6.

2 Model

2.1 General Description

The economy consists of a unit measure continuum of agents indexed by i ∈ I = [0, 1].

Agents form a social network, the structure of which is captured by an undirected random

graph G with Poisson degree distribution with mean λ. More precisely, each agent i ∈ I has

a total of di ∼ Poiss(λ) friends uniformly distributed in I.15 We denote the set of the friends

of i in G with Ni. For every i ∈ I, the set of her friends Ni forms a Poisson process in I.

At each time step t = 0, 1, 2, · · · , a firm offers a product to the continuum of agents

in the network at price u(t) ∈ U , where U is a finite set of admissible prices. The set of

admissible prices U can represent any set of quantized price levels in [0, 1]. In particular, we

assume 0 ∈ U to allow for the free offering of the product. We denote the set of admissible

prices as U = {p0 = 0 < p1 < . . . < pm ≤ 1}, where m ≥ 1 is the number of nonzero price

levels.

Each agent has a private valuation θ ∈ [0, 1] of the product, distributed according to a

cumulative distribution function F (θ). We assume that F corresponds to a non-atomic PDF

and is strictly increasing on [0, 1]. The valuations of the agents are time-invariant and for

15This can be thought of as a limit case of the well-known Erdős-Rényi graph (Erdős and Rényi (1959)),
keeping the mean degree equal to λ and with I = [0, 1] as the limit vertex set. This network model inherits
independence of the edges from the Erdős-Rényi graph which proves very convenient in analyzing network
behavior. A similar network model is used by Oberfield (2012), Larson (2013), and Galeotti and Goyal
(2009).
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now we assume they are independent of their degrees and the valuations of their friends.16

Moreover, agents’ valuations and their positions in the network are their private information,

and hence, not known to the firm.

In order for an agent to buy the product, she should first be informed about its exis-

tence. At t = 0 to initiate the spread of information, a uniformly randomly subset of the

population becomes informed about the product directly by the firm. Later on, at any time

t ≥ 1, other agents can only get informed via word of mouth from a friend who already

knows about the product. We make a distinction between the rate of engagement of buyers

and non-buyers in the spread of the information about the product: When an agent buys the

product, she engages in word of mouth with each friend with some probability 0 < pB ≤ 1,

informing her about the product. If an agent learns about the product but does not make

a purchase, she informs each friend with a lower probability 0 ≤ pB̄ < pB. Assigning a

nonzero probability to the engagement of non-buyers in word of mouth is motivated by some

recent work which provide evidence for the significant role of non-adopters in the spread

of information (Banerjee et al. (2013)). It is to be noted that an informed agent buys the

product if the offered price does not exceed her valuation, i.e., u(t) ≤ θ where u(t) is the

price offered by the firm at time t.

In this framework, firm’s objective is to devise an optimal dynamic pricing policy

maximizing its accumulated discounted profit over an infinite time horizon. We first study

this problem for the case of a durable product, such as many smartphone applications,

in order to justify the behavior pointed out in the previous section. We then verify the

robustness of the price drops to several key model assumptions. We discuss the validity

of the results in face of strategic forward-looking agents, homophily-based engagement in

word of mouth, network externalities, and consumer inattention to price changes. Finally,

we investigate the role of the type of the product in the price drops to zero by studying

the problem for a nondurable product. It is to be noted that an informed agent may buy

a nondurable product at each time step, given that its price is lower than her valuation.

However, if she buys a durable product at some time, she will not buy it thereafter.

2.2 WOM Diffusion Dynamics

In this subsection, we first present a few notations, definitions, and observations that will be

used later to derive the dynamics of the information diffusion in the network. We denote the

16Later on, we will relax this assumption.
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set of informed agents at time t by X(t) and its size by x(t). X(0) is therefore the set of those

agents directly informed by the firm, with x(0) = x0 denoting the size of this set. Considering

that we are dealing with a unit measure continuum of agents, an informal use of the strong

law of large numbers implies that x(t) = Prob(i ∈ X(t)). As we will see in the sequel, this

will prove very convenient in deriving the dynamics of the information diffusion.17 The set

of informed agents X(t) is increasing, that is X(t − 1) ⊆ X(t). Y (t) = X(t) − X(t − 1)

represents the set of freshly informed agents at time t whose size is denoted by y(t).

We partition the set of freshly informed agents in Y (t) into two subsets: those who buy

the product, denoted by BY (t), and those who do not buy, denoted by B̄Y (t). Agents in both

subsets contribute to information diffusion by informing a fraction of their friends about the

product, which constitutes part of Y (t+1). Noting that θ has the same distribution in Y (t)

as it has in I, the fraction of agents from Y (t) that buy the product when offered the price

u(t) = pr is (1− F (pr))y(t). This yields

bY (t) = (1− F (pr))y(t),

b̄Y (t) = F (pr)y(t), (1)

with pr being the price offered at time t (u(t) = pr) and lowercases denoting the size of the

corresponding sets.

Another contribution to diffusion comes from the set of agents previously informed

about the product who have not yet purchased. For such agents, the price has not fallen

below their valuation since the time they were informed about the product. We denote the

set of such agents at time t by Z(t). An agent in this set may buy the product at time t and

thus inform some of her friends, if the offered price at time t is below her valuation. Unlike

Y (t), the distribution of θ is not given by F (·) for the agents in Z(t) and depends on the

price history. However, we can use a stack of m variables (recall that m is the number of

nonzero price levels) to fully describe the distribution of θ in Z(t). We can partition Z(t) as
⋃m

j=1Zj(t), where Zj(t) is the set of those agents in Z(t) whose valuations lie between price

levels pj−1 and pj, that is, Zj(t) = {i ∈ Z(t)|pj−1 ≤ θi < pj}. Then, the distribution of θ

in Z(t) is fully determined by the sizes of these sets, denoted by z(t) = [z1(t) . . . zm(t)]
T . If

the firm chooses u(t) = pr as the price at time t, then all the agents in BZ(t) =
⋃m

j=r+1Zj(t)

17Following the same logic, we may interchangeably use the words size, fraction, and probability in the
paper.
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which has a size of

bZ(t) =

m
∑

j=r+1

zj(t), (2)

will buy the product and will subsequently engage in word of mouth with their friends, while

the rest of the agents in Z(t) will be carried over to Z(t+1). Those freshly informed agents

in Y (t) with valuations below pr, which we denoted earlier with B̄Y (t), constitute another

part of Z(t+ 1). Summarizing the above, we arrive at the following update rule for the size

of the set of agents whose valuations are between pj−1 and pj and have not yet bought the

product:

zj(t + 1) =

{

zj(t) + (F (pj)− F (pj−1))y(t), 1 ≤ j ≤ r

0, otherwise
(3)

assuming that the offered price at time t is pr (u(t) = pr). The size of the fresh buyers

B(t) = BY (t) ∪BZ(t) is given by

b(t) = (1− F (pr))y(t) +

m
∑

j=r+1

zj(t). (4)

In order to find the size of the informed agents at time t + 1, we take a closer look at

the three subsets involved in the information diffusion: BY (t), B̄Y (t), and BZ(t). Agents in

BY (t) are those who were just informed about the product at time t and bought it. Upon

buying the product, they may inform each of their friends about the product with some

probability pB. Using the stationary increments property18 of Poisson processes, the number

of friends an uninformed agent i /∈ X(t) has in BY (t) is a Poisson random variable with

mean λbY (t). Since each such friend may inform i with probability pB, thus the number of

friends in BY (t) from which i may hear about the product has a Poisson distribution with

mean λpBbY (t).

Agents in B̄Y (t) are those just informed about the product at time t but found the

price too high to buy. These agents still may inform friends about the product with some

probability pB̄ < pB (we may also have pB̄ = 0). The number of friends an uninformed agent

i /∈ X(t) has in B̄Y (t) is a Poisson random variable with mean λb̄Y (t). Therefore, the number

of friends in B̄Y (t) from which i may hear about the product has a Poisson distribution with

mean λpB̄ b̄Y (t).

18According to the stationary increments property of Poisson processes, the probability distribution of
the number of occurrences (herein friends) in any subset only depends on the size of the subset (Billingsley
(1995)).
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The last contribution to diffusion comes from agents in BZ(t), who have previously

heard about the product but have not made a purchase as of time t. Any such agent has

already informed some of her friends when hearing about the product for the first time.

Upon buying the product, they once again get engaged in word of mouth with more friends,

informing them about the product. Since these agents have already informed each friend

with probability pB̄, thus the number of friends an uninformed agent i /∈ X(t) has in BZ(t)

is a Poisson random variable with mean λ(1 − pB̄)bZ(t). Therefore, the number of friends

in BZ(t) from which i may hear about the product has a Poisson distribution with mean

λpB(1− pB̄)bZ(t).

Putting the above three cases together, it is easy to see that the number of friends

an uniformed agent i /∈ X(t) may hear from about the product at time t has a Poisson

distribution with mean

λpBbY (t) + λpB̄ b̄Y (t) + λpB(1− pB̄)bZ(t). (5)

An agent i ∈ I will be uninformed at time t + 1 if and only if she is neither informed nor

hears from a friend at time t. We can now write the dynamics of the informed population

x(t) as

1− x(t + 1) = (1− x(t))e−λ(pBbY (t)+pB̄ b̄Y (t)+pB(1−pB̄)bZ (t)), (6)

where bY (t), b̄Y (t), and bZ(t) are given by (1) and (2), z(t) is updated using (51), and

y(t + 1) = x(t + 1) − x(t). Moreover, y(0) = x(0) = x0 and zj(0) = 0 for 1 ≤ j ≤ m. The

overall structure of the information diffusion via WOM is depicted in Figure 2.

Remark 1 (Diminishing Information Diffusion and the Slowdown of Spread). We can use

the dynamics derived above to verify our claim in Section 1 about the diminishing marginal

contribution of new buyers (non-buyers) to diffusion, and the slowdown of spread due to the

growing size of the informed population. Using (6), the growth in the spread can be written

as

y(t+ 1) = (1− x(t))(1− e−λ(pBbY (t)+pB̄ b̄Y (t)+pB(1−pB̄)bZ (t))). (7)

From this, the marginal contribution of newly informed buyers BY (t) to diffusion is

∂y(t + 1)

∂bY (t)
= λpB(1− x(t))e−λ(pBbY (t)+pB̄ b̄Y (t)+pB(1−pB̄)bZ (t)). (8)

When only a few contribute to spread (that is pBbY (t)+ pB̄ b̄Y (t)+ pB(1− pB̄)bZ(t) is small),

information diffuses at a rate of λpB from BY (t) to the set of uninformed agents I −X(t).

However, the marginal contribution to diffusion decays exponentially with the size of those
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X(t): set of informed

agents at time t

Y(t): set of freshly

informed agents at time t

Z(t): previously informed,

but not yet bought

Zr(t)

Z1(t)

u(t) = pr

BZ(t)

Y(t+1)

BY(t)

BY(t)

 

Figure 2: An overall view of the information diffusion via word of mouth. Agents in BY (t)∪
BZ(t) buy the product and inform their friends with probability pB. Fresh non-buyers
B̄Y (t) also inform some friends but with a lower probability (thinner edges reflect the lower
likelihood of getting informed via a non-buyer friend).

participating in the spread, thus lowering the average rate of diffusion to uninformed agents;

the larger the set of spreaders, the higher the chance of having friends in common, hence

lowering the average rate of diffusion. The model also clearly captures the slowdown effect of

the agents who have already heard about the product on diffusion as y(t+ 1) is proportional

to 1 − x(t). Similar arguments hold for the contribution to the spread by buyers BZ(t) and

by new non-buyers B̄Y (t).

3 Firm’s Decision Problem: To Spread or to Exploit?

The profit of the firm for a durable product is given by

ΠD(u(·)) =
∞
∑

t=0

βtu(t)b(t), (9)

where 0 < β < 1 is the discount factor, b(t) is the size of the buyers at time t given by (52),

and the marginal cost of the product is assumed to be zero. Firm’s objective is to find a

pricing policy that maximizes the above profit, which we denote as uD(·).

Given the dynamics of the information diffusion for the WOM model developed in

previous section and the profit of the firm given by (9), the firm’s problem is to decide at
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each time step, between optimally exploiting the network it already has by offering a price

that results in the maximum immediate profit, or offering a lower price in favor of a higher

spread.

A related problem is to find the maximum achievable size of the informed network via

WOM. For any price function u(·), x(t) is bounded and increasing and therefore has a limit

as t → ∞.

Define q(x0, pB, pB̄; u(·)) = limt→∞ x(t) as the asymptotic size of the population that

can be informed about the product via WOM, starting from a uniformly randomly chosen

informed population of size x0 and following a given pricing policy u(·), for given values of pB

and pB̄. It is easy to see that for x0 < 1 this asymptotic size is always less than 1, implying

that the product cannot take over the entire population I via only WOM. This is simply due

to the fact that there are e−λ isolated agents (with no friend) in I, out of which (1− x0)e
−λ

of them are not in X(0) and therefore will never hear about the product via WOM.

To gain more insights on the endogenous dynamics of diffusion, let us start with the

case of zero price, i.e., when the product is given for free, that is u ≡ 0. Every agent that is

informed about the product will in turn inform her friends with probability pB. Note that

since there are no non-buyers, pB̄ does not matter, so we simply choose pB̄ = 0. In this case,

Z(t) = ∅ and B(t) = Y (t), thus the dynamics of diffusion governed by (1), (2), (51), and (6)

simplifies to

1− x(t + 1) = (1− x(t))e−λpBy(t), (10)

y(t+ 1) = x(t + 1)− x(t), (11)

where y(0) = x(0) = x0. Using this recursively for t, t− 1, . . . , 0, we obtain

1− x(t + 1) = (1− x0)e
−λpBx(t). (12)

The asymptotic size of the informed network for the case of zero price when informed

agents engage in WOM with friends with probability pB can now be obtained, noting that

q(x0, pB, 0; 0) should satisfy the above relation as well:

1− q(x0, pB, 0; 0) = (1− x0)e
−λpBq(x0,pB,0;0). (13)

Based on this equation, we present several properties for q(x0, pB, 0; 0) in the following propo-

sition.

14



Proposition 1. For every 0 < x0 ≤ 1, the asymptotic size of the informed population for

a free product where informed agents engage in the spread with probability pB is given by

the unique solution of 1 − q(x0, pB, 0; 0) = (1 − x0)e
−λpBq(x0,pB,0;0) in [0, 1]. The solution is

concave and monotonically increasing in x0. Moreover, q(x0, pB, 0; 0) > 1− 1
λpB

.19

Proof. See the appendix. �

One interesting consequence of Proposition 1 is the discontinuity in q(x0, pB, 0; 0) at

x0 = 0 for λpB > 1. Although q(0, pB, 0; 0) = 0, for any nonzero x0 and λpB > 1,

q(x0, pB, 0; 0) is lowerbounded by a positive constant independent of x0. This implies that no

matter how small the size of the initially informed population is, a free product with strong

engagement of agents in the spread can take over a large portion of the network via WOM

given the typically large average number of friends in the networks.

The zero-price case with full engagement of agents in spread (pB = 1) gives an upper-

bound on the achievable asymptotic size of the informed population, that is q(x0, pB, pB̄; u(·)) ≤

q(x0, 1, 0; 0). In this case, every agent that is informed about the product will in turn inform

all of her friends. The information will then spread throughout the network and all the agents

that are reachable from an agent i ∈ X(0) will eventually learn about the product. This

upperbound can be obtained by solving 1− q0 = (1− x0)e
−λq0 according to Proposition (1),

where q0 is the short-note for q(x0, 1, 0; 0).

As the main objective of this paper, we next show that under the optimal policy for

a durable product price should drop to zero infinitely often. This matches the real world

evidence from smartphone applications discussed in Section 1, where price histories witness

frequent drops of the price to zero for many apps. We also present tight bounds for the

asymptotic size of the spread under the optimal policy.

Theorem 1. Under the optimal pricing policy uD(·) for a durable product with zero marginal

cost, where buyers and non-buyers engage in word of mouth with probabilities 0 ≤ pB̄ < pB ≤

1, the price drops to zero infinitely often. That is, there exists an infinite sequence of time

instants 0 ≤ t0 < t1 < . . . such that uD(tj) = 0 for j ∈ N0. Moreover, the asymptotic size of

19q(x0, pB, 0; 0) can also be represented in terms of the Lambert W function, which is defined as the
solution to the equation W (z)eW (z) = z (Corless et al. (1996)). Using this notation, we can easily show
that λpB(1 − q(x0, pB, 0; 0)) = −W (−λpBe

−λpB (1 − x0)). W is known to have two branches. It follows
from Proposition 1 that λpB(1 − q(x0, pB, 0; 0)) < 1, requiring W > −1. This identifies the principal
branch of the Lambert W function, denoted by W0. Therefore, we can write λpB(1 − q(x0, pB, 0; 0)) =
−W0(−λpBe

−λpB (1−x0)). This representation enables us to use the properties of the Lambert W function,
if ever needed.
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the spread satisfies

q(x0, pB, 0; 0) ≤ q(x0, pB, pB̄; u
D(·)) ≤ q(x0, pB + pB̄ − pBpB̄, 0; 0). (14)

Proof. First we note that for any pricing policy, there exists at least one price level that

holds infinitely often. This follows from the finiteness of the set of admissible prices U . Let

pr ∈ U be the smallest price level which holds infinitely often for uD(·). Then, any price

level below pr is used finitely in uD(·). Therefore, there exists T ≥ 0 such that uD(t) ≥ pr

for all t ≥ T .

Having infinitely many drops to zero under the optimal policy uD(·) is clearly equivalent

to pr = 0 (that is r = 0). Therefore, to prove the theorem, we assume r ≥ 1 and try to

reach contradiction by constructing a new policy with a profit higher than that of uD(·). For

this purpose, we show that by zeroing the price to sell the product to a subset of informed

agents that would not buy it otherwise, and by getting them (more) engaged in the spread

of information, the monopolist can reach out to a part of the network that would remain

unexplored under uD(·). Dropping the price to zero to access this part of the network at a

proper time, we then introduce a new policy yielding a profit higher than that of uD(·) by

exploiting this untouched component of the network.

Let Y D
r (T ) ⊂ Y D(T ) denote those freshly informed agents at time T whose valuations

are below pr, i.e. Y
D
r (T ) = {i ∈ Y D(T )|0 ≤ θi < pr}, with a size of yDr (T ) = F (pr)y

D(T ).20

None of the agents in [∪r
j=1Z

D
j (T )] ∪ Y D

r (T ) will ever buy the product under the pricing

policy uD(·), where ∪r
j=1Z

D
j (T ) is the set of those previously informed agents at time T

whose valuations are below pr. Now, consider the set of agents that will remain uniformed

under uD(·). The size of this set is clearly 1 − qD, where qD is the asymptotic size of the

informed population under uD(·), i.e., qD = q(x0, pB, pB̄; u
D(·)). Define ∆r as the subset of

these agents who have at least one friend in ∪r
j=1Z

D
j (T ) ∪ Y D

r (T ), that is

∆r = {i ∈ I|(∄t ∈ N0 : i ∈ xD(t)) ∧ di(∪
r
j=1Z

D
j (T ) ∪ Y D

r (T )) 6= 0}.21 (15)

The number of friends of an uninformed agent among ∪r
j=1Z

D
j (T ) ∪ Y D

r (T ) has a Poisson

distribution with mean λ(1− pB̄)(F (pr)y
D(T )+

∑r

j=1 z
D
j (T )), since each of these agents has

already informed friends with probability pB̄. Therefore, by zeroing the price at any time

20We use superscript D to indicate that the variables correspond to the pricing policy uD(·).
21For any S ⊆ I and i ∈ I, we denote the number of friends of agent i in S with di(S).
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t > T we can reach out a subset of ∆r with the size of

δr = (1− qD)(1− e−λpB(1−pB̄)(F (pr)yD(T )+
∑r

j=1 z
D
j (T ))), (16)

that could not be reached under uD(·). The idea now is to show that after a while there is

so little profit left to be made in the future under uD(·) that it is profitable to zero the price

to reach out these agents in ∆r, as will be elaborated below.

Let tk, k = 1, 2, . . ., denote the k-th price drop to pr after time T under the optimal

policy uD(·). If an agent i ∈ XD(tk) does not buy the product at this time, neither will she

buy it in future. This means that agents in XD(tk) do not contribute to the set of buyers

BD(t) for t > tk. Therefore, the size of the buyers from time tk + 1 to tk + τ for any τ ≥ 1

can be upperbounded by xD(tk + τ)− xD(tk), that is

tk+τ
∑

t=tk+1

bD(t) ≤ xD(tk + τ)− xD(tk). (17)

Letting τ → ∞, yields
∞
∑

t=tk+1

bD(t) ≤ qD − xD(tk). (18)

Thus, the contribution of the buyers to the firm’s profit after tk can be upperbounded by

ΠD
>tk

(uD(·)) =
∞
∑

t=tk+1

βtuD(t)bD(t)

≤ βtk+1
∞
∑

t=tk+1

uD(t)bD(t)

≤ βtk+1pm(q
D − xD(tk)). (19)

Next, consider a new policy ũ(·) having the same value as uD(·) at all times except tk+1

and tk+2. Let ũ(tk+1) = 0 and ũ(tk+2) = u∗, where u∗(1−F (u∗)) = maxu∈U u(1−F (u)).

Note that a subset of agents in ∆r with size δr as in (16) are among the freshly informed

agents Ỹ (tk+2) since the agents in ∪r
j=1Z

D
j (T )∪Y D

r (T ) buy the product at time tk+1. The

distribution of θ in ∆r is given by F (·), hence the discounted profit made from these newly

informed agents in ∆r at time tk + 2 is βtk+2u∗(1− F (u∗))δr. Considering that xD(t) → qD
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as t → ∞, we can choose k large enough such that

qD − xD(tk) < βδr
u∗(1− F (u∗))

pm
, (20)

in which case the profit resulting from ũ(·) will be clearly higher than that coming from

uD(·). This contradicts the optimality of uD(·), hence rejecting the initial assumption of

pr 6= 0, which completes the proof.

To bound the size of the spread under the optimal policy, we recursively use (6) and

let t → ∞ to obtain

1− qD = (1− x0)e
−λ(pBbY +pB̄ b̄Y +pB(1−pB̄)bZ ), (21)

where bY =
∑∞

t=0 bY (t), b̄Y =
∑∞

t=0 b̄Y (t), bZ =
∑∞

t=0 bZ(t), and qD is the asymptotic size of

the informed population under the optimal policy uD(·). Since the optimal policy drops the

price to zero infinitely often, every informed agent that is not a fresh buyer (i.e., i ∈ B̄Y ),

will buy sometime later on and hence is in BZ . This implies b̄Y = bZ . Also, every agent that

will eventually get informed (a set with size qD) will be either a fresh buyer (i ∈ BY ) or not

(i ∈ B̄Y ). Thus, we have shown that b̄Y = bZ = qD − bY . Substituting this in (21), we get

1− qD = (1− x0)e
−λ(pBbY +(pB+pB̄−pBpB̄)(qD−bY )), (22)

which using Proposition 1 and noting that pBq
D ≤ pBbY + (pB + pB̄ − pBpB̄)(q

D − bY ) ≤

(pB + pB̄ − pBpB̄)q
D yields the bound q(x0, pB, 0; 0) ≤ qD ≤ q(x0, pB + pB̄ − pBpB̄, 0; 0). �

Remark 2 (Asymptotic Size of the Informed Population for Buyers-Only Spread). For the

case where non-buyers do not contribute to the spread of information (i.e., pB̄ = 0), (21)

gives the exact size of the spread as qD = q(x0, pB, 0; 0), which is the same as that of a free

product. This means that for the special case where only buyers engage in WOM with their

friends, the policy maximizing the profit of the firm also maximizes the asymptotic size of

the spread.

We can also easily extend the theorem to the case where the marginal cost is nonzero

but sufficiently small. However, a significant marginal cost may shift the drops to a price

level away from zero. This level is still below the marginal cost given that the gap between

the marginal cost and the closest price level to it from below in U is sufficiently small.22

22See the appendix for the extension of the theorem to the case of nonzero marginal cost and the proof.
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Theorem 1 shows infinitely many price drops to zero for a durable product under the

optimal policy. A question that arises here is that whether it is possible for the optimal price

trajectory to get trapped in a vicinity of zero. Noting that the price cannot stay at zero

forever (due to the zero profit from such choice), this question translates to the possibility of

getting stuck between price levels 0 and p1 for small values of p1. If such thing happens, one

may even falsely attribute the price drops to a continuous-valued optimal price trajectory

asymptotically converging to zero which manifests itself as a quantized price path bouncing

between 0 and p1. The following proposition rejects the possibility of such a price lockdown.

Proposition 2. Under the optimal pricing policy uD(·), the price jumps to a level above p1

infinitely often, when p1(1− F (p1)) < c, where

c = max
u∈U\{p1}

u(1− F (u))(1− βλ(pB + pB̄ − pBpB̄)(1− q0B))

1− βλ(pB(1− F (u)) + pB̄F (u))(1− q0B)
, (23)

and q0B = q(x0, pB, 0; 0) is the asymptotic size of the informed population under the zero price

policy.

Proof. See the appendix. �

Based on this result, a questions still remains as to how small should p1 be to guarantee

frequent price jumps to levels above p1. In fact, as we will see in the following example, p1

does not need to be very small to satisfy the above condition for a wide range of parameters.

Example 1 (Buyers-Only Spread and Uniform Valuations). Assuming θ ∼ Unif [0, 1] and

pB̄ = 0, the condition on p1 simplifies to p1 <
1−

√
1−4c
2

, where

c = max
u∈U\{p1}

u(1− u)(1− βλpB(1− q0B))

1− βλpB(1− u)(1− q0B)
. (24)

It is easy to verify that c is decreasing with both β and λpB(1 − q0B). As a result, the

less the value of each, the looser the bound on p1. Although it may look counterintuitive at

first, the term λpB(1 − q0B) is very helpful in loosening the bound on p1. This term is less

than 1 (from Proposition 1), and indeed is decreasing with λpB for λpB ≥ 1.23 We now use

this background to study a few cases in order to get an insight on the values of p1 satisfying

the above condition. We assume 0.5 ∈ U to use it as a (sub)maximizer in (24). If λpB ≥ 2,

23Recall that λpB(1− q0B) = −W0(−λpBe
−λpB (1− x0)), where W0 is the principal branch of the Lambert

W function (see Footnote 19). W0 is an increasing function, and −λpBe
−λpB is also increasing with λpB for

λpB ≥ 1. This implies that λpB(1− q0B) is decreasing with λpB for λpB ≥ 1.
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then λpB(1 − q0B) < 0.41,24 which along with β < 1 yields c > 0.18, for which the condition

in the above proposition reduces to p1 < 0.24. Some information on β can loosen up this

bound even further. For example, if we also know that β ≤ 0.5, then the condition on p1

becomes p1 < 0.33. This bound gets closer to 0.5 for larger λpB (or smaller β), assuring

infinitely many price jumps to levels above p1 even for values of p1 that are not very small

(see Appendix B for an illustrative plot).

4 Generalizations

In this section, we examine the robustness of the frequent zero-price drops behavior to several

key assumptions that were made while developing the results of the previous section.

4.1 Forward-Looking Agents

The results of the previous section are derived based on the assumption that agents are

myopic; an informed agent buys the product as soon as the firm offers a price below her

valuation. At first, it may seem that the frequent free-offering policy may not be a good idea

in face of forward-looking agents; a forward-looking agent may wait for a free offer even if

the current offered price is below her valuation. The aim of this subsection is to show that

in fact the frequent zeroing of the price still persists even if the agents are forward-looking.

We begin by making the necessary changes to the model. Assume that agents share a

common discount factor 0 < βc < 1. An informed agent with valuation θ who pays price u at

time t obtains utility βt
c(θ − u). Therefore, given the optimal price path uD(·), an informed

agent has to choose a purchasing time τ , maximizing the utility

sup
τ

βτ
c (θ − uD(τ)). (25)

An informed agent has the option of not buying, in which case τ = ∞ and the payoff is zero.

It is clear that the update rules for the size of previously informed non-buyers in (51) and

freshly informed buyers and non-buyers in (1) are not valid anymore. However, they can be

used to obtain bounds for the case of forward-looking agents:

zj(t + 1) ≥ zj(t) + (F (pj)− F (pj−1))y(t) for 1 ≤ j ≤ r, (26)

24λpB(1− q0B) ≤ −W0(−2e−2) = 0.4064, for λpB ≥ 2.
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and

bY (t) ≤ (1− F (pr))y(t),

b̄Y (t) ≥ F (pr)y(t), (27)

where pr is the price level chosen by firm at time t (u(t) = pr). The size of informed agents

still obeys the same update rule as in (6).

With this model at hand, we are now ready to unravel the rationale behind frequent

zeroing of the price even when the consumers are forward-looking. We sketch the main

probing factors here and refer the reader to the appendix for a comprehensive proof.

The first observation is that not everyone waits for a free offer; high-valuation agents

pay to buy even knowing that the price can be zero later on. In fact, offering a price u(t), all

informed agents with valuations θ > u(t)
1−βc

will buy the product immediately. For such agents,

θ−u(t) > βcθ, thus they are willing to pay price u(t) to buy at time t even if they know that

it would be offered for free at time t + 1. In other words, for consumers with high enough

valuations, the myopic and forward-looking behaviors coincide. The second observation is

that similar to the myopic case, there will still be a growing pile of low-valuation agents that

do not buy the product unless offered for free, including those with valuations below the

smallest price level p1.

From the above discussion, we see that there are two subsets of agents whose actions

are the same no matter whether they are myopic or forward-looking: these are agents with

very high or very low valuations. As a result, the same mechanism as in the case of myopic

agents triggers the frequent dropping of the price to zero; firm drops the price to zero to

reach out uninformed high-valuation, willing-to-pay agents via low-valuation free-riders by

engaging them in the spread at a higher rate; a profitable component which would remain

untouched otherwise. We therefore have the following result.

Proposition 3. Consider the same setup as in Theorem 1, with forward-looking agents

sharing a common discount factor 0 < βc < 1 − p1. Then, the optimal pricing policy uD(·)

will drop the price to zero infinitely often

Proof. See the appendix. �

21



4.2 Homophily-Based WOM

In our base model in Section 2, consumers are indiscriminate in passing the information

about the product to their friends. Buyers engage in WOM with each friend with the same

probability pB and non-buyers pass on the information with the same probability pB̄ to

friends when they hear about the product. In this section we aim to extend our model

and results to the case where agents’ engagement in WOM is based on homophily: Agents

tend to get engaged in WOM about the product with friends they believe to have similar

valuations for the product. The rationale of zeroing the price to reach out high-valuation

willing-to-pay uninformed agents via WOM of low-valuation agents may at first seem to fail

here because low-valuation agents tend to engage in WOM with other low-valuation agents

based on homophily. However, as we will see, under some mild assumptions on the homophily

functions, the same rationale for the price drops still holds except that here we may need a

chain of agents (and price drops) to reach the high-valuation uninformed agents.

The social network structure is same as before. We embed homophily in the model by

considering valuation-dependent probabilities for the engagement of the informed agents in

the spread. A buyer with valuation θ informs a friend whose valuation is θ′ with probability

pB(θ, θ
′). A non-buyer with valuation θ passes the information to a friend with valuation θ′

with probability pB̄(θ, θ
′), when she hears about the product. 25

Assuming the independence of the engagement in WOM from the valuations in our

base model of Section 2 had the advantage of keeping the distribution of θ invariant among

the newly informed agents, and we only needed to keep track of the distribution of θ among

non-buyers. Here, we will need to keep track of the distribution of θ in all sets in play.

Using µY (θ, t) to denote the PDF of θ in Y (t) and MY (θ, t) for the corresponding CDF26

and assuming an offered price u(t) = pr, we can find the size of the sets BY (t) and B̄Y (t) as

bY (t) = (1−MY (pr, t))y(t),

b̄Y (t) = MY (pr, t)y(t), (28)

25This is similar to the multi-type random networks model of Golub and Jackson (2012), where types
affect the formation of the links. Here, types (valuations) affect the likelihood of engaging two friends in
WOM about the product.

26We use the same convention of using µS(θ, t) and MS(θ, t) to denote the PDF and CDF of θ in any set
S(t) ⊆ I.
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and the distribution of θ in each as

µBY
(θ, t) = 1(θ ≥ pr)

µY (θ, t)

1−MY (pr, t)
,

µB̄Y
(θ, t) = 1(θ < pr)

µY (θ, t)

MY (pr, t)
. (29)

Similar relations hold for the size of buyers and non-buyers among previously informed agents

Z(t):

bZ(t) = (1−MZ(pr, t))z(t),

b̄Z(t) = MZ(pr, t)z(t), (30)

with corresponding distributions

µBZ
(θ, t) = 1(θ ≥ pr)

µZ(θ, t)

1−MZ(pr, t)
,

µB̄Z
(θ, t) = 1(θ < pr)

µZ(θ, t)

MZ(pr, t)
. (31)

In order to find the dynamics of the diffusion, we pick an uninformed agent i ∈ X̄(t) with

valuation θ′ (where X̄(t) = I \ X(t)) and study the likelihood of her getting informed

about the product via a contributor to the spread (that is, agents in BY (t)∪BZ(t)∪ B̄Y (t)).

Following the same steps as in our base model, we can easily see that the number of informed

agents that may engage in WOM with this agent has a Poisson distribution in each of these

sets, except that the mean values here are time-varying and valuation-dependent:

λBY
(θ′, t) = λbY (t)EBY

[pB(θ, θ
′)|θ′] = λbY (t)

∫

pB(θ, θ
′)µBY

(θ, t)dθ,

λB̄Y
(θ′, t) = λb̄Y (t)EB̄Y

[pB̄(θ, θ
′)|θ′] = λb̄Y (t)

∫

pB̄(θ, θ
′)µB̄Y

(θ, t)dθ, (32)

λBZ
(θ′, t) = λbZ(t)EBZ

[pB(θ, θ
′)(1− pB̄(θ, θ

′))|θ′] = λbZ(t)

∫

pB(θ, θ
′)(1− pB̄(θ, θ

′))µBZ
(θ, t)dθ,

and the update rule for the size of the informed population x(t) becomes

1− x(t+ 1) = (1− x(t))EX̄ [e
−λ(θ′,t)] = (1− x(t))

∫

e−λ(θ′,t)µX̄(θ
′, t)dθ′, (33)

where λ(θ′, t) = λBY
(θ′, t) + λB̄Y

(θ′, t) + λBZ
(θ′, t) and µX̄(θ

′, t) is the PDF of θ′ in X̄(t).
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Finally, we need the update rules for µX̄ , µY , and µZ :

µX̄(θ, t+ 1) =
1− x(t)

1− x(t + 1)
µX̄(θ, t)e

−λ(θ,t),

µY (θ, t+ 1) =
1− x(t)

y(t+ 1)
µX̄(θ, t)(1− e−λ(θ,t)),

µZ(θ, t+ 1) =
b̄Y (t)µB̄Y

(θ, t) + b̄Z(t)µB̄Z
(θ, t)

b̄Y (t) + b̄Z(t)
. (34)

To sum up, the model dynamics for homophily-based WOM diffusion is governed by (28)-

(34). Clearly, this is not as compact as the base model in Section 2 where pB(θ, θ
′) ≡ pB and

pB̄(θ, θ
′) ≡ pB̄ but is remarkably still tractable. Extracting a few observations from these

equations, we will be able to use a similar proof argument for the profitability of the infinitely

often dropping of the price to zero. Using the update rule for µX̄(θ, t) in (34) recursively, we

can obtain

µX̄(θ, t+ 1) =
1− x0

1− x(t + 1)
e−

∑t
τ=0 λ(θ,τ)f(θ), (35)

where f(·) is the PDF of θ in I. The maximum contribution of an informed agent to

the summation
∑t

τ=0 λ(θ, τ) is upperbounded by λ if she ever buys the product and zero

otherwise. This gives a lowerbound for the PDF of θ in uninformed regions as

µX̄(θ, t+ 1) ≥
1− x0

1− x(t + 1)
e−λqf(θ), (36)

where q is the asymptotic size of the informed population. Integrating the above relation

over any range of valuations [θ, θ̄], we get

(MX̄(θ̄, t+ 1)−MX̄(θ, t+ 1))(1− x(t + 1)) ≥ e−λq(F (θ̄)− F (θ))(1− x0). (37)

We refer to the above property as valuation diversity preservation of WOM among unin-

formed agents : if a range of valuations has an initial nonzero measure among uninformed

agents I − X0, it will have a nonzero measure in the unexplored part of the network at

all times, at least as large as its initial size in I − X0 scaled by e−λq. This property holds

for any general functions pB(θ, θ
′) and pB̄(θ, θ

′), and is due to the nature of WOM and not

homophily. This will prove very useful.

To proceed further, we impose two conditions on pB(θ, θ
′) and pB̄(θ, θ

′). The first

condition is a local homophily condition, requiring a buyer to engage in WOM with those

friends having very similar valuations with a probability bounded away from zero. That is,

there exist δ, p > 0 such that if |θ− θ′| < δ, then pB(θ, θ
′) > p. The second condition is that
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the contribution of a non-buyer to spread should be upperbounded by a positive number

less than 1. That is, there exists p̄ < 1 such that pB̄(θ, θ
′) < p̄. We refer to this condition

as the limited engagement of non-buyers in spread. These two conditions are indeed very

general and hold even for many non-homophilous functions. We can use the local homophily

condition to show that, no matter the pricing policy, there will always be a nonzero mass

of low-valuation yet informed non-buyers around.27 Moreover, we can show that having a

nonzero measure set of agents with valuations in the range [θ0, θ0+
δ
2
] among non-buyers, the

firm can reach out a nonzero mass of higher valuations in range of [θ0 +
δ
2
, θ0 + δ]. It should

be now clear that by dropping the price to zero (possibly several times in a row depending

on the radius of homophily δ) the firm can reach out high-valuation willing-to-pay agents

from low-valuation agents. We therefore have the following result.

Proposition 4. Suppose that the probabilities of the engagement of the buyers and non-

buyers in WOM spreading of the product are given by the valuation-dependent functions

pB, pB̄ : [0, 1]2 → [0, 1] satisfying the following conditions:

i) there exist δ, p > 0 such that if |θ − θ′| < δ, then pB(θ, θ
′) > p, and

ii) there exists p̄ < 1 such that pB̄(θ, θ
′) < p̄.

Then, the optimal pricing policy uD(·) for a durable product drops the price to zero infinitely

often.

Proof. See the appendix. �

4.3 Network Externalities

A firm offering its product in a social network can leverage the spread of its product from

network externalities. An informed agent who does not buy the product at a given price may

do so later on, if many of her friends buy the product, even if the firm does not lower the

price. This raises another interesting question as to whether the price drops would be still

profitable in the presence of network externalities. The aim of this section is to formalize

and answer this question.

When the product exhibits network externalities, an informed agent buys the product

if the offered price does not exceed the sum of her valuation and the total externalities from

her friends whom she knows are already using the product. Denote as B(t) = ∪t−1
τ=0B(τ) the

set of all previous buyers at time t and let 0 < α ≤ 1 represent the network externality effect.

27See the proof of Proposition 4 for the details.
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Then, an informed agent i ∈ I buys the product at time t if the offered price u(t) does not

exceed her augmented valuation defined as θai (t) = θi + αdWOM
i (B(t)), where dWOM

i (B(t))

denotes the number of friends at time t who have already bought the product and have

engaged in WOM with agent i about the product.

The first step in the analysis is to identify the set of buyers and non-buyers at time

t. As before, new buyers are either among the freshly informed agents Y (t) or among those

previously informed non-buyers, denoted as Z(t). Define the set of those agents in Y (t) whose

augmented valuations are below θa as Y (θa, t) and its size by y(θa, t). Note that y(θa, t)

fully characterizes the distribution of the augmented valuation in Y (t).28 Similarly, we use

Z(θa, t) and z(θa, t) to represent the set of those agents in Z(t) whose augmented valuations

are below θa and its size, respectively.29 Having been offered a price u(t) ∈ U , agents in

B̄Y (t) = Y (u(t), t) and B̄Z(t) = Z(u(t), t) do not have a high enough augmented valuation to

buy the product at this price and will form Z(t+1). For agents in BY (t) = Y (t)\ B̄Y (t) and

BZ(t) = Z(t) \ B̄Z(t), augmented valuations are higher than (or equal to) u(t) and therefore

they will buy the product.

Upon buying the product, buyers and non-buyers engage in WOM with their friends

with probabilities pB and pB̄. We need to distinguish between the agents who only hear

about the product from non-buyers and those who also hear from some of the buyers as well.

Consider the partition Y (t + 1) = Y0(t + 1) ∪ Y>0(t + 1). Here, Y0(t + 1) are those freshly

informed agents who have not heard from any friend in BY (t) ∪ BZ(t), if they have any

friend among them. Y>0(t), on the other hand, is the set of those freshly informed agents

who have heard about the product from a friend in BY (t) ∪ BZ(t). Recalling that an agent

only receives externality from friends whom she knows are using the product, the augmented

valuation for any freshly informed agent will be θai (t + 1) = θi + αdWOM
i (B(t)). Using this

we can find the update rule for y>0(θ
a, t+ 1) and y0(θ

a, t+ 1) as

y>0(θ
a, t+ 1) = (1− x(t))e−λB(t)

∞
∑

d=1

(λB(t))
d

d!
F (θa − αd),

y0(θ
a, t+ 1) = (1− x(t))e−λB(t)(1− e−λpB̄ b̄Y (t))F (θa), (38)

where λB(t) = λpB(bY (t)+(1−pB̄)bZ(t)) is the average number of friends among the buyers

B(t) that an uninformed agent hears from.

28In fact, y(θa, t) is the CDF of θa in Y (t) multiplied by its size y(t).
29In general, for any S(t) ⊆ I, we use the notation S(θa, t) to denote the set of those agents in S(t) whose

augmented valuations are below θa and s(θa, t) to denote its size.
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Finding the update rule for Z(θa, t + 1) is much more involved, mainly due to the

engagement of non-buyers in the spread. Whether or not an agent is informed about the

product via a non-buyer changes the future likelihood of them getting engaged in WOM, if

the non-buyer ever buys the product. To include this into the diffusion dynamics we need

to keep track of both the time an agent first hears about the product and whether she first

learns about it only through non-buyers, or not. We write Z(t) = Z0(t)∪. . .∪ Zt−1(t), where

we use the superscript to time stamp the moment when a non-buyer first hears about the

product. That is, Zτ (t), where 0 ≤ τ ≤ t−1, are those agents who heard about the product

at time τ and have not yet made a purchase by time t. We also use the subscript to indicate

whether an agent has first learned about the product via only non-buyers or not. So, for each

0 ≤ τ ≤ t−1, we write Zτ (t) = Zτ
0 (t)∪Zτ

>0(t).
30 Similarly we can partition the set of buyers

according to the time they first hear about the product: B(t) = B0(t)∪ . . .∪ Bt−1(t)∪Bt(t),

for which

Bτ (t) =

{

Zτ (t) \ Zτ (u(t), t), for 0 ≤ τ ≤ t− 1

BY (t), for τ = t.
(39)

To complete the dynamics, we note that Z(t+ 1) = Z0(t + 1) ∪ . . . ∪ Zt(t + 1), and

Zτ (t + 1) =

{

Zτ (u(t), t), for 0 ≤ τ ≤ t− 1

B̄Y (t), for τ = t.
(40)

The augmented valuation of an agent i ∈ Zτ (t + 1) may increase by time t + 1 as some

of her friends may buy the product at time t and let her know about it. More precisely,

θai (t+ 1) = θai (t) + αdWOM
i (B(t)). Therefore, in order to find the update rule for z(θa, t+1)

we need to determine how many friends an agent i ∈ Zτ (t + 1) interacts with among the

new buyers B(t). The distribution of interactions varies depending on the time an agent

first gets informed and whether or not a buyer was involved in informing her. To see this

heterogeneity, note that the likelihood of the engagement of an agent i ∈ Zτ (t+1), is highest

for agents in Bτ+1
0 (t) and lowest for buyer at time t who were informed before τ − 1. This

is because agents in Bτ+1
0 (t) were first informed via new non-buyers at time τ and agent i

was one of them. This increases the posterior probability of them engaging in WOM. On

the other hand, agents informed before τ − 1 engaged in WOM once when they first heard

about the product but did not get engaged in WOM with i since she just heard about the

product at time τ , lowering the posterior probability of them engaging in WOM when they

buy the product.

30Similarly, for any S(·) ⊆ I we use the notation S0(·) to represent those in S(·) who were first informed
only via non-buyers and S>0(·) to denote the rest.
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Using the Bayes update rule and some manipulation we can show that number of buyers

in B(t) that agent i ∈ Zτ
>0(t+ 1) may hear from has a Poisson distribution with mean31

λτ
>0(t) = λpB

(

(1− pB̄)b(t) + pB̄(b
τ−1(t) + bτ (t) + bτ+1(t)) +

e−λpB̄ b̄Y (τ)

1− e−λpB̄ b̄Y (τ)
pB̄b

τ+1
0 (t)

)

.

(41)

Using this, the update rule for zτ>0(θ
a, t+ 1) is

zτ>0(θ
a, t+ 1) =

∞
∑

d=0

e−λτ
>0(t)

(λτ
>0(t))

d

d!
zτ>0(min(θa − αd, u(t)), t), (42)

for 0 ≤ τ ≤ t− 1, and

zt>0(θ
a, t+ 1) =

∞
∑

d=0

e−λt
>0(t)

(λt
>0(t))

d

d!
y>0(min(θa − αd, u(t)), t), (43)

for τ = t. The update rule for zτ0 (θ
a, t + 1) is even more involved. Agents in Zτ

0 (t + 1)

were informed via non-buyers in B̄Y (τ − 1). Therefore, the number of WOM engagement

they have with those in B̄Y (τ − 1) that buy the product at time t also depends on the

number of their engagement they have already had with others in B̄Y (τ − 1) that have

made a purchase before t. Therefore, we need to break down zτ0 (θ
a, t+ 1) further. We write

zτ0 (θ
a, t + 1) =

∑∞
d=0 z

τ
0 (θ

a, d, t + 1), where zτ0 (θ
a, d, t + 1) denotes the mass of non-buyers

at time t + 1, first informed via non-buyers in B̄Y (τ − 1) at time τ , who has engaged with

d friends in B̄Y (τ − 1) that have bought the product sometime between τ and t, that is

dWOM
i (∪t

t′=τB
τ−1(t′)) = d. We can find the update rule for zτ0 (θ

a, d, t+ 1) as31

zτ0 (θ
a, d, t+ 1) =(1− e−λpB̄(b̄Y (τ−1)−pB

∑t
t′=τ

bτ−1(t′))(1− pB̄)
d)×

d
∑

k=0

e−λpBbτ−1(t) (λpBbτ−1(t))d−k

(d−k)!

1− e−λpB̄(b̄Y (τ−1)−pB
∑t−1

t′=τ
bτ−1(t′))(1− pB̄)k

×

∞
∑

d′=0

e−λτ
0 (t)

(λτ
0(t))

d′

d′!
zτ0 (min(θa − α(d+ d′ − k), u(t)), k, t), (44)

31To improve the readability, the details are moved to the appendix.
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for 0 ≤ τ ≤ t− 1, and

zt0(θ
a, d, t+ 1) =(1− e−λpB̄(b̄Y (t−1)−pBbt−1(t))(1− pB̄)

d)×

e−λpBbt−1(t) (λpBbt−1(t))d

d!

1− e−λpB̄ b̄Y (t−1)

∞
∑

d′=0

e−λt
0(t)

(λt
0(t))

d′

d′!
y0(min(θa − α(d+ d′), u(t)), t),

(45)

where

λτ
0(t) = λτ

>0(t)− λpBb
τ−1(t). (46)

Despite the above complex dynamics, the rationale for persistence of the zero price drops is

rather simple. The first observation is that unless the externality is very strong, the optimal

price path will jump above α infinitely often. As we will see, this property is very similar

to Proposition 2. We then use the above dynamics to show that raising the price above α

will bring in some non-buyers which will inform a nonzero measure subset of low-valuation

agents (with valuations below p1) given pB̄ > 0. Due to network externalities, these low-

valuation agents may eventually buy the product if many of their friends do so, elevating

their augmented valuations above p1. The next observation is to show that this cannot

vanish the set of low-valuation agents. In fact by recursively using (44), we can show that31

zτ0 (p1, t) ≥ (1− pB)e
−λ(pB+pB̄)y0(p1, τ), (47)

for t > τ , that is, a nonzero fraction of those low-valuation agents that get informed about the

product at time τ will never buy the product unless we drop the price to zero. Therefore,

the same intuition of dropping the price to reach out new parts of the network via these

low-valuation agents still holds in the presence of network externalities.

Proposition 5. Consider the same setup as in Theorem 1 with 0 < pB̄ < pB, and assume

that the network externality effect 0 < α < 1 satisfies

min
u∈U

α(1− βλpB(1− F (u− α))(1− q̂0B))

u(1− F (u− α))
< 1− βλpB(1− q0B), (48)

where q0B = q(x0, pB, 0; 0) and q̂0B = q(x0, pB + pB̄ − pBpB̄, 0; 0). Then, the optimal pricing

policy should drop the price to zero infinitely often.

Proof. See the appendix. �

How small the externality effect α needs to be to satisfy the condition in (48)? To get
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an idea, let us consider the case of uniform valuations θ ∼ Unif [0, 1] and assume 1+α
2

∈ U

to use it as a sub-minimizer in (48). After some simple algebra and noting that q0B ≤ q̂0B,

the condition reduces to α <
1−βλpB(1−q̂0

B
)

1+βλpB(1−q̂0
B
)
. We can now state the following corollary.

Corollary 1. Suppose that θ ∼ Unif [0, 1] and that 1+α
2

∈ U . If the network externality

effect satisifes

α <
1− βλpB(1− q̂0B)

1 + βλpB(1− q̂0B)
, (49)

where q̂0B = q(x0, pB + pB̄ − pBpB̄, 0; 0), then the optimal pricing policy should drop the price

to zero infinitely often.

In fact, the network externality needs to be very strong to fail (49). This bound is

decreasing with β and λpB(1 − q̂0B). Also, λpB(1 − q̂0B) ≤ λpB(1 − q0B) < 1 according to

Proposition 1 and as we explained in Example 1, λpB(1 − q0B) is decreasing with λpB for

λpB ≥ 1. With this background, let us look at a couple of examples. If λpB ≥ 2, that is

each buyer passes the information to at least two friends in average, then for α to fail the

condition we should have α > 0.42. 32 We can improve this bound if we also have some

information about β. For example, if we also know that β < 0.5, then to fail we should have

α > 0.66. These are extremely strong externalities, as α > 0.42 (α > 0.66) suggests that

everyone with three (two) friends among the buyers will buy the product even if the price is

at its maximum (u(t) = 1).

4.4 Consumer Inattention to Price Changes

The core model of Section 2 assumes that consumers have unlimited ability of tracking down

the price changes. An agent who knows about the product, is available to make a purchase

as soon as the price falls below her valuation. With limited attention to price changes,

consumers may check for a better deal every now and then. This section aims to verify the

persistence of the frequent zero-price drops when consumers are partially attentive to price

changes.

To model this, we assume that each informed non-buyer checks for price changes with

an attentiveness probability 0 < pA ≤ 1 at each subsequent time instant. This results in a

geometrical distribution for the next time this agent becomes available to make a purchase.

The extension of the model in this case is quite straightforward. Instead of the whole

32See Example 1 and Footnotes 23-24 on how to derive this.

30



set Z(t), only a fraction pA of them will be available to make a purchase. Therefore, the size

of the buyers among the previously informed agents at time t in (2) changes to

bZ(t) = pA

m
∑

j=r+1

zj(t), (50)

assuming a price u(t) = pr. This consequently changes the update rule for the distribution

of valuations among informed non-buyers in (51):

zj(t + 1) =

{

zj(t) + (F (pj)− F (pj−1))y(t), 1 ≤ j ≤ r

(1− pA)zj(t), otherwise
(51)

implying that (1 − pA) fraction of agents who would make a purchase if they had noticed

the new price u(t) = pr miss the opportunity to buy the product. The total size of the new

buyers in (52) becomes

b(t) = (1− F (pr))y(t) + pA

m
∑

j=r+1

zj(t), (52)

and the dynamics of the spread is given by (6) as before. The rationale for dropping the

price to zero to reach out to high-valuation agents via low-valuation agents is preserved in

this case, except that the bridge to the otherwise untouchable profitable component is taken

via a fraction pA of the low-valuation agents that would notice the free-offer. The other

point worth mentioning here is that the immediate loss in the profit by dropping the price to

zero may have a higher margin in this case; some high-valuation agents may be still around

at the time of the drop even if the firm has already used low prices, due to the consumers’

limited attention to price changes. We formally present this result in the next proposition.

Proposition 6. Consider the same setup as in Theorem 1 with the exception that consumers

pay limited attention to price changes. That is, upon learning about the product, each non-

buyers checks back for price changes with some probability 0 < pA ≤ 1 at each subsequent

time instant. Then, the optimal pricing policy uD(·) will drop the price to zero infinitely

often.

Proof. See the appendix. �
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5 Dynamic Pricing for a Nondurable Product

As we saw in the previous sections, the WOM nature of the information diffusion is a key

deriver for dropping the price to zero. If agents (users) are not involved in spreading the

information about the product, the firm will not have any incentive to drop the price to zero.

In fact, it is easy to show that for the case of full information, in which everybody is directly

informed by the firm, the optimal pricing policy is monotone (decreasing) exploiting those

who are willing to pay more first and then gradually lowering the price. The aim of this

section is to show that beside the WOM nature of the information diffusion, these drops are

also caused by the durability of the product.

For a nondurable product, every agent i ∈ X(t) can buy the product if the offered price

is below her valuation. The size of the buyers at time t is (1 − F (u(t)))x(t), and therefore

the accumulated discounted profit of the firm over an infinite time horizon is given by

ΠND(u(·)) =
∞
∑

t=0

βtu(t)(1− F (u(t)))x(t). (53)

Firm’s objective is to find the optimal pricing policy uND(·) that maximizes the above profit.

An informed agent can buy a nondurable product as many times as the offered price is below

her valuation, while she may buy a durable product only once. Therefore, in order to keep

the dynamics of the spread the same for both cases, we focus on the case where pB = 1 and

pB̄ = 0. In this setting, despite the type of the product, an agent informs her friends about

the product as soon as she buys it.

Denote by u∗ the price level maximizing the immediate profit, that is, u∗ = argmaxu∈U u(1−

F (u)). If there are two such price levels in U , denote the smaller one with u∗. A useful ob-

servation is that uND(t) ≤ u∗ for all t ≥ 0. Otherwise, lowering the price to u∗ would

increase both the immediate profit and the size of the informed population at future times.

Next theorem presents a steady state fixed-price property for the optimal pricing policy of

a nondurable product.

Theorem 2. Given the optimal pricing policy uND(·) for a nondurable product, there exists

a finite time T after which the price is set to the fixed level u∗ maximizing the immediate

profit, that is uND(t) = u∗ for t ≥ T .

Proof. Denote by qND the asymptotic size of the informed population under the optimal

policy uND(·), i.e., qND = q(x0, 1, 0; u
ND(·)). We claim that when the size of the informed
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population gets large enough, then no price other than u∗ can be used by the optimal policy.

In particular, we show that if xND(t) > γqND, where

γ = max
{u∈U|u<u∗}

βu∗(1− F (u∗))

u∗(1− F (u∗))− (1− β)u(1− F (u))
, (54)

then uND(t) = u∗. Clearly γ < 1 since u(1− F (u)) < u∗(1− F (u∗)) for every u < u∗ in U .

In order to prove the above claim, we again use contradiction and assume there is some

time t0 at which xND(t0) > γqND, but uND(t0) 6= u∗, and we try to reach contradiction by

constructing a new policy with a higher profit. We construct the new policy ũ(·), by shifting

uND(·) one step ahead for t > t0, changing the price to u∗ at t0, and keeping the policy

unchanged for t < t0. More specifically, we have

ũ(t) =











uND(t), t < t0

u∗, t = t0

uND(t− 1), t > t0.

(55)

The key observation here is to note that defining ũ in this way, any agent who is informed

about the product under the optimal policy uND(·) will also be informed under the new

policy ũ(·) with at most one step delay. This assures XND(t−1) ⊆ X̃(t) for t > t0, implying

that xND(t−1) ≤ x̃(t) for t > t0. Using this, we can lowerbound the accumulated discounted

profit under the new policy ũ(·) from time t0 on by the immediate profit under this policy,

plus the accumulated discounted profit under the optimal policy uND(·) from time t0 on

discounted by β to account for the one step delay. This can be written as

ΠND
≥t0

(ũ(·)) =
∞
∑

t=t0

βtũ(t)(1− F (ũ(t)))x̃(t)

≥ βt0u∗(1− F (u∗))xND(t0) + βΠND
≥t0

(uND(·)), (56)

where ΠND
≥t0

(uND(·)) is the accumulated discounted profit under the optimal policy uND(·)

from time t0 on.33

The profit of the firm for t < t0 is the same under both policies. Therefore, in order to

prove that the new policy ũ(·) results in a higher profit than uND(·), we need to show that

ΠND
≥t0

(ũ(·)) > ΠND
≥t0

(uND(·)). Applying (56), it thus suffices to show that

(1− β)ΠND
≥t0

(uND(·)) < βt0u∗(1− F (u∗))xND(t0). (57)

33See Appendix A for more details on how to obtain (56).
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We can find an upperbound for ΠND
≥t0

(uND(·)) as34

ΠND
≥t0

(uND(·)) ≤ βt0uND(t0)(1− F (uND(t0)))x
ND(t0) +

βt0+1

1− β
u∗(1− F (u∗))qND. (58)

Using the above upperbound along with the fact that xND(t0) > γqND, where γ is defined

in (54), and after some simplifications, we can easily show that (57) holds. This completes

the proof. �

Although the above theorem assures that there will be no free-offering of the product

after some finite time in the nondurable case, it is still possible that the firm drops the

price to zero during the early stages in order to expand its network, as shown in the next

proposition.

Proposition 7. Consider the optimal pricing policy uND(·) for a nondurable product and

assume that β > 1−F (u∗)
uF (λ∗−1)

, where λ∗ = (1− F (u∗))λ and

uF =
minp1≤u≤u∗ u(1− F (u))

maxp1≤u≤u∗

u(1−F (u))
F (u)

. (59)

Then, there exists xc > 0 such that for xND(t) < xc:

i) uND(t)uND(t+ 1) = 0,

ii) xND(t+ 1) > λ∗xND(t).

Proof. See the appendix. �

Part i) of the above proposition implies that, as long as the size of the informed

population is below a certain threshold, there are no successive nonzero price levels in the

optimal policy. This means that the firm should initially offer the product for free at least

half of the time in order to expand its network. Part ii) presents a lowerbound on the

effectiveness of these free offers. Using this, it is easy to see that for λ∗ > 1, these drops can

result in an exponential growth of the informed population.

6 Conclusions

In this paper, we analyzed optimal dynamic pricing in social networks from the information

diffusion point of view. We developed a tractable, yet rich, model for information diffusion

34See Appendix A for more details on how to obtain (58) and to use it in proving (57).
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via word of mouth, where an agent can only get informed about a product through a friend

who already knows about the product. Both buyers and non-buyers may contribute to the

information diffusion except that buyers are more likely to engage in the spread. Firm can

hence use dynamic prices as a tool to control the endogenous information diffusion process.

Word of mouth is the only means by which many apps spread among smartphone users.

Using this model, we showed that the optimal pricing policy for a durable product with zero

or negligible marginal cost, such as many smartphone applications, should drop the price to

zero infinitely often. The rationale for this behavior is that by dropping the price to zero

and selling the product to agents with low valuations of the product and getting them more

engaged in the spread, firm can reach out a new part of the network that would remain

untouched otherwise. By timing the drop properly, firm can make sure that the marginal

growth in future profit by exploiting this new part of the network prevails the loss in the

immediate profit caused by dropping the price to zero. We also showed that although the

optimal policy drops the price to zero infinitely often, the price trajectory cannot get trapped

in a vicinity of zero meaning that it jumps away from this vicinity infinitely often.

We also examined the validity of our results in face of strategic forward-looking agents,

homophily-based engagement in word of mouth, network externalities, and consumer inat-

tention to price changes, by generalizing our base model to these cases. Finally, we showed

that beside the word of mouth nature of the information diffusion, this behavior is also rooted

in the durability of product being offered. For a nondurable product, although the firm may

initially make some free offers to expand its network, after a while it will set the price at a

fixed level which extracts the maximum profit from the already informed population. When

the network gets large, the loss in the immediate profit by dropping the price in favor of a

higher spread would become too large to compare with the marginal gain in future resulted

from the excess expansion of the network.
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A Proofs

Proof of Proposition 1. Let λB = λpB. We can use (13) to write x0 as a function of q

x0 = 1− (1− q)eλBq. (60)

The existence of a solution q ∈ [0, 1] for any 0 < x0 ≤ 1 now follows from the continuity

of x0 in q and that x0(q = 0) = 0 and x0(q = 1) = 1. Taking derivatives from the above

equation, we obtain

dx0

dq
= (1− λB(1− q))eλBq, (61)

d2x0

dq2
= λB(2− λB(1− q))eλBq. (62)

It follows from (61) that x0 attains its minimum at q∗ = 1 − 1
λB

and is strictly increasing

(decreasing) for q ≥ q∗ (q ≤ q∗). It also follows from (62) that x0 is convex for q ≥ q∗. Next,

we show that for q ∈ [0, 1] the constraint 0 < x0 ≤ 1 implies q > q∗. This is automatically

satisfied for the case where λB < 1 since q∗ < 0. For λB ≥ 1, we have q∗ ≥ 0. However,

x0(q) is decreasing for 0 ≤ q ≤ q∗ resulting in x0(q) ≤ x0(q = 0) = 0. This shows that also

in this case we should have q > q∗.

Now, the uniqueness of the solution in [0, 1] for 0 < x0 ≤ 1 follows from the fact that

x0 is strictly increasing for q ≥ q∗. Also, since x0 is strictly increasing and convex for q ≥ q∗,

thus q is strictly increasing, but is concave in x0. �

Extension of Theorem 1 to a durable product with nonzero marginal cost. Denote the marginal

cost with c > 0 and let ps ∈ U be some given price level. We claim that if the gap between c

and ps is small enough, then the optimal price trajectory will drop the price to a level below

or equal to ps infinitely often. This specially implies the validity of Theorem 1 for a nonzero

but negligible marginal cost. In particular we claim that if

c− ps <
βλpB(1− pB̄)(1− q̂B)e

−λpB(1−pB̄)q̂B(u∗
s − ps)(1− F (u∗

s))

1 + βλpB(1− pB̄)(1− q̂B)e−λpB(1−pB̄)q̂B(1− F (u∗
s))

, (63)

where q̂B = q(x0, pB +pB̄ −pBpB̄, 0; 0) and (u∗
s−ps)(1−F (u∗

s)) = maxu∈U(u−ps)(1−F (u)),

then the optimal policy uD(·) drops the price to a level below or equal to ps infinitely often.

The proof follows the same line as of the proof of Theorem 1, so we here only highlight

the differences. Defining pr as the smallest price level which is used by firm infinitely often
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and assuming pr > ps we try to reach contradiction using (63). Let u(t) ≥ pr for t ≥ T

and tk denote the k-th drop of the price to pr after T . To extend the results to a nonzero

marginal cost, we need to slightly modify ũ(·). Let ũ(·) have the same value as uD(·) at all

times except tk+1 and tk+2, for some k that we specify later. We choose ũ(tk+1) = ps and

ũ(tk + 2) = u∗
s. Similar to (16), we can lowerbound the size of the freshly informed agents

at time tk + 2 as

ỹ(tk + 2) ≥ (1− qD)(1− e−λpB(b̃Y (tk+1)+(1−pB̄)b̃Z (tk+1)))

≥ (1− qD)(1− e−λpB(1−pB̄)(b̃Y (tk+1)+b̃Z (tk+1))). (64)

The main difference with the proof of Theorem 1 is that a drop may acquire some cost if

ps < c. The cost of the drop is (c − ps)(b̃Y (tk + 1) + b̃Z(tk + 1)). How much profit can we

make from ỹ(tk + 2)? Using the simple fact that 1−e−ζw

w
is decreasing with w for w ≥ 0 and

ζ > 0 (and so is (1− w)1−e−ζw

w
for 0 < w < 1) and that qD ≤ q̂B, we can use (64) to obtain

ỹ(tk + 2)

b̃Y (tk + 1) + b̃Z(tk + 1)
≥ (1− qD)

1− e−λpB(1−pB̄)qD

qD

≥ (1− q̂B)
1− e−λpB(1−pB̄)q̂B

q̂B

≥ λpB(1− pB̄)(1− q̂B)e
−λpB(1−pB̄)q̂B , (65)

yielding

ỹ(tk + 2) ≥ λpB(1− pB̄)(1− q̂B)e
−λpB(1−pB̄)q̂B(b̃Y (tk + 1) + b̃Z(tk + 1)). (66)

Therefore, the profit from the choice ũ(tk +1) = ps and ũ(tk +2) = u∗
s can be lowerbounded

by

ΠD
>tk

(ũ(·)) ≥ βtk+1((u∗
s−c)(1−F (u∗

s))βλpB(1−pB̄)(1−q̂B)e
−λpB(1−pB̄)q̂B−(c−ps))(b̃Y (tk+1)+b̃Z(tk+1)).

(67)

Using (63), we can easily see that

((u∗
s − c)(1− F (u∗

s))βλpB(1− pB̄)(1− q̂B)e
−λpB(1−pB̄)q̂B − (c− ps)) > 0, (68)

i.e., it is a positive constant. Also, (b̃Y (tk + 1) + b̃Z(tk + 1)) >
∑r

j=s z
D
j (T ) + (F (pr) −

F (ps))y
D(T ) > 0. To have the new strategy yield a higher profit it suffices to choose k such
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that

(pm − c)(qD − xD(tk)) <β((u∗
s − c)(1− F (u∗

s))βλpB(1− pB̄)(1− q̂B)e
−λpB(1−pB̄)q̂B − (c− ps))×

(

r
∑

j=s

zDj (T ) + (F (pr)− F (ps))y
D(T )), (69)

which can be satisfied noting that xD(t) → qD as t → ∞. �

Proof of Proposition 2. In order to prove the proposition, we show that if the optimal policy

uD(·) gets stuck between 0 and p1 after a finite time, then we should have p1(1−F (p1)) ≥ c.

Suppose that there is T ≥ 0 such that uD(t) ∈ {0, p1} for all t ≥ T . Denote with tk the k-th

drop of the price to zero after T under uD(·). Note that there are infinitely many such drops

according to Theorem 1. We first try to find an upperbound for the accumulated profit of

the firm under uD(·) after tk. Consider a new policy û(·) which has the same values as uD(·)

before tk but is zero afterwards,

û(t) =

{

uD(t), t ≤ tk

0, t > tk
(70)

that is a free product after tk. Assume also that in this alternative scenario, informed agents

spread the word with increased probability p̂B = pB + pB̄ − pBpB̄. Our first claim is that the

size of the informed population xD(t) for t ≥ tk is upperbounded by x̂(t), that is xD(t) ≤ x̂(t)

for t ≥ tk. Recursively using (6) from tk to t we get

1− xD(t + 1) = (1− xD(tk))e
−λb(tk ,t), (71)

for t ≥ tk, where

b(tk, t) =
t
∑

τ=tk

pBbY (τ) + pB̄ b̄Y (τ) + pB(1− pB̄)bZ(τ)

≤ p̂B(x
D(t)− xD(tk − 1)). (72)

On the other hand, 1− x̂(t+1) = (1− x̂(tk))e
−λp̂B(x̂(t)−x̂(tk−1)). Using a simple induction and

the fact that x̂(tk − 1) = xD(tk − 1) and x̂(tk) = xD(tk), we can show that xD(t) ≤ x̂(t) for

t ≥ tk.

Our next claim is that the profit made by the firm under uD(·) after tk is upperbounded
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by

ΠD
>tk

(uD(·)) ≤ p1(1− F (p1))
∞
∑

t=tk+1

βtŷ(t). (73)

To prove this, it apparently suffices to show that
∑∞

t=tk+1 β
tyD(t) ≤

∑∞
t=tk+1 β

tŷ(t). This

is immediate from the previous result, if we use y(t + 1) = x(t + 1)− x(t) to rewrite these

summations in terms of xD(t) and x̂(t), with positive coefficients (βt − βt+1). The dynamics

of ŷ(t) for t > tk has the simple form of

ŷ(t+ 1) = (1− x̂(t))(1− e−λp̂B ŷ(t)), (74)

where ŷ(tk + 1) = yD(tk + 1) and x̂(tk + 1) = xD(tk + 1). Using this, we can easily obtain

ŷ(t+ 1) ≤ λp̂B(1− xD(tk + 1))ŷ(t), (75)

for all t > tk. Using this along with (73), the profit of the firm under uD(·) after tk can be

upperbounded by

ΠD
>tk

(uD(·)) ≤
βtk+1p1(1− F (p1))y

D(tk + 1)

1− βλp̂B(1− xD(tk + 1))
. (76)

Next, we compare this profit with that of a modified policy ũ(·) having the same value as

uD(·) for t ≤ tk and a fixed value uc > p1 for t > tk. The profit of the firm for policy ũ(·)

after tk is given by

ΠD
>tk

(ũ(·)) = uc(1− F (uc))

∞
∑

t=tk+1

βtỹ(t). (77)

The dynamics of ỹ(t) for t > tk is given by

ỹ(t+ 1) = (1− x̃(t))(1− e−λcỹ(t)), (78)

where λc = λ(pB(1− F (uc)) + pB̄F (uc)), ỹ(tk + 1) = yD(tk + 1) and x̃(tk + 1) = xD(tk + 1).

We next aim to lowerbound ỹ(t) for t > tk with a geometric sequence, in order to find a

closed form lowerbound for the profit of the firm for ũ(·) after tk given by (77). This can be

easily done by rewriting (78) as

ỹ(t+ 1) = (1− x̃(t+ 1))(eλ
cỹ(t) − 1)

≥ λc(1− x̃(t+ 1))ỹ(t)

> λc(1− q̃)ỹ(t), (79)

where q̃ is the asymptotic size of the informed population under ũ(·). The profit of the firm
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after tk for ũ(·) can thus be lowerbounded by

ΠD
>tk

(ũ(·)) >
βtk+1uc(1− F (uc))yD(tk + 1)

1− βλc(1− q̃)
. (80)

The asymptotic size q̃ satisfies 1 − q̃ = (1 − xD(tk + 1))e−λc(q̃−xD(tk)) > (1 − xD(tk +

1))e−λpB(q̃−xD(tk)). Shifting t → ∞ in (71) and noting that the optimal policy drops the

price to zero infinitely often, we can show that 1 − qD ≤ (1 − xD(tk + 1))e−λpB(qD−xD(tk)).

From this we can get q̃ < qD, and hence

ΠD
>tk

(ũ(·)) >
βtk+1uc(1− F (uc))yD(tk + 1)

1− βλc(1− qD)
. (81)

Noting that uD(·) is the optimal policy, we should have ΠD
>tk

(uD(·)) ≥ ΠD
>tk

(ũ(·)) for all

choices of uc. This, along with (76) and (81) yields

p1(1− F (p1))

1− βλp̂B(1− xD(tk + 1))
>

uc(1− F (uc))

1− βλc(1− qD)
, (82)

for any choices of k and uc. Shifting k → ∞, we can obtain

p1(1− F (p1))

1− βλp̂B(1− qD)
>

uc(1− F (uc))

1− βλc(1− qD)
. (83)

To get rid of qD in above, we note that 1−βλp̂B(1−qD)
1−βλc(1−qD)

is increasing with qD since λp̂B > λc.

Thus, (83) yields

p1(1− F (p1)) >
uc(1− F (uc))(1− βλp̂B(1− q0B))

1− βλc(1− q0B)
, (84)

for every uc ∈ U \{p1}, since q
D ≥ q0B according to Theorem 1. This completes the proof. �

Proof of Proposition 3. Similar to the proof of Theorem 1, let pr ∈ U denote the smallest

price level in U which holds infinitely often for the optimal pricing policy uD(·). Since any

price level below pr is used only finitely by uD(·), there exists T ≥ 0 such that uD(t) ≥ pr

for all t ≥ T . It clearly suffices to show that pr = 0, that is r = 0. Therefore, to prove the

proposition, we assume r ≥ 1 and try to reach contradiction by showing that the firm can

increase its profit by deviating from the price path uD(·).

Let Y D
r (T ) ⊂ Y D(T ) denote those freshly informed agents at time T whose valuations

are below pr, i.e. Y D
r (T ) = {i ∈ Y D(T )|0 ≤ θi < pr}, with a size of yDr (T ) = F (pr)y

D(T ).
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None of the agents in ∪r
j=1Z

D
j (T )∪Y D

r (T ) will ever buy the product under the pricing policy

uD(·), where ∪r
j=1Z

D
j (T ) is the set of those previously informed agents at time T whose

valuations are below pr. Now, consider the set of agents that will remain uniformed under

uD(·). The size of this set is clearly 1− qD, where qD is the asymptotic size of the informed

population under uD(·), i.e., qD = q(x0, pB, pB̄; u
D(·)). Define ∆r as the subset of these

agents who have at least a friend in ∪r
j=1Z

D
j (T ) ∪ Y D

r (T ). As in Theorem 1, the number of

friends of an uninformed agent among ∪r
j=1Z

D
j (T ) ∪ Y D

r (T ) has a Poisson distribution with

mean λ(1 − pB̄)(F (pr)y
D(T ) +

∑r

j=1 z
D
j (T )). Therefore, by zeroing the price at any time

t > T we can reach out a subset of ∆r with the size of

δr = (1− qD)(1− e−λpB(1−pB̄)(F (pr)yD(T )+
∑r

j=1 z
D
j (T ))), (85)

from which clearly δr > 0. Now, the idea is to show that after a while there is so little profit

left to be made in future under uD(·) that it is profitable to zero the price to reach out these

agents in ∆r. Let tk, k = 1, 2, . . ., denote the k-th price drop to pr after time T under the

optimal policy uD(·). If a strategic agent i ∈ XD(tk) does not buy the product at this time,

neither will she buy it in future, as this is the cheapest offer she will ever get. This means

that agents in XD(tk) do not contribute to the set of buyers BD(t) for t > tk. Therefore, the

size of the buyers from time tk + 1 can be upperbounded by

∞
∑

t=tk+1

bD(t) ≤ qD − xD(tk). (86)

Thus, the contribution of the buyers to the firm’s profit after tk can be upperbounded by

ΠD
>tk

(uD(·)) ≤ βtk+1pm(q
D − xD(tk)). (87)

Now, consider the following deviation ũ(·) from the price path uD(·) only at times tk+1 and

tk +2. Let ũ(tk +1) = 0 and ũ(tk +2) = û, where û(1−F ( û
1−βc

)) = maxu∈U u(1−F ( u
1−βc

)).

Given that βc < 1− p1, û is always nonzero. Note that a subset of agents in ∆r with size δr

as in (85) are among the freshly informed agents Ỹ (tk + 2). Those of them with valuations

θ > û
1−βc

buy the product since θ − û > βcθ, meaning that the payoff of a purchase today is

higher than even a free purchase tomorrow. The discounted profit made from these newly

informed agents in ∆r at time tk + 2 is hence lowerbounded by βtk+2û(1 − F ( û
1−βc

))δr.

Considering that xD(t) → qD as t → ∞, we can choose k large enough such that

qD − xD(tk) <
βδr
pm

û(1− F (
û

1− βc

)), (88)
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in which case the profit resulted from ũ(·) will be clearly higher than that from uD(·). This

contradicts the optimality of uD(·), hence rejecting the initial assumption of pr 6= 0, which

completes the proof. �

Proof of Proposition 4. First, we show that under the local homophily condition, there will

always be a nonzero mass of low-valued informed non-buyers around, with valuations below

δ1 = min( δ
2
, p1). More precisely, we claim that

MY (δ1, t)y(t) +MZ(δ1, t)z(t) > 0. (89)

First note that MY (δ1, 0)y(0) = F (δ1)x0 > 0. As long as the offered price u(t) ≥ p1, our

claim is apparent. If the price becomes zero (u(t) = 0), then for an uninformed agent with

θ′ ≤ δ1, we have

λ(θ′, t) ≥ λp(1− p̄)(MY (δ1, t)y(t) +MZ(δ1, t)z(t)). (90)

Denoting the RHS with λ(t) > 0 along with (34) and (37), we get

MY (δ1, t+ 1)y(t+ 1) ≥ e−λq(1− e−λ(t))F (δ1)(1− x0) > 0, (91)

completing the proof of our claim of having a nonzero measure of low-valued informed non-

buyers around at all times. Using a similar approach we can show that if there is a mass w

of informed non-buyers with valuations in the range of [θ, θ̄] at time t, where |θ − θ̄| ≤ δ
2
,

then by dropping the price to zero we can reach out a set of agents with valuations in the

range of [θ̄, θ̄ + δ
2
] whose size w̃ satisfies

w̃ ≥ e−λq0(1− e−λp(1−p̄)w)(F (θ̄ +
δ

2
)− F (θ̄))(1− x0) > 0, (92)

where we have also used the fact that the asymptotic size of the informed population is

upperbounded by q0 as defined in Section 3. With these results at hand, we now use an

approach similar to that of Theorem 1 to complete the proof.

Let pr ∈ U denote the smallest price level in U which holds infinitely often for the

optimal pricing policy uD(·). Since any price level below pr is used only finitely by uD(·),

there exists T ≥ 0 such that uD(t) ≥ pr for all t ≥ T . It clearly suffices to show that

pr = 0, that is r = 0. Therefore, to prove the proposition, we assume r ≥ 1 and try to reach

contradiction by showing that the firm can increase its profit by deviating from the price

path uD(·).

Let tk, k = 1, 2, . . ., denote the k-th price drop to pr after time T under the optimal
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policy uD(·). The contribution of the buyers to the firm’s profit after tk can be upperbounded

by

ΠD
>tk

(uD(·)) ≤ βtk+1pm(q
D − xD(tk)). (93)

Denote with WD(T ) the set of non-buyer agents at time T whose valuations are below δ1,

and its size with wD(T ). Agents in WD(T ) will never buy the product under the optimal

policy uD(·), and hence wD(t) ≥ wD(T ) for all t ≥ T . Now, consider a new policy ũ(·) having

the same values as uD(·) at all times except tk + 1 ≤ t ≤ tk + s+ 1, where s is the smallest

integer for which δ1+
δ(s−1)

2
≥ p1. Let ũ(tk +1) = . . . = ũ(tk + s) = 0 and ũ(tk + s+1) = p1.

From above, we already know that wD(T ) > 0. Dropping the price to zero s times in a

row, we can reach a nonzero measure population with valuations in [δ1 +
δ(s−1)

2
, δ1 +

δs
2
]. By

recursively using (92), we can obtain a lower bound w > 0 for the size of this set. 35 The

discounted profit made from these newly informed agents at time tk + s+1 is lowerbounded

by βtk+s+1p1w. Considering that xD(t) → qD as t → ∞, we can choose k large enough such

that

qD − xD(tk) <
βsp1w

pm
, (94)

in which case the profit resulted from ũ(·) will be clearly higher than that from uD(·). This

contradicts the optimality of uD(·), hence rejecting the initial assumption of pr 6= 0, which

completes the proof. �

Distribution of WOM Engagement among buyers and non-buyers in Section 4.3. To find the

update rule for Z(θa, t+ 1), we need to figure out how many friends an agent i ∈ Zτ (t + 1)

interacts with among the new buyers B(t).

Prob(dWOM
i (Bτ+1

0 (t)) = d|i ∈ Zτ (t + 1)) ∼ Poiss(λpB(1− pB̄ +
pB̄

1− e−λpB̄ b̄Y (τ)
)bτ+1

0 (t))

Prob(dWOM
i (Bτ+1

>0 (t)) = d|i ∈ Zτ (t + 1)) ∼ Poiss(λpBb
τ+1
>0 (t))

Prob(dWOM
i (Bτ (t)) = d|i ∈ Zτ (t + 1)) ∼ Poiss(λpBb

τ (t))

Prob(dWOM
i (Bτ−1(t)) = d|i ∈ Zτ

>0(t + 1)) ∼ Poiss(λpBb
τ−1(t)), (95)

where b−1(0) = bt+1(t) = 0. The number of the interactions between i ∈ Zτ
0 (t + 1) and new

buyers that were informed at τ − 1, also depends on the number of interactions between i

35Note that this lower bound is in terms of wD(T ) and is independent of tk.
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and those previous buyers that were informed at the same time τ − 1. More precisely,

Prob
(

dWOM
i (Bτ−1(t)) = d|i ∈ Zτ

0 (t+ 1) ∧ dWOM
i (∪t−1

t′=τB
τ−1(t′)) = k

)

=

e−λpBbτ−1(t) (λpBbτ−1(t))d

d!
(1− e−λpB̄(b̄Y (τ−1)−pB

∑t
t′=τ

bτ−1(t′))(1− pB̄)
d+k)

1− e−λpB̄(b̄Y (τ−1)−pB
∑t−1

t′=τ
bτ−1(t′))(1− pB̄)

k
. (96)

Finally, for τ ′ /∈ {τ − 1, τ, τ + 1}, we have

Prob(dWOM
i (Bτ ′(t)) = d|i ∈ Zτ (t+ 1)) ∼ Poiss(λpB(1− pB̄)b

τ ′(t)). (97)

�

Proof of Proposition 5. We first prove the following lemma:

Lemma 1. Consider a price function u(·) with finite number of drops to zero, that is, there

exists T ≥ 0 such that u(t) 6= 0 for t ≥ T . Then, for any t > τ ≥ T we have

zτ0 (p1, t) ≥ (1− pB)e
−λ(pB+pB̄)y0(p1, τ). (98)

Using only the term corresponding to d′ = 0 for d = 0 in (45), we can obtain

zτ0 (p1, 0, τ + 1) ≥
1− e−λpB̄(b̄Y (τ−1)−pBbτ−1(τ))

1− e−λpB̄ b̄Y (τ−1)
e−λτ

>0(τ)y0(p1, τ). (99)

Using this along with recursive use of (44) for d = 0 using only the term corresponding to

d′ = 0, we get

zτ0 (p1, 0, t+ 1) ≥
1− e−λpB̄(b̄Y (τ−1)−pB

∑t
t′=τ

bτ−1(t′))

1− e−λpB̄ b̄Y (τ−1)
e−

∑t
t′=τ

λτ
>0(t

′)y0(p1, τ), (100)

for t ≥ τ . We now note that
t
∑

t′=τ

bτ−1(t′) < b̄Y (τ − 1). (101)

On the other hand, using (41) we can easily show that

λτ
>0(t

′) ≤ λpBb(t
′) + λpBpB̄

e−λpB̄ b̄Y (τ)

1− e−λpB̄ b̄Y (τ)
yτ+1
0 (t′) ≤ λpBb(t

′) + pB
yτ+1
0 (t′)

b̄Y (τ)
, (102)
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which yields

t
∑

t′=τ

λτ
>0(t

′) ≤ λpBq + pB
y0(τ + 1)

b̄Y (τ)
≤ λpB + λpB̄(1− x(τ)), (103)

where we have used the fact that q ≤ 1, and that y0(τ + 1) ≤ λpB̄ b̄Y (τ)(1 − x(τ)) (this is

quite straightforward using (38)). Using (100),(101), and (103), we get

zτ0 (p1, 0, t+ 1) ≥
1− e−λpB̄(1−pB)b̄Y (τ−1)

1− e−λpB̄ b̄Y (τ−1)
e−λ(pB+pB̄(1−x(τ)))y0(p1, τ)

≥
eλpB̄(1−pB)b̄Y (τ−1) − 1

1− e−λpB̄ b̄Y (τ−1)
e−λ(pB+pB̄(1−x(τ)+b̄Y (τ−1)))y0(p1, τ)

≥ (1− pB)e
−λ(pB+pB̄)y0(p1, τ), (104)

which completes the proof of the lemma. We now get back to the proof of the proposition.

Following the same line as of the proof of Theorem 1, we assume a finite number of drops

to zero under the optimal policy uD(·) and try to reach contradiction by constructing a new

policy with a profit higher than that of uD(·).

Let t0 be the last drop of the price to zero (we study the case that there is no drop

to zero at all later). So, uD(t0) = 0 and u(t) > 0 for t > t0. Our first claim is that, under

assumption (48), there exists t1 > t0 such that uD(t1) > α., that is the price path cannot

stay below α after the last drop to zero. The proof is very similar to that of Proposition 2.

We assume uD(t) ≤ α for t > t0 and try to reach contradiction by finding a more profitable

price function. Let uα = max{u ∈ U|u ≤ α}. Then, uD(t) ≤ α for α > t0 indeed implies

uD(t) = uα for α > t0. Note that at this price after a drop to zero every body that hears

about the product has at least a friend among the buyers and hence her augmented valuation

is at least α. Therefore, there is no need to use a price less than uα even if we want to keep

it below α. Using almost the same approach as in Proposition 2, we can find an upperbound

similar to (76) for the profit of the firm from t′ > t0 afterwards as

ΠD
>t′(u

D(·)) ≤
βt′+1uαyD(t′ + 1)

1− βλpB(1− xD(t′ + 1))
. (105)

Next, we compare this profit with that of a modified policy ũ(·) having the same value as

uD(·) for t ≤ t′ and a fixed value uc for t > t′. Considering only the part of the spread

by buyers and the effect of only one of the buyer friends in augmented valuation, we can
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lowerbound the profit of the firm after t′, similar to (81), by

ΠD
>t′(ũ(·)) >

βt′+1uc(1− F (uc − α))yD(t′ + 1)

1− βλpB(1− F (uc − α))(1− q̃)
. (106)

Noting that uD(·) is the optimal policy, we should have ΠD
>t′(u

D(·)) ≥ ΠD
>t′(ũ(·)) for all

choices of uc and all t′ > t0. Therefore,

uα

1− βλpB(1− qD)
≥

uc(1− F (uc − α))

1− βλpB(1− F (uc − α))(1− q̃)
. (107)

Noting that qD ≥ q0B and q̃ ≤ q̂0B, and that uα ≤ α we should thus have

α(1− βλpB(1− F (uc − α))(1− q̂0B))

uc(1− F (uc − α))
≥ 1− βλpB(1− q0B), (108)

for all uc ∈ Uwhich contradicts (48). This proves our first claim, that is, there exists t1 > t0

such that uD(t1) > α. Apparently, we can assume that t1 is the earliest time after t0 for

which uD(t1) > α. Thus, for t0 ≤ t < t1, the offered price is below α and all the freshly

informed agents in y(t) buy the product. Let u(t1) = pr > α. Consider Y D(pr, t1), the set

of freshly informed agents at time t1 whose augmented valuations are below pr. We can

lowerbound the size of this set using only the term corresponding to d = 1 in (38), as

yD(pr, t1) ≥ (1− xD(t1 − 1))e−λpByD(t1−1)(λpBy
D(t1 − 1))F (pr − α), (109)

which implies yD(pr, t1) > 0 using the assumption pr > α. These agents will not buy the

product but will inform friends with a lower probability pB̄ > 0. Using (38) now yields

yD0 (p1, t1 + 1) = (1− xD(t1))e
−λD

B
(t1)(1− e−pB̄λb̄D

Y
(t1))F (p1). (110)

Using this along with b̄DY (t1) ≥ yD(pr, t1) > 0, we get yD0 (p1, t1 + 1) > 0, a nonzero measure

set of low-valued agents with no buyer friend yet (in case that uD(·) does not drop the

price to zero at all, we can choose t1 = 0 for which we can show similar to the above that

yD0 (p1, t1 + 1) > 0). Due to network externalities, agents in this set may eventually buy

the product if many friends do so, elevating their augmented valuations above p1. However,

Lemma 98 guarantees that a nonzero fraction of them will never buy the product, thus,

zD0 (p1, t) ≥ (1− pB)e
−λ(pB+pB̄)yD0 (p1, t1 + 1), (111)

for all t > t1.
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Now, consider a new policy ũ(·) having the same value as uD(·) at all times except

t and t + 1, where we will specify t > t1 later. Let ũ(t) = 0 and ũ(t + 1) = u∗, where

u∗(1 − F (u∗ − α)) = maxu∈U u(1 − F (u − α)). Agents in zD0 (p1, t) will buy the product

and inform their friends with probability pB, giving a lowerbound on the size of the freshly

informed agents at time t+ 1 as

ỹ(t+ 1) ≥ (1− qD)(1− e−λpB(1−pB̄)zD0 (p1,t))

≥ (1− qD)(1− e−λpB(1−pB)(1−pB̄)e−λ(pB+p
B̄

)
yD0 (p1,t1+1)), (112)

leading to a profit of at least u∗(1− F (u∗ − α)) ∗ y(t+ 1) at time t+ 1. Using an approach

similar to that used in the proof of Theorem 1, it is quite straightforward to show that by a

proper choice of t, this new policy will yield a profit higher than that of uD(·). Firm’s profit

from time t onward under the optimal policy can be upperbounded by

ΠD
≥t(u

D(·)) =
∞
∑

τ=t

βτuD(τ)bD(τ)

≤ βtpm

∞
∑

τ=t

bD(τ). (113)

Noting that
∑∞

τ=0 b
D(τ) ≤ qD, we can choose t large enough to ensure that

∞
∑

τ=t

bD(τ) <
βu∗(1− F (u∗ − α))y(t+ 1)

pm
, (114)

in which the profit from ũ(·) will be clearly higher than that of uD(·). This contradicts the

optimality of uD(·), hence rejecting the initial assumption of finite drops to zero under the

optimal policy. �

Proof of Proposition 6. The proof is very similar to that of Theorem 1 so we only point out

the necessary changes here. The first differnece is the size δr in (16). That is, the size of the

agents that can only be reached via low-valuation agents by offering them the product for

free. With only a fraction pA of low-valuation agents noticing the free-offer, the size of this

set becomes

δr = (1− qD)(1− e−λpApB(1−pB̄)(F (pr)yD(T )+
∑r

j=1 z
D
j (T ))). (115)

The other difference is the lowerbound on the size of the future buyers in (18) which
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becomes

∞
∑

t=tk+1

bD(t) ≤ qD − xD(tk−k′) + (1− pA)
k′+1xD(tk−k′)

≤ (1 + (1− pA)
k′+1)qD − xD(tk−k′), (116)

for any 1 ≤ k′ ≤ k. The rough idea is that while bounding the size of the future buyers, we

should keep in mind the extra mass of informed non-buyers that have been inattentive to

the previous drops of the price to pr. Using this, the contribution of the buyers to the firm’s

profit after tk can be now upperbounded by

ΠD
>tk

(uD(·)) ≤ βtk+1pm((1 + (1− pA)
k′+1)qD − xD(tk−k′)), (117)

for any 1 ≤ k′ ≤ k. To make the deviation ũ(·), as defined in the proof of Theorem 1,

preferable over uD(·) it suffices to have

(1 + (1− pA)
k′+1)qD − xD(tk−k′) < βδr

u∗(1− F (u∗))

pm
. (118)

Considering that xD(t) → qD as t → ∞, and that (1 − pA)
k′+1 → 0 as k′ → ∞, we can

choose k′ and k − k′ large enough to satisfy this condition, hence completing the proof. �

Proof of Theorem 2. Below, we provide more details on parts of the proof of Theorem 2.

i) Proof of the lowerbound on ΠND
≥t0

(ũ(·)) given by (56): For t > t0, we have x̃(t) ≥ xND(t−1)

and ũ(t) = uND(t− 1). Also, x̃(t0) = xND(t0) and ũ(t0) = u∗. Therefore, we can write

ΠND
≥t0

(ũ(·)) =
∞
∑

t=t0

βtũ(t)(1− F (ũ(t)))x̃(t)

≥ βt0 ũ(t0)(1− F (ũ(t0)))x̃(t0) +

∞
∑

t=t0+1

βtuND(t− 1)(1− F (uND(t− 1)))xND(t− 1)

= βt0u∗(1− F (u∗))xND(t0) + βΠND
≥t0

(uND(·)). (119)

ii) Proof of the upperbound on ΠND
≥t0

(uND(·)) given by (58): Noting that xND(t) ≤ qND, we
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have

ΠND
≥t0

(uND(·)) =
∞
∑

t=t0

βtuND(t)(1− F (uND(t)))xND(t)

≤ βt0uND(t0)(1− F (uND(t0)))x
ND(t0) +

∞
∑

t=t0+1

βtu∗(1− F (u∗))qND

= βt0uND(t0)(1− F (uND(t0)))x
ND(t0) +

βt0+1

1− β
u∗(1− F (u∗))qND. (120)

iii) Proof of the inequality given by (57): Applying the upperbound given by (58) and simple

algebra, we can easily see that this inequality is satisfied if

(1−β)uND(t0)(1−F (uND(t0)))x
ND(t0)+βu∗(1−F (u∗))qND < u∗(1−F (u∗))xND(t0), (121)

or equivalently

xND(t0) >
βu∗(1− F (u∗))

u∗(1− F (u∗))− (1− β)uND(t0)(1− F (uND(t0)))
qND, (122)

where uND(t0) < u∗ (this follows from the assumption uND(t0) 6= u∗ and that uND(t0) ≤ u∗).

The above follows then from the fact that xND(t0) > γqND and the definition of γ in (54).

�

Proof of Proposition 7. The proof is by induction. However, in order to use induction, we

will need a more accurate but dirtier version of the proposition as follows.

Claim: Choose some λ1 satisfying λ∗ < λ1 < λ(λ∗−1)
λ∗

+ 1. Note that RHS is greater than

LHS since λ∗ < λ. For any such λ1, there exists xc > 0 such that for xND(t) < xc:

i) uND(t)uND(t+ 1) = 0,

ii) if uND(t) = 0 then xND(t+1) > λ1x
ND(t). And, if uND(t) 6= 0 then xND(t+1) > λ∗xND(t).

Note that in either case in ii) we have xND(t + 1) > λ∗xND(t) since λ1 > λ∗.

Define

g1(x) = 1− (1− x)e
−λ∗(λ1−1)

λ1
x
− λ∗x, (123)

g2(x) = 1− (1− x)e−
λ(λ∗−1)

λ∗
x − λ1x, (124)

g3(x) = (1− x)(e
−λ(λ1−1)(1−F (u))

λ1
x
− e

−λ(λ1−1)
λ1

x
)−

λ(λ∗ − 1)F (u)

λ∗ x, (125)

where in g3(x), u is a nonzero price level in U . We can easily verify that the derivatives of
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these functions at x = 0 are all positive. This implies that all the three functions are strictly

increasing in a vicinity of x = 0. Using this along with the fact that g1(0) = g2(0) = g3(0) =

0, we can conclude that there exists x̃c > 0 such that g1(x) > 0, g2(x) > 0, and g3(x) > 0

for all 0 < x < x̃c. Also, define

h(y) = e−λ(1−F (u))y − e−λy. (126)

It is quite straightforward to show that h is strictly increasing for 0 < y < − ln(1−F (u))
λF (u)

, and

that 1
λ
< − ln(1−F (u))

λF (u)
for 0 < F (u) < 1. Thus, h is strictly increasing for 0 < y < 1

λ
for any

nonzero price level u ∈ U . We set xc = min{x̃c, 1
λ
} and prove the claim above for this choice

of xc with induction.

We start with the transition part of the induction. Assuming that the claim holds for

t−1, we try to prove it for t. Suppose that xND(t) < xc. First of all note that xND(t−1) < xc

since xND(t−1) < xND(t). We first tackle part ii). If uND(t) 6= 0, then uND(t−1) = 0 since,

according to the assumption of induction, uND(t− 1)uND(t) = 0. This implies ZND(t) = ∅,

and hence bND(t) = (1− F (uND(t)))yND(t) from (52). Using (6), we have

xND(t + 1) = 1− (1− xND(t))e−λ(1−F (uND(t)))yND (t). (127)

Now, we try to lowerbound yND(t) in terms of xND(t). From the assumption of induction

and that uND(t − 1) = 0, we get xND(t) > λ1x
ND(t − 1), which along with yND(t) =

xND(t)− xND(t− 1) yields

yND(t) >
λ1 − 1

λ1

xND(t). (128)

This, along with (127) and that g1(x
ND(t)) > 0 since xND(t) < xc, we find

xND(t + 1) > 1− (1− xND(t))e
−λ(1−F (uND(t)))(λ1−1)

λ1
xND(t)

≥ 1− (1− xND(t))e
−λ(1−F (u∗))(λ1−1)

λ1
xND(t)

> λ∗xND(t), (129)

where we have also used the fact that for the optimal policy uND(t) ≤ u∗. This proves

that if uND(t) 6= 0 then xND(t + 1) > λ∗xND(t). If, on the other hand, uND(t) = 0, then

bND(t) ≥ yND(t) from (52), and we can use (6) to obtain

xND(t+ 1) ≥ 1− (1− xND(t))e−λyND(t). (130)
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Using the assumption of induction, xND(t) > λ∗xND(t − 1), which along with yND(t) =

xND(t)− xND(t− 1) yields

yND(t) >
λ∗ − 1

λ∗ xND(t). (131)

Using (130) and (131), and that g2(x
ND(t)) > 0, we get

xND(t+ 1) > 1− (1− xND(t))e−
λ(λ∗−1)

λ∗
xND(t)

> λ1x
ND(t), (132)

which completes the proof of part ii) for t. Now, we get to the proof of part i). Assume that

uND(t)uND(t+1) 6= 0, and construct a new policy ũ(·) that is obtained from uND(·) by only

changing uND(t) to 0. We claim that the new policy will result in a profit higher than that

of uND(·). First of all, note that for all times τ ≥ 0, XND(τ) ⊆ X̃(τ), thus xND(τ) ≤ x̃(τ).

In particular, we are interested in calculating x̃(t+1)−xND(t+1). From the assumption of

induction, we should have uND(t−1)uND(t) = 0. Therefore, uND(t−1) = 0 since uND(t) 6= 0.

This implied that ZND(t) = ∅. Hence, using (52) and (6) we get

x̃(t+ 1)− xND(t + 1) = (1− xND(t))(e−λ(1−F (uND(t)))yND (t) − e−λyND(t)). (133)

It follows from uND(t−1) = 0 and the assumption of induction that xND(t) > λ1x
ND(t−1),

which in turn implies

yND(t) >
λ1 − 1

λ1

xND(t). (134)

Now, considering that h(y) defined in (126) is strictly increasing for 0 < y < xc, (133) yields

x̃(t + 1)− xND(t+ 1) > (1− xND(t))(e
−λ(λ1−1)(1−F (uND(t)))

λ1
xND(t)

− e
−λ(λ1−1)

λ1
xND(t)

)

>
λ(λ∗ − 1)F (uND(t))

λ∗ xND(t), (135)

where the last inequality comes from g3(x
ND(t)) > 0.

In order to show that the new policy ũ(·) results in a higher profit, it suffices to show

that

uND(t)(1− F (uND(t)))xND(t)+βuND(t+ 1)(1− F (uND(t + 1)))xND(t+ 1) <

βuND(t+ 1)(1− F (uND(t + 1)))x̃(t+ 1), (136)
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or equivalently,

uND(t)(1−F (uND(t)))xND(t) < βuND(t+1)(1−F (uND(t+1)))(x̃(t+1)−xND(t+1)). (137)

Applying (135) and some simplifications, we can see that the above is satisfied if

uND(t)(1− F (uND(t)))

F (uND(t))
< βuND(t + 1)(1− F (uND(t+ 1)))

λ(λ∗ − 1)

λ∗ . (138)

Therefore, it suffices to have

1 < βuF λ(λ
∗ − 1)

λ∗ , (139)

which holds if β > 1−F (u∗)
uF (λ∗−1)

, noting the definition of uF in (59). This shows that ũ(·) has a

higher profit that uND(·) which contradicts its optimality. This completes the proof of part

i).

The only thing which is left is to verify the base of the induction, that is to prove the

claim for t = 0. For part ii), it is easy to see that all the relations (127)-(132) also hold for

t = 0, noting that yND(0) = xND(0) and Z(0) = ∅. Similar story holds for part i). �
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B Upperbound on p1 Assuring Infinitely Many Jumps

above p1 in Example 1

λpB

2 3 4 5 6 7 8 9 10

p
∗ 1

0.25

0.3

0.35

0.4

0.45

0.5

β = 1

β = 0.5

β = 0.2

β = 0.1

Figure 3: Values of p1 that guarantee frequent jumps above p1 for different values of β and
λpB, using u = 0.5 as a (sub)maximizer. Having p1 < p∗1 guarantees infinitely many jumps
above p1 under the optimal policy.
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C More Evidence on Price Drops from App Market
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Figure 4: Price histories of three other apps (Coyn, Equalizer PRO, and IBSnap) from the
time they were debuted to September 2015.
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