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We consider an unobservable M/M/1 queue where customers are homogeneous with respect to service val-

uation and cost per unit time of waiting. It is well known that left to themselves, in equilibrium, customers

join the queue at a rate higher than is socially optimal. Hence, regulation schemes, under which the resulting

equilibrium joining rate coincides with the socially optimal one, should be considered. We suggest a clas-

sification of regulation schemes based on a few desired properties and use it to classify schemes from the

existing literature. To the best of our knowledge, none of the existing schemes possesses all the properties,

and in this paper we suggest such a scheme. Its novelty is in assigning random priorities to customers, prior

to their decision whether to join or balk. We also introduce variations of this regulation scheme as well as

others that are also based on randomization.
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1. Introduction

It is well known that left to themselves, customers, users, or commuters tend to overcrowd the

facility or system they use. For example, it is possible that two-thirds of the potential users of a

road decide to take it, while it is socially optimal that only one-third of them do so. The reason

for that is that users usually mind only their own utility while ignoring the side effects, known

as externalities, associated with the inconvenience they impose on others due to their decisions.

Specifically, joining a crowded system is usually associated with increased holding or waiting time

for others. Forcefully stopping users from joining is often perceived as unfair or unacceptable, and

the question is therefore how to induce them to behave in a socially optimal way while still minding

only their self-interests. Moreover, the less that is done or required in order to achieve that, the

better. In the context of queues, there are a few ways to achieve this goal. For example, imposing

an entry fee may deter some potential users from joining. In this way the system is regulated to

function in a socially better way.

1
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The principle of using entry fees to reduce queues was recognized by Leeman (1964). The first

mathematical analysis in this direction was introduced in the pioneering paper of Naor (1969),

where a formulation and analysis of equilibrium and welfare-maximizing joining strategies are

derived for the observable cost-reward M/M/1 queueing model. In addition, the calculation of

the entry fee that induces socially optimal behavior is given. The regulation of observable queues

using queue-length-dependent fees is suggested in Alperstein (1988) and Chen and Frank (2001).

Hassin (1985) suggests the use of the First-Come Last-Served service regime to regulate the system.

This method is discussed in detail in Section 5.4 below. A major advantage of this scheme is that

its implementation does not require money transfers or knowledge of the model parameters. For

further discussion of these properties and some other schemes based on modified service regimes,

see Haviv and Oz (2016b).

The unobservable version of Naor’s model was introduced in Edelson and Hilderbrand (1975)

where the socially optimal (and profit-maximizing) entry toll is derived. Regulation of unobserv-

able M/M/1 queues is also studied in Haviv (2014) using entry contracts, and in Hassin (1995)

using auctioning priority. These papers are discussed in some detail in Section 3.1 below. For a

comprehensive overview of the literature on strategic behavior in queues, see Hassin and Haviv

(2003). The main purpose of this paper is to contribute to this stream by suggesting new regulation

schemes for the unobservable M/M/1 queuing model that are based on giving customers random

priorities. These schemes can be viewed as the unobservable counterpart of Hassin (1985), as they

are also robust to the model parameters and do not involve money transfers.

2. Model and Preliminaries

We deal here with the following decision model, which first appeared in Edelson and Hilderbrand

(1975). The basic model is the M/M/1 queue. Customers seek service from a single server in front

of which a waiting line is formed. Service times are exponentially distributed with a mean value

of µ−1. The arrival process is Poisson with potential rate of λ customers per unit time. The server

utilization level equals λ/µ and is denoted by ρ. Assume that ρ < 1, i.e.,1 λ < µ. Each customer

values service by R and incurs a waiting cost of C per unit time in the system (service included).

Customers are risk neutral and interested in maximizing their expected monetary utility. Recall

that 1/(µ−λ) is the expected time in the system under any work-conserving and non-anticipating

queue regime such as First-Come First-Served (FCFS), assuming all customers join.2

1 It will later be shown that this condition is not required for equilibrium and social optimization analysis. It is
imposed here for ease of exposition.

2 By “non-anticipating” we mean that the choice of who gets service is not determined by the actual (past or residual)
service times of the present customers. “Work conservation” means that the total amount of work in the system is
the same as in a FCFS regime, everything else being equal. In particular, the server is never idle while customers are
present. For more on these definitions see, e.g, Haviv (2013), p. 53.
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Without loss of generality balking comes with a zero reward. In order to avoid trivialities we

assume R > C/µ and R < C/(µ− λ). The first (respectively, second) assumption implies that if

nobody (respectively, everyone) joins, then a selfish individual is better off joining (respectively,

balking).

Suppose now that each customer decides whether to balk or join the queue (without any further

information such as the queue length upon arrival or his service requirement). This decision-

making problem is not an optimization problem but rather a non-cooperative game. Indeed, if all

join (respectively, balk), one had better balk (respectively, join). Hence, mixed strategies must be

considered and the symmetric Nash equilibrium is a possible solution concept to adopt. Specifically,

we are looking for a joining probability such that if used by all then under the resulting steady-state

conditions, this probability is also one’s best response. Note that in the case where this probability

is strictly between zero and one (as it is here), one is indifferent between joining or balking.

This implies that under Nash equilibrium all customers join with probability

pe =
µ− C

R

λ
, (1)

as it solves uniquely the equation

R− C

µ− pλ
= 0

for p. Note that in equilibrium, those who join, as well as those who balk, end up with zero expected

surplus. Zero is therefore the social welfare.

Note that peλ < µ, whether or not λ < µ. In fact, peλ= µ−C/R; namely, the effective arrival

rate in equilibrium is not a function of λ as long as λ> µ−C/R.

Society, in the aggregate, would be better off if it (or a central planner on its behalf) controlled

the joining probability. The socially optimal probability is

ps = arg max
0≤p≤1

{
pλ

(
R− C

µ− pλ

)}
. (2)

In words, ps is the joining probability that maximizes the mean social welfare gained per unit time.

Of course, if for some reason the joining probability is larger (respectively, smaller) than ps, the

central planner would like fewer (respectively, more) customers to join. It is only under ps that the

central planner is indifferent whether an individual customer joins or not. This is certainly not the

case under pe: the social gain already equals zero and each additional customer who joins makes

things even worse. The first-order condition of the central planner’s problem (2) is

R− C

µ(1− pρ)2
= 0 (3)
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and the solution is

ps =
µ−

√
Cµ
R

λ
. (4)

Clearly,3 ps < pe. Note that psλ= µ−
√
Cµ/R; namely, the socially optimal effective arrival rate

is not a function of λ as long as λ≥ µ−
√
Cµ/R.

2.1. Externalities and Standby Customer

We denote by a standby customer one who receives service only when the server would otherwise be

idle. In particular, a standby customer is preempted by those arriving while he is receiving service.

When there are no other customers in the system, the standby customer’s service is resumed from

the point where it was interrupted. It is well known (see, e.g., Haviv 2013, p. 64) that the mean

time in the system for a standby customer in a M/M/1 queue equals

1

µ(1− ρ)2
, (5)

and note that the mean time in the system for a standby customer when p= ps equals

1

µ(1− psρ)2
=
R

C
. (6)

The concept of a standby customer is closely related to that of externalities. For a comprehensive

discussion of this relation see Haviv and Oz (2016a). The externalities that a tagged customer

imposes on the other customers are defined as the total added time that the other customers wait,

compared to how long they would have waited if he had not joined. In order to compute this

added time, we make this tagged customer a standby customer. By doing so we do not change

the aggregate waiting time of all customers (when the tagged customer is considered as part of

society), but now all the added waiting time is absorbed by this customer. Recall that the waiting

time of a “normal customer,” namely, 1/(µ(1− ρ)), is a cost that he would have incurred anyhow.

The increase of his waiting time, which clearly equals

1

µ(1− ρ)2
− 1

µ(1− ρ)
=

ρ

µ(1− ρ)2
, (7)

is defined as the externalities that the tagged customer imposes on the others.

Externalities are the root cause of the difference between the equilibrium behavior of customers

and the socially optimal behavior. Consider for example the “to queue or not to queue” type of

decision making we consider here. Although a joining customer inflicts (negative) externalities on

3 This inequality can be derived not only by means of minimal algebra, but also from the fact that any p > pe leads
to a negative social welfare and hence the socially minded p needs to be with p < pe in order to gain some positive
surplus. In particular, ps < pe. See also the discussion of externalities in Section 2.1.
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the other customers, he does not normally take these extra costs into account when deciding to

join. Society, on the other hand, does. Hence, a customer who selfishly decides to join might be

refused entry by a social planner. This leads to the inequality, ps < pe.

Left to decide for themselves, customers behave in a socially optimal way if they do not generate

negative externalities. Since this is usually not the case in a queueing environment, something needs

to be done to induce customers to behave in this way. For example, customers can be made to

internalize their externalities (i.e., bear them by themselves). This is exactly what is achieved by the

classic regulation scheme of Pigovian tax (Pigou 1920), a tax set equal to the negative externalities

each customer imposes on others when the socially optimal strategy is used by all. This logic

motivates the three regulation schemes that are discussed in Section 3.1 below. The implementation

of the Pigovian tax has two major drawbacks. First, money transfers require collection systems,

which usually are costly to maintain. Second, in order to impose the right fee, a central planner

usually needs to know the utility structure of all customers as well as the structure of the market,

and, in particular, the values of the parameters C and R, as well as the rates λ and4 µ. These

drawbacks motivate us to look for alternative regulation schemes.

3. Regulation Schemes

We refer to a regulation scheme as a set of rules, administrated by a central planner, under which

the customers’ equilibrium behavior is socially optimal. In other words, we deal with mechanism

designs that elicit socially optimal behavior from selfish customers.

3.1. Existing Regulation Schemes

There are three mechanisms we are aware of from the literature that regulate the arrival rate to

an unobservable M/M/1 queueing system, namely, schemes under which, when customers are left

to decide for themselves, the resulting equilibria induce the socially optimal arrival rate. They

are: (1) paying a flat entry fee, (2) drafting a contract under which customers who join pay in

accordance with a function of a to-be-realized random variable,5 and (3) asking customers to pay

for a preemptive priority parameter of their choice if they decide to join. We next brief on each of

these approaches.

1. Flat entry fee. An entry fee-based regulation method for the unobservable M/M/1 model

was first introduced in Edelson and Hilderbrand (1975). It is clear (see (1)) that pe is monotone

4 One exception is Hassin’s priority purchasing scheme described in Hassin (1995) and discussed further in Section 3.1
here.

5 Technically, the former scheme is a special (in fact, trivial) case of the latter.
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decreasing with R. Moreover, for R small enough (as C/µ), pe = 0. Hence, there exists a service

valuation, call it R−T , such that

R−T − C

µ(1− psρ)
= 0.

In other words, the imposition of the appropriate entry toll, denoted here by Ts, results in an

equilibrium joining rate that coincides with the socially optimal one. It is simple to check that

Ts =R−
√
CR/µ. Moreover,

Ts =
Cpsρ

µ(1− psρ)2
. (8)

Comparing this with (7), we conclude that the regulating flat entry fee coincides with the

externalities that one who joins inflicts on others when the arrival rate is the socially optimal one.

2. Contracts. The following scheme is suggested in Haviv (2014). Customers arriving at the

queue are first given the option to balk. If they join they sign a contract that says, “I will pay

h(X),” where X is a random variable whose realization is not known to the customer when

deciding and h(x) is some function. Clearly, if E(h(X)) = Ts (see (8)), then such a scheme

leads to the socially optimal joining rate. If X is a random variable that has nothing to do

with the queue (for example, a value drawn by a random number generator), this may look

artificial: one may just as well impose the fixed entry fee of Ts. Such schemes might be made

more appealing by relating X to the whereabouts of the customer who joins. For example, in

Kelly (1991) it is suggested to charge CµW 2/2− CW , where W is the (random) time spent in

the system. Another approach suggested in Haviv (2014) is as follows. Let Y be the (random)

externalities that the customer imposes on others. If it is possible to observe a random variable

X, then defining h(X) as the expected externalities given X (denoted by E(Y |X)) will do since

E(h(X)) = E(E(Y |X)) = E(Y ) = Ts. In Haviv (2014), the conditional expected externalities are

derived given four options for X: (1) time spent in the system, (2) queue length upon arrival, (3)

queue length upon departure, and (4) customer’s service time. The last item in this list is the most

appealing as it is based on a characteristic of only the customer himself. For more on expected

externalities conditioning on the length of the service requirement, see Haviv and Ritov (1998).

3. Purchasing priority. Hassin (1995) (see also Hassin and Haviv 2003, pp. 96–98) considers

the following auctioning mechanism. Customers decide whether to join a queue or balk. A joining

customer pays a nonnegative amount of his choice and enjoys preemptive priority over customers

who pay less, regardless of the difference between their payments.6 From the social point of view

only the resulting equilibrium joining rate matters, and this, as it turns out, equals psλ.

6 For a model where priority is proportional to the payment see Haviv and van der Wal (1997).
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3.2. Desired Properties of Regulation Schemes

We define the following five desired properties that are used to classify the regulation schemes

described in this paper, both the existing schemes and our new ones. In particular, we check which

of these of properties are satisfied by each scheme.

Property 1 Any customer is free to join or balk. If he joins, he will be served in a finite period

of time.

This property is a key property. Without it one can simply use the following obvious and usually

undesired scheme: deny any arriving customer access to the queue with probability 1−ps. In other

words, a central planner decides who joins and who does not.7

Property 2 The queueing regime is work-conserving.

A queueing regime is work-conserving if the server is never idle when the queue is not empty.

Put differently, the total amount of work left in the system, reflecting the sum of unfinished service

among customers in the system, coincides with the similar value in the case of a FCFS regime.

Regulation schemes that possess this property do not give up on efficiency in order to elicit socially

better behavior. For example, schemes that are based on delay tactics do not possess this property.

Property 3 The scheme does not involve money transfers.

As already noted by Leeman (1964), implementation of regulation schemes that involve money

transfers require the setup and maintenance of a collection system, which typically comes with

costs. In addition to that, there are variable costs associated with each money transfer, such

as transaction costs. Hence, schemes that do not involve transfers, if available, are preferable,

especially if these constant and variable collection costs are relatively high compared to the social

benefit of regulation.

Property 4 The rules of the scheme are insensitive to the rate parameters µ and λ.

Property 5 The rules of the scheme are insensitive to the monetary parameters C and R.

Obviously, in order to implement schemes that are sensitive to model parameters, one should

know their values. Moreover, implementation of such schemes using wrong model parameter values

may result in a lower social welfare than in an unregulated system. Hence, schemes that are

insensitive to model parameters have an advantage over sensitive schemes. Furthermore, by using

7 In addition to being undesired, this scheme does not possess properties 4 and 5 below.
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insensitive schemes one can avoid estimation issues associated with the M/M/1 model (see, e.g.,

Schruben and Kulkarni 1982).

Consider the three schemes described in Section 3.1 above. The first two do not satisfy prop-

erties 3–5 while the third scheme satisfies all but property 3. Indeed, the flat entry fee scheme

obviously does not satisfy property 3. As Ts is sensitive to all the model parameters, it also does not

satisfy properties 4 and 5. For the contract-based schemes, property 3 is not satisfied as it involves

money transfers. For properties 4 and 5, the description above does not exclude the possibility that

there exist a random variable X and a function h such that E(h(X)) = Ts, where h is insensitive

to all the model parameters. Nevertheless, we are not aware of such a regulating contract in the

existing literature and its existence is an open question. Finally, the purchasing priority scheme

satisfies all the properties we are after except for property 3, as it is insensitive to all the model

parameters but involves money transfers.

To the best of our knowledge, the existing literature contains no regulation scheme for this

model that possesses all five above-mentioned properties. The main purpose of this paper is to

suggest one. Furthermore, we suggest some variations of it, as well as additional schemes based

on randomization, which do not possess one or more of properties 3–5, but nevertheless merit

consideration.

3.3. The Preemptive Random Priority (PRP) Scheme

Suppose that customers (independently) draw a random preemptive priority parameter U uniformly

distributed in the unit interval. The lower the value of U is, the higher the priority level is. In

particular, a customer with parameter u preempts the service of a customer with parameter v,

when u< v, if the former arrives and sees the latter being served. Moreover, the next customer to

get service after service completion is the one with the lowest priority parameter in the queue.

Consider a customer who draws the parameter u. If all the customers whose priority is higher

than his join, he becomes a standby customer in a similar system but with an arrival rate of uλ.

From (5), his mean time in the system equals

1

µ(1−uρ)2
,

while the unconditional mean waiting time of the customers with higher or equal priority remains

the same as in the FCFS regime with joining probability u, i.e.,8 1
µ(1−uρ) .

Customers, once informed of their (random) priority parameters, decide whether or not to join.

It is assumed that it is common knowledge among customers that a preemptive random priority

is the regime used and that all the customers ex-ante face the same situation. Under any strategy

8 It is easy to verify that
∫ u
x=0

1
µ(1−xρ)2

1
u
dx = 1

µ(1−uρ) , as expected.
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profile used by all the customers, the expected waiting time is monotone increasing in U and hence

the individual best response is a threshold-based strategy: if U is less than or equal to some critical

value, join. Otherwise, balk. Hence, a symmetric equilibrium is to join if and only if the priority

parameter is less than or equal to ue such that ue is the unique solution of

R− C

µ(1−uρ)2
= 0 (9)

for u. Recalling that U is uniformly distributed in the unit interval, ue also equals the equilibrium

joining probability. The following theorem claims that the scheme is a regulation scheme. Its proof

follows immediately from comparing equations (3) and (9).

Theorem 1. The equilibrium joining probability under the Preemptive Random Priority (PRP)

scheme and the socially optimal joining probability coincide. In the above notation,

ps = ue.

Moreover, this scheme possesses all properties 1–5.

What the theorem says is that the preemptive random priority scheme is self-regulating in the

sense that customers, when they behave in accordance with the resulting equilibrium, do in fact

behave in a socially optimal way. An explanation of this phenomenon is as follows. The marginal

customer, namely, the one to draw ue, does not inflict any externalities (once all the other customers

follow the equilibrium strategy) due to the nature of the queueing regime.9 Hence, his (zero) utility

due to joining coincides with the marginal social utility. In other words, since he is indifferent

between joining and balking, the same is the case with society, and hence the probability of joining

ought to be ps.

Remark 1. The result in Theorem 1 is invariant with respect to the distribution of U , the

priority parameter, as long as it is continuous. Alternatively, it can be said that any continuous

transformation of the original priority parameter U can be used as an alternative priority param-

eter. Moreover, instead of performing an actual lottery, one can use any (irrelevant) continuous

heterogeneity of the customers (say, their biological age or their height) to assign priorities.

3.4. Variations of the PRP Scheme

The following two schemes are variations of the PRP scheme. Their advantage is that the decision

making, from the customer’s point of view, is more natural. This advantage comes at a price in

the form of being sensitive to the model’s parameters, i.e., not possessing properties 4 or 5.

9 The preemption assumption does not change the overall mean waiting times. This fact does not hold under general
service time distributions. See the discussion in Section 5.2 below.
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1. Random waiting time. Instead of using the original priority parameter U , use its trans-

formed value 1
µ(1−Uρ)2 (see Remark 1). This function of U is the mean waiting time of a customer

with priority parameter U in the original system, if all customers whose priority levels are higher

join. Under this scheme (joining) customers are informed of their expected time in the system

under this scenario, and hence the decision whether to join or balk is more natural. This scheme

is sensitive to both rates µ and λ; i.e., it does not satisfy property 4.

2. Binary random priority. Customers draw their preemptive priority parameter I, where I is

Bernoulli-distributed with parameter 1−ps. There is no need to specify what the rule of the scheme

is within each class and it can be, for example, FCFS.10 For those who get priority parameter

0 (a probability ps event), joining is a dominant strategy since even if all customers join, their

utility in case of joining is at least R− C
µ(1−psρ) > 0. Now, for those who get priority parameter 1 (a

probability 1−ps event), their best response is not to join even if no one from their class joins (but

those from the other class do join). This is due to the fact that in this (best-scenario) case, their

utility equals R− C
µ(1−psρ)2

= 0. The resulting joining probability is hence ps, as required. Because

ps is sensitive to all four parameters, so is this scheme, and thus it does not satisfy properties 4

and 5.

3.5. The Random Entry Fee Scheme

Under this scheme, customers (independently) draw a random entry fee. Once informed of their

random fee, customers decide whether to join (and pay the fee) or balk.

Theorem 2. The random entry fee scheme is a regulation scheme if it is drawn from any

distribution with CDF, denoted by F (x), that satisfies

F (Ts) = ps, (10)

where Ts is the optimal flat entry fee (see (8)) and ps is the socially optimal joining probability (see

(4)).

Proof. The equilibrium profile here is obviously a threshold strategy: join if and only if the

randomly drawn entry fee is less than or equal to Te, for some Te > 0. We next show that Te = Ts

and hence, by the condition in (10), the equilibrium joining probability equals F (Ts) = ps. In

equilibrium, the net utility of a customer whose fee was drawn to equal the threshold fee Te (and

joins) should be equal to zero; i.e, Te satisfies

R−Te−
C

µ(1−F (Te)ρ)
= 0. (11)

10 This choice leads to minimal variance in waiting times among those who join.
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It is easy to verify that11

Te = Ts,

with F (Te) = F (Ts) = ps, solves (11). �

This scheme does not satisfy properties 4–5 and also does not satisfy property 3 (lack of money

transfers), except for special cases such as the following example of a binary lottery that satisfies

a weak version of this property.

Remark 2. Binary random entry fee. Consider the following payment scheme: with prob-

ability ps the fee is zero and with probability 1− ps it is any fee greater than Ts. Obviously, this

distribution satisfies (10) and hence regulates the system. Interestingly, this version of the random

entry fee scheme satisfies a weak version of property 3; i.e., the equilibrium behavior induced by

the scheme does not come with money transfers. Yet, the option for money transfers is presented,

but transfers are not part of the equilibrium path. Hence, variable costs due to money collection

are avoided, although constant collection costs still exist as a collecting administration needs to be

formed in order to make transfers possible and the scheme credible.

4. Summary

A succinct overview of all eight regulation schemes in this paper and their properties is given in

Table 1. We add a column giving the resulting ratio between customer surplus and social welfare.

Clearly this ratio is between zero and one, being equal to one when no money transfer takes place.

Scheme
Properties

1 2 3 4 5
Consumer surplus

Social welfare

Preemptive random priority 3 3 3 3 3 1
Random waiting time 3 3 3 3 1
Binary random priority 3 3 3 1
Random entry fee 3 3 [0,1]
Binary random entry fee12 3 3 3 1
Flat entry fee 3 3 0
Contracts 3 3 0
Purchasing priority 3 3 3 3 0

Table 1 Summary of regulation schemes and their properties

11 As expected, the threshold random fee coincides with the flat entry fee, which can be looked at as a degenerate
example of a random fee.

12 Possesses a weak version of Property 3.
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Figure 1 summarizes the equilibria, social optimization, and some of the regulation methods

mentioned in this paper. The curve labeled CWFCFS represents the mean waiting cost under FCFS

without any regulation as a function of the joining probability p. From the selfish point of view, the

joining probability increases (respectively, decreases) as long as CWFCFS is less than (respectively,

greater than) R, and hence the intersection point of this function with the horizontal line R, where

p= pe, is the equilibrium point.

R−Ts

p
0

Waiting cost

CWFCFS

CWFCFS +Ts

CWPRP

R

peps = ue

Figure 1 Waiting costs under FCFS and PRP and the corresponding equilibria

The curve labeled CWPRP represents the waiting cost of a customer with priority parameter p,

in the preemptive random priority system if all customers with higher priority levels join. Such

a customer joins as long as CWPRP < R, and hence the equilibrium point of this system is the

intersection point of the CWPRP curve with R, which takes place where p = ue. This curve also

represents the waiting cost of a customer in Hassin’s model (Hassin 1995), whose payment is such

that the proportion of customers who pay for a higher priority level is p. Therefore, the socially

optimal probability is obtained at the intersection of this curve with the horizontal line R, namely,

where p= ps.

Consider a system with joining probability p. The difference between CWPRP and CWFCFS at

p corresponds to the expected externalities that a customer who joins this system inflicts on the

other customers. In particular, this difference at p= ps gives us Ts, the optimal flat entry fee (or

the expected payment under any optimal contract). If this entry fee is charged, then the mean cost

(waiting costs plus fee) is CWFCFS +Ts and the resulting equilibrium joining probability is ps, as

desired. As can be seen, the equilibrium joining rates of all regulation methods coincide with the

socially optimal one.
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Another observation that stems from this figure is as follows. The marginal utility due to an

additional arrival to a system with a joining probability of p is the difference between R and the

curve labeled CWPRP . Therefore, the resulting mean utility of such a system is the area between

these curves from zero to p. In the unregulated system, where pe is the joining probability (and

where the mean utility equals zero), the mean utility is also the light gray shaded area minus

the dark gray shaded area, and hence the two areas are equal. In a system with the socially

optimal joining probability, the mean utility is the light gray shaded area. Under all the regulation

methods based on random priority that are stated in this paper, this social welfare also equals the

consumer surplus as no transfer of money takes place. Conversely, in the case where a flat fee is

introduced, subtracting the mean payment Tsps (the dotted rectangle) from this mean utility yields

the consumer surplus, which, as said before, equals zero. This means that the two areas, the light

gray shaded one and the dotted rectangle, are equal. Note that under a strict random entry fee

scheme, some of the customers pay less than Ts and hence the consumer surplus is strictly positive

or even equals the social welfare, as in the binary lottery case.

In Hassin’s model (Hassin 1995), the difference between R and the CWPRP curve at p is the

payment that the marginal customer at p pays. Therefore, the light gray shaded area is the mean

payment in this case. As said before, this area is exactly the mean utility and the customers end

up with a zero consumer surplus.

5. Discussion
5.1. Practical Issues

The analysis in this paper considers the mathematical and economical aspects of queue manage-

ment. However, when dealing with humans in queueing contexts, some other aspects should be

considered too as a waiting line can be seen as a “miniature social system” Mann (1969). In the

normative contexts of queues, it seems that the most common, or even the natural, way is to grant

service according to order of arrival. This idea is deeply ingrained in Western culture; see, e.g., Hall

(1959) p. 201. For more on the game-analytic approach to norms in queues see Allon and Hanany

(2012) and Yang et al. (2016). The PRP regime, among other socially optimal regimes suggested in

the queueing literature, involves deviation from the FCFS norm. An additional feature of the PRP

regime that might look revolutionary at first sight is that priority is granted by lottery. However,

prioritizing by lottery is not a new idea. For example, since 1995, a limited number of U.S. per-

manent residence visas are granted under the Diversity Immigrant Visa lottery program each year

“Green Card through the Diversity Immigrant Visa Program,” (2016). Another recent example is

the Buyer’s Price housing assistance program in Israel, under which a limited number of families,

selected by lottery, get a significant discount on buying their first house “Mechir Lamishtaken,”

(2016). Naturally, such lottery-based programs are often criticized as being unfair.
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These two normative issues, like others that may arise, should be weighed when considering the

implementation of the PRP scheme. In fact, the question that should be asked is, are we willing to

adjust to new norms for the benefit of all? The answer of course depends on the time, the place,

and other features of the specific system under consideration. Human history tells us that norms

are flexible and it is certainly possible that the new regimes suggested in this paper, if implemented

sagely, may even become the new norms in some situations.

There is one practical issue that was also addressed in Hassin (1985), which should be considered

here as well. This is the issue of customers who may not be happy with their drawn random

priority and hence may reappear shortly (at no cost). By doing so, they disguise themselves as

new customers, hoping to draw a better priority level. Such behavior should be administratively

prohibited or made unworthy. This can be easily done in service systems that require customers to

be identified (e.g., in banks, hospitals, or call centers), as long as identification takes place upon

arrival.

The implementation of the PRP scheme is possible only if preemptions are possible and come

without any loss of work. Nevertheless, in the following variation of the M/M/1 model, a similar

scheme is implementable without preemptions. Suppose that service is completed, and only then

is it decided who among those in line shall be the one to receive it. This can be the case when

service is standard and not customized. For example, one can think of a short-order cook who flips

a burger and then decides whom to serve it to. The queue-length process and mean waiting time

here coincide with those in the ordinary M/M/1 case, as do the optimal joining probabilities. The

equivalent to the PRP regime in this scenario is granting completed service in accordance with

randomly drawn priority parameters such that the customer who receives a completed service is the

one with the lowest priority parameter present in the queue. This is probabilistically equivalent to

the PRP regime in the ordinary M/M/1 model described in Section 3.3 and hence it regulates the

system. Indeed, in cases of standard service the use of this combined service regime and regulation

scheme is recommended as preemption is not needed.

5.2. General Service Times

The assumption that service times follow an exponential distribution plays an essential role in the

analysis above. This is due, in particular, to the fact that the mean time in the system does not

vary with the queue regime. However, this is not the case in general, which adds another aspect

to the social optimization issue in the form of a choice of service regime. Specifically, denote by R

the set of available service regimes. The optimal social welfare is defined by

max
r∈R, p∈[0,1]

{pλ(R−CWr(p))},
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where Wr(p), r ∈R, p∈ [0,1] is the mean waiting time under the service regime r and the joining

probability p. Note that by the above definition, if for two regimes, r1 and r2, Wr1(p)<Wr2(p) for

all p∈ [0,1], then social welfare is suboptimal when r2 is practiced regardless of the joining rate.

Consider the FCFS and the Last-Come First-Served with Preemption-Resume13 (LCFS-PR)

regimes. It is shown in Haviv (2016) that for all 0≤ p≤ 1, WFCFS(p)<WPRP (p)<WLCFS−PR(p)

if and only if the coefficient of variation of service time is greater than one (the reverse inequalities

hold if the coefficient of variation is less than one). From that we learn that in every case, the PRP

regime is dominated by one of the two above-referenced regimes; i.e., PRP cannot be a socially

optimal regime once these two are available. However, using the PRP regime ensures a strictly

positive social welfare,14 which is better than the zero social welfare gained in an unregulated

system.

As indicated by the comparisons made in this paper, there is no other known regulation method

but the PRP that possesses all five properties and preserves the service regime. As a consequence,

one should decide whether to give up on some properties, or to use the PRP regime at the price

of some reduction in social welfare. In terms of the coefficient of variation of the service times dis-

tribution, the greater the deviation from the exponential assumption is, the greater the reduction.

In one direction, when the coefficient of variation goes to infinity (while keeping the mean service

time constant), the optimal welfare under PRP (as well as under FCFS) goes to zero while welfare

under LCFS-PR is not affected.15 In the opposite direction, when the coefficient of variation equals

zero (deterministic service times), we are able to show that the welfare under PRP compared with

the optimal one under FCFS is lower by at most one-third as the following theorem states.

Theorem 3. Consider the M/G/1 system with arrival rate λ and a service times distribution

with first and second moments of µ−1 and x2, respectively.

Then

inf
R>C/µ,x2≥µ−2

{
maxp∈[0,1]{pλ(R−CWPRP (p))}
maxp∈[0,1]{pλ(R−CWFCFS(p))}

}
=

2

3
.

Moreover, this infimum is achieved under deterministic service times (when x2 = µ−2).

A proof is given in the e-companion to this paper.

13 The last to arrive have preemptive priority over those who have arrived earlier. Customers might be preempted
while in service; and when they return to service, it is resumed from the point where it was interrupted last.

14 In equilibrium, regardless of the service times distribution, those who hold the threshold priority level have zero
utility while all the others with higher priority enjoy strictly positive utility.

15 Mean waiting time under LCFS-PR is a function only of the first moment of the service distribution. See, e.g.,
Haviv (2013), p. 63.
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5.3. Heterogeneous Customers

The idea of regulation via priorities can be extended to models with heterogeneous customers.

Consider for example the model suggested in Littlechild (1974), which extends the unobservable

cost-reward M/M/1 model by assuming that customers are heterogeneous with respect to their

service valuation. This is modeled by assuming that each customer’s service valuation R is a

continuous nonnegative random variable with tail probabilities F̄ (r) := P(R ≥ r). Waiting costs

are linear with (homogeneous) cost per unit time C and arrival and service rates are denoted by λ

and µ, respectively. Assuming that realizations of service valuations are observable by the central

planner,16 social optimization is achieved by admitting customers with R≥ r∗ where

r∗ := arg max
r≥0

{
F̄ (r)

(
E(R|R≥ r)− C

µ− F̄ (r)λ

)}
. (12)

Assume now that preemptive priority is given based on customers’ service valuation (the higher

the valuation, the higher the priority). Similarly to the analysis in Section 3.3, it can be shown

that the equilibrium condition coincides with the first-order condition of (12); i.e., this scheme

regulates the system and achieves the socially optimal joining strategy.

5.4. Observable Queue

Consider the observable version of this model; that is, customers observe the queue length prior

to deciding whether to join or balk. Assume service is granted on a FCFS basis. As shown in

Naor (1969), both self- and social-optimization strategies are threshold strategies; i.e., join if and

only if the queue length is below some integer value. Denote these thresholds by ns for the social

one and by ne for the equilibrium. Not surprisingly, ne ≥ ns, and hence regulation schemes should

be considered. One such scheme was introduced in Hassin (1985). Under this scheme customers

are served immediately upon arrival but are pushed back by later arrivals (with preemption, if

necessary). The customer’s decision here is not whether to join or balk, but when to renege when

too many customers are ahead of him in line. It turns out that under this scheme, the resulting

equilibrium threshold equals the socially optimal threshold ns. The rationale behind that is that

those at the rear of the queue, i.e., those who consider reneging, inflict no externalities on others

and hence their decision whether or not to renege coincides with that of society. Note that this

regulation scheme possesses all properties 1–5. In fact, our PRP scheme can be looked at as the

counterpart of Hassin’s scheme, this time for the unobservable version.

16 This might be the case when different valuations require different service types, e.g., selling goods of varying values.
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5.5. Conclusions

Regulation schemes for the unobservable M/M/1 queueing model in the existing literature are based

on imposing on customers an additional cost that equals the externalities they inflict on others,

i.e., makes them internalize these externalities. This internalization requires money transfers, which

might be too costly or hard to implement. Moreover, these methods are usually sensitive to the

model parameters. Under the new schemes described in this paper, customers do not necessarily

internalize the exact externalities they impose. Some of them internalize more and some of them

less, in a way that motivates each one of them to follow the socially optimal behavior. More

precisely, the amount of additional costs imposed on each customer are chosen randomly, in a way

that a proportion of ps of the customers pay less than their externalities, and all the other customers

are asked to pay more (and hence balk). In this way, the joining probability is ps, as required.

Moreover, the novel PRP scheme suggested in this paper is the only known regulation scheme

for this model with the advantages of being insensitive to all model parameters and requiring no

money transfers.
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Proof of Theorem 3

Theorem 3. Consider the M/G/1 system with arrival rate λ and a service times distribution

with first and second moments of µ−1 and x2, respectively. Then

inf
R>C/µ,x2≥µ−2

{
maxp∈[0,1]{pλ(R−CWPRP (p))}
maxp∈[0,1]{pλ(R−CWFCFS(p))}

}
=

2

3
.

Moreover, this infimum is achieved under deterministic service times (when x2 = µ−2).

Proof. Assume without loss of generality that C = 1 and µ= 1. Then

WPRP (p) =
1

1− pλ
x2

2
− ln(1− pλ)

pλ
(1− x

2

2
)

and

WFCFS(p) =
λx2

2(1− pλ)
+ 1,

where the former is given in Haviv (2014) and the latter is the well-known Khinchine–Pollaczek

formula. The first-order conditions of p for the social optimization problem can be simplified to

R− 1

(1− pλ)2
+
pλ(1−x2/2)

(1− pλ)2
= 0 (EC.1)

under the PRP regime, and to

R− 1

(1− pλ)2
+
pλ(1−x2/2)(2− pλ)

(1− pλ)2
= 0 (EC.2)

under the FCFS regime. Note that in the case where x2 = 2x̄= 2, as in the exponential case, both

conditions coincide with (3).

Solving (EC.2) and (EC.1) for p yields

max
p∈[0,1]

{pλ(R−WFCFS(p))}= (
√
R− 1)2 + 2

√
R−

√
4R− (x2− 2)(2R+x2) +x2− 2

and

maxp∈[0,1]{pλ(R−WPRP (p))}= (
√
R− 1)2 + 2

√
R−

√
4R+ (x2/2− 1)(4R− 1 +x2/2)

−(x2/2− 1)

[
ln

(√
4R+(x2/2−1)(4R−1+x2/2)−(x2/2−1)

2R

)
− 1

]
.

By using the above and some cumbersome algebra (which we omit) it can be shown that

maxp∈[0,1]{pλ(R−WPRP (p))}
maxp∈[0,1]{pλ(R−WFCFS(p))}
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is monotone increasing with x2 for any R > 1. Hence, the infimum is obtained when x2 = 1, i.e.,

deterministic service times. In that case, the ratio is simplified to

2R−
√

8R+ 1 + log
(√

8R+1+1
4R

)
+ 1

2R− 2
√

2R− 1
,

which is monotone increasing in R, and hence

inf
R>1,x2≥1

{
maxp∈[0,1]{pλ(R−WPRP (p))}
maxp∈[0,1]{pλ(R−WFCFS(p))}

}
= lim

R→1

2R−
√

8R+ 1 + log
(√

8R+1+1
4R

)
+ 1

2R− 2
√

2R− 1
=

2

3
.
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