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I. Introduction 

 

“We believe that every industrial company will become a software company.” 

- GE CEO Jeffrey Immelt, in his annual letter to GE shareholders, 2014.1 
 

This paper documents a significant change in the nature and direction of invention in four “traditional” 

manufacturing industries. In autos and auto parts, aerospace and defense, medical devices, and 

pharmaceuticals, inventors and product developers are increasingly using software, rather than more 

traditional mechanical or chemical engineering, to differentiate products, enhance product performance, 

and increase user utility. Engineers and industry experts in these sectors have provided anecdotal 

evidence of a software-biased shift in the trajectory of innovation, but this evidence has generally rested 

on a relatively small number of possibly unrepresentative firms and products. Using much more 

comprehensive patent and patent citation data, we present new statistical evidence showing that this 

software-biased shift is persistent, systematic, and increasingly pervasive. We also point to other 

indicators suggesting that this shift extends far beyond the boundaries of our four target industries. 

If software has indeed become an increasingly important input into the creation of new inventions, 

then firms that take advantage of this software-biased shift should become better innovators than their 

industry peers who do not. Our empirical analysis suggests this is exactly what has happened. Using an 

unbalanced panel of publicly traded firms in our four target industries over the period 1981-2005, we 

show that the firms in these industries that have taken a more software-intensive approach to innovation 

have increasingly outperformed their less software-intensive peers in terms of patent productivity (patents 

per R&D dollar) and the market value of their R&D investment.2 We also show that the relative 

performance of software-intensive firms improves at the same time that the software-intensity of 

                                                
1 GE also recently announced that it is moving its company headquarters to Boston in order to be a part of an 
“ecosystem that shares its aspirations” to become a “top 10 software company” by 2020. For details, see Lohr 
(2016). 
2 This is distinct from (but complementary to) the idea that the adoption and use of IT has made firms more 
productive in their manufacturing and service processes.  A large literature explores this the extent, persistence, and 
variance of this relationship across firms and countries.  Brynjolfsson and Hitt (1995), Bloom, Sadun, and Van 
Reenen (2012), Huang, Ceccagnoli, Forman, and Wu (2015), Brynjolfsson and Saunders (2010), Aral and Weill 
(2007), and McElheran (2015) are just a few of the important papers in this literature.  For an interesting study on 
the impact of “data analytics” on firm productivity, see Brynjolfsson and McElheran (2015).  
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innovation in these sectors grows. Using a variety of robustness checks, we demonstrate that we can 

exclude several competing explanations for the observed outperformance of the software-intensive firms. 

 Why is it that some firms were able to take advantage of this software-biased shift in technological 

change while others were not? We provide suggestive evidence that geographic differences in the 

abundance of skilled software engineers have been an important factor in determining sample firms’ 

software intensity and innovation performance. Drawing upon multiple data sources, we present new 

estimates of the numbers of IT / software engineers available for hire in the major national labor markets 

where our sample firms are based. We supplement these estimates with data on flows of immigrant IT 

professionals and the magnitude of offshoring of software engineering. We find large and growing 

asymmetries across countries in the endowments of software engineering human resources, providing a 

partial explanation for the differences in the software intensity of R&D that we observe in firms 

headquartered in different countries. 

This paper is structured as follows. Section II reviews research from the engineering and management 

literatures that points to a significant increase in the importance of software as an enabler of innovation in 

four “traditional” manufacturing sectors. While suggestive, this research tends to be somewhat anecdotal, 

relying heavily on the experience of a small number of firms and a highly selected sample of recent 

product development efforts. Section III presents new statistical evidence based on patent citation data 

that suggests the software-biased shift in the direction of technological change suggested by the 

engineering and managerial literatures is real, broad-based, and economically and statistically significant. 

Section IV empirically examines the implications of this shift in software intensity for the innovation 

performance of firms in the four manufacturing sectors that are the focus of our study. Section V 

discusses several possible explanations for the trends we observe in our data and ties them to the existing 

literature. Section VI concludes with a summary of key results and avenues for future research. 

II. The Changing Technology of Technological Change in Four Manufacturing Sectors 

A survey of the engineering literature suggests a pronounced increase in the importance of software 

for product development and innovation across a range of manufacturing industries.  In this paper, we 

focus on automobiles and auto parts, aerospace and defense, medical devices, and pharmaceuticals. 

However, there is evidence indicating this trend extends to construction equipment, farm implements, IT 
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hardware, and power generation and transmission, among other industries.3   

In the automotive industry, the amount of software in cars has been steadily rising over the past two 

decades, and competitive differentiation is increasingly realized through software-based capabilities 

(Grimm, 2003; Frischkorn, 2004). Up to 40% of the cost of a new vehicle is now determined by its 

electronics and software content (Shorey, 2011). This percentage is likely to rise further; some industry 

observers contend that more than 70% of all innovations in the contemporary automotive sector are 

driven by software (Grimm, 2003; Shorey, 2011). Today, premium cars are equipped with up to 70-80 

microprocessors, connected by 5-6 internal digital networks (Nelson, 2004), and the latest electric 

vehicles such as the Chevrolet Volt rely upon more than 10 million lines of computer code, easily 

surpassing the numbers of lines of computer code required to run Boeing's 787 Dreamliner or the new F-

35 fighter.  

In a modern passenger vehicle, software manages everything from its powertrain, fuel and ignition, 

and carbon emissions, to the car’s power antenna. As a consequence, automotive and auto parts 

companies are increasingly investing in the internal acquisition of software capabilities through rapid 

hiring of software engineers (Waterman, 2011) and are building outside competencies by working closely 

with software firms.4 Software design teams have become increasingly prominent decision-makers at the 

product design stage (Mustapic et al, 2004). The high degree of interest in autonomous vehicles suggests 

these trends have much farther to go. 

A similar trend is apparent in the aerospace and defense arena. According to many industry experts, 

the entire aviation industry has been undergoing a process of transformation away from dependence on 

traditional manufacturing towards something that “looks more like IBM and Microsoft with wings” 

(Hughes, 1998). The Boeing 777 contains 1,280 onboard processors that use more than 4 million lines of 

computer code. Blackhawk helicopters contain almost 2,000 pounds of wire connecting the on-board 

computers and sensors, and experts claim that designing the electronic systems for this aircraft was more 

                                                
3 For a qualitative overview of the impact of these trends in farm implements and electric power, see Biba (2014) 
and Clancy (2014), respectively.  The rising importance of software in construction and mining equipment was 
verified by direct conversations with Carnegie Mellon-affiliated robotics experts and profiled in Green (2012).  See 
Arora, Branstetter, and Drev (2012) for an econometric examination of the rising role of software in IT hardware 
product development.  Our decision to focus on the four sectors examined in this paper was driven, in part, by data 
availability.  As we discuss in the paper, the limited availability of R&D expenditure data was a major constraint.   
4 Interviews with an engineer employed by a leading multinational auto parts producer indicated that this firm had 
undertaken a major investment in software capabilities, hired thousands of software engineers, and built up research 
facilities in regions as diverse as Pittsburgh (PA) and India in order to tap the right skills for its increasingly 
software-intensive approach to product development. 
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difficult than designing the aircraft itself. Many modern aircraft cannot fly without their onboard 

computer systems (e.g. F-16 and F-117), air traffic control systems are wholly dependent on software 

systems, and modern aircraft and spacecraft systems seldom work alone - they are usually part of a 

system of systems (Long, 2008). While aerospace products have included embedded software at least 

since the 1970s, when digital electronics and software first came into use for onboard engine control on 

commercial aircraft (Potocki de Montalk, 1993), this trend has been quickly accelerating since the 1990s 

(Holloway and Hayhurst, 2003). As a result, software costs are major components of product innovation 

and design for large aerospace companies. Boeing, for example, has significantly increased the amount of 

money invested in software as part of more recent product development efforts, and outlays per product 

generation are now in the billions of dollars (Long, 2012).  

Experts agree that software has also become ubiquitous in medical devices and is the source of critical 

capabilities in products ranging from digital thermometers, insulin pumps, pacemakers, and cardiac 

monitors to anesthesia machines, large ultrasound imaging systems, MRI scanners, chemistry analyzers, 

and proton beam therapy systems (Sandler et al, 2010; Bakal, 2011; Jones, Jetley, and Abraham, 2010). 

Mai-Duc (2011) reports that more than 50% of marketed medical devices contain software. A current 

state-of-the-art pacemaker contains up to 80,000 lines of software code, while a simple infusion pump can 

contain upwards of 170,000 lines of code (Jones, Jetley, and Abraham, 2010). Kahn (1991) and Holden 

(1986) assert that the trend of software utilization in medical devices and equipment has been in place at 

least since the mid-1980s when first devices with key capabilities enabled by microprocessors and 

controlled by embedded software came to market. However, the software intensity of medical devices has 

been accelerating particularly quickly in the past decade (Wasden, 2011).5 

 As medical device manufacturers reposition themselves by bundling physical devices with value-

added software-based features, they require an expanding array of specialized software skillsets (Joglekar 

and Rosenthal, 2003). As a consequence, these firms are increasingly forced to focus on software 

engineering and to adopt rigorous software development processes (Denger et al, 2007). This is 

particularly important because software failures are becoming one of the main sources of medical device 

recalls and litigation (Jones, Jetley, and Abraham, 2010; Mai-Duc, 2011). Firms in the medical device 

industry are responding both by building closer connections to external software suppliers and by hiring 

large numbers of software engineers, while giving software development teams a much larger stake in the 

product development and strategic decision-making in the industry (Bakal, 2011).  

                                                
5 We confirmed these trends through interviews with engineering professors who have closely followed 
technological trends across a range of medical device technologies.   
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Similarly, pharmaceutical firms have also witnessed an increasing dependence on software in product 

development and innovation, predominantly in the form of bioinformatics and computational biology. 

Bioinformatics and related domains have become key tools in drug development, even if their deployment 

has not prevented an apparent decline in pharmaceutical research productivity (Searls, 2000).6 Computer 

models and simulations now play crucial roles in the discovery of new substances with potential 

therapeutic benefits. While in the early 1990s large drug discovery screening programs produced 

approximately 200,000 data points annually (Drews, 2000), nowadays software advances have enabled 

typical pharmaceutical labs to generate more than 100 gigabytes of data in a single day (Gassmann, 

Reepmeyer, and Von Zedwitz, 2010). As a consequence, pharmaceutical and biotechnology companies 

rely on increasingly complex algorithms and software packages to deal effectively with this proliferation 

of information (Duardo-Sanchez, Patlewicz, and Lopez-Diaz, 2008).      

In summary, technologists and industry practitioners assert that software has become an increasingly 

crucial input into innovation and product differentiation across a wide array of manufacturing industries 

far beyond the traditional definition of electronics and information technology. 7   However, the 

engineering literature documenting this shift has tended to be largely anecdotal, relying heavily on a small 

sample of probably unrepresentative products and firms.  In the next section, we use far more 

comprehensive patent and patent citation data drawn from these industries to support these assertions, 

finding evidence of statistically significant trends in the data that are consistent with the rising importance 

of software as an input into invention and product development. 

III.  Measuring the Shift in the Technology of Technological Change  

A. Approach 

If innovation in autos and auto parts, aerospace and defense, medical devices, and pharmaceuticals has 

increasingly come to rely on software as an input into the production of new knowledge, then we would 

expect this fact to be reflected in patent data. Specifically, we should observe that more recent cohorts of 

patents generated by these industries cite software technologies with increasing intensity, and we would 

                                                
6 It is important to note that, in most of our target industries, software has become increasingly embedded in the 
products themselves. However, in the pharmaceutical industry, software has significantly affected the innovation 
process but not the products. This significant difference led us to rerun our main empirical specifications without 
including pharmaceutical firms – results confirm that our main results are not qualitatively affected by the inclusion 
or exclusion of this industry. 
 
7 See Bharadwaj et al (2013) to study how digital technologies have been changing firms' business strategies, 
capabilities, products and services. Iansiti and Lakhani (2014) provide excellent examples of wide digital 
transformation and connection in traditional industries.  
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expect this to be the case even after we control for the changes over time in the volume of software 

patents.  

The use of patent citations is common in the economic and management literatures as researchers have 

used patent citations as a measure of knowledge flows for decades (Jaffe and Trajtenberg, 2002). 

Following the approach in Arora, Branstetter, and Drev (2013), which builds on the seminal work 

undertaken by Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1996, 2002), we employ a citation 

function model in which we model the probability that a particular patent p, granted in year t, cites 

another patent, P, granted in year T.  

In line with previous work, this citation probability is modeled as the product of an exponential 

process by which knowledge diffuses and a second exponential process by which knowledge becomes 

superseded by subsequent research. The resulting probability, Pr(p,P), is thus a function of the attributes 

of the citing patent p and the cited patent P, captured by the term α(p, P) below, as well as the time lag 

between the grant years of the two patents, (t-T): 

(1)                     Pr 𝑝,𝑃 =  𝛼 𝑝,𝑃  exp (−𝛽! 𝑡 − 𝑇 ) ∙ (1 − exp −𝛽! 𝑡 − 𝑇 ) 

All potentially citing patents and all potentially cited patents are sorted into cells corresponding to 

their patent attributes.  The measured attributes of the citing patents consist of the citing patent’s grant 

year, the primary industry of the assignee’s firm, and a binary measure of the patent’s technology field 

(software or non-software). The measured attributes of the cited patents consist of the cited patent’s grant 

year and its technology field. As a result, the expected number of citations from a group of citing patents 

with a particular set of attributes to a group of cited patents with a particular set of attributes can be 

written out as follows: 

(2)          𝐸 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#$% =  𝑛!"#𝑛!"𝛼!"#$%  exp (−𝛽! 𝑡 − 𝑇 ) ∙ (1 − exp −𝛽! 𝑡 − 𝑇 ) 

where the dependent variable measures the number of citations made by patents with grant year t, 

industry a and technology field b to patents with grant year T and technology field c. The alpha terms are 

multiplicative effects estimated relative to a benchmark or “base” group of citing and cited patents, and 

ntab and nTc are the counts of patents in the respective categories. Rewriting equation (2) gives us the 

Jaffe – Trajtenberg (2002) version of the citation function, expressing the average number of citations 

from one category of patents to another: 

(3)  𝑃 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#$! = ! !"#$#"%!!"#$%
!!"#∙!!"

= 𝛼!"#$% ∙ exp (−𝛽! 𝑡 − 𝑇 ) ∙ (1 − exp −𝛽! 𝑡 − 𝑇 )      
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If we add an error term to this expression, as in equation (4) below, then we can estimate it using a 

nonlinear least squares approach. 

(4)    𝑃 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#$% = 𝛼! ∙ 𝛼! ∙ 𝛼! ∙ 𝛼! ∙ 𝛼! ∙ exp −𝛽! 𝑡 − 𝑇 ∙ 1 − exp −𝛽! 𝑡 − 𝑇 + 𝜀!"#$% 

When estimating the empirical version of equation (4), we have to also adjust for heteroskedasticity by 

weighting the observations by the square root of the product of potentially cited patents and potentially 

citing patents corresponding to a particular cell, namely 

(5)                                                         𝑤 = 𝑛!"# (𝑛!")  

B. Data 

In this analysis, we use utility patents granted by the United States Patent and Trademark Office 

(USPTO) between 1985 and 2005. To identify firms active in each of the chosen industries, we used the 

Compustat database and the North American Industry Classification System (NAICS). First, we selected 

the top 100 publicly traded firms in each industry measured by the amount of sales as identified in 

Compustat.8 Since Compustat is skewed toward North American firms, we used other data sources in 

order to ensure coverage of important firms outside the United States, including Amadeus, the 

Development Bank of Japan's Corporate Finance Database, the TS2000 and FS2000 Databases from the 

Korean Listed Companies Association (KCLA), and the U.K. R&D Scorecard.9   

In the next step, we connected the identified firms to their U.S. patent portfolios using the updated 

NBER patent database.10  We only retained firms whose total number of patents between 1981 and 2005 is 

at least 10 in order to make sure our sample includes firms that are active producers of patented 

inventions.11  The U.S. patent portfolios of the retained firms constitute our set of potentially citing 

patents. The set of potentially cited patents is the universe of patents granted by the USPTO from 1981 

through 2005.  

                                                
8 We used sales in 2010. The choice of base year had little impact on our sample. Using sales data from 2000 or 
2005 produced a list very similar to our target firms. 
9 The lack of R&D data for firms based outside the United States was a major constraint. Our measures of R&D 
productivity require data on R&D expenditure. U.S. accounting practices require publicly traded firms to fully 
disclose their R&D expenditures, but this principle is not widely followed outside the United States. A number of 
non-U.S. firms have been excluded from our data set due to a lack of publicly available information on R&D 
expenditures.   
10 We were forced to exclude firms that do not appear in the NBER patent database from the sample. The updated 
NBER database accounts for firm mergers, acquisitions, and spin-offs through 2006, albeit with some errors and 
omissions discussed by Lerner and Seru (2015). 
11 This accounting is based on patent grant years. 
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Next, we identified software related patents, which is a perennial challenge in the empirical literature. 

In this paper, we have taken an approach similar to that of Arora, Branstetter, and Drev (2013). First, we 

generated a set of patents, granted after January 1st 1985 and before December 31st 2005 that used a set 

of keywords associated with software-based technologies (e.g. “computer program” or “software”), as 

defined in Bessen and Hunt (2007). Second, we identified patents that fell into the narrow set of IPC 

categories as defined in Graham and Mowery (2003). We then defined the population of software patents 

for the purposes of this paper as the union of these two sets of patents. This yielded 318,105 patents, 

17,956 of which were assigned to firms in our sample. 

As is the case in most studies that rely on patent data, our inference will need to be guided by an 

awareness of our data limitations. In the early years of our sample, the U.S. patent system operated under 

legal guidelines that held “pure” software inventions to be unpatentable. As that legal doctrine changed, 

the number of patented software inventions grew sharply.12  This makes it imperative that we directly 

control for the expansion in the pool of software patents over time, which is exactly what the citation 

function approach allows us to do. Our analysis relies on patents granted by a single authority – the 

USPTO – to measure invention for both the United States and foreign firms in our sample. However, the 

foreign firms in our sample tend to be reasonably large entities with significant sales in the United States. 

For that reason, we can expect the foreign firms in our sample to have strong incentives to protect their 

inventions in the U.S. market with U.S. patents.13 To the extent that this assumption holds, foreign firms 

will patent their more important inventions in the United States, providing us with data sufficiently rich to 

capture important changes in their technological trajectories.   

C. Results 

We first look at the descriptive results presented in Figure 1, which show a stark increase over time in 

the software intensity of innovation for firms in our sample industries. As a total, the share of software 

patents in their patent portfolios increased from 3.5% to 14.4% over the sample period, a fourfold 

increase. Similarly, the share of citations going to software increased threefold over the sample period 

from 4.5% to 13.4%, with a particularly striking increase in the period following the year 2000.14  

Importantly, we observe the same trend when we look at the share of software citations coming from non-
                                                
12 Graham and Mowery (2003) and Bessen and Hunt (2004) provide excellent overviews of the evolution of the 
patentability of software inventions in the United States, as well as the various approaches to defining software 
patents. 
13 U.S. patents have been used to measure inventive output in Britain (Griffith, Harrison, and Van Reenen, 2006), 
Japan (Branstetter and Sakakibara, 2002), Israel (Trajtenberg, 2001), and a number of other countries. 
14 The NBER Patent Database ends with patents granted in 2006. We are currently working to update our data set 
through 2012. Preliminary analysis based on updated patent data shows that the qualitative results identified in this 
paper continue to obtain in the years after 2012.   



9 

software (e.g. chemical, mechanical, and electrical engineering) patents. This suggests that that the 

observed sharp increase in the software intensity of innovation by our sample firms over the sample 

period is not entirely driven by the proliferation of software patents. 

[ Insert Figure 1 Here ] 

Estimation results for the patent citation functions are presented in Table I. The unit of analysis is an 

ordered pair of citing and cited patent categories. Coefficients are reported as deviations from the baseline 

category – thus a positive coefficient indicates an increased citation probability relative to that category, 

while a negative coefficient indicates a decreased citation probability relative to the baseline category.    

Our results indicate that newer cohorts of patented inventions in our sample industries are increasingly 

likely to cite prior patented inventions, even after controlling for increases in their volume. Importantly, 

we see that software patents are much more likely to be cited than non-software patents. The cited 

software dummy in the first column is positive, large, and statistically significant, indicating that patents 

belonging to our sample firms are 24% more likely to cite software patents than non-software patents, 

controlling for the sizes of available software and non-software patent pools.  

Estimation results reported in the third and fourth columns further solidify the point that there has been 

a sharp increase in the likelihood of citing software patents from 1986 to 2005.15 In these specifications, 

we restrict the population of potentially cited patents to include only software patents. The key result is 

illustrated in Figure 2 below, which plots the coefficients from the third column of Table I, along with 

their 95% confidence intervals. This figure shows a striking increase in the propensity of non-software 

patents generated by our sample firms to cite software prior art, even controlling for the expansion of 

software patents that occurred over this period. This trend emerges in the late 1990s, and accelerates 

through the end of our sample period, displaying a timing that is almost perfectly coincident with the 

rising importance of software articulated by the industry experts and engineering studies cited in the 

previous section.16 We see that a non-software patent belonging to a firm in one of the industries we study 

in the year 2004 is more than three times more likely to cite a software patent than a similar patent 

granted in the year 1986, with a high degree of statistical significance. These results align closely with the 

descriptive trends reported in Figure 1. We see this as strong evidence that the trajectory of technological 

                                                
15 Because our data end with the 2006 grant year, we run into difficulties associated with the truncation in our 
citation data.  Few patents applied for in 2005 are granted by 2006.  The most recent citing grant year coefficient we 
can estimate cleanly is for 2004. 
16 Figure 2 has a vertical light grey line in 1995 when the coefficient and its lower bound become greater than zero. 
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change in our sample industries has become substantially more software-intensive. 

[Insert Figure 2 Here] 

In results not shown in the paper, we estimated the citation function by excluding patents granted to 

pharmaceutical firms from our sample patents. Because software in this industry should be mainly related 

to process innovation, while software in other industries (auto and auto parts, aerospace and defense, and 

medical devices) would be related to both process innovation and product innovation.17 The regression 

results using this restricted patent data are qualitatively similar to the results in Table I. We also run a 

variant of our citation function regressions that uses “forward” citations (citations received) instead of 

“backward” citations, seeking to measure how often the inventions of our sample firms are themselves 

cited by subsequent software inventions. We find that newer cohorts of patents belonging to firms in our 

sample are increasingly likely to be cited by subsequent software inventions, suggesting that our sample 

firms' R&D is increasingly embedded in and relevant to software-related technologies.  

IV. Comparing Firm-Level Innovation Performance 

In the previous section, we showed that there has been a software-biased shift in the nature of 

technical change in an array of industries, especially since the mid-1990s. Can we use this underlying 

trend to explain the relative innovative performance of firms in these industries? We expect that firms 

with a higher degree of software competence will exhibit relatively better innovative and economic 

performance than firms with a lower degree of software competence. If software becomes more important 

over time, then we should expect that the performance difference between more and less software 

intensive firms has grown in recent years.  

In order to empirically explore these connections, we use two separate (but related) approaches: the 

innovation (patent) production function and the market valuation of R&D (Tobin’s Q) model.  

A. Innovation (Patent) Production Function	

The premise of this empirical approach is based on Pakes and Griliches (1984) and Hausman, Hall, 

and Criliches (1984). We use a log-log form of the patent production function. 

(6)                                                               𝑃!" = 𝑟!"
!𝜙!" 𝑒!"!! 

                                                
17 Software itself can be embedded in the products of three industries (auto and auto parts, aerospace and defense, 
and medical devices). But software can hardly be embedded in the main products (drugs) of pharmaceutical 
industry. 
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(7)                                                             where 𝜙!" = 𝑒 !!!!!  

In equation (6), 𝑃!" are patents taken out by firm i in period t, 𝑟!" are research and development 

expenditures, ∅!" represent measures of innovation-sector-specific technological opportunity, and 𝑆𝑊! 

indicates if the firm is software-intensive. In equation (7), 𝐷! represents patenting propensity differences 

across c different innovation sectors. We derive our estimating equation by substituting (7) into (6) and 

taking logs of both sides, thus yielding: 

(8)                                         ln 𝑃!" =  𝛽 ln 𝑟!" +  𝛿!𝐷!! + 𝜔𝑆𝑊! +  𝜇!" 

The error term is defined below: 

(9)                                                                 𝜇!" =  𝜉! + 𝑢!" 

We allow the error term in (9) to contain a firm-specific component 𝜉!, which accounts for the intra-

industry firm-specific unobserved heterogeneity, as well as an 𝑖𝑖𝑑 random disturbance 𝑢!".   While 𝑆𝑊! 

would be swept out in a linear model with firm fixed effects, because it is time invariant, we can interact 

𝑆𝑊! with dummy variables corresponding to subperiods of our 1981-2005 time frame and estimate the 

coefficients on the interaction terms.18  If we find that the coefficients on our interaction terms are 

statistically significant and rising over time, this would constitute evidence that the relative performance 

of firms that are software-intensive throughout our sample is increasing as innovation itself has become 

more software-intensive.  Since the dependent variable is a count variable, we use the negative binomial 

estimator developed by Hausman, Hall, and Griliches (1984) to estimate (8).   

B. Market Value (Tobin’s Q) and Shadow Value of R&D	

Since the late 1960s (Brainard and Tobin, 1968; Tobin, 1969), Tobin’s Q has been widely used to 

measure the relationship between a firm’s market value and the replacement value of its book equity. The 

value of Tobin’s Q is affected by both a firm’s tangible capital and its intangible capital. A firm’s 

intangible capital (stock of knowledge measured by its R&D stock) has been found to have a positive 

relationship with the market value of a firm (Griliches, 1981). Following Griliches’ seminal work, 

hundreds of academic papers in a variety of industry and national contexts have used a firm’s R&D stock 

as a measure of its intangible capital in order to investigate its relationship with market value.  

Following previous work, we assume an additively separable linear specification (Griliches, 1981; 

                                                
18 Note that the fixed effects negative binomial estimation routine supplied by STATA will estimate a coefficient, 
even on a firm-specific variable that does not change over time.  This is because the fixed effects negative binomial 
estimator is not exactly analogous to the linear version.  See Hausman, Hall, and Griliches (1984). 
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Hall and Kim, 2000; Bharadwaj et al, 1999).19 Let 𝑉!" and 𝐴!" be the market value and the replacement 

cost of tangible assets of firm 𝑖 at time 𝑡, respectively. Then the relationship between the two variables 

can be written as follows: 

(10)                                                 𝑉!" 𝐴,𝐾 = 𝑞! 𝐴!" + 𝛾!𝐾!" !! 

where 𝐾!" represents the replacement cost of the firm’s stock of knowledge, typically measured by 

stocks of R&D expenditures, 𝑞! represents the average market valuation coefficient of the firm’s total 

assets, 𝛾! is the shadow value of the firm’s technological knowledge measuring the firm’s private returns 

to R&D, and 𝜎! determines returns of scale. Following standard practice in the literature, we transform 

the above equation by taking natural logarithms (e.g. Hall and Oriani, 2006) as follows: 

(11)                                     𝑙𝑛 𝑉!" = 𝑙𝑛 𝑞! +  𝜎! 𝑙𝑛 𝐴!" +  𝜎!𝑙𝑛 (1 + !!!!"
!!"

) 

By assuming 𝜎! equals one (constant returns to scale) and subtracting 𝑙𝑛 𝐴!" on both sides, we can 

obtain the following equation: 

(12)                                           𝑙𝑛(𝑉!"/𝐴!") = 𝑙𝑛 𝑞! + 𝑙𝑛 (1 + !!!!"
!!!

) 

Finally, we define Tobin’s Q as the ratio of the market value to the replacement cost of tangible assets 

and rewrite the equation as follows: 

(13)                                            𝑙𝑛(𝑄!") = 𝑙𝑛 𝑞! + 𝑙𝑛 [1 + 𝛾!
!!"
!!"

] 

Following Hall and Kim (2000) and Arora, Branstetter, and Drev (2013), we estimate equation (13) 

using nonlinear least squares estimators (NLS).20 In order to capture the difference in the market's 

valuation of the private returns to R&D between firms with a higher and lower degree of software 

intensity, we add software intensity dummies to the model. We also include time dummies to account for 

a secular time trend. As a robustness check, we also estimate the equation using a linearized version of the 

model, with firm fixed effects, and, in these models, we can interact our time dummies with our software 

intensity dummies, as we did in the previous patent production function analysis. 

                                                
19 Our notation follows Hall and Kim (2000).  
20 Fixed effects and random effects estimators are used. For robustness checks, we estimated a linearized version of 
equation (13) using firm fixed effects.  
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C. Data and Variables	

Sample Firms.—The procedure used to identify our sample firms was already delineated in the previous 

section (see p. 8). In the regressions reported below, we were forced to drop those firms for which stock 

market value information was not available, as well as those which lacked sufficient information on R&D 

expenditures.21 This yielded an unbalanced panel of 229 firms from 18 countries for patent production 

function analysis. For the Tobin’s Q analysis, the unbalanced panel data contains 148 firms from 13 

countries.22  While the number of firms is not large, the share of global output represented by our sample 

firms in their respective industries is substantial. By the early 21st century, many of these industries had 

become increasingly consolidated, with a handful of multinational incumbents constituting a large 

fraction of total global sales.   

Software Intensity Variable.—We construct two software intensity variables to classify our sample firms 

into those who exhibit high degrees of software intensity of innovation and those who exhibit low degrees 

of software intensity. The first software intensity variable is based on the share of software patents in a 

firm’s total patent portfolio. The value of this variable equals the ratio of the number of software patents 

generated by the firm from 1981 to 2005 to the total number of patents generated by the firm. The second 

software intensity variable is constructed using the share of citations to software patents in total citations 

made by a firm’s patent portfolio. More precisely, it is the ratio of the number of backward citations to 

software patents made by the patents generated by the firm from 1981 to 2005 to the number of backward 

citations to all patents made by the patents generated by the firm from 1981 to 2005. Therefore, the value 

of this variable varies across firms but not over time. For Tobin’s Q analysis, we constructed both kinds 

of firm-specific software intensity variables for each of the following time periods: 1981-1988, 1989-

1996, and 1997-2005.  

At a first glance, it might seem counterintuitive to construct software intensity variables by averaging 

across time periods as opposed to simply using annual software intensity measures. However, this was 

necessary for several reasons. First, some firms do not report patent applications in some years. Second, 

firm-level software intensity measures can fluctuate significantly from year to year, especially for firms 

with limited patent output, but it is not reasonable to assume that these short-term fluctuations always 

reflect real changes in a firm’s innovation process. For example, if a firm applied for a software patent 

                                                
21 For innovation (patent) production analysis, we drop a firm if it has less than five years of R&D flow information. 
We exclude a firm if it has less than five years of R&D stock information for Tobin’s Q analysis. Changing these 
thresholds does not change our results significantly.  
22 We note that the results of our patent production function regressions do not qualitatively change if we restrict our 
set of observations to those used in the Tobin’s Q analysis. 
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and a non-software patent in 1990, the observed share of software patents in its total annual portfolio 

would be 50%. Suppose, however, that in 1991 this same firm applied for two non-software patents and 

no software patents. Then, the observed share of software patent in that year would be 0%. Finally, if the 

firm applied only for a single software patent in 1992, then the share of observed software patents would 

be 100%. As we do not believe these annual fluctuations are necessarily reflective of an underlying 

drastic change in the software intensity of this firm’s innovation process, so we prefer to average software 

intensity measures over a longer period of time.  

In order to operationalize software intensity measures, we create a binary measure that classifies 

sample firms into two groups: (1) the above-median software intensity group and (2) the below-median 

software intensity group. For Tobin’s Q regression analysis, we also construct period-specific software 

intensity dummy variables that allow firms to switch between the two groups.  

Sample Firms.— Patents: Patent data were obtained from the United States Patent and Trademark Office 

(USPTO) and the National Bureau of Economic Research (NBER). The NBER patent database allows us 

to match firms with their patent portfolios through the year 2006. For those firms that were not included 

in the database’s firm-assignee matching correspondence, we manually matched their names to patent 

assignee codes.  

R&D Expenditure: Annual R&D investment data were collected from several sources. Compustat 

provides most of the U.S. firms’ R&D data as well as data for some non-U.S. firms whose shares trade in 

the U.S. The R&D Scoreboard also contains R&D data for a number of top global R&D companies and 

top UK R&D firms.23 We exploit the EDGAR database to collect R&D information for some firms that 

are not captured in Compustat or the R&D Scoreboard. Japanese firms’ R&D data comes mainly from the 

Kaisha Shiki Ho Survey database. South Korean firms’ data is collected from the Korea Listed Companies 

Association. We deflate R&D expenditure using several alternative deflators, checking for consistency 

and robustness.24 We found our results are not sensitive to the choice of deflator.  

R&D Stock: Following Arora, Branstetter, and Drev (2013) and others, we use the perpetual inventory 

method to calculate R&D stocks. A fifteen percent depreciation rate was used (Griliches, 1984; Hall, 

                                                
23 The Department for Business, Innovation & Skills (BIS) of the United Kingdom has published the data from 1991 
to 2010. The most recent year’s publication, the 2010 R&D scoreboard, contains global top 1000 R&D firms and 
UK top 1000 R&D firms.  
24 The deflators are Consumer Price Index (CPI), GDP deflator, and Producer Price Index (PPI). This paper includes 
the estimation results using CPI. The estimation results using other deflators are available from authors by request.  
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1990).25 The initial R&D stock was calculated using the previous five years’ worth of R&D expenditure 

flows.26 In order to impute R&D expenditures in years for which data were unavailable, we used a linear 

extrapolation based on the first five years of available R&D expenditures.27  

Market Value: We estimate the market value of a firm by following the method proposed by Perfect and 

Wiles (1994). We define the market value as the sum of market values of the firm’s equity and debt. For 

the firms whose data is taken from Compustat, we estimated the market value of the firm’s equity as the 

sum of (1) year-close price of outstanding common shares multiplied by the year-close number of 

outstanding common shares and (2) year-close liquidating value of preferred capital. For the Japanese 

firms from the Development Bank of Japan (DBJ) database, we calculated the market value of the firm’s 

equity as the mean value of year-high and year-low stock prices multiplied by the number of outstanding 

stocks. The value of preferred capital was not available in DBJ database. This, however, should not cause 

a problem if the values of preferred capital are not systematically different across time and technology 

sectors (Arora, Branstetter, and Drev, 2013). We define the market value of the firm’s debt to be equal to 

the sum of long-term debt and short-term debt. For the firms from Compustat, we used total long-term 

debt and debt in current liabilities. For Japanese firms from the DBJ database, we used fixed liabilities as 

a proxy for the value of the firm’s debt.28  

Replacement Value of the Firm’s Assets: It is not easy to estimate the replacement value of a firm’s 

assets mainly because there is often no structured and active market for used capital goods. However, 

Perfect and Wiles (1994) show that replacement values calculated using different methods are relatively 

robust. In this paper, we use the book value of a firm’s total assets as a proxy for their replacement value.  

D. Innovation Production Function Results	

In the previous section, we showed that patented inventions in an array of manufacturing industries 

increasingly rely on software-related prior art, even after controlling for the increased pool of citable 

software patents over time. Now we go a step further and investigate how firm-level innovation 

productivity is determined by a firm’s software competence (intensity). We have to go beyond a 

descriptive analysis as many factors, such as differences in R&D investment, can influence any observed 

                                                
25 Different depreciation rates between 10% and 30% were applied for constructing the R&D stock. This paper 
reports the estimation results using 15% depreciation. Applying the different rates did not alter our results 
significantly. The estimation results using other depreciation rates are available from the online appendix. 
26 For example, R&D stock in 1990 is the sum of the R&D expenditure in 1990 and depreciated R&D expenditures 
from 1986 to 1989.  
27 For instance, assuming that R&D expenditure in 1980 is missing, we get the projected R&D expenditure in 1980 
by "backcasting" using R&D expenditure data from 1981 to 1985.  
28 See Perfect and Wiles (1994) for a detailed discussion of measurement error issues when using book values.  
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changes in inventive output. As a consequence, we want to see whether firms with a higher degree of 

software intensity produce more patented inventions per dollar of R&D than firms with a lower degree of 

software intensity. Furthermore, in order to make sure differences in the quality of patented inventions 

between the two groups of firms are not driving our results, we also control for patent quality. We follow 

the literature and use quality corrections based on the number of claims found in a patent document and 

the number of forward citations that a patent receives. 

Table II presents our first set of key patent production function estimation results. The magnitudes of 

the key coefficients from the second column of Table II are graphically represented in Figure 3, where the 

bars represent how much the above-median software intensity firms increased their innovative 

productivity relative to the below-median software intensity firms in each period, relative to the base 

period of the early 1980s (1981-1985). We observe an increasing R&D productivity gap over time in 

favor of more software intensive firms across all industries in our sample. The R&D productivity gap 

began to emerge since the early 1990s. Consistent with the notion that the importance of software as an 

input into the creation of new technology has increased in recent years, we observe the most significant 

relative patent productivity gains by above-median software intensity firms in the last two periods in our 

sample (1996-2000 and 2001-2005).29 These firms became about 40% more productive than their below-

median software intensity peers in the late 1990s and early 2000s. It would be reasonable to expect that 

the R&D productivity gap between highly software intensive firms and their less software intensive peers 

has continued to widen over the past decade, and preliminary analysis with updated data appears to 

confirm this hypothesis.  

[ Insert Figure 3 Here ] 

The results reported in Table II were estimated using a negative binomial model, though our results 

are robust to the exact choice of specification.30 The first and second columns report regression results 

obtained where the total number of patents applied for by firm 𝑖 in year 𝑡 is the dependent variable. The 

third and fourth columns report regression results using the number of claims within firm i’s cohort of 

patents applied for in year t as the dependent variable. The fifth and sixth columns report results using the 

number of forward citations received by firm i’s cohort of patents applied for in year t as the dependent 

                                                
29 Figure 3 doesn’t necessary tell us that the productivity gap in the late 1990s is slightly greater than the one in the 
early 2000s. The coefficient of the interaction term of the last period (2001-2005) is generally greater than the one of 
the previous period (1996-2000) when estimating with the other software intensity (share of citations directed to 
prior software patents) and a Poisson model. The size of the coefficients of these two periods also marginally 
changes with different dependent variables (number of claims and number of citations).  
30 Use of a Poisson regression model yields similar coefficients.   
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variable. The citation data set extended through 2010.  

The R&D productivity coefficients are very similar across the columns. They provide evidence that 

highly software-intensive firms started to produce more patents per R&D dollar than less software 

intensive firms over our sample period, without sacrificing the quality of their patent portfolios.31 Most of 

the coefficients on our key variables are statistically significant at the 1% level. Random effects and fixed 

effects models produce similar estimates. This suggests that our regression results are unlikely to be 

driven by time-invariant unobserved firm-specific differences in research productivity or propensity to 

patent. We estimated the regressions by excluding pharmaceutical firms from our sample. The regression 

results excluding pharmaceutical firms are qualitatively similar to Table II. We conducted separate 

regressions using two subsamples; U.S. firms and non-U.S. firms. The results from both regressions are 

qualitatively the same with the results in Table II. We also re-estimated the regressions reported in Table 

II, but where software intensity was measured by the share of patent citations made to software prior art 

rather than the share of software patents. The results obtained are qualitatively similar, showing a 

statistically significant increase in patent productivity in the later periods. Finally, we allowed both 

measures of software intensity to vary within firms over time and re-estimated our specifications, again 

obtaining results showing that the patent intensive firms become significantly more productive, and this 

result strengthens over time. All of these additional results are available from the online appendix.    

As an additional robustness check, we also conducted a series of falsification estimations in which we 

replaced our firm-level metric of software intensity with alternative firm-level characteristics that one 

could possibly expect would be driving our results.32 We report the results of one such exercise in Table 

V, in which we estimated our base patent production function specification, but replaced software 

intensity with a measure of firm size. The key variable does not show any significant results, suggesting 

that firm size does not impact the patent productivity of our sample firms. This is significant as it 

invalidates a key alternative explanation for our results – namely, that larger firms are both more 

productive in their inventive activities and more software-intensive.  

E. Private Returns to R&D	

 While we have already shown that more software intensive firms exhibit increasingly higher 

R&D productivity as measured by production of patented inventions than their less software intensive 

peers, we would also like to investigate whether the R&D investment of these firms receives a higher 

                                                
31 We regard the number of claims and the number of citations as proxies of the quality of the patent.  
32 Aral, Brynjolfsson, and Wu (2006) show the existence of the “virtuous cycle” in the relationship between IT 
investment and productivity. 
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valuation from equity market investors than the R&D investments of their less software-intensive peers. 

Tobin’s Q regressions allow us to do just that: establish how the software intensity of a firm is associated 

with the equity market's valuation of the private returns to its R&D investment. Table III reports 

estimation results for our base Tobin’s Q specification shown in equation (13) using nonlinear least 

squares (NLS) estimators. Figure 4 graphically depicts the average difference in the estimated private 

returns to R&D between above- and below-median software intensity firms.33  In Table III and Figure 4, 

software intensity is inferred from the share of software patents in a firm’s total patents.    

[ Insert Figure 4 Here ] 

Figure 4 shows that above-median software intensity firms exhibit a higher estimated return to R&D 

investment and that this trend has accelerated in more recent time periods.34 At the beginning of our 

sample period (1981-1988), the estimated (private) return to R&D investment for above-median software 

intensity firms was not materially different from that of below-median software intensity firms. The 

effects of a software biased technology shift thus did not become apparent until the mid-1990s. Above-

median software intensity firms in this period (1989-1996) started exhibiting higher estimated returns to 

R&D investment than their below-median software intensity peers. The difference exploded in the most 

recent period (1997-2005). This trend, which is strikingly similar to that reported by innovation 

production function estimations, shows that firms which started producing more software-intensive 

inventions have become increasingly rewarded by stock market investors with higher market valuations. 

The results of Tobin’s Q estimations are robust to a variety of robustness checks. For example, we 

estimated a linearized version of equation (13) using ordinary least squares (OLS) with firm-level fixed 

effects, and found the results using OLS/FE to be qualitatively robust. This is reported in Table IV. The 

trends in measured private returns to R&D for above-median software intensity firms relative to below-

median firms were qualitatively similar to those obtained from the NLS specifications. The regression 

results are consistent with our main results when pharmaceutical firms are excluded from our sample. We 

also replicated Table III and Table IV by running regressions using two subsamples; U.S. firms and non-

U.S. firms. The results from both regressions are qualitatively the same as the results reported in Table III 

and Table IV. Finally, we re-ran the regressions in Tables III and IV, measuring software intensity with 

the share of patent citations directed to software prior art. The results are quite similar to those show in 

                                                
33 It is calculated as the difference between the below-median software intensity group subtracted from above-
median software intensity group. 
34 Time periods are somewhat different from the patent production function analysis. We added additional years for 
each period because of the limited number of observations.  
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the paper. The results of all of these robustness checks are available from the online appendix.  

V. Discussion 

Two key facts can be derived from our analysis. First, there exists robust empirical evidence indicating 

the growing importance of software-related technologies and skills for successful innovation in fields far 

beyond the traditional borders of information technology and electronics.  Software is increasingly central 

to innovation in automobiles and auto parts, aerospace and defense, medical devices, and 

pharmaceuticals. Secondly, firms in these industries which rely less on software in their R&D activity are 

increasingly being outperformed by their more software-intensive peers in terms of their innovative 

activity, as measured by patents and by the stock market’s valuation of R&D investment. To the best of 

our knowledge, this is the first paper that documents the extent and pervasiveness of this shift. 

However, these observations lead to an obvious question: if software is so important for successful 

innovation in the more traditional manufacturing sectors that are the subject of our study, then why are 

not all firms exploiting it in equal measure? One obvious response is that low R&D productivity and low 

software intensity are both consequences of managerial failure.  Firms with progressive managers 

recognize the opportunity presented by the rising importance of software and create capabilities within the 

firm that allow it to exploit this opportunity. Firms with less adept managers neither recognize the 

opportunity, nor build the capabilities necessary to exploit it. A stream of the recent management 

literature has focused on how managerial mind-sets, formed through years of inexperience, affect the 

(in)ability of firms to make strategic shifts when firm environments change (Bettis and Hitt, 1995). In the 

economics literature, Nick Bloom, John Van Reenen, and their coauthors have shown that persistent 

performance differences across firms based in different countries could be driven by differences in 

management practices (Bloom et al., 2012; Bloom and Van Reenen, 2007, 2010). The papers also show 

that multinationals tend to bring their management practices, both good and bad, with them when they set 

up subsidiaries abroad.  Cole (2006) and Cole and Fushimi (2011) argue that the striking international 

decline of Japan’s once formidable IT industry stems from managerial failure – the “hardware-centric” 

managers of Japan’s IT firms simply could not recognize the software-biased shift in technological 

opportunity in IT, nor adapt to it. 

The prior work of Arora, Branstetter, and Drev (2013) suggests an alternative explanation for the 

relatively poor performance of Japan’s IT industry that is rooted in resource constraints.  These authors 

used statistics on university graduates by discipline and immigration by occupation to create a rough 

statistical portrait of the human resource pool available for employment in software and related 

disciplines for the U.S. and Japan. They show that Japan consistently lagged the U.S. in terms of human 
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resources in this domain, and that the gap between the two countries widened enormously in the mid-to-

late 1990s as global demand for this specialized human capital intensified. This dramatic widening of the 

human resource gap was driven mostly by differences in immigration, especially the entry into the U.S. 

labor market by Indian-born software professionals under the auspices of America’s H1-B visa program.35  

Data on software “offshoring” by U.S.-based and Japan-based multinationals is less comprehensive, but 

any consideration of offshoring would only widen the implied human resource gap. 

The current paper features data on firms based in a wider range of countries, but five of the most 

significant home bases for our sample firms are Japan, Germany, the United Kingdom, France, and the 

United States. Using data from the national statistical agencies on university graduates by discipline and 

the immigration of IT professionals, we measure the software engineering labor pools in Figure 5, which 

portrays implied “flows” of IT workers in these four countries and the United States. What is immediately 

apparent is that the U.S. has a sizable human resource advantage in this domain, and it widens 

considerably over time. Immigration into the U.S., especially from India, plays an important role in 

enlarging and maintaining this advantage, even in more recent years, when a statutory “quota” has limited 

the number of H1-B visas issued. Any consideration of software offshoring expands the gap even more, 

and any reasonable estimate of the “stock” of software engineers implied by these flows paints an even 

more overwhelming picture of American dominance.36   

[ Insert Figure 5 Here ] 

This suggests that firms headquartered in the United States have a “built-in” advantage in software-

centric research. This is significant, because when we examine which firms in our sample are in the top 

quartile in terms of measured software intensity, these firms are disproportionately American, and that is 

true across all four sectors that are the target of our current study.37 Foreign firms rising into the top 

quartile are generally large multinationals. In a moment, we will present evidence suggesting that foreign 

firms use their U.S.-based research labs to exploit local abundance in software talent. 

The existence of a human resource gap in favor of U.S.-based firms is not surprising. The U.S. has 

held a lead in software since the early days of computing. The leading schools of computer science are all 

located in the U.S., and America, through its H1-B visa program and strong historical ties to centers of 

                                                
35 See Hunt and Gauthier-Loiselle (2010) and Kerr and Lincoln (2010) for studies highlighting the important role of 
immigrants in American innovation. 
36 A discussion of the multiple sources of these data is provided in the supplementary online appendix. 
37 Arora, Forman, and Yoon (2008) provide evidence that the United States has been a leading exporter of software 
products. 
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Indian software activity, has been able to attract large numbers of foreign software workers to the U.S., 

even in periods when the global demand for professionals with these skills exceeded the supply in every 

country. More recently, U.S. multinationals have set up large software engineering centers in India, 

allowing them to tap this talent without relocating the workers. Multinationals based in other countries 

have followed suit, but with a lag, and they generally encounter greater cultural barriers.38  The managerial 

literature highlights the challenges that arise when firms seek to do strategically significant R&D abroad 

(Anchordoguy, 2000).39  

 Of course, not all the software engineers who graduate or immigrate into these various national labor 

markets are employed in new product development, nor are all of these engineers capable of paradigm-

shattering innovation. The point we are making is that a larger resource pool can ease the constraints on 

the productivity of the top tier of software engineering talent. Large software engineering projects are 

labor-intensive, and tend to require a "pyramid" of software engineering talent, with very highly trained 

software architects at the apex of the pyramid, and large numbers of more narrowly trained programmers 

at the lower levels.  In the sense that trade economists use the term, the U.S. is relatively abundantly 

endowed in nearly all tiers of software engineering talent, relative to the other major industrial economies. 

We posit that firms around the world are seeking to become more software-intensive, and that firms in the 

U.S. face lower barriers in doing so. The highly uneven geographic distribution of key human resources 

helps generate the differences in software intensity across firms captured in our data.  From the 

perspective of our sample firms, these differences are at least partly exogenous. This line of reasoning 

suggests an empirical test which can help us distinguish between an explanation of our results based on 

managerial failure and one based on geographically variant resource constraints.   

If we believed our results were primarily driven by cross-firm (but geography-independent) 

differences in firms’ ability to identify and take advantage of the software-biased technology shift, then 

we would expect to find that firms vary in how software intensive their inventions are, but we would not 

necessarily expect to find large differences in the software intensity of R&D conducted by the same firm 

in different geographic regions. If, however, we believe that geographic differences in the abundance of 

affordable skilled software labor have been a major factor producing variation in software-intensity across 

                                                
38 Language barriers can also play a role in hiring foreign software engineers. These issues appear to constrain the 
ability of firms headquartered in some European countries (Germany, Norway and the Netherlands) to recruit highly 
skilled foreign workers (McLaughlan and Salt, 2002). 
39 Jaffe, Trajtenberg, and Henderson (1993) find that national boundaries limit knowledge spillovers.  Branstetter 
(2006) finds that Japanese FDI facilitates knowledge spillovers between U.S. and Japanese inventors, but the impact 
is limited. Froman, Goldfarb, and Greenstein (2015) suggest that a potential mechanism of geographic concentration 
of invention measured by patents is the low cost-distance digital communication. 



22 

firms, then we would expect to find that firms strategically allocate software intensive inventive activities 

to those regions where skilled software labor is most abundant.  

Figure 6 below presents the results of such an exercise, where we use sample firms’ U.S. utility 

patents drawn from the years 1981 through 2005. Pooling across all of our sample industries, we find 

stark differences in software intensity of patented inventions across regions. While U.S. firms in our 

sample conduct significantly more software intensive innovation at home than abroad, the opposite is true 

for Japanese and European firms. When European firms invent at home, for example, the share of 

software patents in their patent portfolios is only about 7%. However, when these same firms conduct 

innovation abroad, which is primarily in the United States, this share rises to about 16%, reaching the 

share of software patents in the patent portfolios of US firms inventing at home (16%). Further 

disaggregation of the data by industry and location of foreign R&D supports the view that local human 

resource abundance has a significant impact on the software intensity of multinational R&D. We get a 

similar picture if we measure software intensity by patent citations to software prior art. 

[ Insert Figure 6 Here ] 

We close this section with an anecdote from our own hometown. In recent years, the German auto 

parts giant Bosch has set up a research facility in the Pittsburgh area – principally motivated by the desire 

to tap into Carnegie Mellon’s software engineering expertise. In personal interviews with some of the 

managers of this facility, we learned that Bosch’s Pittsburgh research facility is just one small part of a 

major effort by the firm to acquire the software engineering capability that it feels will be essential to its 

continued competitiveness in auto parts and components. Bosch has set up another software-focused 

research facility near Stanford and has a major development center in India. Back in the early 1990s, 

according to our source, the “fuel injection” business unit employed about 7,000 R&D personnel 

worldwide, of whom only about 150 (2.1%) were software engineers. By the mid-2000s, total global 

R&D personnel had risen to 11,000, and about 5,000 of these were software engineers (45%). By 2011, 

Bosch’s fuel injection unit employed 4,500 software engineers in India alone. Bosch did not let its 

German home base prevent it from acquiring the necessary capabilities, but it had to venture quite far 

from that home base in order to do so, hiring a nontrivial number of U.S.-based and India-based 

researchers in the process.   

Of course, software is not the only important capability required for successful product development 

in auto parts or in any of the other industries we examine in this paper, and the proximity of American 

firms to the world’s best software engineering labor pool does not guarantee the success of individual 

American producers. The struggles of the American auto industry in adapting their relatively fuel-
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inefficient product line to the oil shock of the mid-2000s provides a useful counterexample. In addition, 

our analysis focuses on innovation and new product development – it says nothing about the prospects for 

the United States as a manufacturing location or its prospects as an exporter of manufactured goods. 

Nevertheless, other things being equal, America’s relative abundance in software engineering, which was 

achieved and maintained, in large part, due to a relatively open immigration regime, has been a source of 

advantage for U.S.-based firms, and it has also served as a magnet for FDI by knowledge-intensive 

foreign firms. The trends visible in our preliminary analysis of data through 2012 suggest that this 

advantage will become more important, not less, in the foreseeable future.  

VI. Conclusions, Implications, and Next Steps 

This paper documents the existence of a software-biased shift in the direction and nature of 

technological change across a range of manufacturing industries far beyond the traditional boundaries of 

information technology and electronics.  An emerging research stream in the engineering and product 

development literatures suggests the existence of this shift in automobiles and auto parts, aerospace and 

defense, medical devices, and pharmaceuticals, but much of this evidence is anecdotal, based on 

comparisons of small and possibly unrepresentative samples of recent products and components. Drawing 

upon standard patent citation analysis methods, a broad sample of important firms in these industries, and 

comprehensive data on the U.S. patent grants awarded to these firms, we find strong statistical evidence 

for the growing importance of software-related technologies for successful innovation in this diverse 

array of non-IT sectors. To the best of our knowledge, this is the first paper in the economics literature 

that provides detailed empirical evidence for the existence of this important technology trend.  

Next, using a panel of the largest publicly traded firms in these industries in the period from the early 

1980s to the mid-2000s, we show that firms which draw more upon software-related technologies in their 

inventive activity are increasingly outperforming their less-software intensive peers. This widening gap is 

evident both when we investigate the average patent productivity of R&D and when we examine equity 

market investors' valuations of the firms' R&D investments.  

Finally, our paper explores the connection between the measured software intensity of our sample 

firms and the relative availability of specialized human resources in different national labor markets. 

Firms in the highest quartile of measured software intensity are disproportionately American. Using 

publicly available data on university graduates by discipline and immigrants by occupational category, we 

document large, persistent, and growing differences in the availability of software engineering human 

resources across the economies that are the most important home markets of our sample firms. The U.S., 

which has always been relatively abundant in software related human resources, has significantly 
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expanded its advantage over our sample period. The presence within our data set of firms conducting 

R&D in multiple countries allows us to further explore the connection between local software engineering 

human resource abundance and the nature and direction of multinational R&D. We find that U.S. 

multinationals do significantly less software-intensive R&D in Europe and Japan than they do at home, 

whereas the opposite obtains for European and Japanese multinationals. This provides additional evidence 

for the notion that differences in measured software intensity are at least partly driven by labor market 

constraints.  However, more work is certainly needed to fully determine the causal mechanisms 

underlying our results. 

Taken together, our results may provide some interesting implications for the literature on the 

economics of innovation, for managers, and for policymakers. First, the nature of technological change 

has shifted in ways that the economics literature -- and perhaps some managers -- have not yet 

recognized. While a full assessment of the active and sometimes acrimonious debate over the 

appropriateness of software patents is beyond the scope of this paper, our results suggest that patented 

software technology is an increasingly central input into the creation of new products across a wide range 

of industries. The growing centrality of software may suggest the need for caution in any movement to 

narrow or restrict the ability of software inventions to benefit from patent protection, much less any 

movement to abolish software patents altogether. Second, the rise of software as an innovation enabler 

across the manufacturing space raises the salience of the highly skewed distribution of software human 

resources across national labor markets and highlights the importance of high levels of in-migration of 

software engineers into the U.S. in maintaining the competitiveness of U.S. firms in innovation and new 

product development.  Arora, Branstetter, and Drev (2013) suggested that this was a key factor in driving 

the competitive resurgence of the U.S. IT industry (and the striking competitive decline of the Japanese IT 

industry) in recent years. The current paper’s results suggest that the impact of software extends much 

farther, into industries typically thought of as rather distant from IT.  Ending legislative barriers that 

currently prevent even higher levels of in-migration of foreign software engineers would likely have 

benefits that extend far beyond the boundaries of the conventionally defined IT industries.   

Ongoing research efforts seek to expand our data set in breadth and time. We are currently updating 

our patent data to include patents granted through 2012. Preliminary analyses suggests that the trends 

documented herein have continued (and strengthened) in more recent years, but further confirmation must 

await a careful accounting of the mergers, acquisitions, divestitures, and new entry that has occurred in 

our sample industries. Our econometric approach requires data on R&D expenditure, which has proved 

challenging to obtain for firms located outside the U.S. and the U.K., where current accounting standards 

require disclosure of “material” levels of R&D expenditure. We are continuing our efforts to expand the 
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set of firms for which we have reasonably high quality R&D data, and we are also expanding the set of 

firms for which we have the full set of financial variables required for the calculation of Tobin’s Q. 

Finally, it is apparent that the general trend towards more software-intensive innovation extends far 

beyond the industries we have yet studied, and we are currently investigating the possibility of extending 

our analysis further. As is always the case in economics, more work remains to be done. 
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FIGURE 1:  SOFTWARE INTENSITY OF PATENT PORTFOLIOS OF FIRMS ACTIVE IN FOUR MANUFACTURING INDUSTRIES – 

(1) SHARE OF SOFTWARE PATENTS, (2) TOTAL SHARE OF CITATIONS DIRECTED AT SOFTWARE PATENTS, AND (3) 
SHARE OF CITATIONS DIRECTED AT SOFTWARE PATENTS BY NON-SOFTWARE PATENTS 

 

 

FIGURE 2: PROPENSITY OF NON-SOFTWARE PATENTS IN FOUR MANUFACTURING INDUSTRIES TO CITE PRIOR PATENTED 
SOFTWARE ART 
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FIGURE 3: AVERAGE PATENT PRODUCTIVITY DIFFERENCE BETWEEN ABOVE-MEDIAN AND BELOW-MEDIAN 
SOFTWARE INTENSIVE FIRMS 

 

  

FIGURE 4: AVERAGE DIFFERENCE IN STOCK MARKET'S VALUATION OF R&D INVESTMENT BETWEEN ABOVE- AND 
BELOW-MEDIAN SOFTWARE INTENSITY FIRMS 
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FIGURE 5:  ICT HUMAN RESOURCES IN THE U.S., JAPAN, GERMANY, THE U.K., AND FRANCE / INFLOWS OF NEW 

WORKERS BY YEAR 

  
FIGURE 6: SOFTWARE INTENSITY OF PATENTED INVENTIONS (SHARE OF SOFTWARE PATENTS), BY GEOGRAPHY OF 

INVENTION AND COUNTRY OF OWNERSHIP - US, EU AND JAPAN 
Note:  In this figure, the different shades denote patents assigned to MNCs headquartered in the U.S., Japan, and the EU, respectively.  The first 

three columns show the average software intensity of inventions taken out by U.S., Japanese, and EU firms where the inventor location is in the 

U.S.  The next three columns denote inventor location in Japan.  The last set of columns denote patents invented in the EU. 
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Table I: Citation Function Results 

  

Full Model Citations from NSW 
to SW 

Citations from SW to 
SW 

Column 1 Column 2 Column 3 Column 4 
Coefficient Std.Error Coefficient Std.Error Coefficient Std.Error Coefficient Std.Error 

Citing Grant Year                 
1987 0.157 0.281 0.629* 0.261 -0.0798 0.217 0.770 0.418 

1988 0.116 0.248 0.265 0.194 0.168 0.238 0.326 0.301 

1989 0.193 0.243 0.462* 0.205 0.114 0.212 0.574 0.326 

1990 0.219 0.233 0.649** 0.216 0.239 0.220 0.832* 0.355 

1991 0.134 0.203 0.432* 0.177 0.0947 0.185 0.573* 0.288 

1992 0.183 0.197 0.434** 0.166 0.123 0.178 0.570* 0.269 

1993 0.260 0.194 0.392** 0.150 0.226 0.181 0.515* 0.243 

1994 0.381 0.196 0.476** 0.147 0.346 0.184 0.589* 0.238 

1995 0.611** 0.208 0.717*** 0.157 0.528** 0.192 0.864*** 0.256 

1996 0.732*** 0.203 0.905*** 0.159 0.481** 0.175 1.111*** 0.265 

1997 0.843*** 0.195 1.060*** 0.157 0.732*** 0.185 1.323*** 0.269 
1998 0.962*** 0.184 0.987*** 0.138 0.775*** 0.174 1.201*** 0.235 
1999 1.128*** 0.176 0.977*** 0.128 0.842*** 0.168 1.114*** 0.218 
2000 1.670*** 0.188 1.348*** 0.134 1.620*** 0.201 1.508*** 0.233 
2001 2.000*** 0.180 1.771*** 0.139 1.681*** 0.193 2.035*** 0.252 
2002 2.414*** 0.172 2.211*** 0.145 2.241*** 0.207 2.511*** 0.270 
2003 2.867*** 0.163 2.555*** 0.149 2.318*** 0.207 2.854*** 0.288 
2004 3.680*** 0.168 3.588*** 0.171 3.246*** 0.242 4.264*** 0.346 
2005 4.420 . 4.379 . 4.329 . 5.315 . 

Cited Grant Year                 

1986 -0.0391 0.0506 -0.0950** 0.0347 -0.145** 0.0560 -0.126* 0.0511 
1987 -0.0408 0.0517 -0.0744* 0.0362 -0.199*** 0.0530 -0.109* 0.0530 

… … … … … … … … … 

2003 -0.913*** 0.0237 -0.956*** 0.00969 -0.954*** 0.0143 -0.970*** 0.0106 
2004 -0.942*** 0.0283 -0.973*** 0.0125 -0.970*** 0.0189 -0.982*** 0.0138 

Citing patent: Firm industry                 

Aerospace and Defense 0.254*** 0.0312 0.120*** 0.0204 0.0547 0.0329 0.0938** 0.0304 
Medical Devices 1.237*** 0.0470 0.427*** 0.0253 0.592*** 0.0433 0.191*** 0.0356 
Pharmaceutical -0.175*** 0.0251 -0.499*** 0.0171 -0.675*** 0.0242 -0.628*** 0.0267 

Software Patent                 

Citing from Software Patent     -0.136*** 0.0329         

Cited Software Patent 0.239*** 0.0212 -0.247*** 0.0356         

Citing from Software Patent 
X 

Cited Software Patent 
    6.125*** 0.115         

Obsolescence 0.284*** 0.012 0.324*** 0.009 0.321*** 0.012 0.349*** 0.013 

Diffusion 4.38E-6*** 1.06E-06 7.96E-6*** 1.34E-06 7.01E-6*** 1.54E-06 6.95E-5*** 1.73E-05 

Adj R-Squared 0.904 0.853 0.898 0.897 

Number of Obs 1680 3360 840 840 

The data for regression estimations presented in this table are drawn from the CASSIS patent database maintained by the United 
States Patent and Trademark Office and from the NBER Patent Data Project database. Regression specifications are estimated in 
STATA using the nonlinear least squares algorithm. The dependent variable is an empirical measure of the probability a citing 
patent with given attributes cites a cited patent with a particular set of attributes. All presented coefficients are relative to base 
categories, which are the following: citing patent grant year = 1986, cited patent grant year = 1985, citing firm industry = 
“Automobiles." The rest of the base categories are model specific. * p<0.10, ** p<0.05, *** p<0.01 
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Table II: Innovation (Patent) Production Function Regressions, Negative Binomial, 

Random Effects and Fixed Effects 

Dependent Variable 
Number of Patents Number of Claims Number of Citations 

NB: RE NB: FE NB: RE NB: FE NB: RE NB: FE 

  (1) (2) (3) (4) (5) (6) 

Log R&D 
0.073*** 0.046*** 0.178*** 0.162*** 0.166*** 0.150*** 

(0.013) (0.013) (0.011) (0.011) (0.011) (0.012)    

Software Intensity 
Dummy 

-0.232** -0.212* -0.289** -0.304** -0.262** -0.260**  

(0.113) (0.115) (0.118) (0.119) (0.115) (0.116)    

Software Intensity 
Dummy * 1986-1990 

0.384*** 0.398*** 0.482*** 0.510*** 0.538*** 0.555*** 

(0.127) (0.128) (0.142) (0.142) (0.134) (0.134)    

Software Intensity 
Dummy * 1991-1995 

0.489*** 0.509*** 0.465*** 0.487*** 0.561*** 0.574*** 

(0.121) (0.122) (0.133) (0.134) (0.127) (0.128)    

Software Intensity 
Dummy * 1996-2000 

0.589*** 0.609*** 0.572*** 0.595*** 0.601*** 0.618*** 

(0.115) (0.116) (0.127) (0.128) (0.123) (0.123)    

Software Intensity 
Dummy * 2001-2005 

0.557*** 0.582*** 0.580*** 0.617*** 0.447*** 0.462*** 

(0.120) (0.120) (0.130) (0.131) (0.129) (0.130)    

1986-1990 
-0.164* -0.152 -0.279** -0.287*** -0.329*** -0.330*** 

(0.099) (0.100) (0.111) (0.111) (0.106) (0.106)    

1991-1995 
-0.080 -0.057 -0.113 -0.109 -0.245** -0.234**  

(0.094) (0.095) (0.104) (0.104) (0.100) (0.100)    

1996-2000 
0.274*** 0.304*** 0.333*** 0.345*** -0.103 -0.085    

(0.091) (0.091) (0.099) (0.100) (0.097) (0.097)    

2001-2005 
-0.261*** -0.224** -0.337*** -0.335*** -1.093*** -1.067*** 

(0.095) (0.096) (0.102) (0.103) (0.102) (0.102)    

Industry Dummies Yes Yes Yes Yes Yes Yes 

Number of Obs 3884 3873 3884 3873 3884 3873    
The software intensity is based on the share of software patents. The patent-related data for regression estimations presented in 
this table are drawn from the CASSIS patent database maintained by the United States Patent and Trademark Office and from the 
NBER Patent Data Project database. Firm-level R&D data are collected from Compustat database, Edgar database, Amadeus 
database, the Kaisha Shiki Ho Survey database, R&D scoreboard, TS 2000 database (the Korea Listed Companies Association), 
and firm annual reports. * p<0.10, ** p<0.05, *** p<0.01
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Table III: Tobin’s Q regressions, Nonlinear Least Squares, 1981-2005 

lnQ 
Full Sample 1981-1988 1989-1996 1997-2005 

NLS NLS NLS NLS 

          

RD/Assets 
-0.081 -0.083 -0.077 0.213**  
(0.059) (0.183) (0.079) (0.096)    

RD/Assets * 0.834*** 0.217 0.450** 1.556*** 
 Software Intensity (0.152) (0.314) (0.197) (0.307)    

Software Intensity 
-0.282*** -0.601*** -0.233*** -0.247*** 
(0.044) (0.090) (0.064) (0.065)    

Industry Dummies Yes Yes Yes Yes 

Year Dummies Yes Yes Yes Yes 

Number of Obs 2288 365 719 1204    
Adj R-Squared 0.415 0.459 0.418 0.502    

The software intensity is based on the share of software patents. The patent-related data for regression estimations presented in 
this table are drawn from the CASSIS patent database maintained by the United States Patent and Trademark Office and from the 
NBER Patent Data Project database. Firm-level R&D data are collected from Compustat, Edgar, Amadeus, the Kaisha Shiki Ho 
Survey database, R&D scoreboard, TS 2000 database (the Korea Listed Companies Association), and firm annual reports. Other 
firm-level financial data (such as assets, long-term debt, short-term debt, the number of stocks and the price of stocks) are drawn 
from Compustat, the Development Bank of Japan (BDJ) database, and the TS 2000 (the Korea Listed Companies Association).   
* p<0.10, ** p<0.05, *** p<0.01 

Table IV: Tobin’s Q regressions, OLS with Firm Fixed Effects, 1981-2005 

lnQ 
Full Sample 1981-1988 1989-1996 1997-2005 

OLS/FE OLS/FE OLS/FE OLS/FE 

          

RD/Assets 
-0.312 2.329*** 0.042 -0.165    
(0.214) (0.767) (0.241) (0.212)    

RD/Assets * 0.237 -1.990** 0.410 0.699**  
 Software Intensity (0.318) (0.835) (0.517) (0.281)    

Year Dummies Yes Yes Yes Yes 

Number of Obs 2288 365 719 1204 

Adj R-Squared 0.100 0.131 0.019 0.016    
The software intensity is based on the share of software patents. The data for the estimations presented in this table are drawn 
from the CASSIS patent database maintained by the United States Patent and Trademark Office and from the NBER Patent Data 
Project database. Firm-level R&D data are collected from the Compustat, EDGAR, the Kaisha Shiki Ho Survey database, R&D 
scoreboard, TS 2000 database (the Korea Listed Companies Association), and firm annual reports. Other firm-level financial data 
(such as assets, long-term debt, short-term debt, the number of stocks and the price of stocks) are drawn from Compustat 
database, the Development Bank of Japan (BDJ) database, and the TS 2000 database (the Korea Listed Companies Association). 
* p<0.10, ** p<0.05, *** p<0.01 
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Table V: Falsification Regressions, Negative Binomial, Random Effects and Fixed Effects 

Dependent Variable 
Number of Patents Number of Claims Number of Citations 

NB: RE NB: FE NB: RE NB: FE NB: RE NB: FE 

  (1) (2) (3) (4) (6) (7) 

Log R&D 
0.055*** 0.037** 0.068*** 0.087*** 0.081*** 0.067*** 

(0.014) (0.015) (0.012) (0.015) (0.013) (0.013)    

Firm Size Dummy 
-0.156 -0.301** 0.070 -0.007 0.093 0.010    

(0.120) (0.119) (0.117) (0.112) (0.111) (0.112)    

Firm Size Dummy * 
1986-1990 

-0.121 -0.125 -0.095 -0.030 -0.012 -0.007    

(0.122) (0.121) (0.130) (0.108) (0.114) (0.114)    

Firm Size Dummy * 
1991-1995 

-0.172 -0.190 -0.150 -0.118 -0.101 -0.112    

(0.118) (0.117) (0.124) (0.107) (0.111) (0.111)    

Firm Size Dummy * 
1996-2000 

-0.113 -0.145 -0.074 0.164 0.126 0.104    

(0.114) (0.113) (0.119) (0.109) (0.110) (0.110)    

Firm Size Dummy * 
2001-2005 

-0.322*** -0.341*** -0.248** -0.049 -0.072 -0.055    

(0.118) (0.117) (0.122) (0.131) (0.119) (0.119)    

1986-1990 
0.245** 0.255** 0.300*** 0.168* 0.180* 0.177*   

(0.104) (0.101) (0.108) (0.091) (0.097) (0.096)    

1991-1995 
0.318*** 0.346*** 0.426*** 0.073 0.185** 0.201**  

(0.100) (0.098) (0.103) (0.090) (0.094) (0.093)    

1996-2000 
0.547*** 0.592*** 0.755*** -0.474*** -0.042 -0.010    

(0.098) (0.096) (0.100) (0.093) (0.094) (0.093)    

2001-2005 
0.279*** 0.324*** 0.471*** -2.108*** -1.003*** -0.986*** 

(0.101) (0.100) (0.103) (0.109) (0.100) (0.100)    

Industry Dummies Yes Yes Yes Yes Yes Yes 

Number of Obs 3111 3110 3111 3104 3111 3110    
 Sales data are used to define firm’s size. Firm size dummy is defined as one if the firm’s sale is above median. The average 
value of sales from 1996 to 2005 is calculated because of the following reasons: (1) some firms have missing sales value in the 
1980s and (2) sales tend to increase over time. The regression results using the average value of sales from 1981 to 2005 are 
qualitatively identical. The results are available from the authors by request.  * p<0.10, ** p<0.05, *** p<0.01 

 


