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Abstract

We show that recent prominent equity factor models are to a large degree compatible with the

Merton’s (1973) Intertemporal CAPM (ICAPM) framework. Factors associated with alternative

profitability measures forecast the equity premium in a way that is consistent with the ICAPM.

Several factors based on firms’ asset growth predict a significant decline in stock market volatility,

thus being consistent with their positive prices of risk. The investment-based factors are also strong

predictors of an improvement in future economic activity. The time-series predictive ability of most

equity state variables is not subsumed by traditional ICAPM state variables. Importantly, factors

that earn larger risk prices tend to be associated with state variables that are more correlated with

future investment opportunities or economic activity. Moreover, these risk price estimates can be

reconciled with plausible risk aversion parameter estimates. Therefore, the ICAPM can be used as

a common theoretical background for recent multifactor models.

Keywords: Asset pricing models; Equity risk factors; Intertemporal CAPM; Predictability of

stock returns; Cross-section of stock returns; stock market anomalies

JEL classification: G10, G11, G12



1 Introduction

Explaining the cross-sectional dispersion in average stock returns has been one of the major goals

in the asset pricing literature. This task has been increasingly challenging in recent years given

the emergence of new market anomalies, which correspond to new patterns in cross-sectional risk

premia unexplained by the baseline CAPM of Sharpe (1964) and Lintner (1965) (see, for example,

Hou, Xue, and Zhang (2015) and Fama and French (2015, 2016)). These include, for example,

a number of investment-based and profitability-based anomalies. The investment anomaly can be

broadly classified as a pattern in which stocks of firms that invest more exhibit lower average returns

than the stocks of firms that invest less (Titman, Wei, and Xie (2004), Anderson and Garcia-Feijoo

(2006), Cooper, Gulen, and Schill (2008), Fama and French (2008), Lyandres, Sun, and Zhang

(2008), and Xing (2008)). The profitability-based cross-sectional pattern in stock returns indicates

that more profitable firms earn higher average returns than less profitable firms (Ball and Brown

(1968), Bernard and Thomas (1990), Haugen and Baker (1996), Fama and French (2006), Jegadeesh

and Livnat (2006), Balakrishnan, Bartov, and Faurel (2010), and Novy-Marx (2013)).

The traditional workhorses in the empirical asset pricing literature (e.g., the three-factor model

of Fama and French (1993, 1996)) have difficulties in explaining the new market anomalies (see,

for example, Fama and French (2015) and Hou, Xue, and Zhang (2015, 2017)). In response to this

evidence, recent years have witnessed the emergence of new multifactor models containing (different

versions of) investment and profitability factors (e.g., Novy-Marx (2013), Fama and French (2015),

and Hou, Xue, and Zhang (2015)) seeking to explain the new anomalies and the extended cross-

section of stock returns.

Yet, although these models perform relatively well in explaining the new patterns in cross-

sectional risk premia, there are still some open questions about the theoretical background of

such models. Specifically, the models proposed by Fama and French (2015, 2016) and Hou, Xue,

and Zhang (2015, 2017) both contain profitability and investment (or asset growth) risk factors.

However, while Fama and French (2015) motivate their five-factor model based on the present-value

valuation model of Miller and Modigliani (1961), Hou, Xue, and Zhang (2015) rely on the q-theory

of investment. Thus, it should be relevant to analyze whether there is a common theoretical

background that legitimates these two (and other) factor models. In fact, an ongoing debate in
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the finance literature concerns the interpretation of the cross sectional patterns in stock returns

and the equity-based factors models built to explain them. Researchers are still in disagreement

over whether the association between firm characteristics and returns reflect risk or mispricing.

That is, whether the characteristics themselves are the driving force of the cross sectional patterns,

or whether these characteristics proxy for covariances with risk factors that investors require a

premium for holding. The Intertemporal CAPM (ICAPM) of Merton (1973) is one of the pillars

of rational asset pricing. Therefore, testing whether a factor model that summarizes well the cross

section of stock returns is also consistent with the ICAPM predictions is important and contributes

to the ongoing debate.1

In this paper, we assess whether equity factor models (in which all the factors are excess stock

returns) are consistent with the Merton’s ICAPM. We analyze four multifactor models: the four-

factor models proposed by Novy-Marx (2013) (NM4) and Hou, Xue, and Zhang (2015) (HXZ4), the

five-factor model of Fama and French (2015) (FF5), and a restricted version of FF5 that excludes

the HML factor (FF4). These four models have in common the fact that they contain different

versions of investment and profitability factors with the aim of explaining more CAPM anomalies

in the cross-section of stock returns.

Following Merton (1973), Maio and Santa-Clara (2012) identify general sign restrictions on the

factor (other than the market) risk prices, which are estimated from the cross-section of stock

returns, that a given multifactor model has to satisfy in order to be consistent with the ICAPM.

Specifically, if a state variable forecasts a decline in expected future aggregate returns, the risk price

associated with the corresponding risk factor in the asset pricing equation should also be negative.

On the other hand, when future investment opportunities are measured by the second moment

of aggregate returns, we have an opposite relation between the sign of the factor risk price and

predictive slope in the time-series regressions. Hence, if a state variable forecasts a decline in future

aggregate stock volatility, the risk price associated with the corresponding factor should be positive.

The intuition is as follows: if asset i forecasts a decline in expected future investment opportunities

(lower expected return or higher volatility) it pays well when future investment opportunities

are worse. Hence, such an asset provides a hedge against adverse changes in future investment

1For example, Fama and French (2015, page 3) write in regard to their new five factor model: “The more ambitious
interpretation proposes (5) as the regression equation for a version of Merton’s (1973) model in which up to four
unspecified state variables lead to risk premiums that are not captured by the market factor.”
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opportunities for a risk-averse investor, and thus it should earn a negative risk premium, which

translates into a negative risk price for the “hedging” factor.2

We estimate the models indicated above by using a relatively large cross-section of equity

portfolio returns. The testing portfolios are deciles sorted on size, book-to-market, momentum,

return on equity, operating profitability, asset growth, accruals, and net share issues for a total of

80 portfolios. Employing a large cross-section enables us to obtain more stable risk price estimates

and is consistent with the mission of the new factor models in terms of explaining more market

anomalies than the traditional value and momentum anomalies. Our results for the cross-sectional

tests confirm that the new models of Novy-Marx (2013), Fama and French (2015), and Hou, Xue,

and Zhang (2015) have a large explanatory power for the large cross-section of portfolio returns,

in line with the evidence presented in Fama and French (2015, 2016) and Hou, Xue, and Zhang

(2015, 2017). Most factor risk price estimates are positive and statistically significant. The main

exception is the SMB factor in which case the risk price estimates are not statistically significant.

Following Maio and Santa-Clara (2012), we construct state variables associated with each fac-

tor that correspond to the past 60-month rolling sum on the factors.3 The results for forecasting

regressions of the excess market return at multiple horizons indicate that the state variables as-

sociated with the profitability factors employed in Novy-Marx (2013), Fama and French (2015),

and Hou, Xue, and Zhang (2015) help to forecast the equity premium. Moreover, the positive

predictive slopes are consistent with the positive risk prices for the corresponding factors. When

it comes to forecasting stock market volatility, several state variables forecast a significant decline

in stock volatility, consistent with the corresponding factor risk price estimates. In particular, the

state variables associated with the investment factors of Hou, Xue, and Zhang (2015) and Fama

and French (2015) predict a significant decline in stock volatility at multiple forecasting horizons,

and hence, are consistent with the ICAPM framework.

Table 1 summarizes the results concerning the consistency between the risk price estimates

and the corresponding slopes from the multiple predictive regressions for the equity premium and

stock volatility. We define a given risk factor as being consistent with the ICAPM if the associated

2Maio and Santa-Clara (2012) test these predictions and conclude that several of the multifactor models proposed
in the empirical asset pricing literature are not consistent with the ICAPM.

3In the ICAPM, the factors are the innovations in the state variables. Hence, we construct the state variables
such that their innovations (or changes) correspond approximately to the original equity factor returns.
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state variable forecasts one among the equity premium or stock volatility with the right sign (in

relation to the respective risk price) and this estimate is statistically significant. We can see that

the different versions of the investment and profitability factors are all consistent with the ICAPM.

The reason is that each of these variables forecast at least one dimension of future investment

opportunities with the correct sign. Specifically, the three profitability state variables forecast an

increase in the market return, while the two investment state variables predict a decline in future

stock volatility. This entails consistency with the positive risk prices estimates for the corresponding

profitability and investment factors. Thus, these two factor categories complement each other in

terms of forecasting future investment opportunities within the HXZ4 and FF5 (FF4) models.

The two models that achieve the best global convergence with the ICAPM are NM4 and FF4 in

the sense that each of the three factors predict either the equity premium or stock volatility with

the correct sign. In the case of FF4, the insignificant slopes for the size state variable (in terms of

forecasting either dimension of investment opportunities) are compatible with the corresponding

insignificant risk price estimates for SMB. None of the other two models satisfy completely the

sign restrictions in order to be fully consistent with the ICAPM. Specifically, the size factor within

HXZ4 does not meet the consistency criteria, and the same happens to HML in the five-factor

model. However, it is well known that these two factors play a relatively minor role in terms of

explaining cross-sectional equity risk premia in these two models (see Hou, Xue, and Zhang (2015)

and Fama and French (2015, 2016)).4 This implies that the partial inconsistency of these two

models with the ICAPM is not particularly relevant from an empirical perspective.

We also evaluate if the equity state variables forecast future aggregate economic activity, which

is measured by the growth in industrial production and the Chicago FED index of economic activity.

The motivation for this exercise relies on the Roll’s critique (Roll (1977)). Since the stock index

is an imperfect proxy for aggregate wealth, changes in the future return on the unobservable

wealth portfolio might be related with future economic activity. Specifically, several forms of

non-financial wealth, like labor income, houses, or small businesses, are related with the business

cycle, and hence, economic activity. Overall, the evidence of predictability for future economic

activity is stronger than for the future excess market return, across most equity state variables.

In fact, while the investment state variables do not provide relevant information for the future

4Fama and French (2015, 2016) show that HML becomes redundant in the five-factor model.
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stock market returns, they do help to forecast an increase in future economic activity. Moreover,

the profitability factor from the Hou, Xue, and Zhang (2015) model also helps to predict positive

business conditions, although this result is not as robust as for the investment factors. These results

provide additional evidence that the investment and profitability factors associated with the models

of Novy-Marx (2013), Fama and French (2015, 2016), and Hou, Xue, and Zhang (2015) proxy for

different dimensions of future investment opportunities.

Further, we assess if the forecasting ability of the equity state variables for future investment

opportunities is linked to traditional ICAPM state variables. The results from multiple forecasting

regressions suggest that the predictive ability of most equity state variables, and specifically the

different investment and profitability variables, does not seem to be subsumed by the alternative

ICAPM state variables. In other words, the investment and profitability state variables proxy for

components of the investment opportunity set not captured by the other state variables. More-

over, cross-sectional tests of augmented ICAPM specifications indicate that the investment and

profitability factors remain priced in the presence of those traditional ICAPM factors.

In the last part of the paper, we discuss the magnitudes of the predictive slopes and risk price

estimates. Our results suggest that factors that earn larger risk prices tend to be associated with

state variables that are more correlated with future investment opportunities or economic activity,

in line with the ICAPM prediction. In addition to the sign consistency documented in most of the

paper, this represents another type of consistency with the ICAPM that takes into account the size

of both the risk prices and predictive slopes. Furthermore, we consider the ICAPM frameworks of

Campbell and Vuolteenaho (2004) and Campbell, Giglio, Polk, and Turley (2017), which take into

account explicitly the relationship between the magnitudes of the predictive slopes and both the risk

prices and structural parameters. The results show that these ICAPM specifications, when based

on the equity state variables studied in the paper, produce reasonable estimates of the underlying

risk aversion parameter in most cases (between 2 and 4).

This study is related to the work of Maio and Santa-Clara (2012). The key innovation relative

to that study is that we analyze the consistency with the ICAPM of the recent multifactor models

that represent the new workhorses in the asset pricing literature (e.g., the models of Fama and

French (2015) and Hou, Xue, and Zhang (2015)). In related work, Lutzenberger (2015) extends the

analysis in Maio and Santa-Clara (2012) for the European stock market. On the other hand, Boons
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(2016) evaluates the consistency with the ICAPM, when investment opportunities are measured by

broad economic activity, however, that study does not cover equity-based factors (which represent

our focus).5 This paper is also related to the recent studies that estimate and conduct horse-races

among the alternative factor models in terms of explaining a broad cross-section of stock returns

(e.g., Hou, Xue, and Zhang (2015, 2017), Fama and French (2016), Maio (2017), and Cooper and

Maio (2016)). We deviate from these studies by focusing on the consistency of the (factor risk

prices from) new factor models with the ICAPM rather than evaluating their explanatory power

for cross-sectional equity risk premia.

The paper proceeds as follows. Section 2 contains the cross-sectional tests of the different

multifactor models. Section 3 shows the results for the forecasting regressions associated with

the equity premium and stock volatility, and evaluates the consistency of the factor models with

the ICAPM. Section 4 presents the results for forecasting regressions for economic activity, while

Section 5 looks at the relationship between the equity factors and traditional ICAPM variables. In

Section 6, we discuss the role of magnitudes. Finally, Section 7 concludes.

2 Cross-sectional tests and factor risk premia

In this section, we estimate the different multifactor models by using a broad cross-section of equity

portfolio returns.

5In a study subsequent to the first draft of our paper, Barbalau, Robotti, and Shanken (2015) also look at
the consistency of equity factor models with the ICAPM by testing inequality constraints. There are several key
distinctions between that study and ours. First, Barbalau, Robotti, and Shanken (2015) use only one dimension of
investment opportunities (the market return), while we also consider other dimensions of the investment opportunity
set like market volatility or economic activity. Previous studies have shown the importance of considering these other
dimensions when testing the ICAPM (e.g., Maio and Santa-Clara (2012), Campbell, Giglio, Polk, and Turley (2017),
Boons (2016)). Indeed, as stated above, our results show that the state variables associated with the investment
factors forecast stock volatility in a way that is consistent with the ICAPM. Our results also indicate strong forecasting
power for future economic activity. Second, among the new factor models Barbalau, Robotti, and Shanken (2015)
only analyze the five-factor model of Fama and French (2015). In contrast, we also evaluate the factor models of
Novy-Marx (2013) and Hou, Xue, and Zhang (2015), which also contain investment and profitability factors. In fact,
as referred above, our results show that there are some relevant differences in the performance of the alternative
investment and profitability state variables in terms of forecasting future investment opportunities, in particular
economic activity. Third, we obtain the risk price estimates by forcing the factor models to price simultaneously
a broad cross-section of stock returns, while Barbalau, Robotti, and Shanken (2015) rely on portfolios sorted on
BM and momentum in isolation. In fact, the results provided in Maio and Santa-Clara (2012) show that the factor
risk price estimates can change both in magnitude and sign between tests based on BM and momentum portfolios.
This makes the consistency with the ICAPM quite dependent on the testing assets used in the asset price tests. We
overcome this problem by forcing the models to price jointly several market anomalies. Finally, we asses the role of
magnitudes of the non-market factor risk prices as another consistency criteria with the ICAPM.
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2.1 Models

We evaluate the consistency of four multifactor models with the Merton’s ICAPM (Merton (1973)),

which contain different versions of asset growth and profitability factors. Common to these models

is the fact that all the factors represent excess stock returns or the returns on tradable equity

portfolios.

The first model is the four-factor model of Novy-Marx (2013) (NM4),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γHML∗ Cov(Ri,t+1 −Rf,t+1, HML∗t+1)

+γUMD Cov(Ri,t+1 −Rf,t+1, UMDt+1) + γPMU Cov(Ri,t+1 −Rf,t+1, PMUt+1), (1)

where RM is the market factor and HML∗, UMD, and PMU denote the (industry-adjusted) value,

momentum, and profitability factors, respectively. Ri and Rf denote the return on an arbitrary

risky asset i and the risk-free rate, respectively.

Hou, Xue, and Zhang (2015, 2017) propose the following four-factor model (HXZ4), which is

based on the q-theory of investment,

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γME Cov(Ri,t+1 −Rf,t+1,MEt+1)

+γIA Cov(Ri,t+1 −Rf,t+1, IAt+1) + γROE Cov(Ri,t+1 −Rf,t+1, ROEt+1), (2)

where ME, IA, and ROE represent their size, investment, and profitability factors, respectively.

Next, we evaluate the five-factor model proposed by Fama and French (2015, 2016, FF5),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γSMB Cov(Ri,t+1 −Rf,t+1, SMBt+1)

+γHML Cov(Ri,t+1 −Rf,t+1, HMLt+1) + γRMW Cov(Ri,t+1 −Rf,t+1, RMWt+1)

+γCMA Cov(Ri,t+1 −Rf,t+1, CMAt+1), (3)

where SMB, HML, RMW , and CMA stand for their size, value, profitability, and investment

factors, respectively.
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Finally, we estimate a restricted version of FF5 (denoted by FF4) that excludes the value factor:

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γSMB Cov(Ri,t+1 −Rf,t+1, SMBt+1)

+γRMW Cov(Ri,t+1 −Rf,t+1, RMWt+1) + γCMA Cov(Ri,t+1 −Rf,t+1, CMAt+1). (4)

FF4 follows from the evidence in Fama and French (2015) showing that the value factor is redundant

within the five-factor model. As a reference point, we also estimate the baseline CAPM from Sharpe

(1964) and Lintner (1965).

2.2 Data

The data on RM , SMB, HML, RMW , and CMA are obtained from Kenneth French’s data

library. ME, IA, and ROE were provided by Lu Zhang. The data on the industry-adjusted

factors (HML∗, UMD, and PMU) are obtained from Robert Novy-Marx’s webpage. The sample

used in this study is from 1972:01 to 2012:12, where the ending date is constrained by the availability

of the Novy-Marx’s industry-adjusted factors. The starting date is restricted by the availability of

data on the portfolios sorted on investment-to-assets and return on equity.6

The descriptive statistics for the equity factors are displayed in the online appendix. UMD and

ROE have the highest average returns (around 0.60% per month), followed by the market and IA

factors (with means around or above 0.45%). The factor with the lowest mean is SMB (0.23% per

month), followed by PMU , ME, and RMW , all with means around 0.30% per month. The factor

that exhibits the highest volatility is clearly the market equity premium with a standard deviation

above 4.5% per month. The least volatile factors are HML∗ and PMU , followed by the investment

factors (IA and CMA), all with standard deviations below 2.0% per month. Most factors exhibit

low serial correlation, as shown by the first-order autoregressive coefficients below 20% in nearly

all cases. The industry-adjusted value factor shows the highest autocorrelation (0.24), followed by

PMU and RMW (both with an autocorrelation of 0.18).

The pairwise correlations of the equity factors, also presented in the online appendix, show that

several factors are by construction (almost) mechanically correlated. This includes SMB and ME,

6Hou, Xue, and Zhang (2015) explain that the starting date is restricted by the availability of quarterly earnings
announcement dates as well as quarterly earnings and book equity data.
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HML and HML∗, and IA and CMA, all pairs with correlations above 0.80. The three profitability

factors (PMU∗, ROE, and RMW ) are also positively correlated, although the correlations have

smaller magnitudes than in the other cases (below 0.70). Regarding the other relevant correlations

among the factors, HML is positively correlated with both investment factors (correlations around

0.70), and the same pattern holds for HML∗, albeit with a slightly smaller magnitude. On the

other hand, ROE is positively correlated with the momentum factor (correlation of 0.52). Yet,

both PMU and RMW do not show a similar pattern, thus suggesting the existence of relevant

differences among the three alternative profitability factors.

2.3 Factor risk premia

We estimate the models presented above by using a relatively large cross-section of equity portfolio

returns. Estimating the models by using a common large cross-section rather than estimating

separately on the different groups of portfolios (e.g., BM and momentum portfolios) avoids the

issue of the consistency with the ICAPM being dependent on the choice of the testing assets

(as documented in Maio and Santa-Clara (2012)). The testing portfolios are deciles sorted on

size, book-to-market, momentum, return on equity, operating profitability, asset growth, accruals,

and net share issues for a total of 80 portfolios. All the portfolio return data are obtained from

Kenneth French’s website, except the return on equity deciles, which were obtained from Lu Zhang.

To compute excess portfolio returns, we use the one-month T-bill rate, available from Kenneth

French’s webpage. This choice of testing portfolios is natural since they generate a large spread in

average returns. Moreover, these portfolios are (almost) mechanically related to some of the factors

associated with the different models outlined above. Thus, we expect ex ante that most of these

models will perform well in pricing this large cross-section of stock returns.

Moreover, these portfolios are related with some of the major patterns in cross-sectional re-

turns or anomalies that are not explained by the baseline CAPM (hence the designation of “market

anomalies”). These include the value anomaly, which represents the evidence that value stocks

(stocks with high book-to-market ratios, (BM)) outperform growth stocks (low BM) (e.g. Rosen-

berg, Reid, and Lanstein (1985) and Fama and French (1992)). Price momentum refers to the

evidence showing that stocks with high prior short-term returns outperform stocks with low prior

returns (Jegadeesh and Titman (1993) and Fama and French (1996)). The asset growth anomaly
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can be broadly classified as a pattern in which stocks of firms that invest more exhibit lower av-

erage returns than the stocks of firms that invest less (Titman, Wei, and Xie (2004), Cooper,

Gulen, and Schill (2008), Fama and French (2008), and Lyandres, Sun, and Zhang (2008)). The

profitability-based cross-sectional pattern in stock returns indicates that more profitable firms earn

higher average returns than less profitable firms (Haugen and Baker (1996), Jegadeesh and Livnat

(2006), Balakrishnan, Bartov, and Faurel (2010), and Novy-Marx (2013)). The accruals anomaly

represents the evidence that stocks of firms with low accruals enjoy higher average returns than

stocks of firms with high accruals (Sloan (1996) and Richardson, Sloan, Soliman, and Tuna (2005)).

Finally, the net share issues anomaly refers to a pattern in which stocks with high net share issues

earn lower returns than stocks with low net share issues (Daniel and Titman (2006) and Pontiff

and Woodgate (2008)).

We estimate the factor models in beta representation by using the two-pass regression approach

employed in Black, Jensen, and Scholes (1972), Jagannathan and Wang (1998), Cochrane (2005)

(Chapter 12), Brennan, Wang, and Xia (2004), Maio and Santa-Clara (2017), among others.7

Specifically, in the case of the HXZ4 model, the factor betas are estimated from the time-series

regressions for each testing portfolio,

Ri,t+1 −Rf,t+1 = δi + βi,MRMt+1 + βi,MEMEt+1 + βi,IAIAt+1 + βi,ROEROEt+1 + εi,t+1, (5)

and in the second step, the expected return-beta representation is estimated through an OLS

cross-sectional regression,

Ri −Rf = λMβi,M + λMEβi,ME + λIAβi,IA + λROEβi,ROE + αi, (6)

where Ri −Rf represents the average time-series excess return for asset i, and αi denotes the

respective pricing error. βi,M , βi,ME , βi,IA, and βi,ROE represent the loadings for RM , ME, IA,

and ROE, respectively, whereas λM , λME , λIA, and λROE denote the corresponding prices of risk.

The factors of each model are included as testing assets since all the factors presented above

represent excess stock returns (see Lewellen, Nagel, and Shanken (2010)). The t-statistics associated

7See Cochrane (2005) (Chapter 6) for details on the equivalence between the covariance- and beta-representations
of asset pricing models.
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with the factor risk price estimates are based on Shanken’s standard errors (Shanken (1992)). We

do not include an intercept in the cross-sectional regression, since we want to impose the economic

restrictions associated with each factor model. If a given model is correctly specified, the intercept

in the cross-sectional regression should be equal to zero. This means that assets with zero betas

with respect to all the factors should have a zero risk premium relative to the risk-free rate.8

Although our focus is on the risk price estimates, we also assess the fit of each model by

computing the cross-sectional OLS coefficient of determination,

R2
OLS = 1− VarN (α̂i)

VarN (Ri −Rf )
, (7)

where VarN (·) stands for the cross-sectional variance. R2
OLS represents the fraction of the cross-

sectional variance of average excess returns on the testing assets that is explained by the factor

loadings associated with the model.9 Since an intercept is not included in the cross-sectional

regression, this measure can assume negative values.10

The results for the OLS cross-sectional regressions are presented in Table 2 (Panel A). We can

see that the majority of the risk price estimates are positive and statistically significant at the 5%

or 1% levels. The exceptions are the risk price estimates associated with SMB, HML, and PMU ,

which are not significant at the 10% level. Moreover, the risk price estimate corresponding to ME

is not significant at the 5% level (although there is significance at the 10% level).11 In terms of

explanatory power, we have the usual result that the baseline CAPM cannot explain the cross-

section of portfolio returns, as indicated by the negative R2 estimate (−37%). This means that the

CAPM performs worse than a model that predicts constant expected returns in the cross-section

of equity portfolios. Both FF5 and FF4 have a reasonable explanatory power for the cross-section

8Another reason for not including the intercept in the cross-sectional regressions is that often the market betas for
equity portfolios are very close to one, creating a multicollinearity problem (see, for example, Jagannathan and Wang
(2007)). Results presented in the online appendix show that, when we include an intercept in the cross-sectional
regression, the risk price estimates for the non-market factors are relatively similar to the benchmark case.

9Campbell and Vuolteenaho (2004), Kan, Robotti, and Shanken (2013), and Lioui and Maio (2014) use similar
R2 metrics.

10A negative estimate indicates that the regression including the betas does worse than a simple regression with
just a constant, that is, the factor betas underperform the cross-sectional average risk premium in terms of explaining
cross-sectional variation in average excess returns.

11By estimating the models separately on each group of deciles (e.g., BM portfolios) and excluding the factors
from the testing returns, we obtain risk price estimates that are more unstable and further away from the theoretical
correct estimates. Indeed, several of the risk price estimates are negative. This shows the advantages of using a large
cross-section and including the factors as testing assets.
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of 80 equity portfolios, with R2 estimates of 44% and 30%, respectively. Nevertheless, the best

performing models are NM4 and HXZ4, both with explanatory ratios around or above 60%.

One important limitation of the OLS cross-sectional regression approach when testing models

in which all the factors represent excess returns is that the risk price estimates can be significantly

different than the theoretical correct estimates (the corresponding sample factor means), even if

the factors are added as testing assets. To overcome this problem, and following Cochrane (2005)

(Chapter 12), Lewellen, Nagel, and Shanken (2010), and Maio (2017), we also estimate the risk

prices by conducting a GLS cross-sectional regression. When the factors of each model are included

in the menu of testing assets, it follows that the GLS risk price estimates are numerically equal to

the factor means (reported in the online appendix). Moreover, this method enables us to obtain

standard errors for the risk price estimates and assess their statistical significance.

The GLS cross-sectional regression can be represented in matrix form as

Σ−
1
2 r =

(
Σ−

1
2β
)
λ + α, (8)

where r(N×1) is a vector of average excess returns; β(N×K) is a matrix of K factor loadings for the

N test assets; λ(K × 1) is a vector of risk prices; and Σ ≡ E(εtε
′
t) denotes the variance-covariance

matrix associated with the residuals from the time-series regressions (see Cochrane (2005), Shanken

and Zhou (2007), Lewellen, Nagel, and Shanken (2010), among others). Under this approach, the

testing assets with a lower variance of the residuals (from the time-series regressions) receive more

weight in the cross-sectional regression.

The cross-sectional GLS coefficient of determination is given by

R2
GLS = 1− α̂′Σ−1α̂

r∗
′
Σ−1r∗

, (9)

where r∗ denotes the N × 1 vector of (cross-sectionally) demeaned average excess returns. This

measure gives us the fraction of the cross-sectional variation in risk premia among the “transformed”

portfolios explained by the factors associated with a given model. Since the factors are included

in the testing assets, the values for this metric will tend to be fairly large in most cases. Thus, a

given factor model may have a very large value of R2
GLS even if it fails completely in pricing the
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original testing assets (portfolios) of economic interest (see Cochrane (2005)). Hence, R2
GLS is not

valid to evaluate the global explanatory power of a given model for a set of original portfolios (e.g.,

book-to-market portfolios).

The results for the GLS cross-sectional regressions are presented in Table 2 (Panel B). The

results are qualitatively similar to the OLS risk price estimates, as nearly all estimates are positive

and statistically significant. In comparison to the OLS case, the risk prices for HML, PMU , and

ME are now estimated significantly positive. Hence, only the risk price estimates corresponding

to SMB are not significant at the 5% level.12 As expected, the GLS R2 estimates associated with

the HXZ4, FF5, and FF4 models are very close to one since the factors in those models are in the

set of testing returns. As discussed above, the GLS risk price estimates are more reliable than the

OLS counterparts, thus, we conclude from these results that all factors earn significant positive risk

premiums, with the exception of SMB.

2.4 Implications for the ICAPM

Following Merton (1973) and Maio and Santa-Clara (2012), for a given multifactor model to be con-

sistent with the ICAPM, the factor (other than the market) risk prices should obey sign restrictions

in relation to the slopes from predictive time-series regressions (for future investment opportunities)

containing the corresponding state variables. Specifically, if a state variable forecasts a decline in

future expected aggregate returns, the risk price associated with the corresponding risk factor in

the asset pricing equation should also be negative. The intuition is as follows: if asset i forecasts a

decline in expected market returns (because it is positively correlated with a state variable that is

negatively correlated with the future aggregate return) it pays well when the future market return

is lower in average. Hence, such an asset provides a hedge against adverse changes in future market

returns for a risk-averse investor, and thus it should earn a negative risk premium. A negative risk

premium implies a negative risk price for the “hedging” factor given the assumption of a positive

covariance with the innovation in the state variable.

When future investment opportunities are measured by the second moment of aggregate returns,

12The OLS risk price estimates associated with HML, HML∗, UMD, and PMU are more than 10 basis points
away from the corresponding (correct) GLS estimates. In the cases of the other factors, these differences tend to be
substantially smaller. On the other hand, the OLS estimates of λSMB , λRMW , and λCMA within the FF5 model
tend to be closer to the respective GLS estimates than the corresponding OLS estimates within the FF4 model.
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we have an opposite relation between the sign of the factor risk price and predictive slope in the

time-series regressions. Specifically, if a state variable forecasts a decline in future aggregate stock

volatility, the risk price associated with the corresponding factor should be positive. The intuition

is as follows. If asset i forecasts a decline in future stock volatility, it delivers high returns when

the future aggregate volatility is also low. Since a multiperiod risk-averse investor dislikes volatility

(because it represents higher uncertainty in his future wealth), such an asset does not provide a

hedge for changes in future investment opportunities. Therefore, this asset should earn a positive

risk premium, which implies a positive risk price.

To be more precise, consider the following stylized version of the Merton’s ICAPM in discrete

time,

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γz Cov(Ri,t+1 −Rf,t+1, z̃t+1), (10)

where γ is the coefficient of relative risk aversion, z̃ denotes the innovation in the state variable z,

and γz denotes the corresponding risk price, which is given by

γz ≡ −
JWz(W, z, t)

JW (W, z, t)
, (11)

where JW (·) denotes the marginal value of wealth and JWz(·) represents the change in the marginal

value of wealth with respect to the state variable. γz may be interpreted as a measure of aversion

to intertemporal risk.13 Since JW (·) is always positive, it follows that the sign of JWz(·) determines

the sign of the “hedging” risk price. If the state variable z forecasts an improvement in future

investment opportunities (either an increase in the expected future return on wealth and/or a

decrease in the volatility of the aggregate equity portfolio) it turns out that the marginally value of

wealth declines (JWz(·) < 0). The reason is that an improvement in future investment opportunities

(higher level of wealth) represents “good times” for the average multiperiod investor, and thus, a

lower marginal utility of wealth. Therefore, the risk price γz associated with that state variable

is positive. Conversely, if the state variable forecasts adverse changes in the future investment

opportunity set (either a decrease in the expected future return on wealth and/or an increase in

13For a textbook treatment of the ICAPM see Cochrane (2005), Pennacchi (2008), or Back (2010).
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the volatility of the aggregate equity portfolio), the respective risk price should be negative. This

argument is also consistent with the more parametric Campbell’s version of the ICAPM (Campbell

(1993, 1996)), since in this model the factor risk prices are functions of the VAR predictive slopes

associated with the state variables (see also Maio (2013b)). However, this reasoning is only valid

for a risk-aversion parameter above one (which tends to be the relevant case from an empirical

viewpoint).

Given the results discussed above, for the multifactor models to be compatible with the ICAPM,

most state variables associated with the equity factors should forecast an increase in the future

market return and/or a decline in stock volatility. The sole exception is the state variable associated

with SMB: since the respective risk price is not consistently significant within FF5 and FF4, the

size state variable should not be a significant predictor of the equity premium and/or stock volatility

if we want to achieve consistency of those two models with the ICAPM. However, the size factor

in HXZ4 should forecast improving investment opportunities (higher market return and/or lower

stock volatility).

We also estimate the covariance representation of each factor model by using first-stage GMM

(e.g., Hansen (1982) and Cochrane (2005)). The covariance representation is equivalent to a spec-

ification with single-regression betas and can lead to different signs in the risk price estimates

(compared to the risk prices based on multiple-regression betas) as a result of non-zero correlations

among the factors in a model. The results presented in the online appendix show that most covari-

ance risk price estimates are positive and statistically significant. The sole exception is the risk price

for HML within the FF5 model, which is negative and significant at the 1% level. On the other

hand, the estimates for the market risk price vary between 2.27 (CAPM) and 5.92 (NM4). Thus,

these estimates represent plausible values for the risk aversion coefficient of the average investor,

which represents another constraint arising from the ICAPM.

3 Forecasting investment opportunities

In this section, we analyze the forecasting ability of the state variables associated with the equity

factors for future market returns and stock volatility. Moreover, we assess whether the predictive

slopes are consistent with the factor risk price estimates presented in the previous section.
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3.1 State variables

We start by defining the state variables associated with the equity factors. Following Maio and

Santa-Clara (2012), the state variables correspond to the rolling sums on the factors. For example,

in the case of IA, the rolling sum is obtained as

CIAt =

t∑
s=t−59

IAs,

and similarly for the remaining factors. As in Maio and Santa-Clara (2012), we use the rolling sum

over the last 60 months because the total sum (from the beginning of the sample) is in several cases

close to non-stationary (auto-regressive coefficients around one). The first-difference in the state

variables corresponds approximately to the original factors. Thus, this definition tries to resemble

the empirical ICAPM literature in which the risk factors correspond to auto-regressive (or VAR)

innovations (or in alternative, the first-difference) in the original state variables (see, for example,

Hahn and Lee (2006), Petkova (2006), Campbell and Vuolteenaho (2004), and Maio (2013a)).14

The descriptive statistics for the state variables reported in the appendix indicate that all

the state variables are quite persistent as shown by the autocorrelation coefficients being close to

one. This characteristic is shared by most predictors employed in the stock return predictability

literature (e.g., dividend yield, term spread, or the default spread). CUMD and CROE have the

higher mean returns (close to 40% per month), while CSMB is the least pervasive state variable

with a mean around 17%, consistent with the results for the original factors.

Similarly to the evidence for the original factors, both CHML and CHML∗ are strongly

positively correlated with the investment state variables (CIA and CCMA). On the other hand,

CROE also shows a large positive correlation with the momentum state variable. Figure 1 displays

the time-series for the different equity state variables. We can see that most state variables exhibit

substantial variation across the business cycle. We also observe a significant declining trend since

the early 2000’s for all state variables, which is especially evident in the case of the value and

momentum variables.

14Since the state variables are typically very persistent it turns out that the simple change in the state variable is
approximately equal to the innovation obtained from an AR(1) process.
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3.2 Forecasting the equity premium

We employ long-horizon predictive regressions to evaluate the forecasting power of the state vari-

ables for future excess market returns (e.g., Keim and Stambaugh (1986), Campbell (1987), Fama

and French (1988, 1989)),

rt+1,t+q = aq + bqCHML∗t + cqCUMDt + dqCPMUt + ut+1,t+q, (12)

rt+1,t+q = aq + bqCMEt + cqCIAt + dqCROEt + ut+1,t+q, (13)

rt+1,t+q = aq + bqCSMBt + cqCHMLt + dqCRMWt + eqCCMAt + ut+1,t+q, (14)

rt+1,t+q = aq + bqCSMBt + cqCRMWt + dqCCMAt + ut+1,t+q, (15)

where rt+1,t+q ≡ rt+1 + ...+ rt+q is the continuously compounded excess return over q periods into

the future (from t+1 to t+q). We use the log on the CRSP value-weighted market return in excess

of the log one-month T-bill rate as the proxy for r. The sign of each slope coefficient indicates

whether a given equity state variable forecasts positive or negative changes in future expected

aggregate stock returns. We use forecasting horizons of 1, 3, 12, 24, 36, and 48 months ahead.

The original sample is 1976:12 to 2012:12, where the starting date is constrained by the lags used

in the construction of the state variables. To evaluate the statistical significance of the regression

coefficients, we use Newey and West (1987) asymptotic t-ratios with q − 1 lags, which enables us

to correct for the serial correlation in the residuals caused by the overlapping returns.15

To complement the Newey-West t-ratios, we compute empirical p-values obtained from a boot-

strap experiment. This bootstrap simulation produces an empirical distribution for the estimated

predictive slopes that may represent a better approximation for the finite sample distribution of

those estimates. In this simulation, the excess market return and the forecasting variables are

simulated (10,000 times) under the null of no predictability of the market return and also assuming

that each of the predictors (zt) follows an AR(1) process:

rt+1,t+q = aq + ut+1,t+q, (16)

zt+1 = ψ + φzt + εt+1. (17)

15We obtain qualitatively similar results (in terms of achieving or not statistical significance) by using the Hansen
and Hodrick (1980) t-ratios.
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This bootstrap procedure accounts for the high persistence of the forecasting variables and the

cross-correlation between the residuals associated with the excess market return and the state

variables, thus correcting for the Stambaugh (1999) bias. The empirical p-values represent the

fraction of artificial samples in which the slope estimate is higher (lower) than the original estimate

from the observed sample if this last estimate is positive (negative).16 The full description of the

bootstrap algorithm is provided in the online appendix.

The results for the predictive regressions are presented in Table 3. We can see that at horizons

of 12 and 24 months CPMU has significant positive marginal forecasting power for the market

return, controlling for both CHML∗ and CUMD. A similar pattern holds for CRMW , conditional

on CSMB, CHML, and CCMA, at the 12- and 24-month horizons. On the other hand, the slope

for CRMW is significantly positive, conditional on CSMB and CCMA, at the 12-month horizon

(at q = 24 there is significance only based on the empirical p-value). The forecasting power of

the multiple regressions associated with the FF5 model at q = 12, 24 is slightly higher than the

regressions for NM4 and FF4, as indicated by the R2 estimates around 10-11% compared to 6-8%

for NM4 and 8-10% for FF4.

At horizons greater than 12 months, the slopes for CROE are highly significant (5% or 1% level),

thus showing that the forecasting power of this profitability factor is robust to the presence of CME

and CIA. For horizons beyond 12 months, the strongest amount of predictability is associated

with the HXZ4 model (R2 estimates between 13% and 17%), which significantly outperforms the

alternative models (especially at the two longest horizons). However, at the 12-month horizon, the

FF5 model outperforms the alternative models.

Therefore, these results indicate that the three profitability factors provide valuable information

about future excess market returns. Moreover, the positive slopes for these state variables are

consistent with the significant positive risk price estimates associated with PMU , ROE, andRMW ,

as documented in the last section. The remaining equity state variables are insignificant predictors

of the equity premium for any horizon (at the 5% level), when we consider both the empirical

p-values and the Newey-West t-ratios. The sole exception is the case of CUMD, which predicts

a significant decline in the equity premium at the three-month horizon. Hence, this estimate is

16Similar bootstrap simulations are conducted in Goyal and Santa-Clara (2003), Goyal and Welch (2008), Maio
and Santa-Clara (2012), and Maio (2013c, 2016).
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inconsistent with the positive risk price associated with UMD.

3.3 Forecasting stock market volatility

In this subsection, we assess whether the equity state variables forecast future stock market volatil-

ity. The proxy for the variance of the market return is the realized stock variance (SV AR), which is

obtained from Amit Goyal’s webpage. Following Maio and Santa-Clara (2012), Paye (2012), Sizova

(2013), among others, we run predictive regressions of the type,

svart+1,t+q = aq + bqCHML∗t + cqCUMDt + dqCPMUt + ut+1,t+q, (18)

svart+1,t+q = aq + bqCMEt + cqCIAt + dqCROEt + ut+1,t+q, (19)

svart+1,t+q = aq + bqCSMBt + cqCHMLt + dqCRMWt + eqCCMAt + ut+1,t+q, (20)

svart+1,t+q = aq + bqCSMBt + cqCRMWt + dqCCMAt + ut+1,t+q, (21)

where svart+1,t+q ≡ svart+1 + ... + svart+q and svart+1 ≡ ln(SV ARt+1) is the log of the realized

market volatility.

The results for the forecasting regressions are displayed in Table 4. There is stronger evidence

of predictability for future stock volatility than for the excess market return across the majority of

the state variables, as indicated by the greater number of significant slopes. The slopes associated

with CHML∗ are significantly negative for horizons between one and 12 months. On the other

hand, at the longest horizon (q = 48), CHML helps to forecast a significant increase in stock

market volatility, conditional on the other state variables of the FF5 model. Hence, this estimate is

inconsistent with the corresponding positive risk price estimated in the last section. Moreover, the

negative coefficients associated with CSMB (within FF5 and FF4) and CHML are not significant

at short horizons. Further, conditional on both CIA and CROE, the coefficients for CME are not

significant at any forecasting horizon. Thus, the consistency criteria for the size factor within the

HXZ4 model is not satisfied in the case of the regressions for stock volatility. CUMD forecasts a

significant decline in svar at q = 48, which is compatible with the corresponding positive risk price

estimate.

More importantly, CIA is negatively correlated with future stock volatility at all forecasting

horizons, and the slopes are strongly significant (1% level) in all cases. On the other hand, the
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negative slopes associated with CCMA within FF5 are significant for horizons beyond 12 months.

Thus, conditional on the other state variables of the FF5 model, CCMA does not predict a signif-

icant decline in stock volatility at short horizons. In the case of FF4, the slopes for the investment

factor are significantly negative at all horizons, except q = 48. In contrast to the results for the

predictive regressions associated with the equity premium, none of the three profitability factors is

a significant predictor of aggregate stock volatility at the 5% level based on both types of p-values

(the slopes associated with CROE are negative at long horizons, but there is significance only

based on the bootstrap inference).

Therefore, the results of this subsection indicate that the state variables associated with the

investment factors predict a significant decline in stock volatility at multiple forecasting horizons,

and hence, are consistent with the ICAPM framework. We conclude that the different versions

of the investment and profitability factors are consistent with the ICAPM. The reason is that

each of these variables forecasts at least one dimension of future investment opportunities with the

correct sign. Thus, these two factor categories complement each other in terms of forecasting future

investment opportunities within the multifactor models of Fama and French (2015) and Hou, Xue,

and Zhang (2015).

3.4 Sensitivity analysis

We present several robustness checks to the analysis conducted above. The results are presented

and discussed in the online appendix. First, we estimate univariate predictive regressions. Second,

we conduct forecasting regressions for the market return, as opposed to the equity premium. Third,

we include the current excess market return as a new predictor in the predictive regressions for

the equity premium. Fourth, we include the current stock volatility as an additional predictor in

the regressions for svar. Fifth, we employ alternative measures of stock return variance in the

respective forecasting regressions. Specifically, we use the level (rather than the log) of realized

stock volatility and also employ the stock variance measures proposed by Bansal, Khatchatrian, and

Yaron (2005) and Beeler and Campbell (2012). Sixth, we use expanded samples in the estimation

of the multiple predictive regressions associated with the HXZ4, FF5, and FF4 models. Finally,

we conduct an alternative bootstrap simulation to assess the statistical significance of the slopes
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corresponding to the investment and profitability state variables in the multivariate regressions.17

Overall, the new results are qualitatively similar to the benchmark results of this section in most

cases. Specifically, the profitability variables help to forecast an increase in the market return or

equity premium, whereas the investment state variables predict a decline in stock market volatility.

3.5 Other dimensions of the investment opportunity set

In this subsection, we evaluate if the ICAPM state variables forecast other dimensions of the

investment opportunity set. The results and full discussion are presented in the online appendix.

First, following Maio and Santa-Clara (2012), we measure the impact of each state variable in

an aggregate conditional Sharpe ratio (see Whitelaw (1994)), which proxies for the net change in

the investment opportunity set for an investor with mean-variance or quadratic utility. A rise in

this ratio signals an improvement in future investment opportunities (better mean and/or lower

variance). Following the discussion in the previous section, if a given state variable is positively

(negatively) correlated with the conditional Sharpe ratio, the corresponding factor risk price should

be positive (negative). Thus, the signs of the slopes are interpreted in the same way as the co-

efficients in the regressions for the equity premium. The results indicate that all investment and

profitability state variables are positively correlated with the future aggregate Sharpe ratio, and

thus, positively correlated with future positive investment opportunities, in line with the respective

positive risk prices.

Second, we investigate the forecasting ability for future stock market realized skewness (see

Neuberger (2012) and Amaya, Christoffersen, Jacobs, and Vasquez (2015)).18 The original Merton’s

ICAPM allows for state-dependence of the first two moments of stock returns, which a multi-period

risk-averse investor (with quadratic or mean-variance utility) wants to hedge. However, changes in

higher moments of the stock return distribution might also be of concern for investors with different

utility functions. In particular, changes in the skewness of future stock returns may be of hedging

concerns: A higher skewness represents a higher probability of positive returns, and hence, a risk

averse investor will demand a higher risk premium to hold an asset that covaries positively with a

state variable that forecasts an increase in future stock return skewness. The reasoning is similar

17We thank two anonymous referees for suggesting some of these robustness checks.
18We thank an anonymous referee for suggesting this analysis.
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to that provided for the first moment of stock returns (equity premium). The results show that the

equity state variables have lower forecasting power for realized skewness in comparison to the first

two-moments of stock market returns (only CROE and CCMA have some forecasting ability for

realized skewness). This finding is not totally surprising as the third moment of the stock return

distribution should have less hedging concerns for a risk-averse investor than the first two moments.

Third, we assess if the equity state variables are able to forecast the bond premium. Since the

market portfolio contains all types of financial wealth, it follows that bond returns represent one

dimension of the investment opportunity set in the same vein as stock returns. Hence, we investigate

if the investment and profitability state variables forecast an increase in the bond premium to

achieve consistency with the positive risk prices, similarly to the case of the equity premium.

The results indicate that both CPMU , and especially CRMW , forecast an increase in the bond

premium at several forecasting horizons, in line with the results obtained for the equity premium.

4 Equity risk factors and future economic activity

4.1 Main results

In this section, we investigate whether the equity state variables forecast future economic activity.

The motivation for this exercise relies on the Roll’s critique (Roll (1977)). Since the stock index is

an imperfect proxy for aggregate wealth, changes in the future return on the unobservable wealth

portfolio might be related with future economic activity given. Indeed, several forms of non-

financial wealth, like labor income, houses, or small businesses, are related with the business cycle,

and hence, economic activity. Hence, economic activity is likely to be positively correlated with

the non-observable return on aggregate wealth.19 Thus, an increase in economic activity might

represent an increase in the return on aggregate wealth and assessing whether the state variables

predict economic activity complements the analysis of the predictability of the market return. This

implies that, for a given state variable to be consistent with the ICAPM, the respective slope should

have the same sign as the risk price for the corresponding factor. In related work, Boons (2016)

19For example, labour income represents the return to human capital, which is a component of aggregate wealth
(see Campbell (1996), Jagannathan and Wang (1996), and Lettau and Ludvigson (2001), among others. One can
also specify an ICAPM in which human capital is included explicitly in total wealth (see Back (2010)). In this setup,
the state variables should forecast changes in future labor income.
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evaluates the consistency of a typical ICAPM specification (including the term spread, default

spread, and dividend yield) with the ICAPM, where investment opportunities are measured by

economic activity. In this paper, we focus on the predictive ability (for future economic activity)

of state variables constructed from equity factors.20

As proxies for economic activity, we use the log growth in the industrial production index (IPG)

and the Chicago FED National Activity Index (CFED). The data on both indexes are obtained

from the St. Louis FED database (FRED). We lag the economic variables by one month when

matching with the state variables. This is to ensure that the macro data is publicly available in

real time given the usual time lag in the release of such data.

To assess the forecasting role of the state variables within each model for economic activity, we

run the following multivariate regressions,

yt+1,t+q = aq + bqCHML∗t + cqCUMDt + dqCPMUt + ut+1,t+q, (22)

yt+1,t+q = aq + bqCMEt + cqCIAt + dqCROEt + ut+1,t+q, (23)

yt+1,t+q = aq + bqCSMBt + cqCHMLt + dqCRMWt + eqCCMAt + ut+1,t+q, (24)

yt+1,t+q = aq + bqCSMBt + cqCRMWt + dqCCMAt + ut+1,t+q. (25)

where y ≡ IPG,CFED and yt+1,t+q ≡ yt+1 + ...+ yt+q denotes the forward sum in either IPG or

CFED.

The results for the predictive regressions associated with industrial production growth are pre-

sented in Table 5. We can see that the momentum state variable forecasts a significant decline in

industrial production growth at q = 3. Hence, this slope estimate is inconsistent with the positive

risk price associated with UMD. At long horizons, the momentum slopes are positive, but there

is significance only based on the empirical p-values. In line with the results for the equity pre-

mium regressions, CROE predicts a significant increase in IPG for horizons beyond 24 months.

Yet, unlike the case of the equity premium prediction, the other two profitability factors (CPMU

and CRMW ) have poor forecasting ability for industrial production growth as the corresponding

20Some studies argue that the ability of return spreads to forecast macroeconomic variables constitutes evidence
that these spreads provide exposure to macroeconomic risk that investors would like to hedge against. Specifically,
Vassalou (2003) shows that the HML and SMB factors can predict future GDP growth. Cooper and Priestley (2011)
show that the asset growth return spread can forecast macroeconomic activity.
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coefficients are not consistently significant (at the 5% level) at any forecasting horizon (there is

significance for horizons of 24 and 36 months only based on the empirical p-values).

Also in contrast to the results for the excess market return, CIA is positively correlated with

future output at short horizons (q = 1, 3), which goes in line with the positive risk price associated

with the investment factor. Hence, it turns out that the investment and profitability state variables

associated with the HXZ4 model complement each other in terms of forecasting aggregate output:

while CIA helps to forecast output at short horizons, CROE has significant forecasting power

at intermediate and long horizons.21 In comparison, the positive slopes associated with CCMA

(within FF4) are significant only at the three-month horizon (at other short horizons there is

significance only based on one type of inference).

The results for the forecasting regressions associated with CFED are presented in Table 6.

When we compare with the forecasting regressions associated with the equity premium, there is

stronger evidence of predictability for future output across most equity state variables. This can

be confirmed by the greater number of significant coefficients and also by the higher R2 estimates

across most models and forecasting horizons.

Among the most salient differences relative to the regressions for IPG, we can see that CHML∗

is a significant positive predictor of the economic index at short and middle horizons (q < 36).

Hence, these positive slopes are consistent with the positive estimates for λHML∗ within the NM4

model. On the other hand, CUMD is significantly positively correlated with future economic

activity at the longest horizon, and thus, there is consistency with the corresponding positive risk

price estimate.

The predictive power of CIA is stronger than in the case of industrial production as the positive

slopes are statistically significant at all forecasting horizons. Similarly, there is strong evidence of

predictability associated with CCMA within the FF4 model, in contrast with the evidence for

IPG, as indicated by the significant positive slopes at short and intermediate horizons (q < 36).

In comparison, CCMA within FF5 helps to predict upward business conditions (CFED) only at

short horizons (q = 1, 3). As in the regressions for industrial production, CROE helps to forecast

improving business conditions at long horizons (q > 24). Conditional on the other state variables

21This result is also consistent with the evidence in Cooper and Priestley (2011) showing that alternative investment
factors help to forecast industrial production at short horizons.
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of the FF5 and FF4 models, we can see that CRMW is negatively correlated with the economic

index at short horizons, indicating an inconsistency with the respective risk price estimate. In

terms of explanatory power, the HXZ4 model achieves the largest fit among all forecasting models

at long horizons, as indicated by the explanatory ratios close to 40% (50%) in the regressions

corresponding to IPG (CFED). This represents more than twice the fit of the corresponding

predictive regressions for the excess market return at those horizons.

Overall, the results of this section to a large extent complement the results in the previous

section concerning the aggregate equity premium prediction. In fact, while the investment state

variables do not provide relevant information for the future excess stock return, they help to forecast

an increase in future economic activity. Moreover, the profitability factor from the HXZ4 model

also helps to predict positive aggregate business conditions. This provides additional evidence that,

to some degree, the investment and profitability factors associated with the HXZ4 and FF5 models

proxy for different dimensions of the broad investment opportunity set.

However, the forecasting results for economic activity should be interpreted with some caution.

The reason is that the economic indicators have considerably higher measurement error than asset

returns and volatilities. Moreover, the economic variables are only moderately correlated with

investment opportunities.

4.2 Sensitivity analysis

We conduct two robustness checks to the results described above. The full discussion is presented

in the online appendix.

First, we conduct single forecasting regressions for the two measures of economic activity. Sec-

ond, we use an extended sample in the predictive regressions. Third, we conduct an alternative

bootstrap simulation to assess the statistical significance of the predictive slopes (associated with

the investment and profitability state variables) for future economic activity. Overall, the results

are qualitatively similar to the corresponding results in the benchmark case and indicate a robust

predictive power of future economic activity.

In another robustness check, we assess whether the profitability and investment state variables

forecast alternative dimensions of economic activity. Specifically, we include the log growth in

monthly GDP, log growth in retail sales, log growth in total nonfarm payrolls, and log growth
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in total compensation. The results suggest that the predictive performance associated with the

alternative economic indicators is more or less consistent with the benchmark results associated

with CIPG and CFED. However, there are some discrepancies concerning the relative forecasting

power of the investment variables on one hand and the profitability state variables on the other

hand: the investment variables do a better job in terms of forecasting labor market activity while

the profitability variables outperform when it comes to forecast retail sales.

4.3 Forecasting economic volatility

We evaluate the forecasting ability of the state variables for future economic volatility.22 Specifically,

we compute the variances of both IPG and CFED by using the method employed in Beeler and

Campbell (2012). Following the Roll’s critique (Roll (1977)), in the some vein that the expected

growth in economic activity can be used as a proxy for the expected market return, the economic

volatility can proxy for the stock market volatility.

The results presented in the online appendix show that both investment state variables forecast

a decline in both measures of economic volatility at nearly all forecasting horizons. Interestingly, we

also observe that all three profitability state variables (in particular, CPMU and CRMW ) predict

lower economic volatility. Therefore, these results indicate that the investment and profitability

state variables have similar or greater forecasting power for future economic activity in comparison

to stock return volatility.

5 Relation with ICAPM state variables

In this section, we investigate the relationship of the equity factors analyzed above with other risk

factors that are typically used in the empirical ICAPM literature.

5.1 Forecasting investment opportunities

We investigate if the forecasting ability of the equity state variables for future investment opportu-

nities is linked to other state variables that are typically used in the empirical ICAPM literature.

The motivation for this exercise comes from previous evidence that the SMB and HML factors

22We thank an anonymous referee for suggesting this analysis.

26



are linked to traditional ICAPM state variables like the term or default spreads (e.g., Hahn and

Lee (2006) and Petkova (2006)). Thus, we want to assess if the equity state variables remain signif-

icant predictors of either the equity premium or market volatility after controlling for these other

predictors.

The control variables employed are the term spread (TERM), default spread (DEF ), log

market dividend yield (dp), one-month T-bill rate (TB), and value spread (vs). Several ICAPM

applications have used innovations in these state variables as risk factors to price cross-sectional

risk premia (e.g., Campbell and Vuolteenaho (2004), Hahn and Lee (2006), Petkova (2006), Maio

and Santa-Clara (2012), Maio (2013a), among others). TERM represents the yield spread between

the ten-year and the one-year Treasury bonds, and DEF is the yield spread between BAA and

AAA corporate bonds from Moody’s. The bond yield data are available from the St. Louis Fed

Web page. TB stands for the one-month T-bill rate, available from Kenneth French’s website. dp

is computed as the log ratio of annual dividends to the level of the S&P 500 index. The data on

the index price and dividends are retrieved from Robert Shiller’s website. Following Campbell and

Vuolteenaho (2004), vs represents the difference in the log book-to-market ratios of small-value and

small-growth portfolios, where the book-to-market data are from French’s data library.

To accomplish our goal, we run the following multiple forecasting regressions for both the equity

premium,

rt+1,t+q = aq + bqzt + cqTERMt + dqDEFt + eqdpt + fqTBt + gqvst + ut+1,t+q, (26)

and stock market volatility:

svart+1,t+q = aq + bqzt + cqTERMt + dqDEFt + eqdpt + fqTBt + gqvst + ut+1,t+q, (27)

where z stands for one of the equity state variables.

Results displayed in the online appendix indicate that the forecasting ability of all three prof-

itability state variables (for the equity premium) is robust to the presence of the alternative state

variables. Actually, this forecasting power increases for these variables, and especially for CPMU ,

as the respective coefficients are now statistically significant at more forecasting horizons. There-
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fore, the inclusion of the control variables clarifies the forecasting role of the profitability state

variables for the equity premium.

In the case of the forecasting regressions for stock volatility it turns out that both investment

state variables are no longer significant predictors of svar at short horizons. However, at interme-

diate and long horizons such predictability remains statistically significant. This suggests that the

predictive power of the investment variables at short horizons is captured by the traditional ICAPM

state variables. In the case of the profitability state variables (CPMU and CRMW ), we observe

a significant negative correlation with future svar at intermediate and long horizons, in contrast

to the results for the corresponding univariate regressions. Hence, these negative slope estimates

are consistent with the respective positive risk price estimates, and show that the presence of the

alternative state variables clarifies the predictive role of the profitability state variables for svar.

Overall, the results of this subsection indicate that the predictive ability of the different in-

vestment and profitability state variables for future investment opportunities does not seem to be

subsumed by the more traditional ICAPM state variables. In other words, the investment and prof-

itability state variables proxy for alternative components of the aggregate investment opportunity

set.

5.2 Asset pricing tests

Next, we assess if the equity factors are still priced in the cross-section of stock returns when we

include ICAPM factors frequently used in the literature.

Following the empirical ICAPM literature (e.g., Campbell (1996), Campbell and Vuolteenaho

(2004), Petkova (2006), Botshekan, Kraeussl, and Lucas (2012), and Maio (2013a, 2013b)), the

factors represent the innovations in each state variable, which are obtained from an AR(1) process:

x̃t+1 = xt+1 − ψ − φxt, (28)

where x ≡ TERM,DEF, dp, TB, vs.

Similar to the analysis conducted in Petkova (2006), to check whether the equity factors have

incremental explanatory power for cross-sectional risk premia, beyond and above that of the tradi-

tional ICAPM factors, we estimate augmented models by including the new five risk factors. For
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example, the augmented HXZ4 model (denoted by HXZ4*) is given by

E(Ri,t+1 −Rf,t+1) = λMβi,M + λTERMβi,TERM + λDEFβi,DEF

+λdpβi,dp + λTBβi,TB + λvsβi,vs

+λMEβi,ME + λIAβi,IA + λROEβi,ROE , (29)

where λTERM , λDEF , λdp, λTB, and λvs denote the risk prices for the new factors. The augmented

versions of the NM4, FF5, and FF4 models (denoted, respectively, by NM4*, FF5*, and FF4*) are

constructed in a similar way.

The estimation (by OLS) results presented in the online appendix show that, as in the bench-

mark models (which exclude the traditional ICAPM factors), most risk price estimates are signifi-

cantly positive. The exceptions are the size risk prices and λHML, which are not significant at the

10% level, in line with the results for the benchmark models. The cross-sectional OLS R2 estimates

associated with the four augmented models range between 57% (FF5* and FF4* models) and 72%

(NM4*). This shows that including the traditional ICAPM factors does not lead to a substantial

increase in the fit of the models. The most notable exception is the FF4* model, in which case the

explanatory ratio increases by more than 20 percentage points (from 30% to 57%). On the other

hand, in the case of HXZ4 the increase in fit is rather marginal (from 58% to 61%), which suggests

that most of the explanatory power associated with the ICAPM factors is already contained in the

factors included in HXZ4. Overall, the results from this subsection show that the investment and

profitability factors remain priced in the presence of some of the most popular ICAPM factors used

in the literature.

6 The role of magnitudes

This section provides a discussion of the magnitudes of the predictive slopes and risk price estimates.

The full discussion and results are provided in the online appendix.23

23We thank two anonymous referees, the editor, and the associated editor for suggesting the analysis conducted in
this section.
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6.1 Comparing magnitudes of slopes and risk prices

In the previous sections, the consistency of multifactor models with the ICAPM is made exclusively

by comparing the signs of the predictive slopes of the state variables with the corresponding risk

prices and no reference is made to the magnitudes of these estimates. The main reason for this

is that in general one can not solve analytically for the value function J(W, z, t) in the ICAPM

framework, and thus, we can not obtain specific expressions for the risk prices associated with the

hedging factors γz ≡ −JWz(W, z, t)/JW (W, z, t) (see Cochrane (2007) for a discussion).

However, while we can not say too much about what should be the right magnitudes of these

risk price estimates (as a function of fundamental parameters of the value function), we can say

something about the relationship between these magnitudes and the size of the corresponding pre-

dictive slopes. Specifically, a state variable that covaries more with future investment opportunities

(either r or svar) will be subjective to stronger hedging concerns (i.e., a higher magnitude of JWz),

leading to a bigger size of the respective risk price (in comparison to a state variable that is less

correlated with future investment opportunities).

To test this proposition, we conduct the following simple cross-sectional regression of the factor

GLS risk price estimates (λ̂j) on the size of the predictive slopes associated with the corresponding

state variables,

λ̂j = θ0 + θ1b̂j,r + ςj , (30)

λ̂j = θ0 + θ1 |̂bj,svar|+ ςj , (31)

where j denotes each of the 10 non-market equity factors. b̂j,r = max{b̂j,r,q} denotes the maximum

slope (across the six forecasting horizons) associated with state variable j in the regressions for the

equity premium. Similarly, b̂j,svar = min{b̂j,svar,q} represents the minimum (more negative) slope

estimate corresponding to state variable j in the regressions for svar.

We also conduct the cross-sectional regressions when the slopes are retrieved from the forecasting

regressions for future economic activity,

λ̂j = θ0 + θ1b̂j,ipg + ςj , (32)

λ̂j = θ0 + θ1b̂j,cfed + ςj , (33)
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where b̂j,y = max{b̂j,y,q}, y ≡ IPG,CFED. Given the discussion above, we expect a positive slope

estimate (θ1) in these four regressions, that is, more positive risk prices are associated with larger

magnitudes of the corresponding predictive slopes.

The OLS estimation results of the above regressions indicate that the slope estimates are signifi-

cantly positive. Therefore, this shows that factors that earn larger risk prices tend to be associated

with state variables that are more correlated with future investment opportunities or economic

activity, in line with the ICAPM prediction. In addition to the sign consistency documented in

the previous sections, this represents another type of consistency with the ICAPM that takes into

account the magnitudes of both the risk prices and predictive slopes.

6.2 Relation to alternative ICAPM frameworks

In this subsection, we consider alternative ICAPM frameworks that take into account explicitly the

relationship between the magnitudes of the predictive slopes and both the risk prices and structural

parameters. Specifically, we assess if these magnitudes can be reconciled with plausible risk aversion

coefficient estimates.

For that purpose, we estimate by first-stage GMM the two-factor model of Campbell and

Vuolteenaho (2004) (CV2) and the three-factor model of Campbell, Giglio, Polk, and Turley (2017)

(CGPT3). The factors in these models are news or shocks to future aggregate cash flows (NCF ),

discount-rates (NDR), and stock variance (NV ). In both models, there is only one structural

parameter (γ, the coefficient of relative risk aversion), which affects the magnitudes of the factor

risk prices.

Following Campbell and Vuolteenaho (2004) and Campbell, Giglio, Polk, and Turley (2017),

the factors represent linear functions of innovations in state variables that are obtained from a

first-order VAR. In order to make a bridge with the equity multifactor models studied in the rest

of the paper, we use the equity state variables (associated with each multifactor model) to forecast

future investment opportunities within the VAR. Specifically, taking the example of HXZ4, the

VAR state vector contains CME, CIA, and CROE (in addition to the excess market return and

realized stock variance). Hence, we estimate four versions of both CV2 and CGPT3 (one for each

of the multifactor models studied in the previous sections).

Overall, the results discussed in the online appendix suggest that the ICAPM frameworks of
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Campbell and Vuolteenaho (2004) and Campbell, Giglio, Polk, and Turley (2017), when based

on the equity state variables studied in the previous sections, produce reasonable estimates of the

underlying risk aversion parameter in most cases (between 2 and 4).

Nevertheless, these results should be interpreted with some caution. First, each our versions

of both CV2 and CGPT3 models is misspecified since the only state variables that drive future

investment opportunities are the equity state variables corresponding to each multifactor model.

As shown in the last section, and in the ICAPM literature in general, there are other important

state variables that forecast either the equity premium or stock variance. Second, the first-order

VAR is a central assumption in both CV2 and CGPT3. However, the results in Section 3 show that

the bulk of predictability associated with the equity state variables for both the equity premium

and stock variance is at horizons longer than one month ahead. Yet, the first-order VAR misses

the forecasting power at those horizons.24

7 Conclusion

We evaluate whether equity factor models (in which all the factors are excess stock returns) are

consistent with the Merton’s Intertemporal CAPM framework (Merton (1973), ICAPM). We an-

alyze four multifactor models: the four-factor models proposed by Novy-Marx (2013) (NM4) and

Hou, Xue, and Zhang (2015) (HXZ4), the five-factor model of Fama and French (2015) (FF5), and

a restricted version of FF5 that excludes the HML factor (FF4). Our results for the cross-sectional

tests confirm that the new models have a large explanatory power for the large cross-section of port-

folio returns, in line with the evidence presented in Fama and French (2015, 2016) and Hou, Xue,

and Zhang (2015, 2017). Most factor risk price estimates are positive and statistically significant.

Following Maio and Santa-Clara (2012), we construct state variables associated with each factor

that correspond to the past 60-month rolling sum on the factors. The results for forecasting regres-

sions of the excess market return at multiple horizons indicate that the state variables associated

with the profitability factors employed in NM4, HXZ4, and FF5 (FF4) help to forecast the equity

premium. Moreover, the positive predictive slopes are consistent with the positive risk prices for

the corresponding factors. When it comes to forecasting stock market volatility, several state vari-

24The results presented in the online appendix show that both CV2 and CGPT3 are formally rejected by the χ2

specification test, in line with the evidence provided in Campbell, Giglio, Polk, and Turley (2017).
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ables forecast a significant decline in stock volatility, consistent with the corresponding factor risk

price estimates. In particular, the state variables associated with the investment factors of Hou,

Xue, and Zhang (2015) and Fama and French (2015) predict a significant decline in stock volatility

at multiple forecasting horizons, and hence, are consistent with the ICAPM framework. We con-

clude that the different versions of the investment and profitability factors are consistent with the

ICAPM. The reason is that each of these variables forecasts one dimension of future investment

opportunities with the correct sign. Thus, these two factor categories complement each other in

terms of forecasting future investment opportunities within the HXZ4 and FF5 (FF4) models.

We also evaluate if the equity state variables forecast future aggregate economic activity, which

is measured by the growth in industrial production and the Chicago FED index of economic ac-

tivity. Overall, the evidence of predictability for future economic activity is stronger than for the

future excess market return, across most equity state variables. In fact, while the investment state

variables do not provide relevant information for the future stock market returns, they help to

forecast an increase in future economic activity. This result provides additional evidence that the

investment and profitability factors associated with the models of Novy-Marx (2013), Fama and

French (2015, 2016), and Hou, Xue, and Zhang (2015) proxy for different dimensions of future

investment opportunities.

Further, we assess if the forecasting ability of the equity state variables for future investment

opportunities is linked to traditional ICAPM state variables. The results from multiple forecasting

regressions suggest that the predictive ability of most equity state variables, and specifically the

different investment and profitability variables, does not seem to be subsumed by the alternative

ICAPM state variables.

In the last part of the paper, we show that factors that earn larger risk prices tend to be

associated with state variables that are more correlated with future investment opportunities or

economic activity, in line with the ICAPM prediction. On the other hand, by estimating the ICAPM

specifications of Campbell and Vuolteenaho (2004) and Campbell, Giglio, Polk, and Turley (2017),

based on the equity state variables studied in the paper, we obtain reasonable estimates of the

underlying risk aversion parameter.
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Table 1: Consistency of factors with the ICAPM
This table reports the consistency of the factor risk prices from multifactor models with the ICAPM. The criteria represents

the consistency in sign of the risk prices of the hedging factors with the corresponding predictive slopes in predictive mul-

tiple regressions of the state variables over the excess market return (Panel A) and the market variance (Panel B). CSMB,

CHML, CRMW , and CCMA denote the Fama–French size, value, profitability, and investment factors, respectively. CHML∗,

CUMD, and CPMU represent respectively the value, momentum, and profitability factors from Novy-Marx. CME, CIA,

and CROE denote the Hou–Xue–Zhang size, investment, and profitability factors, respectively. A “X” indicates that there

is consistency in sign and both the risk price and slope are statistically significant. “×” means that either the slope or

risk price estimates are not significant, or a situation in which both estimates are significant but have conflicting signs.

Model CSMB CHML CHML∗ CUMD CPMU CME CIA CROE CRMW CCMA
Panel A (r)

NM4 × × X
HXZ4 × × X
FF5 X × X ×
FF4 X X ×

Panel B (svar)
NM4 X X ×
HXZ4 × X ×
FF5 X × × X
FF4 X × X
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Table 3: Predictive regressions for equity premium
This table reports the results associated with multiple long-horizon predictive regressions for the excess stock market return,

at horizons of 1, 3, 12, 24, 36, and 48 months ahead. The predictors are state variables associated with alternative equity

factors. CSMB, CHML, CRMW , and CCMA denote the Fama–French size, value, profitability, and investment factors,

respectively (FF4, FF5). CHML∗, CUMD, and CPMU represent respectively the value, momentum, and profitability factors

from Novy-Marx (NM4). CME, CIA, and CROE denote the Hou–Xue–Zhang size, investment, and profitability factors,

respectively (HXZ4). The original sample is 1976:12–2012:12, and q observations are lost in each of the respective q-horizon

regressions. For each regression, in line 1 are reported the slope estimates whereas line 2 presents Newey–West t-ratios (in

parentheses) computed with q − 1 lags. t-ratios marked with * and ** denote statistical significance at the 5% and 1%

levels, respectively. Slope estimates marked with * and ** denote statistical significance at the 5% and 1% levels, respec-

tively, based on the empirical p-values from a bootstrap simulation. R2 denotes the adjusted coefficient of determination.

Model CSMB CHML CHML∗ CUMD CPMU CME CIA CROE CRMW CCMA R2

Panel A (q = 1)

NM4 0.01 −0.02 0.03 0.01

(0.62) (−2.07∗) (1.85)

HXZ4 −0.01 0.02 −0.01 −0.00

(−0.75) (1.03) (−0.40)

FF5 −0.00 −0.00 0.01 0.00 −0.00

(−0.07) (−0.09) (0.92) (0.21)

FF4 −0.00 0.01 0.00 −0.00

(−0.08) (0.98) (0.23)

Panel B (q = 3)

NM4 0.03 −0.07∗ 0.10 0.03

(0.74) (−2.30∗) (2.42∗)

HXZ4 −0.03 0.06 −0.01 0.01

(−1.05) (1.21) (−0.24)

FF5 −0.00 0.00 0.05 0.01 0.00

(−0.21) (0.09) (1.55) (0.14)

FF4 −0.00 0.05 0.01 0.01

(−0.19) (1.63) (0.31)

Panel C (q = 12)

NM4 0.08 −0.15∗ 0.37∗ 0.08

(0.65) (−1.22) (2.54∗)

HXZ4 −0.01 0.18∗ 0.16∗ 0.06

(−0.12) (1.06) (1.10)

FF5 0.02 0.13 0.32∗∗ −0.11 0.10

(0.34) (1.01) (2.55∗) (−0.61)

FF4 0.04 0.30∗∗ 0.00 0.08

(0.50) (2.32∗) (0.00)
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Table 3: (continued)

Model CSMB CHML CHML∗ CUMD CPMU CME CIA CROE CRMW CCMA R2

Panel D (q = 24)

NM4 0.12 −0.10 0.45∗ 0.06

(0.41) (−0.37) (2.03∗)

HXZ4 0.09 0.18 0.51∗∗ 0.14

(1.04) (0.69) (2.04∗)

FF5 0.08 0.14 0.46∗∗ −0.12 0.11

(0.86) (0.62) (2.01∗) (−0.50)

FF4 0.09 0.44∗∗ −0.01 0.10

(0.86) (1.90) (−0.04)

Panel E (q = 36)

NM4 0.16 0.13 0.23 0.02

(0.34) (0.34) (0.71)

HXZ4 0.12 0.19 0.74∗∗ 0.17

(0.93) (0.54) (2.82∗∗)

FF5 0.03 0.13 0.26 −0.06 0.03

(0.19) (0.40) (0.95) (−0.20)

FF4 0.04 0.25 0.05 0.02

(0.24) (0.97) (0.24)

Panel F (q = 48)

NM4 0.01 0.53∗∗ −0.11 0.04

(0.02) (1.58) (−0.27)

HXZ4 0.11 0.10 0.77∗∗ 0.13

(0.73) (0.26) (3.42∗∗)

FF5 0.04 −0.09 0.04 −0.05 −0.00

(0.21) (−0.26) (0.14) (−0.19)

FF4 0.03 0.05 −0.12 −0.00

(0.13) (0.20) (−0.47)
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Table 4: Predictive regressions for stock market volatility
This table reports the results associated with multiple long-horizon predictive regres-

sions for the stock market variance. In everything else it is identical to Table 3.

Model CSMB CHML CHML∗ CUMD CPMU CME CIA CROE CRMW CCMA R2

Panel A (q = 1)
NM4 −1.60∗∗ 0.46 0.63 0.06

(−5.82∗∗) (2.06∗) (2.29∗)
HXZ4 −0.14 −1.73∗∗ 0.45 0.10

(−1.28) (−5.59∗∗) (1.81)
FF5 −0.15 −0.54 0.45 −0.47 0.07

(−1.46) (−2.05∗) (2.01∗) (−1.14)
FF4 −0.20 0.55 −0.97∗ 0.06

(−1.82) (2.44∗) (−3.82∗∗)
Panel B (q = 3)

NM4 −4.60∗∗ 1.21 1.32 0.07
(−4.04∗∗) (1.30) (1.16)

HXZ4 −0.35 −5.31∗∗ 1.11 0.13
(−0.87) (−3.94∗∗) (1.09)

FF5 −0.43 −1.36 1.00 −1.78 0.08
(−1.12) (−1.15) (1.11) (−0.93)

FF4 −0.56 1.24 −3.01∗∗ 0.07
(−1.33) (1.35) (−2.74∗∗)

Panel C (q = 12)
NM4 −15.06∗∗ −0.64 −1.06 0.07

(−2.27∗) (−0.12) (−0.15)
HXZ4 −2.01 −19.99∗∗ −1.44 0.18

(−1.02) (−3.09∗∗) (−0.26)
FF5 −2.64 −1.05 −1.93 −10.56 0.10

(−1.22) (−0.17) (−0.39) (−1.08)
FF4 −2.75 −1.78 −11.47∗∗ 0.11

(−1.21) (−0.34) (−1.97∗)
Panel D (q = 24)

NM4 −5.02∗ −3.13∗ −1.24 0.08
(−1.26) (−0.82) (−0.32)

HXZ4 −3.80 −38.42∗∗ −11.57∗ 0.23
(−0.78) (−3.58∗∗) (−0.81)

FF5 −5.04 11.17 −7.33 −32.89∗∗ 0.16
(−0.95) (0.83) (−0.61) (−1.98∗)

FF4 −3.81 −8.60 −23.67∗∗ 0.14
(−0.68) (−0.80) (−2.21∗)

Panel E (q = 36)
NM4 −27.99∗ −36.09∗∗ −0.79 0.09

(−0.90) (−1.45) (−0.03)
HXZ4 −3.50 −52.48∗∗ −25.20∗∗ 0.24

(−0.36) (−3.56∗∗) (−1.24)
FF5 −3.90 31.50∗∗ −5.14 −60.66∗∗ 0.21

(−0.42) (1.48) (−0.33) (−2.92∗∗)
FF4 −0.34 −8.53 −35.03∗∗ 0.14

(−0.03) (−0.78) (−2.50∗)
Panel F (q = 48)

NM4 −28.17∗ −71.60∗∗ 18.29 0.13
(−0.60) (−2.09∗) (0.50)

HXZ4 1.00 −58.62∗∗ −30.42∗∗ 0.17
(0.06) (−2.67∗∗) (−1.27)

FF5 0.64 51.81∗∗ 4.98 −81.87∗∗ 0.23
(0.05) (2.11∗) (0.28) (−3.71∗∗)

FF4 6.25 −1.29 −38.25∗∗ 0.09
(0.37) (−0.09) (−1.80)
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Table 5: Predictive regressions for industrial production growth
This table reports the results associated with multiple long-horizon predictive regressions

for the growth in industrial production. In everything else it is identical to Table 3.

Model CSMB CHML CHML∗ CUMD CPMU CME CIA CROE CRMW CCMA R2

Panel A (q = 1)
NM4 0.00 −0.00 −0.00 0.01

(2.03∗) (−2.16∗) (−0.07)
HXZ4 −0.00 0.01∗ −0.00 0.03

(−1.66) (2.94∗∗) (−1.84)
FF5 −0.00 −0.00 −0.00 0.01 0.01

(−1.53) (−0.72) (−1.80) (1.91)
FF4 −0.00 −0.00 0.01 0.02

(−1.64) (−1.75) (2.30∗)
Panel B (q = 3)

NM4 0.01 −0.01∗ 0.00 0.02
(1.84) (−2.28∗) (0.20)

HXZ4 −0.01 0.03∗∗ −0.01∗ 0.06
(−1.50) (2.50∗) (−1.76)

FF5 −0.01 −0.01 −0.01 0.02∗ 0.03
(−1.34) (−0.71) (−1.61) (1.60)

FF4 −0.01 −0.01 0.02∗ 0.03
(−1.43) (−1.57) (1.97∗)

Panel C (q = 12)
NM4 0.03 −0.02 0.06 0.04

(0.85) (−0.63) (1.24)
HXZ4 −0.02∗ 0.09∗∗ 0.01 0.12

(−1.16) (1.87) (0.18)
FF5 −0.02 −0.01 0.01 0.06 0.05

(−1.11) (−0.17) (0.32) (0.91)
FF4 −0.02 0.01 0.05∗ 0.05

(−1.17) (0.36) (1.39)
Panel D (q = 24)

NM4 0.03 0.02 0.13∗ 0.08
(0.45) (0.28) (1.41)

HXZ4 −0.01 0.11∗∗ 0.14∗∗ 0.22
(−0.39) (1.49) (1.51)

FF5 −0.03 0.02 0.08∗ 0.03 0.09
(−0.82) (0.29) (1.27) (0.37)

FF4 −0.03 0.08∗ 0.04 0.09
(−0.80) (1.16) (0.77)

Panel E (q = 36)
NM4 −0.04 0.12∗∗ 0.14∗ 0.12

(−0.38) (0.98) (1.32)
HXZ4 0.01 0.07 0.31∗∗ 0.36

(0.20) (0.98) (3.78∗∗)
FF5 −0.02 −0.04 0.09∗ 0.02 0.08

(−0.55) (−0.47) (1.53) (0.27)
FF4 −0.03 0.10∗ −0.01 0.07

(−0.63) (1.71) (−0.13)
Panel F (q = 48)

NM4 −0.10 0.29∗∗ 0.05 0.24
(−0.79) (1.85) (0.36)

HXZ4 −0.00 0.02 0.36∗∗ 0.38
(−0.08) (0.32) (5.18∗∗)

FF5 −0.04 −0.11∗ 0.03 0.02 0.12
(−0.85) (−1.01) (0.32) (0.19)

FF4 −0.05 0.04 −0.07 0.08
(−0.97) (0.52) (−0.89)
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Table 6: Predictive regressions for Chicago FED Index
This table reports the results associated with multiple long-horizon predictive regressions for

the Chicago FED National Activity Index. In everything else it is identical to Table 3.

Model CSMB CHML CHML∗ CUMD CPMU CME CIA CROE CRMW CCMA R2

Panel A (q = 1)
NM4 1.91∗∗ −0.31 −0.89 0.08

(5.94∗∗) (−1.56) (−2.12∗)
HXZ4 −0.30 2.57∗∗ −0.68 0.14

(−1.61) (6.56∗∗) (−2.34∗)
FF5 −0.40 0.19 −1.05∗ 1.62∗ 0.10

(−2.47∗) (0.71) (−3.76∗∗) (3.50∗∗)
FF4 −0.38 −1.08∗ 1.80∗∗ 0.10

(−2.31∗) (−4.09∗∗) (5.85∗∗)
Panel B (q = 3)

NM4 5.66∗∗ −0.98 −2.22 0.09
(4.24∗∗) (−1.20) (−1.36)

HXZ4 −1.01 7.85∗∗ −2.10∗ 0.20
(−1.27) (4.58∗∗) (−1.81)

FF5 −1.22 0.38 −3.01∗ 5.10∗∗ 0.13
(−1.82) (0.32) (−2.98∗∗) (2.35∗)

FF4 −1.19 −3.07∗ 5.44∗∗ 0.13
(−1.69) (−3.38∗∗) (4.18∗∗)

Panel C (q = 12)
NM4 19.26∗∗ 0.35 −0.40 0.09

(2.66∗∗) (0.06) (−0.04)
HXZ4 −3.47 29.54∗∗ −0.35 0.28

(−0.85) (3.42∗∗) (−0.05)
FF5 −4.59 1.79 −4.37 18.43∗∗ 0.15

(−1.28) (0.23) (−0.86) (1.53)
FF4 −4.41 −4.62 19.98∗∗ 0.15

(−1.19) (−0.89) (2.91∗∗)
Panel D (q = 24)

NM4 30.16∗∗ 16.12∗∗ 4.89 0.13
(2.23∗) (0.90) (0.27)

HXZ4 −0.51 43.75∗∗ 26.10∗∗ 0.38
(−0.07) (3.18∗∗) (1.48)

FF5 −5.54 3.20 5.69 24.71∗∗ 0.14
(−0.75) (0.24) (0.46) (1.40)

FF4 −5.19 5.33 27.36∗∗ 0.14
(−0.72) (0.40) (2.29∗)

Panel E (q = 36)
NM4 25.56∗ 50.11∗∗ 0.66 0.19

(1.56) (1.84) (0.03)
HXZ4 6.70 42.21∗∗ 67.35∗∗ 0.49

(0.80) (3.30∗∗) (3.73∗∗)
FF5 −3.09 −11.53 8.98 30.98∗ 0.08

(−0.30) (−0.61) (0.64) (1.45)
FF4 −4.40 10.22 21.61∗ 0.07

(−0.43) (0.78) (1.52)
Panel F (q = 48)

NM4 13.76 96.00∗∗ −23.55 0.32
(0.63) (2.61∗∗) (−0.91)

HXZ4 8.59 31.57∗∗ 88.36∗∗ 0.46
(1.00) (2.30∗) (4.77∗∗)

FF5 −3.38 −28.63∗∗ −2.89 30.08∗ 0.06
(−0.29) (−1.19) (−0.17) (1.11)

FF4 −6.48 0.57 5.97 0.01
(−0.50) (0.04) (0.32)
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Panel A (CSMB, CME) Panel B (CHML, CHML∗)

Panel C (CUMD) Panel D (CPMU , CROE, CRMW )

Panel E (CIA, CCMA)

Figure 1: Equity state variables
This figure plots the time-series for the state variables associated with alternative equity factors. CSMB,

CHML, CRMW , and CCMA denote the Fama–French size, value, profitability, and investment factors, respec-

tively. CHML∗, CUMD, and CPMU represent respectively the value, momentum, and profitability factors

from Novy-Marx. CME, CIA, and CROE denote the Hou–Xue–Zhang size, investment, and profitability fac-

tors, respectively. The sample is 1976:12–2012:12. The vertical lines indicate the NBER recession periods.
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