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The Role of Market Evolution in Channel Contracting

Long Gao
A. Gary Anderson Graduate School of Management, University of California, Riverside, CA 92521 long.gao@ucr.edu

Birendra K. Mishra
A. Gary Anderson Graduate School of Management, University of California, Riverside, CA 92521 barry.mishra@ucr.edu

Real markets evolve over time. They often exhibit complex behaviors, such as autocorrelation, continuity,

and nonstationarity. How do these behaviors affect channel contracting? We study the problem in a bilateral

channel where the retailer has private information on evolving market conditions. We characterize the optimal

contract under arbitrary market evolution. The central notion is market inertia: it prices retailer’s information

advantage, dictates price and quantity response over time, and determines the contract complexity. Using

market inertia, we identify a general property—stochastic linearity—that justifies the use of simple contracts

for a much larger class of channel conditions. For practitioners, we offer refined guidance: (i) when the market

has linear dynamics, simple contracts are sufficient; (ii) when the market is continuous, the quantity distortion

should be pervasive; (iii) when the market is nonstationary, the distortion can vanish, intensify, stay constant,

or even go non-monotonic over time. By highlighting the central role of realistic market behaviors, this paper

advances our understanding of channel theory and practice.
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1. Introduction

Many distribution channels operate in volatile markets (He et al. 2008, 2017). To improve fore-

casting, downstream retailers often closely track market conditions for better demand informa-

tion. If properly shared and used, this information can greatly reduce supply-demand mismatch,

improve production, and enhance channel efficiency (Gao et al. 2012).

To ensure truthful information sharing, manufacturers need to write a long-term contract. The

problem is complicated by three factors. First, the long-term contract should govern repeated

transactions over multiple periods, during which market conditions may evolve (Dekimpe and

Hanssens 2003). Therefore, the contract should account for market evolution. Second, each period

the retailer may learn new consumer information, develop local market expertise, and gain fresh

information advantage over the manufacturer; he may mislead the manufacturer to secure better

price. Therefore, the contract should account for information asymmetry, providing incentives for

truthful information sharing (Guo and Iyer 2010). Third, both parties are forward-looking: current

actions may affect both parties’ future learning and reactions, and the prospect of future trans-

actions may also shape the actions taken now (Chintagunta et al. 2006). Therefore, the contract

should account for such forward-looking behavior (Bernstein and Martı́nez-de Albéniz 2016).
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The channel literature is largely silent on how to write such a contract. So far it has primar-

ily focused on contracting under the simplistic market assumptions, e.g., static condition, binary

uncertainty, and IID dynamics. Yet real markets rarely behave this way. They often exhibit com-

plex behaviors that defy simplistic characterizations. For example, the carryover effect, the decay

advertising pattern (Tellis 2006), the new product diffusion (Bass 1995), none of them fits the

simplistic market assumptions. In general, real markets evolve stochastically, continuously, and

nonstationarily (Pauwels et al. 2004); the simplistic market assumptions (e.g., static, binary, and

IID) become increasingly untenable.1 The gap between modeling and reality greatly limits the

applicability of many existing channel results (Bronnenberg et al. 2005). Indeed, practitioners are

often suspicious of the policies derived from the simplistic assumptions—they are “insensitive to

how real world works” (Reiss and Wolak 2007). To improve policy recommendations, we need to

model more realistic market behaviors (Wittink 2005).2

In this paper, we put realistic market behaviors on the center stage. We seek to understand how

they drive contract response. We take the manufacturer’s perspective and address four questions:

(i) How should a channel adapt to an evolving market? (ii) How do realistic market behaviors

affect the existing results? (iii) What determines the contract complexity? (iv) What are the new

policy recommendations for channel managers?

To address these questions, we consider a dyadic channel where the market condition evolves

stochastically over time. The manufacturer sells a perishable product through a retailer over mul-

tiple periods. Due to proximity and expertise, the retailer has the private knowledge of the market

condition, but he may lack the incentive to share it with the manufacturer. The manufacturer has

the dominant bargaining power and can commit to a long-term contract at the outset. In each

period, the retailer privately learns the market condition, sets the retail price, orders production,

pays the manufacturer, and sells the products in the end market; the manufacturer receives the

order, produces the product, and gets paid accordingly. The transaction then repeats. Both parties

are strategic, forward-looking, and profit-maximizing.

We make three contributions to the channel literature. The first is modeling. We develop a

general framework that captures market evolution, information asymmetry, and forward-looking

behavior. It uses time-series approach to model three market behaviors—autocorrelation, continu-

ity, and nonstationarity. The framework greatly enhances our ability to analyze channel contracts:

1 Few markets assume only two conditions: price and quantity change continuously. Markets in different time behave
differently: IID dynamics is the exception, not the norm (Hamilton 1994, Pauwels et al. 2004). Indeed, 60% of marketing
performance variables, and 78% of sales variables, are not stable, bur rather evolve over time (Dekimpe and Hanssens
1995).
2 Wittink (2005): “As long as researchers do not capture . . . how other relevant parties may change behavior as a function
of changes in market conditions, the models will fail to make correct predictions of marketplace outcomes.”
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we are able to unify the existing results, tackle new channel issues, and propose more credible

policy recommendations.

The second contribution is theoretical. Because of arbitrary demand process and more compli-

cated constraints, our model is significantly more difficult to solve. To overcome the technical

challenge, we first lift the decision space into a larger but simpler space, and then nail down the

solutions that are optimal in both spaces. Using this relaxation technique, we are able to fully

characterize the optimal contract under arbitrary demand process—the most general case in the

channel literature.

The main conceptual challenge is how to price retailer’s information advantage. In the dynamic

setting, the higher type retailer enjoys better sales potential now, and he is also more likely to enjoy

it in the future. Unless he is paid an information rent, he would manipulate for a better profit.

The manipulation could have short-term, long-term, and cumulative effects. To measure them, we

develop the notion of market inertia, which represents how the market change at one point affects

future market conditions. The notion connects the time-series data with the decision model. Using

this notion, we can express the information rent as the sum of weighted sales-potential advan-

tage in all future periods, where the weight is the market inertia. Hence, the price of retailer’s

information advantage is precisely the option value of his manipulation potential over time.

Market inertia is central to the optimal contract. Besides controlling price and quantity over

time, it also serves as a “sufficient statistic” for the contract complexity. Indeed, market iner-

tia compresses all the relevant market information into a single term; it then enters the con-

tract in a simple factorization form. As such, the complexity of contracts boils down to the

complexity of market inertia. Under the lens of market inertia, many of seemingly complex

evolutions are in fact quite simple. For example, continuous nonstationary processes can have

history-independent expressions of the market inertia. Leveraging this fact, we identify the gen-

eral property—stochastic linearity—that guarantees the simplicity of the optimal contract. Unlike

binary or IID demand, this property is common in practice, enjoying broad empirical support

(Pauwels et al. 2004). As such, we justify the use of simple contracts for a much larger class of

channel conditions.

Our third contribution is managerial. For channel managers, we provide refined policy guid-

ance for realistic market behaviors. (i) When the market is stochastically linear, managers need

only simple contracts, without tracking past market conditions. (ii) When the market is contin-

uous, the quantity distortion should be pervasive. The intuition is that, continuous evolution

increases retailer heterogeneity and thus the complexity of incentive provision. To ensure truth-

ful information sharing, the distortion is necessarily more refined and pervasive. (iii) When the
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market condition is nonstationary, the distortion can vanish, stay constant, intensify, or go non-

monotonic over time. The intuition is that, market evolution can either dampen or heighten

retailer’s information advantage over time; in response, the distortion should follow in lockstep,

either vanishing or intensifying over time.

2. Relation to the Literature

Our work connects two paradigms in the channel literature: analytical modeling and time-

series econometrics. The analytical paradigm focuses on how to coordinate the channel and

improve efficiency. Two culprits of inefficiency are double marginalization and information asym-

metry (Klibanoff and Morduch 1995).

Early studies focus on symmetric information (Cachon 2003). They find wholesale prices alone

cannot coordinate the channel (Kolay and Shaffer 2013). To eliminate double marginalization

(Tirole 1988), researchers have proposed several coordination instruments: quantity discount (Jeu-

land and Shugan 1983), two-part tariff (Moorthy 1987), franchise agreements (Desai and Srini-

vasan 1995), product returns (Padmanabhan and Png 1997), bargaining power (Iyer and Villas-

Boas 2003), and retail price maintenance (Iyer 1998).3 In essence, these instruments follow the

same nonlinear pricing scheme, which can achieve the first best under static, symmetric informa-

tion. This insight has been extended to dynamic settings.4 Yet the symmetric-information assump-

tion is not innocuous. By assuming away incentive compatibility constraints, this literature does

not address incentive issues in information sharing—a paramount concern in practice.

Recent studies address incentive issues under asymmetric information; see, e.g., Chu (1992), Desai

and Srinivasan (1995), Iyer (1998), Villas-Boas (1998), Desai (2000), Mishra and Prasad (2005), He

et al. (2008), Sudhir and Datta (2008), Gal-Or et al. (2008), Guo (2009), Guo and Iyer (2010), Dukes

et al. (2011), Mittendorf et al. (2013), Gao et al. (2014), Gao (2015), Jiang et al. (2016), Gümüş

(2017). They use either signaling or screening models, in which incentive compatibility is central.

Technically, the off-equilibrium analysis is important for signaling, but unnecessary for screening

because of the revelation principle (Fudenberg and Tirole 1991). Two main insights from static

screening are: (i) the quantity for the low type is always downward distorted; (ii) channel coor-

dination is unattainable. These insights are for static settings; how they fare in dynamic environ-

ments is unclear. Our contribution is three-fold. We develop a unified framework with arbitrary

demand, delineate the applicability of the existing results, and offer refined policy recommenda-

tions.

3 The behaviorial literature finds that behaviorial factors—such as risk preference, bounded rationality (Ho and Zhang
2008), trust (Özer et al. 2011), fairness (Cui et al. 2007, Katok et al. 2014)—may also serve the coordination purpose.
4 See, e.g., Shugan (1985), Jørgensen (1986), Eliashberg and Jeuland (1986), Chintagunta and Jain (1992), Jørgensen and
Zaccour (2003), Chiang (2012).



The Role of Market Evolution 5

In the literature, the simple contract puzzle—why simple contracts can arise from the complex

world—has attracted many explanations; e.g., product non-specificity and bargaining power (Iyer

and Villas-Boas 2003), arbitrage (Tirole 1988), antitrust laws (McAfee 2009), contractual and com-

munication complexities (Mookherjee 2006), and behavioral factors such as trust and fairness con-

cerns (Cui et al. 2007, Katok et al. 2014, Özer et al. 2011). The issue of market dynamics, however,

has not been well studied.

On this issue, Battaglini (2005) and Lobel and Xiao (2017) are the most relevant studies. They

use the mechanism design approach (see, e.g., Courty and Hao 2000, Pavan et al. 2014).5 They find

that simple contracts can arise from dynamic settings, when the dynamics is either binary or IID.

Building on this literature, we address the puzzle under more complex market behaviors (auto-

correlation, continuity, and nonstationarity), and explicate their policy implications for channel

management. Moreover, we pinpoint the general property—stochastic linearity—that guarantees

the contract simplicity. This result legitimizes the use of simple contracts in much broader channel

situations. As such, our work enriches the methods and insights of the channel literature.

3. Formulation

Consider a distribution channel. The upstream manufacturer sells a perishable product through

the downstream retailer over T periods. The channel operates in a make-to-order fashion, carry-

ing no stock over time. In each period the consumer (inverse) demand Pt = zt − qt is determined

by the market condition (sales potential) zt and quantity qt. The market condition zt ∈ Z ≡ [ℓ,h]

evolves over time, and only the retailer observes zt. Let zt ≡ (z0, z1, . . . , zt) be a history (path) at

time t, and zts = (zs, zs+1, . . . , zt) the history from time s to t. Both firms are forward-looking, risk

neutral, and profit maximizing; they share the same discount factor δ ∈ [0,1].

The sequential game proceeds as follows. (1) In period 0, the manufacturer offers the retailer a

long-term contract: (pt, qt)t ≡
{
(pt(z

t), qt(z
t)) : zt ∈Zt, t≤ T

}
, where pt(z

t) is the total payment for

ordering quantity qt(z
t). (2) In each period t ≥ 0, the retailer first observes zt, then orders qt(ẑ

t),

where ẑt = (ẑ0, . . . , ẑt). (3) The manufacturer produces at marginal cost c, delivers the product, and

gets paid pt(ẑ
t). (4) The retailer sells the product for revenue R(qt(ẑ

t), zt) =
(
zt − qt(ẑ

t)
)
qt(ẑ

t). (5)

The market condition evolves to zt+1, and the stage game of (2)–(5) repeats.

From the manufacturer’s perspective, the contract should control two strategic maneuvers of

the retailer. First, the market condition zt is critical for channel efficiency (matching supply with

demand); but the better informed retailer may misreport, if the cost saving of doing so outweighs

5 The mechanism design literature is vast. The most relevant papers include Courty and Hao (2000), Fernandes and
Phelan (2000), Battaglini (2005), Eső and Szentes (2007), Bergemann and Välimäki (2010), Pavan et al. (2014), Deb and
Said (2015), Lobel and Xiao (2017), Kuribko et al. (2018). For comprehensive reviews, see Bergemann and Said (2011)
and Vohra (2012). For book-length treatments, see Laffont and Martimort (2001) and Bolton and Dewatripont (2005).
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its revenue reduction. Therefore, the contract should offer a truthtelling incentive for credible infor-

mation sharing. Second, the retailer may walk away, if taking his outside option is more profitable

than the channel relationship. Therefore, the contract should ensure the participation constraint. To

write such a contract, the manufacturer must account for evolving market conditions, and price

retailer’s information advantages properly. Both tasks hinge on an accurate market evolution

model.

3.1. Time-Series Model for Market Evolution

It has long been recognized that models useful for policy recommendations should be good

descriptive models first (Franses 2005, Kuzu et al. 2018). For market evolution, the empirical liter-

ature documents three key behaviors: autocorrelation, continuity, and nonstationarity (Dekimpe

and Hanssens 1995). For example, market conditions are usually serially correlated, because of

agents’ habit persistence, forward-looking behavior, and dynamic responses to exogenous vari-

ables (Chintagunta et al. 2006). They may vary continuously within a stable range, e.g., in the

mature phase of a product life cycle. They may fluctuate drastically around an upward trend, e.g.,

in the initial phase of new product sales (Bass 1995).

We use a general time-series model to capture these behaviors. The equation of motion is zt+1 =

Gt+1(zt, ϵt+1), where ϵt+1 is the random shock, and function Gt+1 increases in (zt, ϵt+1). The evolu-

tion induces (cumulative) transition probability Λt+1(zt+1|zt) with density λt+1(zt+1|zt). This is the

workhorse model in time-series econometrics (Hamilton 1994). The function Gt+1 represents spec-

ifications such as constant, IID, autoregressive, and generalized linear models. It can be readily

estimated from demand data. As such, the model directly links to channel practice.6

This model captures several realistic market behaviors. (i) The state space Z ⊂ R+ allows con-

tinuous market changes. (ii) The random shock ϵt+1 captures stochastic market factors, e.g., com-

petitive moves, consumer preference shifts (Villas-Boas 1999), and macro business cycles. (iii) The

time dependence of function Gt+1 allows nonstationary evolution—market conditions can follow

different distributions in different periods (Gao et al. 2018). This is to capture the trend and season-

ality of the time series; e.g., decay advertising effects in the Koyck model, and diffusion pattern

of new product sales in the Bass model (Tellis 2006). Indeed, it is one of the most general time-

series models, allowing both parametric and nonparametric specifications. (iv) The monotonicity

of Gt+1 ensures the first order stochastic dominance of market evolution. This is to capture the

reality that similar market conditions tend to persist for a while before changing substantially to

another one; e.g., the carryover effect. (v) Finally, the structure of Gt+1 specifies the autocorrelation

(intertemporal correlation)—the defining feature of a time series (Hamilton 1994).

6 For example, the Bass diffusion model follows Nt+1 =G(Nt, ϵt+1) =Nt + p(m−Nt)+ qNt
m

(m−Nt)+ ϵt+1, where Nt

is the sales till period t, m market size, p innovation parameter, and q imitation parameter (Dekimpe et al. 2008).
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Next, we develop the notion of market inertia. It serves three purposes later: to price retailer’s

information advantage, to control price and quantity over time, and to determine the contract

complexity. The pricing rationale goes as follows. Observing private information zt, the retailer

can manipulate it by ∆zt for a better deal. The manipulation ∆zt has short-term, long-term, and

cumulative effects. To assess all three effects, the notion should be able to measure how market

changes are intertemporally linked, i.e., how the change ∆zt at one point in time affects future

conditions. Conceptually, the notion is akin to the expected marginal effect of infinitesimal change

∆zt on {zτ}τ>t, holding all else equal. We call it market inertia.

Formally, we define market inertia as follows. First, we define the one-period market inertia

by ξ(zt, zt+1)≡Eϵ

[
∂ztGt+1(zt, ϵ)

∣∣zt+1 =Gt+1(zt, ϵ)
]
, conditioning on the shocks that generate the path

(zt, zt+1). By the chain rule, we then define the t-period inertia as ξ(zt)≡
∏t−1

τ=0 ξ(zτ , zτ+1). Market

inertia is easy to estimate from demand data. For many commonly used time-series models, it also

has a clear statistical interpretation: e.g., the autoregressive process zt+1 = αzt + ϵt+1 has market

inertia ξ(zt, zt+1) = α, and ξ(zt) = αt, which coincides with the autocorrelation function (ACF) ρt ≡
cov(zt,z0)√

var(zt)·var(z0)
= αt (Box et al. 2011).7 In this case, the market inertia is independent of history details

zt, a key property for channel contracting (cf. §5.2).

Market inertia measures all three effects of retailer manipulation. (i) The one-period inertia

ξ(zt, zt+1) is a short-term elasticity, which measures the expected effect of a change in zt on zt+1,

holding constant the shocks ϵ with zt+1 =Gt+1(zt, ϵ). (ii) The t-period inertia ξ(zt) is a long-term

elasticity, which measures how the change ∆z0 propagates along path zt to affect future zt. (iii)

Finally, the weighted sum of inertia ξ(zt) measures the accumulative effect. The key takeaway is

that, the slower the market evolution, the longer the effects of manipulation, the higher the market

inertia.

3.2. Decision Model for Contracting

We build on the mechanism design literature (Vohra 2012). By the revelation principle (Myerson

1986), we can focus on the direct revelation mechanisms. Formally, we frame the manufacturer’s

contracting problem as a dynamic program, while casting the retailer’s strategic reactions as its

constraints. By incentive compatibility, truth telling is the retailer’s equilibrium strategy—he can-

not gain from deviation.8 Under the truth telling strategy, in each period t, the retailer reports

truthfully ẑt(z
t) = zt, and obtains his equilibrium continuation payoff

Ut(z
t−1, zt) =R(qt(z

t), zt) − pt(z
t) + δEzt+1

[Ut+1(z
t−1, zt, zt+1)|zt]. (1)

7 The formal derivation is in Lemma 1. Market inertia ξ(zt) and ACF ρt are conceptually different objects: the former
measures the marginal effects; the latter measures the linear relationship (correlation). So the agreement here is coinci-
dental, driven by the linear dynamics.
8 In the adverse selection context, the revelation principle guarantees that the off-equilibrium behavior is irrelevant for
finding optimal contracts: one only needs to consider direct revelation mechanisms (Fudenberg and Tirole 1991).
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By the one-step-deviation principle (Mailath and Samuelson 2006), we can focus on the one-

step-deviation strategies, in which the retailer can misreport in the current period, but returns to

the truth-telling strategy from t+1 onward. For history zt−1, current state zt, and report ẑt, he has

continuation payoff Ũt(z
t−1, ẑt;zt) = R(qt(z

t−1, ẑt), zt) − pt(z
t−1, ẑt) + δEzt+1

[Ut+1(z
t−1, ẑt, zt+1)|zt]. Hence,

Ut(z
t) =Ut(z

t−1, zt) = Ũt(z
t−1, zt;zt).

The retailer’s strategic reactions entail two classes of constraints. The first is the participation

constraints: IR0(z0)≡U0(z0)≥ 0, which ensure the retailer’s participation, by offering him higher

payoff than his outside option (normalized to zero). The second class is the incentive compatibility

constraints: ICt(z
t) ≡ Ut(z

t)−maxẑt Ũt(z
t−1, ẑt;zt) ≥ 0, which enforce truth telling, by guarantee-

ing that reporting truthfully is the retailer’s best choice: Ut(z
t) =maxẑt Ũt(z

t−1, ẑt;zt). As such, the

retailer would not entertain off-equilibrium actions—they would never do better. The manufac-

turer then solves

V0 =max
{
E
[∑

t≥0 δ
t
(
pt(z

t)− c · qt(zt)
)]

: IR0(z0)≥ 0, ICt(z
t)≥ 0,∀zt,∀t

}
. (P0)

This formulation (P0) is fairly general, explicitly modeling arbitrary demand process and

intertemporal interactions. It is also more difficult to solve. We tackle it with the relaxation tech-

nique. First, we construct a new problem (P1) with larger but simpler decision space F1. Second,

we characterize the optimal solution set F∗
1 of (P1). Third, we pinpoint solutions in F∗

1 that are

also feasible and hence optimal for (P0). We execute this idea and detail the solution procedure in

the Appendix.

4. How Should the Channel Adapt to Changing Market Conditions?

We first characterize the optimal contract. The key issue is how to set information rent and

quantity distortion to ensure credible information sharing. The central notion is market inertia.

THEOREM 1. For problem (P0), the optimal quantity and price are

qt(z
t) =

zt − c

2︸ ︷︷ ︸
efficient quantity

− 1

2
· η(z0) · ξt(zt)︸ ︷︷ ︸
distortion D(zt)

, pt(z
t) = [zt − qt(z

t)] · qt(zt)︸ ︷︷ ︸
sales revenue

−
(
Ut(z

t)− δEzt+1
[Ut+1(z

t+1)|zt]
)

︸ ︷︷ ︸
per period rent

.

The information rent for retailer-zt is Ut(z
t) =Ut(z

t−1, ℓ)+

∫ zt

ℓ

dẑt ·E
[ ∑

τ≥0 δ
τ · ξ(zt+τ

t ) · qt+τ (z
t+τ ) |ẑt

]
.

Dynamic information rent: The manufacturer should pay the dynamic information rents Ut

for credible information sharing.9 The rent arises from information asymmetry and strategic inter-

action. Consider a high type retailer z0. He enjoys the advantage of ∆z0-better sales potential over

his lower peers z′0 = z0 −∆z0. So for the same quantity q0, he can command a higher retail price

9 Morton Kamien: “Economists, unlike lawyers, believe you have to pay people to tell the truth” (Vohra 2011).
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and greater profit; e.g., price at P0 = (z0 − q0) > (z′0 − q0) = P ′
0, and gain q0∆z0 more. Unless he

is paid a premium, retailer-z0 would manipulate—act as if he were retailer-z′0—to pocket in the

difference q0∆z0. To prevent such manipulation, the manufacturer must pay the premium—the

information rent U0.

This requires pricing retailer’s advantage properly. Intuitively, the more heterogeneous the mar-

ket, the severe the information asymmetry, the stronger the manipulation incentive, the larger

the information rent. The market (type) heterogeneity is measured by the (inverse) hazard rate

η(z0)≡ 1−Λ0(z0)

λ0(z0)
. This is the central idea of static screening (Mussa and Rosen 1978). Indeed, when

the future does not count (δ = 0), we recover the static case EU0(z0) = U0(ℓ) + E [η(z0)q0(z0)], in

which hazard rate η alone is sufficient for pricing retailer’s advantage.

In the evolving market, this is no longer the case. The high type retailer-zt now enjoys both

short- and long-term advantages over the lower type (zt−1, z′t) with z′t = zt −∆zt. The short-term

advantage is familiar—each period the high type has better sales potential and can gain qt∆zt more

revenue.10 The long-term advantage is new—the high type is ∂ztΛt+1(zt+1|zt) ·∆zt more likely to

have higher sales potential in the next period and beyond. To price these two advantages, the rent

Ut must account for all future market evolution and retailer’s manipulation potentials.

Theorem 1 shows how. Managerially, the rent Ut is the present value of retailer’s option to

manipulate over time. Technically, the rent Ut is the sum of weighted short-term advantage

qt+τ∆zt+τ in all future periods, where the weight ξ(zt+τ
t ) is the market inertia that measures

retailer’s residual long-term advantage τ periods into the future.

Quantity Distortion: The manufacturer should reduce quantity qt from the first-best level (zt−
c)/2 by distorting downward D(zt)≡ η(z0)ξ(z

t)/2. The first-best level fluctuates with the current

market condition zt. The distortion is more involved: it is necessary for almost all retailers,11 and

may depend on the entire history zt = (z0, . . . , zt). Its purpose is to reduce the information rent: by

distorting production downward by a small amount ∆q from the first best, only a second-order

loss in direct profit arises, but a first-order gain in strategic rent reduction is secured.12

To get the intuition of how the market inertia drives distortion, we now dissect the first order

condition for q1(z1) (cf. Lemma 3’s proof):[
δ ·P(z1) ·

(
z1 − 2q1(z

1)
)
− c

]︸ ︷︷ ︸
direct revenue effect

− δ · [1−Λ0(z0)] · [Λ1(z
′
1|z′0)−Λ1(z

′
1|z0)]︸ ︷︷ ︸

strategic rent effect

= 0. (2)

10 The gain comes from ∂ztR(qt, zt) ·∆zt = ∂zt [ztqt − (qt)
2] ·∆zt = qt∆zt.

11 We speak of almost all in the following sense: Since η(h) = 0, the retailers in set H0 = {zt : z0 = h, t≥ 0} will not distort;
they order the first-best instead. But given the continuous nature of market conditions, the set of those retailers is of
probability zero; i.e., Z = [ℓ,h]⊂R implies P{H0}= 0.
12 The optimal quantity qt is determined by two trade-offs: (i) the revenue benefit and production cost in channel oper-
ation (Li and Gao 2008); (ii) the efficiency loss and rent extraction in strategic interaction.
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Intuitively, increasing q1(z
1) by infinitesimal ∆q has two countervailing effects. The first is a direct

revenue effect of efficiency gain [(zt−2qt)− c] ·∆q at z1 (because of the reduced distortion),which

translates into the additional revenue gain at time 0:

δ ·λ1(z1|z0)λ0(z0)∆z︸ ︷︷ ︸
≈ P(z0, z1)

·[(z1 − 2q1)− c] ·∆q. (GAIN)

The second effect is the rent increase for ensuring the truth telling of higher type retailers z′0 > z0.

This effect is more involved. As the retailer z1 raises quantity by ∆q, to ensure IC1, his higher

counterpart (z0, z′1) with z′1 > z1 must be paid ∂q1 [∂z1R(q1, z1)] ·∆q = ∆q more for truth telling;

but then their predecessor z′0 with z′0 > z0 must be paid [Λ0(z
′
1|z0)−Λt(z

′
1|z′0)] ·∆q more for truth

telling, because retailer-z′0 is [Λ0(z
′
1|z0)−Λt(z

′
1|z′0)] more likely than retailer-z0 to have rosier future

condition z′1 > z1 (by the first order stochastic dominance). Viewed at time 0, there are P(z′0 > z0) =

[1−Λ0(z0)] such retailers. Hence, the total loss is

δ · [1−Λ0(z0)] · [Λ1(z
′
1|z0)−Λ1(z

′
1|z′0)] ·∆q. (LOSS)

Balancing these two countervailing effects, (GAIN)=(LOSS), we obtain:

1

2
·
[(
z1 − 2q1(z

1)
)
− c

]︸ ︷︷ ︸
marginal channel profit

=
1

2
· 1−Λ0(z0)

λ0(z0)︸ ︷︷ ︸
inv. hazard rate η(z0)

· [Λ(z′
1|z0)−Λ(z′

1|z′
0)]/∆z

λ1(z1|z0)︸ ︷︷ ︸
market inertia ξ(z0, z1)

=
1

2
· η(z0) · ξ(z1), (3)

where the distortion 1
2
· η(z0) · ξ(z1) is driven by the product of hazard rate η(z0) and market

inertia ξ(z1).

Intuitively, the distortion is to resolve the tension between revenue gain and rent extraction.

In static screening, the tension is across retailer type; so the hazard rate alone is sufficient to

determine the distortion 1
2
· η(z0). In dynamic screening, the tension is far more complicated: it

spreads across both type and time. Resolving it requires one to determine the size and timing of

the distortion. This would entail complex tracking of entire history (z0, . . . , zt) and intertemporal

calculation—a daunting task.

Yet Theorem 1 shows this task can get done easily. All one needs is a simple multiplication of

market inertia ξ(zt). This greatly simplifies the contract computation. The simplification is akin

to sufficient statistics and factorization theorem: the market inertia compresses the entire history

(z0, . . . , zt) into a single term ξ(zt), and that term enters the contract in the factorization form.

In this sense, the market inertia is a “sufficient statistic”: it summarizes all the relevant market

information for contracting.

COROLLARY 1. For problem (P0), the complexity of market inertia determines the complexity of the

optimal contract.
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5. Policy Implications

Researchers have derived many theoretical insights for channel management. These insights

are mainly based on simplistic market behaviors; e.g., static setting, IID demand, and binary type.

Yet the further the models are abstracted away from reality, the weaker the credibility of the policy

recommendations (Reiss 2011). Indeed, practitioners often question: Can these insights be applied

to more realistic contexts?13

5.1. The Limitations of Static Screening

The static screening framework has two main predictions (Mussa and Rosen 1978): (a) the low

type is always downward distorted; (b) under information asymmetry, channel coordination—the

first best—is unattainable. Neither holds in the dynamic settings. The main reason is that, market

inertia can change distortion behavior over time, and hence the predictions.

For prediction (a), consider two dynamic scenarios: (i) retailers with z0 = h (hence η(h) = 0); (ii)

independent market conditions (hence ξ(zt) = 0). In either scenario, the distortion vanishes for

t > 0, and the retailer-zt orders the first best qt = (zt− c)/2, regardless of his current type zt. Hence

prediction (a) fails in dynamic settings.

For prediction (b), the channel cannot coordinate in static settings, because the static distortion

is always positive; η(z0)/2> 0 for all z0 ∈ [ℓ,h). This is no longer the case for dynamic screening.

When long-run market inertia converges to zero, the dynamic distortion vanishes—the channel

can achieve coordination in the long run; see (–N–) in Figure 1. For example, the linear dynamics

zt+1 = γ +αt+1zt + ϵt+1 with αt+1 ∈ [0,1), has limt ξ(z
t) = limt(α1α2 . . . αt) = 0, which implies zero

distortion eventually limt η(z0)ξ(z
t)/2 = 0, and hence the channel coordinates. This overturns pre-

diction (b).

5.2. The “Simple Contract” Puzzle

A contract is simple if it is independent of history details (Bolton and Dewatripont 2005, Plam-

beck and Taylor 2006). The prevalence of simple contracts has long puzzled researchers. The

world is complex. Theory predicts that optimal contracts should depend on all the relevant infor-

mation, hence complex; but channel managers often use simple contracts. When and why can

simple contracts be optimal in the complex world?

Lobel and Xiao (2017) make great progress on this issue. For an inventory system, they show

that the optimal contact is simple under the dynamic, IID demand. In our context, the IID demand

implies: (i) all future periods are stochastically similar to the initial period; (ii) retailer’s information

13 These insights still hold if one can recover their premises in practice. For example, for linear dynamics zt = αtzt−1+ϵt,
(i) the static condition arises, when αt = 1 and Eϵt = var(ϵt) = 0, ∀t; (ii) the IID condition prevails, when αt = 0, ∀t; (iii)
the stationary condition 0≤ ξt < 1 is equivalent to 0≤minαt ≤maxαt < 1.
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advantage (knowing z0) lasts for only one period. After the initial period, both parties are equally

informed of the future—they both forecast future conditions with the same prior Λ0. As such,

distortion is necessary only in the initial period. Hence, the optimal contract is simple.

We model the complexity of the world in the sense of arbitrary demand process. This allows us

to offer a new explanation for the “simple contract” puzzle. The central argument is that contracts

are firms’ best response to market dynamics. Intuitively, the dynamics seems only to complicate

contracts, because the time dimension greatly expands contingencies. But this intuition tells only

half the story: the dynamics also allows additional flexibility of arranging activities across time,

whose effects are fully captured by the market inertia. Thus, the dynamics per se does not deter-

mine the contract complexity; it is the market inertia that determines the complexity. As such,

simple contracts can and do arise, as the best response to changing environments, even in the

world of complex dynamics (autocorrelation). We formalize this explanation below.

PROPOSITION 1. For problem (P0), the optimal contract is simple, if the market is stochastic-linear:

for t≥ 0, zt+1 = γ+αt+1zt + ϵt+1, where ϵt+1 is the random shock.

Proposition 1 identifies the general statistical property that guarantees the contract simplicity.

Indeed, the linear dynamics has market inertia ξ(zt) = α1 · · ·αt; the resulting quantity qt(z
t) =

(zt − c)/2− (α1 · · ·αt)η(z0)/2 is independent of history detail (z1, z2, . . . , zt−1), and hence simple.

With zero slope αt+1 = 0, the IID demand is a special case of stochastic linearity.

The intuition for Proposition 1 is as follows. The market inertia plays dual roles: empirically,

it measures the marginal effect of the dynamics (in the time-series model); theoretically, it is also

a sufficient statistic that determines the contract complexity (in the contract decision model). So,

for the optimal contract to be simple, ξ(zt) should be independent of history details. Technically,

the history independence requires that, except the the first order effect, there should be no higher

order influences. Hence, the dynamics is necessarily linear.

Proposition 1 is reassuring. For managers, as long as their markets are stochastic-linear, they can

focus on simple contracts and safely ignore past observations, without worrying about efficiency

loss. More importantly, linear dynamics are common in reality (Dekimpe et al. 2008). As such, we

justify the use of simple contracts for a much broader class of channel conditions.

5.3. Beyond Simplistic Market Behaviors

For a channel manager, a key question is how to adapt to realistic market conditions. Our model

provides such a decision support: from demand data, one can estimate the market inertia, then

classify market conditions, and finally craft policy response accordingly.

Market inertia is easy to estimate. It is straightforward if we have estimated the dynamics Gt+1

from time series analysis. In case the evolution is properly parameterized, we can further reduce
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data requirement (Gao et al. 2017). For example, if the market condition follows a Markov process

(Luo et al. 2016, Chen et al. 2017), we can back out Gt+1 directly. To illustrate how to classify

evolution and formulate policy, we consider the linear dynamics with market inertia ξt = α1 ·

α2 . . . αt.

Case 0≤ ξt < 1: Past shocks have only short-term effect; their long-term effect diminishes over

time. Hence, the market inertia vanishes eventually, limt ξt = 0, resulting in stable market condition

with a fixed mean and finite variance. Intuitively, this case characterizes business-as-usual, the

mature and decline stages of new product sales. Technically, as t → ∞, distortion η(z0)ξt/2 ↓ 0,

quantity qt ↑ (zt−c)/2 (see –9– in Figure 1), and retail price Pt ↓ (zt+c)/2. The key policy response

is therefore vanishing distortion; see (–N–) in Figure 1.

This case has two implications. (i) Managers should phase out quantity distortion and informa-

tion rent gradually, because the impact of manipulation diminishes over time. (ii) As distortion

fades away, the retailer should reduce retail price, resulting in decreasing price path. The literature

has explained the deceasing price path by learning curve effect, skim pricing strategy, and com-

petition (Rao 2009). We show it may also emerge endogenously from vanishing distortion and

improving efficiency.

Case ξt = 1: Each shock has a permanent effect on the future. Hence, the market inertia persists,

limt ξt = 1. Market condition zt has no fixed mean; its variance increases with time. This case

characterizes random walk markets, e.g., (zt+1 − zt) = ϵt+1 ∼N (0, σ2). The key policy response is

constant distortion: although quantity qt(z
t) = (zt − c)/2− η(z0)/2 still responds to current market

condition zt through the first best level (zt − c)/2, its distortion η(z0)/2 should remain constant;

see (–◦–) in Figure 1.

Case ξt > 1: Past shocks become increasingly more important for the future. This case charac-

terizes exponential growth conditions, such as viral market phenomena and rapid growth stage

of new product sales. They can be driven by the word-of-mouth contagion, network effects, and

hysteresis effect. The key policy response is intensifying distortion. Intuitively, because market iner-

tia ξt > 1, the impact of early manipulation—retailer’s advantage—amplifies over time. To ensure

truth telling in early periods, the manufacturer must neutralize the amplified advantage by inten-

sifying future distortion η(z0)ξt/2; see (–H–) in Figure 1.

Our policy recommendations complement existing ones. For example, Battaglini (2005) studies

the binary model with Markov demand. He establishes two main principles for the stable type

process (i.e., 0≤ ξt < 1): a generalized no distortion at the top (GNDT), and the vanishing distor-

tion at the bottom (VDB). Two policy recommendations are: (i) the distortion should be limited to

consistent-low types only, ℓt = (ℓ, ℓ, . . . , ℓ); (ii) the distortion should diminish over time.
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Figure 1 Expected order quantity Eqt for linear dynamics: c= 0.5, η(z0) = 0.5, ϵt ∼N (0,0.32), zt = 2, ∀t

Note: Vanishing distortion αt = 0.6; Constant distortion (second best) αt = 1; Intensifying distortion αt =

1.1; Non-monotonic distortion αt = 0.8 for t < 5, and αt = 1.2 for t≥ 5.
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Our work differs from the binary model in two substantive ways. The first is applicability. Real

markets are often complex: market phenomena, such as viral products and random walk, are

continuous and nonstationary. The binary model cannot capture these complexities of real mar-

kets. In contrast, our model builds on arbitrary demand and thus forges the direct link to reality.

This difference is critical to channel managers: given the continuous nature of market conditions

zt ∈ [ℓ,h]⊂R+, the very concept of high or low type is often ill-defined, let alone implementation.

The second substantive difference is in policy recommendations. (i) The binary model pre-

scribes the first best quantity for the majority of retailers, and limits the distortion to types ℓt

only. Our model prescribes the opposite: in a continuous market, almost all retailers should dis-

tort quantities, and only retailers with z0 = h order the first best.14 This reverse is driven by the

increased complexity to ensure IC constraints. In the binary model, the manufacturer faces only

two types; to ensure IC, distorting the ℓ-type is sufficient. In the continuous model, however, the

manufacturer faces multiple types in [ℓ,h]. To ensure IC, he must ensure truthtelling from all types

above ℓ, i.e., z0 ∈ (ℓ,h]. This requires far more refined responses, resulting in pervasive distortion.

(ii) The binary model prescribes vanishing distortion over time. As we have shown, this is the

right policy for the stable market conditions (0≤ ξt < 1). However, when markets follow random

walk (ξt = 1) or grow exponentially over time (ξt > 1), the distortion need not vanish. In these

markets, to neutralize the escalated advantage of the retailer, the manufacturer should respond

in kind, intensifying distortion over time. Indeed, the distortion should move in lockstep with the

14 Given the continuous space Z = [ℓ, h], the set of retailers who order the first best is of probability zero: P{zt : z0 =
h, t≥ 0}= 0.
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market inertia: when the market is expecting regime changes (Hamilton 2010), the distortion can

even follow non-monotonic patterns; see (–�–) in Figure 1.

In summary, our results call for caution when applying the channel insights based on simplistic

market assumptions. Indeed, real market conditions are often complex, requiring far more subtle

responses.15

6. Concluding Remarks

Real markets evolve over time. Their behaviors are central to channel management. A key issue

is how these behaviors affect channel contracting. The existing theoretical studies mainly focus on

simplistic market behaviors, which often limit their applicability. This paper puts realistic market

behaviors—autocorrelation, continuity, and nonstationarity—on the center stage. We develop a

general framework that captures market evolution, information asymmetry, and strategic interac-

tions over time. To overcome the technical challenge, we transform the problem into one defined

on a higher dimension. Using this relaxation technique, we are able to fully characterize the opti-

mal contract under arbitrary market evolution—the most general case in the channel literature.

We develop the notion of market inertia that links time-series data to contracting. Market inertia

plays three roles: price retailer’s information advantage, set contract response to evolving market

conditions, and determine the contract complexity. Using market inertia, we identify a general

property—stochastic linearity—that justifies the use of simple contracts in a much wider range of

channel conditions.

For practitioners, we offer three refined prescriptions: linear market dynamics requires only

simple contracts; continuous markets entail pervasive quantity distortion; nonstationary markets

call for subtler responses (e.g., the distortion can be vanishing, constant, intensifying, or even non-

monotonic over time). By highlighting the central role of realistic market behaviors, we take a step

closer to a better understanding of channel theory and practice.
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Supplemental File

Table 1 Notation

c unit production cost
δ discount factor, δ ∈ (0,1)
zt market condition in period t, zt ∈Z , where Z ≡ [ℓ,h]
zt the history from 0 to t; zt ≡ (z0, . . . , zt)∈Zt, where Zt ≡×t

s=0Z
zts the history from s to t; zts = (zs, zs+1, . . . , zt)

Λ0(z0) the prior (cdf) of z0, with pdf λ0

η(z0) the inverse hazard rate of z0, η(z0) = 1−Λ0(z0)
λ0(z0)

[f ]−1 inverse of function f ∈YX ; [f ]−1(y)≡ {x∈X : f(x) = y }, ∀y ∈Y
(qt)t sequence {qt : 0≤ t≤ T}

∂xf(x, y) the derivative of function f with respect to x
Ezst

[f(zst )|zt] conditional expectation with respect to random vector zst = (zt, zt+1, . . . , zs) given zt
Λt+1(z

′
t+1|z′t) the cumulative transition probability P(zt+1 ≤ z′t+1|zt = z′t), with density Λt+1(z

′
t+1|z′t)

Lemma 1 and Its Proof

The following technical lemma is critical for characterizing the optimal contract.

LEMMA 1. (i) For the process zt+1 =Gt+1(zt, ϵt+1), with differentiable transition probability Λt+1(zt+1|zt) and

density λt+1(zt+1|zt), we have

∂ztGt+1(zt, ϵ) = ∂zt

(
[Λt+1]

−1(ϵ|zt)
)
=−∂ztΛt+1(zt+1|zt)

λt+1(zt+1|zt)
. (4)

(ii) For αt+1 ≥ 0, the process zt+1 = αt+1zt + ϵt+1, has market inertia ξ(zt, zt+1) = αt+1, ξt(zt) =
∏

s≤t
αs. It

satisfies first order stochastic dominance, with ∂ztΛ(zt+1|zt) =−αt+1 ·λ(zt+1|zt).

Proof: Part (i). To ease notation, we suppress time index from Λt+1 and λt+1, i.e., Λ=Λt, and λ= λt, ∀t.
For two consecutive states (zt, zt+1), let Λ(zt+1|zt) = ϵ ∈ [0,1]. By definition, Λ(·|zt) is increasing in zt+1.

Hence, its inverse function is well defined, and

[Λ]−1(ϵ|zt) = zt+1 =G(zt, ϵ). (5)

Substituting it into Λ(zt+1|zt) = ϵ, we have

Λ
(
[Λ]−1(ϵ|zt)

∣∣∣zt)= ϵ.

This implies that ϕ(zt)≡ Λ
(
[Λ]−1(ϵ|zt)

∣∣∣zt)= ϵ is independent of zt. Taking total derivative of ϕ(zt) = ϵ, by

the chain rule, we have
d

dzt
ϕ(zt) = λ

(
[Λ]−1(ϵ|zt)

∣∣∣zt) · ∂zt [Λ]
−1(ϵ|zt) + ∂ztΛ

(
[Λ]−1(ϵ|zt)

∣∣∣zt)
= λ(zt+1

∣∣zt) · ∂zt [Λ]
−1(ϵ|zt) + ∂ztΛ(zt+1|zt)

= ∂ztϵ= 0,

which implies:

∂ztG(zt, ϵ) = ∂zt

(
[Λ]−1(ϵ|zt)

)
=−∂ztΛ(zt+1|zt)

λ(zt+1|zt)
.

Part (ii). By part (i), we have
∂ztΛ(zt+1|zt)
λ(zt+1|zt)

=−∂zt

(
[Λ]−1(ϵ|zt)

)
=−∂zt

(
zt+1

)
=−∂zt

(
αt+1zt + ϵ

)
=−αt+1.

By Eq. (6), ∂ztΛ(zt+1|zt)≤ 0, hence the first order stochastic dominance follows.
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Proof of Theorem 1

We use the relaxation technique to solve (P0). First, we construct a relaxed problem (P1) with a simpler

feasible set F1 ⊃F0. Second, we characterize the optimal solution set F∗
1 of (P1). Third, we verify a solution

in F∗
1 is also feasible for (P0), hence it must be optimal for (P0).

Formally, for problem (Pi) : Vi = maxFi
Ṽ , i = 0,1, let Fi and F∗

i be its feasible and optimal sets. Clearly,

F0 ≡ {(pt, qt)t : IRt, ICt,∀t}. Then F0 ⊂F1 implies V0 ≤ V1 and

F∗
1 ∩F0 ⊂F∗

0 .

We execute this idea in three lemmas: relaxation Lemma 2, Characterization Lemma 3, and Verification

Lemma 4. First, we construct a simpler set F1 by replacing set F0’s ICt constraints with necessary derivative

condition:

LEMMA 2. (Relaxation) If the contract (pt, qt)t is sequentially incentive compatible, then

(i) Ut(ẑ
t−1, zt) increases in zt.

(ii) Ut(ẑ
t−1, zt) is differentiable in zt almost everywhere, with

∂ztUt(ẑ
t−1, zt) =

∑
τ≥0Ezt+τ

t+1

[
δτ · ξ

(
zt+τ
t

)
· qt+τ (ẑ

t−1, zt, z
t+τ
t+1)|zt

]
. (6)

Let F1 ≡ {(pt, qt)t : IR0, Eq.(6), ∀t}. Hence, F0 ⊂F1. This relaxation is critical, because after changing deci-

sion variables from (pt, qt)t to (Ut, qt)t, we can use the derivative condition (6) to express (P1) by quantities

(qt)t alone. This allows a simple characterization:

LEMMA 3. (Characterization) For (pt, qt)t ∈F∗
1 , we have qt(zt) increases in each zs, s= 0, . . . , t, and

qt(z
t) =

zt − c

2
− 1

2
· η(z0) · ξ

(
zt
)
, (7)

pt(z
t) = [zt − qt(z

t)] · qt(zt)−
(
Ut(z

t)− δE[Ut+1(z
t+1)|zt]

)
, (8)

where

Ut(z
t) =Ut(z

t−1, ℓ)+

∫ zt

ℓ

{∑
τ≥0Ezt+τ

t+1

[
δτ · ξ(ẑt, zt+τ

t+1) · qt+τ (z
t−1, ẑt, z

t+τ
t+1)

∣∣ẑt]} · dẑt. (9)

Finally, we argue that (qt, qt)t ∈F∗
1 is indeed incentive compatible and hence optimal.

LEMMA 4. (Verification) The solution (pt, qt)t in (7)–(9) is feasible and hence optimal for (P0).

The results then follow immediately. The proofs of these lemmas are next.

Proof of Lemma 2

We proceed in two steps. To ease notation, we suppress time index from Λt and λt.

STEP 1: We prove parts (i) and (ii) together by backward induction.

For the last period T , we have a canonical, static screening problem (Fudenberg and Tirole 1991), with

the incentive compatibility constraint UT (ẑ
T−1, zT ) =maxẑT ŨT (ẑ

T−1, ẑT ;zT ), where

ŨT (ẑ
T−1, ẑT ;zT ) =

(
zT − qT (ẑ

T )
)
qT (ẑ

T )− pT (ẑ
T ).
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Clearly, ŨT (ẑ
T ;zT ) increases in zT , and hence differentiable almost everywhere (a.e.) in zT , with

∂zT ŨT (ẑ
T ;zT ) = qT (ẑ

T ). By the Envelope Theorem, UT (z
T−1, zT ) is also differentiable in zT almost every-

where. Thus, parts (i) and (ii) hold for period T .

Suppose parts (i) and (ii) hold for t+1. We show they also hold for period t. Since Ut+1 is differentiable

a.e., by Fubini’s Theorem, we have

E[Ut+1(ẑ
t, zt+1)|zt] =

∫
Z
∂zt+1

Ut+1(ẑ
t, zt+1)[1−Λ(zt+1|zt)] dzt+1, (10)

which follows from

E[Ut+1(ẑ
t, zt+1)|zt] =

∫
Z
Λ(dw|zt) ·Ut+1(ẑ

t,w) =

∫ h

ℓ

λ(w|zt)dw
∫ w

ℓ

∂vUt+1(ẑ
t, v)dv

=

∫ h

ℓ

∫ w

ℓ

∂vUt+1(ẑ
t, v)λ(w|zt)dv dw=

∫ h

ℓ

∫ h

v

∂vUt+1(ẑ
t, v)λ(w|zt)dwdv Fubini’s theorem

=

∫ h

ℓ

∂vUt+1(ẑ
t, v)dv

∫ h

v

λ(w|zt)dw=

∫ h

ℓ

∂vUt+1(ẑ
t, v)[1−Λ(v|zt)] dv.

Hence,

Ũt(ẑ
t;zt) = [zt − qt(ẑ

t)]qt(ẑ
t)− pt(ẑ

t)+ δ

∫
Z
∂zt+1

Ut+1(ẑ
t, zt+1) · [1−Λ(zt+1|zt)] · dzt+1. (11)

Incentive compatibility implies that, for z′′
t > z′

t,

Ut(ẑ
t−1, z′′

t )−Ut(ẑ
t−1, z′

t)

≥ Ũt(ẑ
t−1, z′

t;z
′′
t )− Ũt(ẑ

t−1, z′
t;z

′
t) by incentive compatibility

= [z′′
t − z′

t] · qt(ẑt−1, z′
t)︸ ︷︷ ︸

≥ 0

+δ

∫
Z
∂zt+1

Ut+1(ẑ
t−1, z′

t, zt+1)︸ ︷︷ ︸
≥0

· [Λ(zt+1|z′
t)−Λ(zt+1|z′′

t )]︸ ︷︷ ︸
≥0

·dzt+1 by Eq.(11)

≥ 0,

where the last inequality holds because z′′
t > z′

t, Ut+1 increases in zt+1, and Λ(·|zt) is stochastic increasing in

zt. Hence, Ut(ẑ
t−1, zt) increases in zt. This completes the induction step for part (i).

For part (ii), at any differentiable point zt, by hypothesis and the definition of Ũt, we have

∂ztŨt(ẑ
t;zt)

= ∂zt

([
(zt − qt(ẑ

t))qt(ẑ
t)
]
− pt(ẑ

t)
)
+ δ∂zt

∫
Z
Λ(dw|zt) ·Ut+1(ẑ

t,w)

= qt(ẑ
t)+ δ∂zt

∫ h

ℓ

∂wUt+1(ẑ
t,w)[1−Λ(w|zt)] dw by Fubini’s Theorem, Eq. (10)

= qt(ẑ
t)+ δ

∫ h

ℓ

∂zt {∂wUt+1(ẑ
t,w)[1−Λ(w|zt)]} dw Lebesgue’s Dominated Convergence Theorem

= qt(ẑ
t)+ δ

∫ h

ℓ

∂wUt+1(ẑ
t,w) · (−∂ztΛ(w|zt)) · dw

= qt(ẑ
t)+ δ

∫ h

ℓ

∂wUt+1(ẑ
t,w) ·

(
−∂ztΛ(w|zt)

λ(w|zt)

)
·λ(w|zt)dw

= qt(ẑ
t)+ δ

∫ h

ℓ

∂wUt+1(ẑ
t,w) · ξ(zt,w) ·λ(w|zt)dw by Lemma 1

= qt(ẑ
t)+ δ

∫
Z
ξ(zt+1

t ) · ∂zt+1
Ut+1(ẑ

t, zt+1) ·Λ(dzt+1|zt).
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Hence, we have

∂ztŨt(ẑ
t;zt) = qt(ẑ

t)+ δEzt+1
[ξ(zt+1

t ) · ∂zt+1
Ut+1(ẑ

t, zt+1)|zt]. (12)

Applying Eq. (12) inductively, we have

∂ztŨt(ẑ
t;zt) = qt(ẑ

t)+ δE[ξ(zt+1
t ) · ∂zt+1

Ut+1(ẑ
t, zt+1)|zt]

= qt(ẑ
t)+ δE

[
ξ(zt+1

t ) ·
(
qt+1(ẑ

t, zt+1)+ δE[ξ(zt+2
t+1) · ∂zt+2

Ut+2(ẑ
t, zt+1, zt+2)|zt+1]

)∣∣∣zt] by (12)

= qt(ẑ
t)+ δ ·E[ξ(zt+1

t ) · qt+1(ẑ
t, zt+1)|zt] + δ2 ·E[ξ(zt+1

t ) · ξ(zt+2
t+1) · ∂zt+2

Ut+2(ẑ
t, zt+2

t+1)|zt]
...

= qt(ẑ
t)+

∑
τ≥1 δ

τ ·E
[∏t+τ−1

s=t
ξ(zs+1

s ) · qt+τ (ẑ
t, zt+τ

t+1)
∣∣∣zt] .

By the chain rule, we have ξ(zt+τ
t ) =

∏t+τ−1
s=t

ξ(zs+1
s ), and ξ(zs

t ) = 1 for t > s. Hence,

∂ztŨt(ẑ
t;zt) =

∑
τ≥0 δ

τ ·Ezt+τ
t+1

[
ξ(zt+τ

t ) · qt+τ (ẑ
t, zt+τ

t+1)|zt
]
. (13)

Finally, Eq. (6) follows from the incentive compatibility Ut(z
t) = maxẑt Ũt(z

t−1, ẑt;zt), and the Envelope

Theorem: ∂ztUt(z
t) = ∂ztŨt(z

t−1, ẑt;zt)|ẑt=zt .

Proof of Lemma 3

First, Eq. (9) follows from Lemma 2 and Ut(z
t) =Ut(z

t−1, ℓ)+
∫ zt

ℓ
∂ztUt(z

t−1, ẑt)dẑt.

Recall η(z0) =
1−Π0(z0
π0(z0)

is the inverse hazard rate of z0. For the retailer-z0, his optimal payoff is

U0(z0) =

∫ z0

ℓ

∂z0U0(ẑ0)dẑ0 =

∫ z0

ℓ

dẑ0 ·
[∑

τ≥0E[δτ · ξ(zτ ) · qτ (zτ )|ẑ0]
]
.

Hence,

E[U0(z0)] =

∫
Z
U0(z)dΠ0(z) =−

∫
Z
U0(z)d[1−Π0(z)]

=−U0(z)[1−Π0(z)|hz=ℓ +

∫
Z
∂z0U0(z)[1−Π0(z)] dz

=U0(ℓ)+

∫
Z
∂z0U0(z)

1−Π0(z)

π0(z)
π0(z)dz

=U0(ℓ)+E[∂z0U0(z0)η(z0)]

=U0(ℓ)+E
[∑

t≥0 δ
t · η(z0) · ξ(zt) · qt(zt)

]
(C)

Under the optimal contract (pt, qt)t≥0 ∈ F∗
1 , the manufacturer obtains the expected profit, which is the

total revenue minus the production cost and the retailer’s expected payoff EU0(z0). The objective of (P1)

becomes

Ṽ
(
(pt, qt)t≥0

)
=E

[∑
t≥0

δt
(
R(qt(z

t), zt)− cqt(z
t)
)]

−E[U0(z0)]

=E

[∑
t≥0

δt ·
{
[zt − qt(z

t)]qt(z
t)− cqt(z

t)− η(z0) · ξ(zt) · qt(zt)
}]

−EU0(ℓ),by Eq. (C)

=E

[∑
t≥0

δt ·
{(

zt − c− η(z0) · ξ(zt)
)
· qt(zt)−

(
qt(z

t))2
}]

−EU0(ℓ),
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which is a function of quantities (qt)t alone. We can use point-wise optimization to derive qt. The first order

condition of the integrand with respect to qt yields Eq. (7):

qt(z
t) =

zt − c

2
− 1

2
· η(z0) · ξ(zt).

Finally, Eq. (8) follows from the definition of Ut(z
t) =R

(
qt(z

t), zt
)
− pt(z

t)+ δE[Ut+1(z
t+1)|zt].

Proof of Lemma 4

It suffices to show qt is ICt, i.e., Ut(ẑ
t−1, zt)− Ũ(ẑt−1, z′

t;zt)≥ 0. First, suppose zt > z′
t.

Ut(ẑ
t−1, zt)− Ũ(ẑt−1, z′

t;zt)

= Ũt(ẑ
t−1, zt;zt)− Ũ(ẑt−1, z′

t;zt) by the definitions of Ut and Ũt

= [Ũt(ẑ
t−1, zt;zt)− Ũ(ẑt−1, z′

t;z
′
t)]+ [Ũt(ẑ

t−1, z′
t;z

′
t)− Ũ(ẑt−1, z′

t; zt)]

= [Ut(ẑ
t−1, zt)−Ut(ẑ

t−1, z′
t)] − [Ũ(ẑt−1, z′

t;zt)− Ũt(ẑ
t−1, z′

t;z
′
t)] by the definitions of Ut and Ũt

=

∫ zt

z′t

∂ztUt(ẑ
t−1, ẑt)dẑt −

∫ zt

z′t

∂ztŨt(ẑ
t−1, z′

t; ẑt)dẑt by Lemma 2

=

∫ zt

z′t

{
∂ztUt(ẑ

t−1, ẑt)− ∂ztŨt(ẑ
t−1, z′

t; ẑt)
}
dẑt

=

∫ zt

z′t

{∑
τ≥0

Ezt+τ
t+1

[
δτ · ξ(zt+τ

t ) ·
(
qt+τ (ẑ

t−1, ẑt, z
t+τ
t+1)− qt+τ (ẑ

t−1, z′
t, z

t+τ
t+1)

)∣∣∣ẑt]} dẑt,Lemma 2, Eq. (13)

≥ 0. since qt(z
t) is nondecreasing in every argument.

The case for zt ≤ z′
t is similar.

Proof of Proposition 1

For the optimal contract to be simple, ξ(zt) should be independent of history details. The history inde-

pendence requires that, except the the first order effect, there should be no higher order influences. For the

Taylor expansion zt+1 =G(zt, ϵt+1) = γ+α1zt+O(z2t )+ ϵt+1, we take its derivative relative to zt and obtain:

∂ztzt+1 = ∂ztG(zt, ϵt+1) = α1 +O′(z2t ).

If higher order coefficients of O(z2t ) were nonzero, the observation zt would influence current zt+1 through

O(z2t ), i.e., depending on history zt. Hence, the dynamics is linear.




