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Abstract

The value added by an active investor is traditionally measured using alpha, tracking error,
and the information ratio. However, these measures do not characterize the dynamic com-
ponent of investor activity, nor do they consider the time horizons over which weights are
changed. In this paper, we propose a technique to measure the value of active investment
that captures both the static and dynamic contributions of an investment process. This dy-
namic alpha is based on the decomposition of a portfolio’s expected return into its frequency
components using spectral analysis. The result is a static component that measures the
portion of a portfolio’s expected return due to passive investments and security selection,
and a dynamic component that captures the manager’s timing ability across a range of time
horizons. Our framework can be universally applied to any portfolio, and is a useful method
for comparing the forecast power of different investment processes. Several analytical and
empirical examples are provided to illustrate the practical relevance of this decomposition.
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1 Introduction

The shortest decision interval of a modern investment strategy may range from microsec-

onds to years, a wide span of time horizons. While the legendary value investor Warren

Buffett tends to change his portfolio weights rather slowly, the same cannot be said for

famed day trader Steven Cohen of SAC Capital, yet both manage to generate enormous

value through active investment. Although alpha, tracking error, and the information ratio

are the standard tools for gauging the value-added of a portfolio manager, they can obscure

important features of the underlying process by which information is reflected in invest-

ment decisions. Specifically, none of these standard performance metrics directly measure

the dynamic relationship between weights and returns, which is the central focus of active

investment strategies.

In this paper, we propose a new approach to analyzing investment strategies in which the

frequency component is explicitly captured. Using the tools of spectral analysis—the decom-

position of time series into a sum of periodic functions like the sine and cosine functions—we

show that investment strategies can differ significantly in the frequencies with which their

expected returns are generated. Slower-moving strategies will exhibit more “power” at the

lower frequencies, while faster-moving strategies will exhibit more power at the higher fre-

quencies. By identifying the particular frequencies that are responsible for a given strategy’s

expected returns, an investor will have an additional dimension with which to manage the

risk/reward profile of his portfolio.

We begin in Section 2 with a brief review of the financial spectral analysis literature. Our

main results are contained in Sections 3 and 4, where we provide spectral decompositions for

an investment strategy’s forecast power. We provide numerical and empirical illustrations

of these techniques in Sections 5–7, and conclude in Section 8.

2 Literature Review

The frequency domain has long been part of economics (Granger and Hatanaka, 1964; Engle,

1974; Granger and Engle, 1983; Hasbrouck and Sofianos, 1993), and the Fourier transform

has been used in finance to efficiently evaluate theoretical pricing models for derivative

securities (Carr and Madan, 1999). However, econometric and empirical applications of
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spectral analysis in economics and finance are less common, in part because economic time

series are rarely considered stationary. Recently, there has been a rebirth of interest in their

application to economics in response to modern advances in non-stationary signal analysis

(Baxter and King, 1999; Croux, Forni, and Reichlin, 2001; Ramsey, 2002; Crowley, 2007;

Huang, Wu, Qu, Long, Shen, and Zhang, 2003; Breitung and Candelon, 2006; Rua, 2010;

Rua, 2012; Dew-Becker and Giglio, 2016; Bandi, Perron, Tamoni, and Tebaldi, 2017). This

rebirth motivates our interest in the spectral properties of financial asset returns.

In this article, we show that spectral analysis can be used to characterize and refine

active investment strategies. The standard tools used for performance attribution originated

from the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965). The

difference between an investment’s expected return and the risk-adjusted value predicted by

the CAPM is referred to as alpha, and Treynor (1965), Sharpe (1966), and Jensen (1968,

1969) applied this measure to quantify the value-added of mutual-fund managers. Since

then, a number of related measures have been developed, including the Sharpe, Treynor,

and information ratios. However, none of these measures explicitly depend on the relative

timing of portfolio weights and returns in gauging investment skill.

In contrast, Lo (2008) proposed a novel measure of active management that quantifies the

predictive power of an investment process by decomposing the expected portfolio return into

the covariance between the underlying security weights and returns and the product of the

average weights and average returns. In this context, a successful portfolio manager is one

whose decisions induce a positive correlation between portfolio weights and returns. Since

portfolio weights are a function of a manager’s decision process and proprietary information,

positive correlation is a direct indication of forecast power and, consequently, investment

skill.

As an extension of this decomposition, we introduce the concept of dynamic alpha, which

uses spectral analysis to measure the forecast power of a portfolio manager across multiple

time horizons. An investment process is said to be profitable at a given frequency if there

is a positive correlation between portfolio weights and returns at that frequency. When

aggregated across frequencies, dynamic alpha is equivalent to Lo’s (2008) active component,

and therefore provides a clear indication of a manager’s forecast power across time horizons.

This connects spectral analysis to the standard tools of modern portfolio theory, allowing us
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to study the time-horizon properties of investment performance.

To address the non-stationarity of financial time series, our analysis relies on the short-

time Fourier transform, which applies the discrete Fourier transform (DFT) to windowed sub-

samples of the entire sample (Oppenheim and Schafer, 2009). Recently, wavelets (Ramsey,

2002; Crowley, 2007; Rua, 2010; Rua, 2012) and other transforms (Huang, Wu, Qu, Long,

Shen, and Zhang, 2003) have also been used to study financial data in the time-frequency

domain. These techniques can provide substantial benefits in practice. For example, the si-

nusoids used in the short-time Fourier transform do not efficiently characterize discontinuous

processes, but the flexibility of wavelets can be used to overcome this difficulty. Moreover, the

wavelet transform provides better time resolution at high frequencies and better frequency

resolution at low frequencies, although similar results can be obtained by varying the window

length used with the short-time Fourier transform. However, in this article, we refrain from

using the wavelet transform for two reasons: the Fourier transform is more intuitive and

simpler in exposition, and all our results for the Fourier transform carry over directly to the

wavelet transform (albeit with greater mathematical and expositional complexity).

3 Dynamic Alpha

In this section, we propose an explicit measure of the value of active management—dynamic

alpha—that takes into account forecast power across multiple time horizons. Expanding on

the framework of the decomposition developed by Lo (2008), we use the DFT to separate

the expected return of a portfolio into distinct components that depend on the correlation

between portfolio weights and returns at different frequencies. The result is one component

that measures the portion of a portfolio’s expected return due to passive investments and ac-

tive security selection, and multiple dynamic components that capture the manager’s timing

ability across a range of time horizons. Our method closely parallels Hasbrouck and Sofianos

(1993); however, we make a novel modification to their analysis to make it applicable to the

expected returns of portfolios.

Our approach uses the DFT to express the portfolio’s underlying security weights and

returns in the frequency domain and then analyzes their phase. When the weights and

returns are in phase at a given frequency, the contribution that frequency makes to the

3



 Electronic copy available at: https://ssrn.com/abstract=3184092 

portfolio’s expected return is positive. When they are out of phase, then that particular

frequency’s contribution will be negative.

If we consider a portfolio with N securities, then for t=0, . . . , T−1, the average one-period

portfolio return can be calculated as,

rp =
1

T

N∑
i=1

T−1∑
t=0

wi,tri,t, (1)

where wi,t and ri,t are the realized weight and return of the ith stock at time t, respectively.

Using the definition of covariance, the average portfolio return can be decomposed into a

dynamic alpha component (δp) and a static component (νp) as follows,

rp = δp + νp, (2)

δp =
N∑
i=1

Cov〈wi,t, ri,t〉 , νp =
N∑
i=1

wi,t · ri,t . (3)

The value of the static component arises from the manager’s average position in a security,

and can be thought of as the portion of the portfolio’s return that results from collecting risk

premiums, as well as the ability to select securities with favorable long-term prospects. This

distinction contrasts with Lo’s (2008) use of the term “passive” for the static component—in

our setting, we wish to acknowledge the possibility that active management is responsible for

long-term bets on specific securities, in which case a portion of a portfolio’s static component

may, in fact, be alpha rather than risk premia.

The value of the dynamic alpha component consists of the profitability of the portfolio

manager’s conscious decision to buy, sell, or avoid a security by aggregating the sample

covariances between the portfolio weights, wi,t, and security returns, ri,t. In particular, if a

manager has positive weights when security returns are positive and negative weights when

returns are negative, this implies positive covariances between portfolio weights and returns,

and will have a positive impact on the portfolio’s average return. In effect, the covariance

term captures the manager’s timing ability, asset by asset.

Spectral analysis allows us to decompose this covariance term further, capturing the
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manager’s timing ability over multiple time horizons,

δp =
T−1∑
k=1

δp,k , δp,k =
1

T 2

N∑
i=1

<[W ∗
i,kRi,k] , (4)

where <[z] and z∗ denote the real part and complex conjugate of a complex number z,

respectively, and Wi,k and Ri,k are the T -point DFT coefficients (see Section A.1) of the

weights and returns for stock i. In this form, the contribution to the average portfolio return

by the kth harmonic frequency, where k ∈ {0, ..., T − 1}, is clearly visible. The lowest

frequency occurs at k = 0, and the highest frequency occurs at the value of k closest to

T/2. Values of k that are symmetric about T/2 (e.g., k = 1 and k = T − 1) have the

same frequency, and their contributions to the average portfolio return are equivalent. The

relation h = TTs/k, where Ts is the time between samples and 0 ≤ k ≤ T/2, can be used to

convert the kth harmonic frequency to its corresponding time horizon, h. We also note that

δp,0 = νp, and it is often convenient to include δp,0 when computing the DFT.

Simply put, this spectral decomposition first deconstructs the weights and returns into

their various frequency components. At each frequency, if the weights and returns are in

phase, then that time horizon’s contribution to the average portfolio return will be positive.

If the two signals are out of phase, then that particular frequency’s contribution will be

negative. For this reason, a value-weighted portfolio of all securities, which is traditionally

considered passive, will contain no dynamic alpha across all frequencies as long as the indi-

vidual security returns are serially uncorrelated (i.e., the Random Walk Hypothesis holds for

all securities). On the other hand, if returns are serially correlated, then it is possible for a

buy-and-hold portfolio to yield a non-zero dynamic alpha because changes in its weights will

contain information related to future returns. To distinguish between dynamically managed

alpha and passive portfolios that unintentionally contain non-zero dynamic alpha, we must

therefore rely on the manager’s stated intentions.

In addition to quantifying the value added from active management across time horizons,

we can also gauge the consistency of a portfolio manager’s timing ability. Historically, the

consistency of investment skill has been characterized by the volatility of the tracking error,

which is a measure of the variability of the difference between the portfolio return and some
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benchmark return. Low tracking error volatility and a positive excess return (i.e., alpha)

indicates that the manager is reliably adding value through active management. The ratio of

alpha to the tracking error volatility measures the efficiency with which a manager generates

excess returns and is called the information ratio. The higher the information ratio, the

better the manager.

These measures can be incorporated into our framework by defining the dynamic risk, σδ,

as the variability of the difference between the portfolio return, rp,t, and the static component,

νp,t =
∑N

i=1wi,t · ri,t. Specifically,

σδ =
√

Var〈rp,t − νp,t〉, (5)

where σδ is a measure of the risk taken by the portfolio manager in an attempt to generate

higher returns by engaging in timing decisions. The dynamic information ratio, Iδ, can then

be defined as,

Iδ =
δp
σδ
, (6)

and is a risk-adjusted measure of the dynamic alpha component. These performance metrics

can be calculated for a specific range of time horizons by aggregating the frequency compo-

nents of δp and σδ over the band of interest. This provides us with a risk-adjusted measure

of the manager’s timing ability for a specific frequency band. Intuitively, it quantifies the

manager’s predictive power across a range of time horizons, but also attempts to identify

the consistency of this power.

4 Alpha vs. Beta

To distinguish explicitly between manager outperformance and portfolio exposure to fac-

tor risk, we have to impose additional structure on the returns of the individual assets.

Specifically, we consider a linear M -factor model,

xi,t = αi + βi,1F1,t + · · ·+ βi,MFM,t + εi,t , (7)

6



 Electronic copy available at: https://ssrn.com/abstract=3184092 

where xi,t is defined to be the excess return of asset i, in excess of the risk-free rate of

return, rf,t, Fm,t are excess factor returns, and E[εi,t | F1,t, . . . , FM,t] = 0. This specification

is consistent with Merton’s (1973) Intertemporal Capital Asset Pricing Model and Ross’s

(1976) Arbitrage Pricing Theory. Since our expected-return decomposition is considerably

more general than any particular asset-pricing model or linear-factor structure, we allow for

an intercept, αi, in our framework.

Under these assumptions, the portfolio’s exposure to factor m is βp,m,t =
N∑
i=1

wi,tβi,m. The

average return of a portfolio of assets (2) can then be rewritten as,

rp = Risk-Free Rate + Risk Premia + Security Selection︸ ︷︷ ︸
νp≡Static Component

+ Factor Timing + Security Timing︸ ︷︷ ︸
δp≡Dynamic Component

(8)

where,

Risk-Free Rate ≡ rf,t (9)

Risk Premia ≡
M∑
m=1

βp,m,t · Fm,t (10)

Security Selection ≡
N∑
i=1

wi,t · αi (11)

Factor Timing ≡
M∑
m=1

Cov〈βp,m,t, Fm,t〉 (12)

Security Timing ≡
N∑
i=1

Cov〈wi,t, εi,t〉 . (13)

Due to the structure of the linear multi-factor model, (8) is a more refined decomposition

than (2). The average portfolio returns are now the sum of five components: a risk-free rate

component, a risk-premia component that represents the return from the passive exposures

to factor risk, a security selection component that depends on the αi’s, a factor-timing

component that depends on the covariance between the portfolio’s factor exposures and the

underlying factors, and finally, a security-timing component that depends on the covariance

between weights and the idiosyncratic component of security returns. Note that the factor-
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and security-timing terms can be decomposed further into their frequency components.

This factor-based decomposition demonstrates that investment expertise can manifest

itself in two distinct ways: identifying cheap sources of expected return (i.e., the αi’s, which

are reflected in the static component, νp), and creating additional expected return through

factor- and security-specific timing across different time horizons (i.e., the covariance terms,

which are reflected in the spectral decomposition of the dynamic component, δp,k). Thus,

even if all αi’s are zero, as most asset-pricing models claim, there can still be substantial

value-added from active management if the investment process has the ability to time price

movements over certain time horizons.

5 Numerical Examples

To develop additional intuition for our spectral decomposition, we extend the following

simple numerical example provided by Lo (2008). Consider a portfolio of two assets, one

that yields a monthly return that alternates between 1% and 2% (Asset 1) and the other

that yields a fixed monthly return of 0.15% (Asset 2). Let the weights of this portfolio, called

A1, be given by 75% in Asset 1 and 25% in Asset 2. Table 1 illustrates the dynamics of this

portfolio over a 12-month period, where the average return of the portfolio is 1.1625% per

month, all of which is due to the static component. In this case, because the weights are

constant, the dynamic risk measure will also be 0%.

Now consider portfolio A2, which differs from A1 only in that the portfolio weight for

Asset 1 alternates between 50% and 100%, in phase with Asset 1’s returns, which alternates

between 1% and 2% (see Table 2). In this case, the total expected return is 1.2875% per

month, of which 0.1250% is due to the positive correlation between the portfolio weight for

Asset 1 and its return at the shortest time horizon (i.e., the highest frequency). In addition,

the dynamic risk for this portfolio is 0.3375%, and the dynamic information ratio is about

0.37.

Finally, consider a third portfolio A3, which also has alternating weights for Asset 1, but

is exactly out of phase with Asset 1’s returns—when the return is 1%, the portfolio weight

is 100%, and when the return is 2%, the portfolio weight is 50%. Table 3 confirms that this

is counterproductive, as Portfolio A3 loses 0.1250% per month from its highest frequency

8
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Month w1 r1 w2 r2 rp
Strategy A1

1 75% 1.00% 25% 0.15% 0.7875%
2 75% 2.00% 25% 0.15% 1.5375%
3 75% 1.00% 25% 0.15% 0.7875%
4 75% 2.00% 25% 0.15% 1.5375%
5 75% 1.00% 25% 0.15% 0.7875%
6 75% 2.00% 25% 0.15% 1.5375%
7 75% 1.00% 25% 0.15% 0.7875%
8 75% 2.00% 25% 0.15% 1.5375%
9 75% 1.00% 25% 0.15% 0.7875%
10 75% 2.00% 25% 0.15% 1.5375%
11 75% 1.00% 25% 0.15% 0.7875%
12 75% 2.00% 25% 0.15% 1.5375%

Mean: 75% 1.50% 25% 0.15% 1.1625%

Spectral decomposition of rp
νp 2δp,1 2δp,2 2δp,3 2δp,4 2δp,5 δp,6

1.1625% 0% 0% 0% 0% 0% 0%

Table 1: The expected return of a constant portfolio depends only on the static component.

Month w1 r1 w2 r2 rp
Strategy A2

1 50% 1.00% 50% 0.15% 0.5750%
2 100% 2.00% 0% 0.15% 2.0000%
3 50% 1.00% 50% 0.15% 0.5750%
4 100% 2.00% 0% 0.15% 2.0000%
5 50% 1.00% 50% 0.15% 0.5750%
6 100% 2.00% 0% 0.15% 2.0000%
7 50% 1.00% 50% 0.15% 0.5750%
8 100% 2.00% 0% 0.15% 2.0000%
9 50% 1.00% 50% 0.15% 0.5750%
10 100% 2.00% 0% 0.15% 2.0000%
11 50% 1.00% 50% 0.15% 0.5750%
12 100% 2.00% 0% 0.15% 2.0000%

Mean: 75% 1.50% 25% 0.15% 1.2875%

Spectral decomposition of rp
νp 2δp,1 2δp,2 2δp,3 2δp,4 2δp,5 δp,6

1.1625% 0% 0% 0% 0% 0% 0.1250%

Table 2: The dynamics of the portfolio weights are positively correlated with returns at the
shortest time horizon, which adds value to the portfolio and yields a positive contribution
from the highest frequency (δp,6).

9
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component, and its total expected return is only 1.0375%. In this case, the dynamic risk is

0.3375%, and the dynamic information ratio is −0.37.

Month w1 r1 w2 r2 rp
Strategy A3

1 100% 1.00% 0% 0.15% 1.0000%
2 50% 2.00% 50% 0.15% 1.0750%
3 100% 1.00% 0% 0.15% 1.0000%
4 50% 2.00% 50% 0.15% 1.0750%
5 100% 1.00% 0% 0.15% 1.0000%
6 50% 2.00% 50% 0.15% 1.0750%
7 100% 1.00% 0% 0.15% 1.0000%
8 50% 2.00% 50% 0.15% 1.0750%
9 100% 1.00% 0% 0.15% 1.0000%
10 50% 2.00% 50% 0.15% 1.0750%
11 100% 1.00% 0% 0.15% 1.0000%
12 50% 2.00% 50% 0.15% 1.0750%

Mean: 75% 1.50% 25% 0.15% 1.0375%

Spectral decomposition of rp
νp 2δp,1 2δp,2 2δp,3 2δp,4 2δp,5 δp,6

1.1625% 0% 0% 0% 0% 0% −0.1250%

Table 3: The dynamics of the portfolio weights are negatively correlated with returns at
the shortest time horizon, which subtracts value from the portfolio and yields a negative
contribution from the highest frequency (δp,6).

Note that in all three cases, the static components are identical at 1.1625% per month

because the average weight for each asset is the same across all three portfolios. The only

differences among A1, A2, and A3 are the dynamics of the portfolio weights at the shortest

time horizon. These differences give rise to different values for the highest frequency com-

ponent. As shown in (4), contributions from higher frequencies (k > 0) sum to the overall

dynamic component. These higher frequency contributions can be interpreted as the portion

of the dynamic component that arises from a given time horizon.

For a more realistic example, consider the long/short equity market-neutral strategy of

10
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Lo and MacKinlay (1990):

wi,t = − 1

N
(ri,t−1 − rm,t−1), (14)

rm,t−1 =
1

N

N∑
i=1

ri,t−1 . (15)

By buying the losers and selling the winners from date t−1 at the onset of each date t, this

strategy actively bets on mean reversion across all N stocks, and profits from reversals that

occur within the subsequent interval. For this reason, Lo and MacKinlay (1990) termed this

strategy “contrarian,” as it benefits from market overreaction and mean reversion, that is,

when underperformance is followed by positive returns and outperformance is followed by

negative returns. By construction, the weights sum to zero, and therefore the strategy is

also considered a “dollar-neutral” or “arbitrage” portfolio. This implies that much of the

portfolio’s return should be due to active management, and that value will be added near

frequencies inversely related to the mean reversion period.

Now suppose that stock returns satisfy the following simple MA(1) model,

ri,t = εi,t + λεi,t−1, (16)

where the εi,t are serially and cross-sectionally uncorrelated white-noise random variables

with variance σ2. In this case, the expected one-period portfolio return can be calculated as,

E[rp] = −λσ2(1− 1

N
) . (17)

We see that the expected return is proportional to the mean reversion factor, λ, and the

volatility factor, σ2. Applying our spectral decomposition (see Section A.2), we find that,

δp,ω = −σ2
(

1− 1

N

)(
λ cos(2ω) + (1 + λ2) cos(ω) + λ

)
, ω ∈ [0, 2π). (18)

The relation h = 2πTs/ω, where Ts is the time between samples and ω ∈ [0, π], can be used

to convert frequency ω to its corresponding time horizon, h.

Column A of Figure 1 plots the dynamic alpha for the case of no serial correlation (λ=0).

11
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The dynamic alpha is positive at high frequencies, indicating that the weights and returns

are in phase over these short time horizons. However, this added value is cancelled out since

the weights and returns are out of phase at longer time horizons, resulting in zero net alpha.

Columns B and C of Figure 1 show the dynamic alpha for the cases of momentum (λ>0)

and mean reversion (λ< 0) in the first lag of returns, respectively. For the mean reversion

case, we notice that both the lowest and highest frequencies are more profitable relative to the

serially uncorrelated case. This is an intuitive result since both weights and returns now have

more variability in these higher frequency fluctuations. These high-frequency components

will be in phase, leading to a large positive contribution and an overall positive alpha. The

momentum case is opposite in effect. Relative to the serially uncorrelated case, both the

lowest and highest frequencies are less profitable, and the net contribution over all frequency

components is negative.

6 An Empirical Example

To develop a better understanding of the characteristics of dynamic alpha, we apply our

framework to Lo and MacKinlay’s (1990) contrarian (mean reversion) trading strategy using

historical stock market data. The fact that the weights given by (14) sum to zero at each date

t implies very little market-beta exposure. Also, since the weights are so dynamic, much of

this portfolio’s return should be due to active management near frequencies inversely related

to the decision period. The return for a given interval can be calculated as the profit-and-

loss of the strategy’s positions over that interval, divided by the capital required to support

those positions. In the following analysis, we assume that Regulation T applies; therefore,

the amount of capital required is one-half the total capital invested (often stated as a 2:1

leverage, or a 50% margin requirement). The unleveraged portfolio return, rp,t is given by:

rp,t =

N∑
i=1

wi,tri,t

It
, It =

1

2

N∑
i=1

|wi,t| .

We apply (14) to the one-day and two-day returns of the five smallest size-decile portfolios

of all NASDAQ stocks, as constructed by the University of Chicago’s Center for Research in

12
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Figure 1: Dynamic alpha of the contrarian trading strategy applied to the serially uncorre-
lated (Column A), momentum (Column B), and mean reversion (Column C) implementations
of (16).
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Security Prices (CRSP), from January 2, 1990 to December 29, 1995. We selected this time

period purposely because of the emergence of day trading in the early 1990s, an important

source of profitability for statistical arbitrage strategies. Of course, trading NASDAQ size

deciles is obviously unrealistic in practice, but our purpose is to illustrate the empirical

relevance of our framework, not to derive an implementable trading strategy.
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Figure 2: Cumulative return of the mean reversion strategy of Lo and MacKinlay (1990)
over one-day and two-day returns applied to the five smallest CRSP-NASDAQ size deciles
from January 2, 1990 to December 29, 1995.

Figure 2 illustrates the performance of the contrarian strategy for one-day and two-day

mean reversion over the 1990–1995 sample period, and Table 4 contains summary statistics

for the daily returns of the two trading strategies. For 1-day mean reversion, with an annu-

alized average return of 31.6% and standard deviation of 7.9%, the strategy’s performance

is considerably better than that of a passive buy-and-hold strategy, which is one indication

that active management is playing a significant role in this case.

This intuition is confirmed by the decomposition of the strategy’s expected return into

its dynamic alpha components in Table 5. On an annualized basis, the dynamic component

yields 32.2%, which exceeds the strategy’s total expected return of 31.6%, implying a slightly
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Statistic Decile 1 Decile 2 Decile 3 Decile 4 Decile 5 1-day 2-day
Mean ×250 27.5% 17.4% 13.9% 13.7% 12.8% 31.6% 13.3%

SD ×
√

250 12.2% 9.8% 8.9% 9.1% 9.5% 7.9% 7.8%

SR ×
√

250 2.25 1.77 1.56 1.51 1.35 3.98 1.69
Min −2.9% −2.7% −2.7% −3.3% −3.5% −2.2% −5.2%
Median 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.0%
Max 6.7% 3.6% 2.0% 2.1% 2.3% 2.4% 1.7%
Skew 0.6 0.1 −0.5 −0.7 −0.9 −0.1 −0.8
XSKurt 5.1 2.4 2.0 3.1 3.9 1.7 8.9

Table 4: Summary statistics of the daily returns of the one-day and two-day mean reversion
strategies of Lo and MacKinlay (1990) applied to the daily returns of the five smallest CRSP-
NASDAQ size deciles, from January 2, 1990 to December 29, 1995. The Sharpe ratio (SR)
is calculated relative to a 0% risk-free rate.

negative static component. In this case, more than all of the strategy’s expected return is

coming from active management over a daily time horizon, and the low-frequency components

are subtracting value.

The explanation for this rather unusual phenomenon was provided by Lo and MacKinlay

(1990), who observed that because the contrarian strategy is, on average, long losers and

short winners, it will typically be long the low-mean assets and short the high-mean assets.

Therefore, the static component, i.e., the sum of average portfolio weights multiplied by

average returns, will consist of positive average weights for low-mean stocks and negative

average weights for high-mean stocks for this strategy—a losing proposition in the absence

of mean reversion. Fortunately, the positive correlation between weights and returns at high

frequencies is more than sufficient to compensate for this long-term negative component.

To mitigate the loss caused by the static component, we can filter out the trend compo-

nent of each size-decile portfolio before calculating the mean-reversion weights. Intuitively,

the mean-reversion trading strategy will no longer place a negative bias on the weights of

the smallest deciles simply because they achieve relatively large average returns. Similarly,

if we perfectly filter out the low-frequency dynamics of the portfolio returns, then we can

extract the profitability in the high-frequency component of returns, while not suffering

the substantial losses of the low-frequency component. In other words, the mean-reversion

trading strategy will be trading on the relevant high-frequency signal, and not the low-

frequency “noise.” Since a perfect high-pass filter cannot be implemented in practice, these
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low-frequency components would have to be forecasted. Therefore, rather counterintuitively,

our spectral framework reveals that forecast power at low frequencies can be used to improve

the overall performance of a high-frequency trading strategy.

Statistic 1-day 2-day
Portfolio Mean ×250 31.6% 13.3%
Static Component ×250 −0.6% −1.0%
Dynamic Component ×250 32.2% 14.2%

Low Frequency (h ≥ 5d) −44.7% −19.1%
Med Frequency (3d ≤ h < 5d) 6.3% 33.7%
High Frequency (h < 3d) 70.6% −0.4%

Table 5: Estimates of the dynamic alpha of the daily returns of the one-day and two-day mean
reversion strategies of Lo and MacKinlay (1990) applied to the five smallest CRSP-NASDAQ
size-decile returns, from January 2, 1990 to December 29, 1995. Frequency components are
grouped into three categories: high frequencies (more than one cycle per three days), medium
frequencies (between one cycle per three days and one cycle per week), and low frequencies
(less than one cycle per week).

For mean reversion over two days, with an annualized average return of 13.3% and a

standard deviation of 7.8%, the strategy’s performance is considerably worse than that of

the one-day mean reversion strategy. Active management is playing a significant but less

productive role. Here, the positive correlation between weights and returns at medium

frequencies remains sufficient to compensate for the negative correlation between weights

and returns at the low and high frequencies.

The correlation of these two strategies’ returns is only 0.26. This low correlation can be

attributed to the fact that their performance is determined by market dynamics occurring

in distinct and non-overlapping frequency bands. Moreover, these frequency-specific strate-

gies can be implemented simultaneously, and can therefore be viewed as separate assets.

These assets can then be combined in a portfolio to achieve diversification across multiple

frequencies. In our sample period, these diversification benefits result in the Sharpe ratio

being maximized when 84.6% of our capital is used to implement the one-day mean-reversion

trading strategy, and the remaining capital is used to trade with mean reversion over two

days. However, Table 5 makes it clear that both assets in our portfolio would be negatively

affected by a low-frequency market shock.
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7 Warren Buffett’s Alpha

For a more realistic application of our dynamic alpha framework, we examine the returns

of Warren Buffett’s multinational conglomerate holding company, Berkshire Hathaway Inc.,

which is known for its long-term investments in public and private companies. We obtain

quarterly holdings data for Berkshire Hathaway from Thomson Reuters Institutional (13F)

Holdings database (based on Berkshire’s SEC filings) from 1980 to 2013, and stock return

data from the CRSP Monthly Stock database.

One consequence of Warren Buffett’s longer decision interval is that we are less likely to

be affected by aliasing when applying our decomposition to quarterly weights and returns of

his portfolio; the same cannot be said for higher-frequency trading strategies. Figure 3 dis-

plays the cumulative returns for Berkshire Hathaway (BRK) and a simulated reconstruction

(R[BRK]) of these returns using the holdings data based on SEC filings. The correlation be-

tween these return series is 0.7, and their Sharpe ratios are 0.69 and 0.66, respectively. The

high correlation and similar Sharpe ratios indicate that the reconstructed returns capture

a significant fraction of Berkshire Hathaway’s price dynamics. Equating the mean of the

reconstructed returns with the realized returns, we use a leverage ratio of 1.41 to reconstruct

Warren Buffett’s levered returns (RL[BRK]). This is similar to the average leverage ratio of

1.4 estimated by Frazzini, Kabiller, and Pedersen (2013) using total assets to equity.

Table 6 contains summary statistics for the monthly returns of each time series. With an

average annualized return of 22.9% over more than 30 years, Berkshire clearly has positive

alpha when compared to traditional risk factors. Frazzini, Kabiller, and Pedersen (2013)

find that Buffett’s returns are due more to security selection than his effect on management,

which suggests that a large component of his returns must be static alpha, i.e., high average

weights on securities with large αi’s. In other words, Buffett is able to select securities that

provide high average returns above and beyond the expected return resulting from passive

exposures to factor risk. Moreover, if Warren Buffett has a positive long-term effect on

returns due to his managerial and advisory competence, then we would also expect to find

a substantial component of his returns derived from lower frequencies. Finally, Buffett is a

practitioner of value investing, and so we should not expect to find a significant correlation

between his portfolio weights and returns at high frequencies.
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Figure 3: Cumulative realized returns of Berkshire Hathaway (BRK) and a simulated re-
construction (R[BRK]) using holdings data for Berkshire Hathaway from Thomson Reuters
Institutional (13F) Holdings database (based on Berkshire’s SEC filings) from 1980 to 2013.
Equating the mean of the reconstructed returns with the realized returns, we use a leverage
ratio of 1.41 to reconstruct the levered returns (RL[BRK]).

Statistic Risk-Free Market BRK R[BRK] RL[BRK]
Mean ×4 4.7% 12.8% 22.9% 16.3% 22.9%

SD ×
√

4 1.7% 17.4% 26.2% 17.5% 24.7%

SR ×
√

4 0 0.47 0.69 0.66 0.74
Min 0.0% −23.7% −30.1% −30.9% −43.6%
Median 1.2% 3.9% 4.4% 4.2% 6.0%
Max 3.8% 21.3% 46.1% 28.8% 40.7%
Skew 0.6 −0.6 0.3 −0.5 −0.5
XSKurt 0.3 0.5 0.9 1.8 1.8

Table 6: Summary statistics of the quarterly returns of the one-month Treasury Bill (Risk-
Free) rate, the value-weighted CRSP market index (Market), Berkshire Hathaway (BRK),
and a simulated reconstruction (R[BRK]) using holdings data for Berkshire Hathaway from
Thomson Financial Institutional (13F) Holdings Database (based on Berkshire’s SEC filings)
from 1980 to 2013. Equating the means of the reconstructed returns with the realized returns
we use a leverage ratio of 1.41 to reconstruct the levered returns (RL[BRK]).
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The decomposition of Berkshire Hathaway’s reconstructed average portfolio return into

its dynamic alpha components in Table 7 confirms this intuition. The static component

yields an annualized return of 18.9%. In comparison, the value-weighted CRSP market index

yielded an average annualized return of 12.8% over the same interval, and the annualized

risk-free interest rate (one-month Treasury Bill rate) was 4.7%. The static component of the

portfolio’s realized market beta over this interval using quarterly returns was 0.84, which

implies a risk premium component of 6.8% and a static alpha component of 7.3%. This

demonstrates that a substantial component of Berkshire Hathaway’s returns results from

Buffett’s ability to select securities with favorable long-term prospects. The dynamic alpha

component contributes an additional annualized return of 4.1% to the portfolio, most of

which can be attributed to dynamics occurring at time horizons greater than 5 years. The

annualized dynamic risk is 10.3%, which yields a dynamic information ratio of 0.40. This

result can be attributed to Buffett’s ability as a manager to improve firm performance over

the long run while Berkshire maintains a position in the company, and also to his ability to

time transactions based on fundamental valuations.

In contrast, the dynamics at the shortest time horizons—less than 18 months—subtract

1.2% annually from the average portfolio return. Here, the negative correlation between

weights and returns can be attributed in part to transaction costs and market impact. How-

ever, the quarterly sampling frequency of the holdings data restricts our ability to study

these higher frequency dynamics. By observing only quarter-end weights and cumulative

returns, we have no way of inferring the profitability of dynamics occurring at these higher

frequencies.

A spectral decomposition of Berkshire Hathaway’s returns demonstrates conclusively

that Buffett is not only a consummate long-term investor, but that the horizon of his timing

ability stretches far beyond the reaches of most other portfolio managers.

8 Conclusion

In this article, we have applied spectral analysis to develop a dynamic measure of alpha

that allows us to determine whether portfolio managers are generating alpha and over what

time horizons their investment processes have forecast power. In this context, an investment
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Statistic RL[BRK]
Portfolio Mean ×4 22.9%
Static Component ×4 18.9%

Risk-Free Rate 4.7%
Risk Premium 6.8%
Static Alpha 7.3%

Dynamic Component ×4 4.1%
Low Frequency (h ≥ 5y) 4.3%
Med Frequency (1.5y ≤ h < 5y) 1.1%
High Frequency (h < 1.5y) −1.2%

Table 7: Estimates of the static and dynamic alpha of the simulated quarterly returns of
Berkshire Hathaway using holdings data for Berkshire Hathaway from Thomson Financial
Institutional (13F) Holdings Database (based on Berkshire’s SEC filings) from 1980 to 2013.
Frequency components are grouped into three categories: high frequencies (more than one
cycle per 1.5 years), medium frequencies (between one cycle per 1.5 years and one cycle per
five years), and low frequencies (less than one cycle per five years). Note that table entries
may not sum due to rounding.

process is said to be profitable at a given frequency if there is positive correlation between

portfolio weights and returns at that frequency. When aggregated across frequencies, dy-

namic alpha is equivalent to Lo’s (2008) active component, and provides a clear indication

of a manager’s forecast power and, consequently, active investment skill. By separating the

dynamic and static components of a portfolio, it should be possible to study and improve

the performance of both.

Frequency-domain representations of auto- and cross-covariances can be applied to many

other financial statistics in addition to alpha. For example, dynamic versions of performance

attribution, linear factor models, asset allocation models, risk management, and measures

of systemic risk can all be constructed using spectral analysis. Our framework can also

be extended to other time-frequency decompositions, including the wavelet transform, to

address the impact of time-varying relationships and other non-stationarities.
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A Spectral Analysis

Although spectral methods are not new to finance, as our literature review shows, current
applications are sufficiently rare that a brief overview of spectral analysis may be appro-
priate. We provide the formulation of the DFT in Section A.1. We then present the main
mathematical results on the co-spectrum in Section A.2, and derive statistical properties of
the main estimators in the paper that are required for conducting standard inferences such
as hypothesis tests and significance-level calculations in Section A.3.

A.1 The Fourier Transform

One of the most structurally revealing analyses that can be performed on a time series is to
express its values as a linear combination of trigonometric functions. This procedure relies
on the Discrete-Time Fourier Transform (DTFT), and allows the data to be transformed to
the frequency domain. Specifically, given a finite energy time series xt, the DTFT is given
by,

X(ω) =
∞∑

t=−∞

xt e
−jωt, ω ∈ [0, 2π) (A.1)

where the frequency ω has units of radians per sample and j denotes the imaginary unit√
−1. When xt is real-valued, the inverse DTFT can be written in rectangular form as,

xt =
1

2π

∫ 2π

0

[
<[X(ω)] cos(ωt)−=[X(ω)] sin(ωt)

]
dω, t ∈ (−∞,∞) (A.2)

or in polar form as,

xt =
1

2π

∫ 2π

0

|X(ω)| cos(ωt+ ∠X(ω)) dω, t ∈ (−∞,∞) (A.3)

where <[X(ω)] and =[X(ω)] are the real and imaginary parts of X(ω), and |X(ω)| and
∠X(ω) are its magnitude and phase, respectively.

If only a finite sample of xt is available, or only a local portion of xt needs to be analyzed,
the DTFT reduces to the DFT. Specifically, given a sample of xt from times t = 0, . . . , T−1,
the T -point DFT is given by:1

Xk =
T−1∑
t=0

xt e
−jωkt, k ∈ [0, T − 1] (A.4)

1In general, for finite T , X(ωk) 6= Xk as multiplying xt by a rectangular window results in the convolution
of X(ω) with the window’s DTFT in the frequency domain.
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where ωk = 2πk/T . Again, when xt is real-valued, the inverse DFT can be written in
rectangular form as,

xt =
1

T

T−1∑
k=0

[
<[Xk] cos(ωkt)−=[Xk] sin(ωkt)

]
, t ∈ [0, T − 1] (A.5)

or in polar form as,

xt =
1

T

T−1∑
k=0

|Xk| cos(ωkt+ ∠Xk), t ∈ [0, T − 1]. (A.6)

In this real-valued case, Xk = X∗T−k, and so |Xk| cos(ωkt + ∠Xk) = |XT−k| cos(ωT−kt +
∠XT−k). Therefore, the lowest non-zero frequency occurs at k=1, and the highest frequency
occurs at k = bT/2c. The relation h= TTs/k, where Ts is the time between samples and
0≤ k≤ T/2, can be used to convert the kth harmonic frequency to its corresponding time
horizon.

Since the Fourier transform changes the basis function representation of a time series
from impulses to sinusoids, Parseval’s theorem states that, when represented as a vector,
the Euclidean length of the time series is preserved under the transformation (with proper
normalization). This observation forms the foundation of spectral decomposition, and pro-
vides a method to visualize the data in the frequency domain. This representation, known
as the power spectrum, characterizes how much of the variability in the data comes from
low- versus high-frequency fluctuations.

A.2 The Power Spectrum

In many situations, a time series can be modeled as the realization of a stochastic process,
which can often be characterized by its first and second moments. The DTFT of the auto- and
cross-covariance functions can then be interpreted as the frequency distribution of the power
contained within the variance and covariance of these time series, respectively. Similarly, the
inverse DTFT can be used to find the lagged second moments as functions of the auto- and
cross-power spectra.

Let {xt} and {yt} form real-valued discrete-time wide-sense stationary stochastic pro-
cesses with means mx and my, and cross covariance function γxy[m] = E[(xt+m −mx)(yt −
my)].

2 Assuming the cross-covariance function has finite energy, let Pxy(ω) be its DTFT,

Pxy(ω) =
∞∑

m=−∞

γxy[m]e−jωm. (A.7)

2Specifically, the stochastic processes {xt} and {yt} are said to be wide-sense stationary if and only if
E[xt] and E[yt] are constants independent of t, and E[xt1xt2 ], E[yt1yt2 ] and E[xt1yt2 ] depend only on the
time difference (t1 − t2).
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The function Pxy(ω) is known as the cross-spectrum. Its real component, known as the
co-spectrum, can be interpreted as the frequency decomposition of the covariance between
xt and yt. Specifically, the covariance between {xt} and {yt} can be calculated using the
inverse DTFT of Pxy(ω),

Cov(xt, yt) ≡ γxy[0] =
1

2π

∫ 2π

0

<[Pxy(ω)]. (A.8)

We denote the co-spectrum3 as Lxy(ω) ≡ <[Pxy(ω)].
This calculation of the power and cross-power spectra from the auto- and cross-covariance

functions assumes the first and second moments of the stochastic process are known and do
not change with time; however, for practical applications, especially those in finance, the
underlying distributions are often unknown and non-stationary. To address this issue, we
compute the short-time Fourier transform to decompose rolling-window covariances into
their frequency components. This approach uses the DFT to express windowed subsamples
of xt and yt in the frequency domain, and then analyzes their magnitude and phase. When
the time series are in phase at a given frequency, the contribution that frequency makes to
the sample covariance is positive; when they are out of phase, that particular frequency’s
contribution will be negative. Longer windows will provide better frequency resolution, but
will conflict with our ability to resolve changes in the statistical properties of signals over
time.

Specifically, consider a real-valued subsample of xt and yt from times t = 0, . . . , T −1.
The sample covariance over this interval can be calculated as:

Cov〈xt, yt〉 =
1

T

T−1∑
t=0

(xt − x)(yt − y), (A.9)

where x and y are the sample means of xt and yt over the same subperiod. This calculation
is exactly equivalent to the one formed using the T -point DFT:

Cov〈xt, yt〉 =
1

T

T−1∑
k=1

L̂xy[k] , L̂xy[k] ≡ 1

T
<[X∗kYk] (A.10)

where Xk and Yk are the T -point DFT coefficients of the subsample of xt and yt. Thus, the
sum over L̂xy[k] is proportional to the sample covariance of xt and yt. Moreover, the sum

of L̂xy[k] over a band of frequencies, CovK〈xt, yt〉 where K ⊆ {1, . . . , T−1}, is proportional

to that band’s contribution to the sample covariance. For this reason, the function L̂xy[k],
called the cross-periodogram, is an estimate of the co-spectrum at the harmonic frequency
ωk, and can be interpreted as the frequency distribution of the power contained in the
sample covariance. It can be shown that these estimators are asymptotically unbiased, but

3The co-spectrum, Lxy(ω), is the real part of the cross-spectrum, Pxy(ω). The imaginary part, Qxy(ω),
is called the quadrature spectrum.
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not consistent. Practical implementation details, including the standard errors of these
estimators, are discussed in Section A.3. Further references on the statistical properties of
spectrum estimates can be found in, for example, Jenkins and Watts (1968), Hannan (1970),
Anderson (1971), Priestly (1981), Brockwell and Davis (1991), Brillinger (2001), Velasco and
Robinson (2001), Phillips, Sun, and Jin (2006), Phillips, Sun, and Jin (2007), Shao and Wu
(2007), Oppenheim and Schafer (2009), and Wu and Zaffaroni (2016).

Note that k=0, the zero frequency, is not involved in (A.10), since adding or subtracting
a constant to either time series does not change the sample covariance. In addition, as men-
tioned in Section A.1, values of k that are symmetric about T/2 (e.g., k= 1 and k=T−1)
have the same frequency and their contributions to the sample covariance are equivalent.
Therefore, pairs of elements that correspond to the same frequency should be included to-
gether in the frequency band K to form the one-sided spectrum. For real-valued time series,
the cross-spectrum is conjugate symmetric causing the quadrature spectrum components to
cancel. For this reason, we focus on the co-spectrum.

A.3 General Moment Properties of the Power Spectrum

In this section, we derive statistical properties of the main estimators in the paper that are
required for conducting standard inferences such as hypothesis tests and significance-level
calculations.

Consider the real-valued discrete-time wide-sense stationary stochastic processes {xt} and
{yt} with means mx and my, and cross-covariance function γxy[m] = E[(xt+m−mx)(yt−my)].
Assuming the cross-covariance function has finite energy, let Pxy(ω) be its Discrete-Time
Fourier Transform (DTFT) such that,

Pxy(ω) =
∞∑

m=−∞

γxy[m]e−jωm, (A.11)

γxy[m] =
1

2π

∫ 2π

0

Pxy(ω)ejωmdω. (A.12)

The function Pxy(ω) is known as the cross spectrum, and can be interpreted as the frequency
distribution of the power contained in the covariance between xt and yt. A rectangular
window of length T can be used to select a finite-length subsample of xt and yt. Forming
the cross spectrum estimate from the DFT of this finite subsample we find that E[Cxy[k]]
is not generally equal to Pxy(ωk), where ωk = 2πk/T , and is therefore a biased estimator.
The bias results from the convolution of the true power spectrum, Pxy(ω), with the DTFT
of the aperiodic autocorrelation function of the window. As the window length increases, its
DTFT approaches a Dirac delta function, and so the bias approaches 0. Thus, E[Cxy[k]] is
an asymptotically unbiased estimator of Pxy(ωk) (Oppenheim and Schafer, 2009). Moreover,
over a wide range of conditions, it can be shown that,

Var[Lxy[k]] ≈ 1

2
(Pxx(ωk)Pyy(ωk) + Λ2

xy(ωk)−Ψ2
xy(ωk)), (A.13)
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where Λxy(ω) and Ψxy(ω) are the theoretical co-spectrum and quadrature spectrum between
xt and yt, respectively. At the harmonic frequencies, which are separated in frequency by
1/T , these frequency-specific estimators of the co-spectrum are approximately uncorrelated
(Jenkins and Watts, 1968). This property can be used to estimate the variance of the sum
of co-spectrum estimators, Lxy[k].

A few important implementation details still remain. Notice that the variance of the
co-spectrum estimates is not consistent, as they do not asymptotically approach 0 as T
increases. Averaging the co-spectrum estimates calculated over overlapping time intervals
can reduce the variance of the spectral estimates at the expense of introducing bias. In
addition, windowing procedures (e.g., multiplication by a Hamming window) can be applied
to the data before calculating the DFT. This procedure will generally decrease spectral
leakage at the expense of reducing spectral resolution. An estimate of the co-spectrum can
also be calculated from the Fourier transform of the estimated cross-covariance function.
Finally, if xt and yt are sampled at a low frequency relative to the rate at which their
properties change, then the decomposition will be biased due to a phenomenon known as
aliasing. See Oppenheim and Schafer (2009) and Jenkins and Watts (1968) for a more
detailed discussion of these advanced implementation techniques.
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