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Abstract. Motivated by the increasing use of online appointment booking platforms, we
study how to offer appointment slots to customers to maximize the total number of slots
booked. We develop two models, nonsequential offering and sequential offering, to capture
different types of interactions between customers and the scheduling system. In these two
models, the scheduler offers either a single set of appointment slots for the arriving customer
to choose from or multiple sets in sequence, respectively. For the nonsequential model, we
identify a static randomized policy, which is asymptotically optimal when the system
demand and capacity increase simultaneously, and we further show that offering all
available slots at all times has a constant factor of two performance guarantee. For the
sequential model, we derive a closed form optimal policy for a large class of instances and
develop a simple, effective heuristic for those instanceswithout an explicit optimal policy. By
comparing these two models, our study generates useful operational insights for improving
the current appointment booking processes. In particular, our analysis reveals an interesting
equivalence between the sequential offering model and the nonsequential offering model
with perfect customer preference information. This equivalence allows us to apply sequential
offering in a wide range of interactive scheduling contexts. Our extensive numerical study
shows that sequential offering can significantly improve the slot fill rate (6%–8% on average
and up to 18% in our testing cases) compared with nonsequential offering. Given the recent
and ongoing growth of online and mobile appointment booking platforms, our research
findings can be particularly useful to informuser interface design of these booking platforms.

History: Accepted by Gad Allon, operations management.
Supplemental Material: The online appendix is available at https://doi.org/10.1287/mnsc.2018.3150.
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1. Introduction
Appointment scheduling is a common tool used by
service firms (e.g., tech support, beauty services, and
healthcare providers) to match their service capacity
with uncertain customer demand. With the wide-
spread use of the internet and smartphones, cus-
tomers often resort to online channels when searching
for information and reserving services. To keep up
with customers’ preferences and needs, many service
organizations have developed online appointment
scheduling portals. For instance, Teachers Insurance
and Annuity Association of America (TIAA) allows its
clients to book appointments with their financial con-
sultants online. There is also a rising number of online
service reservation companies that offer online ap-
pointment booking software or applications as a service
for (small) businesses. Examples include zocdoc.com
for medical appointments, opentable.com for dinner
reservations, mindbodyonline.com for fitness classes,
booker.com for spa services, and salonultimate.com
for haircuts.

The interfaces of these online appointment booking
systems vary. Some are more toward one-shot offering
(i.e., a single list of available appointments is shown on
a single screen for customers to choose from). Others
offer a small number of options to start, and customers
must press “more” or “next” to view additional ap-
pointments that are available. This way of scheduling
resembles the traditional telephone-based scheduling
process, in which the scheduling agent may reveal
availability of appointment slots in a sequential manner.
Such a sequential way of displaying options is often seen
on mobile devices with a small screen as well.
Our research is motivated by these various ways of

appointment booking, and we seek to understand how
a service provider can best use these (online) appoint-
ment booking systems. In scheduling practice, service
providers first predetermine for each day an appoint-
ment template, which specifies the total number of slots,
the length of each slot, and characteristics of customers
(e.g., nature of the visit) to be scheduled for each slot.
For instance, in a gym setting, one has to determine the
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number of classes and their capacity, and in healthcare,
the service provider first determines the number of
patients that a clinician will see that day and at what
times. With an appointment template in place, service
providers then decide how to assign incoming customer
requests to the available slots—nowadays, this process
is often done via online appointment scheduling as
mentioned above. The relevant performance metric for
this process is the fill rate (i.e., the fraction of slots in
a template booked before the scheduling process closes).
Although the fill rate is not equivalent to the eventual
capacity utilization because of various postscheduling
factors (e.g., cancellations, no shows, and walk ins), it is
the first, and in many cases, the most important step to
achieving a highutilization (and thus, a high revenue), and
it is the objective of the research presented in this paper.

Our focus is on modeling the scheduling process and
developing stochastic dynamic optimization models to
inform appointment scheduling decisions in the pres-
ence of customer choice behavior. Notwithstanding the
surge of interest in service operations management in
the past decade, basic single-day, choice-based dynamic
decision models are absent for a broad class of real-
world scheduling systems. To our knowledge, the
existing operations research and management literature
on this type of dynamic appointment scheduling is very
limited; most, if not all, related research assumes that
customers reveal their preferences first and that the
scheduler decides to accept or reject (e.g., Gupta and
Wang 2008, Wang and Gupta 2011). However, as dis-
cussed above, inmany real-world scheduling platforms,
the system (i.e., the scheduler) offers its availability to
customers to choose from either in a one-shot format
or in a sequential manner, with no explicit knowledge
on customer preferences. Customers interact with the
scheduler in ways that have not been fully explored in
the literature. This paper fills a gap in the literature by
proposing the first choice-based dynamic optimization
models for making scheduling decisions in systems
where customers are allowed to choose among offered
appointment slots from an established appointment
template. We show how the current appointment
booking processes can be improved by developing
optimality results, heuristics, and managerial insights
in the context of the proposed models.

We propose and study two models for the interaction
between customers and the service provider. The first
one is referred to as the nonsequential offering model.
In this model, the scheduler offers a single set of ap-
pointment slots to each customer. If some of the offered
slots are acceptable to the customer, she chooses one
from them; otherwise, she does not book an appoint-
ment. This simple, one-time interaction resembles the
mechanism of many online appointment systems that
provide one-shot offerings, and our results on this
model have direct implications on how to manage these

systems. Our secondmodel is a sequential offeringmodel,
in which the scheduler may offer several sets of ap-
pointment choices in a sequential manner. This is mo-
tivated by (1) web-based appointment applications
designed to reveal only a small number of appointment
options one web page at a time (e.g., mobile-based ap-
pointment applications) and (2) the traditional telephone-
based scheduling process, in which the scheduler offers
appointment slots sequentially. This second model is
stylized in the sense that it does not incorporate customer
recall behavior (i.e., a customer choosing a previously
offered slot after viewing more offers), which is allowed
in both online and phone-based scheduling. Our goal
here is to glean insights on how the fill rate can be im-
proved by “smarter” sequencing when sequential offer-
ing is part of the scheduling process.
For both cases, we are interested inwhich slots to offer

to improve and maximize the fill rate. We answer this
question by investigating the optimal offering policy
using Markov decision processes (MDPs) as well as
by discussing heuristics. Intuitively, sequential offering
should lead to a higher fill rate than nonsequential of-
fering, because sequential offering gives the scheduler
more control over the service capacity. We are also in-
terested in how much improvement a service provider
can get by switching from nonsequential scheduling
to sequential scheduling. We answer this question by
comparing the fill rates resulting from these twomodels,
and the gap in the fill rates represents the “value” of
sequential offering.
We make the following main contributions to the

literature.
To the best of our knowledge, our paper is the first to

study and compare two main scheduling paradigms,
nonsequential (online) and sequential (mobile or tele-
phone based), used in the service industries.
For the nonsequential offering model, we characterize

the optimal policy for a few special instances and show
that the optimal policy can be highly complex in general.
We then identify a static randomized policy (arising from
solving a single linear program), which is asymptotically
optimal when the system demand and capacity increase
by the same factor.We further show that the offering-all
policy (i.e., offering all available capacity through-
out) has a constant factor of two performance guarantee.
For the sequential offeringmodel, we show that there

exists an optimal policy that offers slot types one at
a time based on their marginal values. We are able to
determine these values for a broad class of model in-
stances, which leads to a closed form optimal policy in
these cases. For model instances without an explicit
optimal policy, we develop a simple, effective heuristic.
We show that a sequential offering model is equiv-

alent to a nonsequential offering model with perfect
customer preference information. This equivalence en-
sures that sequential offering can be optimally applied in
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various interactive scheduling contexts, in particular
when customer-scheduler interaction can (partially)
reveal customer preference information during the ap-
pointment booking process.

Via extensive numerical experiments, we show that
the offering-all policy and the heuristic developed for
sequential offering work remarkably well in their re-
spective settings, and thus, they can serve as effective
approximate scheduling policies for practical use. We
also show that, by switching from nonsequential to
sequential offering, the slot fill rate can be significantly
improved (6%–8% on average and up to 18% in our
testing cases).

The remainder of the paper is organized as follows.
Section 1.1 briefly reviews the relevant literature. Section
2 introduces the common capacity and demand model
that will be used in both the nonsequential and se-
quential settings. Sections 3 and 4 discuss the non-
sequential offering case and the sequential offering case,
respectively. Section 5 presents an extensive numerical
study that complements our analytic work. In Section 6,
wemake concluding remarks. All proofs of our technical
results can be found in the online appendix.

1.1. Literature Review
From an application perspective, ourwork is related and
complementary to the literature on appointment tem-
plate design, a topic that has been studied extensively
(Cayirli and Veral 2003, Gupta and Denton 2008,
Ahmadi-Javid et al. 2016). Our work departs from this
literature in that we start from an established template
and then study how to manage the interaction between
the customers and the scheduler to best direct customers
to various slots. Among the existing work on dynamic
appointment scheduling, Feldman et al. (2014) is the
only study, other than the few papers mentioned in
the previous section, that explicitly models customer
choice behavior. However, Feldman et al. (2014) focus on
customer choices across different days and use a news-
vendor model to capture the use of daily capacity; this
aggregate daily capacity model does not allow them to
consider (allocating customers into) detailed appoint-
ment time slots within a daily template.

From a modeling perspective, Zhang and Cooper
(2005) look at a similar choice model to ours in the
context of revenue management for parallel flights. In
contrast to this paper, their approach focuses on de-
riving bounds on the value function of the underlying
MDP and using them to construct heuristics. A few
recent studies on assortment optimization are particu-
larly relevant to our paper: Golrezaei et al. (2014),
Bernstein et al. (2015), Gallego et al. (2016a), and Gallego
et al. (2016b). Bernstein et al. (2015) study a dynamic
assortment customization problem, which is mathe-
matically similar to our nonsequential appointment
offering problem, assumingmultiple types of customers,

each of which has a multinomial logit choice behavior
over all product types. They assume that the customer
type is observable to the seller (corresponding to our
scheduler), which differs from our setting. Golrezaei
et al. (2014) adopt a general choice model and also al-
low an arbitrary customer arrival process. Gallego et al.
(2016b) extend the work by Golrezaei et al. (2014) to
allow rewards that depend on both the customer type
and the product type. In addition, Gallego et al. (2016a)
study assortment optimization in an online retail setting,
where each customer picks the number of pages to view
according to a fixed distribution and then chooses
among all of the products offered on those pages fol-
lowing some choice model. The last three studies also
assume that the customer type is known to the seller,
and their focus is on developing control policies com-
petitive with respect to an offline optimum, a different
type of research question from ours. The other dis-
tinguishing feature of our research from all previous
work is that we consider sequential offering, an offering
paradigm that has not been studied before.
Finally, our work is related to two other branches

of literature. The first is on online bipartite matching
(Mehta 2013), and the second is on general stochastic
dynamic optimization, in particular stochastic depletion
problems (e.g., Chan and Farias 2009) and submodular
optimization (e.g., Golovin and Krause 2011). These two
lines of research mainly aim to obtain performance
guarantee results with respect to offline optimums,
which is not our research goal.

2. Capacity and Demand Model
We consider a single day in the future that has just
opened for appointment booking. The day has an
established appointment template, but none of the slots
are filled yet. We divide the appointment scheduling
window (i.e., the time between when the day is first
opened for booking and the end time of this booking
process) into N small periods. Specifically, we consider
a discrete time N period dynamic optimization model
with I customer types (that may come) and J appoint-
ment slot types (in the template), where customer types
are characterized by their set of acceptable slot types.
Denote byΩij the zero-one indicator ofwhether slot type
j is acceptable by customer type i, and therefore, the I × J
choice matrix Ω≔ [Ωij] consists of distinct row vectors,
each representing a unique customer type. Such a cus-
tomer type structure is similar to those in the literature
that model customer segments characterized by differ-
ent product preferences (e.g., Bernstein et al. 2015).
We now present the details of our customer arrival

and choice model. In each period, at most one customer
arrives. The customer is type i with probability λi > 0,
and with probability λ0 ≔ 1 −∑I

i�1λi, no customer ar-
rives. On a customer arrival, the scheduler offers her
a set S⊆ {1, . . . , J} of slot typeswithout knowledge of the

Liu, van de Ven, and Zhang: Managing Appointment Booking Under Customer Choices
4282 Management Science, 2019, vol. 65, no. 9, pp. 4280–4298, © 2019 INFORMS



customer type. When offer set S contains one or more
acceptable slot types, the customer chooses one uni-
formly at random. If no type in S is acceptable to this
customer, we distinguish two possibilities. Either we use
a nonsequential model, where the scheduler can only
offer a single set and the customer immediately leaves if
none of the offered slots are acceptable (Section 3), or we
use a sequential model, where the scheduler may offer
any number of sets sequentially until either the customer
encounters an acceptable slot or the customer finds no
acceptable slots in any offer set and leaves without
booking a slot (Section 4). We start from an initial ca-
pacity of bj slots of type j at the beginning of the res-
ervation process and denote b≔ (b1, . . . , bJ). Every time
a customer selects a slot, the remaining slots of this type
are reduced by one. The scheduler aims tomaximize the
fill rate at the end of the reservation process by deciding
on the offer set(s) in each period. This is also equivalent
tomaximizing the fill count (i.e., the total number of slots
reserved at the end of the booking process), because the
initial capacity b is fixed.

Our capacity and demand model generalizes that of
Wang and Gupta (2011) in the following sense. Our
notion of “slot type” can be viewed as an abstraction of
the service provider and time block combination in their
model, and thus, we allow a generalization of using
other attributes of a slot that may affect its acceptability
to customers, such as duration. Wang and Gupta (2011)
consider distinct customer panels, each characterized by
a possibly different acceptance probability distribution
over all possible combinations of service providers and
time blocks and a set of revenue parameters. In contrast,
we define the notion of customer type and identify it
with a unique set of acceptable slot types. Their arrival
rate (probability) parameters are associated with each
customer panel, whereas we directly have the demand
rate for each of the I customer types asmodel primitives.

Our choice model assumes that, for a particular
customer type, slot types are either “acceptable” or
“unacceptable.” This dichotomized classification of slots
closely mimics the decision process on whether a time
slot works for one’s daily schedule. For instance, such
a slot-choosing process is seen at the popular polling
website www.doodle.com, where each participant re-
sponds to a poll by indicating whether a particular time
works (i.e., is acceptable) for him or her. This relatively
parsimonious choice model enables a tractable analysis
of the interplay between appointment booking and
customer choice. Its parameters may, for instance, be
estimated by conducting a market survey on customers’
acceptance on various slot types.

As discussed earlier, the distinction between the
nonsequential and sequential customer-scheduler in-
teractions reflects the differences present in various real-
life appointment scheduling systems. The nonsequential
model is best suited for web-based appointment

scheduling systems, such as www.zocdoc.com. In such
systems, the customer is presentedwith a list of time slots
to choose from, which corresponds to a single offer set.
In contrast, sequential scheduling reflects the iterative
nature of, for instance, telephone-based appointment
scheduling. Here, the scheduler may propose one or
more slots initially and may present more if these are
rejected by the customer. Although allowing an un-
limited number of offer sets in sequence does not con-
form with many real-world systems, the sequential
model is a valuable object of study, because the scheduler
in this setting enjoys the greatest flexibility, and hence,
the resulting optimal fill rate serves as an upper bound
for that in both the nonsequential model and some in-
termediate paradigms, such as those allowing a limited
number of offer sets or with customer reneging.
The assumption that the customer type is unob-

servable is unique in our work, and it is present to some
degree in all real-world systems that we consider. Users
of web- and mobile-based appointment schedul-
ing systems often prefer a simple interface soliciting no
or minimal personal information before displaying
availabilities, and telephone-based schedulers may
only know some basic information about the cus-
tomers. Even if these collected data are useful in pre-
dicting customer preferences, not all service firms have
the necessary resources (e.g., human, technology, and
software) to make such predictions and then use them
in scheduling decisions. Another important motivation
for why we choose to assume that the exact customer
type is unknown to the scheduler is that this case can be
considered a harder problem than the setting with full
customer information, because the latter would re-
quire only offering a single slot type. We will touch on
the intermediate case, in which partial knowledge on
customer types is available, in Section 4.6 on interactive
scheduling. There, we see that incorporating partial
knowledge on customer preference does not neces-
sarily lead to better fill rates than sequential offering
(Theorem 4), but it may improve the ease of use for
sequential offering (e.g., fewer offers to make).
Our objective is to maximize the fill rate (or equiva-

lently, fill count), thereby assuming that each customer
contributes to the objective equally. We choose this
objective for a few reasons. First, fill rate is a widely used
reporting metric by service firms for their operational
and financial performance. The simplicity of this metric
alsomakes it more tractable for analysis. Second, fairness
may carry more weight than profitability in the vision of
a service firm (e.g., a healthcare delivery organization).
Third, although different customers may bring different
rewards (e.g., revenues) to the service firm, how to as-
sociate such rewards with customer (preference) types is
not well understood in the literature.
Finally, our discrete time customer arrival model with,

at most, one arrival per period is widely accepted and
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used by many operations management studies, in-
cluding those on healthcare scheduling (e.g., Green et al.
2006) and revenue management (e.g., Talluri and Van
Ryzin 2004 and Bernstein et al. 2015). One could set N,
the total number of time periods, sufficiently large so that
the probability of multiple customers arriving during
a single period is negligible (and thus, such as is the
probability of more than N customers arriving in total).
This demand model can be used to approximate an
inhomogeneous Poisson arrival process (Subramanian
et al. 1999).

In the following sections, we focus on analyzing the
models described above. Note that our models do not
explicitly capture the rolling horizon feature of the
appointment scheduling practice, in which customers
may book appointments in future days and unused
capacity in a day is wasted when the day is past.
However, the rolling horizon multiday scheduling
model is known for its intractability (Liu et al. 2010,
Feldman et al. 2014), whereas the single-day model
is more tractable and often used in the literature to
generate useful managerial insights (e.g., Gupta and
Wang 2008 and Wang and Gupta 2011). In Section C
of the online appendix, we will introduce a rolling
horizon version of our model and argue why it is in-
tractable. Moreover, we numerically show how our
single-day models can inform decision making in
a rolling horizon multiday setting.

3. Nonsequential Offering
We first consider the nonsequential offering model, in
which only one offer set S is presented to each arriving
customer. Denote by m≤b a J-dimensional, non-
negative integer vector that represents the current
number of remaining slots of each type and by ej the
J-dimensional unit vector with its jth entry being one
and all others being zero. Define S̄(m)≔ { j � 1, . . . ,
J :mj > 0}, the set of slot types with positive capacity,
and Vn(m) as the maximum expected number of ap-
pointment slots that can be booked from period n to
period 1 with m slots available at the beginning of
period n. Note that we count time backward.

Furthermore, denote by qij(S) the probability that slot
type j is chosen conditional on a type i customer arrival
and an offer set S∈ S̄(m). We have, for any j,

qij(S) �
Ωij∑
k∈SΩik

, if
∑

k∈SΩik > 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (1)

Then, the probability that slot type j is chosen when
offer set S is given is

qj(S) �
∑I
i�1

λiqij(S), (2)

and the no booking probability is q0(S) � 1 −∑J
j�1qj(S).

The optimality equation is

Vn(m) � max
S⊆S̄(m)

∑
j∈S

qj(S)(1 − Δ
j
n−1(m))] + Vn−1(m),

[
for n � N,N − 1, . . . , 1, (3)

whereV0( · ) � 0 andΔ
j
n−1(m)≔Vn−1(m) − Vn−1(m − ej)

denotes the marginal benefit owing to the mjth unit of
slot type j at period n − 1.
We first analyze the nonsequential offering model for

a few specific instances and show that, in general, the
optimal nonsequential offering policy seems to have no
appealing structural properties. Thus, characterizing the
optimal policy for general large-scale nonsequential of-
fering models is very challenging, if not impossible. We
then focus our efforts on constructing simple scheduling
policies that have performance guarantees and may
performwell in practice. We first consider a limited class
of policies (called static randomized offering policies)
and identify one such policy that is asymptotically op-
timal whenwe increase the system demand and capacity
simultaneously. We further show that a simple policy
that offers all available slots at all times has a constant
ratio of two performance guarantee, independent of all
model parameters. In Section 5, we show via extensive
numerical instances that this offering-all policy signifi-
cantly outperforms its theoretical bound. It may thus
serve as a simple, effective heuristic offering rule for
many practitioners in the nonsequential offering context.

3.1. Results for Specific Model Instances
When there are J � 2 slot types, the choice matrixΩ has
two possible nontrivial values:

Ω � 1 1
0 1

( )
, and Ω �

1 0
1 1
0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

These we refer to as the N model instance (Figure 1(a))
and the W model instance (Figure 1(b)), respectively.
These two model instances are, for example, applica-
ble to the popular Chinese scheduling system www
.guahao.com.cn, which allows customers to book either
a morning or an afternoon (medical) appointment for
a certain day without providing more granular time

Figure 1. The N, W, M, and M + 1 Model Instances
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interval options. In both model instances, we show that
it is optimal to offer all available slots at all times (which
we call the offering-all policy in the rest of this article),
because not doing so would unnecessarily risk sending
away certain customers. This is formalized in the fol-
lowing result.

Proposition 1. For the N and W model instances, the
offering-all policy is optimal.

When there are J � 3 slot types, the simplest nontrivial
choice matrix is the M model instance in Figure 1(c)
with

Ω � 1 1 0
0 1 1

( )
.

It turns out that, in this case, the offering-all policy is
not always optimal; rather, rationing of the versatile
type 2 slot is needed. We define policy π1 according to
its offer set:

Sπ1(m)≔ {1, 3} if m1 > 0 and m3 > 0,
S̄(m) otherwise.

{
(4)

Therefore, policy π1 proposes to hold back on offering
type 2 slots until either type 1 or type 3 slots are used
up. We now formalize that one cannot do better
than this.

Proposition 2. For the M model instance, π1 is optimal.

The intuition behind Proposition 2 is that blocking slot
type 2 does not lead to any immediate loss of customer
demand compared with offering it, while forcing early
customers into less versatile slot types (types 1 and 3).
This preserves the versatile slots (type 2) for later arrivals
when slots run low. For convenience of discussion, we
say a slot type is more versatile if this slot type is ac-
cepted by a superset of customer types compared with
its counterpart.

Following from Proposition 2, we know that a ver-
satile type 2 slot is at least as valuable as one of the other
two less versatile slot types at all times; otherwise, it
would be better to offer type 2 slots but not to offer the
more valuable, less versatile slot type. To be more
specific, we have the following corollary.

Corollary 1. In the M model instance, for j � 1 or 3 or both,

Vn(m − e2) ≤Vn
(
m − ej

)
, ∀m> 0, n ∈ {1, . . . ,N}. (5)

However, it is important to note that one of two less
versatile slot types (1 and 3) may be strictly more
valuable than the versatile type 2. For example, for
λ1 � λ2 � 0.5, it is easy to verify that V2(2, 1, 0) �
1.625< 1.75 � V2(2, 0, 1). The reason here is the follow-
ing. With m1 � 2 and n � 2, sufficient capacity is
available for all potential type 1 customer demand
(i.e., at most two units), but in both cases (m � (2, 1, 0)
andm � (2, 0, 1)), at most one slot is available for type 2

customers. If (m2,m3) � (1, 0), the one unit of type 2 slot
has a positive probability of being taken by a type 1
customer (which would essentially be a waste, because
type 1 slots are sufficient to satisfy all possible demand
from type 1 customers). In contrast, if (m2,m3) � (0, 1),
the one unit of type 3 slot can only be exclusively used
by type 2 customers, and thus, this is more efficient. This
simple example shows that, because of customers’
ability to (randomly) choose from their offer set, less
versatile slots may be more valuable than versatile slots
because of resource imbalance. This observation implies
that the (future) value of keeping a slot type cannot be
viewed solely based on the number of accepting cus-
tomer types, irrespective of the arrival probabilities or
slot capacities. This complication renders the optimal
policy for a general model instance quite complex as we
show now.
The next model instance that we focus on is theM + 1

model instance shown in Figure 1(d), with choice
matrix

Ω �
1 1 0
0 1 1
0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Note that the only difference between the M + 1 and
Mmodel instances is the additional customer type 3 that
only accepts type 2 slots. It turns out that the simple,
elegant form of the optimal policies in the previous cases
does not carry over to the M + 1 model instance.
To illustrate the complexity of the M + 1 model in-

stance, consider the case withm1 � 4 and n � 5. Figure 2
shows the unique optimal offer set, identified with
S⊂ {1, 2, 3}, as a function of m2 and m3. (For instance, if
S � {1, 3}, it means offering slot types 1 and 3 but not
slot type 2.) Consider λ1 � λ2 � 0.1, λ3 � 0.8 (Figure
2(a)) or λ1 � λ2 � 0.475, λ3 � 0.05 (Figure 2(b)). As
discussed earlier, resource imbalance can make a less
versatile slot more valuable than a more versatile one,
which naturally would suggest an action of saving the
less versatile slot by only offering the versatile slot.

Figure 2. The Optimal Policy for an M + 1 Model Instance,
with m1 � 4, n � 5
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Indeed, in Figure 2(b), we see that action {1, 2} can be
the unique optimal action, even whenm> 0. This is true,
becausem3 is relatively small (equal to one or two in this
case), whereas m1 � 4 is ample given n � 5 and the
symmetric arrival rates of type 1 and type 2 customers.
Blocking type 3 and offering the versatile type 2 earlier
rather than later can help to resolve the resource im-
balance by maximizing the total expected amount of
type 2 slots taken by type 2 customers (and thus, saving
type 3 slots that can only serve type 2 customers for the
future).

In addition, we see that the arrival rate now has a
strong impact on the optimal policy in contrast to the
other cases thatwediscussed so far:whenλ3 is large, it is
often optimal to include type 2 slots in the offer set,
whereas when λ3 is small, this is not the case. The
reasoning here is that, for λ3 small, the model is very
close to the M model instance, for which we know it is
optimal to save versatile type 2 slots for later in the
booking process. However, not offering type 2 slots also
implies turning away all type 3 customers, which ex-
plains why this slot type should be offered when λ3
is large.

These observations we make on the M + 1 model
instance suggest that the optimal policy depends on the
customer preference profiles, arrival rates, and avail-
able slot capacity of the specific model instance under
consideration. The optimal policy for a general model
can be quite complex and may have no straightfor-
ward structural properties. Thus, we shall focus our
efforts on identifying simple scheduling policies that
have performance guarantees and perform well in
practice.

3.2. Asymptotically Optimal Policy
In this section, we construct a static randomized policy that
is asymptotically optimal when we increase the system
demand and capacity simultaneously. We first intro-
duce the class of static randomized policies. At any
decision epoch, there are altogether 2J possible actions in
terms of which slot types to offer. Here, we use a binary
vector to denote the offer set with a one at position j,
meaning that slot type j is offered, and zero otherwise.
For example, we denote by the action of closing all
slots as w1 ≔ (0, . . . , 0), the J-dimensional zero vector,
and the action of opening all slots as w2J ≔ (1, . . . , 1),
the J-dimensional one vector. We call the set of all
2J J-dimensional zero-one vectors as set0≔ {0, 1}J and
name the elements of the set as w1,w2 . . . ,w2J . Define
_≔ {1, . . . , 2J} as the action index set, and therefore,
_ and 0 have the same cardinality.

A policy πp is a static randomized policy if πp offers
wk with some fixed probability pk, independent of the
system state and the time period.1 The class of static
randomized policies contains all πp values, such that the
vectorp � {pk}2Jk�1 is a probability vector. For instance, the

offering-all policy is a special case in this class with
p2J � 1 and pk � 0 for all k≠ 2J .
We show that there exists a vector p∗, such that πp∗ is

asymptotically optimal when the demand and capacity
are scaled up simultaneously. The choice of p∗k relies
on the fluid model corresponding to the stochastic
model (3) considered above, in which we can readily
determine the optimal offering policy. We choose p∗k,
such that it represents the fraction of the time in which
the action wk is used in a fluid model under optimal
control. Below, we construct this asymptotically opti-
mal policy πp∗ and defer more technical details to the
online appendix.

3.2.1. Fluid Model. We first introduce our fluid model.
To differentiate from the notation in the stochasticmodel
formulation (3), we shall put the time index n in pa-
rentheses instead of as a subscript. Instead of discrete
customers arriving in each slot, we represent a customer
by a unit of fluid. In total, one unit of demand arrives in
each time period, a fraction λi of which corresponds to
customer type i. This fluid is distributed evenly among
all available slots that are offered and accepted by the
corresponding customer type.
For each n � 1, . . . ,N, the decision vector in the

fluid model is z(n) � (z1(n), . . . , z2J (n)), which is a
2J-dimensional vector, each component zk(n) ∈ [0, 1]
representing the time during which action k ∈_ is
being used in period n. Note that each action can be
used for any fractional unit of time. Thus, we re-
quire that

0≤ zk(n) ≤ 1,∀k ∈_, n � 1, . . .N; (6)∑
k∈_

zk(n) � 1,∀n � 1, . . .N. (7)

Constraint (7) ensures that the total time spent on all
possible actions (including the one that closes all slot
types) in one period adds up to one.
Let τ(n) � [τk,j(n)] be a 2J × J matrix, each row of

which corresponds to one of the 2J possible actions. We
use τk,j(n) to indicate the amount of time for which type
j slots are offered during the time when the kth action is
taken in period n. We have that

τk,j(n) � zk(n)w k
j , ∀k ∈_, j � 1, 2, . . . , J, n � 1, . . .N, (8)

where w k
l denotes the lth coordinate of vector wk.

Constraint (8) is presented mainly to make the formu-
lation clearer and easier to understand. It ensures that
slot type j can be open when action k is chosen only if
action k offers slot type j. If action k does not offer
slot type j, then w k

j � 0, and τk,j(n) is zero by (8). Let
)k � { j :w k

j � 1, j � 1, 2, . . . , J.} be the full set of slot
types offered by action k. Note that (8) implies that

τk,j1(n) � τk,j2(n), ∀k ∈_, n � 1, . . .N, j1, j2 ∈)k.

Liu, van de Ven, and Zhang: Managing Appointment Booking Under Customer Choices
4286 Management Science, 2019, vol. 65, no. 9, pp. 4280–4298, © 2019 INFORMS



That is, if an action k offers multiple slot types, the
offering durations of these slot types are the same.

Let yi,j(n) denote the amount of type j slot’s capacity
filled by type i customers during period n and _j �
{s :ws

j � 1, s∈_} be the index set of actions that offer
type j slots. If Ωi,j � 1,

yi,j(n) �
∑
k∈_j

τk,j(n) · λi∑J
l�1min

{
Ωi,l,wk

l

}, i � 1, 2, . . . , I,

j � 1, 2, . . . , J, n � 1, . . . ,N;

(9)

otherwise, if Ωi,j � 0, then

yi,j(n) � 0, i � 1, 2, . . . , I, j � 1, 2, . . . , J, n � 1, . . . ,N.

(10)

Note that all terms in (9), except τk,j(n), are constants,
and therefore (9), as a set of constraints for the opti-
mization problem, they are linear in the decision var-
iables τk,j(n).

LetMj(t) be the amount of type j slots left with t time
periods to go, and let ZN(m) be the optimal amount of
(fluid) customers served with initial capacity vector m
and N periods to go. The goal is to choose zk(n) (and
τk,j(n)) to solve for

ZN(m) � max
∑N
n�1

∑J
j�1

∑I
i�1

yi, j(n), (P1)

subject to: (6), (7), (8), (9), and (10), and

Mj(N) � mj, j � 1, 2, . . . , J, (11)

Mj(n − 1) � Mj(n) −
∑I
i�1

yi,j(n), j � 1, 2, . . . , J,

n � 1, . . . ,N,

(12)

Mj(n) ≥ 0, j � 1, 2, . . . , J, n � 0, 1, . . . ,N − 1. (13)

In (P1), constraint (11) specifies the initial capacity
vector, (12) updates the capacity vector for each period,
and (13) ensures that all slot types have nonnegative
capacity throughout. We remark that, in our formu-
lation, control can be exerted anytime continuously
throughout the horizon, but the system is observed
only at discrete time epochs 0, 1, 2, . . . ,N to match the
stochastic model formulation (3).

3.2.2. Choice of p∗. Let p∗k be the fraction of the time in
which the optimal policy chooses action k in the fluid
model (P1). That is,

p∗k �
∑N

n�1z∗k(n)
N

, (14)

where z∗k(n) is the optimal solution to (P1). We now
translate this optimal policy for the fluid model to our
original discrete and stochastic setting by defining a

policy πp∗ , such that, in each period n, this policy offers
wk with probability p∗k, independent of everything else.
The intuition behind choosing p∗ as the offering

probability vector is that, if we scale up the system
demand (i.e., N) and capacity (i.e., m) in the stochastic
model, using πp∗ makes the proportion of total customer
demand going to each slot type in the stochastic model
approximately match that in the fluid model. Thus, the
total fill counts in the stochastic model are similar to
those of the fluid model. Because the fluid model is
a deterministic model that provides an upper bound on
the objective value of the stochastic model (more on this
below), we know that p∗ is (close to) optimum in the
stochastic model as the system becomes large. We for-
malize this intuition in the next section.

3.2.3. Main Result. Consider a sequence of problems
indexed by K � 1, 2, 3. . . . The problems in this se-
quence are identical except that, for the Kth problem,
the number of total periods is NK and the capacity
vector is mK. We call the problem instance with K � 1
the base problem instance. Let Vπp

n ( · ) be the total ex-
pected number of slots filled under a policy πp with the
offering probability vector p in the stochastic model.
The main result is shown in the following theorem.

Theorem 1.
(i) K−1VNK(mK) ≤K−1ZNK(mK) � ZN(m), ∀m≥ 0,

K � 1, 2, 3, . . . ;
(ii) limK→∞K−1Vπp∗

NK(mK) � ZN(m).
Recall that Vn( · ) is the optimal value of the stochastic
model defined in (3). Thus, Theorem 1(i) says that the
“normalized” optimal value of the nonsequential of-
fering stochastic model (i.e., the original value divided
by K) is bounded from above by that of the corre-
sponding fluid model and that the normalized objec-
tive value of the fluid model is the same as the objective
value of the base fluid model with K � 1. Theorem 1(ii)
states that, as the system grows large, the normalized
objective value in the stochastic system under policy πp∗

converges to this constant upper bound, and thus,πp∗ is
asymptotically optimal.
The proof of Theorem 1 entails a few key steps, which

are outlined below (full details can be found in the online
appendix). We first show that the optimal objective
value of the fluid model is an upper bound of the op-
timal value of the stochastic model (i.e.,ZN(m) ≥VN(m))
for any given set of model parameters. Then, based on
any static randomized policy πp, we construct a lower
bound for Vπp

n ( · ), and this lower bound is naturally a
lower bound for the optimal value of the stochastic
model VN(m) (because πp is not necessarily optimal).
Finally, we show that, when p is chosen as p∗ defined in
(14), the normalized lower bound converges to ZN(m)
when the system grows in both demand and capacity.
Thus, πp∗ is asymptotically optimal.
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Our findings build on the early classic results in the
revenue management literature, which show that allo-
cation policies arising froma single linear programmake
the normalized total expected revenue converge to an
upper bound on the optimal value (Cooper 2002). Our
results are different and new in several important as-
pects. The model in Cooper (2002) can designate/
allocate a particular product (slot) type on a customer
arrival (because he assumes that customer preference is
known on arrival), whereas our model offers multiple
product (slot) types for customers to choose from (be-
cause the customer preference is not known). Using the
offer set as a decision in the model creates significant
new challenges. Our fluid model formulation needs to
explicitly take care of customer choice processes and
is much more complicated than that in Cooper (2002).
Leveraging the fluid model formulation, the asymp-
totically optimal policy in Cooper (2002) accepts cus-
tomer requests up to some customer type-specific
thresholds, because the optimal solution in the fluid
model of Cooper (2002) prescribes such thresholds for
each customer type. As a result, the asymptotic policy of
Cooper (2002) leads to a closed form expression for each
type of the customer demand served, allowing him to
show that the normalized demand served converges in
distribution to a constant that matches the optimal fluid
model decision, by directly using a result in Billingsley
(1968). However, because of customer choices, our fluid
model cannot give rise to such a simple policy. Our fluid
model informs the optimal duration in which a partic-
ular offer set is used, and we use this information to
construct our policy, which has a completely different
form compared with the policy of Cooper (2002). Be-
cause we cannot control the exact product (slot) type in
an offer set that will be chosen by an arriving customer,
we do not have a closed form expression as in Cooper
(2002) for the total demand that goes into each product
(slot) type and eventually gets served. To deal with this
difficulty,we construct a (very) tight lower bound on the
objective value and show that this lower bound, after
being normalized, converges to the optimal objective
value of the fluid model. The idea of our proof may be
useful to identify effective approximate policies in other
capacity management contexts when the manager
cannot directly control the product that a customer
may pick.

3.3. Constant Performance Guarantee of the
Offering-All Policy

In this section, we focus on a simple scheduling policy:
the offering-all policy. Let π0 represent this policy, and
the offer set under π0 is the full set of all slot types,
irrespective of the period n. Note that the effective offer
set at state m is S̄(m). That is, when customers arrive,
they only consider those slot types with positive ca-
pacity whenmaking a choice. We denote byVπ0

n (m) the

expected fill count attained by applying the offering-all
policy π0 throughout.
Indeed, this simple policy has a constant perfor-

mance guarantee that states that, for any set of pa-
rameters, the offering-all policy π0 achieves at least
one-half of the optimal fill count.

Theorem 2. For any Ω, n, and m, Vn(m) ≤ 2Vπ0
n (m).

It is worth noting that Theorem 2 in fact holds more
broadly for all so-called myopic policies, which at each
period, offer a set maximizing the expected number of
filled slots for that period. Myopic policies, however,
do not have to offer all slot types in all periods. For
instance, offering slot types 1 and 3 in the M model
instance would constitute a myopic policy.
Performance guarantee results on myopic policies

exist in various dynamic optimization settings, and a
ratio of two is often the best provable performance
bound (e.g., Chan and Farias 2009 and Mehta 2013).
Although this performance bound may seem a little
loose, we shall see empirically in Section 5.1 that the
offering-all policy performs very well and much better
than this lower bound; in finite regimes, the offering-all
policy also seems to perform better than the asymp-
totically optimal policy constructed in Section 3.2.

4. Sequential Offering
We now present our second scheduling paradigm,
which allows the scheduler to offer multiple sets of slots
sequentially. Recall that this way of offering slots may
represent, for instance, web-based scheduling where
available slots are not revealed simultaneously as well
as telephone-based scheduling. Intuitively, having the
scheduler offer slots sequentially instead of all at once
will be able to steer customers into selecting more fa-
vorable slots from the perspective of system optimiza-
tion. The questions that we address in this section are
then how many and what sets of slots to offer to
maximize the fill rate. We start by introducing the se-
quential offering model next.

4.1. Model Outline
On customer arrival, the scheduler chooses aK, 1≤K≤ J,
and sequentially presents the customer with Kmutually
exclusive subsets S1, S2, . . . , SK ⊆ S̄(m). We denote
this action as S≔ S1 − S2 −⋯ − SK. Denote by 6(m)
the set of all possible such actions at state m and by
Ik(S)≔ {i :∑j∈SkΩij ≥ 1, i ∉ ∪k−1

l�1 Il(S)}, k � 1, . . . ,K, the
set of customer types who do not accept any slot from
the first (k − 1) offer sets but encounter at least one
acceptable slot in Sk. Therefore, Ik(S) represents the set of
customerswho, given sequential offering S, accept some
slot on arrival into the system.Moreover, the slot chosen
by these customers belongs to the kth offer set Sk. The
probability that slot type j is chosen under action Smay
then bewritten as qj(S)≔∑K

k�1
∑

i∈Ik(S)λiqij(Sk), with qij( · )

Liu, van de Ven, and Zhang: Managing Appointment Booking Under Customer Choices
4288 Management Science, 2019, vol. 65, no. 9, pp. 4280–4298, © 2019 INFORMS



as in (1). The assumption that the sets S1,S2, . . . ,SK are
mutually exclusive is made from a practical rather than
mathematical standpoint: there is simply no reason to
offer the same slot type in two or more sets, because the
customer will book a slot as soon as she is offered a set
with at least one acceptable slot. Thus, only thefirst set in
which such a slot is included is relevant.

For ease of presentation, we still use Vn(m) to denote
the maximum expected number of slots that can be
booked with m slots available and n periods to go in
this section. For an action S, we let ⋃S≔ ⋃ K

i�1Si de-
note the set of all slot types offered throughout action S.
Then, for the sequential offering model, we have

Vn(m) � max
S∈6(m)

∑
j∈⋃S

qj(S)(1 − Δ
j
n−1(m))] + Vn−1(m),

[
for n � N,N − 1, . . . , 1, (15)

whereV0( · ) � 0 andΔ
j
n−1(m)≔Vn−1(m) − Vn−1(m − ej)

denotes the marginal benefit owing to the mjth unit of
slot type j at period n − 1. We observe that both the
transition probability qj(S) and the set of feasible actions
6(m) are much more complicated than their counter-
parts in the nonsequential model.

The sequential offering setting can be viewed as a
generalization of nonsequential scheduling to any
number K≥ 1 of offer sets. Consequently, it stands to
reason that the offering-all policy will not perform well
in the sequential setting, because this would limit the
scheduler to a single offer set (K � 1). We indeed nu-
merically confirm this conjecture in Section 5.3. Note
that, in contrast to the nonsequential case, an offering-all
policy is unlikely to be used in a practical setting, such as
telephone scheduling (because it would take too much
time for the scheduler to go over every possible ap-
pointment option). In the online setting, there is a way to
take advantage of sequential offerings by redesigning the
customer interface that releases information sequentially.

To provide a roadmap of analyzing the sequential
model, we summarize our key findings in this section
as follows.

1. We first consider a general setting and derive
various structural results that provide more insights; in
particular, we show that it is optimal to offer slot types
one by one.

2. For a large class of problem instances with nested
preference structures (to be discussed later), we derive
a closed form optimal sequential offering policy.

3. For problem instances not in this class, we de-
velop a simple and highly effective heuristic based on
the idea of balanced resource use and fluid models.

4. We prove that the optimal sequential offering
does as well as in the nonsequential case where the
scheduler has full information of the customer type on
arrival; we argue that this equivalence allows us to

apply the idea of sequential offering in various in-
teractive scheduling contexts.

4.2. Results for the General Sequential
Offering Model

We now present some properties of the sequential
model with general choice matrices. We first derive
some structural properties of the value function.

Lemma 1. The value function Vn(m) satisfies
(i) 0≤Vn+1(m) − Vn(m) ≤ 1, ∀m≥ 0, ∀n � 1, 2, . . . ,

N − 1; and
(ii) 0≤Vn(m+ej)−Vn(m)≤1, ∀m≥0, ∀n�1,2, . . . ,N.

Part (ii) of Lemma 1 implies thatVn(m+ej)≤ Vn(m)+1
(i.e., it is better to have a slot booked now rather than
saving it for future). Therefore, in the context of se-
quential offering, it is better to keep offering slots if none
have been taken so far. This is formalized in the fol-
lowing result, which shows that there exists an optimal
sequential offering policy that exhausts all available slot
types in each period.

Lemma 2. For any Ω, m, and n, there exists an optimal
action S∗, such that ⋃S∗ � S̄(m).
Building on Lemma 2, we are able to characterize the

structure of an optimal sequential offering policy de-
scribed in the theorem below.

Theorem 3. Let m> 0 be the system state at period n≥ 1,
and let j1, j2, . . . , jJ be a permutation of 1, 2, . . . , J, such that
Vn−1(m − ejk) ≥Vn−1(m − ejk+1), k � 1, 2, . . . , J − 1. Then,
the action { j1} −⋯ − { jJ} is optimal.

Theorem 3 implies that there exists an optimal policy
that offers one slot type at a time. More importantly,
this result shows a specific optimal offer sequence
based on the value function to go. To understand this,
recall that Vn−1(m) − Vn−1(m − ej) can be viewed as the
value of keeping the mjth type j slot from period n − 1
onward. Because all customers bring in the same
amount of reward, it benefits the system the most if an
arrival customer can be booked for the slot type with
the least value to keep (i.e., the slot type with the
largest Vn−1(m − ej)).
Even if the scheduler does not know the exact cus-

tomer type, following the optimal offer sequence de-
scribed in Theorem 3 ensures that the arriving customer
takes the “least valuable” slot (as long as there is at least
one acceptable slot remaining). Indeed, matching cus-
tomers with slots in this way would be the best choice
for the scheduler, even if she had perfect information
about customer type (i.e., she knew exactly the customer
type on arrival). Following this rationale, our next result
shows an interesting and important correspondence
between (1) the sequential offering without customer
type information and (2) the nonsequential offeringwith
perfect customer type information. To distinguish these
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two settings, we let Vs
n(m) and Vf

n(m) represent the
optimal value functions for settings (1) and (2), respec-
tively, in the next theorem.

Theorem 4. Vs
n(m) � Vf

n(m), ∀m≥ 0, n � 0, 1, 2, . . . ,N.

Theorem 4 suggests that the optimal sequential of-
fering can fully exploit the value of customer type in-
formation; however, it does not imply that it can fully
elicit the customer type. Specifically, optimal sequential
offering happens to result in the same system state
changes as if the scheduler had full information about
customer type but does not let the scheduler know
exactly the customer type (Remark 2 in Section 4.4).
Theorem 4 suggests that sequential offering is a useful
operational mechanism to improve the scheduling ef-
ficiency in the absence of customer type information.
Our numerical experiments in Section 5 confirm and
quantify such efficiency gains.

4.3. Optimal Sequential Offering Policies
In this section, we fully characterize the optimal se-
quential offering policy for a large class of choicematrix
instances, which include the N, M, and M + 1 model
instances (Figure 1). To this end, let I ( j) be the set of
customer types who accept slot type j (i.e., I ( j) �
{i � 1, 2, . . . , I :Ωij � 1}, ∀j � 1, 2, . . . , J). It makes intu-
itive sense that, if I ( j1)⊂ I ( j2), then slot type j2 is more
valuable than j1, and thus, slot type j1 should be offered
first. Combining this observation with Theorem 3 could
then help us to design an optimal policy. Let us first
introduce a specific class of model instances.

Definition 1. We say that a model instance character-
ized by Ω is nested if, for all j1, j2 � 1, 2, . . . , J and
j1 ≠ j2, one of the following three conditions holds:
(i) I ( j1)∩ I ( j2) � ∅, (ii) I ( j1)⊂ I ( j2), or (iii) I ( j1)⊃ I ( j2).

Note that not all model instances are nested. One
simple example is the W model instance from Figure
1(b), where I(1) � {1, 2} and I(2) � {2, 3}. None of
the conditions (i)–(iii) from Definition 1 hold in this case
for j1 � 1 and j2 � 2. However, it is readily verified that
the N, M, and M + 1 model instances are all nested.

Remark 1. The concept of a nested model instance is
related to the star structure considered in the previous
literature on flexibility design (e.g., Akçay et al. 2010).
Consider a system with a certain number of resource
types (corresponding to slot types in our context),
which can be used to do jobs of certain types (customer
types in our context). A star flexibility structure is one
such that there are specialized resource types, one for
each job type, plus a versatile resource type that can
perform all job types. The nested structure generalizes
the star structure.

It turns out that we can fully characterize an optimal
policy for nested model instances as follows.

Theorem 5. SupposeΩ is nested; any policy that offers slot
type j1 before offering slot type j2 for any j1, j2 such that
I ( j1)⊂ I ( j2) is optimal.

Theorem 5 proposes to offer nested slot types in an
increasing order of the accepting customer types. Note
that, when two slot types are mutually exclusive (i.e.,
I ( j1)∩ I ( j2) � ∅), the order in which they are offered is
irrelevant, because customers who would select a slot
from one set could never from the other. To give some
specific examples, we can fully characterize the optimal
policy for the N, M, and M + 1 model instances using
Theorem 5.

Corollary 2. For the N model instance and any n andm, an
optimal sequential offering policy is to offer S � {1} − {2}.
Corollary 3. For the M and M + 1 model instances and any
n, an optimal sequential offering policy is to offer

S �
{1, 3} − {2}, if m1,m2,m3 ≥ 1,
{1} − {2}, if m3 � 0,
{3} − {2}, if m1 � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4.4. Beyond Nested Model Instances
Although Theorem 5 solves a large class of the se-
quential model instances, not all instances have a nes-
ted structure. In this section, we analyze the W model
instance (Figure 1) to glean some insights into the in-
stances that are not nested.
To analyze the W model instance, one can formulate

an MDP with three possible actions: {1, 2}, {1} − {2},
and {2} − {1} (and the corresponding actions at the
boundaries). However, there exist no straightforward
offering orders for slot types, and the optimal se-
quential policy turns out to be state dependent. Spe-
cifically, we find that the optimal policy is a switching
curve policy: with the availability of one type of slots
held fixed, it is optimal to offer the other type of slots
first as long as there is a sufficiently large amount
of such slots left.
Figure 3 illustrates the optimal actions for the

W model instance at different system states with
λ � (0.2, 0.5, 0, 3) and n � 6. The numerals “0,” “1,” “2,”
“12,” and “21” correspond to the actions of offering
nothing, offering type 1 slots only, offering type 2 slots
only, offering type 1 slots and then type 2 slots, and
offering type 2 slots and then type 1 slots, respectively.
The optimal actions at boundary are obvious. In the
interior region of the system states,we can clearly see the
switching curve structure. For instance, when the sys-
tem state is (3, 3), it is optimal to offer {1} − {2}. When
the number of type 2 slots increases to four, then it is
optimal to offer {2} − {1}.
The intuition behind this is different from that of the

model instances considered above where customer
preferences are nested (e.g., the N, M, and M + 1 model
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instances). In the W model instance, type 1 (type 3)
customers only accept type 1 (type 2) slots, but type 2
customers accept both types of slots. If there are rela-
tively more type 1 slots than type 2 slots, then it makes
more sense to “divert” type 2 customers to choose type 1
slots, thus saving type 2 slots only for type 3 customers.
Accordingly, the switching curve policy stipulates that
type 1 slots be offered first, ensuring that type 2 cus-
tomers, if any, will pick type 1 slots. The intuition above
is formalized in the proposition below.

Proposition 3. Consider the W model instance with se-
quential offers. Given m2, if there exists an m∗

1 such that the
optimal action at state (m∗

1,m2) is {1} − {2}, then ∀m∈
{(m1,m2),m1 ≥m∗

1}, and the optimal action is {1} − {2}.
Similarly, given m1, if there exists an m∗

2 such that the op-
timal action at state (m1,m∗

2) is {2} − {1}, then ∀m∈
{(m1,m2),m2 ≥m∗

2}, and the optimal action is {2} − {1}.
Remark 2. In Section 4.3, we state that sequential of-
fering may not fully reveal exact customer types but
allows the system to evolve in the same optimal way as
if the scheduler knew exactly the customer type. We use
the W model instance to illustrate this point. Consider
the Wmodel instance with nonsequential offers and the
scheduler knowing the exact type of arriving customers.
Suppose that the optimal action is to offer {1}when type
1 or type 2 customers arrive and offer {2} when type 3
customer arrives. Now, in a sequential offering model
where the scheduler does not know the exact type of
arriving customers, the scheduler would have offered

{1} − {2} to any arriving customer. If we encountered
type 1 or 2 customers, type 1 slot would be taken, but we
do not know the exact type of this customer (we know,
however, that she must be either type 1 or type 2); if
a type 3 customer arrived, she would reject type 1 slot
but take type 2 slot. In this way, the system evolves as if
the scheduler had perfect information on customer type.
The structural properties of the optimal policy described
in Proposition 3 are likely the best that we can obtain for
the W model instance; the exact form of the optimal
policy depends on model parameters and the system
state, much like with the M + 1 model instance in the
nonsequential case. If customer preference structures
become more complicated, it is very difficult, if not
impossible, to develop structural properties for the
optimal sequential offering policy. Thus, for model in-
stances that do not satisfy the conditions of Theorem 5,
we propose an effective heuristic below.

4.5. The Drain Heuristic
If customer preferences are not nested, the analysis of
the W model instance suggests that the optimal policy
is to offer slots with more capacity relative to its cus-
tomer demand. Inspired by this observation and using
the idea of fluid models, we propose the following
heuristic algorithm, which aims to “drain” the abun-
dant slot type first followed by less abundant ones. This
heuristic aims to have all slot types emptied simulta-
neously, thus maximizing the fill rate. That is, this
heuristic tries to “balance” the resource use. Specifically,

Figure 3. Structure of the Optimal Policy Under W Model Instance with Sequential Offers
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the drain algorithm works in the following simple way.
At period n and for each slot type j∈ S̄(m), we calculate

Ij ≔
mj

n
∑I

i�1λi
Ωij∑

k∈S̄(m)Ωik

. (16)

Note that the fraction term in the denominator
of (16) represents the share of type i customers whowill
choose type j slots, assuming that all available slot types
are offered simultaneously. Taking expectation with
respect to the customer type distribution and multi-
plying by n, the number of customers to come, the
denominator of (16) can be viewed as the expected load
on type j slots in the next n periods. As a result, the
index Ij can be regarded as the ratio between capacity
left and “expected” load.

The drain algorithm is then to calculate all Ij values at
the beginning of each period and offer slots in de-
creasing order of the Ij. The algorithm calls for offering
slot types with larger Ij first, because these slot types
have relatively more capacity compared with demand.
In other words, a slot type with a larger Ij is likely to
have a smaller marginal value to keep and thus, can be
offered earlier. We could of course safely remove n in
the definition of Ij and obtain the exact same order of
slots. However, we leave n in the denominator of (16),
because this allows us to interpret Ij as the ratio be-
tween capacity left and expected number of requests.
Based on this interpretation, it is clear that this heuristic
aims to have all slot types emptied simultaneously,
thus maximizing the fill rate. We will test the perfor-
mance of this algorithm in Section 5.2.

4.6. Applications to Interactive Scheduling
In Sections 3 and 4, we discuss two different models of
customer-scheduler interactions in the appointment
booking practice. In one model, the scheduler makes a
one-shot offering, and in the other, the scheduler enjoys
the full flexibility of sequential offering. The appoint-
ment booking process, however, can fall in between
these two models in terms of the degree to which the
customer preference information is collected and used
during the interaction between the scheduler and each
customer. Such interactions may be present both in a
traditional setting with human interaction (e.g., a cus-
tomer, after being offered an appointment at 8 a.m. by
a receptionist, may indicate that none of the morning
slots are acceptable) or fully digitally (e.g., the Partners
HealthCare Patient Gateway online booking website
allows patients to indicate their acceptable time slots
upfront).

When additional customer preference information is
gathered during the appointment booking process, the
scheduler can still follow the optimal list of slot types
{ j1} −⋯ − { jJ} obtained from Theorem 3 but simply
skip all slots known to be unacceptable either up front or

dynamically as additional information is collected. This
offering strategy is still optimal, because itwould end up
with the same system state compared with not skipping
those slots indicated as unacceptable before or during
the booking process (e.g., directly declared by the cus-
tomer) and thus, give the exact same fill count that can
be obtained if the scheduler had full information about
the customer type (Theorem 4). Recall that the order
of { j1} −⋯ − { jJ} can be readily obtained with nested
customer preferences (Theorem 5), or otherwise, an
approximate order can be easily formed by the drain
heuristic (16).
Although outside the scope of this paper, these

considerations on interactive scheduling raise various
issues related to the tradeoff between obtaining the best
fill rate and providing a convenient experience to the
customer. For instance, the scheduler maywant to limit
the number of sets offered to the customer to provide
a smooth user experience. In light of Theorem 3, one
potential idea for future study is to group slot types
based on the order of { j1} −⋯ − { jJ}.

5. Numerical Results
In the last two sections, we consider nonsequential
offering and sequential offering. For each setting, we
derive optimal or near-optimal booking policies. In this
section, we run extensive numerical experiments to test
and compare these policies and the two scheduling
paradigms.
We organize this section as follows. Sections 5.1 and

5.2 discuss the performance of the offering-all policy in
the nonsequential model and the drain heuristic in the
sequential model, respectively. We show that these two
algorithms obtain fill rates that are remarkably close to
those of the respective optimal policies, and therefore,
they can serve as simple, effective heuristics for practical
use. Section 5.3 compares the differences in the expected
fill rate under the nonsequential and sequential offering
models, where this difference represents the value of
sequential offering. Specifically, we evaluate the dif-
ferences between the optimal policies and those between
the heuristics. The former represents the “theoretical”
value of sequential offering compared with nonsequen-
tial offering, whereas the latter can be thought of as the
“practical” value if practitioners adopt the heuristics
mentioned above for each setting.

5.1. Performance of the Offering-All Policy
We start our evaluation of the offering-all policy in two
specific model instances considered above: M andM + 1
model instances. (We need not to evaluate the offering-
all policy in the N and W model instances, because
the offering-all policy is optimal there.) Here, we use
backward induction to determine the expected perfor-
mance of the optimal policy and compare it through
simulation with that of the offering-all policy π0. To this
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end, we simulate the offering-all policy for 1,000 days.
The performance metric of interest is the percentage
optimality gap defined as (ug − uo)/uo × 100%, where uo
is the expected fill count of the optimal policy and ug is
the average fill count over 1,000 simulated days under
the offering-all policy.

Table 1 summarizes the statistics on the optimality
gap of the offering-all policy in the M model instance.
For each N � 20, 30, 40, 50, we evaluate the maximum,
average, and median optimality gaps over all possi-
ble initial capacity vectors (b1, b2, b3) ∈Z3+, such that
bj ≥ 0.2N, ∀j and b1 + b2 + b3 � N. The number of initial
capacity vectors considered for each N is shown as the
number of scenarios in the second column of Table 1. In
general, the optimality gap of the offering-all policy in
the Mmodel instance is relatively small (≈ 3%–4%) and
is not sensitive to model parameters.

Table 2 shows the optimality gap statistics for the
M + 1 model instance, and the setup of this table is
similar to that of Table 1. When λ3 is small, the M + 1
model instance is very similar to the Mmodel, and thus,
the optimality gaps of the offering-all policy are similar
to those observed in Table 1. As λ3 increases, the per-
formance of the offering-all policy improves, because the
offering-all policy becomes more likely to be optimal.

To evaluate the performance of the offering-all policy
in settings beyond these two simple instances, we carry
out an extensive numerical study using randomly
generated customer preference matrices. Fixing the
number of slot types J, there are 2J different possible
customer types, including those that accept no slots
at all. By allowing any possible combination of these
customer types, there could be 22

J − 1 possible pref-
erence matrices (excluding the empty matrix). To test
the performance of the offering-all policy in a robust
and yet computationally tractable manner, we compare

its performance among many randomly generated
such preference matrices.
We also vary the arrival probability vector

λ � (λ1, . . . ,λI) for each preference matrix. In particular,
we test three possible vectors: λ(1), such that λ(1)

i � 1/I;
λ(2), such that λ(2)

i � 2(I + i − 2)/(3I2 − 3I); and λ(3), with
λ(3)
i � 2(I + 3i − 4)/(5I2 − 5I). In all three cases, the λi

values add up to one. For λ(2) and λ(3), λ1 is the largest,
and each successive λi is smaller by a factor two or four,
respectively. Note that the value of I depends on the
randomly generated preference matrix and may vary
from I � 1 (because we exclude the empty matrix) to the
maximum number of customer types.
Our results are summarized in Table 3, where we

show the optimality gap of the offering-all policy. We
compute the performance of the offering-all policy
through simulation as before, and the performance of
the optimal policy through backward induction.Wefix J
and N, and then, we generate the number of random
instances indicated in Table 3 (“number of instances”).
For each instance, we also vary the initial capacity vectors
similar to what was done for Tables 1 and 2 (“number of
scenarios” in Table 3). Fixing the structure of the arrival
rate vector, we then report the maximum, average, and
median optimality gaps over all instances and scenarios.
It is clear from this table that the offering-all policy
continues to do very well, and the average gap with the
optimal policy is around 0.5% throughout, independent
of the size of the matrix and the arrival rates.
Before proceeding to the next section, we briefly

discuss the performance of πp∗ (i.e., the static random-
ized policy arising from the fluid model in Section 3.2).
We focus on the M model and vary N, the arrival
probabilities, and the initial capacity vectors. We re-
port the optimality gap statistics for πp∗ in Table 4. We
observe that the average optimality gap decreases from

Table 1. Optimality Gap of the Offering-All Policy in the M Model Instance

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

20 45 −4.4 −3.6 −3.6 −4.1 −3.3 −3.3 −3.6 −2.9 −3.0
30 91 −4.8 −3.7 −3.8 −4.5 −3.5 −3.5 −3.8 −3.1 −3.2
40 153 −5.1 −3.8 −3.8 −4.7 −3.6 −3.6 −4.0 −3.2 −3.3
50 231 −5.3 −3.8 −3.8 −4.8 −3.7 −3.7 −4.1 −3.3 −3.4

Table 2. Optimality Gap of the Offering-All Policy in the M + 1 Model Instance

N No. of scenarios

(λ1,λ2,λ3) � (9/20, 9/20, 1/10), % (λ1,λ2,λ3) � (2/5, 2/5, 1/5), % (λ1,λ2,λ3) � (3/10, 3/10, 2/5), %
Max Average Median Max Average Median Max Average Median

20 45 −3.1 −2.0 −1.9 −2.0 −1.1 −0.9 −0.7 −0.3 −0.2
30 91 −3.4 −2.1 −2.0 −2.3 −1.1 −1.0 −0.8 −0.3 −0.2
40 153 −3.7 −2.1 −2.0 −2.5 −1.2 −1.0 −0.8 −0.2 −0.1
50 231 −3.9 −2.2 −2.0 −2.6 −1.2 −1.0 −0.8 −0.2 −0.1
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about 8% to 5% when N increases from 20 to 50. This
is consistent with our theory above that πp∗ is asymp-
totically optimal when the demand and capacity in-
crease simultaneously. Because of space constraints, we
shall refrain from further exploring the computational
issues of πp∗ and leave those for future research.

5.2. Performance of the Drain Heuristic
In this section, we evaluate the performance of our
drain heuristic developed in Section 4.5. We focus on
the N, M, and Wmodel instances. As in Section 5.1, we
vary the mix of customer types, the total number of
periods, and the initial capacity vectors. The perfor-
mance of the optimal sequential offering policy is
evaluated by backward induction. The performances of
the drain heuristic are evaluated by running a discrete
event simulation with 1,000 days replication and then
computing the average fill count per day. We present
the statistics on the percentage optimality gaps of drain
in Tables 5, 6, and 7 for the N, M, and W instances,
respectively. In particular, for the N and W model

instances, the optimality gap statistics are taken over all
initial capacity vectors (b1, b2), such that (b1, b2) ∈
{(x, y)∈Z2+ : x, y≥ 0.2N, x + y � N}. The second column
of each table shows the number of initial capacity
vectors consider for each N.
In the N model, the optimality gap of drain is on

averagewithin 0.4% (max 0.8%) in all 264 scenarios that
we tested. The performances of drain in the W instance
are slightly better than those in the N model. For the
M model instance, the optimality gap of drain is on
average within 0.7% (max 1.4%) across all 1,560 sce-
narios that we tested. These observations suggest that
the drain heuristic has a remarkable performance.
Given its simplicity, it can serve as an effective sched-
uling rule for practitioners.

5.3. Value of Sequential Offering
5.3.1. Comparison of Optimal Policies. In this section,
we investigate the value of sequential scheduling by
comparing the optimal sequential policy with the op-
timal nonsequential policy. We focus on the N, M, and

Table 3. Optimality Gap of the Offering-All Policy for Random Network Instances

J N No. of instances No. of scenarios

λ � λ(1), % λ � λ(2), % λ � λ(3), %

Max Average Median Max Average Median Max Average Median

3 10 100 36 −3.9 −0.2 −0.0 −3.9 −0.2 −0.0 −3.7 −0.3 −0.0
3 20 80 120 −4.6 −0.3 −0.1 −4.6 −0.3 −0.1 −5.1 −0.4 −0.1
3 30 40 253 −5.2 −0.3 −0.1 −5.1 −0.4 −0.1 −3.6 −0.3 −0.1
3 40 10 435 −3.0 −0.3 −0.0 −4.0 −0.5 −0.1 −4.4 −0.5 −0.2
4 10 100 84 −5.0 −0.3 −0.1 −4.7 −0.4 −0.2 −4.0 −0.3 −0.1
4 20 10 455 −3.7 −0.5 −0.3 −2.8 −0.5 −0.3 −4.7 −0.5 −0.3
4 30 10 83 −3.6 −0.6 −0.3 −3.6 −0.7 −0.2 −3.0 −0.6 −0.4
5 10 100 126 −3.9 −0.4 −0.2 −3.7 −0.4 −0.3 −4.2 −0.5 −0.3
5 20 10 126 −2.1 −0.3 −0.2 −3.9 −1.0 −0.6 −4.8 −0.6 −0.3

Table 4. Optimality Gap of the Static Randomized Policy πp∗ in the M Model Instance

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

20 45 −10.7 −7.7 −7.2 −9.8 −7.9 −8.0 −10.8 −8.7 −8.7
30 91 −9.1 −6.4 −5.9 −8.7 −6.7 −6.7 −8.8 −7.2 −7.1
40 153 −8.1 −5.7 −5.2 −7.9 −5.8 −5.8 −7.8 −6.2 −6.2
50 231 −7.5 −5.2 −4.6 −7.1 −5.3 −5.2 −7.0 −5.6 −5.5

Table 5. Optimality Gap of the Drain Heuristic in the N Model Instance

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

20 13 −0.8 −0.4 −0.4 −0.6 −0.1 −0.2 −0.7 −0.2 −0.3
30 19 −0.6 −0.2 −0.4 −0.8 −0.2 −0.1 −0.5 −0.0 −0.1
40 25 −0.6 −0.2 −0.2 −0.8 −0.1 −0.1 −0.5 −0.0 −0.0
50 31 −0.5 −0.1 −0.2 −0.5 −0.2 −0.2 −0.6 −0.0 −0.1
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W model instances. To provide a robust performance
evaluation, we vary a range of model parameters, in-
cluding the mix of customer types, the total number of
periods, and the initial capacity vectors, like in earlier
sections. Table 8 presents the maximum, average, and
median percentage improvements in fill count by fol-
lowing an optimal sequential offering policy compared
with the optimal nonsequential policy in the N model
instance. Tables 9 and 10 present similar information
for the M and W model instances, respectively.

We observe that the efficiency gains in the M and
W model instances are robust to the initial customer
type mix. The efficiency gain in theWmodel instance is
about 6%–7% on average and can be as high as 13%.
The efficiency gain in the M model instance is slightly
lower. For the N model instance, the gain is relatively
more sensitive to customer type mix and ranges be-
tween 6% and 11% on average. In certain cases, the
efficiency gain in the N model can be as high as 18%.
These numerical findings show that sequential offering
holds strong potentials to improve the operational
efficiency in appointment scheduling systems.

5.3.2. Comparison of Heuristics. In this section, we
compare the performances of two heuristic scheduling

policies discussed above: the offering-all policy and
the drain heuristic developed in Section 4.5. We also
consider another policy called the random sequential
offering policy, which offers available slot types one at
a time in a permutation chosen uniformly at random.
This policy mimics the existing practice of telephone
scheduling, which is often done without careful
planning. These three policies are used or can be easily
used by practice, and therefore, the comparison results
in this section reveal the value of sequential scheduling
that may be realized by adopting these policies in
practice.
We focus on the N, M, and W model instances and

use the combinations of parameters as in earlier sec-
tions. The performance of these three policies is eval-
uated by running a discrete event simulation with
1,000 days of replication and then computing the av-
erage fill count per day for each policy. We present the
percentage improvement in the fill count of drain over
the other two policies. Detailed results are shown in
Tables 11, 12, and 13.
For the Nmodel instance, we see an average 9%–11%

improvement (max 18%) if using drain compared with
using random sequential or the offering-all policy. In
the M model, the average improvement is around

Table 6. Optimality Gap of the Drain Heuristic in the M Model Instance

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

20 45 −1.4 −0.7 −0.8 −1.1 −0.4 −0.4 −0.9 −0.2 −0.2
30 91 −0.9 −0.6 −0.6 −0.8 −0.3 −0.3 −0.7 −0.2 −0.2
40 153 −0.7 −0.5 −0.5 −0.7 −0.3 −0.3 −0.9 −0.2 −0.1
50 231 −0.6 −0.4 −0.5 −0.6 −0.2 −0.3 −0.6 −0.1 −0.2

Table 7. Optimality Gap of the Drain Heuristic in the W Model Instance

N No. of scenarios

(λ1,λ2,λ3) � (1/3, 1/3, 1/3), % (λ1,λ2,λ3) � (1/5, 1/2, 3/10), % (λ1,λ2,λ3) � (1/10, 3/10, 3/5), %
Max Average Median Max Average Median Max Average Median

20 13 −0.2 0.0 0.1 −0.1 0.1 0.1 −0.7 −0.2 −0.1
30 19 −0.7 0.0 0.0 −0.4 0.0 0.0 −0.6 −0.1 −0.1
40 25 −0.2 0.0 0.0 −0.2 0.0 0.0 −0.5 0.1 0.0
50 31 −0.2 0.0 0.0 −0.2 0.0 0.0 −0.4 −0.1 −0.1

Table 8. Fill Count Improvement in the N Model Instance (Opt Sequential vs. Opt
Nonsequential)

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/4, 3/4), % (λ1,λ2) � (3/4, 1/4), %
Max Average Median Max Average Median Max Average Median

20 13 16.0 10.6 12.4 10.8 9.0 9.6 13.2 6.2 5.5
30 19 16.8 10.9 12.6 11.1 9.3 9.6 14.0 6.3 5.4
40 25 17.2 11.1 12.5 11.2 9.5 9.9 14.5 6.4 5.3
50 31 17.5 11.2 12.9 11.3 9.6 9.8 14.8 6.4 5.3
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Table 9. Fill Count Improvement in the M Model Instance (Opt Sequential vs. Opt
Nonsequential)

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

20 45 7.4 4.0 3.4 7.8 4.2 3.8 6.9 4.1 4.0
30 91 7.9 3.7 3.3 8.3 4.1 3.8 7.2 4.2 4.2
40 153 8.3 3.5 2.9 8.5 4.1 3.9 7.4 4.3 4.3
50 231 8.5 3.3 2.6 8.7 4.1 4.0 7.5 4.4 4.4

Table 10. Fill Count Improvement in the W Model Instance (Opt Sequential vs. Opt Nonsequential)

N No. of scenarios

(λ1,λ2,λ3) � (1/3, 1/3, 1/3), % (λ1,λ2,λ3) � (1/5, 1/2, 3/10), % (λ1,λ2,λ3) � (1/10, 3/10, 3/5), %
Max Average Median Max Average Median Max Average Median

20 13 8.2 6.1 6.5 10.8 6.6 7.0 11.2 7.7 8.3
30 19 9.0 6.6 7.9 11.8 7.0 7.2 11.6 8.1 9.2
40 25 9.5 6.9 7.9 12.3 7.2 7.3 12.0 8.3 9.4
50 31 9.8 7.1 8.3 12.7 7.3 7.3 12.2 8.4 9.4

Table 11. Comparison of the Drain Heuristic with Other Scheduling Policies (the N Model Instance)

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

% improvement over offering-all policy
20 13 16.5 10.2 11.6 14.0 10.3 11.6 11.0 9.0 9.6
30 19 17.1 10.8 12.4 14.0 10.6 11.4 11.7 9.1 9.7
40 25 17.8 10.9 12.5 13.9 10.8 11.4 11.1 9.3 9.6
50 31 17.8 11.2 13.3 14.5 10.9 11.5 11.7 9.6 9.8

% improvement over random sequential
20 13 16.6 10.2 11.9 14.0 10.3 11.2 11.2 8.7 9.0
30 19 16.7 10.8 12.5 13.9 10.5 11.4 11.8 9.3 9.5
40 25 17.4 11.1 12.7 14.0 11.0 11.9 11.9 9.5 9.6
50 31 18.0 11.1 13.2 14.5 10.9 11.2 11.6 9.5 10.0

Table 12. Comparison of the Drain Heuristic with Other Scheduling Policies (the M Model Instance)

N No. of scenarios

(λ1,λ2) � (1/2, 1/2), % (λ1,λ2) � (1/3, 2/3), % (λ1,λ2) � (1/4, 3/4), %
Max Average Median Max Average Median Max Average Median

% improvement over offering-all policy
20 45 12.1 7.0 6.8 11.8 7.4 7.1 10.8 6.9 6.9
30 91 13.7 7.1 6.5 13.4 7.6 7.1 11.3 7.4 7.4
40 153 14.0 7.0 6.3 13.8 7.7 7.7 11.5 7.6 7.8
50 231 13.9 7.0 6.4 14.0 7.8 7.9 11.6 7.9 8.0

% improvement over random sequential
20 45 12.3 7.0 6.9 13.2 7.4 6.8 11.1 6.9 6.7
30 91 13.5 7.1 6.7 13.7 7.6 7.1 11.0 7.4 7.4
40 153 13.8 7.0 6.4 13.7 7.7 7.4 11.4 7.7 7.9
50 231 14.2 7.0 6.4 14.2 7.9 7.7 11.8 7.8 8.0
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7%–8%, with max 14%. For the W model, drain makes
on average 6%–8% improvement over random se-
quential or the offering-all policy, with the maximum
improvement up to 13%. It is worth remarking on that,
in all model instances, the random sequential policy
has about the same performance as the offering-all
policy. Therefore, although the former is a sequential
policy and the latter is not, the potential of sequential
offering is not exploited because of the careless choice
of the offered slots.

6. Conclusion
Motivated by the increasing popularity of online ap-
pointment booking platforms, we study how to offer
appointment slots to customers to maximize the total
number of slots filled. We consider two models, non-
sequential offering and sequential offering, for different
customer-scheduler interactions in the appointment
booking process. For each model, we develop optimal
or near-optimal booking policies.
In our numerical experiments, we find that sequential

offering in a proper manner makes a significant im-
provement over the two benchmark policies: the ran-
dom sequential offering policy (that mimics the existing
practice of telephone scheduling) and the offering-all
policy (that resembles many of the current online ap-
pointment booking systems). Indeed, carefully designed
sequential offerings can achieve the performance of a
scheduler with perfect information on each customer
but without revealing customer types. These findings
suggest substantial potential for improving the current
appointment scheduling practice.
Another notable observation from our numerical

study is that the two benchmark policies have quite
similar performance, which indicates that current online
scheduling (that often offers all available slots) and
traditional telephone scheduling (without a careful offer
sequence) would result in similar fill rates. Thus, one
should not expect that implementing an online sched-
uling system in place of traditional telephone scheduling
can automatically lead to more appointments booked.
In fact, if the telephone scheduler was (intentionally or
unintentionally) offering slots in a “smart”way, moving
to online scheduling may hurt the fill rate if the latter is
not implemented carefully.
As our research suggests, however, one may improve

the performance of online scheduling by designing an
interface that uses the idea of sequential offering, col-
lecting information on customer choice behavior, and
then, making offers in a smarter way. Given the recent
and ongoing growth of online and mobile appointment
booking platforms, our research findings can be par-
ticularly useful to inform user interface design of these
booking platforms.
In summary, our work provides the first analytical

framework to model, compare, and improve variousT
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appointment booking processes; we develop optimal
or near-optimal booking policies for two representative
appointment offering schemes. Our study also suggests
many possible directions for future research. To name
a few, first, we assume a specific model for customer
choice, and future research may consider scheduling
decisions under different choicemodels. Second, it would
be interesting to consider other customer behaviors (e.g.,
cancellations, no shows, recall, and renege after a few
trials) in the scheduling models. Third, our numerical
study of the multiday scheduling presented in the online
appendix is by no means exhaustive, and it would be
a fruitful direction to investigate the (optimal) joint of-
fering policy for both day and slot choices. Last but not
least, asymptotic regimes with different scaling of model
parameters may be interesting objects of study both from
a stochastic model theoretical perspective and for in-
forming more efficient operations in practical settings.
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Endnote
1Even if some of the slot types are unavailable, πp would still offer
these slot types according to the probability vector p. However,
customers only consider those slot types that are available in the
booking process.
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