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Abstract: We introduce a new class of adaptive policies called periodic-affine policies, that allows a deci-

sion maker to optimally manage and control large-scale newsvendor networks in the presence of uncertain

demand without distributional assumptions. These policies are data-driven and model many features of the

demand such as correlation, and remain robust to parameter mis-specification. We present a model that

can be generalized to multi-product settings and extended to multi-period problems. This is accomplished

by modeling the uncertain demand via sets. In this way, it offers a natural framework to study competing

policies such as base-stock, affine, and approximative approaches with respect to their profit, sensitivity to

parameters and assumptions, and computational scalability. We show that the periodic-affine policies are

sustainable, i.e. time consistent, because they warrant optimality both within subperiods and over the entire

planning horizon. This approach is tractable and free of distributional assumptions, and hence, suited for

real-world applications. We provide efficient algorithms to obtain the optimal periodic-affine policies and

demonstrate their advantages on the sales data from one of India’s largest pharmacy retailers.

Key words : Newsvendor Network, Robust Optimization, Demand Uncertainty, Correlation, Affine Policies,

Healthcare: Pharmaceutical Retailer.

1. Introduction

Despite the physicians’ diagnostic matching of patients to drugs, the heterogeneity in patients’

illness, drug’s efficacy, potential side effects, and varying length of treatment lead to sizable uncer-

tainty in drug’s demand (Crawford and Shum 2005). Retailers are mandated to service level guar-

antees, and overstocking drugs is neither economical nor practical since they are perishable. Such

healthcare problems affect a wide section of the population and have large societal implications.

In this context, newsvendor models offer a natural framework and are used for decision making.

Practical solutions to such problems are critical to a broad range of industries. In particular,

pharmaceutical companies with a large turnover are interested in optimal inventory management.

GlaxoSmithKline spends over $4.5 billion each year on manufacturing and supplying products.

1

ar
X

iv
:1

80
6.

06
74

4v
1 

 [
m

at
h.

O
C

] 
 1

8 
Ju

n 
20

18



Bandi, Han, and Nohadani: Robust Periodic-Affine Policies
2

Johnson & Johnson spends approximately $30 billion annually in leveraging its purchasing power

to set sustainability expectations beyond its operations. Similarly, companies like Teva Pharmaceu-

ticals, Pfizer, and Merck spend millions of dollars to ensure the safety and supply of their products,

even though they have manufacturing units in multiple locations. Therefore, any variation in inven-

tories can lead to multiple disturbances in the system. A pharmacy’s inventory represents its single,

largest investment. As discussed in Webman (2012), in a common pharmacy, cost of goods sold

accounts for approximately 68% of total expenditures. For every 1% change in costs of goods, prof-

its may increase or decrease by more than 20% (see Webman (2016)). Thus, the sheer magnitude

of dollars involved makes seemingly minor inefficiencies in purchasing and inventory control matter

of great importance to both cash flow and profitability.

The challenges of such networks are multifold. Real-world settings are typically high-dimensional

with multiple products and multiple stages of decision-making. These settings also suffer from

substantial uncertainties in demand. Modeling such demand uncertainty is challenging because

demand is often not stationary or its uncertainty can depend on previous decisions (Nohadani and

Sharma 2018).

In this work, we consider a newsvendor network with uncertain and correlated demand. Using

the paradigm of robust optimization, we model such demand to reside in uncertainty sets and

provide tractable formulations and associated algorithms for sustainable policies. To gain insight

from a real-world setting, we apply the results to a major online pharmacy retailer in India, where

a prohibitively large penalty occurs when customers’ demand is not satisfied. This company carries

over 163 different brands, and the sales grow at about 23% per year. Their distribution network

spans the entire country through fixed retail locations and online platforms. The decision makers

of this company observe a sizable uncertainty in demand over the course of the year (in addition to

seasonality) and significant correlations amongst various product categories. In close collaboration

with this company’s managers, we seek to design optimal implementable policies to control their

inventory levels in their network.

Our contributions are:

• Modeling : We provide a distribution-free description of uncertainty in demand using two

types of sets. Independent demands are modeled via budget constraints. We also incorporate

correlated demands using a factor model approach. The inventory control problem is then

cast as a multi-stage robust optimization problem. As a result, a novel solution concept of

periodic-affine policy is provided for newsvendor networks with time-dependent and potentially

correlated demand uncertainty.

• Algorithms: We provide a tractable algorithm that provides periodic-affine policies. These

policies decompose the overall problem into a more tractable formulation than affine policies.
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• Application: We analyze the sales data of a pharmacy retailer in India for the fourth quarter of

2016. This entails 1.5 million transactions for 228 different products. We construct the demand

uncertainty set for the 20 most-popular products, comprising 80% of all transactions. Our

numerical experiments show that even for the single-station case, the computational burden

for the optimal periodic-affine policies is significantly reduced over affine policies (by 100× for

a 15-period problem), making the proposed approach practical for real-world and large-sized

problems. Moreover, the periodic-affine policy improved the cost effectiveness of the operation

by 19% over a base-stock policy for realistic penalty costs.

1.1. Literature review

The seminal work of Arrow et al. (1951) introduced the multistage periodic review inventory model,

where the inventory is reviewed once every period and a decision is made to place an order, if a

replenishment is necessary. The (s,S) inventory policy establishes a lower (minimum) stock point s

and an upper (maximum) stock point S. When the inventory level drops below s, an order is placed

“up to S.” The (s,S) ordering policy has been proven optimal for simple stochastic inventory

systems. Scarf (1960) proved that base-stock policies are optimal for a single installation model.

Clark and Scarf (1960) extended the result to serial supply chains without capacity constraints

and showed that the optimal ordering policy for the multi-echelon system can be decomposed into

decisions based on the echelon inventories. Karlin (1960) and Morton (1978) showed that base-

stock policies are optimal for single-state systems with non-stationary demands. Federgruen and

Zipkin (1986) generalized the analysis to a single-stage capacitated system, and Rosling (1989)

extended the analysis of serial systems to assembly systems. For more work, refer to Langenhoff and

Zijm (1990), Sethi and Cheng (1997), Muharremoglu and Tsitsiklis (2008), Huh and Janakiraman

(2008).

Simulation optimization has attempted to take advantage of the availability of computational

resources and the power of simulation for evaluating functions. For a comprehensive overview

of commonly used simulation optimization techniques, we refer the reader to the survey by Fu

et al. (2005). Fu (1994), Glasserman and Tayur (1995), Fu and Healy (1997) and Kapuscinski and

Tayur (1999) have developed various gradient-based algorithms to study inventory systems. These

methods are practical whenever the input variables are continuous and their success depends on

the quality of the gradient estimator.

On the other hand, Scarf (1958), Kasugai and Kasegai (1961), Gallego and Moon (1993), Graves

and Willems (2000) developed distribution-free approaches to inventory theory. Bertsimas and

Thiele (2006) took a robust optimization approach to inventory theory and showed that base-

stock policies are optimal in the case of serial supply chain networks. Bienstock and Özbay (2008)
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presented a family of decomposition algorithms aimed at solving for the optimal base-stock policies

using a robust optimization approach. Rikun (2011) extended the robust framework introduced

by Bienstock and Özbay (2008) to compute optimal (s,S) policies in supply chain networks and

compared their performance to optimal policies obtained via stochastic optimization. Ben-Tal et al.

(2004) extended the robust optimization framework to dynamic settings and explored the use of

disturbance-affine policies by allowing the decision maker to adjust their strategy leveraging the

information revealed over time. Bertsimas and Thiele (2006) and Bienstock and Özbay (2008)

studied the performance of base-stock policies, and Ben-Tal et al. (2005), Kuhn et al. (2011),

and Bertsimas et al. (2010) investigated polices that are affine in prior demands under a robust

optimization lens. Within the robust optimization framework, affine policies have gained much

attention due to their tractability; depending on the class of the nominal problem, the optimal

policy can be solved via linear, quadratic, conic or semidefinite programs (see Löfberg (2003),

Kerrigan and Maciejowski (2004)). Empirically, Ben-Tal et al. (2005) and Kuhn et al. (2011) have

reported that affine policies have excellent performance and in many instances optimal.

Another approach is distributionally robust optimization which assumes that the uncertainties

follow a distribution within a prespecified set of distributions. Such sets can be based on moment

constraints (Delage and Ye 2010), phi-divergences (Ben-Tal et al. 2013), or Wasserstein metric

(Mohajerin Esfahani and Kuhn 2017) to allow tractable reformulations. This approach typically

yields less conservative solutions than deterministic robust optimization solutions. For multi-stage

problems, Van Parys et al. (2016) proposed a tractable framework for distributionally robust linear

feedback policy for discrete time linear control systems with quadratic objective functions.

In the context of pharmaceutical systems, Guerrero et al. (2013) provided a near-optimal base-

stock policy for two-echelon distribution networks with multiple products, where every sink node

is replenished by a single supplier. They provided a Markov chain formulation and a heuristic

algorithm for Poisson distributed and independent demands. For a combined setting of a pharma-

ceutical compony and a hospital, Uthayakumar and Priyan (2013) developed a two-echelon supply

chain model to determine the optimal lot size, lead time, and total number of deliveries between

the pharmaceutical compony and a hospital. Using Lagrange multipliers, they provided decision

tools for optimal costs while ensuring required service levels. In a two-level pharmaceutical supply

chain, Baboli et al. (2011) studied a specific product with a constant demand rate and numerically

showed that the overall cost is improved when pharmacies and hospitals are centralized.

Notation. Lowercase italic is used to denote scalars; lowercase bold is used to denote vectors,

and uppercase bold is used to denote matrices. Sets are in calligraphic. Section specific notation is

introduced where needed. All proofs are relegated to the Online Appendix.
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2. Model

We consider a newsvendor network in which inventories are reviewed periodically and unfulfilled

orders are backlogged. For simplicity, we assume zero lead times throughout the network; however,

our framework can be adapted to systems with non-zero lead times. We consider a T -period time

horizon and, within each period, events occur in the following order: (1) the ordering decision is

made at the beginning of the period, (2) demands for the period occur and are filled or backlogged

depending on the available inventory, (3) the stock availability is updated for the next period.

• N : Set of all installations where ordering decisions are made (source nodes) with |N |=m

• S : Set of all installations with external demand (sink nodes) with |S|= n

• L : Set of all links (edges) within the inventory network with |L|= p

• Nk : Set of source nodes supplying stock to a sink node k ∈ S

• Sv : Set of sink installations that are fed from a source node v ∈N

• svt : Amount of order at the beginning of period t at a source v ∈N

• dkt : Demand observed at a sink k ∈ S throughout time period

• x`t : Stock delivered along a link `∈L at time t

• us,vt : Stock available after the period t at a source node v ∈N

• ud,kt : Backorders after the period t at a sink node k ∈ S.

1

2

3

4

5

6

7

8

9

Source Nodes

Sink Nodes

Figure 1 Example of a nine-installation network with n= 4 sink nodes and m= 5 source nodes.

To track the system’s operation, we capture information about the stock available and the stock

ordered at source installations at the beginning of each time period as well as the demand at

each sink installation throughout each time period. Specifically, assuming zero initial input and
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demands, we can express the dynamics of inventory levels and backlogged demands for t= 1, . . . , T

as

us,vt = us,vt−1 + svt −
∑

`=(v,k),k∈Sv

x`t =
t∑

τ=1

svτ −
∑

`=(v,k),k∈Sv

t∑
τ=1

x`τ ∀ v ∈N

ud,kt = ud,kt−1 + dkt −
∑

`=(v,k),v∈Nk

x`t =
t∑

τ=1

dkτ −
∑

`=(v,k),v∈Nk

t∑
τ=1

x`τ ∀ k ∈ S.
(1)

Note that the ordering quantities svt = svt (π,d), and therefore the amount of available stock

us,vt = us,vt (π,d) and backorders ud,kt = ud,kt (π,d), are functions of the ordering policy π and the

demand d.

The high-dimensional nature of modeling demand uncertainty probabilistically and the complex

dependence on random variables underscore the difficulty of analyzing and optimizing the expected

total cost. Instead, we propose a framework that builds upon the robust optimization paradigm.

2.1. Robust Newsvendor Network Formulation

To describe our framework, we first introduce a robust approach to single-period models. Our

models are based on assumption that we have the following cost and revenue structure:

• cvS: Purchasing cost per unit at the source node v ∈N

• cvH : Holding cost per unit for the leftover stock at the source node v ∈N

• ckP : Penalty cost per unit for the unsatisfied demand at the sink node k ∈ S

• r`: Revenue by satisfying a unit demand occurred at the sink node k via `= (v, k)∈L.

The goal of the decision maker is to order a proper amount of products {sv : v ∈N} and to process

network activities {x` : ` ∈ L} to satisfy the customer demand at the sink nodes, so that the firm

maximizes an overall profit. If we denote U as a demand uncertainty set, then a single-period

problem is formulated as a two-stage robust optimization problem

max
sv≥0

[
−
∑
v∈N

cvSsv + min
d∈U

max
x`≥0

[∑
`∈L

r`x`−
∑
k∈S

ckP

(
dk−

∑
`=(v,k),v∈Nk

x`

)
−
∑
v∈N

cvH

(
sv −

∑
`=(v,k),k∈Sv

x`

)]]
s.t.

∑
`=(v,k),k∈Sv

x` ≤ sv ∀ v ∈N ,
∑

`=(v,k),v∈Nk

x` ≤ dk ∀ k ∈ S,
(2)

where the constraints are network constraints and affect the inner maximization problem. Note that

the order quantities {sv : v ∈N} are “here-and-now” decisions; it must be placed before demands

are realized, while the network activities {x` : ` ∈ L} are “wait-and-see” solutions and assigned

after demands are observed.
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Notation. To simplify (2), we define cS ∈Rm+ , cH ∈Rm+ , cP ∈Rn+ and r∈Rp+ as cost and rev-

enue vectors, and define RS ∈Rm×p+ and RD ∈Rn×p+ as matrices that describe the two constraints,

respectively. Decision variables and uncertain demands are s∈Rm+ , x∈Rp+, and d∈Rn+. We obtain

max
s≥0

[
− (cS + cH)>s + min

d∈U
max
x≥0

[
v>x− c>Pd

]]
s.t. RSx≤ s, RDx≤ d,

with v = r + R>S cH + R>DcP .

2.2. Modeling Demand Uncertainty

For the sake of simplicity, we assume that there is no demand seasonality and that the demand

realizations are light-tailed in nature (i.e., the demand variance is finite). For each sink installa-

tion k ∈ S, we denote the demand mean by µk and the demand standard deviation by σk. Our

framework also captures correlation among the demand, where we denote Σ ∈Rn×n as the nom-

inal covariance matrix. Note that all these values can be inferred from historical data. Instead of

describing the demand as a random variable, we describe the demand and its correlation by using

budget uncertainty sets (Bertsimas and Sim 2004) and a factor-based approach (Bandi and Bert-

simas 2012). Such sets do not require any distributional assumption other than first two moments,

and consequently, they are robust to the distribution choice.

We capture the correlations via the covariance matrix Σ with rank l ≤ n. This means, there

exist A and λ1, . . . , λl > 0 that satisfy Σ = A ·diag(λ2
1, . . . , λ

2
l ) ·A>.

Definition 1 (Single-period Uncertainty set). The uncertainty set for correlated demands

at sink nodes d = (d1, . . . , dn) with variability parameters Γ, ΓB ≥ 0 is

U =

{
d∈Rn+

∣∣∣∣∣ d =µ+ A · z,
l∑
i=1

∣∣∣∣ ziλi
∣∣∣∣≤ Γ, ∣∣∣∣ ziλi

∣∣∣∣≤ ΓB ∀ i= 1, . . . , l

}
. (3)

Note that in this definition, Γ and ΓB control the degree of conservatism. The first constraint in

U captures correlation, and the others are budget constraints which limit the absolute deviation

from its nominal value. While U is data driven, it also captures previous results on the effect of

mean and standard deviation on the profit in newsvendor networks. In particular, U recovers the

insightful properties in Van Mieghem and Rudi (2002), as proposed in the following.

Proposition 1. For a single-period robust newsvendor network with the uncertainty set U , the

worst-case profit increases in µi and decreases in λi.

This proposition shows that our framework generalizes the structural properties from stochastic

networks without distributional assumptions. We extend our model to multi-period cases in the

next section.
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3. Multi-period Robust Newsvendor Networks

To extend the single-period models into dynamic cases, we consider a decision maker who has

multiple processing points of T periods. We assume that all parameters cS,cH ,cP ,r, and matrices

RS,RD remain constant over the time horizon. As in Section 2, on-hand input stocks at source

nodes and unsatisfied demand at sink nodes are backlogged to the next periods. We also assume

that the demands are correlated over sink nodes, but independent over time, with nominal mean

vector µt and covariance matrix Σt for each time period t= 1, . . . , T .

Notation. Order quantities at time t are denoted by st, customer demands by dt, and network

activities by xt. Single-station quantities are denoted by st, dt, xt. Aggregated amount of orders up

to time t are denoted by s̃t, customer demands by d̃t, and network activities by x̃t (s̃t, d̃t, x̃t for

single-station). Inventory levels and backlogged demands after time t are denoted by us
t and ud

t .

Finally, D[t1:t2] = (dt1 , . . . ,dt2) ∈ Rn×(t2−t1+1)
+ contains every realized demand from time t1 to t2.

Other quantities such as S[t1:t2] and X[t1:t2] are defined similarly. We define At and λt,1, . . . , λt,lt for

each t, with rank(Σt) = lt and Σt = At · diag(λ2
t,1, . . . , λ

2
t,lt

) ·A>t .

In the following, we generalize Definition 1 for multi-period demand.

Definition 2 (Multi-period Uncertainty Set). The uncertainty set for the demand at sink

nodes (d1, . . . ,dT )∈Rn×T over T periods is

UT =

{
(d1, . . . ,dT )

∣∣∣∣ dt =µt + Atzt ∀t= 1, . . . , T

T∑
t=1

lt∑
i=1

∣∣∣∣ zt,iλt,i

∣∣∣∣≤ Γ, lt∑
i=1

∣∣∣∣ zt,iλt,i

∣∣∣∣≤ Γt, ∣∣∣∣ zt,iλt,i

∣∣∣∣≤ ΓB ∀i= 1, . . . , lt, t= 1, . . . , T

}
.

In this set, the additional constraint controls the absolute deviation over nodes and time periods.

It prevents the demand to take extreme values in every period t, which reduces the conservatism

over time. This definition can also describe seasonality of demands, which applies to many areas.

When there is an explicit time-dependence between the periods, UT can be expressed as a conic

set (Nohadani and Roy 2017).

For the multi-period newsvendor networks, we can express the dynamics of inventories and

backlogged demands in (1) with vectors and matrices as

us
t = us

t−1 + st−RSxt =
t∑

τ=1

(
sτ −RSxτ

)
ud
t = ud

t−1 + dt−RDxt =
t∑

τ=1

(
dτ −RDxτ

)
,
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and model a multi-stage robust optimization problem as

max
s̃t(D[1:t−1])

min
D[1:T ]∈UT

max
x̃t∈P (̃st,d̃t,x̃t−1)

[
− c>S s̃T (D[1:T−1])− c>H

T∑
t=1

[
s̃t(D[1:t−1])−RSx̃t(D[1:t])

]

−c>P

T∑
t=1

[
d̃t−RDx̃t(D[1:t])

]
+ r>x̃T (D[1:T ])

]
,

(4)

where D[1:0] = 0, x̃0 = 0. Note that x̃t is determined after s̃t and d̃t, within a set

P(s̃t, d̃t, x̃t−1) =

{
x̃t ∈Rp+

∣∣∣∣∣ RSx̃t ≤ s̃t, RDx̃t ≤ d̃t, x̃t ≥ x̃t−1

}
,

which is defined for x̃t to maximize profit, where the last constraint requires non-negative network

activities. The main difference between single-period and multi-period models is that the order

quantities are not static. That means, in order to obtain an optimal solution, one should find s̃t as a

function of D[1:t−1] so that they are fully-adjustable to all previous demands. Such policies also need

to be non-anticipative, i.e., adjustable decisions should only be based on realized uncertainties.

Even for T = 1, the problem (4) is a two-stage robust optimization problem and shown to be

NP-hard (Ben-Tal et al. 2004). For multi-period setting, the complexity only worsens and, to

our knowledge, no tractable algorithm has been proposed to exactly solve the general problem

in (4). Because of this, restrictions to specific policies have been considered. In particular, affine

policies have been proposed, where adaptive decisions are assumed to be affine functions of realized

uncertainties.

Definition 3 (Affine Policy). A policy is called an affine policy, if there exist

{wt ∈Rm : 1≤ t≤ T} and {Wτ,t ∈Rm×n : 1≤ τ ≤ t− 1, 1≤ t≤ T} such that

s1 = w1, st = wt +
t−1∑
τ=1

Wτ,tdτ t= 2, . . . , T. (5)

Affine policies have exhibited excellent performance in many real-world applications. With such

policies, the multi-period problem (4) converts to determining the affine weights. These policies

force non-anticipativity of st and one can reformulate (4) as a two-stage adaptive linear optimization

problem

max
wt,Wτ,t

min
dt

max
x̃t

[
− c>S s̃T − c>H

T∑
t=1

(
s̃t−RSx̃t

)
− c>P

T∑
t=1

(
d̃t−RDx̃t

)
+ r>x̃T

]
(6)

s.t. wt +
t−1∑
τ=1

Wτ,tdτ ≥ 0, w1 ≥ 0

}
∀ t= 2, . . . , T, ∀ (d1, . . . ,dT )∈ UT (7)
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s̃1 = w1

s̃t = w1 +
t∑

j=2

(
wj +

j−1∑
τ=1

Wτ,jdτ

)
RSx̃t ≤ s̃t

RDx̃t ≤ d̃t

x̃T ≥ x̃T−1 ≥ · · · ≥ x̃1 ≥ 0


∀t= 1, . . . , T. (8)

Constraint (7) implies that the order quantities are non-negative for any realizations of past

demands, and constraint (8) affects the inner maximization problem, which determines the pro-

cessing activities.

Proposition 2. Finding an optimal affine policy for a multi-period newsvendor network in (6–8)

is a convex optimization problem.

Remark 1. The network activities xt maximize the net profit over the entire horizon, not just at

time t, i.e., we relax non-anticipativity of xt in the optimization problem (6–8). However, we claim

that this relaxation will not be loose, because penalty cost and holding cost force xt to maximize

profit in the corresponding period. As a special case, one can show that in single-station models,

xt maximizes the overall profit if and only if it maximizes the profit at time t. This relaxation

facilitates generality, as problem (6–8) is defined for any polyhedral uncertainty sets, whereas in

the stochastic case optimal strategies are only available for restricted cases (demands are i.i.d. over

time as in Van Mieghem and Rudi (2002)).

Since the inner minimization problem over dt in (6–8) is non-convex, the overall problem is

solved with cut generation. If the uncertainty set UT is a polyhedron, then it is guaranteed to find

an optimal solution within finite number of iterations (cuts). Therefore, our method only requires a

polyhedral structure of UT . Note that the solution procedure does not exploit a specific structure of

our uncertainty sets in Definition 2, and the main purpose of using the budgeted uncertainty sets is

to reduce conservatism. Even though an optimal solution can be obtained within finite iterations,

the problem is still NP-hard (Ben-Tal et al. 2004) and the computation grows significantly as T

increases.

While affine policies assume affine dependence of order quantities to realized demands, one can

think of another class of policies, for which both ordering decisions and network activities are given

as affine functions. We call these policies as affine-approximation policies, which are defined below.
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Definition 4 (Affine-approximation Policy). An adaptive policy is called an affine-

approximation policy (Aff-approx) if there are {wt ∈Rm : 1≤ t≤ T} and {Wτ,t ∈Rm×n : 1≤ τ ≤

t− 1, 1≤ t≤ T}, {yt ∈Rp : 1≤ t≤ T} and {Yτ,t ∈Rp×n : 1≤ τ ≤ t, 1≤ t≤ T} such that

s1 = w1, st = wt +
t−1∑
τ=1

Wτ,tdτ t= 2, . . . , T

xt = yt +
t∑

τ=1

Yτ,tdτ t= 1, . . . , T.

(9)

Note that xt depends on D[1:t], while st is a function of D[1:t−1], as network activities are assigned

after the demand is realized at each time. We provide two observations for affine-approximation

policies.

(i) Aff-approx policies find affine parameters yt and Yτ,t, so that xt is feasible to the innermost

max operator. Thus, they give lower bounds to the affine policies.

(ii) When Aff-approx policies are used, the problem (6–8) converts to a max-min problem, where

all the affine weights (both for st and xt) are determined in the outer max operator. Using

(9), both the objective function and the constraints can be expressed as functions of wt, Wτ,t,

yt, Yτ,t, and dt, which possibly include bilinear terms between the affine weights and dt.

This type of problem is referred to as a (static) robust linear optimization problem, and they

can be reformulated to a linear program, whenever UT is a polyhedron. Therefore, Aff-approx

policies are tractable.

So far, we formulated multi-period robust newsvendor network problems and introduced two

policies. Affine policies convert the multi-period problem into a two-stage problem, which is com-

putationally intractable. On the contrary, Aff-approx policies solve a tractable linear program, but

it only provides suboptimal solutions to affine policies (we will numerically study their suboptimal-

ity in Section 6). Our main contribution is motivated by taking an alternative approach to these

policies, as presented in the next section.

4. Periodic-affine policies for single-station models

As discussed, affine policies face computational difficulties when a decision maker has a larger

number of resources and products over an extended period of time. We propose a new solution

concept, denoted as periodic-affine policies (PA), where the overall time horizon is separated into

subperiods, that are interconnected by the preceding surplus to become the proceeding demand.

In this approach, the order quantities are determined as an affine function of past demands real-

ized only within its subperiod, as opposed to affine and affine-approximation policies where all

previous demands are considered. This scheme reduces the number of decision variables and conse-

quently the computation time. Our framework constructs this policy by first formulating a dynamic
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programming (DP) problem, where each stage corresponds to a subperiod. We also propose an

algorithm to compute such periodic-affine policies and show that they are computationally more

tractable than affine policies. In addition, we present a sufficient condition that this algorithm

provides the optimal solution to the DP problem. We first consider T -period single-station models

in this section. However, our framework is naturally extended to multi-station networks which we

discuss in the subsequent section.

Notation. We use same notations for all cost parameters cS, cH , cP with revenue per item, r,

and we may assume that RS =RD = 1 without loss of generality in single-station models. In this

section d = (d1, . . . , dT ), s = (s1, . . . , sT ), and x = (x1, . . . , xT ). We denote π(wt,Wτ,t) as an affine

policy with affine parameters {wt,Wτ,t : 1 ≤ τ ≤ t− 1,1 ≤ t ≤ T}. Furthermore, the problem of a

T -period single-station newsvendor model is denoted as Φ(s0, d0) for an uncertainty set UT with

initial input s0 ≥ 0 and demands d0 ≥ 0.

Analysis of initial input and demand. We first study the role of initial input and demand

for the optimal affine policy in the multi-period model, given by

Φ(s0, d0) := max
π

min
d∈UT

max
x,s∈X (π,d,s0,d0)

P
(
π(wt,Wτ,t),d,x;s0, d0

)
,

where the profit during the period is

P
(
π(wt,Wτ,t),d,x;s0, d0

)
=− cS

(
T∑
t=1

st

)
− cH

T∑
t=1

(
s0 +

t∑
τ=1

(sτ −xτ )

)

− cP
T∑
t=1

(
d0 +

t∑
τ=1

(dτ −xτ )

)
+ r

(
T∑
t=1

xt

)

and the feasible set X (π,d, s0, d0) is given by

X (π,d, s0, d0) =


s,x≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 =w1, st =wt +
t−1∑
τ=1

Wτ,tdτ ∀ t= 2, . . . , T

t∑
τ=1

xτ ≤ s0 +
t∑

τ=1

sτ ∀ t= 1, . . . , T

t∑
τ=1

xτ ≤ d0 +
t∑

τ=1

dτ ∀ t= 1, . . . , T


. (10)

The result is intuitive and plays a key role in establishing periodic-affine policies.

Proposition 3. For an optimal affine policy π∗(w∗t ,W
∗
τ,t) of Φ(0,0) with no initial input and

demand, if s0 ≤w∗1, then:
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(i) An optimal affine policy π= π(w∗t ,W
∗
τ,t) of Φ(s0, d0) is characterized as

w∗1 =w∗1 − s0 + d0

w∗t =w∗t ∀ t= 2, . . . , T

W
∗
τ,t =W ∗

τ,t ∀ τ = 1, . . . , t− 1, ∀ t= 1, . . . , T.

(11)

(ii) There exists a single worst-case demand d∗ ∈ UT for both Φ(0,0) and Φ(s0, d0).

This result implies that for small enough connecting inventories, the subperiods become effectively

decoupled.

4.1. Model Formulation

We now introduce the DP formulation for a multi-period newsvendor network.

Notation. For a T -period single-station model, we partition the time period into N subperiods

sorted as 0 = t0 < t1 < · · ·< tN−1 < tN = T . In interval Ij = {tj−1 + 1, . . . , tj}, the uncertainty set

U j ∈R|Ij |+ for every j = 1, . . . ,N . The amount of on-hand input stock and backlogged demands after

time t are ust and udt . A class of affine policies for jth subperiod is denoted by Πaff(U j,Ξj−1) on

the uncertainty set U j, where the state Ξj−1 contains all past information at the beginning of jth

period with Ξ0 = 0. In this section, dj = (dtj−1+1, . . . , dtj ) ∈ R|Ij |+ denotes the demand at the j-th

superiod for j = 1, . . . ,N . We proceed similarly for sj and xj.

DP formulation. We consider an N -stage robust DP problem, where each stage corresponds

to each subperiod. At the beginning of the jth subperiod, a decision maker obtains an affine policy

πj ∈ Πaff(U j,Ξj−1) to make adaptive ordering decisions for the current subperiod. This can be

formulated as

max
π1∈Πaff(U1,Ξ0)

[
min
d1∈U1

max
x1,s1∈X1

[
P1

(
π1,d1,x1; 0,0

)
+ max
π2∈Πaff(U2,Ξ1)

[
min
d2∈U2

max
x2,s2∈X2

[
P2

(
π2,d2,x2;ust1 , u

d
t1

)
· · ·+ max

πN∈Πaff(UN ,ΞN−1)

[
min

dN∈UN
max

xN ,sN∈XN
PN

(
πN ,dN ,xN ;ustN−1

, udtN−1

)]
· · ·
]]]]

, (12)

where Pj

(
πj,dj,xj;u

s
tj−1

, udtj−1

)
is a profit generated during the jth subperiod with an initial input

and demand

Pj

(
πj,dj,xj;u

s
tj−1

, udtj−1

)
=− cS

(∑
t∈Ij

st

)
− cH

∑
t∈Ij

(
ustj−1

+
t∑

τ=tj−1+1

(sτ −xτ )

)

− cP
∑
t∈Ij

(
udtj−1

+
t∑

τ=tj−1+1

(dτ −xτ )

)
+ r

(∑
t∈Ij

xt

)
,

(13)
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and sj and xj are determined within a feasible set Xj =X (πj,dj, u
s
tj−1

, udtj−1
) from (10). In (13), st

denotes the order quantity at time t, if ordering decision is made by πj and dj is realized. The only

constraint for π1, . . . , πN is to ensure non-negative order quantities for any demand realizations.

Recall that affine and Aff-approx policies are obtained before any demand realizations in (6–8),

and the parameters are fixed over all time periods. In the DP formulation (12), the affine parameters

are chosen dynamically at each subperiod, depending on the past information. Specifically, the

affine parameters w
(j)
t (Ξj−1) and W

(j)
τ,t (Ξj−1) of πj can be any function of the past realization Ξj−1.

Hence, we can write the order quantities in (12) as

st(dj,Ξj−1) =


w

(j)
1 (Ξj−1) t= tj−1 + 1

w
(j)
i (Ξj−1) +

i−1∑
τ=1

W
(j)
τ,i (Ξj−1)dtj−1+τ t= tj−1 + i, i≥ 2, t∈ Ij.

Every feasible affine and Aff-approx policy ensures non-negative orders, and hence, is also feasible

in (12). This implies that by solving (12), one can propose policies that have better worst-case

profit than an optimal affine policy.

Periodic-affine policy formulation. With initial input us bounded above with w
(j)
1 , we

define affine-IBS policies by modifying the initial period of an affine policy πj(w
(j)
t ,W

(j)
τ,t ).

Definition 5 (Affine-IBS). For jth subperiod, the affine Initial Base-Stock policy πj(w
(j)
t ,W

(j)
τ,t )

associated with an affine policy πj(w
(j)
t ,W

(j)
τ,t ) determines order quantity by

st(u
s, ud,dj) =


w

(j)
1 −us +ud t= tj−1 + 1

w
(j)
i +

i−1∑
τ=1

W
(j)
τ,i dtj−1+τ t= tj−1 + i, i≥ 2, t∈ Ij.

Note that at each subperiod, affine-IBS policies adapt to initial input and demand by adjusting

the order quantity at the first period. From the second period, affine-IBS and its associated affine

policies are equivalent.

We now consider a sequence of affine-IBS policies π= (π1, . . . , πN), where each πj = πj(w
(j)
t ,W

(j)
τ,t )

is for jth subperiod. Note that this policy may not be well-defined for each subperiod because it

does not guarantee that every order quantity is non-negative. That means, if an input stock after

tj is greater than w
(j+1)
1 , then the policy would not be feasible. To account for this, we impose

w
(j+1)
1 ≥ ustj = ustj

(
πj,dj

)
∀dj ∈ U j ∀j = 1, . . . ,N − 1.

By Definition 5, the right-hand side is equivalent to

ustj

(
πj,dj

)
= max

(
0,

(
ustj−1

+
∑
t∈Ij

st(u
s
tj−1

, udtj−1
,dj)

)
−
(
udtj−1

+
∑
t∈Ij

dt

))

= max

(
0,

( tj−tj−1∑
t=1

w
(j)
t +

tj−tj−1∑
t=2

t−1∑
τ=1

W
(j)
τ,t dtj−1+τ

)
−
tj−tj−1∑
t=1

dtj−1+t

)
.
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Since w
(j+1)
1 has to be non-negative for any demand realization, the periodic-affine policy is well-

defined if

w
(j+1)
1 ≥ θ∗j := max

dj∈Uj

[ tj−tj−1∑
t=1

w
(j)
t +

tj−tj−1∑
t=2

t−1∑
τ=1

W
(j)
τ,t dtj−1+τ −

tj−tj−1∑
t=1

dtj−1+t

]
(14)

for every j = 0, . . . ,N − 1, where θ∗j denotes the maximum leftover input after jth subperiod with

θ∗0 = 0. Now we can define periodic-affine policies.

Definition 6 (Periodic-affine Policy). A periodic-affine policy πPA := (π1, . . . , πN) is an

affine-IBS policy πi satisfying (14) for affine policies πi.

For a periodic-affine policy πPA = (π1, . . . , πN), where πj = πj(w
(j)
t ,W

(j)
τ,t ), order quantities at

time t are determined as follows:

st = st(πPA) =


w

(j)
1 −ustj−1

+udtj−1
∀ t= tj−1 + 1

w
(j)
i +

i−1∑
τ=1

W
(j)
τ,i dtj−1+τ ∀ t= tj−1 + i, i≥ 2, t∈ Ij,

(PA)

for every j = 1, . . . ,N . Since πj ∈Πaff(U j,Ξj−1) and πPA satisfies (14), every periodic-affine policy

is a feasible solution to the DP in (12).

In the next section, we present our algorithm to compute periodic-affine policies.

4.2. Periodic-affine algorithm

Our algorithm obtains affine-IBS policies for each subperiod by solving smaller subproblems. How-

ever, since affine-IBS policies take initial input and demands into account, we construct the objec-

tive function to account for leftover resources and demands. We identify such objective functions

from the DP problem (12). We first show that if initial input is small, an affine-IBS policy will be

optimal among Πaff(UN ,ΞN−1). The proof is similar to the Proposition 3 and is omitted.

Corollary 1. Let πN(w
(N)
t ,W

(N)
τ,t ) be an optimal affine policy with zero initial input and demands.

If ustN−1
≤w(N)

1 for any realization of ustN−1
, then its associated affine-IBS policy πN is an optimal

solution among Πaff(UN ,ΞN−1). Moreover,

max
π∈Πaff(UN ,ΞN−1)

min
dN∈UN

max
xN∈XN

[
PN
(
π,dN ,xN ;ustN−1

, udtN−1

)]
= cSu

s
tN−1

+ (r− cS)udtN−1
+ max
π∈Πaff(UN ,0)

min
dN∈UN

max
xN∈XN

[
PN
(
π,dN ,xN ; 0,0

)]
. (15)

Using this Corollary, we reformulate an optimality condition for the last stage as

max
πN∈Πaff(UN ,ΞN−1)

min
dN∈UN

max
xN∈XN

[
PN

(
πN ,dN ,xN ;ustN−1

, udtN−1

)]

= cSu
s
tN−1

+ (r− cS)udtN−1
+ max
πN∈Πaff(UN ,0)

min
dN∈UN

max
xN∈XN

[
PN

(
πN ,dN ,xN ; 0,0

)]
.
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In single-station cases, ustN−1
and udtN−1

can be rewritten as

ustN−1
= ustN−2

+
∑

t∈IN−1

(
st−xt

)
, udtN−1

= udtN−2
+
∑

t∈IN−1

(
dt−xt

)
.

This can be incorporated with PN−1

(
πN−1,dN−1,xN−1;ustN−2

, udtN−2

)
as

PN−1

(
πN−1,dN−1,xN−1;ustN−2

, udtN−2

)
+ cSu

s
tN−1

+ (r− cS)udtN−1

=−cS

( ∑
t∈IN−1

st

)
− cH

∑
t∈IN−1

(
ustN−2

+
t∑

τ=tN−2+1

(sτ −xτ )

)
− cP

∑
t∈IN−1

(
udtN−2

+
t∑

τ=tN−2+1

(dτ −xτ )

)

+ r

( ∑
t∈IN−1

xt

)
+ cS

(
ustN−2

+
∑

t∈IN−1

(st−xt)

)
+ (r− cS)

(
udtN−2

+
∑

t∈IN−1

(dt−xt)

)

= cSu
s
tN−2

+ (r− cS)udtN−2
− cH

∑
t∈IN−1

(
ustN−2

+
t∑

τ=tN−2+1

(sτ −xτ )

)

−cP
∑

t∈IN−1

(
udtN−2

+
t∑

τ=tN−2+1

(dτ −xτ )

)
+ (r− cS)

( ∑
t∈IN−1

dt

)
.

(16)

We define a modified objective function P̃N−1 as

P̃N−1

(
πN−1,dN−1,xN−1;ustN−2

, udtN−2

)
=−cH

∑
t∈IN−1

(
ustN−2

+
t∑

τ=tN−2+1

(sτ −xτ )

)

− cP
∑

t∈IN−1

(
udtN−2

+
t∑

τ=tN−2+1

(dτ −xτ )

)
+ (r− cS)

( ∑
t∈IN−1

dt

)
.

(17)

If we assume that both ustN−2
and ustN−1

are small, we can rewrite

max
πN−1∈Πaff(UN−1,ΞN−2)

min
dN−1∈UN−1

max
xN−1∈XN−1

[
PN−1

(
πN−1,dN−1,xN−1;ustN−2

, udtN−2

)
+ max
πN∈Πaff(UN ,ΞN−1)

min
dN∈UN

max
xN∈XN

[
PN

(
πN ,dN ,xN ;ustN−1

, udtN−1

)]]

= max
πN−1∈Πaff(UN−1,ΞN−2)

min
dN−1∈UN−1

max
xN−1∈XN−1

[
PN−1

(
πN−1,dN−1,xN−1, u

s
tN−2

, udtN−2

)
+ cSu

s
tN−1

+ (r− cS)udtN−1
+ max
πN∈Πaff(UN ,0)

min
dN∈UN

max
xN∈XN

[
PN

(
πN ,dN ,xN ; 0,0

)]]

= max
πN−1∈Πaff(UN−1,ΞN−2)

min
dN−1∈UN−1

max
xN−1∈XN−1

[
cSu

s
tN−2

+ (r− cS)udtN−2

+ P̃N−1

(
πN−1,dN−1,xN−1;ustN−2

, udtN−2

)]
+ max
πN∈Πaff(UN ,0)

min
dN∈UN

max
xN∈XN

[
PN

(
πN ,dN ,xN ; 0,0

)]
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= cSu
s
tN−2

+ (r− cS)udtN−2
+ max
πN−1∈Πaff(UN−1,0)

min
dN−1∈UN−1

max
xN−1∈XN−1

[
P̃N−1

(
πN−1,dN−1,xN−1; 0,0

)]
+ max
πN∈Πaff(UN ,0)

min
dN∈UN

max
xN∈XN

[
PN

(
πN ,dN ,xN ; 0,0

)]
.

(18)

Note that the second equality comes from (16), and one can verify similarly from Corollary 1 that

the last equality holds. This reformulation shows that if leftover input after every subperiod is small

enough, we can solve the DP problem in (12) by solving smaller subproblems. These subproblems

are defined with modified objective function P̃j with no backlogged input and demand, hence we

can solve them independently. Proceeding iteratively, we define an objective PPA
j

(
πj,dj,xj

)
as

PPA
j

(
πj,dj,xj

)
=



−cH
∑
t∈Ij

( t∑
τ=tj−1+1

(sτ −xτ )
)
− cP

∑
t∈Ij

( t∑
τ=tj−1+1

(dτ −xτ )
)

+(r− cS)
∑
t∈Ij

dt,

j = 1, . . . ,N − 1

−cS
∑
t∈Ij

st− cH
∑
t∈Ij

( t∑
τ=tj−1+1

(sτ −xτ )
)

−cP
∑
t∈Ij

( t∑
τ=tj−1+1

(dτ −xτ )
)

+ r
∑
t∈Ij

xt,

j =N.

(19)

We now propose the periodic-affine algorithm. This algorithm (i) ensures that the solution is

well-defined, and (ii) exploits the modified objective functions PPA
j . The jth subproblem can be

solved by the following optimization problem

max
πj∈Πaff(Uj ,0)

min
dj∈Uj

max
xj ,sj

PPA
j

(
πj,dj,xj

)
s.t. (xj, sj)∈X (πj,dj,0,0)

w
(j)
1 ≥ θ∗j−1.

(20)

The last constraint ensures that periodic-affine policy is well-defined, where θ∗j−1 is the maximum

amount of on-hand input after (j−1)th subperiod, computed by (14). The overall procedure solves

(20) and (14) iteratively, as summarized in Algorithm 1.

Algorithm 1 Periodic-affine algorithm for single-station problems

Given. time indices 0 = t0 < t1 < · · ·< tN = T , uncertainty set U = U1×· · ·×UN , j = 1, and θ∗0 = 0.

Step 1. Solve (20) to obtain πj for the jth subperiod.

Step 2. Using πj, compute the maximum leftover input θ∗j by (14).

Step 3. If j =N , return πPA = (π1, . . . , πN) and STOP. Otherwise, j← j+ 1 and go to Step 1.

We present an additional useful property of the periodic-affine algorithm, namely that the worst-

case scenario can be obtained from each iteration.
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Proposition 4. Let πPA be a solution of periodic-affine algorithm and d∗j be a worst-case scenario

from the jth subproblem. Then πPA has a worst-case scenario (d∗1, . . . ,d
∗
N).

So far, we discussed a single-station, multi-period robust newsvendor model, where the uncer-

tainty set over time periods is defined as a Cartesian product of pre-specified uncertainty sets for

each subperiod. We formulated a dynamic programming problem, where each stage corresponds

to each subperiod. Motivated from this formulation, we developed an algorithm to find a periodic-

affine policy, by defining the modified objective functions PPA
j ’s.

Computational Advantages. We provide two theoretical evidences that periodic-affine poli-

cies are computationally advantageous over affine policies. First, the number of affine parameters

in PA grows linearly in T , while it increases quadratically in affine policies. Second, solving sub-

problems in PA requires significantly less computational effort than solving one large problem in

affine policies. This is because an optimal affine policy solves (6–8) by cut generation. The number

of extreme points in multi-period uncertainty sets (Definition 2) grows exponentially in T , and this

results in a very large number of iterations for affine policies. In PA, however, one can arbitrarily

choose the length of subperiods. Hence, the number of iterations grows at most linearly in T .

Strong empirical evidence in Section 6 demonstrate these advantages.

Also note that PA does not suffer from the curse of dimensionality. Even though PA is motivated

from the DP formulation (12), an optimal solution is not obtained by solving the Bellman equa-

tion; our algorithm decomposes the overall problem into smaller subproblems in order to achieve

tractable solutions.

In the next section, we present theoretical properties of periodic-affine policies, where we provide

a sufficient condition for the algorithm to have an optimal solution to the DP (12).

4.3. Optimality of periodic-affine policies

In this section, we present theoretical properties of PA by analyzing the effect of base-stock levels on

the worst-case performance. Specifically, we provide a sufficient condition under which the periodic-

affine algorithm solves the DP problem (12). To compare the worst-case performance of PA with

affine policies, we consider affine policies under the rectangular uncertainty set U = U1× · · · ×UN

so that both policies are defined equivalently. Moreover, we present an analytical approximation

for the suboptimality of PA. Note that this is a posterior approximation, i.e., it is computed during

the algorithm.

Let the worst-case profit of the two policies be V ∗PA and V ∗Aff, which are evaluated by (12), and

V ∗DP as an optimal value of the DP problem (12).

The following assumption guarantees the optimality of PA policies.
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Assumption 1. For a solution of the PA algorithm πPA, assume that the maximum leftover input

level after each subperiod θ∗j satisfies the last constraint in (20).

In other words, for a solution of the PA algorithm, the last constraint in (20) is not active at every

iteration. Since an optimal periodic-affine policy maximizes the overall profit, it tends to have lower

leftovers at each time period and hence, is likely to satisfy Assumption 1. This assumption is not

too restrictive as evidenced in the numerical experiments in Section 6.

Remark 2. We also suggest that it is possible to enforce the Assumption 1 to hold, or reduce the

suboptimality of PA, by a proper choice of partitioning the time horizon. For example, consider a

problem with T = 12, where the nominal mean is 10 for the first 6 periods and decreases to 2 for

the last 6 periods. Then, Assumption 1 may not hold if PA is obtained by partitioning 12 periods

into two (of each 6 periods). However, one can obtain a better result by partitioning the periods

into 3 subperiods of each 4 periods.

Theorem 1. For a single-station network, if Assumption 1 holds, then V ∗Aff ≤ V ∗PA = V ∗DP.

Since affine policies are defined on a subset of every feasible solution of the DP, the worst-case

profit of PA is guaranteed to be greater than or equal to that of affine policies under Assumption 1.

We show in the following proposition that in single-station problems, their worst-case performance

is indeed equal.

Proposition 5. For single-station models under Assumption 1, V ∗Aff = V ∗PA = V ∗DP.

Remark. All previous theoretical properties of PA rely on Assumption 1. In other words, the

worst-case performance of PA may not match that of affine policies without the assumption.

We now relax Assumption 1 and provide a suboptimality bound for PA. For this, we compare

the solutions of the following optimization problems

Pj := max
πj∈Πaff(Uj ,0)

min
dj∈Uj

max
xj ,sj

PPA
j

(
πj,dj,xj

)
s.t. (xj, sj)∈X (πj,dj,0,0)

w
(j)
1 ≥ θ∗j−1

P̃j := max
πj∈Πaff(Uj ,0)

min
dj∈Uj

max
xj ,sj

PPA
j

(
πj,dj,xj

)
s.t. (xj, sj)∈X (πj,dj,0,0),

where Pj is the jth subproblem during the PA algorithm and P̃j solves a subproblem with

assuming no leftover input from the previous subperiods.

Theorem 2. For any single-station newsvendor networks with an objective value f̃∗j of P̃j,

V ∗PA ≤ V ∗Aff ≤ V ∗DP ≤ Ṽ ∗PA :=
N∑
j=1

f̃∗j .
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Theorem 2 provides a tight bound. All the inequalities hold with equalities if Assumption 1

holds. Note that one may not need to resolve a problem P̃j; recall that every subproblem in the

periodic-affine algorithm is solved by generating cuts. Once a solution of Pj is obtained, one can

relax the last constraint in Pj and continue cut generation in order to solve P̃j. This requires fewer

iterations, since (i) an optimal solution of Pj serves as a warm-start initial point for additional

cuts, and (ii) the previously generated cuts are still valid without any modifications to P̃j.
So far, we introduced theoretical properties of periodic-affine policies. We showed that under

mild condition, the algorithm finds an optimal solution to the DP problem, and thus achieve a

worst-case performance equal to that of an optimal affine policy for single-station problems. If this

assumption does not hold, we provided a tight bound that can measure the gap between periodic

and affine policies. Moreover, this gap can be computed by minimally modifying the algorithm

with similar computational requirements. In the proceeding section, we extend this framework to

general multi-station newsvendor networks and infinite-horizon problems.

5. Extensions of Periodic-affine Policies

We extend our approach in Section 4 to general multi-station networks, where a decision-maker

intends to satisfy customers’ demand at multiple locations. First, we extend Algorithm 1 for multi-

station networks. Then, we develop periodic-affine policies for infinite horizon problems.

5.1. Multi-station networks

Here, we follow the flow of Section 4. To set this up, we define a matrix that plays a key role in

implementing periodic-affine policies.

Definition 7 (Basic Matrix). Let `k ∈L be an optimal solution to satisfy a unit demand at a

sink node k ∈ S. A basic matrix RB ∈Rp×n is given by

RB(`, k) = 1 if `= `k ∀k, and 0 otherwise.

Using such a basic matrix, we obtain a closed-form expressions of ordering quantities and network

activities if the demand is deterministic. In particular, for any d∈Rn+, an optimal decision is given

by s = RSRBd and x = RBd.

Recall that we have defined a modified objective functions for each stage of the DP problem (12)

to separate the overall problem into subproblems. In single-station models, the values of on-hand

products and backlogged demands at the beginning of the (j+ 1)th subperiod are expressed as

cSu
s
tj

= cS ·
∑
t∈Ij

(
st−xt

)
(r− cS)udtj = (r− cS) ·

∑
t∈Ij

(
dt−xt

)
,



Bandi, Han, and Nohadani: Robust Periodic-Affine Policies
21

which are taken into jth subproblem. After the jth subperiod, us
tj

and ud
tj

are deterministic and

hence, their values can be expressed by using the basic matrix RB as

c>Sus
tj

= c>S
∑
t∈Ij

(
st−RSxt

)
(
R>Br−R>BR>S cS

)>
ud
tj

=
(
R>Br−R>BR>S cS

)>∑
t∈Ij

(
dt−RDxt

)
.

Note that the value of ud
tj

is determined by ordering RBud
tj

and processing RSRBud
tj

. This allows

us to extend the definition of affine-IBS policies as follows.

Definition 8 (Affine-IBS for Multi-station). For jth subperiod, the affine-IBS policy

πj(w
(j)
t ,W

(j)
τ,t) associated with an affine policy πj(w

(j)
t ,W

(j)
τ,t) determines order quantity by

st(u
s,ud,Dj) =


w

(j)
1 −us + RSRBud t= tj−1 + 1

w
(j)
i +

i−1∑
τ=1

W
(j)
τ,idtj−1+τ t= tj−1 + i, i≥ 2, t∈ Ij.

Period-affine policy for multi-station networks. As in Definition 6, periodic-affine poli-

cies are defined as a sequence of affine-IBS policies. Eq. (14), which is required for periodic-affine

policies to be well-defined, is readily extended by replacing with a vector inequality. With this

generalization, all the arguments in Section 4.2 can be repeated in multi-station network setting.

As a result, the objective function for each subproblem is given by

PPA
j

(
πj,Dj,Xj

)
=



− c>H
∑
t∈Ij

( t∑
τ=tj−1+1

(sτ −RSxτ )
)

− c>P
∑
t∈Ij

( t∑
τ=tj−1+1

(dτ −RDxτ )
)

+ v>d
∑
t∈Ij

dt + v>x
∑
t∈Ij

xt,

j ≤N − 1

− c>S
∑
t∈Ij

st− c>H
∑
t∈Ij

( t∑
τ=tj−1+1

(sτ −RSxτ )
)

− c>P
∑
t∈Ij

( t∑
τ=tj−1+1

(dτ −RDxτ )
)

+ r>
∑
t∈Ij

xt,

j =N

(21)

where vd = R>Br−R>BR>S cS and vx = r−R>S cS −R>DR>Br + R>DR>BR>S cS.

Period-affine algorithm for multi-station networks. As in Section 4, Problem (20) can

be readily converted into multidimensional form by replacing the last inequality with a vector

inequality. However, it is challenging to obtain the multi-station version of (14), which computes

the maximum amount of leftover resources. Therefore, we incorporate these into a single robust

two-stage optimization problem, as follows:

max
θj ,πj∈Πaff(Uj ,0)

min
Dj∈Uj

max
Sj ,Xj

PPA
j

(
πj,Dj,Xj

)
− δ ·1>θj
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s.t. (Sj,Xj)∈X (πj,Dj,0,0)

w
(j)
1 ≥ θ∗j−1∑

t∈Ij

(st−RSxt) ≤ θj

where δ > 0 is a small real number. In this way, the periodic-affine algorithm for multi-station

networks proceeds by iteratively solving subproblems, similar to Algorithm 1.

Properties of periodic-affine for multi-station networks. We now generalize the theo-

retical properties for the multi-station networks. We consider the DP problem (12) by replacing

every single-dimensional quantity by multi-dimensional quantities. Assumption 1 is extended with

vector inequalities, each of which is for each source node. We use V ∗Aff, V ∗PA, and V ∗DP for the worst-

case objective values for affine, PA, and the DP problem, and define Ṽ ∗PA similar to single-station

problems.

Theorem 3. For multi-station networks, if Assumption 1 holds, then V ∗Aff ≤ V ∗PA = V ∗DP. Otherwise,

V ∗PA ≤ V ∗DP ≤ Ṽ ∗PA.

Note that Proposition 5 cannot be extended to multi-station networks. In other words, PA

policies for multi-station networks are not necessarily be an affine policy. Theorem 3 implies that

an optimal PA policy has a worst-case performance not less than an optimal affine policy. However,

for multi-station networks, we cannot compare the two policies without Assumption 1.

5.2. Infinite horizon problems

So far, PA policies are based on multi-period problems of finite horizon. In this section, we extend

these PA policies to infinite horizon problems with a discount factor of β < 1. For this, we assume

that nominal means and covariances of demands have periodicity with the period T0 ≥ 1. We

then define an uncertainty set UT0 ∈Rn×T0 to describe demand uncertainties for each period. This

framework models settings where demand has stationary mean and covariance along the periods.

Definition 9 (infinite-horizon uncertainty set). The infinite-horizon demand uncertainty

set is a Cartesian product of UT0 via

U∞ = UT0 ×UT0 ×UT0 × · · · .

We implement PA policies for infinite horizon problems by replicating policies over the periods.

We construct a PA policy of period T0 by solving a single problem of duration T0. As in previous
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sections, we define the objective function PPA
∞ (π,d,x), by taking leftover inventories, unsatisfied

demands, and the discount factor into account as

PPA
∞

(
π,D[1:T0],X[1:T0]

)
=−c>H

T0∑
t=1

βt
( t∑
τ=1

(sτ −RSxτ )
)
− c>P

T0∑
t=1

βt
( t∑
τ=1

(dτ −RDxτ )
)

+ r>
T0∑
t=1

βtxt

− c>S

T0∑
t=1

βtst +βT0+1c>S

T0∑
t=1

(st−RSxt) +βT0+1
(
R>Br−R>BR>S cS

)> T0∑
t=1

(dt−RDxt)

=−
T0∑
t=1

βt c∗>S,tst−
T0∑
t=1

βt c∗>H,t

( t∑
τ=1

(sτ −RSxτ )
)
−

T0∑
t=1

βt c∗>P,t

( t∑
τ=1

(dτ −RDxτ )
)

+

T0∑
t=1

βt r∗>t xt,

where c∗S,t = cS, r∗t = r for t= 1, . . . , T0, and

c∗H,t =

{
cH 1≤ t≤ T0− 1

cH −βcS t= T0

c∗P,t =

{
cP 1≤ t≤ T0− 1

cP −βR>Br +βR>BR>S cS t= T0.

As a result, an optimal PA policy is obtained by solving a single optimization problem

max
θ,π

min
D[1:T0]∈UT0

max
S[1:T0],X[1:T0]

PPA
∞

(
π,D[1:T0],X[1:T0]

)
(22)

s.t. (S[1:T0],X[1:T0])∈X (π,D[1:T0],0,0)

w1 ≥ θ

where the last constraint ensures that the solution is replicable over time periods. Based on the

solution of (22), an infinite PA policy determines order quantity as

st =


w1−us

t−1 + RSRBud
t−1 t= nT0 + 1, n= 0,1,2, . . .

wi +
i−1∑
τ=1

Wτ,idnT0+τ t= nT0 + i,1< i< T0, n= 0,1,2, . . . .
(23)

We next present our main result for infinite-horizon cases.

Theorem 4. For a infinite-horizon multi-station network and the uncertainty set U∞, if Assump-

tion 1 holds, then the infinite periodic-affine policy (23) is optimal to the DP in (12).

In summary, we generalized the periodic-affine policies into multi-station networks and infinite

horizon problems. In both these cases, we presented periodic-affine algorithms and showed that the

theoretical properties hold. We next discuss a numerical case study to demonstrate the practical

applicability of these findings and the performance of the proposed policies.

6. Discussion: Insights and Implications

In this section, we present various implications of our modeling and solution approach and demon-

strate the following advantages of our modeling approach and solution algorithm:
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• Practical Relevance: The relevance of an approach and corresponding algorithms hinges on

the ability to model features in a real-world setting and provide implementable solutions.

We demonstrate that our approach is able to achieve this. In particular, we show that PA

policies perform well in large-scale and data-driven environments by studying the case of a

major pharmacy retailer in India. We also demonstrate that we are able to model the service

level guarantees by using the robust optimization approach. This ensures that the demands

are satisfied for all scenarios in an uncertainty set. We also demonstrate the robustness to

mis-specification and study the performance for a spectrum of various cost parameters.

• Generalizability and Extendability : It is also important for the approach to be generalizable

and extendable in order to accommodate higher-dimensional versions of the problem and

newer types of demand information. We achieve this by modifying the uncertainty set based

on the available demand information, and by showing that our approach naturally extends to

multi-dimensional settings. In particular, we incorporate correlation information in computing

the optimal PA policy, and demonstrate our algorithm on the high-dimensional real-world

case study.

• Computational Tractability : An algorithm suited for real applications needs to be tractable

and implementable. We demonstrate tractability of the PA policies by presenting empirical

evidence on the computational times on simulated data.

Next we elaborate on each of these advantages.

6.1. Practical Relevance: Case study of a Pharmacy retailer

We analyze the sales data of a leading pharmacy retailer in India to probe the performance of the

policies in a real-world setting. A common problem in forecasting demands is that sales records do

not necessarily imply customers’ demands, because product shortage is not reflected in sales data.

However, since pharmacy retailers in India face a prohibitively large penalty for unmet demand,

we can interpret the sales records as demands for this numerical study.

The data consists of more than 1.5 million transactions over 40 days (end of September to early

November of 2016) for 228 different products. To reduce the problem size, we analyzed the 20 most-

popular products, comprising nearly 80% of all transactions. Hierarchical clustering (Maechler et al.

2016) is used to bundle the products into groups, within which demands are highly correlated.

Moving averages and residuals are extracted from the sales records, and used as nominal means

and variances to define data-driven uncertainty sets for each group. Penalty and holding costs are

not revealed in the sales records. Therefore, we fix penalty and holding cost rates, and compute

penalty and holding costs as a product of the corresponding rates and net profit per unit.
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Penalty cost rate Policy Worst 5% quantile 25% quantile Median Historical

0.2

Aff-approx 2.68 3.50 3.64 3.74 3.81
PA 2.72 3.64 3.77 3.85 3.97

SAA N/A 3.73 4.02 4.13 4.41
Myopic N/A 3.80 4.16 4.37 4.67

1.0

Aff-approx 1.96 2.87 3.27 3.51 3.86
PA 2.49 3.30 3.41 3.48 3.56

SAA N/A 3.43 3.53 3.81 3.96
Myopic N/A 3.27 3.66 3.96 4.25

5.0

Aff-approx 1.49 3.31 3.60 3.79 4.04
PA 1.78 3.37 3.64 3.82 3.83

SAA N/A 3.21 3.58 3.61 3.52
Myopic N/A 2.85 3.27 3.58 3.68

10.0

Aff-approx 1.26 3.10 3.45 3.68 4.15
PA 1.39 3.28 3.62 3.84 3.77

SAA N/A 3.12 3.39 3.64 3.61
Myopic N/A 2.76 3.19 3.49 3.40

Note: all values are multiplied by 106.

Table 1 Performance of policies for different penalty cost rates. Percentiles and medians are calculated from

1000 samples. The last column is from the historical sales data.

Uncertainty sets. We defined the multi-period uncertainty sets following Definition 2, where

the variability parameters are defined as Γ = 2
√
nT , Γt = 2

√
n, and ΓB = 2. The factor 2 is inspired

from the fact that P(|Z| ≤ 2)' 0.95 for a standard Normal random variable Z. Such a setting is

typical in the robust optimization literature for describing random variables bounded by uncer-

tainty sets (Bertsimas et al. 2017). The parameters Γt and Γ are chosen to be proportional to
√
n

and
√
nT , motivated by the Central Limit Theorem (Bertsimas and Sim 2004).

Performance of PA policies. We compute ordering policies for each product group. We

begin by assuming that the sales of different product groups are independent of each other, and later

consider the more realistic case of correlated sales. We compare the performance of three policies:

PA, Aff-approx, and base-stock policies for these product groups. We implemented two different

base-stock policies. Myopic base-stock policies are implemented, where the order-up-to level at

each period is determined myopically using the nominal means and variances, assuming normally

distributed demand. We also compute the base-stock levels with Sample Average Approximation

(SAA), using the approach discussed in Bertsimas et al. (2017).

For pre-computed policies, we generated random demand samples to evaluate the two policies.

The samples are generated independently over time with Normal distributions, in which nominal

mean and variances are used. For given cost and revenue parameters, profit is calculated for each

sample. We compared 5%, 25% quantiles, and median for the policies.

Table 1 displays performance of various policies for different values of the penalty cost rate. We

observe that PA performs better than Aff-approx in terms of worst-case performance. In Section 6.3,
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we will show that this is also consistent with synthetic data. On the other hand, if the penalty

cost is low, both PA and Aff-approx are not effective and the base-stock policy outperforms them.

However, PA yields better lower percentile performance than the other policies for increased penalty

cost. This is because PA maximizes the worst-case profit. We also observe that under significant

penalty costs, PA not only protects the worst-case performance and lower percentiles (improves

by 19% over base-stock at 5th percentile for cost of 10) but also leads to better average profit and

historical backtesting than the other policies. We also notice that while SAA improves over the

Myopic policy, both Aff-approx and PA outperform it.

Sensitivity to model misspecification. Given that all these policies are implemented using

the nominal mean and variance inferred from past records, it is important to measure their robust-

ness to errors in model calibration. For this, we consider demand realizations to have mean greater

than (Figure 2a), same as (Figure 2b), or less than (Figure 2c) their nominal values for varying

holding and penalty costs. We observe that when the realized demand distribution differs from
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Figure 2 Phase diagram of periodic-affine and the base-stock policies. The realized demand means are (a)

increased by 5%, (b) not changed, and (c) decreased by 5% from the nominal values.

the assumed one, the region of parameters (phase), for which PA outperforms base-stock policy

changes. For example for a holding cost of 0.1 and penalty of 1, the PA policy outperforms base-

stock, if the mean of the assumed demand coincides with the realized one (see Figure 2b). However,

only 5% increase of the means is sufficient for the base-stock to prevail (see Figure 2a).

Performance dependence on holding and penalty cost. As the costs vary, we observe

a phase transition between a phase where PA outperforms the base-stock policies and a phase in

which the base-stock policy outperforms. The phase diagrams in Figure 2 allow the decision maker

to select the policy based on the given cost and demand structure. In fact, for pharmacy retailers,

who face a substantial penalty with unsatisfied demand, it shows that our proposed PA policy is
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preferable. On the other hand, if the decision maker is committed to a certain ordering policy (e.g.

contractually), the phase diagrams in Figure 2 can suggest suitable changes to the cost structure

in order to make the policy superior.

Impact of high penalty cost. When analyzing backlogged demands and inputs for different

values of the penalty cost, Figure 3 shows that the three policies react differently for high penalty

costs. First, the base-stock policy does not effectively control the backlogged demands. Although

the penalty cost is accounted for in the newsvendor quantile to avoid high backlogs, increasing it

slightly decreases the amount of backlogged demands. On the other hand, Aff-approx determines

order quantities more conservatively than PA. Under high penalty cost, Aff-approx satisfies nearly

all customer demands by ordering an excessive amount of input. This causes a significantly larger

holding cost, and leads to less profit than PA. Finally, PA controls both leftover input and back-

logged demands. As the penalty cost increases, PA not only reduces backlogged demands (same as

Aff-approx), but also maintains much lower input levels than Aff-approx. This leads to a higher

profit than the other policies.
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Figure 3 Impact of penalty cost on (a) backlogged demands, and (b) leftover resources on random samples.

Summary. In summary, the case-study with pharmacy retailer’s data demonstrates sizable

increase in performance for the periodic-affine policies. In particular, in the presence of high penalty

cost, PA improves the lower-quantile performance by more than 10% than the base-stock policies.

It also allows decision makers to identify the optimal policy based on their respective cost and

demand structures.

6.2. Generalizability and Extentability: Modeling Correlation and Solving multi-station

newsvendor problems

To adequately discuss the performance of PA under a multi-station setting, we take demand corre-

lation information into account. We model correlations in demand using the correlated uncertainty
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sets presented in (3) by using a factor model approach. For the numerical analysis, we consider

two products over 15 time periods with subperiods of length 5.

The benefits of modeling correlation become apparent, when comparing the following two poli-

cies: single-station PA (PA-single) for each product using marginal mean and variance, and multi-

station PA (PA-multi) using the correlated uncertainty set. For comparison, we compute the relative

performance (RP) of PA-multi over PA-single as

RP =
profit of PA-multi−profit of PA-single

profit of PA-single
.

After the two policies are implemented, we generate random demand with nominal mean and

covariance and evaluate the relative performance for each sample. For each correlation ρ, correlated

uncertainty sets are defined by substituting

A=

[
ρ
√

1− ρ2

0 1

]
into (3), and the same matrix is used to generate multivariate normal random demands. Figure 4

displays this relative performance for different correlation coefficient ρ. We observe that the median

RP for every ρ is positive. However, the behavior differs for positively or negatively correlated
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Figure 4 Relative performance for different correlations ρ. Inserts are the corresponding uncertainty sets.
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Figure 5 An illustrative example for correlation and multi-station modeling: Two products are (a) perfectly

correlated, (b) uncorrelated, and (c) perfectly anti-correlated. Uncertainty sets are defined as within

the blue contours along with the profit of optimal policies for extreme and nominal points.

products. While for highly correlated products the RP slightly decreases with growing ρ, significant

improvements are made for negatively correlated products. In fact, more RP increases by more

than 17%, when the products have a strong negative correlation (ρ=−0.9).

This observation can be interpreted by the structure of the uncertainty sets, as shown in the

inserts of Figure 4. Positively correlated products lead to sets that allow both uncertain demands

d1 and d2 to be concurrently at their maximum or minimum value. As ρ decreases, the area of the

polyhedron shrinks, however the extreme points are unaffected. However, when ρ becomes negative,

i.e. the products are negatively correlated, if one of the uncertain demands can take its maximum

value, the other is forced to its lowest, and vice versa. This effect forces an increase in RP as ρ→−1.

The extreme cases are illustrated in the example of Figure 5. For perfectly correlated products,

Figure 5a shows that even though the uncertainty set is dramatically shrunk, the worst-case profit

cannot not improved over the uncorrelated demand setting (Figure 5b), because the worst-case is

often captured when both demands are high or low. However, for negatively correlated demands,

the uncertainty set does not contain this region (high/high or low/low), allowing for substantial

improvement in worst-case profit, as shown in Figure 5c.

Case study of a pharmacy retailer – revisited. Here, we account for correlation amongst

the product groups and compare the following five policies in Table 2: PA-multi, PA-single, Aff-

approx with correlated uncertainty set (Aff-approx-multi), Aff-approx for each group (Aff-approx-

single), SAA base-stock, and Myopic policies. For lower quantiles, we observe that the base-stock

policy performs poorly compared to the single-station models. Both PA-single and PA-multi yield

significantly greater profit in lower quantiles than the base-stock policy. The multi-station frame-

work and correlated demand uncertainty sets offer better performance than single-station frame-

work. In particular, PA-multi achieves at least 7% more profit than PA-single for moderate choice
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Penalty cost rate Policy Worst 5% quantile 25% quantile Median Historical

0.2

Aff-approx-single 6.20 9.09 9.65 10.03 10.60
Aff-approx-multi 7.03 8.65 9.72 10.31 9.51

PA-single 6.32 8.59 8.97 9.21 9.66
PA-multi 7.17 9.24 10.24 10.71 11.12

SAA N/A 9.12 10.04 10.51 10.93
Myopic N/A 8.50 9.97 10.74 10.81

1.0

Aff-approx-single 4.07 6.44 7.59 8.15 8.39
Aff-approx-multi 5.29 8.22 8.83 9.34 10.02

PA-single 5.69 7.76 8.07 8.31 8.97
PA-multi 6.64 8.65 9.30 9.70 10.54

SAA N/A 7.49 7.82 9.35 9.13
Myopic N/A 6.70 8.10 9.21 8.98

5.0

Aff-approx-single 2.63 5.19 6.82 7.90 7.21
Aff-approx-multi 4.20 7.44 8.44 9.01 9.37

PA-single 3.44 7.57 8.33 8.77 9.75
PA-multi 4.95 7.82 8.73 9.43 9.25

SAA N/A 6.41 7.23 8.61 8.92
Myopic N/A 5.04 6.61 7.76 7.03

10.0

Aff-approx-single 1.69 5.06 6.67 7.64 6.88
Aff-approx-multi 3.46 7.07 8.17 8.85 9.88

PA-single 2.11 7.26 8.24 8.81 9.01
PA-multi 3.98 7.04 8.25 8.98 8.87

SAA N/A 6.01 7.12 7.83 7.61
Myopic N/A 4.61 6.27 7.40 6.42

Note: all values are multiplied by 106.

Table 2 Performance of policies for two correlated product groups for different penalty cost rates. Percentiles

and medians are calculated from 1000 samples. The last column is from the historical sales data.

of the penalty cost. However, for extremely high penalty cost rates (e.g. 10), PA-single performs

slightly better than PA-multi for lower quantiles, even though the worst case objective value is

lower. This is due to samples that are generated outside of the correlated uncertainty sets. Note

that SAA and the Myopic policies do not take correlations into account and hence underperform.

Summary. In summary, Table 2 demonstrates that capturing correlation using the periodic-

affine policies in multi-station setting outperforms the base-stock policies for moderate penalties.

Since the demand of the studied pharmaceutical product groups is positively correlated, variability

of the base-stock policy increases, causing a sizable degradation of the profit when compared to

periodic-affine policies.

6.3. Computational Tractability

In order to focus on computational performance in a sterile environment, we consider the following

simulation environment. We simulate three cases with duration T ∈ {10,15,20} with a subperiod

consisting of 5 time periods. We randomly generate 100 instances of single-station newsvendor

problems for each T . Nominal means are generated by autoregression processes AR(1) and nominal



Bandi, Han, and Nohadani: Robust Periodic-Affine Policies
31

coefficient of variations are chosen uniformly in (0.3, 0.5). Unless modified, cost parameters are

cS = 20, r = 120, cH = cP = 20, and all variability parameters are set similarly as in Section 6.1.

We then compare the PA policies with affine and Aff-approx policies.

While we evaluate the worst-case performances of PA using (12) with Proposition 4, those of

affine policies are calculated using (6–8) to overcome tractability issues. Note that for any non-

anticipative policies, (6–8) is an upper bound for the DP (12). Hence, the optimality gap between

the affine policies and PA, evaluated in (12), is closer than the gaps presented in Table 3 and

Figure 6.

For the three policies, Table 3 displays the computation times and worst objective values on the

same uncertainty set. We observe that the computation of PA is significantly faster than affine

policies, because PA is tractable. However, the worst objective values of PA are very close (within

0.1%) to affine policies, while Aff-approx consistently deviates by ≥ 10% from the others. Indeed,

only 13 out of the 300 artificial instances have greater worst objective values in affine policies.

Moreover, there is only one instance in which PA loses more than 1% of optimality. This implies

that Assumption 1, which is a sufficient optimality condition of PA, holds for fairly general settings.

This means that PA is as competitive as affine policies in worst-case values.

Policy Affine PA Aff-approx

Time periods T 10 15 20 10 15 20 10 15 20

Computation time [sec] 3.8 88.5 1388.3 0.18 0.24 0.29 0.02 0.09 0.22
Worst objective value 11,035 16,833 22,440 11,033 16,831 22,438 9,523 14,601 19,479

Difference to Affine [%] -0.015 -0.011 -0.006 -13.39 -13.03 -12.96

Table 3 Average performance of three policies on randomly generated instances.

Comparison of PA and Aff-approx policies on synthetic data. We next compare the

performance of PA and Aff-approx policies for a spectrum of parameters. Figure 6 shows that the

gap between the two policies are different for holding and for penalty cost. Figure 6a shows that

the gap between PA and Aff-approx decreases as holding cost increases. However, PA protects the

worst-case profit significantly better than Aff-approx as penalty cost increases, shown in Figure 6b.

These results suggest that depending of the holding and penalty costs, PA orders the proper amount

of input to meet demands, i.e., both on-hand input and unsatisfied demands are well-controlled.

Therefore, its worst-case performance is far less affected by larger cost parameters than Aff-approx.

On the other hand, Figure 6b indicates that Aff-approx may not manage the leftover resources and

backlogged demands as well as PA, which yields poor performance for higher penalty cost.
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Figure 6 Impact of (a) holding cost, and (b) penalty cost on worst-case performance.

The significant relative decrease of worst objective values between the two policies of up to 35%,

as shown in Figure 6 and also observed in Table 3, implies that the degree of suboptimality of Aff-

approx may render it inferior to PA. Although theoretical bounds of affine approximation have been

proposed (Bertsimas and Goyal 2012, Bertsimas and Bidkhori 2015), these results indicates that the

affine approximation cannot be successfully applied to general settings, despite its computational

advantage of tractability.

Summary. In summary, the experiment on artificial data reveals the optimality and tractabil-

ity of periodic-affine policies, while the other methods did not achieve both properties. In addition,

we observe that periodic-affine policies perform substantially better for larger T than Aff-approx

in terms of protecting its worst-case performance at high penalty cost. This implies that PA is

particularly useful when a decision maker faces a massive penalty for unsatisfied demands, such as

in the case of the pharmacy retailer in India.

7. Conclusions

In this paper, we consider the problem of optimal control in multi-period and multi-stage newsven-

dor networks. To this end, we introduce a new class of adaptive policies called periodic-affine

policies. These policies are data-driven and incorporate the correlation amongst products, which

is an instrumental feature of real-world settings. These policies also remain robust to parameter

mis-specification. For this, we model the uncertain demand via sets, which can incorporate corre-

lations, and can be generalized to multi-product settings and extended to multi-period problems.

This approach offers a natural framework to study current competing policies of base-stock, affine,

and approximative approaches with respect to their profit, sensitivity to parameters and assump-

tions, and computational scalability. We showed that the periodic-affine policies are sustainable,

i.e. time consistent, because they warrant optimality both within subperiods and over the entire

planning horizon.
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We presented empirical evidence of tractability and robustness which makes our approach well-

suited for real-world applications. We demonstrate the advantages of our approach by considering

the problem of one of India’s largest pharmacy retailers using their sales data. We show that the

periodic-affine policies are capable to increase the profits by up to 17% over base-stock policies. This

study reveals capturing the demand correlation can sizably affect the performance. Furthermore,

we offer a phase diagram for managers to select the optimal policy based on their cost and demand

structures.

In future, we intend to incorporate time-dependent uncertainty sets (Nohadani and Roy 2017)

to more accurately model seasonal demand. This step forward will lend itself well to incorporate

returns, i.e. feedback from satisfied demand that can guide the next period’s decisions.
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Appendix. Appendix

Proofs of Auxiliary Results.

A. Proof of Proposition 1.

First suppose that the nominal mean µ increases by ∆µ ≥ 0. Then there exists ∆s∗ ≥ 0 and

∆x∗ ≥ 0 that solves the nominal problem with deterministic demand ∆µ, with non-negative profit

P ≥ 0. Thus the worst-case profit with µ+∆µ increases at least by P . On the other hand, one can

show that the set U increases in any of λ1, . . . , λl, followed by that the objective value decreases.

�

B. Proof of Proposition 2.

For fixed {wt,Wτ,t} and D[1:T ], the inner maximization in problem (6) with respect to X[1:T ] is

a linear program in which {wt,Wτ,t} are on the right-hand side. It follows that for any D[1:T ],

the inner maximization problem (6) is concave in {wt,Wτ,t}. Hence the objective function in (6)

is concave as well, because it is a pointwise infimum of concave functions. Moreover, the problem

is always feasible with assigning zero vectors and matrices to {wt,Wτ,t}. Finally, applying strong

duality to constraint (7) shows that a feasible set of {wt,Wτ,t} is a polyhedron and hence, convex.

�

C. Proof of Proposition 3.

Φ(s0, d0) := max
π

V
(
π(wt,Wτ,t);s0, d0

)
, where V

(
π(wt,Wτ,t);s0, d0

)
is defined as

V
(
π(wt,Wτ,t);s0, d0

)
:= min

d∈UT
max
x,s

P
(
π(wt,Wτ,t),d,x;s0, d0

)
= min

d∈UT
max
x,s

[
− cS

(
T∑
t=1

st

)
− cH

T∑
t=1

(
s0 +

t∑
τ=1

(sτ −xτ )

)

−cP
T∑
t=1

(
d0 +

t∑
τ=1

(dτ −xτ )

)
+ r

(
T∑
t=1

xt

)]
,

where the inner maximization problem has a feasible set X (π,d, s0, d0).

We first claim that the following equation holds for any affine policy π(wt,Wτ,t) such that s0 ≤w1,

V
(
π(wt,W τ,t);s0, d0

)
= V

(
π(wt,Wτ,t); 0,0

)
+ cSs0 + (r− cS)d0, (24)

where π(wt,W τ,t) is defined as (11). For any demand realization d ∈ UT , let s̃t = s̃t(π,d) and

x̃t = x̃t(π,d) be an aggregated order quantity and the corresponding optimal processing activity

at time t with zero initial input and demand, i.e., it solves the inner maximization problem of
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V (π; 0,0) with d. Let s̃t = s̃t(π,d) be an order quantity by the policy π for V (π;s0, d0), and define

x̃t = x̃t(d) = x̃t(d) + d0. Then by (11), s̃t = s̃t− s0 + d0 for every t= 1, . . . , T , and thus

P
(
π(wt,Wτ,t),d,x; 0,0

)
+ cSs0 + (r− cS)d0

=
(
− cS s̃T − cH

T∑
t=1

(s̃t− x̃t)− cP
T∑
t=1

(d̃t− x̃t) + rx̃T

)
+ (r− cS)d0 + cSs0

=−cS(s̃T − s0 + d0)− cH
T∑
t=1

(s̃t + d0)− cP
T∑
t=1

(d0 + d̃t) + (cH + cP )
T∑
t=1

(x̃t + d0) + r(x̃T + d0)

=−cS s̃T − cH
T∑
t=1

(s0 + s̃t− x̃t)− cP
T∑
t=1

(d0 + d̃t− x̃t) + rx̃T

= P
(
π(wt,W τ,t),d,x;s0, d0

)
.

Since x is a feasible solution of the inner maximization problem in V (π;s0, d0), the LHS of (24) is

greater than or equal to the RHS. Similar argument can be made to show the contrary and this

concludes the proof of (24).

Now suppose π∗(w∗t ,W
∗
τ,t) is not optimal, and let ϕ∗(v∗t , V

∗
τ,t) be an optimal solution of Φ(s0, d0).

Now one can easily check that by (24),

Φ(s0, d0) = V (ϕ∗;s0, d0) = V (ϕ∗; 0,0) + cSs0 + (r− cS)d0

≤ V (π∗; 0,0) + cSs0 + (r− cS)d0 = V (π∗;s0, d0)<Φ(s0, d0),

which makes a contradiction. Finally, the proof of Eq. (24) directly shows that both Φ(0,0) and

Φ(s0, d0) shares a common worst-case scenario among UT . �

D. Proof of Proposition 4.

Let πPA = (π1, . . . , πN), where each πj solves the jth subproblem. Then the worst-case scenario

(d∗1, . . . ,d
∗
N) solves an optimization problem

min
d1,...,dN

max
x1,...,xN

[ N∑
j=1

Pj(πj,dj,xj;u
s
tj−1

, udtj−1
)

]
. (25)

Since πPA is a well-defined periodic-affine policy, (25) is rewritten as

min
d1,...,dN

max
x1,...,xN

[ N∑
j=1

Pj(πj,dj,xj;u
s
tj−1

, udtj−1
)

]

= min
d1,...,dN

max
x1,...,xN

[ N∑
j=1

P̃j(πj,dj,xj;u
s
tj−1

, udtj−1
)

]

= min
d1,...,dN

max
x1,...,xN

[ N∑
j=1

PPA
j (πj,dj,xj)

]
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=
N∑
j=1

[
min
dj∈Uj

max
xj

PPA
j (πj,dj,xj)

]

=
N∑
j=1

max
xj

PPA
j (πj,d

∗
j ,xj),

where P̃j and PPA
j are defined in (18) and (19). As a result, the overall objective function is separable

for each subproblem, and hence, the worst-case scenario consists of those of the subperiods. �

E. Proof of Theorem 1.

Since every affine policy is feasible to the DP problem (12), proving V ∗Aff ≤ V ∗DP directly follows.

Thus it suffices to show V ∗PA = V ∗DP, and let πPA = (π1, . . . , πN) be an output of the periodic-affine

algorithm. That is, πj is an affine-IBS policy associated with πj = πj(w
(j)
t ,W

(j)
τ,t ), where πj solves

(20) for each j = 1, . . . ,N . Define Vj(u
s, ud) as a worst-case optimal profit from the jth subperiod to

the last period, where us and ud are current on-hand input and backlogged demand. Our framework

justifies using the (robust) optimality equation and a (worst-case) value function approach in robust

dynamic programming scheme; we refer Iyengar (2005) to readers for technical details. We will

show for every j = 1, . . . ,N ,

(a) Vj(u
s, ud) is concave in (us, ud), and

(b) Vj(u
s, ud) = Vj(0,0) + cSu

s + (r− cS)ud for every 0≤ us ≤w(j)
1 , ud ≥ 0.

by mathematical induction.

Now consider j =N and suppose us ≤w(N)
1 . Then VN(us, ud) can be written as

VN(us, ud) := max
π∈Πaff(UN )

min
dN

max
xN ,sN

PN(π,dN ,xN ;us, ud)

s.t. (xN , sN)∈X (π,dN , u
s, ud),

where π = π(wt,Wτ,t) and the constraints in X (π,dN , u
s, ud) can be rearranged so that the

right hand sides are linear in (us, ud,wt,Wτ,t). Since PN is concave in (xN ,wt,Wτ,t, u
s, ud) and

X (π,dN , u
s, ud) defines a polyhedron for any π, us, and ud, the objective function within the

min operator is concave in (us, ud,wt,Wτ,t) by concavity preservation under maximization. Since

a pointwise infimum of concave functions are concave and applying concavity preservation under

maximization again to the outermost max operator, we finally have that VN(us, ud) is concave in

(us, ud). On the other hand, (b) follows directly from Proposition 3 for j =N .

Now suppose that both (a) and (b) hold for any 1< j ≤N , and let us ≤w(j−1)
1 and ud ≥ 0. Then

from the optimality equation, we have

Vj−1(us, ud) = max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
Pj−1

(
π,dj−1,xj−1;us, ud

)
+Vj(u

s
j , u

d
j )

]
. (26)
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Since Vj(u
s
j , u

d
j ) is concave in (usj , u

d
j ) and (usj , u

d
j ) can be expressed as affine functions of

(wt,Wτ,t, u
s, ud), applying the above argument shows that Vj−1(us, ud) is also concave in (us, ud).

In addition, we have

Vj−1(us, ud) = max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
Pj−1

(
π,dj−1,xj−1;us, ud

)
+Vj(u

s
j , u

d
j )

]
≤ max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
Pj−1

(
π,dj−1,xj−1;us, ud

)
+Vj(0,0) + cSu

s
j + (r− cS)udj

]
= max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
Pj−1

(
π,dj−1,xj−1;us, ud

)
+ cSu

s
j + (r− cS)udj

]
+Vj(0,0)

= max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
P̃j−1

(
π,dj−1,xj−1;us, ud

)
+ cSu

s + (r− cS)ud
]

+Vj(0,0)

= cSu
s + (r− cS)ud + max

π∈Πaff(Uj−1)
min
dj−1

max
xj−1

[
P̃j−1

(
π,dj−1,xj−1; 0,0

)]
+Vj(0,0)

≤ Vj−1(us, ud).

The first inequality comes from that both (a) and (b) hold for Vj, and the third equality is from

the definition of P̃j−1. Finally, the last inequality is a worst-case profit from jth subperiod with a

policy πPA, by Assumption 1. Since πPA is a feasible policy to the DP, the last inequality follows.

This shows that whenever us ≤w(j−1)
1 , then the value function Vj−1(us, ud) is achieved with a policy

(πj−1, . . . , πN). Finally we have

Vj−1(us, ud) = cSu
s + (r− cS)ud + max

π∈Πaff(Uj−1)
min
dj−1

max
xj−1

[
P̃j−1

(
π,dj−1,xj−1; 0,0

)]
+Vj(0,0)

= Vj−1(0,0) + cSu
s + (r− cS)ud,

and thus (b) holds for j − 1. By Assumption 1, πPA = (π1, . . . , πN) satisfies ustj ≤ w
(j+1)
1 for every

j = 1, . . . ,N − 1 and every realization of demands, and hence, πPA is Bellman-optimal to the DP

(12) and this concludes with V ∗PA = V ∗DP. �

F. Proof of Proposition 5.

It suffices to show that an optimal periodic-affine policy is indeed an affine policy. Using the

same notations in Theorem 1 and without loss of generality, we may assume that N = 2 and let

π∗PA = (π1, π2), where πj = (w
(j)
t ,W

(j)
τ,t ) for j = 1,2. By definition of periodic-affine policies, we only

need to check that if an order quantity at time t1 + 1 is affine in U = U1 × U2. Recall that π∗PA

determines order quantity at t1 + 1 as

w
(2)
1 −ust1 +udt1 =w

(2)
1 −max

( t1∑
t=1

(st− dt), 0

)
+ max

( t1∑
t=1

(dt− st), 0

)

=w
(2)
1 +

( t1∑
t=1

(dt− st)
)
.

It is affine in d1, since st is affine in d1, and this concludes the proof. �
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G. Proof of Theorem 2.

We use the value function Vj(u
s, ud) defined in Theorem 1. From concavity Vj(u

s, ud) and using

(b), we have

Vj(u
s, ud)≤ Vj(0,0) + cSu

s + (r− cS)ud

for every us ≥ 0 and ud ≥ 0. We will show that

Vj(u
s, ud)≤ cSus + (r− cS)ud +

N∑
k=j

f̃∗k ∀j = 1, . . . ,N (27)

by induction, and plugging j = 1 and us = ud = 0 into (27) concludes the proof.

From VN(0,0) = f̃∗N , we have that (27) holds for j =N . Now suppose 1< j ≤N . Then from the

optimality equation we have

Vj−1(us, ud) = max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
Pj−1

(
π,dj−1,xj−1;us, ud

)
+Vj(u

s
j , u

d
j )

]
≤ max
π∈Πaff(Uj−1)

min
dj−1

max
xj−1

[
Pj−1

(
π,dj−1,xj−1;us, ud

)
+ cSu

s
j + (r− cS)udj +

N∑
k=j

f̃∗k

]

≤ cSu
s + (r− cS)ud + max

π∈Πaff(Uj−1)
min
dj−1

max
xj−1

[
P̃j−1

(
π,dj−1,xj−1; 0,0

)]
+

N∑
k=j

f̃∗k

= cSu
s + (r− cS)ud +

N∑
k=j−1

f̃∗k ,

where the first inequality holds from the induction hypothesis and the third equality is from

definition of P̃j−1. One can show that the maximization problem in the third equality is concave

in us and ud, as similar in the proof of Theorem 1 and this concludes the proof. �

H. Proof of Theorem 3.

All the proofs of Theorem 1 and 2 can be extended into multi-station networks, by using a basis

matrix RB to replace cSu
s and (r− cS)ud terms in the proof with c>Sus and (R>Br−R>BR>S cS)>ud,

respectively. This expressions are still linear in us and ud, hence all the arguments in the proof are

valid. �

I. Proof of Theorem 4.

It suffices to show for single-station cases, since it is straightforward to extend the result to general

multi-station networks, as in Theorem 3. Note that the optimality equation for the infinite horizon

problem is written as

V∞(us, ud) = max
π∈Πaff(UT0 )

min
D[1:T0]

max
X[1:T0]

[
P
(
π,D[1:T0],X[1:T0];u

s, ud
)

+βT0V∞(us, udj )

]
, (28)

where us and ud denotes on-hand input and backorders after T0 periods (one stage).
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We impose mild conditions so that the optimality equation (28) defines a contraction mapping

and there exists V∞ which is the unique fixed point. (See Iyengar (2005) for details.) Hence the

value iteration algorithm is well-defined, and let Vn(us, ud) be a value function after n iterations.

Recalling that us and ud are expressed as linear functions of us and ud, one can show by applying

concavity preservation under maximization as similar in Theorem 1 that if Vn(us, ud) is concave,

then so Vn+1(us, ud) is. Since we can start with any bounded continuous function for the value

iteration algorithm, we conclude that V∞(us, ud) is concave in (us, ud).

In this setting, there exists a stationary optimal policy π∞ = (π,π, . . .) where π = π(us, ud) is

defined for each subperiod of length T0. By Proposition 3, we can see that V∞(us, ud) = V∞(0,0) +

cSu
s + (r− cS)ud for us ≤w1 and with concavity of V∞, we have

V∞(us, ud)≤ V∞(0,0) + cSu
s + (r− cS)ud

for every us ≥ 0 and ud ≥ 0.

Let V∞(π∞) be a worst-case objective value under policy π∞, and V ∗∞ be an optimal value of

the DP problem. Since π∞ is feasible to the DP by Assumption 1, we have V∞(π∞)≤ V ∗∞. On the

other hand,

V ∗∞ = max
π∈Πaff(UT0 )

min
D[1:T0]

max
X[1:T0]

[
P
(
π,D[1:T0],X[1:T0]; 0,0

)
+βT0V∞(us, ud)

]
≤ max

π∈Πaff(UT0 )
min
D[1:T0]

max
X[1:T0]

[
P
(
π,D[1:T0],X[1:T0];u

s, ud
)

+βT0
(
cSu

s + (r− cS)ud +V∞(0,0)
)]

= max
π∈Πaff(UT0 )

min
D[1:T0]

max
X[1:T0]

PPA
∞

(
π,D[1:T0],X[1:T0]

)
+βT0V∞(0,0)

= V∞(π∞),

by Assumption 1 (this step is similar to Theorem 1), and this implies that an optimal value to

the DP is achieved by π∞, where the stationary policy π is obtained by solving the optimization

problem (22). �
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