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A foundation for cue-triggered behavior

Daniele Pennesi∗

February 2020

Abstract
Exposure to environmental cues elicits sudden preference reversals in several choice contexts,
including consumption and intertemporal, social and risky choices. This paper introduces
a dual-self model of cue-triggered behavior that: (1) is based on a general mechanism that
makes it applicable to many choice contexts, (2) allows a sharp comparative analysis of the
responsiveness to cues, (3) can explain a wide range of behavioral anomalies, from a cue-
triggered present bias to high-frequency variations in social and risk preferences, and (4) can
inform the design of managerial interventions and advertising strategies employing environ-
mental cues. Testable restrictions combining choice and non-choice data fully characterize
the model.

1 Introduction

Environmental cues are apparently irrelevant aspects of the decision environment that generate
high frequency and often unpredictable variations in individual behavior. Cues have a central role
in explaining important dynamic consumption patterns, such as habit formation and addiction
(Laibson, 2001; Bernheim and Rangel, 2009). Environmental cues are also widely used by policy
makers to nudge citizens (Pollay et al., 1996) and, by managers to nudge workers and customers
(Ashforth and Mael, 1989; Krishna, 2012). The relevance of cues as determinants of individual
choices has spurred the development of formal models of cue-triggered behavior (Laibson, 2001;
Bernheim and Rangel, 2009). A limitation common to existing models is that they are devised
to describe cue-triggered consumption. In fact, exposure to cues generates preference reversals
in several contexts beyond consumption, including intertemporal choices (Kim and Zauberman,
2013), social choices (Andreoni et al., 2017; Bennett, 2009) and choices under risk (Guiso et al.,
2018).

The aim of the present work is to develop a unified model of behavior which can describe
cue-triggered preference reversals observed across choice domains. In so doing, we also provide
policy makers and managers with a flexible model which can inform the design of public policies,
marketing strategies and managerial interventions employing cues. We develop our model within
the dual-self paradigm, where a “hot" and a “cold" self, with potentially conflicting preferences,
interact to decide. Exposure to a cue arouses the hot self, thus giving it (more) decision weight
at the moment of choice. For instance, a picture of a starving child triggers the desire to make
a donation by arousing the (more) “altruistic self". In our preferred interpretation, the selves
∗ESOMAS Department, University of Torino, daniele.pennesi@unito.it
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represent distinct regions of the brain differentially activated by the cue.1 Although each self is
“rational", their interaction –mediated by the cue– generates “irrational" behaviors.

In the domain of intertemporal choice, our model is consistent with a cue-triggered present
bias (e.g. Laibson, 1997). It arises when the selves have different time preferences, even if neither
of the former is present-biased. In the domain of social choice, our model can explain high-
frequency variations in prosocial behavior that are otherwise difficult to rationalize by fluctuations
of individual preferences (e.g. Blanco et al., 2011). Our model can also explain behavior triggered
by apparently unrelated cues, such as impatience or risk seeking triggered by exposure to sexual
cues (see e.g. Van den Bergh et al., 2008; Kim and Zauberman, 2013; Knutson et al., 2008) and
risk aversion triggered by exposure to graphic images (Guiso et al., 2018). The model also sheds
light on the long-standing debate over the welfare effect of (non-informative) advertising. From
a welfare viewpoint, we offer two possibilities as for what utility may be deemed as prescriptive:
the utility of the cold self, or the combined total utility. In the former case, advertisement that
stirs the individual towards the hot state is always detrimental. In the latter case, it may not be
so.

The structure of the model makes it possible to introduce a comparative notion of responsive-
ness to cues: an individual B is more responsive to cues than an individual A if, when facing the
same cue, B always gives more weight to her hot self than A. We prove that such an intuitive
notion does not allow comparison of all individuals, but only those with “similar" hot and cold
preferences. We argue that the result helps to understand whether a heterogeneous behavioral
response to a cue is determined by differential responsiveness to the cue or by different tastes.

Differently from alternative approaches, we provide observable restrictions on cue-contingent
choices that uniquely identify the preferences of the selves and the response to the cue. Our
identification strategy relies on the observation that cues can often be ordered according to their
intensity. For instance, a visual cue can be larger or brighter than another. We then exploit
variations in the cue’s intensity to elicit the preferences of the selves and the effect of the cue on
their relative decision weight.

Lastly, we consider three extensions of the model. In the first, we relax the assumption that
cues are perfectly observable and we study a stochastic version of our cue-triggered model. We
show that the derived stochastic choice rule is a particular case of the Single-Crossing Random
Utility Model (SCRUM) of Apesteguia et al. (2017). The relationship with the SCRUM allows
us to make new predictions concerning the effect of managerial interventions and advertising
campaigns. In the second, we relax the assumption that the selves are “rational" and we provide
a behavioral characterization of a generalized cue-triggered model. In the third, we allow the
sensitivity to cues to be context-dependent. This enables us to model the role of unchosen options
in the presence of environmental cues.

1Such a neuroscientific interpretation is indirectly supported by some empirical evidence (e.g Berridge and
Aldridge, 2009). For specific choice domains, the results of McClure et al. (2004) and Kuhnen and Knutson (2005)
is consistent with the neuroscientific interpretation for intertemporal and risky choice, respectively. The works of
Bernheim and Rangel (2004) and Bechara (2005) contain an exhaustive neuroscientific foundation for cue-triggered
addiction.
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2 The model

2.1 Cues, selves and choice

In our approach cues are features of the choice environment, hence distinct and independent
from attributes of the objects of choice. For instance, a song is an acoustic cue when played as
background music in a store, while it is not a cue when deciding what music to listen to. In the
latter case, the song itself is an object of choice. Our model is based on two assumptions: (1)
environmental cues can be ordered according to their intensity, and (2) choices are cue-contingent.
Concerning assumption (1), environmental cues are sensory stimuli (acoustic, visual, olfactory,
haptic) and, as such, can have different intensities. For instance, acoustic cues can be ordered
by their loudness or frequency, visual cues by their size or brightness (see Bernheim and Rangel,
2009, for a similar assumption). We model different intensities of the cue with the set Θ = [0, 1]
endowed with its standard order ≤. For any given cue, we identify the cue with its intensity: if
θ ≤ θ′, the cue (associated with) θ′ is more intense than the cue (associated with) θ. We assume
that the order ≤ is objective and measurable on a physical scale, as are loudness or brightness.
Clearly, the meaning of ≤ depends on the application under consideration or, in the case of a
laboratory experiment, the experimental setting.

We interpret θ = 0 as the absence of the cue and θ = 1 as the cue’s maximal intensity. The
latter could be thought of as the upper limit of the human ability to discriminate between two
physical stimuli. A stimulus that is physically more intense than θ = 1 is equivalent to θ = 1,
because physiological constraints do not allow a human to distinguish between the two. Cues can
also be multidimensional; what matters for our model is the possibility of ordering cues according
to their intensity. For this reason, the use of Θ = [0, 1] is for expository purposes. Any (finite
or infinite) set Θ with |Θ| > 1 endowed with a weak order ≤ and such that there exist two
elements θ0, θ1 ∈ Θ with θ0 ≤ θ ≤ θ1 for all θ ∈ Θ would be equivalent. Concerning assumption
(2), indirect evidence supporting it comes from the high frequency of cue-triggered unplanned
purchases observed during shopping occasions (see, for example, Abratt and Goodey, 1990).

Assumptions (1) and (2) translate to the model by a family of functions {uθ}θ∈Θ representing
cue-contingent utilities over a convex set X (i.e. uθ : X → R). The inequality uθ(p) ≥ uθ(q)
means that p has a (weakly) higher utility than q when the cue’s intensity is θ. We can now
introduce our model:

Definition 1. A cue-triggered (CT) model for {uθ}θ∈Θ is a triple (u, v, φ) such that, for each
θ ∈ Θ:

uθ = (1− φ(θ))u+ φ(θ)v. (CT)

where u : X → R, v : X → R are affine2 and φ : Θ → [0, 1] is a weakly increasing function such
that φ(0) = 0 and φ(1) = 1.

Contingent on a cue’s intensity θ, the utility uθ is expressed as a combination of the functions
u and v with weights 1− φ(θ) and φ(θ). In our interpretation, the function u = u0 represents the

2Given two elements p, q ∈ X, we denote by αp+ (1−α)q their convex combination with weight α ∈ [0, 1]. We
say that a function f : X → R is affine if f(αp+ (1−α)q) = αf(p) + (1−α)f(q), for all p, q ∈ X and all α ∈ [0, 1].
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utility of the “cold" self: u(p) ≥ u(q) if and only if p is (weakly) better than q in the absence of
the cue. We interpret the function v = u1 as representing the utility of the “hot" self: v(p) ≥ v(q)
if and only if p is weakly better than q when the cue’s intensity is maximal. The function
φ : Θ → [0, 1] converts the cue’s intensity into decision weights. Exposure to the environmental
cue arouses the hot self giving it (more) decision weight at the moment of choice. Since φ(θ)
is increasing, the more intense the cue, the larger the weight assigned to the hot self. As noted
above, the use of Θ = [0, 1] is for expository purposes. If cues are multidimensional and can
be ordered according to their intensity, the function φ integrates all the dimensions into a single
decision weight.

A possible interpretation of the mechanism linking cues to choice is that the cue activates a
region of the brain that was inactive in the absence of the cue (see Berridge and Aldridge, 2009).
The more intense the cue, the more intense the activity of the region, and hence the easier it is to
override the cold self. Empirical evidence that may be consistent with the above interpretation is
ample in the neuroeconomics literature. For intertemporal choices, McClure et al. (2004) observe
the activation of different regions of the brain, the limbic system and the lateral prefrontal cortex,
when evaluating immediate vs delayed rewards, respectively. A similar pattern was found by
Kuhnen and Knutson (2005) for choices under risk. They observe the activation of the nucleus
accumbens preceding a risky choice, whereas the activation of the anterior insula precedes a
riskless choice. For addicted individuals, Bernheim and Rangel (2009) provides extensive support
for the assumption that cues activate different regions of the brain.

u

0 1

v

u(q)
v(p)

v(q)
u(p)

θ′θ

Figure 1: The cue-triggered model.

Figure 1 illustrates the model in the particular case of φ(θ) = θ and a choice between two
options, p and q. Since u(q) > u(p), the cold self prefers q to p. The hot self has the opposite
preference, v(p) > v(q). Suppose that p is a new energy drink and q is a traditional caffeinated
drink. For a weak (intensity of the) environmental cue θ, such as a small visual ad, the individual
will buy the traditional caffeinated drink (uθ(q) > uθ(p)). However, when facing a more intense cue
θ′, for instance a large visual ad associating the drink with a sports car or a celebrity endorsing
the product, the individual reverses her preference and decides to buy the new energy drink
(uθ′(p) > uθ′(q)).

It is clear from the previous example why the standard revealed preference analysis may fail
in the presence of cues. Without information on the cue’s intensity, revealed preferences say that
p and q are both selected and hence are indifferent for the decision maker, a correct prediction
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in the absence of cues; but a potentially wrong conclusion if cues matter for choice behavior.
We will devote Section 4 to showing how the use of enriched choice data can solve the previous
identification issue.

The CT model has the following properties. First, it functions independently of dynamic
aspects of consumption, such as habit formation or addiction, thus providing a unified treatment
of cue-triggered behavior observed across choice domains (as we show in Section 3). Second,
in the CT model, the mechanism converting cues into decision weights is independent of the
cues’ nature. Therefore, the CT model accounts for behavior elicited by cues that are apparently
unrelated to the object of choice. For example, impatience, risk-seeking or unplanned purchases
triggered by sexual stimuli.3 If we interpret the hot self as a region of the brain that values
immediate gratification, any cue that activates this region will trigger a desire to seek immediate
gratification. Hence for the CT model, the decision to enter a bakery after smelling freshly baked
cookies or to behave myopically after observing a sexually explicit image are driven by the same
mechanism. Third, the dual-self structure of the CT model makes it suitable4 to model customers’
reaction to advertising cues, be they visual, olfactory (see Spangenberg et al., 1996), acoustic (see
Milliman, 1982) or haptic. Moreover, the model can be used to asses the welfare effect of non-
informative advertising, as we discuss in more detail in Section 3.4. Lastly, the CT model is static,
but can be extended to describe dynamic consumption patterns, such as those studied in Laibson
(2001) and Bernheim and Rangel (2004). A simple dynamic extension consists in tying the current
response to the cue (the function φ) to past behavior. Consider the following particular case of the
CT model, where one of the selves acts as a dictator depending on the cue’s intensity. This model
is qualitatively similar to (a static version of) the cue-triggered addiction model of Bernheim and
Rangel (2009) that we discuss in the next section. We call such a special case the 0-1 model:

Definition 2. A 0-1 model for {uθ}θ∈Θ is a CT model with φ(θ) = 0 for all θ ≤ θ̂ and φ(θ) = 1
for all θ̂ ≤ θ, for some θ̂ ∈ Θ and exactly one strict inequality.

That is, for each θ ∈ Θ:

uθ =

u, θ ≤ θ̂

v, θ̂ ≤ θ
(0-1)

with exactly one strict inequality. In their theory of addiction, Bernheim and Rangel (2009)
assume that the individual operates in either a hot or a cold “mode". The likelihood of switching
mode is a function of past consumption, lifestyle and a random component. A dynamic extension
of the 0-1 model in which the threshold θ̂ is a function of past behavior would generate predictions
similar to the model of Bernheim and Rangel (2009).5 As for the CT, the 0-1 model is not limited
to describing addiction. For instance, consider the results of Card and Dahl (2011), who found a

3See Knutson et al. (2008) and Kim and Zauberman (2013) for evidence on risk and impatience, respectively
and Reichert (2002) for a review of sex in advertising.

4The use of dual-self models in advertising is advocated in Bagwell (2007, Sec. 10.2). He suggests the use of
dual-self models as a potential way to describe the mechanism regarding the relationship between advertising cues
and behavior. This aspect is often left unmodelled in the advertising literature.

5In Bernheim and Rangel (2009) the exposure to a cue is random and depends on past behavior, a lifestyle and
an exogenous component. In our model cues are contingent and cannot be controlled by the individual. However,
in Section 5.1 we discuss random cues.

5



positive relation between domestic violence and unexpected results of football matches. Suppose
that θ represents the emotional cue generated by winning or losing a football match. When the
emotional cue is more intense than the threshold θ̂, for example when the pre-match probability
of losing was low but the favorite team lost, the individual suddenly switches from a non-violent
to a violent self. The 0-1 model, for which we provide a behavioral characterization in Section 4,
can easily describe this behavior.

2.2 Comparative statics

In this section we exploit the structure of the CT model to perform a comparative static analysis
aimed at ranking two individuals according to their responsiveness to cues. This exercise is
fundamental in order to better understand the falsifiability of the model and to correctly target,
for example, marketing strategies. Intuitively, we consider an individual B to be more responsive
to cues than an individual A if, ceteris paribus, B always gives more decision weight to her hot
self than A. Namely, when φB(θ) ≥ φA(θ), where φB (resp. φA) is the function transforming the
cue to decision weight for individual B (resp. A). The following definition provides the behavioral
characterization of the previous intuitive notion:

Definition 3. Given two individuals A,B with cue-contingent preferences represented by two
CT models (uA, vA, φA) and (uB, vB, φB). Individual B is more responsive to cues (MRC) than
individual A if:

a. uA ≈ uB and vA ≈ vB

b. For all p, q ∈ X, uB(p) ≥ uB(q) and uBθ (p) ≥ uBθ (q) for some θ0 ≤ θ implies uAθ (p) ≥ uAθ (q).

The first condition implies that the individuals have the same hot and the same cold prefer-
ences. The second condition says that, whenever the cue-contingent preference of individual B is
aligned with the preference of her cold self, the same is true for individual A (since by a. the cold
preferences of A and B are equivalent). While the two conditions are expressed in terms of utili-
ties, it is straightforward to formulate them using revealed cue-contingent preferences (see Section
4). The next proposition characterizes the parametric restrictions entailed by the definition of
MRC:

Proposition 1. Given two individuals A,B with cue-contingent preferences represented by two
CT models (uA, vA, φA) and (uB, vB, φB). If B is MRC than A then φB(θ) ≥ φA(θ), for all θ ∈ Θ.
The converse implication is true if uA ≈ uB and vA ≈ vB.

Consider again the effect of a visual cue on the decision to purchase a new energy drink p or a
traditional caffeinated drink q and two individuals: one with φA(θ) = θ and one with φB(θ) =

√
θ.

Suppose that uA(p) = uB(p) = 0 and vA(p) = vB(p) = 1 and uA(q) = uB(q) = vA(q) = vB(q) =
0.5. Then, for θ = 0.3, uAθ (p) = 0.3 < 0.5 = uAθ (q) but uBθ (p) = 0.54 > 0.5 = uBθ (q). Therefore,
for the same intensity of the cue θ = 0.3, the individuals A and B have the opposite behavior
(B purchases the new energy drink while A sticks to the traditional one) even if their selves
have identical preferences (uA = uB and vA = vB). When both A and B have cue-contingent
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preferences represented by a 0-1 model, Proposition 1 implies that the individual B is MRC than
A if θ̂B ≤ θ̂A. Hence the threshold determining the switch to the hot self is lower for the more
responsive individual.

Proposition 1 proves that it is possible to order two individuals according to their responsive-
ness to the cue only if they have the same hot and cold preferences. Example 1 below illustrates
the possible consequences of allowing for a violation of assumption a. The result of Proposition
1 helps to correctly interpret the effect of certain advertising campaigns. Suppose that an ad-
vertising campaign introduces a visual cue in a store. After the campaign, scanner data show
that younger customers buy more of the advertised product than older ones. This evidence is not
sufficient to conclude that younger customers are more responsive to cues than older ones, as the
following example shows.

Example 1. Suppose that p is the advertised product (the new energy drink) and q its competitor
(the traditional caffeinated drink). Assume that there are two customers, one young and one old
for which: uY = uO ≡ u and φY = φO ≡ φ, so that both have the same cold preference and same
response to the cue. However their hot preferences diverge: vY (q) < vY (p) but vO(p) > vO(q).
Suppose now that u(p) < u(q). Hence before the introduction of the cue θ = 0 both the young
and the old buy the traditional drink q. After the introduction of the cue θ > 0, the new energy
drink p is preferred to q by the young if:

φ(θ) > kY

1 + kY

where kY ≡ u(q)−u(p)
vY (p)−vY (q) > 0. Differently, p will never be selected by the old customer (since

uOθ (q) > uOθ (p) for all θ). Therefore, the young may reverse her preferences because the difference
vY (p) − vY (q) is large enough and not because she is more responsive to the cue. In fact, the
young and the old customers respond identically to the cue, φY = φO. However, the cue-contingent
preferences of both satisfy point b. of Definition 3, with B = Y and A = O. Hence, making clear
why the assumption in point a. of Definition 3 is necessary.

It follows from Example 1 that a strategy targeting the older customer should raise her utility
of consuming p (in particular the value of p for the hot self of the older) rather than increasing
her exposure to advertising cues. The intuition in Example 1 is also relevant for public policies.
For example, Pollay et al. (1996) estimate that teenagers are three times “more responsive" to
cigarette advertisements than adults. According to Proposition 1, the conclusion is true only if
teenagers and adults share the same hot and cold preferences, a condition that may be false in
practice.

2.3 Related literature

The two main models of cue-triggered behavior are Laibson (2001) and Bernheim and Rangel
(2004). In the dynamic model of Laibson (2001), there is a (binary) random cue that occurs in
each period. Each cue is associated with a compensatory process that is activated in the period
only if the related cue occurs. Conditional upon the realization of the cue, the individual can
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take one of two actions. The instantaneous utility is concave and depends on each compensatory
process (the habit) and the action. In turn, the current action influences future utilities by
modifying the compensatory process. In particular, the repeated pairing of a cue and an action
creates complementarity. First, our model allows for non-binary choices. Second, we do not
require the presence of a compensatory process activated by the cue. The cue affects choices by
arousing the hot self regardless of past behavior. In this respect, the Laibson (2001) model does
not explain how the compensatory process starts. That is, what mechanism is at work the first
time a cue is present. Our model can be thought of as describing such a mechanism. In any case,
independence from habit makes our model applicable to contexts where habit is not well-defined
such as risky and social choices. Lastly, cues and consumption in the CT model are not necessarily
complementary goods, as is the case in the Laibson (2001) model, hence the CT model allows for
general substitution patterns between cues and consumption.

Bernheim and Rangel (2004) propose a model of cue-triggered addiction founded on three
premises: consumption of addictive substances is often a mistake, consumption of an addictive
substance sensitizes the individual to environmental cues related to consumption, and addicts
understand their condition and manage their exposure to cues. In their model, the individual
operates in either a hot or a cold mode. Choices made in the hot mode are “mistakes". In each
period, with a probability that depends on past consumption, lifestyle and a purely exogenous
component, the individual is exposed to a cue. If the cue occurs, the individual will pass to the hot
mode and will consume the substance. If the cue does not occur, the individual decides whether
to consume the addictive substance or not. Addiction increases the future probability of entering
the hot mode. In our main model, the cue is deterministic and independent of the individual’s
behavior. Moreover, we allow for a possibly smooth transition from the cold to the hot mode
(selves) as a function of the cue’s intensity. In addition, choices of the hot self are not necessarily
mistakes (consider a cue-triggered donation). We believe that our assumptions are appropriate to
model non-addictive behavior. In any case, as argued above, our 0-1 model is in the spirit of the
Bernheim-Rangel model. Both the Laibson (2001) and Bernheim and Rangel (2004) models are
informed by psychological and neuroscientific evidence. However, they do not provide axiomatic
foundations for their models, whereas we fully characterize our model by conditions on enriched
revealed preferences (Sec. 4).

Our cue-triggered model is also related to the “animal spirit" approach of Loewenstein and
O’Donoghue (2004). In their model, a deliberative self and an affective self determine choices.
The ability to override the affective self depends on the decision maker’s willpower. In our model,
it is the cue that determines the relative weight of the selves. Moreover, in the main model we
assume that the preferences of the selves are both rational (we relax this assumption in Section
5.2), while they allow for more general preferences. For example, when modeling choice under
risk, they allow the hot self to have a non-expected utility preference, while we assume expected
utility preferences. Therefore, our CT model is more parsimonious than theirs, but still accounts
for a variety of behavioral anomalies. The present work is also related to the large literature on
multiple selves models (e.g. Thaler and Shefrin, 1981; Laibson, 1997; Gul and Pesendorfer, 2001;
Fudenberg and Levine, 2006). Our approach is one of the first to exploit choice and non-choice
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data to behaviorally characterize the model.

3 Applications

In the following sections, we apply the CT model to rationalize the empirical evidence of cue-
triggered choice in three domains: intertemporal choice, social choice and choice under risk. Lastly,
we discuss how to use the CT model to assess the welfare effect of non-informative advertising.

3.1 Intertemporal choice

Dual-self models are commonly used for describing the struggle between short-term and long-term
goals. See, for example, Thaler and Shefrin (1981); Laibson (1997); Gul and Pesendorfer (2001);
Fudenberg and Levine (2006). In our dual-self model, an additional element mediates the tension
between the hot and the cold self at the moment of choice: the cue. In this section, we assume
that objects of choice are streams of consumption c = (c0, c1, . . . , cT ), for some T ≥ 2. Each ct

belongs to a convex space C, for example C = [0,M ], in which case we interpret ct ∈ [0,M ] as a
monetary amount. The utilities uθ are defined over the space X = CT+1. To focus our analysis
on the effect of cues on intertemporal preferences, we assume that the hot and cold selves have
different discount factors but the same evaluation of consumption:6 namely, u(c) = ∑T

t=0 δ
tU(ct)

and v(c) = ∑T
t=0 β

tU(ct). It follows that each uθ in the CT model becomes:

uθ(c) =
T∑
t=0

U(ct)((1− φ(θ))δt + φ(θ)βt) (1)

for some β, δ ∈ [0, 1]. The above expression corresponds to the double exponential discounted
utility (McClure et al., 2007). As is well-known, a convex combination of different discount factors
produces diminishing impatience, the hallmark of hyperbolic discounting. This happens because,
as the time-horizon grows, the discount factor Dθ(t) ≡ (1 − φ(θ))δt + φ(θ)βt converges to the
highest discount factor (δ or β). In addition to diminishing impatience, the model in Eq. (1)
is consistent with cue-triggered spikes in impatience. Formally, we consider the following cue-
contingent index of impatience (see Halevy, 2008): Iθ(t) ≡ Dθ(t)

Dθ(t+1) . We say that Dθ(t) displays
diminishing impatience if Iθ(t) > Iθ(t + 1) for all 0 ≤ t ≤ T − 1 and that Dθ(t) displays the
present bias if Iθ(0) > Iθ(t) for all 0 ≤ t ≤ T − 1. We obtain the following result:

Proposition 2.

a. If β 6= δ, Dθ(t) displays diminishing impatience for all θ ∈ Θ such that φ(θ) 6= {0, 1}.

b. If β < δ, and θ < θ′, Iθ(t) ≥ Iθ′(t) for all 0 ≤ t ≤ T − 1.
6Since each C is convex, X is also a convex set. For any two elements c, c′ ∈ X, their convex combination

with weight γ ∈ (0, 1), γc+ (1− γ)c′ ∈ X is defined component-wise γc+ (1− γ)c′ = (γc0 + (1− γ)c′0, γc1 + (1−
γ)c′1, . . . , γcT + (1− γ)c′T ). In the case of C = [0,M ], an affine utility over C must be linear, i.e. U(ct) = act + b
for some a, b ∈ R. In this case, we can interpret the streams c = (c0, c1, . . . , cT ) directly as streams of utils.
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Although both selves have stationary preferences, the realized discount function displays di-
minishing impatience. Moreover, impatience is cue-triggered: if the hot self is more impatient
than the cold self, the more intense the cue, the higher the impatience. Consider the extreme
case β = 0: the hot self is completely impatient as it cares only about immediate consumption.
In this case, uθ is equal to the following:

uθ(c) = U(c0) + (1− φ(θ))
T∑
t=1

δtU(ct) (2)

a quasi-hyperbolic discounting model with a cue-dependent present bias factor βθ = 1 − φ(θ) ∈
[0, 1]. We will refer to uθ in the equation (2) as a βθ-δ representation of {uθ}θ∈Θ. Given the
properties of φ, the more intense the cue θ ≤ θ′, the stronger the present bias factor βθ′ ≤ βθ,
establishing in this way a direct link between the cue’s intensity and the degree of present bias.
The βθ-δ model (and also the CT model of Eq. (1)) naturally describes cue-triggered myopic
behavior, such as cue-triggered drug consumption after a period of abstinence or detoxification
therapy (see, for example, Laibson, 2001). Moreover, under the interpretation of the selves as
different regions of the brain, the CT model in Eq. (1) accommodates the empirical evidence of
impatience triggered by sexual cues (e.g. Van den Bergh et al., 2008; Kim and Zauberman, 2013),
which is hard to explain with alternative models. Lastly, a simple application of Proposition 1
yields the following result on comparative impatience:

Lemma 1. Given two individuals A,B with cue-contingent preferences having a βAθ -δ and a βBθ -δ
representation respectively, if B is MRC than A then βBθ ≤ βAθ for all θ ∈ Θ.

The more responsive individual B displays a higher degree of present bias than A for all cue’s
intensities.

3.2 Social preferences

Environmental cues affect social preferences. In organizations, managers employ cues to trigger
cooperation. For instance, the use of identity-enforcing cues represents an efficient alternative to
monetary incentives or strict supervision (Ashforth and Mael, 1989; Akerlof and Kranton, 2005;
Goette et al., 2012). Environmental cues are also commonly used to foster charitable giving
(Bennett, 2009; Andreoni et al., 2017; Kessler and Milkman, 2018; Charness and Holder, 2019).
Models of social preferences (for example, Fehr and Schmidt, 1999; Charness and Rabin, 2002;
Cox and Sadiraj, 2007) struggle to capture high-frequency choice variations at the individual level,
because doing so would require high-frequency variations in social preferences parameters. The
latter, however, are found to be rather stable at the individual level (Blanco et al., 2011). By
explicitly modeling cues, the CT model can account for the observed within-subject variability,
while leaving social preference parameters unaltered.

We will consider a general model of cue-contingent social preferences that nests a version of
the quasi-maximin model of Charness and Rabin (2002) and a version of the egocentric altruism
model of Cox and Sadiraj (2007). In this section, elements of choice are allocations among
N individuals (the group or society) indexed by i = 1, . . . , N . An allocation is an element
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p = (p1, p2, . . . , pN) ∈ RN , where the i-th coordinate pi represents the resources allocated to
individual i. We consider the following cue-contingent utility for the i-th individual:

uiθ(p) = (1− φi(θ))ui(pi) + φi(θ)vi(p) (3)

We make the following assumptions: vi is differentiable in pj for all j = 1, . . . , N and ∂vi

∂pj
≥ 0 for

all j = 1, . . . , N ; ui is differentiable in pi and ∂ui

∂pi
> 0. The cold self is fully selfish, it cares only

about the private payoff pi. Differently, the hot self considers also the payoff of (all) others. A
variation in the cue’s intensity θ modifies the relative weight between the private and the other-
regarding component of the utility. When p ∈ RN

+ , ui(pi) = pi and vi(p) = p1 + p2 + . . .+ pN , the
cue-triggered utility uiθ is a version of the quasi-maximin model of Charness and Rabin (2002).
Differently, if vi(p) = ∑

j 6=i pj and ui(pi) = pi, the utility uiθ is similar to a version of the egocentric
altruism model of Cox and Sadiraj (2007) given by uiθ(p) = (1− φi(θ))pi + φi(θ)∑j 6=i pj.

When preferences are represented by the utility function in Eq. (3), it is intuitive to define
an individual more altruistic than another, if the former always gives more weight to the other-
regarding component of her utility than the latter. The following comparative definition formalizes
the intuition (a similar definition is introduced in Cox et al., 2008):

Definition 4. A utility function uiθ is more altruistic than uiθ′ if:

∂uiθ
/
∂pj

∂uiθ
/
∂pi
≥
∂uiθ′

/
∂pj

∂uiθ′

/
∂pi

for all j 6= i.

A preference represented by uiθ is more altruistic than uiθ′ , if the former is more willing to trade
off a private payoff in favor of that of others.

Proposition 3. For all θ ≤ θ′, uiθ′ is more altruistic than uiθ.

The previous proposition is consistent with the empirical evidence of Bennett (2009), Andreoni
et al. (2017), and Kessler and Milkman (2018) that shows how charitable giving is successfully
triggered by environmental cues, be they digital or physical. Our cue-triggered theory of altruism
also explains the so-called ’identifiable victim effect’ (Small et al., 2007). A cue triggering empathy
such as the image of a starving child can be more effective in promoting donations than providing
potential donors with accurate statistical information about the recipients.

To further illustrate the scope of our approach, the following example presents an application
of the cue-triggered egocentric altruism model to a public good contribution game.
Example 2. Consider N individuals with identical endowment e and deciding their contribution to
a public good. Each individual can contribute ci ∈ [0, e] to a public good with return 1/N < r < 1.
The monetary payoff of each individual is then: m(ci) = e − ci + r

∑N
j=1 cj. Suppose that each

individual has preferences represented by the following model: uiθ(p) = (1−φi(θ))pi+φi(θ)
∑
j 6=i pj.

Then, if φi(θ)
1−φi(θ) >

1−r
r(N−1) , the optimal contribution for individual i is e. If the condition is satisfied

for all individuals, then full contribution is the unique Nash equilibrium of the game. The simple
proof of the result is in the Appendix.
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Since the threshold 1−r
r(N−1) is independent of the cue’s intensity, the presence of environmental

cues increase the likelihood of (full) cooperation (by increasing the ratio φi(θ)
1−φi(θ)). This rationalizes

the use of identity-enforcing cues in place of monetary incentives as a means to trigger cooperation
within organizations. Lastly, by applying the comparative analysis developed in Section 2.2 to
the public good contribution game, we know that replacing a player i with a more responsive
player j, makes full contribution more likely to occur. Indeed, given the same level of the cue,
player j will give less weight to her selfish self compared to the replaced player i. Hence making
the necessary condition for optimality of full contribution φi(θ)

1−φi(θ) >
1−r

r(N−1) easier to fulfill.

3.3 Choice under risk

The third application of the CT model is to choice under risk. Indeed, experimental evidence
confirms that also attitude toward risk is affected by environmental cues. For instance, exposure
to graphic images, such a scene from a horror movie, triggers risk aversion (Guiso et al., 2018).
As with the case of social preferences, high-frequency variations in choice under risk are hard to
rationalize with changing risk attitudes, whereas they can be captured by explicitly modeling the
role of environmental cues. In this section X is the set of lotteries over a finite prize space Z,
denoted by ∆(Z). Affine utilities on X are expected utilities in the sense of von Neumann and
Morgernstern. Therefore, u(p) = ∑

z∈Z p(z)U(z), and v(p) = ∑
z∈Z p(z)V (z) for some U, V : Z →

R and the cue-contingent utility uθ becomes:

uθ(p) =
∑
z∈Z

p(z)[(1− φ(θ))U(z) + φ(θ)V (z)]

We do not make assumptions on the form of U and V . For instance, U may be linear or mildly
concave, while V may be loss-averse (i.e. with a kink at a reference point). Since we are interested
in analyzing how the cue affects the individual’s risk attitude, we consider the following (com-
parative) definition of risk aversion: given two cue-contingent utilities uθ, uθ′ , we say that uθ is
more risk averse than uθ′ if, for all p, δz ∈ ∆(Z) uθ(p) ≥ uθ(δz) implies uθ′(p) ≥ uθ′(δz), where δz
is a lottery paying z ∈ Z for sure. When U, V are twice differentiable, we can define the indexes
of absolute risk aversion for the two selves rU = −U ′′

U ′ and rV = −V ′′

V ′ and for the cue-contingent
utility uθ: rθ = − (1−φ(θ))U ′′+φ(θ)V ′′

(1−φ(θ))U ′+φ(θ)V ′ , for a given θ ∈ Θ. Intuitively, a more intense cue moves the
cue-contingent risk attitude toward the preferences of the hot self. The following result proves
that the intuition is correct:

Proposition 4. If u is more (less) risk averse than v, uθ′ is more (less) risk averse than uθ, for
all θ ≤ θ′. If U, V are twice differentiable and rU ≥ rV (resp. rU ≤ rV ), then rθ ≥ rθ′ (resp.
rθ ≤ rθ′) for all θ ≤ θ′.

An application of Proposition 4 explains the use of cues in reducing the so-called “perceived
risk", which inherently affects the adoption of new products (Bearden and Shimp, 1982; Herzen-
stein et al., 2007). Consider a decision to buy or not a newly released foldable smartphone: the
buyer may be uncertain about its durability. In this case, the seller can introduce a visual cue
associating the smartphone with a durable object as a way to trigger the decision to purchase the
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device (rather than offering an extended warranty, for example). For an alternative application,
our model of cue-triggered risk sensitivity can explain risk seeking triggered by apparently unre-
lated cues, such as sexual images or the weather conditions (Bassi et al., 2013). Neuroscientific
evidence (e.g. Kuhnen and Knutson, 2005) demonstrates that risk seeking and risk aversion ac-
tivate different regions of the brain, nucleus accumbens and anterior insula, respectively. In our
interpretation of the selves as regions of the brain, any cue arousing the nucleus accumbens – such
as a sexually explicit image (see Knutson et al., 2008)– triggers risk seeking.

Lastly, a straightforward application of the comparative analysis developed in Section 2.2
shows that an individual B is more responsive to cues than an individual A if A always displays
less (more) risk aversion than B when the common cold self is less (more) risk averse than the
common hot self.

3.4 The prescriptive analysis of advertising cues

There are two main approaches to the welfare assessment of non-informative advertising. In
the persuasive view of Braithwaite (1928) and Kaldor (1950), advertising cues are taste shifters.
Therefore, advertising is unambiguously welfare decreasing. In the complementary view of Becker
and Murphy (1993), advertising enters the utility function directly and it can be a bad as well as
a good. In any case, cues and consumption are complementary: the presence of an advertising
cue raises the marginal utility of consumption.

Our model is hybrid and the welfare assessment of advertising cues depends on which “self"
represents the prescriptive ranking for the individual. There are two equally plausible approaches:
one takes the cold self as a benchmark, the other takes the overall utility uθ as a benchmark. If
the prescriptive utility is that of the cold self u, advertising cues are (weakly) welfare decreasing.
By moving the decision weight away from the cold self, the final choices could be different from
the welfare maximizing choice. This approach is consistent with the view of Bernheim and Rangel
(2009) that regards choices made by the hot self as mistakes. If the prescriptive utility is uθ, which
corresponds to the instant utility of Kahneman et al. (1997), an advertising cue is a “good" when
u(p) < v(p) and a “bad" when v(p) < u(p) (where p is the advertised good). This conclusion is
shared with the complementary view of advertising (Becker and Murphy, 1993). Differently from
the latter approach, however, in the CT model cues and the advertised good p are not necessarily
complementary. Indeed, they are so when (assuming that partial derivatives exist): ∂uθ(p)

∂p∂θ
≥ 0,

namely when φ′(θ)(v′(p) − u′(p)) ≥ 0, corresponding to the case of the hot self having a higher
marginal utility from p than the cold self. Therefore, the CT model allows for a wide variety
of substitution patterns between cues and consumption. In conclusion, the CT model offers a
flexible tool to perform the prescriptive analysis of advertising that includes existing approaches
as special cases.
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4 Behavioral characterization of the cue-triggered model

In this section, we provide the testable restrictions characterizing the CT model. As argued in
Section 2.1, the standard revealed preferences analysis may fail in the presence of environmental
cues. To detect cue-triggered choices we adopt a rich set of primitives: a family {<θ}θ∈Θ of binary
relations on X representing revealed preferences contingent on the cue’s intensity. Choice data
in the form of p <θ q are observable in a controlled laboratory experiment with subjects deciding
while being exposed to different cues (e.g. visual advertisements of different sizes). Contingent
choice data can also be collected in the field, for instance, scanner data paired with information
concerning the cues at the moment of choice are in the form p <θ q.

Given our primitives, we can now state the behavioral conditions characterizing the CT model.
The first condition subsumes the requirements that are necessary and sufficient for the existence
of an affine representation of preferences on X. This condition is written directly in term of
utilities since the revealed preference conditions are standard.

Axiom ((Conditional Rationality).). {<θ}θ∈Θ satisfies Conditional Rationality if, for each θ ∈ Θ,
there exists a non-constant and affine uθ : X → R such that:

p <θ q ⇐⇒ uθ(p) ≥ uθ(q)

for all p, q ∈ X. Moreover, each uθ is cardinally unique, i.e. if vθ represents <θ, uθ ≈ vθ.

By Conditional Rationality, each preference <θ has an affine and cardinally unique represen-
tation. Equivalently, each conditional preference <θ satisfies Axioms 1-3 of Herstein and Milnor
(1953). However, Conditional Rationality does not restrict the representations uθ across the cue’s
intensities. This role is played by the next axiom, where p �θ q is a strict preference (p <θ q and
q 6<θ p):

Axiom ((No-cycles).). {<θ}θ∈Θ satisfies No-cycles if, for all p, q ∈ X, p <θ q for some θ ∈ Θ
and q �θ′ p, for some θ ≤ θ′ imply q �θ′′ p, for all θ′ ≤ θ′′.

The axiom is similar in spirit to the one-switch condition of Bell (1988) as it imposes a single-
crossing condition on cue-contingent choices. Suppose we observe a preference reversal between
p and q, following an increase of the cue’s intensity from θ to θ′. Axiom No-cycles rules out
the possibility of reversing choice (from q to p) for an even more intense cue θ′′. Therefore, the
preference between two options p, q ∈ X can switch at most once as the cue’s intensity increases.

The last condition is technical and imposes a minimal amount of heterogeneity in extreme
preferences:

Axiom ((Regularity).). {<θ}θ∈Θ is regular if there exist p, q, r ∈ X such that p �0 q �0 r and
p �1 r �1 q.

Regularity allows us to identify the function φ that transforms the cue into a decision weight.7

We say that {<θ}θ∈Θ has a CT representation (u, v, φ) if each <θ is represented by uθ and the
7Regularity guarantees the monotonicity and uniqueness of the function φ. For monotonicity, suppose that

<0 and <1 are identical. In this case, choices are cue-independent and any function φ would rationalize the
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family {uθ}θ∈Θ has a CT model (u, v, φ) introduced in Definition 1. The next result proves that
Regularity, No-cycles and Conditional Rationality completely characterize the CT representation:

Theorem 1. The family {<θ}θ∈Θ is regular and satisfies Conditional Rationality and No-cycles,
if and only if, it has a CT representation (u, v, φ), such that u 6≈ v and u 6≈ −v. Given u and v,
the function φ is unique and if (u′, v′, φ′) is another CT representation of {<θ}θ∈Θ, then u ≈ u′,
v ≈ v′ and φ(θ) = φ′(θ) when φ(θ) ∈ {0, 1}, and there is k > 0 such that φ(θ)

1−φ(θ) = k φ′(θ)
1−φ′(θ) , when

φ(θ) ∈ (0, 1).

The intuition behind the proof of Theorem 1 is the following: if we observe a preference switch
as the intensity of the cue varies, we are eliciting the preference of the hot self. No-cycles bounds
the number of switches to be one at most. Hence it establishes a monotone relationship between
the intensity of the cue and the decision weight assigned to the hot self. Note that the No-cycles
condition can be vacuously true: if there are no preference switches, namely for all θ, θ′ ∈ Θ and
all p, q ∈ X, p <θ q and p <θ′ q, then all uθ represent the same preference. In this case, the
CT model reduces to a cue-independent choice model, uθ ≈ u′θ for all θ, θ′ ∈ Θ. In the presence
of Regularity, however, there exists at least one preference switch. It is also worth noting that
No-cycles is falsifiable in an experimental setting involving only three levels of the cue’s intensity
Θ = {0, θ, 1} and two choice options p, q. If the experimenter observes two preferences switches,
for example p <0 q, q �θ p and p <1 q, No-cycles is violated and the model falsified.

We conclude this section by providing the behavioral characterization of the 0-1 model intro-
duced in Section 2.1. We assume the following stronger version of the No-cycle axiom:

Axiom ((Discontinuous Crossing).). There exists a θ̂ ∈ Θ such that, <θ=<θ′ for all θ, θ′ ≤ θ̂ and
<θ=<θ′ for all θ̂ ≤ θ, θ′, with exactly one strict inequality.

Discontinuous Crossing implies No-cycles: if p <θ q and q �θ′ p for some θ ≤ θ′, Discontinuous
Crossing implies that θ ≤ θ̂ ≤ θ′ with at least one strict inequality. Therefore, <θ′=<θ′ for all
θ′ ≤ θ′′ implying q �θ′′ p, i.e. No-cycles. The following result is immediate:

Corollary 1. The family {<θ}θ∈Θ satisfies Conditional Rationality and Discontinuous Crossing
if and only if it has a 0-1 representation.

Since all preferences indexed by θ ≤ θ̂ are identical, their respective rationalizations are
equivalent and can be normalized (if necessary) to be all equal. The same is true for all θ̂ ≤ θ.
The Discontinuous Crossing condition is rather unsatisfactory. It requires the existence of an
intensity θ̂ that determines the transition from the cold to the hot self. Finding such a θ through
revealed preferences is difficult, especially with finitely many choice data. However, there is a case
in which the threshold θ̂ can be identified by simply observing the preferences of the two selves.

Definition 5. A Completely Conflicting CT representation of a family {<θ}θ∈Θ is a 0-1 repre-
sentation with v = −u.
cue-contingent preferences. A similar consideration is valid if <0 and <1 are completely opposed (see Definition
CC), as we discuss after Prop. 5. For uniqueness, we show that Regularity and Conditional Rationality imply
(see Lemma 3) a condition known in the literature on preferences aggregation as Independent Prospects (see e.g.
Weymark, 1993), which guarantees the uniqueness of the weights assigned to the selves.
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The completely conflicting (CC) representation of {<θ}θ∈Θ can be rewritten as:

uθ =

u, θ ≤ θ̂

−u, θ̂ ≤ θ
(CC)

with exactly one strict inequality. The next axiom immediately characterizes the conflicting
preferences of the selves:

Axiom ((Conflict).). For all p, q ∈ X, p <0 q (resp. p �0 q) if and only if q <1 p (resp. q �1 p).

Proposition 5. The family {<θ}θ∈Θ satisfies Conditional Rationality, No-cycles and Conflict if
and only if it has a Completely Conflicting (CC) representation.

For example, a former heroin user may completely reverse her choice to abstain if she en-
counters a cue reminding her of past consumption of the substance. Differently from the 0-1
representation, the axioms characterizing the CC model do not impose the existence of θ̂. The
latter can be determined endogenously by observing revealed preferences of the selves.

As a final remark, the proof of Proposition 5 shows that the monotonicity of the function φ is
not granted without Regularity. Meaning that there are representations of {<θ}θ∈Θ that satisfy
Conditional Rationality and No-cycles but with a non-monotone function transforming the cue
into a decision weight. For an example, a CC representation with an arbitrary φ having the
following properties: φ(θ) < 1

2 for all θ ≤ θ̂ and φ(θ) > 1
2 for all θ̂ < θ.

5 Extensions

In this section we consider three extensions of the CT model. In the first, we study a random
version arising from noisy perception of the cue. In the second, we propose a general version of
the CT model that allows for more general preferences of the selves. In the third, we allow for
context-dependency in the response to the cue.

5.1 Random cues and stochastic choice

The rich primitives we used so far –revealed choices plus the intensity of the cue at the moment
of choice– can be collected in a controlled laboratory experiment. In different contexts, such as in
field studies, the available data are likely to be noisier than those collected through experiments.
Indeed, even if the cue’s intensity is known to the analyst, the individual may perceive it with
some noise. Under such an assumption, the observed choices become stochastic from the analyst’s
point of view. We prove that the extension of the CT model accounting for a noisy cue’s intensity
is related to the Single-Crossing Random Utility Model (SCRUM) of Apesteguia et al. (2017).
The link between the random CT model and the SCRUM turns out to be useful for estimating
the effects of interventions involving cues.

To model the random intensity of the cue, we consider a random variable with values in Θ and
c.d.f. F (k) = P (θ ≤ k) representing the distribution of the cue’s intensity. The Random Cue-
Triggered (RCT) choice rule is a family of functions P(·|A) : A×X → [0, 1] with ∑p∈A P(p|A) = 1

16



for all A ∈ X , where X is the family of finite and non-empty subsets of X (the menus). The
probability of selecting p from a menu A, denoted by P(p|A) is:

P(p|A) = P
(
θ ∈ Θ : (1− φ(θ))u(p) + φ(θ)v(p) ≥ max

q∈A
(1− φ(θ))u(q) + φ(θ)v(q)

)
(RCT)

More compactly, P(p|A) = P (θ ∈ Θ : uθ(p) ≥ uθ(q),∀q ∈ A). Since we allow for multiple
maximizing elements in a set, we consider the following tie-breaking rule: if, for some θ ∈ Θ,
| argmaxp∈A uθ(p)| = n ≥ 1 and P (θ) > 0, then P(p|A) = 1

n
P (θ). When menus are binary or

ternary, we write P(p|p, q) ≡ P(p| {p, q}) and P(p|p, q, r) ≡ P(p| {p, q, r}). For an illustrative
example, we assume that φ is strictly monotone and we consider the probability of selecting p
from a binary menu A = {p, q}, assuming that u(p) > u(q) and v(p) < v(q):

P(p|p, q) = P

(
θ ∈ Θ : θ ≥ φ−1

(
kp,q

1 + kp,q

))

where kp,q ≡ u(p)−u(q)
v(q)−v(p) > 0. The probability of choosing p over q is equal to the probability that the

realization of the cue’s intensity θ is larger than φ−1 (kp,q/(1 + kp,q)). The RCT model includes as
particular cases the following models that are known in the literature. The first is the Random
Quasi-hyperbolic Discounting (RQD) model (e.g. Duflo et al., 2011), which corresponds to the
random version of the βθ-δ model discussed in Section 3.1:

P(c|A) = P

(
θ ∈ Θ : U(c0) + βθ

T∑
t=1

δtU(ct) ≥ max
c′∈A

U(c′0) + βθ
T∑
t=1

δtU(c′t)
)

The second case is based on the random version of the cue-triggered mean-variance model intro-
duced in Section 3.3 and corresponds to the random Mean-Variance model of Roberts and Urban
(1988):

P(p|A) = P
(
θ ∈ Θ : p̄− ((1− φ(θ))γu + φ(θ)γv)σ2(p) ≥ max

q∈A
q̄ − ((1− φ(θ))γu + φ(θ)γv)σ2(q)

)

We consider the following two properties of the choice probabilities that are adapted from Apesteguia
et al. (2017) to the present setting:

Monotonicity. P(p|A) ≥ P(p|B) if A ⊆ B.

Centrality. If p �0 q �0 r and P(q|p, q, r) > 0, then P(p|p, q, r) = P(p|p, q) and P(r|p, q, r) =
P(r|q, r).

We have the following result:

Theorem 2. If {<θ}θ∈Θ is a family of strict linear orders,8 the RCT model satisfies Monotonicity
and Centrality.

Example 3 in the Appendix shows why the result requires <θ to be strict linear orders. In the
remaining part of this section, we will use monotonicity and centrality to evaluate the effects of

8A strict linear order is a binary relation � on X that is irreflexive (x 6� x), transitive (x � y and y � z implies
x � z) and complete (either x � y, or y � x or x = y).
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policy interventions in the presence of environmental cues. We call menu-interventions the actions
changing the choice set by removing or adding options. We call nudging the actions changing the
cues’ intensity but not the choice set (in the spirit of Thaler and Sunstein, 2009).

Consider a menu-intervention. By Centrality, the probability of selecting an option p from a
menu A depends on two elements of A, at most. The one immediately dominating p (if any) and
the one immediately dominated by p (if any) in the order generated by �0. Consider, for example,
a menu-intervention designed by a store manager to increase the sales of an energy drink. Suppose
that a shelf (a menu A = {p, q, r}) contains the energy drink p, a traditional caffeinated drink q
and instant coffee r. The intervention consists in removing the traditional caffeinated drink from
the shelf. Suppose that p �0 q: according to Centrality, the effect of removing q from A on the
probability of selecting the new energy drink depends on the position of r (instant coffee) in the
ranking generated by the cold self. If p �0 q �0 r, removing the “middle" option will increase,
by Monotonicity, the probability of buying the energy drink and will increase the probability
of buying instant coffee, hence obtaining a partially successful intervention. On the contrary, if
p �0 r �0 q, removing the traditional caffeinated drink has no effect on the probability of the new
energy drink p being selected and will increase the consumption of instant coffee, hence resulting
in a clear failure of the intervention. The above analysis follows from the next fact:

Fact 1. If P satisfies Centrality and P(q|A) > 0, then P(p|A) = P(p|A \ q), if and only if, there
exists r ∈ A such that p �0 r �0 q or q �0 r �0 p.

In general, removing an option p affects the probability of selecting an option q only if there
are no intermediate elements between p and q (in the order �0). This is because the transition
from the cold to the hot self in the RCT is smooth. Removing an extreme option has no-effect on
the probability of choosing options that are distant in the ranking generated by the cold self. The
opposite argument holds for adding options. Suppose that p �0 q are smartphones with p having
less storage than q. Suppose that the seller wants to foster buying q by adding a third type of
smartphone r that has more storage than q, hence exploiting a compromise effect: the tendency of
an option to be selected more often when it is a compromise between two alternatives (Simonson,
1989). In the RCT model, adding an extreme option may leave the probability of choosing the
middle option q unchanged (if p �0 r �0 q) and may reduce the probability of choosing q (by
Monotonicity), which is the opposite of the desired effect.

We now turn to nudging. These interventions leave the menu unchanged but decrease or
increase the exposure to cues, for instance by implementing an advertising campaign. Additional
examples of nudging interventions are banning advertising of junk food (Dubois et al., 2017) or
introducing graphic images on cigarette packages (McCool et al., 2012). Note that in the RCT
model the probability of selecting an option q in a menu A, when strictly positive, can be written
as (assuming for simplicity that φ is strictly monotone):

P(q|A) = P (θ ∈ Θ : θq ≤ θ ≤ θq)

where θq ≡ φ−1 (kp,q/ (1 + kp,q)) and p = max {r ∈ A : r �0 q} and θq ≡ φ−1 (kp′,q/ (1 + kp′,q))
and p′ = min {r ∈ A : q �0 r}. The probability of selecting q is equal to the probability that the
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realization of θ is larger than θq and smaller than θq, leading to the following inequality:

P(q|A) ≤ EP [θ]
θq

(4)

that follows from: EP [θ] =
∫ 1

0 θdP (θ) ≥
∫ θq
θq
θdP (θ) ≥ θq

∫ θq
θq
dP (θ) = θqP(q|A). The upper bound

in Eq. (4) is binding if EP [θ] < θq. Since θq is independent of the distribution of θ, the inequality
(4) offers an estimate for the effect of modifying the distribution of the cue’s intensity. Consider
a managerial intervention aimed at fostering cooperation among workers in an organization. For
example, by employing an identity-enforcing cue. After the intervention, the cue is uniformly
more intense than before, meaning that the distribution of the cue’s intensity first-order stochastic
dominates the pre-intervention distribution i.e. P (θ ≤ k) ≤ P ′(θ ≤ k). Suppose that u(p) > u(q)
and v(q) > v(p), then P(q|p, q) ≤ P′(q|p, q) ≤ EP ′ [θ]

θq
. Uniformly increasing the level of the

cue increases the probability of selecting the options that are optimal for the hot self v (e.g.
cooperation in the social dilemma). However, the effect can be bounded if the threshold θq is
large enough. Hence nudging can have a limited effect. A large θq means that the difference in
the utility of p and q for the hot self is small compared to the same difference for the cold self. In
this case, the preference switch from p to q happens for very intense cues and the effect of nudging
is limited.

We conclude the section noting that both menu and nudging interventions can be used to
affect choice probabilities. The RCT model provides clear predictions in both cases, hence it is
able to guide marketing strategists and managers in the choice of the most effective intervention.

5.2 General Cue-triggered model

In this section, we characterize a generalization of the CT model in which the selves are “less
rational". In the CT model, the assumption that the preferences of the selves are represented by
affine utilities may be unduly strong. For example, when choice is over lotteries (i.e. X = ∆(Z)),
such an assumption implies that the cue-contingent preferences are represented by expected util-
ities, à la von-Neumann and Morgernstern. To allow for a more general preference structure, we
consider the following weakening of the Conditional Rationality axiom:

Axiom ((Conditional Rationality*).). {<θ}θ∈Θ satisfies Conditional Rationality* if, for all θ ∈ Θ,
<θ is represented by a non-constant function wθ : X → R.

Differently from Conditional Rationality, no assumptions are made concerning the structure
of the utilities wθ. The axiom is equivalent to assuming that each <θ is a complete, non-trivial
and transitive preference and that there exists, for each θ, a countable order-dense subset of X.
Namely, there is a set Y ⊆ X that may depend on θ such that, for all p, q ∈ X with p �θ q, there
is a r ∈ Y with p <θ r <θ q. We have the following result, in which we denote by f(X) ⊆ R the
image of a function f : X → R:

Theorem 3. If the family {<θ}θ∈Θ satisfies Conditional Rationality* and No-cycles then there
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are ũ, ṽ : X → R such that, for each θ ∈ Θ:

wθ = F (ũ, ṽ, θ)

where F : ũ(X) × ṽ(X) × Θ → R is weakly monotone in the first two arguments. Moreover,
F (ũ, ṽ, 0) = ũ and F (ũ, ṽ, 1) = ṽ.

As for uniqueness, if F ′, ũ′, ṽ′ also represents {<θ}θ∈Θ, there is a monotone increasing function
G such that F ′(ũ′, ṽ′, θ) = G(F (ũ, ṽ, θ)). Hence we can only identify preferences up to ordinal
transformations.

Some remarks following Theorem 3 are in order. First, the CTmodel corresponds to F (r, s, θ) =
(1− φ(θ))r + φ(θ)s. Second, the No-cycles axiom (weakly) characterizes the dual-self model also
in the case of general preferences. Third, as in the CT model, the preferences of the selves are
identified at the boundary of the cue’s intensity spectrum. Lastly, cue-independent choices corre-
spond to the case of the selves having ordinally equivalent preferences, i.e. when there is a strictly
monotonic function g such that ũ = g(ṽ). Despite its generality, the model in Proposition 3 can
be still used to analyze the welfare analysis of advertising (as we did in Section 3.4) and to study
the complementary properties of cues and consumption (by studying the cross-derivatives of F
when they exist).

5.3 Context-dependent cue-triggered choice

In the last section, we discuss an extension of the CT model that allows for context-dependence of
the effect of cues on choices. This is needed to model the case of responses to environmental cues
that are affected by the availability of various options, or the lack thereof. For instance, a cue
triggering the desire to smoke may be weaker or stronger when the smoking option is unavailable
(e.g. a smoking cue while on board a plane). To model context-dependence, we consider the
menus introduced in Section 5.1. Namely, the finite and non-empty subsets of X. The following
menu-dependent cue-triggered model generalizes the CT model by allowing for a menu-dependent
function φ:

uA,θ(p) = (1− φA(θ))u(p) + φA(θ)v(p) (5)

with φA(0) = 0 and φA(1) = 1 for all A ∈ X . To gain intuition on the scope of model (5),
consider p, q, r with u(r) = u(q) and v(q) > v(r): the hot self prefers q to p while the cold
self is indifferent. Suppose that φ{p,q}(θ) ≤ φ{p,q,r}(θ), for all θ ∈ Θ: when the r is available,
the effect of environmental cues is uniformly stronger. The menu-dependent CT model allows
for the following behavior: u{p,q},θ(p) > u{p,q},θ(q) and u{p,q,r},θ(q) > u{p,r,q},θ(p). When r is not
available, the individual selects p over q, for a given cue’s intensity θ. However, when the r is
available and for the same cue’s intensity θ, she may reverse her preferences, choosing q over p.
The simple presence of the r induces a differential response to the same environmental cue and
generates a behavior akin to the asymmetric dominance effect (being r dominated by q for all
cue-contingent utilities). The context-dependent model (5) can be used to study the unexplored
interplay of context-dependency and environmental cues. It is worth noting that also in the
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context-dependent CT model (5), for a fixed menu, the No-cycles axiom is satisfied, suggesting
once again that No-cycles is the condition characterizing dual-self models of cue-triggered choices.

6 Conclusion

We proposed and characterized a dual-self model of cue-triggered behavior that accommodates
the large empirical evidence on the effect of cues across choice domains. The mechanism linking
cues to choice in the CT model is simple and informed by neuroscientific evidence. Beyond
its descriptive power, our model makes new predictions on the effect of common policies. It also
clarifies under what conditions empirical evidence allows us to ascertain when two individuals have
differential responsiveness to cues. When applied to advertising, our model goes in the direction
outlined by Bagwell (2007), who suggests the use of a dual-self approach to model individuals’
response to advertising cues.

In general, the present work represents a first step toward the development of a comprehensive
approach to cue-triggered behavior. By embedding our model in a dynamic setting, future research
may capture additional features of cue-triggered behavior such as cue management or learning.
For instance, cue management refers to the active choice of how much exposition to cue an
individual is willing to accept. Cue management is treated in the consumption-based models of
Laibson (2001) and Bernheim and Rangel (2009), but its revealed preference characterization is
still missing. By providing a first foundation for a model of cue-triggered behavior, we believe
that our approach represents a building block for future developments in the field.
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Proofs

The next proposition is from Fishburn (1984) and is used repeatedly in the proofs:

Proposition 6. Suppose X is a convex space and f1, f2, g : X → R are affine, then:

1. For all p, q ∈ X, f1(p) ≥ f1(q) and f2(p) ≥ f2(q) imply g(p) ≥ g(q) if and only if there exist
a, b ≥ 0 and c ∈ R such that g = af1 + bf2 + c

2. For all p, q ∈ X, f1(p) = f1(q) and f2(p) = f2(q) imply g(p) = g(q) if and only if there exist
a, b, c ∈ R such that g = af1 + bf2 + c

Proof. Proof of Proposition 1. By part 1, uA and uB represent the same preferences and the
same is true for vA and vB. By the cardinal uniqueness property of the CT model, we can
normalize, if necessary, the utilities to have uA = uB and vA = vB and we write u ≡ uA = uB and
v ≡ vA = vB. By part 2, for all p, q ∈ X, if u(p) ≥ u(q) and uBθ (p) ≥ uBθ (q) for some θ ∈ (0, 1]
then uAθ (p) ≥ uAθ (q). Then, by Prop. 6, there are â(θ), b̂(θ) ≥ 0 and ĉ(θ) ∈ R such that

uAθ (p) = â(θ)u(p) + b̂(θ)uBθ + ĉ(θ)

We can divide both sides by zθ ≡ â(θ) + b̂(θ) > 0 (since uθA is non-trivial) so 1
zθ
uAθ (p) = a(θ)u(p) +

(1− a(θ))uBθ + c(θ), where a(θ) = â(θ)
zθ

, c(θ) = ĉ(θ)
zθ

. By definition:

1
zθ

(
φA(θ)(v(p)− u(p)) + u(p)

)
= a(θ)u(p) + (1− a(θ))

(
φB(θ)(v(p)− u(p)) + u(p)

)
+ c(θ)

or equivalently

φA(θ)(v(p)− u(p)) =zθa(θ)u(p) + zθ(1− a(θ))
(
φB(θ)(v(p)− u(p)) + u(p)

)
− u(p) + zθc(θ) (6)

=zθ(1− a(θ))φB(θ)(v(p)− u(p)) + zθu(p)− u(p) + zθc(θ) (7)

for all p, q ∈ X. Then, by non-triviality there is a p ∈ X with v(p) 6= u(p) hence,

φA(θ) = zθ(1− a(θ))φB(θ) + zθφ
B(θ) + zθu(p)− u(p) + zθc(θ)

v(p)− u(p)

Since the above equality is true for all p, q ∈ X with u(p) 6= v(p) and the equality in Eq. (6) is
true for all p, q ∈ X, it must be that zθ = 1 and c(θ) = 0. So φA(θ) = (1− a(θ))φB(θ), implying
φB ≥ φA.

For the opposite implication: we can normalize, if necessary, the utilities to have uA = uB

and vA = vB and we write u ≡ uA = uB and v ≡ vA = vB. Suppose that u(p) ≥ u(q)
and (1 − φB(θ))(u(p) − u(q)) + φB(θ)(v(p) − v(q)) ≥ 0. There are two cases: v(p) − v(q) ≥ 0
and v(p) − v(q) < 0. In the first case, the conclusion uAθ (p) ≥ uAθ (q) is trivial. In the second
case, φB ≥ φA and u(p) ≥ u(q) imply (1 − φA(θ))(u(p) − u(q)) + φB(θ)(v(p) − v(q)) ≥ (1 −
φB(θ))(u(p) − u(q)) + φB(θ)(v(p) − v(q)) ≥ 0. Moreover v(p) − v(q) < 0 and φB ≥ φA imply
(1−φA(θ))(u(p)−u(q)) +φA(θ)(v(p)− v(q)) ≥ (1−φA(θ))(u(p)−u(q)) +φB(θ)(v(p)− v(q)) ≥ 0,
hence the conclusion uAθ (p) ≥ uAθ (q).
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Proof. Proof of Proposition 2. The first inequality is standard. To see the second inequality, Iθ(t)
can be written as Iθ(t) = αθδ

t + (1 − αθ)βt where αθ = 1−φ(θ)
(1−φ(θ))δt+1+φ(θ)βt+1 . As θ increases to θ′,

αθ decreases: if φ(θ) = 1 the result is trivial. Suppose that φ(θ) < 1:

αθ = 1− φ(θ)
(1− φ(θ))δt+1 + φ(θ)βt+1 = 1

δt+1 + φ(θ)
1−φ(θ)β

t+1
≤ 1
δt+1 + φ(θ′)

1−φ(θ′)β
t+1

= αθ′

Proof. Proof of Proposition 3. It follows from the fact that the expression
∂uiθ

/
∂pj

∂ui
θ

/
∂pi

= φi(θ)vij
(1−φi(θ))uii+φi(θ)v

i
i
,

where vik = ∂vi
∂pk

for k = i, j and uii = ∂ui
∂pi

, is increasing in θ. The proof of this result is similar to
that of Prop. 4.

Proof. Proof of the result in Example 2. Consider the CT model when (p1, . . . , pN) ∈ RN
+ and

uiθ(p) = (1 − φi(θ))pi + φi(θ)∑j 6=i pj. The utility of contributing ci for individual i is uiθ =
(1 − φi(θ))(e − ci + r

∑
j cj) + φi(θ)∑j 6=im(cj). By deriving uiθ with respect to ci, we obtain

∂uiθ
∂ci

= (1− φi(θ))(r − 1) + φi(θ)(r(N − 1)). The previous expression is strictly greater than zero
if φi(θ)

1−φi(θ) >
1−r

r(N−1) .

Proof. Proof of Proposition 4. Suppose, by contradiction that u is more risk averse than v

(hence u(p) ≥ u(δz) implies v(p) ≥ v(δz)) and there exist p, δz ∈ ∆(Z) such that uθ(p) ≥
uθ(δz) and uθ′(δz) > uθ′(p) for some θ < θ′. By No-cycles v(δz) > v(p) and also u(p) ≥ u(δz)
(otherwise u(δz) > u(p), uθ(p) ≥ uθ(δz) and uθ′(δz) > uθ′(p) for some θ < θ′ would contradict the
weak monotonicity of φ(θ)). Therefore, u is not more risk averse than v as assumed, which is a
contradiction to the initial assumption. The case of v more risk averse than u is similar. If U, V
are twice differentiable, the risk aversion index rθ can be rewritten as (omitting the argument):
rθ = αθrU + (1 − αθ)rV , a convex combination of the absolute risk aversion indexes of the first
self, rU and the second self, rV , with weight αθ = (1−φ(θ))U ′

(1−φ(θ))U ′+φ(θ)V ′ . The fact that αθ is decreasing
can be proved as before. If φ(θ) = 1 the result is trivial. Suppose that φ(θ) < 1, then:

αθ = U ′

U ′ + φ(θ)
1−φ(θ)V

′
≤ U ′

U ′ + φ(θ′)
1−φ(θ′)V

′
= αθ′

where the inequality follows from U ′, V ′ > 0.

Proof. Proof of Theorem 1. We prove necessity first. Conditional Rationality holds because, for
each θ ∈ Θ, uθ(p) = (1 − φ(θ))u(p) + φ(θ)v(p) is a non-constant affine utility rationalizing <θ.
Regularity follows from the fact that both u 6≈ v and u 6≈ −v. Indeed, since u 6≈ v, there are
p′, q′ ∈ X satisfying u(p′) = u(q′) and v(q′) > v(p′). Moreover, since u 6≈ −v, there are p′′, q′′ ∈ X
such that u(p′′) > u(q′′) and v(p′′) > v(q′′). Let define p = (1− ε)q′ + εp′′, r = (1− ε)q′ + εq′′ and
q = (1−ε)p′+ε

[
1
2p
′′ + 1

2q
′′
]
. Then, u(p) = (1−ε)u(q′)+εu(p′′) > (1−ε)u(p′)+ε

[
1
2u(p′′) + 1

2u(q′′)
]

=
u(q) > (1 − ε)u(q′) + εu(q′′) = u(r) and v(p) = (1 − ε)v(q′) + εv(p′′) > (1 − ε)v(q′) + εv(q′′) =
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v(r) > (1− ε)v(p′) + ε
[

1
2v(p′′) + 1

2v(q′′)
]

= v(q), where the last inequality holds for a sufficiently
small ε. Therefore, there are p, q, r ∈ X such that u(p) > u(q) > u(r) and v(p) > v(r) > v(q).

To see No-cycles, if p <θ q then, (1−φ(θ))u(p)+φ(θ)v(p) ≥ (1−φ(θ))u(q)+φ(θ)v(q), whereas
q �θ′ p for some θ ≤ θ′, implies (1 − φ(θ′))u(q) + φ(θ′)v(q) > (1 − φ(θ′))u(p) + φ(θ′)v(p). There
are various cases to check:

• 0 = φ(θ) = φ(θ′), but this implies at the same time u(p) ≥ u(q) and u(q) > u(p), a
contradiction. A similar reasoning holds for 1 = φ(θ) = φ(θ′).

• 0 = φ(θ) < φ(θ′) < 1. Then 0 ≤ u(p) − u(q) < φ(θ′)
1−φ(θ′)(v(q) − v(p)) and the fact that

φ(θ′) ∈ (0, 1), implies v(q) − v(p) > 0, then for all θ′ < θ′′, φ(θ′)
1−φ(θ′) ≤

φ(θ′′)
1−φ(θ′′) , hence 0 ≤

u(p)− u(q) < φ(θ′′)
1−φ(θ′′)(v(q)− v(p)) and uθ′′(q) > uθ′′(p) for all θ′ ≤ θ′′.

• 0 = φ(θ) < φ(θ′) = 1, then u(p) ≥ u(q) and v(q) > v(p). Since φ is weakly increasing,
φ(θ′′) = 1 for all θ′ ≤ θ′′, then v(q) > v(p) implies uθ′′(q) > uθ′′(p) for all θ′ ≤ θ′′.

• 0 < φ(θ) < φ(θ′) = 1, then φ(θ)
1−φ(θ)(u(q) − u(p)) ≤ v(p) − v(q) and v(q) > v(p) imply

φ(θ)
1−φ(θ (u(q) − u(p)) ≤ v(p) − v(q) < 0, then u(p) > u(q). Since φ is weakly increasing,
φ(θ′′) = 1 for all θ′ ≤ θ′′, then v(q) > v(p) implies uθ′′(q) > uθ′′(p) for all θ′ ≤ θ′′.

• 0 < φ(θ) < φ(θ′) < 1, then (1 − φ(θ))u(p) + φ(θ)v(p) ≥ (1 − φ(θ))u(q) + φ(θ)v(q) and
(1 − φ(θ′))u(q) + φ(θ′)v(q) > (1 − φ(θ′))u(p) + φ(θ′)v(p) imply that φ(θ)

1−φ(θ)(v(q) − v(p)) ≤
u(p) − u(q) < φ(θ′)

1−φ(θ′)(v(q) − v(p)). Since 0 < φ(θ) < φ(θ′) < 1, v(q) 6= v(p). Since, φ is
weakly increasing, φ(θ)

1−φ(θ) ≤
φ(θ′)

1−φ(θ′) implies v(q) > v(p) and u(p)−u(q) < φ(θ′′)
1−φ(θ′′)(v(q)−v(p))

for all θ′ ≤ θ′′, then uθ′′(q) > uθ′′(p), for all θ′ ≤ θ′′.

We now turn to sufficiency. By Conditional Rationality, for each θ ∈ Θ, <θ is represented by
a non-constant and affine utility uθ : X → R. We now show that for all p, q ∈ X, if u0(p) ≥ u0(q)
and u1(p) ≥ u1(q), then uθ(p) ≥ uθ(q) for all 0 ≤ θ ≤ 1. Suppose not, then there is θ ∈ Θ such
that u0(p) ≥ u0(q), u1(p) ≥ u1(q) and uθ(q) > uθ(p). This implies p <0 q, q �θ p and p <1 q, a
contradiction to the No-cycles condition. By Prop. 6 there exist scalars aθ, bθ ≥ 0 and cθ ∈ R,
such that uθ = aθu0 + bθu1 + cθ. Fix an arbitrary q̄ ∈ X and normalize uθ(q̄) = 0 for all θ ∈ Θ.
Then 0 = uθ(q̄) = aθu0(q̄) + bθu1(q̄) + cθ = c(θ), hence c(θ) = 0 for all θ ∈ Θ. We can also divide
both sides by aθ+bθ (by non-triviality aθ+bθ > 0 for all θ ∈ Θ) to have uθ ≈ (1−φ(θ))u0 +φ(θ)u1

with φ(θ) ≡ bθ
aθ+bθ

. Clearly φ(0) = 0 and φ(1) = 1. Let define u, v : X → R as u ≡ u0 and v ≡ u1.
We need to prove that φ : Θ → [0, 1] is weakly increasing in the order ≤. We will use the

following result:

Lemma 2. If {<θ}θ∈Θ satisfies Conditional Rationality and Regularity, there exist p, q, p′, q′ ∈ X
such that p �0 q and p ∼1 q and p′ �1 q

′ and p′ ∼0 q
′.

Proof. Proof of Lemma 2. By Regularity there are p, q, r ∈ X with p �0 q �0 r and p �1 r �1 q.
By Conditional Rationality, there is α0 ∈ (0, 1) such that u0(q) = α0u0(p) + (1 − α0)u0(r) =
u0(α0p+ (1− α0)r) (or q ∼0 α0p+ (1−α0)r). By Conditional Rationality, u1(α0p+ (1−α0)r) >
u1(q), hence α0p+(1−α0)r �1 q. For the remaining condition, by Conditional Rationality, there is
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α1 ∈ (0, 1) such that u1(r) = α1u1(p)+(1−α1)u1(q) = u1(α1p+(1−α1)r) (or r ∼1 α1p+(1−α1)q).
By Conditional Rationality, u0(α1p+ (1− α1)q) > u0(r), hence α1p+ (1− α1)q �0 r.

The condition in Lemma 2 is known in the literature on preferences aggregation as the Inde-
pendent Prospects condition (see e.g. Weymark, 1993).

Lemma 3. Suppose that {<θ}θ∈Θ satisfies Conditional Rationality and No-cycles, if it satisfies
Regularity, then for all θ ∈ Θ, there exist pθ, qθ ∈ X such that pθ ∼θ qθ and pθ <0 qθ, qθ <1 pθ

with at least one strict preference.

Proof. Proof of Lemma 3. We generalize an argument of Borgers and Choo (2017). By Conditional
Rationality and Regularity, Lemma 2 implies that there are p, q, p′, q′ such that p �0 q, p ∼1 q

and p′ �1 q
′ and p′ ∼0 q

′. For α ∈
[
0, 1

4

]
, let define

p(α) ≡
(1

2 − α
)
p+ αq +

(1
4 − α

)
p′ +

(1
4 + α

)
q′

q(α) ≡ αp+
(1

2 − α
)
q +

(1
4 + α

)
p′ +

(1
4 − α

)
q′

Then, for α = 0, u(p(0)) = 1
2u(p) + 1

4u(p′) + 1
4u(q′) and u(q(0)) = 1

2u(q) + 1
4u(p′) + 1

4u(q′).
Since u(p) > u(q), u(p(0)) > u(q(0)). Moreover, v(p(0)) = 1

2v(p) + 1
4v(p′) + 1

4v(q′) and v(q(0)) =
1
2v(q) + 1

4v(p′) + 1
4v(q′). Since v(p) = v(q), v(p(0)) = v(q(0)). By No-cycles, for all θ ∈ Θ \ {0, 1},

uθ(p(0)) ≥ uθ(q(0)) (otherwise we would have p(0) <0 q(0), q(0) �θ p(0) and p(0) <1 q(0),
a contradiction to No-cycles). For α = 1

4 , v(p
(

1
4

)
) = 1

4v(p) + 1
4v(q) + 1

2v(q′) and v(q
(

1
4

)
) =

1
4v(p) + 1

4v(q) + 1
2v(p′). Since v(q′) > v(p′), v(q

(
1
4

)
) > v(p

(
1
4

)
). Moreover, u(p

(
1
4

)
) = u(q

(
1
4

)
).

By No-cycles, for all θ ∈ Θ\{0, 1}, uθ(q
(

1
4

)
) ≥ uθ(p

(
1
4

)
) (otherwise we would have p

(
1
4

)
<0 q

(
1
4

)
,

p
(

1
4

)
�θ q

(
1
4

)
and q

(
1
4

)
<1 p

(
1
4

)
, a contradiction to No-cycles). By continuity, for all θ ∈ Θ,

there exists αθ ∈
[
0, 1

4

]
such that p(αθ) ∼θ q(αθ). Let define pθ = p(αθ) and qθ = q(αθ), then

pθ ∼θ qθ (by definition). Moreover, for all αθ ∈ (0, 1
4), pθ �0 qθ and qθ �1 pθ. If αθ = 0, then

u(pθ) > u(qθ) and v(qθ) = v(pθ). If αθ = 1
4 , v(qθ) > v(pθ) and u(pθ) = u(qθ).

To conclude the proof of Theorem 1, it remains to be shown that φ is weakly monotone. Take
p, q ∈ X with p <0 q and q <1 p (they exist by Regularity) with at least one strict preference
and define Dp,q(θ) = uθ(p) − uθ(q) = (1 − φ(θ))[u(p) − u(q)] + φ(θ)[v(p) − v(q)]. Suppose, by
contrapositive, the existence of θ′ < θ such that 1 − φ(θ) > 1 − φ(θ′) ≥ 0 (implying φ(θ) < 1).
Since p, q ∈ X with p <0 q and q <1 p with at least one strict preference,

Dp,q(θ) > Dp,q(θ′) (8)

To see inequality (8), consider the three cases, 1. u(p) = u(q), v(q) > v(p), 2. u(p) > u(q),
v(q) = v(p), 3. u(p) > u(q), v(q) > v(p).

If u(p) = u(q) and v(q) > v(p), Dp,q(θ) = φ(θ)(v(p)− v(q)) > φ(θ′)(v(p)− v(q)) = Dp,q(θ′).
If u(p) > u(q) and v(q) = v(p), Dp,q(θ) = (1− φ(θ))(u(p)− u(q)) > (1− φ(θ′))(u(p)− u(q)) =

Dp,q(θ′)
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If u(p) > u(q) and v(q) > v(p), Dp,q(θ) = (1 − φ(θ))(u(p) − u(q)) + φ(θ)(v(p) − v(q)) >
(1− phi(θ′))(u(p)− u(q)) + φ(θ′)(v(p)− v(q)) = Dp,q(θ′)

Now consider pθ, qθ defined in Lemma 3. We show that inequality (8) leads to a contradiction
in all the three cases αθ = 0, αθ = 1

4 and αθ ∈ (0, 1
4):

(αθ = 0). Then, pθ = p(αθ) = p(0) and qθ = q(αθ) = q(0). By definition, p(0) �0 q(0), p(0) ∼θ
q(0) and p(0) ∼1 q(0). Therefore Dpθ,qθ(θ) = (1− φ(θ))[u(p(0))− u(q(0))] + φ(θ)[v(p(0))−
v(q(0))] = 0. Since u(p(0)) − u(q(0)) > 0 and v(p(0)) − v(q(0)) = 0, 0 = Dpθ,qθ(θ) =
(1− φ(θ))[u(p(0))− u(q(0))] implies φ(θ) = 1, a contradiction to 1− φ(θ) > 1− φ(θ′) ≥ 0.

(αθ = 1
4). Then, pθ = p(αθ) = p

(
1
4

)
and qθ = q(αθ) = q

(
1
4

)
. By definition, p

(
1
4

)
∼0 q

(
1
4

)
,

p
(

1
4

)
∼θ q

(
1
4

)
and q

(
1
4

)
�1 p

(
1
4

)
. Therefore Dpθ,qθ(θ) = (1− φ(θ))[u(p

(
1
4

)
)− u(q

(
1
4

)
)] +

φ(θ)[v(p
(

1
4

)
)v(q

(
1
4

)
)] = 0. Since u(p

(
1
4

)
) − u(q

(
1
4

)
) = 0 and v(p

(
1
4

)
) − v(q

(
1
4

)
) < 0,

0 = Dpθ,qθ(θ) = φ(θ)[v(p
(

1
4

)
) − v(q

(
1
4

)
)] = 0, implies φ(θ) = 0. Since φ(θ′) > φ(θ),

Dpθ,qθ(θ′) = φ(θ′)[v(p
(

1
4

)
)− v(q

(
1
4

)
)] < 0, hence uθ′(q

(
1
4

)
) > uθ′(p

(
1
4

)
), a contradiction to

No-cycles, because we have p
(

1
4

)
∼0 q

(
1
4

)
, q
(

1
4

)
�θ′ p

(
1
4

)
and p

(
1
4

)
∼θ q

(
1
4

)
with θ′ < θ.

(αθ ∈ (0, 1
4)). Then we have uθ(pθ)− uθ(qθ) = 0, or

Dpθ,qθ(θ) = uθ(pθ)− uθ(qθ) = (1− φ(θ))[u(pθ)− u(qθ)] + φ(θ)[v(pθ)− v(qθ)] = 0

by inequality (8)
0 = Dpθ,qθ(θ) > Dpθ,qθ(θ′) = uθ′(pθ)− uθ′(qθ)

Then we have, pθ <0 qθ, qθ �θ′ pθ and pθ ∼θ qθ, for some θ′ < θ, a contradiction to No-cycles.

Therefore, φ(θ) ≥ φ(θ′). This concludes the proof of the main part of Theorem 1.
For the uniqueness part, given the utilities u, v : X → R, if φ(θ) ∈ {0, 1} then it must be

unique. Consider the cases θ ∈ Θ with φ(θ) ∈ (0, 1). Then, the following is true: for all p, q ∈ X,
u(p) ≥ u(q) and v(p) ≥ v(q) with at least one strict inequality, implies uθ(p) > uθ(q). This
condition plus Regularity implies that the φ(θ) are unique, by Fishburn (1984, Corollary 1). For
the second part, suppose that (u2, v2, φ2) is another representation, then u2 = αuu2 + βu and
v2 = αvv2 + βv for some αu, αv > 0 and βu, βv ∈ R. By Lemma 3, there are pθ, qθ ∈ X such that
u1(pθ) ≥ u1(qθ), v1(qθ) ≥ v1(pθ) with at least one strict inequality and (1−φ1(θ))[u1(pθ)−u1(qθ)] =
φ1(θ)[v1(qθ)−v1(pθ)] for θ ∈ Θ\{0, 1}. If either u1(pθ) = u1(qθ) or v1(qθ) = v1(pθ), then φ1(θ) = 1
or φ1(θ) = 0. Similarly, if u2(pθ) = u2(qθ) or v2(qθ) = v2(pθ) implies φ2(θ) = 1 or φ2(θ) = 0. If both
u1(pθ) > u1(qθ) and v1(qθ) > v1(pθ), then φ1(θ) ∈ (0, 1). In this case, (1−φ2(θ))[u2(pθ)−u2(qθ)] =
φ2(θ)[v2(qθ) − v2(pθ)] implies (1 − φ2(θ))αu[u1(pθ) − u1(qθ)] = φ2(θ)αv[v1(qθ) − v1(pθ)]. Then
φ2(θ)

1−φ2(θ)
αv
αu

= φ1(θ)
1−φ1(θ) . Since it must be true for all θ ∈ Θ \ {0, 1}, the result holds with k = αv

αu
.

Proof. Proof of Proposition 5. We first prove sufficiency: by Conditional Rationality, No-cycles
and an application of Proposition 6, for each θ ∈ Θ there is φ(θ) ∈ [0, 1] such that uθ ≈ (1 −
φ(θ))u + φ(θ)v. Since u = −v, we have uθ ≈ (1 − 2φ(θ))u, for all θ ∈ Θ. Since uθ is non-trivial,
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φ(θ) 6= 1
2 . Let θ̂ = inf {θ ∈ Θ : 1− 2φ(θ) < 0}. If φ(θ) > 1

2 , No-cycles implies that φ(θ′) > 1
2

for all θ ≤ θ′. Indeed, suppose that φ(θ) > 1
2 and for some θ ≤ θ′, φ(θ′) < 1

2 . Then, there
are, by non-triviality, p, q ∈ X for which u(p) > u(q), hence uθ(q) ≈ −u(q) > −u(p) ≈ uθ(p),
uθ′(p) ≈ u(p) > u(q) ≈ uθ′(q), a contradiction to No-cycles. The symmetric property follows
immediately: φ(θ) < 1

2 implies that φ(θ′) < 1
2 , for all θ′ ≤ θ. Therefore, there exists a unique θ̂

such that, for all θ̂ ≤ θ, uθ ≈ −u and for all θ < θ̂, uθ ≈ u.
For necessity, if {<θ}θ∈Θ has a CC representation, let φ(θ) = 0 if θ ≤ θ̂ and φ(θ) = 1 if θ̂ ≤ θ

with exactly one strict inequality that (exists and) depends on the representation. Conditional
rationality follows immediately. No-cycles follows from the monotonicity of the function φ defined
above.

Proof. Proof of Theorem 2. Monotonicity follows immediately. For Centrality, consider p �0 q �0

r with P(q|p, q, r) > 0. Let θq = minθ∈Θ {q �θ p, r}, which is well-defined since P(q|p, q, r) > 0 and
�θ is a strict order. Since p �0 q and q �θq p, No-cycles implies q �θ p for all θq < θ. Moreover,
the definition of θq and q �0 r imply q �θ r, for all θ < θq. Therefore, P(p|p, q) = P (θ ∈ Θ : θ <
θq) = P(p|p, q, r). A similar argument holds for P(r|p, q, r).

Example 3. Take Θ =
{

0, 1
2 , 1

}
and p �0 q �0 r with u(p) = 1, u(q) = 0.5 and u(r) = 0.

Assume v(p) = 0, v(q) = 0.5 and v(r) = 1, then if P (θ) = 1
3 for all θ ∈ Θ and φ(θ) = 1 − θ,

P(p|p, q) = 1
2 but P(p|p, q, r) = 4

9 , a violation of Centrality. To see this, by the tie-breaking rule
P(p|p, q) = P (θ ∈ Θ : uθ(p) ≥ uθ(q)) = P (0) + 0.5P (0.5) = 1

2 . But P(p|p, q, r) = P (0) + 1
3P (0.5).

Proof. Proof of Fact 1. Consider A = {p, q, r} with P(p|p, q, r) = P(p|p, r) and suppose w.l.o.g.
that p �0 q. Then if r �0 p �0 q, P(p|p, q, r) = 1− P(q|p, q, r)− P(r|p, q, r) > 1− P(r|p, q, r). By
Centrality, 1−P(r|p, q, r) = 1−P(r|p, r) = P(p|p, r), hence P(p|p, q, r) > P(p|p, r), a contradiction
to the initial hypothesis. If p �0 q �0 r, P(p|p, q, r) = 1 − P(q|p, q, r) − P(r|p, q, r) > 1 −
P(r|p, q, r) = P(q|p, q, r) + P(p|p, q, r). By Centrality, P(q|p, q, r) + P(p|p, q, r) = P(p|p, q) +
P(q|p, q, r) ≥ P(p|p, q), which is a contradiction to the initial hypothesis.

Proof. Proof of Theorem 3. The proof is a simple adaptation of the technique developed by Abbas
and Bell (2015, Th. 7). By Conditional Rationality*, for each θ there exists wθ : X → R such
that wθ(p) ≥ wθ(q) if and only if p <θ q. If for some p, q ∈ X, w0(p) = w0(q) and w1(p) = w1(q),
then wθ(p) = wθ(q) for all θ ∈ Θ. Suppose not, then there exists θ ∈ Θ such that wθ(p) > wθ(q)
or wθ(q) > wθ(p). In both cases, No-cycles is violated. Let define wθ(p) ≡ F (w0(p), w1(p), θ). The
representation is well-defined since, w0(p) = w0(q) and w1(p) = w1(q) imply wθ(p) = wθ(q) for all
θ ∈ Θ. If No-cycles holds, θ < θ′′ and wθ(p) ≥ wθ(q) and wθ′′(p) ≥ wθ′′(q) imply wθ′(p) ≥ wθ′(q)
for all θ < θ′ < θ′′. Suppose not, then there exists θ < θ′ < θ′′ such that wθ′(q) > wθ′(p), then
p <θ q, q �θ′ p and p <θ′′ q), a contradiction to No-cycles. Hence the representation is weakly
monotone in the first two arguments. By defining ũ ≡ w0 and ṽ ≡ w1 we have the result.
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