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This paper optimizes dynamic pricing and real-time resource allocation policies for a platform facing non-

transferable capacity, stochastic demand-capacity imbalances, and strategic customers with heterogenous

price- and time-sensitivities. We characterize the optimal mechanism, which specifies a dynamic menu of

prices and allocations. Service timing and pricing are used strategically to: (i) dynamically manage demand-

capacity imbalances, and (ii) provide discriminated service levels. The balance between these two objectives

depends on customer heterogeneity and customers’ time-sensitivities. The optimal policy may feature strate-

gic idleness (deliberately rejecting incoming requests for discrimination), late service prioritization (clearing

the queue of delayed customers) and deliberate late service rejection (focusing on incoming demand by

rationing capacity for delayed customers). Surprisingly, the price charged to time-sensitive customers is not

increasing with demand—high demand may trigger lower prices.

By dynamically adjusting a menu of prices and service levels, the optimal mechanism increases prof-

its significantly, as compared to dynamic pricing and static screening benchmarks. We also suggest a less

information-intensive mechanism that is history-independent but fine-tunes the menu with incoming demand;

this easier-to-implement mechanism yields close-to-optimal outcomes.

Key words : Dynamic Mechanism Design, Dynamic Pricing, Strategic Timing, Online Platforms.

1. Introduction

Consider an on-demand platform (e.g., Uber, Lyft, TaskRabbit), a delivery company (e.g., UPS,

FedEx, Rivigo, Amazon), and a cloud computing provider (e.g., Microsoft, Google, Amazon).

Clearly, they operate in very different environments; yet, they share common features. These plat-

forms leverage a limited supply base (service providers for the on-demand platform; vehicles and

staff for delivery; and servers for cloud computing) which does not accumulate over time—leaving

capacity idle does not increase capacity thereafter. They all face stochasticities leading to excess

demand in peak periods and excess capacity in off-peak periods. And they all deal with customers

who have heterogeneous price-sensitivity and time-sensitivity—some are willing to pay a premium

for expedited service while others are willing to wait more in exchange for a discount.

To manage these systems effectively, companies need to get access to real-time information and

to react dynamically. While these abilities used to be out of reach in traditional markets, they are

now common features in online markets—enabling online platforms to implement novel solutions
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to long-standing economic and operational problems. Motivated by these opportunities, this paper

formalizes a problem of dynamic pricing and real-time resource allocation for a platform facing

three core features: non-transferable capacity, stochastic demand-capacity imbalances, and strategic

customers with heterogeneous price- and time-sensitivities.

This environment gives rise to two objectives: demand-capacity management and discrimination.

To balance these objectives, the platform can use service timing and pricing as strategic devices.

For demand-capacity management, timing and pricing can be leveraged to delay customer requests

arising under high demand (potentially, at a price discount). And for discrimination, timing and

(personalized) pricing can be leveraged to delay service to customers with high willingness to wait,

and charge higher prices to customers with high willingness to pay.

To optimize timing and pricing, typical approaches make use of dynamic pricing and screening

mechanisms. Dynamic pricing is commonly employed to manage demand stochasticity and capacity

limitations—with significant revenue upsides for airlines, hotels, online advertisers, retailers, etc.

(Talluri and Van Ryzin 2006). At the same time, dynamic pricing policies often rely on posted

prices, which may lead to lost revenue opportunities and mismatches between service offers and

customers’ (private) preferences. Screening mechanisms, in contrast, elicit customers’ preferences

and tailor service offerings accordingly—for instance, by differentiating quality (Mussa and Rosen

1978) or by differentiating wait times (Afèche 2013). Such approaches often rely on static menus,

thus potentially failing to adjust service offers based on real-time information.

Instead, this paper proposes a dynamic screening menu—the most general mechanism in our

environment—combining principles of dynamic pricing and screening mechanisms. In our earlier

examples, this menu would translate into a set of options with different prices and service levels

(e.g., a menu of prices and wait times for the on-demand platform; of prices and lead times for

delivery; and of prices and completion times for cloud computing). Ultimately, this paper provides

guidelines to enhance the economic and operational performance of online markets, where com-

panies can implement such dynamic menus by personalizing service offers for different customer

segments and updating them based on real-time information.

We formalize this approach by designing a dynamic pricing and allocation mechanism in an envi-

ronment featuring non-transferable capacity, stochastic demand-capacity imbalances, and customer

heterogeneity. Non-transferrable capacity is captured by a perishable mass of suppliers arising in

each period. Demand-capacity imbalances are captured by stochastic realizations of over-capacity

and under-capacity demand. Customer heterogeneity is captured by a mix of time-sensitive cus-

tomers (with high willingness to pay and low willingness to wait) and price-sensitive customers

(with low willingness to pay and high willingness to wait). By specifying the timing of services, the
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mechanism leads to a partially-endogenous demand structure, creating inter-temporal dependen-

cies. In each period, the platform elicits customers’ (privately-observed) preferences, and optimizes

the price and the probabilistic allocation of capacity to (i) incoming time-sensitive customers,

(ii) incoming price-sensitive customers, and (iii) delayed price-sensitive customers. The problem

is formulated as an infinite-horizon dynamic program that maximizes the platform’s expected

profit, subject to incentive compatibility, individual rationality and capacity constraints. We find

that the platform prioritizes service to time-sensitive customers and extracts all the surplus from

price-sensitive customers. The critical trade-off then lies in dynamically allocating capacity to

price-sensitive customers and setting the price charged to time-sensitive customers.

We obtain the optimal policy, and show that it is history-dependent—highlighting the benefits of

the dynamic menu of prices and allocations. Specifically, the optimal mechanism varies over three

regions, depending on customer heterogeneity and the time preferences of price-sensitive customers:

– When heterogeneity is strong, the platform implements extreme discrimination by delaying

all price-sensitive customers to maximize the price charged to time-sensitive customers. The

policy features strategic idleness: customers can be delayed even when some suppliers are idle.

– When heterogeneity is weak and price-sensitive customers are mildly sensitive to wait times,

the optimal policy involves late service prioritization: the platform prioritizes delayed price-

sensitive customers over incoming ones. The policy may still feature strategic idleness if the

platform chooses not to serve all incoming requests after fulfilling late demand.

– When heterogeneity is weak and price-sensitive customers are more sensitive to wait times,

no capacity is left strategically idle. The platform may even forego late demand in order to

prioritize timely services, resulting in a deliberate late service rejection policy.

Surprisingly, in a dynamic mechanism, the optimal price is not increasing with incoming demand:

higher demand may trigger lower prices. Consider an instance where, under low demand, the

platform delays service to price-sensitive customers to: (i) charge a higher price to time-sensitive

customers, (ii) serve delayed customers, and (iii) create a demand backlog for the next period.

Under high demand, the same strategy would result in a larger demand backlog, which the platform

may not be able to fulfill in the next period—especially if demand is high again in the next

period. The platform may instead provide more timely services to price-sensitive customers under

high demand, and hence charge a lower price to time-sensitive customers in order to maintain

incentive compatibility. The main driving force is that, as demand increases, discrimination becomes

relatively less prominent and demand-capacity management becomes relatively more prominent.

Using a numerical analysis, we show that this result generalizes: the price is non-monotonic with

the non-expiring portion of the demand (i.e., the customers who will not renege if left unserved).
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As compared to first-best allocation, the optimal mechanism induces a trade-off between the

surplus generated and information rents. Under weak heterogeneity, the mechanism maximizes

social welfare but leaves information rent to time-sensitive customers; under strong heterogeneity, it

induces a surplus loss but the platform may capture all the surplus. Moreover, the proposed mech-

anism increases platform profits significantly vis-a-vis baseline pricing schemes based on dynamic

pricing and static screening menus. We also propose an intermediate mechanism that adjusts the

menu with incoming demand but not with history. It is less information-intensive but achieves

close-to-optimal outcomes—thus providing an easily implementable approximation of the optimal

mechanism. Yet, the optimal mechanism achieves further gains—up to 3–4% in additional profits.

Ultimately, this paper makes the following contributions to the literature and practice. First, it

studies a novel problem: designing a dynamic screening mechanism under non-transferable capac-

ity, stochastic demand-capacity imbalances and strategic customers with heterogeneous price- and

time-sensitivities. Second, it derives the most general mechanism in this environment, which trans-

lates into a dynamic menu of prices and allocations—and cannot be implemented by means of

posted prices or static menus. Third, the paper provides novel insights for managing online plat-

forms by balancing rent seeking and system efficiency. The optimal mechanism gives rise to endoge-

nous dynamics, alternating between queue-building and queue-clearing periods based on customer

heterogeneity and customers’ time preferences. These dynamics leads to the counterintuitive result

that, in a dynamic mechanism, optimal prices do not necessarily increase with incoming demand.

Finally, it demonstrates that the proposed mechanism achieves higher expected profits than base-

line approaches based on dynamic posted prices and static screening mechanisms; moreover, it

proposes a less information-intensive approximation of the optimal mechanism, which can be more

easily implementable in practice and achieves close-to-optimal outcomes.

2. Related Literature

This paper relates mostly to the dynamic pricing literature. Extensive work has considered myopic

customers (see Lazear (1986), Gallego and Van Ryzin (1994) for seminal work and Talluri and

Van Ryzin (2006), Özer and Phillips (2012) for reviews). We instead focus on strategic customers.

Dynamic pricing with strategic customers started with Coase (1972), who conjectured that, when

a monopolist does not have commitment power, the optimal price path converges to the marginal

cost of production. Gul et al. (1986) formalized this result. Conlisk et al. (1984) and Sobel (1991)

introduced dynamic customer arrivals into this problem, leading to cyclical price paths. Stokey

(1979) showed that, when the monopolist has commitment power, the price remains constant—

and positive—over time. Golrezaei et al. (2018) showed that the price path may decrease over

time when customers are heterogeneous in price- and time-sensitivities. Board (2008) integrated
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stochastic customer arrivals in this literature. Besbes and Lobel (2015) extended this literature by

introducing heterogeneous time preferences with stochastic customer arrivals. In this line of work,

and in contrast to our setting, the firm does not face capacity restrictions.

Next, revenue management involves dynamic pricing for a firm with limited capacity to sell

over a finite horizon. Su (2007) derived markup and markdown policies when customers with

heterogeneous price- and time-sensitivities strategically time their purchase. Aviv and Pazgal (2008)

showed that price commitments can benefit the firm. Liu and Van Ryzin (2008) showed that the

firm may strategically ration capacity to drive early purchases at a higher price. Other studies have

proposed dynamic screening mechanisms for revenue management. Vulcano et al. (2002) modeled a

new group of buyers arriving and leaving in each period, with inter-temporal dependencies driven

by the transfer of capacity over time—as opposed to the transfer of customer requests in our setting.

Pai and Vohra (2013), Gallien (2006) and Board and Skrzypacz (2016) identified conditions under

which the optimal mechanism can be implemented with an index rule or with posted prices.

As opposed to the revenue management literature, our setting features perishable capacity that

cannot be transferred over time. This connects our paper to the problem of dynamic resource

allocation. Extensive research has studied interventions such as load balancing, scheduling and

staffing in queuing systems (e.g., Keskinocak and Tayur (2004) in manufacturing, Harchol-Balter

(2013) in computer farms, Green (2006) in healthcare). We focus instead on pricing interventions.

Naor (1969) and Mendelson (1985) proposed static congestion pricing schemes to maximize

welfare, and Maglaras and Zeevi (2003) designed static prices to maximize revenue in a heavy-

traffic queuing system. Low (1974) proposed the first dynamic pricing scheme in a queuing system.

Maglaras (2006) jointly optimized dynamic pricing and sequencing policies in a multi-class queue.

Chen and Frank (2001), Besbes and Maglaras (2009) and Kim and Randhawa (2018) introduced

customers that are both price-sensitive and delay-sensitive, using exact analysis, an asymptotic

fluid approximation and a large-scale diffusion-based approximation, respectively. In these papers,

customers make strategic purchasing decisions immediately upon arrival but are not forward-

looking—leading to inter-temporal queuing effects but no inter-temporal effects on the demand

structure. In contrast, Ahn et al. (2007) optimized production and pricing decisions when demand

comprises incoming customers and already-delayed customers. Customers are modeled by a demand

function, as opposed to an explicit model of strategic behaviors. Borgs et al. (2014) optimized a price

path that guarantees service to each paying customer in a setting related to ours, featuring non-

transferrable capacity and customers with heterogenous willingness to pay and time preferences.

In practice, successful applications of pricing schemes for resource allocation include time-of-use

pricing in electricity markets (e.g., Borenstein et al. 2002), time-dependent pricing in data markets

(e.g., Ha et al. 2012), and pay-as-you-go solutions in cloud computing (e.g., Xu and Li 2013).
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Our paper differs from that branch of the literature in that the firm proposes a menu of options,

as opposed to a single posted price to all customers. Specifically, we design a screening mecha-

nism, under which the platform elicits customer preferences to provide differentiated prices and

service levels (Mussa and Rosen 1978, Rochet and Choné 1998, Deneckere and McAfee 1996).

Several studies have designed price/lead-time menus in related operational settings with demand-

capacity imbalances and strategic customers (Mendelson and Whang 1990, Lederer and Li 1997,

Van Mieghem 2000, Afèche and Mendelson 2004, Maglaras and Zeevi 2005). In particular, Afèche

(2013) proposed, in a setting with time-sensitive and price-sensitive customers, a menu with strate-

gic delay, which involves delaying service to some customers for discriminatory purposes (also a

feature of our menu). Afèche and Pavlin (2016) and Maglaras et al. (2017) extended this approach

to multiple customer delay costs and multi-server systems, respectively. These studies propose

a static, state-independent policy in a continuous-time queuing environment, whereas our paper

designs a dynamic, state-dependent menu in a discrete-time setting.

As such, our paper relates to dynamic mechanism design (see Bergemann and Said 2011). Several

papers have proposed dynamic menus prices and lead-time quotations (i.e., lead-time guarantees

made upon customer arrivals) for resource allocation in service and manufacturing systems. Çelik

and Maglaras (2008) proposed a menu with dynamic prices and lead times chosen within a set

of predetermined options. Customers are represented by means of a demand function, which does

not give rise to incentive compatibility issues—the menu is not a screening menu in that the

items are not tailored to separate customer segments. Plambeck (2004) designed a screening menu

with dynamic lead-time quotations but static prices. Akan et al. (2012) proposed a fully dynamic

screening menu in a welfare-maximization setting—which differs from our profit-maximization

problem. Ata and Olsen (2013) considered a single-server queuing model with two customer classes

that have heterogeneous delay costs (using a convex-concave function) but homogeneous valuations.

They proposed a dynamic screening menu and showed, using a heavy-traffic approximation, that

the menu is asymptotically optimal—although not necessarily optimal otherwise.

Ultimately, our paper contributes to the dynamic resource allocation literature (i) by considering

an environment featuring non-transferrable capacity, stochastic demand-capacity imbalances, and

strategic customers with heterogeneous price- and time-sensitivities, and (ii) by developing a fully

dynamic menu of prices and probabilistic allocations—the most general mechanism in this setting.

3. Model
3.1. Setting and Assumptions

A platform operates continuously over a discretized infinite time horizon, and matches capacity

with a demand of customers (“agents”). The components of our model are described below.
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Non-transferrable capacity: We consider a constant continuum of suppliers, normalized to

unit mass without loss of generality. Each service completion takes one period.

Stochastic demand-supply imbalances: In each period, a mass D of agents request a service.

Demand can be high (D=H) or low (D=L).1 We assume that 0<L< 1<H, so that the platform

faces an excess of supply under low demand and a shortage of supply under high demand. Demand

realizations are independent and identically distributed over time, with k= P(D=H).

Agent heterogeneity: The demand comprises: (i) time-sensitive agents (r-type for “rush”),

and (ii) price-sensitive agents (n-type for “non-rush”). An r-type agent derives a positive utility

(normalized to 1) only from timely services. An n-type agent has a lower willingness to pay but

higher willingness to wait, deriving a utility v0 < 1 from a timely service, v1 < v0 from a service with

a one-period delay, and zero from a service with a higher delay.2 This is summarized in Figure 1.

τ τ + 1 τ + 2 τ + 3

1 0 0 0

(a) r-type agents

τ τ + 1 τ + 2 τ + 3

v0 v1 0 0

(b) n-type agents

Figure 1 Time-dependent utility of r-type and n-type agents joining the platform in period τ .

Agent types are identically and independently distributed over time. We denote by σ the (time-

invariant) probability that an incoming agent is of r-type.3 The value of σ is commonly known but

each agent’s type is private information—leading to information asymmetries.

Assumption 1 states that serving all r-type agents is always feasible, even under high demand.4

Assumption 1. σH < 1.

Platform problem: The platform optimizes service prices and the allocation of capacity to

service agent requests. It maximizes expected discounted profits—with a discount rate of δ < 1.

We abstract away from supply-side incentives by assuming homogeneous suppliers with a con-

stant outside option, normalized to 0.5 The demand side thus comprises the only information

asymmetry, and the platform accrues all the revenue without leaving surplus to suppliers.

From the revelation principle, we focus without loss of generality on direct mechanisms in which

agents report their types upon entering the platform (Myerson 1981). The mechanism specifies,

for each type, an allocation rule—that is, a probability of service provision—and a per-service

1 We relax this restriction numerically in Section 7 by considering a general demand distribution.

2 We relax this restriction numerically in Section 7 by considering multi-period patience horizons.

3 We relax this restriction in a simplified setting in Section 7 by introducing stochasticity in the customer mix.

4 Otherwise, the solution would simply consist of serving r-type agents only and charging them a price of 1.

5 We relax this restriction in a simplified setting in Section 7 by introducing endogenous supply-side participation.
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payment rule.6 Specifically, the platform makes six decisions. For an agent reporting an r-type, the

mechanism specifies the price pr and probability qr of a timely service. For an agent reporting an

n-type, the mechanism specifies (i) the price qt and probability qt of a timely service, and (ii) the

price ql and probability ql of a late service conditionally on not getting a timely service. The pricing

and allocation rules are determined prior to the agents’ reports; after the reports, the platform

commits to the pricing and allocation rule specified at the beginning of the period. The mechanism

in each period is then defined in a sequentially rational manner.

3.2. Dynamic Programming Formulation

The platform’s profit-maximization problem is formulated as an infinite-horizon dynamic program.

The pricing and allocation policy is state-dependent but time-invariant, which is without loss of

generality since the system follows stationary dynamics. The state variable includes (i) incoming

demand D, and (ii) late demand (i.e., the number of n-type agents waiting for a late service,

denoted by Γ). We assume that (D,Γ) is publicly observed by the agents upon reporting their

types—as we shall see, this assumption is without loss of generality.

Let (D′,Γ′(D,Γ)) be the state in the next period. Incoming demand D′ is exogenous, equal to H

or L with probabilities k and 1−k. In contrast, Γ′(D,Γ) is history dependent, given by Γ′(D,Γ) =

(1− qt(D,Γ)) (1−σ)D: a mass (1−σ)D of n-type agents are incoming, a fraction qt(D,Γ) of them

receives a timely service, and the rest are transferred to the next period.

The expected payoffs of r-type and n-type agents are denoted by Ur(D,Γ) and Un(D,Γ), respec-

tively. For an r-type agent, the expected payoff depends solely on timely service provision:

Ur(D,Γ) = qr(D,Γ) (1− pr(D,Γ)) . (1)

The payoff of n-type agents includes the expected utility from a timely service, assigned with

probability qt(D,Γ) at price pt(D,Γ), and the expected utility from a late service, assigned with

probability (1− qt(D,Γ)) ql(D
′,Γ′(D,Γ)) at price pl(D

′,Γ′(D,Γ)). We obtain:

Un(D,Γ) = qt(D,Γ) (v0− pt(D,Γ)) + (1− qt(D,Γ))

(
kql(H,Γ

′(D,Γ)) (v1− pl(H,Γ′(D,Γ)))

+(1− k)ql(L,Γ
′(D,Γ)) (v1− pl(L,Γ′(D,Γ)))

)
. (2)

Let V (D,Γ) be the value function. We refer to the platform’s problem as (P). It is given by:

V (D,Γ) = max
qr,qt,ql
pr,pt,pl

prqrσD+ ptqt(1−σ)D+ plqlΓ + δ[kV (H,Γ′) + (1− k)V (L,Γ′)] (3)

s.t. Ur(D,Γ)≥ qt(D,Γ)[1− pt(D,Γ)], (ICr) (4)

Un(D,Γ)≥ qr(D,Γ)[v0− pr(D,Γ)], (ICn) (5)

6 We consider per-service payment rules because, in most applications, agents can opt out from the transaction after
placing a request. This opt-out option translates into an ex post individual rationality constraint, i.e., each agent must
receive a non-negative payoff after each realization of the stochastic allocation rule. But any mechanism satisfying ex
post individual rationality can be implemented with per-service prices that agents pay only if services are provided.
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pr ≤ 1, pt ≤ v0, pl ≤ v1, (6)

1≥ qrσD+ qt(1−σ)D+ qlΓ, (7)

Γ′ = (1− qt)(1−σ)D. (8)

Equation (3) maximizes the platform’s expected discounted profit. The term prqrσD is the expected

profit from timely services provided to r-type agents; similarly, ptqt(1 − σ)D and plqlΓ are the

expected profits derived from timely and late services provided to n-type agents. Equations (4)

and (5) list the incentive compatibility constraints for r-type and n-type agents (referred to as ICr
and ICn, respectively). If an r-type agent misreports his type, he derives a value of 1− pt(D,Γ)

with probability qt(D,Γ) (no value is derived from late services). If an n-type agent misreports his

type, he will not be provided a late service by the platform, so he receives a value v0 − pr(D,Γ)

with probability qr(D,Γ). The individual rationality constraints (Equation (6)) ensure that service

prices lie below agent valuations. The resource constraint (Equation (7)) limits the number of

services provided to the unit capacity. Equation (8) defines the system’s transitions.

Proposition 1. There exists a solution to problem (P).

3.3. Initial Results and Problem Transformation

We outline in Proposition 2 important properties of the optimal mechanism.

Proposition 2. The optimal solution to problem (P) satisfies, in each state (D,Γ):

(i) pt(D,Γ) = v0, and pl(D,Γ) = v1.

(ii) qr(D,Γ) = 1, and pr(D,Γ)≥ v0.

(iii) If Γ> 0, then ql(D,Γ) = min
{

1, 1−σD−qt(D,Γ)(1−σ)D

Γ

}
.

(iv) Constraint ICr is binding, and hence pr(D,Γ) = 1− qt(D,Γ)(1− v0).

The first result asserts that the platform extracts all the surplus from n-type agents, who are

always charged a price equal to their valuations (i.e., pt = v0 and pl = v1). Any smaller price would

induce a profit loss for the platform without altering agent incentives.

The second result states that the price pr is at least v0—any lower price would violate incentive

compatibility for n-type agents. Constraint ICn is thus automatically satisfied. Moreover, the

platform always serves r-type agents, since they generate the highest profits. In each period, the

platform thus provides timely services to σD r-type agents and to qt(D,Γ)(1−σ)D n-type agents.

The third result asserts that any remaining capacity is used to serve late demand. Keeping

capacity idle with extra demand for late services would induce a profit loss without affecting

incentives. Nonetheless, late requests may still be rejected due to insufficient capacity.
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The last part highlights the key trade-off faced by the platform between the quantity of timely

services and the price. From the incentive compatibility constraint ICr, as qt(D,Γ) increases, n-

type agents become more likely to receive a timely service, so misreporting becomes more attractive

for r-type agents. The platform thus needs to charge a lower price pr.
7

Proposition 2 yields five relationships between six decision variables. Hence, we reformulate the

platform’s problem with a single decision variable Γ′, defined as the number of n-type agents

transferred to the next period.8 Note that Γ′ is bounded above by (1−σ)D: no more n-type agents

can be transferred than the number of incoming n-type agents. Moreover, Γ′ is bounded below

by H − 1 under high demand (from Equations (7) and (8)), which reflects that all n-type agents

cannot receive a timely service under high demand. This is summarized as follows:

If D=H, then Γ′ ∈ [
¯
ΓH , Γ̄H ], where Γ̄H = (1−σ)H and

¯
ΓH =H − 1.

If D=L, then Γ′ ∈ [
¯
ΓL, Γ̄L], where Γ̄L = (1−σ)L, and

¯
ΓL = 0.

Let Γ∗(D,Γ)∈ [
¯
ΓD, Γ̄D] be the optimal policy function. We also denote by Γ = [

¯
ΓH , Γ̄H ]∪ [

¯
ΓL, Γ̄L].

In any state (D,Γ) and for an arbitrary choice of Γ′ ∈ [
¯
ΓD, Γ̄D], let Ṽ (D,Γ,Γ′) be the value function,

given that the optimal policy will be applied thereafter. From Proposition 2, we have:

Ṽ (D,Γ,Γ′) = σD
(

1− (1−σ)D−Γ′

(1−σ)D
(1− v0)

)
︸ ︷︷ ︸

r-type agents

+ ((1−σ)D−Γ′)v0︸ ︷︷ ︸
timely services, n-type agents

+min{Γ,1−D+ Γ′}v1︸ ︷︷ ︸
late services, n-type agents

+ δ (kV (H,Γ′) + (1− k)V (L,Γ′))︸ ︷︷ ︸
future value

. (9)

All constraints are embedded into Equation (9). Problem (P) is therefore equivalent to:

V (D,Γ) = max
Γ′∈[

¯
ΓD,Γ̄D ]

Ṽ (D,Γ,Γ′). (10)

Proposition 3 establishes important properties of the value function V .

Proposition 3. The value V (D,Γ) is a non-decreasing and concave function of Γ, and is dif-

ferentiable almost everywhere with respect to Γ.

3.4. Discussion: Platform Commitment, Information and Strategic Behaviors

Before eliciting the optimal policy, we discuss a few elements of our model to (i) clarify the issue of

commitment, (ii) show that the mechanism does not rely on the agents observing the state variable

(D,Γ), and (iii) show that our mechanism does not permit additional deviations from the agents.

7 Since pr is the only pricing decision, we refer to it simply as “price” in the remainder of this paper.

8 There is a one-to-one mapping between qt(D,Γ) and Γ′ per Equation (8).
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Platform Commitment and Sequential Rationality. Our mechanism assumes within-

period commitment—and no future commitment. It is therefore sequentially rational. Under this

formulation, the platform optimizes, in each period, the prices and allocations of the services pro-

vided in that period (that is, pr and qr for incoming r-type customers, pt and qt for incoming n-type

customers, and pl and ql for already-delayed n-type customers).

An alternative (but ultimately equivalent) mechanism would optimize the services provided to

the agents who arrive in that period (that is, pr and qr for incoming r-type customers, and pt, qt, pl

and ql for incoming n-type customers). That mechanism would require inter-period commitment.

But the two mechanisms are in fact equivalent—this alternative mechanism would thus also be

sequentially rational, despite requiring inter-period commitment. Indeed, in our mechanism, the

platform extracts all the surplus from late services (Proposition 2) so it has no incentive to promise

prices and allocations for late services that it will deviate from later on.

Information Our incentive compatibility and individual rationality constraints implicitly

assumed that the state (D,Γ) is publicly observable. This turns out to be without loss of generality.

Indeed, our mechanism specifies immediate services and an “uncertain component” governing

late services for n-type agents. Immediate services (pr, qr, pt and qt) will be directly available to

the customers, so the observability of the state does not play any role there. In theory, it could

impact customer beliefs about the “uncertain component” (i.e., the price and allocation in the

next period). However, the platform always leaves zero utility to n-type customers (Proposition 2).

Customers thus do not benefit from observing the state. Stated differently, if the state (D,Γ)

was privately observed, the platform would employ the same optimal mechanism—it would not

benefit from hiding/signaling information regarding the state of the system. Technically, the main

force driving this result is that all customers are effectively short lived: (i) r-type customers are

short-lived by definition; and (ii) n-type customers do not derive any surplus from late services.

Strategic Behaviors In principle, two additional deviations need to be prevented by the incen-

tive compatibility constraints. First, agents may strategically postpone their arrival time—similar

to the strategic timing of purchase considered by Borgs et al. (2014) and Besbes and Lobel (2015).

In our setting, this would not be a relevant option for r-type agents (who only derive a positive

utility from timely services). This would not be beneficial to n-type agents either as they would

get charged a price of at least v0 (Proposition 2) while their valuation v1 is strictly less than v0.

Second, an n-type agent may re-enter the platform—that is, arrive in period τ , exit upon not

receiving or rejecting a timely service, and re-enter in period τ + 1. This leaves three possible

outcomes: (i) receiving an “immediate” service in τ + 1 at price pr ≥ v0 or pt = v0 when he is only

Electronic copy available at: https://ssrn.com/abstract=3186931



Abhishek, Dogan, Jacquillat: Strategic Timing and Dynamic Pricing
12

willing to pay v1 < v0; (ii) receiving a “late” service in τ + 2 at price v1 when he is willing to pay

zero; or (iii) receiving no service. Either way, the deviation is not profitable.

Thus, the optimal mechanism, obtained without explicitly considering these deviations, satisfies

the stricter incentive compatibility constraints that would be obtained by considering them.

4. Characterizing the Optimal Policy

We define three regions based on customer heterogeneity and the time preferences of price-sensitive

agents. We derive a closed-form expression of the optimal policy in each region.

4.1. Policy Structure

Recall that three groups are present on the platform: (i) a mass σD of incoming r-type agents,

(ii) a mass (1− σ)D of incoming n-type agents, and (iii) a mass Γ of delayed n-type agents. All

r-type agents are always served (Proposition 2). The structure of the optimal policy depends on

how the remaining capacity mass of 1−σD is allocated across incoming and delayed n-type agents.

To facilitate the interpretation, we denote by ζ(D,Γ) the capacity left for late service provision:

ζ(D,Γ) = 1−D+ Γ∗(D,Γ). (11)

From Proposition 2, we know that the number of late services provided is equal to min{Γ, ζ(D,Γ)};
in other words, the platform can serve all late demand if and only if ζ(D,Γ)≥ Γ.

Moreover, let χ(D,Γ) be the minimal number of incoming n-type agents that need to be trans-

ferred to the next period to keep sufficient capacity to serve all late demand in the current period:

χ(D,Γ) = max
{

min
{

Γ̄D,Γ +D− 1
}
,
¯
ΓD
}
. (12)

At one extreme, if D+Γ≤ 1, the queue is short enough so all late demand will be served regardless

of the policy. Vice versa, if Γ≥ 1− σD, the queue is too long to serve all late demand regardless

of the policy. In-between, the platform’s ability to serve late demand depends on its policy.

We identify the following structures of the optimal policy:

(i) late service prioritization : Γ∗(D,Γ) ≥ χ(D,Γ). Upon serving r-type agents, the platform

serves late demand up to capacity. If capacity remains available (for low values of Γ), the platform

determines whether to also serve incoming n-type agents, yielding two possible outcomes:

– strategic idleness: Γ∗(D,Γ)>χ(D,Γ). The platform transfers strictly more n-type agents than

required to serve all late demand. We then have ζ(D,Γ)> Γ: the platform intentionally keeps

capacity idle for discriminatory purposes.

– no strategic idleness: Γ∗(D,Γ) = χ(D,Γ). The platform transfers exactly as many n-type

agents as necessary to serve all late demand. As long as effective demand exceeds capacity (i.e.,

D+ Γ≥ 1), the platform utilizes its entire capacity (i.e, ζ(D,Γ) = Γ). When D+ Γ< 1, some

capacity is left idle (i.e., ζ(D,Γ)> Γ), but this does not arise from discriminatory purposes.
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(ii) deliberate late service rejection : Γ∗(D,Γ)<χ(D,Γ). The platform rejects requests from some

or all delayed n-type agents, in order to provide more timely services to incoming n-type agents.

Figure 2 Policy structures based on the comparison between Γ∗(D,Γ) and χ(D,Γ), when σ < 0.5.

Figure 2 depicts χ(D,Γ) (dashed line) and these policy structures as a function of D and Γ,

when n-type agents comprise the majority of the demand (σ < 0.5).9 The optimal policy will be

represented as a function that associates Γ∗(D,Γ) (on the vertical axis) to each value of D and Γ. As

we shall see, the optimal policy never “crosses” the dashed line. In other words, the optimal policy

either (i) features late service prioritization (i.e., lies above or on the dashed line); or (ii) features

deliberate late service rejection (i.e., lies below or on the dashed line). Moreover, in case (i), if the

policy lies strictly above the dashed line for some values of Γ, then it exhibits strategic idleness.

4.2. Preliminary Steps

We denote by V ′(D,Γ) the partial derivative of V (D,Γ) with respect to Γ (which exists almost

everywhere from Proposition 3). From Equation (9), we obtain for each (D,Γ)∈ {H,L}×Γ:

∂Ṽ (D,Γ,Γ′)

∂Γ′
=
σ(1− v0)

1−σ︸ ︷︷ ︸
r-type

− v0︸︷︷︸
timely
n-type

+
∂min{Γ,1−D+ Γ′}v1

∂Γ′︸ ︷︷ ︸
late, n-type

+ δ (kV ′(H,Γ′) + (1− k)V ′(L,Γ′))︸ ︷︷ ︸
inter-temporal effects

. (13)

This equation highlights the core trade-off. Increasing Γ′ ∈ [
¯
ΓD, Γ̄D] has a negative effect: reducing

the number of timely services provided to n-type agents, inducing a profit loss at rate v0. But it also

has one positive effect: increasing the price charged to r-type agents due to service differentiation.

And it has two non-negative effects: providing more late services if 1−D+Γ′ < Γ (i.e., if some late

demand remains unserved), inducing a profit gain at rate v1; and increasing future late demand.

9 The problem’s structure depends on whether σ < 0.5 or σ ≥ 0.5. We identify the optimal policy in both cases but,
for expositional ease, we focus on σ < 0.5 throughout this paper. This does not result in any loss of insight.
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We now identify general properties of the optimal policy Γ∗(D,Γ). Lemma 1 shows that Γ∗(D,Γ)

weakly increases with incoming and late demand. Lemma 2 asserts that, if some capacity is left

idle, then the optimal policy does not depend on marginal deviations in late demand.

Lemma 1. The optimal policy function Γ∗(D,Γ) is weakly increasing in D and Γ.

Lemma 2. If the optimal policy is such that some capacity is left idle in (D,Γ0) ∈ {H,L}×Γ,

that is ζ(D,Γ0)> Γ0, then we have Γ∗(D,Γ) = Γ∗(D,Γ0) for all Γ≤ Γ0.

Given the model’s rich set of parameters, we impose two restrictions on the demand structure

to ensure analytical tractability (Assumption 2). First, demand is symmetric, i.e., excess demand

under high demand is equal to excess supply under low demand. Second, demand fluctuations are

large enough so the platform effectively faces the two objectives of managing demand-capacity

imbalances and of discrimination. Under this assumption, the minimum number of n-type agents

transferred to the next period under high demand (i.e.,
¯
ΓH =H−1) is too large to be served entirely

if realized demand is also high in the next period (σH +H − 1> 1). The inter-temporal effect is

thus zero when demand is high in consecutive periods, i.e., V ′(H,Γ) = 0 for each Γ∈ [
¯
ΓH , Γ̄H ].

Assumption 2. The parameters governing the structure of incoming demand satisfy:

i) There exists d∈ (0,1) such that H = 1 + d and L= 1− d.

ii) The following inequalities are satisfied: H − 1> 1−σH ⇔ d> 1−σ
1+σ

.

4.3. Optimal Policy

We define three regions in Figure 3 as a function of (i) inter-type heterogeneity, measured by the

dispersion in valuations for timely services (i.e., 1 vs. v0) and (ii) time preferences, measured by the

dispersion in the valuations of n-type agents for timely vs. late services (i.e., v0 vs. v1). Region 1 is

characterized by strong inter-type heterogeneity (v0 ≤ σ). Regions 2 and 3 are both characterized

by weak inter-type heterogeneity but Region 2 (σ < v0 ≤ σ + (1 − σ)v1) features comparatively

weaker time preferences than Region 3 (v0 >σ+ (1−σ)v1).

The optimal mechanism is shaped by the platform’s two objectives—discrimination and demand-

capacity management. As we shall see, discrimination becomes relatively less prominent and

demand-capacity management becomes relatively more prominent as we move from Region 1 to

Region 3 (i.e., as customer heterogeneity becomes weaker and as the time preferences of n-type

agents become stronger) and as incoming demand increases.

Region 1: Strong inter-type heterogeneity We have from Equation (13):

∂Ṽ (D,Γ,Γ′)

∂Γ′
≥ σ(1− v0)

1−σ
− v0 =

σ− v0

1−σ
≥ 0, ∀(D,Γ)∈ {H,L}×Γ, ∀Γ′ ∈ [

¯
ΓD, Γ̄D]. (14)
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Figure 3 Definition of Region 1, Region 2 and Region 3.

Any loss from transferring incoming n-type agents is offset by the price increase alone. The optimal

policy is thus to provide no timely service to incoming n-type agents and to charge a price pr = 1 to

r-type agents (thus leaving no information rent). Therefore, due to strong customer differentiation,

the platform focuses on discrimination only with no regard for demand-capacity management.

Proposition 4. In Region 1, the optimal policy is: Γ∗(D,Γ) = Γ̄D, ∀(D,Γ)∈ {H,L}×Γ.

Extreme discrimination results in idle capacity for low values of Γ, when Γ< ζ(D,Γ) = 1−σD.

When Γ ≥ ζ(D,Γ) = 1 − σD, all n-type agents are still transferred to the next period, but no

supplier is idle due to the high demand for late services.

Key Finding 1. In Region 1, the platform implements an extreme form of discrimination: no

timely service is provided to n-type agents. The optimal policy exhibits strategic idleness.

Region 2: Weak inter-type heterogeneity, weak time preferences The price increase

resulting from an increase in Γ′ no longer offsets, by itself, the loss in timely services provided to

n-type agents. Nonetheless, transferring n-type agents remains profitable as long as it enables the

platform to serve more late demand in the current period. Specifically, we have, from Equation (13):

∂Ṽ (D,Γ,Γ′)

∂Γ′
≥ σ(1− v0)

1−σ
− v0 + v1 =

σ− v0 + v1(1−σ)

1−σ
≥ 0, if 1−D+ Γ′ ≤ Γ. (15)

The platform thus transfers to n-type agents as long as 1−D+Γ′ ≤ Γ, so that Γ∗(D,Γ)≥ χ(D,Γ).

Lemma 3. In Region 2, the optimal policy satisfies Γ∗(D,Γ)≥ χ(D,Γ), ∀(D,Γ)∈ {H,L}×Γ.

The policy thus features late service prioritization: the platform first serves all r-type customers,

then fulfills late demand as much as possible. If capacity is insufficient (i.e., if Γ> 1− σD), some

late requests will be rejected. Otherwise, the platform clears the entiere queue and then determines

whether or not to provide timely services to incoming n-type agents. Unlike in Region 1, transfer-

ring more n-type agents than necessary to serve late demand induces a loss in the current period;
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nonetheless, it may remain optimal if the resulting demand backlog provides sufficient future bene-

fits. In this case, the optimal policy features strategic idleness, that is Γ∗(D,Γ)>χ(D,Γ). Formally,

this occurs when, for ε→ 0:

∂Ṽ (D,Γ,Γ′)

∂Γ′
=
σ(1− v0)

1−σ
− v0︸ ︷︷ ︸

<0

+ δ (kV ′(H,Γ′) + (1− k)V ′(L,Γ′)︸ ︷︷ ︸
≥0

≥ 0, for Γ′ = Γ∗(D,Γ)− ε. (16)

From these observations, we elicit the optimal policy in Proposition 9 (Appendix A). Unlike in

Region 1, the optimal policy is now state-dependent. In general terms, the optimal policy satisfies:

Γ∗(D,Γ) = max{Γ∗(D,0), χ(D,Γ)}, ∀(D,Γ)∈ {L,H}×Γ.

The optimal policy function Γ∗(D,Γ) thus stays constant at Γ∗(D,0) as long as it does not fall

below χ(D,Γ). If Γ∗(D,0)>χ(D,0), the policy features strategic idleness for low values of Γ. Once

Γ grows to a point where χ(D,Γ) = Γ∗(D,0), Γ∗(D,Γ) increases with slope 1 as long as feasible.

Key Finding 2. In Region 2, the optimal policy features late service prioritization. Some n-

type agents may receive timely services but the optimal policy may still feature strategic idleness.

Region 2 is divided into three sub-regions (Sub-regions 2a, 2b and 2c, sorted by increasing order

of v0). Figure 4 shows the optimal policy Γ∗(D,Γ) (rows 1 and 2), the allocation of capacity across

r-type agents, incoming n-type agents, and delayed n-type agents (rows 3 and 4, with colored areas

representing agents who receive a service), and the price pr(D,Γ) (row 5).

Note, first, that Γ∗(D,Γ) lies consistently above χ(D,Γ), underscoring late service prioritization

(Lemma 3). This property is also reflected in capacity allocation: if some late demand remains

unserved, all incoming requests from n-type agents get transferred. Moreover, the policy may

exhibit strategic idleness: for low values of D and Γ, some incoming n-type agents may be trans-

ferred while fewer services are provided than capacity. In Sub-region 2a (small v0), discrimination

is still a strong motive for the platform so the optimal mechanism involves strategic idleness; yet,

some incoming n-type agents are served under high demand and low Γ. In Sub-region 2b, dis-

crimination becomes less desirable and no capacity is left strategically idle under high demand. In

Sub-region 2c, the optimal policy features no strategic idleness regardless of the demand, i.e., the

platform exactly transfers the minimum number of n-type agents to serve late demand.

Region 3: Weak inter-type heterogeneity, strong time preferences Any revenue loss

from transferring an n-type agent cannot be offset in the current period, even if it generates more

late services (the first three terms of Equation (13) always sum up to a negative value). Therefore,

Γ∗(D,Γ)>
¯
ΓD only if late demand generate higher future benefits than the current-period loss.

The optimal policy, given in Proposition 10 (Appendix A), is again state-dependent. Transferring

n-type agents can only be beneficial if it generates more late services in the current period. In
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Figure 4 Optimal policy Γ∗(D,Γ), capacity allocation, and price pr(D,Γ) in Region 2, when σ < 0.5.

other words, the inter-temporal benefits are not strong enough to justify transferring n-type agents

on their own. Therefore, Γ∗(D,0) =
¯
ΓD. The optimal policy then increases along χ(D,Γ) until a

threshold, after which is remains constant:

There exists Γ̂D ∈
[
¯
ΓD, Γ̄D

]
such that Γ∗(D,Γ) = min

{
χ(D,Γ), Γ̂D

}
, ∀(D,Γ)∈ {L,H}×Γ.
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First, this equation shows that Γ∗(D,Γ)≤ χ(D,Γ) in all states (D,Γ); therefore, the optimal policy

exhibits no strategic idleness. As long as χ(D,Γ)≤ Γ̂D, all late demand is served. In contrast, when

χ(D,Γ)> Γ̂D, the optimal policy involves deliberate late service rejection.

Key Finding 3. In Region 3, the optimal policy may exhibit deliberate late service rejection.

Figure 5 Optimal policy Γ∗(D,Γ), capacity allocation, and price pr(D,Γ) in Region 3, when σ < 0.5.
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Region 3 is also divided into three sub-regions (Sub-regions 3a, 3b and 3c, sorted by increasing

order of v0). The optimal policy is shown in Figure 5. Note that the optimal policy may exhibit

deliberate late service rejection: in some cases, the platform serves some incoming n-type agents

while leaving part of the late demand unserved. Also, the mechanism never results in strategic

idleness: the number of services provided is either equal to the effective demand (D + Γ) or to

capacity. In Sub-region 3a, the platform serves all late demand as long as χ(D,Γ)≤ 1− σL (i.e.,

as long as transferring n-type agents increases the number of late services if demand is low in the

next period). Under high demand, when χ(D,Γ)> 1− σL, transferring additional n-type agents

does not increase the future value; as a result, the policy features deliberate late service rejection.

In Sub-region 3b, the platform only provides timely services under high demand, foregoing all

late demand; under low demand, it keeps transferring n-type agents under the expectation that it

will (at least partially) serve them in the subsequent period. In Sub-region 3c, the platform fully

prioritizes timely services regardless of the incoming demand.

4.4. Non-Monotonicity of the Prices

In Region 1, the platform extracts the entire surplus (pr = 1). But, in Regions 2 and 3, the platform

leaves some information rent to r-type agents by trading off price vs. quantity of timely services.

Note, first, that the optimal price pr (weakly) increases with late demand. Indeed, higher values

of Γ result in more n-type agents transferred to the next period (Lemma 1), hence in higher prices.

One could expect a similar monotonic relationship with respect to the incoming demand D.

However, this is not the case: the price pr can be strictly higher under low demand than under

high demand in Sub-regions 2a, 2b (Figure 4) and in Sub-regions 3a, 3b (Figure 5).

Key Finding 4. The optimal price does not increase monotonically with incoming demand.

To see the intuition behind this result, consider an instance where the platform transfers a large

proportion of n-type agents to the next period under low demand. This is motivated by three

factors: (i) charging a higher price to r-type agents, (ii) reserving capacity to serve late demand,

and (iii) creating a demand backlog in the next period. Under high demand, transferring the same

proportion of n-type agents would result in a larger backlog, which the platform may not be able to

take full advantage of—especially if demand is also high in the next period. Instead, the platform

may serve a larger proportion of incoming n-type agents under high demand, resulting in a higher

price charged to r-type agents to maintain incentive compatibility. The main driving force behind

these dynamics is that, among the two objectives of the platform, discrimination becomes relatively

less prominent and demand-capacity management becomes relatively more prominent as incoming

demand increases—so that the price may be higher under low demand than under high demand.
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This phenomenon occurs for low values of Γ in Region 2 and for high values of Γ in Region 3. In

Regions 2a and 2b, the platform adopts extreme discrimination under low demand—by transferring

all incoming n-type agents (Figure 4). Under high demand, the demand-capacity management

objective becomes stronger and the platform serves more incoming n-type agents (as long as late

demand is small enough), resulting in a lower price charged to r-type agents. In Regions 3a and 3b,

the demand-capacity management objective is stronger altogether. Under high demand, it is so

strong that the platform may adopt deliberate late service rejection—especially when the late

demand is large. Under low demand, the platform still prioritize late requests over timely requests

from n-type agents in order to clear the queue and charge a higher price to r-type agents.

This result stems from the combination of the three features of our setting: (i) information

asymmetries, (ii) capacity restrictions, and (iii) non-transferable capacity. Without information

asymmetry, the platform would charge customer valuations regardless of incoming demand. With

unrestricted capacity, the platform would focus on discrimination by serving either all customers

or only r-type customers, regardless of incoming demand. And ig the platform was able to transfer

idle capacity from one period to the next, it could leverage this extra degree of freedom to focus on

discrimination more effectively, thus transferring a (weakly) higher proportion of n-type customers

and charging a (weakly) higher price under high demand than under low demand.

4.5. Steady State and Transition Dynamics

To conclude, Figure 6 shows the steady-state distribution of the optimal mechanism. Each node

denotes a value of Γ and each edge denotes a demand realization. The steady-state probability of

each value of Γ is depicted within the corresponding node. We find that Γ takes at most five values

in the steady state:
¯
ΓL = 0, Γ̄L = (1−σ)L,

¯
ΓH =H − 1, 1−σL, and Γ̄H = (1−σ)H.

The main takeaway is that the optimal policy is history-dependent in the steady state—and thus

cannot be implemented with posted prices and static mechanisms. In two extreme situations, the

policy is state-independent: under very strong heterogeneity (Region 1) where the platform always

ignores all requests from incoming n-type agents and under very weak heterogeneity (Regions 3b

and 3c) where the platform always prioritizes timely requests. In-between (arguably, the most

relevant instances in practice), the optimal policy depends on incoming and late demand. For

instance, in Region 2c, the platform provides timely service to n-type agents only when Γ is low.

These results indicate that the optimal mechanism gives rise to endogenous late demand dynamics:

it alternates between queue-building periods—by creating a demand backlog for discrimination—

and queue-clearing periods—by taking advantage of the queues for demand-capacity management.

Finally, Table 1 reports the steady-state probability of timely services for n-type agents (qt),

and the price charged to r-type agents (pr). As v0 increases, more n-type agents receive timely
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Figure 6 Steady state transition dynamics, with σ < 0.5.

services and r-type agents are thus charged a lower price. Importantly, our finding that the price

does not monotonically increase with incoming demand is observed in steady state, and is thus not

an artifact of the transient dynamics of the system (colored cells in Sub-regions 2a, 2b and 3a).

Table 1 Steady state allocations and prices, shown as (qt(D,Γ), pr(D,Γ)), when σ < 0.5.

State Reg. 1 Reg. 2a&2b Reg. 2c Reg. 3a Reg. 3b&3c

(H,0) (qαt , p
α
r ) (qαt , p

α
r ) (qαt , p

α
r )

(L,0) (1, v0) (1, v0) (1, v0)

(H, Γ̄L) (0,1)
(
qβt , p

β
r

) (
qβt , p

β
r

) (
qβt , p

β
r

)
(L, Γ̄L) (0,1) (0,1) (1, v0) (1, v0)

(H,H − 1) (0,1)
(
qβt , p

β
r

)
(qαt , p

α
r )

(L,H − 1) (1, v0) (1, v0) (1, v0)

(H,1−σL) (0,1) (0,1)
(
qβt , p

β
r

)
(L,1−σL) (0,1) (0,1) (0,1)

(H, Γ̄H) (0,1) (0,1) (0,1)

(L, Γ̄H) (0,1) (0,1) (0,1)

qαt =
1−σH

(1−σ)H

qβt =
(1− 2σ)d

(1−σ)H

pαr = 1− qαt (1− v0)

pβr = 1− qβt (1− v0)

0< qβt < q
α
t < 1

v0 < p
α
r < p

β
r < 1
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5. Welfare Implications

This section compares the steady-state surplus generated by the optimal mechanism against two

benchmarks: (i) the first-best allocation rule in the absence of information asymmetry and (ii) a

dynamic pricing mechanism that does not elicit agents’ preferences (aimed to replicate, at a high

level, prevalent practices in online markets such as surge pricing and congestion pricing).

5.1. First-best Allocation

First-best allocation can be interpreted in two ways. It captures the decisions of a surplus-

maximizing social planner, who optimizes the allocation rule without specifying any payment rule.

Equivalently, it captures the platform’s profit-maximizing decisions in the absence of information

asymmetry, in which case each agent is charged a price equal to his valuation (i.e., 1, v0 and v1).

The first-best allocation rule is defined by the variables qFBr (D,Γ), qFBt (D,Γ), qFBl (D,Γ)—

analogous to qr(D,Γ), qt(D,Γ), ql(D,Γ). This problem, referred to as Problem (PFB), does not

include incentive compatibility and individual rationality constraints. It is subject to the same

resource constraint (Equation (18)) and transition function (Equation (19)) as Problem (P).

VFB(D,Γ) = max
qFBr ,qFBt ,qFB

l

qFBr σD× 1+qFBt (1−σ)Dv0 + qFBl Γv1 + δ[kVFB(H,Γ′) + (1− k)VFB(L,Γ′)] (17)

s.t. 1≥ qFBr sD+ qFBt (1−σ)D+ qFBl Γ, (18)

Γ′ = (1− qFBt )(1−σ)D. (19)

As in Section 3, all r-type agents are served, and late demand is served as long as capacity allows

(Lemma EC.1). We can again simplify the problem with the single decision variable Γ′, as follows:

VFB(D,Γ) = max
Γ′∈[

¯
ΓD,Γ̄D ]

σD+ ((1−σ)D−Γ′)v0 + min{Γ,1−D+ Γ′}v1

+δ (kVFB(H,Γ′) + (1− k)VFB(L,Γ′)) . (20)

The only difference with Problem (P) lies in the first term. In Problem (P), this term included

the price derived from the incentive compatibility constraint for r-type agents. In (PFB), it includes

their valuation (equal to 1). Proposition 5 shows that Problem (PFB) is equivalent to Problem

(P) by transforming the parameter v0 into ṽ0 = σ + (1− σ)v0. Note that ṽ0 ∈ (σ + (1− σ)v1,1).

Therefore, Problem (PFB) is isomorphic to Problem (P) in Region 3 (see Figure 5). This reflects

that the social planner focuses on demand-capacity management as opposed to discrimination—by

determining whether to serve late demand and delay service to incoming n-type agents vs. provide

more timely services at the risk of leaving some late requests unserved.

Proposition 5. Problem (PFB) with parameter v0 is equivalent to Problem (P) with param-

eter ṽ0 = σ + (1 − σ)v0. The optimal policy is identical to the optimal policy of Prob-

lem (P) in Sub-Region 3a when v0 ∈
(
v1,

1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
v1

]
, in Sub-Region 3b when v0 ∈(

1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
v1, (1 + δ(1− k))v1

]
, and in Sub-Region 3c when v0 ∈ ((1 + δ(1− k))v1,1).
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5.2. Dynamic Posted Prices

The dynamic pricing mechanism does not elicit agent preferences and thus charges a uniform price

in each period. The system evolves as follows: (i) the platform posts a price in each period, (ii) each

agent decides to accept the service, or not, (iii) the platform allocates capacity uniformly across all

agents who accept the service (regardless of their types), and (iv) agents who decline the service

may leave the platform or wait for a late service, depending on their type and history. We refer to

the dynamic pricing problem as (PDP ). The posted price, denoted by p0, is optimized as follows:

VDP (D,Γ) = max
p0

p0×x(D,Γ, p0) + δ (kVDP (H,Γ′) + (1− k)VDP (L,Γ′)) (21)

s.t. x(D,Γ, p0) =

 σD p0 > v0,
min{D,1} p0 ∈ (v1, v0],
min{D+ Γ,1} p0 ≤ v1.

(22)

Γ′ =


(1−σ)D p0 > v0,

(1−σ)D
[
1− x(D,Γ,p0)

D

]
p0 ∈ (v1, v0],

(1−σ)D
[
1− x(D,Γ,p0)

D+Γ

]
p0 ≤ v1.

(23)

Equation (21) maximizes the platform’s expected discounted profit. The per-period profit is

equal to the posted price p0 times the number of services provided, denoted by x(D,Γ, p0). Con-

straints (22) and (23) specify the relationship between p0, x(D,Γ, p0) and Γ′. When p0 > v0, only

r-type agents accept the service; the platform thus provides σD services and the full mass (1−σ)D

of n-type agents is transferred. When v1 < p0 ≤ v0, all incoming agents are willing to accept the

service.10 But given the platform’s finite capacity, only min{D,1} services can be provided, and

a mass (1− σ)D
[
1− x(D,Γ,p0)

D

]
is transferred. Last, if p0 ≤ v1, all agents are willing to accept the

service, so the number of services is then equal to min{D+ Γ,1}, and Γ′ = (1−σ)D
[
1− x(D,Γ,p0)

D+Γ

]
.

Proposition 6. Problem (PDP ) admits an optimal solution p∗0(D,Γ). It satisfies p∗0(D,Γ) ∈

{1, v0, v1}. Moreover, p∗0(D,Γ) ∈ {1, v0} for each (D,Γ) if and only if v1 ≤max{σL,v0L}. In this

case, for each Γ ∈ Γ, we have under high demand: p∗0(H,Γ) = 1 if v0 ≤ σH and p∗0(H,Γ) = v0 if

v0 >σH. Under low demand, we have: p∗0(L,Γ) = 1 if v0 ≤ σ and p∗0(L,Γ) = v0 if v0 >σ.

If v1 ≤ max{σL,v0L}, the value of a late service for n-type agents is sufficiently low for the

platform to never charge v1—the corresponding price reduction would offset the increase in the

quantity of services provided. In this case, the platform provides only timely services and the pricing

policy is myopically optimal. Problem (PDP ) is then equivalent to maximizing current-period profits

based on incoming demand.

(i) When v0 ≤ σ, the platform only serves the r-type agents by setting a price of 1. The platform’s

expected profit is then σ(kH + (1− k)L).

10 In theory, n-type agents could reject the service and wait for a late service if they anticipate a lower price in the
next period. This, does not occurs as the platform never charges a price strictly lower than v1 at the optimum.
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(ii) When σ < v0 ≤ σH, the platform serves all the incoming demand in low-demand periods by

setting a price of v0, but only the r-type agents in high-demand periods by charging a price

of 1. The platform’s expected profit is then equal to kσH + (1− k)v0L.

(iii) When v0 >σH, the platform always sets the price of v0—but cannot serve all incoming requests

under high demand. The platform’s expected profit is v0 (k+ (1− k)L).

5.3. Performance Assessment

We now compare our mechanism to the two benchmarks based on three steady-state met-

rics: (i) the platform’s expected discounted profit before the first-period demand realizes, i.e.,

V (0) = (1−k)V (L,0)+kV (H,0), (ii) the expected consumer surplus, denoted by CS, and (iii) the

total expected surplus generated within the platform, denoted by TS. For tractability, we focus on

the case where v1 ≤max{σL,v0L}, and apply the result from Proposition 6.

Figure 7 shows the surplus generated by each policy (Figure 7a) and its distribution under the

optimal mechanism and the dynamic pricing policy (Figure 7b), as a function of v0.

(a) Total surplus (b) Platform profit and consumer surplus

Figure 7 Surplus from the optimal mechanism, dynamic pricing (“DP”) and the first-best mechanism (“FB”).

As compared to the first-best outcome, the optimal menu induces a trade-off between the surplus

generated and information rents. For the highest values of v0 (Regions 3b and 3c), the optimal

mechanism maximizes social welfare—by focusing on demand-capacity management rather than

discrimination. However, the platform leaves some surplus to time-sensitive agents due to informa-

tion asymmetries. For lower values of v0, discrimination is an important concern for the platform,

which induces a surplus loss. In Region 1, the platform extracts all the surplus without leaving any

rent. In-between, the optimal mechanism induces both a surplus loss and information rents.

Key Finding 5. Under weak inter-type heterogeneity and strong time preferences, the optimal

mechanism maximizes social welfare; yet, the platform leaves information rent to the agents. Oth-

erwise, it induces a surplus loss; under strong heterogeneity, the platform captures all the surplus.
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Next, eliciting agents’ preferences through a dynamic menu increases the platform’s expected

profit, as compared to the dynamic pricing policy. The relative improvement can be significant, and

increases with inter-type heterogeneity. The main benefits of our mechanism stem from person-

alization and targeting. Indeed, the dynamic pricing mechanism ends up rejecting some requests

from r-type customers when the posted price is v0 and demand is high, and losing all time-sensitive

customers when the posted price is 1. Instead, by proposing a menu of prices and service levels,

our mechanism can select which customers to serve or transfer, and can manage the queue of

delayed customers more effectively. In some cases, the optimal mechanism even provides a Pareto

improvement—higher platform profits and larger consumer surplus.

6. Benefits of Dynamic Menus

We compare our dynamic mechanism to a static benchmark. We also propose a “demand-dependent

mechanism” that (i) adjusts the menu as a function of incoming demand, and (ii) allocates late ser-

vices freely based on realized contingencies. Results shows that the static benchmark yields subop-

timal outcomes. The demand-dependent mechanism achieves close-to-optimal outcomes, providing

an easily-implementable approximation of the optimal mechanism. Yet, the optimal mechanism

increases the platform’s profits by up to 3–4% as compared to the demand-dependent mechanism.

6.1. Static Menu

The static mechanism proposes a state-independent menu. Its components (still denoted by

qt, ql, pr, pt, pl) remain constant regardless of the state variable (D,Γ). Each menu defines a steady-

state distribution with four values: {{H,L}×{ΓHS ,ΓLS}}, where ΓHS = (1− qt)(1− σ)H and ΓLS =

(1− qt)(1−σ)L. For each (D,Γ)∈ {{H,L}×{ΓHS ,ΓLS}}, the value function VS(D,Γ) satisfies:

VS(D,Γ) = qrσDpr + qt(1−σ)Dpt + qlΓpl + δ
(
kVS(H,ΓDS ) + (1− k)VS(L,ΓDS )

)
.

The platform’s problem, referred to as (PS), maximizes the expected discounted profit before the

first-period demand realizes, when Γ = 0. The constraints are similar to Equations (4)–(8); for

conciseness, we defer their full formulation to Appendix B.1. Problem (PS) is defined as follows:

V S(0) = max
qr,qt,ql,pr,pt,pl

{
k (qrσHpr + qt(1−σ)Hpt + δED [VS(D,ΓHS )])
+(1− k) (qrσLpr + qt(1−σ)Lpt + δED [VS(D,ΓLS)])

}
s.t. ICr, ICn, IR, CC, T C (Appendix B.1).

Proposition 7. The solution to problem PS satisfies qr = 1, pt = v0 and pl = v1. Moreover:

• If v0 ≤ σ+ δ(1−σ)v1 (Region 1, part of Region 2): qt = 0, ql = 1−σH
(1−σ)H

, pr = 1.

• If v0 >σ+ δ(1−σ)v1 (part of Region 2, Region 3): qt = 1−σH
(1−σ)H

, ql = 0, pr = 1− 1−σH
(1−σ)H

(1−v0).
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The static menu exhibits a “bang-bang” structure. The platform impleents extreme discrimina-

tion when v0 ≤ σ+ δ(1− σ)v1 by providing no timely service to n-type agents; and it implements

extreme late service rejection when v0 < σ + δ(1− σ)v1 by only serving incoming requests. This

contrasts with the dynamic mechanism, which adjusts the menu based on the system’s state in

Regions 2, 3a and 3b. Moreover, when the platform prioritizes timely services, it cannot serve all

incoming requests under low demand, due to capacity constraints that would otherwise be violated

under high demand. Last, the static mechanism results simultaneously in idle capacity and late

service rejection under low demand (ql = 0)—unlike the dynamic mechanism, which uses remaining

capacity to serve late demand after providing timely services (Proposition 2).

6.2. Demand-dependent Menu

The demand-dependent mechanism enhances the static one in two ways. First, the menu varies with

realized demand D ∈ {H,L}. The prices and probabilities of timely services are thus denoted by

pr(D), pt(D), qr(D), and qt(D). Second, the platform allocates late services depending on realized

contingencies, independently from the menu—motivated by the fact that late services can enhance

capacity utilization without altering the incentives of r-type agents. Let pl(D,Γ) and ql(D,Γ) thus

denote the price and allocation variables. Each menu defines a steady-state distribution with four

values: {{H,L}×{ΓHDD,ΓLDD}}, where ΓHDD = (1− qt(H))(1−σ)H and ΓLDD = (1− qt(L))(1−σ)L.

For each (D,Γ)∈ {{H,L}×{ΓHDD,ΓLDD}}, the value function VDD(D,Γ) satisfies:

VDD(D,Γ) = qr(D)σDpr(D) + qt(D)(1−σ)Hpt(D) + ql(D,Γ)Γpl(D,Γ)

+δ
(
kVDD(H,ΓDDD) + (1− k)VDD(L,ΓDDD)

)
.

The platform’s problem, referred to as (PDD), is given by:

V DD(0) = max
qr(D),qt(D),ql(D,Γ)
pr(D),pt(D),pl(D,Γ)

{
k (qr(H)σHpr(H) + qt(H)(1−σ)Hpt(H) + δED [VDD(D,ΓHDD)])
+(1− k) (qr(L)σLpr(L) + qt(L)(1−σ)Lpt(L) + δED [VDD(D,ΓLDD)])

}
[6pt] s.t. ICr, ICn, IR, CC, T C (Appendix B.1).

Proposition 11 (Appendix B) elicits the optimal demand-dependent mechanism. It identifies three

regions: Region A (Region 1, part of Region 2), Region B (part of Region 2), and Region C (part

of Region 2, Region 3). Figure 8 shows the optimal policy and the price charged to r-type agents.

The demand-dependent mechanism exhibits three main differences with the static benchmark.

First, it does not involve extreme discrimination in Region B; instead, the platform only transfers

n-type agents as long as the resulting late demand can be served in the next period if demand

is low—by delaying 1 − σL agents under high demand. Second, by differentiating service levels

as a function of demand realizations, the demand-dependent mechanism can serve all incoming
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Figure 8 Optimal policy and corresponding price under the demand-dependent mechanism, when σ < 0.5.

requests under high and low demand in Region 3—by setting qt(H) = 1−σH
(1−σ)H

and qt(L) = 1. Third,

adjusting the provision of late services as a function of realized contingencies ensures that no late

request is rejected when capacity remains available upon provision of timely services.

Note, importantly, that the optimal price charged to r-type agents is lower under high demand

than under low demand in Region B. This stems from a similar intuition as in the optimal mech-

anism. The platform provides no timely services to n-type agents under low demand—in part, for

discriminatory purposes and, in part, under the expectation that these requests will be served in

the next period. Under high demand, however, delaying all incoming requests from n-type agents

would result in a long backlog that could not be served entirely, even under low demand. Therefore,

only 1−σL n-type agents are transferred, resulting in a lower price to maintain incentive compat-

ibility. This underscores that the non-monotonicity of prices is not an idiosyncratic feature of the

mechanism proposed in this paper but, instead, holds for broader classes of dynamic mechanisms.

Key Finding 6. Under the demand-dependent mechanism, the price does not increase mono-

tonically with demand.
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6.3. Performance Assessment and Implications

Figure 9 compares the platform’s expected discounted profit under the optimal mechanism V (0),

the static benchmark V S(0), and the demand-dependent mechanism V DD(0), as a function of v0.

Figure 9 Comparison of dynamic mechanism with the static and demand-dependent mechanisms.

Recall that the optimal menu does not depend on Γ under strong heterogeneity (the platform dis-

regards timely requests from n-type agents) and under weak heterogeneity (the platform maximizes

timely services). In these cases (Regions 1, 3b and 3c), the static benchmark is sub-optimal anyway

by failing to adjust late services as a function of Γ, hence failing to maximize capacity utilization.

In contrast, the demand-dependent mechanism is optimal. In-between, the optimal mechanism

tailors prices and allocations as a function of history—incoming and late demand. In these cases,

the demand-dependent mechanism still performs much better than the static benchmark; yet, the

optimal mechanism induces higher profits than the demand-dependent mechanism.

To quantify these points, let Rmax
DD denote the maximum relative gain from the optimal mecha-

nism, as compared to the demand-dependent mechanism. It is defined as:

Rmax
DD = max

v0∈(v1,1)
RDD(v0), where RDD(v0) =

V (0)−V DD(0)

V DD(0)
.

Proposition 8 provides a lower bound of Rmax
DD (from the boundary between Regions B and C)

and a tighter lower bound (from the boundary between Regions A and B) when k= 0.5 (i.e., when

the expected demand is equal to the capacity and the system is in balance).

Proposition 8. When σ < 0.5 and δ→ 1, we have Rmax
DD ≥R1

DD(k, d, v1, σ), where

R1
DD(k, d, v1, σ) =

(1−σ)Lv1k
2(1− k)2

σL(1− k) +σHk+ (1− 2σ)dv1k+ (1−σ)Lv1(1− k+ k2) + (1−σL)v1(1− k)k
.
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In a balanced system (k= 0.5), we have Rmax
DD ≥max{R1

DD(0.5, d, v1, σ), R2
DD(d, v1, σ)}, where:

R2
DD(d, v1, σ) =


(1−2σ)dv1

8σ+2(1−2σ)dv1+6(1−σ)Lv1+2(1−σL)v1
if σ+ δ(1−σ)kv1 ≥ v1,

(1−2σ)d
(1−v1)σ

1−σ

4σ+2(1−2σ)d
v1−σ
1−σ +3(1−σ)Lv1+(1−σL)v1

otherwise.

Figure 10 plots Rmax
DD and its lower bounds from Proposition 8. The lower bound R1

DD is relatively

tight for low values of k but the optimal mechanism achieves stronger benefits otherwise. In a

balanced system (k = 0.5), R2
DD achieves a much tighter lower bound, thus providing a good

approximation of the maximum relative gain of the optimal mechanism.

(a) RmaxDD as a function of k and d (b) RmaxDD as a function of d and σ (k=0.5)

Figure 10 Maximum relative gains (RmaxDD ) of the optimal vs. demand-dependent mechanisms.

Overall, the optimal mechanism increases the platform’s profits by up to 3–4%, as compared to

the demand-dependent mechanism—by tailoring the items of the menu as a function of the system’s

history. By proceeding similarly, we find that the optimal mechanism increases the platform’s profit

by around 20%, as compared to the static mechanism (for a balanced system with k= 0.5).

These results also suggest that the optimal mechanism provides strongest improvements when

the demand is volatile and the demand composition induces stronger trade-offs. Specifically:

• The optimal mechanism is most beneficial under demand uncertainty. Small k values lead to

small demand backlogs hence limited benefits of tailoring the menu based on late demand.

Larger k values create higher backlogs, hence stronger improvements of the optimal mecha-

nism. In-between, the system exhibits strong volatility, resulting in high variability in Γ. As a

result, adjusting the menu as a function of the system’s history yields strongest benefits.

• The optimal mechanism is most beneficial under strong demand shocks (high d values), which

lead to strong gains from the tailoring the menu with the system’s history. The relative gains

are also high with smallest d values, adjusting the menu based on incoming demand with the

demand-dependent mechanism becomes marginally beneficial when H and L get closer.
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• The benefits of the optimal mechanism are stronger when the demand composition induces

stronger trade-offs. Indeed, as σ decreases, more capacity is available to serve n-type cus-

tomers, strengthening the platform’s degrees of freedom when allocating remaining capacity

across timely and late services (vice versa, higher proportions of r-type customers increase

the incidence of “obvious” decisions for all mechanisms).

In summary, the optimal mechanism comprises a menu of options, each catered to a specific

customer segment and dynamically adjusted based on (exogenous and endogenous) contingencies.

As compared to its static counterpart, this mechanism results in strong profit improvements. We

also proposed a demand-dependent mechanism that adjusts the menu as a function of exogenous

demand realizations. We showed that this mechanism—less information intensive and hence more

easily implementable than the optimal mechanism—can yield close-to-optimal outcomes. Yet, the

optimal mechanism still improves the platform’s profits, by up to 3–4%, as compared to this

approximation—by tailoring the menu as a function of the system’s history.

7. Robustness Checks

To this point, we have considered a simplified environment to analytically characterize the dynam-

ics of pricing and allocation under non-transferable capacity, stochastic demand-capacity imbal-

ances, and customer heterogeneity. We now relax key assumptions to capture general demand

distributions, multi-period patience horizons, endogenous supply-side participation, and stochastic

customer mix. As we shall see, the structure of the optimal policy and the non-monotonicity of the

optimal price with incoming demand do not result from idiosyncrasies associated with our simpli-

fied setting but instead hold in each of these extensions. In fact, we generalize our main insight by

showing that the optimal price is not monotonic with the non-expiring portion of the demand.

7.1. General Demand Distribution

Let D follow a general distribution. We derive the optimal policy computationally through value

function iteration. All properties of the optimal policy remain valid. For instance, strategic idleness

occurs under lower demand and deliberate late service rejection occurs under higher demand.

Figure 11 reports pr as a function of Γ, for different values of D—obtained with a discrete

uniform distribution between L and H. Note that the optimal price is not monotonic with demand.

In Region 2 (Figure 11a), the platform focuses primarily on discrimination, leading to extreme

discrimination and a price pr = 1 under lower demand values. Under higher demand, the platform

focuses more on demand-capacity management by providing more timely services and thus charging

a lower price. For low values of Γ, pr is actually weakly decreasing with demand. In Region 3

(Figure 11b), the platform focuses primarily on demand-capacity management. For higher demand

values, it only provides timely services. Under lower demand, the platform instead prioritizes
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clearing the queue by transferring incoming n-type agents to serve them (at least partially) in the

next period. This yields non-monotonic prices for high values of Γ.

(a) σ= 0.45, v0 = 0.6, v1 = 0.4 (akin to Region 2b) (b) σ= 0.45, v0 = 0.72, v1 = 0.4 (akin to Region 3b)

Figure 11 Optimal price pr for multiple values of incoming demand D, as a function of late demand Γ.

7.2. Multi-period Patience Horizon

Let us assume that n-type agents can wait up to M ≥ 1 periods for a late service. Let vm be the

utility derived from a service delayed by m= 0, · · · ,M periods, with v0 > v1 > · · ·> vM . Let “Group

m” refer to n-type agents already delayed by m periods, for each m∈ {1,2, · · · ,M}. The platform

optimizes prices and allocations for incoming agents and n-type agents in Groups 1 to M .

Let (D,
−→
Γ ) denote the state variable, where

−→
Γ = (Γ1, · · · ,ΓM) tracks the mass of agents in Group

m = 1, · · · ,M . We still denote by pr(D,
−→
Γ ) (resp. pt(D,

−→
Γ )) and qr(D,

−→
Γ ) (resp. qt(D,

−→
Γ )) the

price and allocation for incoming r-type (resp. n-type) agents. Let pm(D,
−→
Γ ) and qm(D,

−→
Γ ) be the

price and allocation for agents in Group m. The generalized problem, (PG), is given by:

VG(D,
−→
Γ ) = max

pr,pt,p1,··· ,pM
qr,qt,q1,··· ,qM

prqrσD+ ptqt(1−σ)D+
M∑
m=1

pmqmΓm + δED
[
VG(D,

−→
Γ′)
]

(24)

s.t. ICr and ICn, (25)

pr ≤ 1, pm ≤ vm, ∀m∈ {0,1, · · · ,M}, (26)

1≥ qrσD+ qt(1−σ)D+
M∑
m=1

qmΓm, (27)

Γ′1 = (1− qt)(1−σ)D, (28)

Γ′m = (1− qm−1)Γm−1, ∀m∈ {2, · · · ,M}. (29)

Equation (24) maximizes the platform’s expected profit, subject to incentive compatibility con-

straints (Equation (25)), individual rationality constraints (Equation (26)), and capacity con-

straints (Equation (27)). The incentive compatibility constraint of r-type agents is identical to
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Equation (4). The one of n-type agents involves additional terms reflecting the longer patience

horizon; however, as in Problem (P), it is not binding. The transition constraints define Γ′1 as the

number of incoming n-type agents that are not served (Equation (28)) and, for eachm∈ {2, · · · ,M},
Γ′m as the number of n-type agents in Group m− 1 that remain unserved (Equation (29)).

In Appendix D, we provide an analogous version of Proposition 2, and reformulate Problem (PG)

with
−→
Γ′ as the decision variable. We solve Problem (PG) computationally using value iteration.

The platform still serves all r-type agents and extracts the entire surplus from n-type agents.

It thus faces a similar trade-off between the quantity of incoming n-type agents served vs. the

price charged to r-type agents—to balance discrimination and demand-capacity management. But

the longer patience horizon introduces a new queue clearing dimension—that is, the allocation of

remaining capacity (upon provision of timely services) across the M groups of delayed agents.

Two natural queue clearing strategies are first-come first-served (FCFS) allocations—from Group

M to Group 1—and last-come first-served (LCFS) allocations—from Group 1 to Group M . The

optimal policy features these strategies in some cases; for instance, FCFS (resp. LCFC) naturally

arises when
vm+1

vm
is large (resp. small). However, the optimal policy does not necessarily fall into

these two categories: in some instances, the platform’s queue clearing policy does not strictly

prioritize one group over another. This is illustrated in Figure 12, when M = 2 and Γ2 is large (i.e.,

Γ2 = ΓH). For instance, in Figure 12a, under low demand, the queue clearing policy follows FCFS for

lower values of Γ1, but the platform shifts from serving Group 2 to serving Group 1 (thus deviating

from FCFS) for higher values of Γ1. The figure also shows the interdependencies between capacity

allocations across groups: in some instances (e.g., in Figure 12b under high demand), increasing

the population of Group 1 alters the allocation of capacity between Group 2 and incoming demand.

Turning to the price pr, the observations are twofold. First, pr may be lower under high demand

than under low demand, generalizing the non-monotonicity of the price with incoming demand.

Second, we extend this insight by noting that pr is not monotonic with the non-expiring portion

of the queue in a dynamic mechanism (i.e., with Γ1 here, or with Γ1, · · · ,ΓM−1 with an M -period

patience horizon).11 This new insight can be explained as follows. When Γ1 is sufficiently small,

the platform delays timely requests from n-type agents in order to (i) charge a high price to r-type

agents, (ii) serve agents in Group 2, and (iii) create a demand backlog for subsequent periods. But

when Γ1 gets larger, this would result in longer aggregate queues (across Groups 1 and 2), which

the platform may not be able to satisfy. In this case, the platform foregoes more late requests from

Group 2 and instead provides more timely services to n-type agents—resulting in a lower price pr.

Key Finding 7. With a multi-period patience horizon, the optimal price is not monotonically

increasing with incoming demand and with the non-expiring portion of the queue.

11 The price pr is non-decreasing with ΓM (the expiring portion), as pr was non-decreasing with Γ in our baseline.
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(a) v0 = 0.9, β = 0.75 (b) v0 = 0.95, β = 0.9

Figure 12 Optimal capacity allocation and price pr, as a function of Γ1 (with v1 = βv0 and v2 = βv1).

7.3. Other Extensions: Endogenous Capacity and Stochastic Demand Composition

Finally, we relax the constant customer mix (by modeling σ as a stochastic parameter) and constant

capacity (by introducing strategic suppliers). To retain tractability, we solve the model in a two-

period horizon. Although less rich than our infinite-horizon model, the two-period problem captures

(i) the tradeoff between the price charged to r-type customers and the timely services provided to

n-type customers; (ii) the tradeoff between timely and late services provided to n-type customers;

and (iii) intertemporal dynamics. The models and results are reported in Appendix C.

We find that the main results (that is, the structure of the policy and the non-monotonicity

of the price) are robust to variations in the mix of customers and to the endogeneity of supply-

side participation. At the same time, all additional results in these two extensions are expected:

the price charged to r-type customers is monotonically increasing with the proportion of r-type
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customers; and the wage paid to suppliers is monotonically increasing with incoming demand. This

suggests that the model presented in the paper captures the essential elements of our problem.

8. Conclusion

This paper studies a problem of dynamic pricing and real-time resource allocation for a platform

facing non-transferable capacity, stochastic demand-capacity imbalances, and strategic customers

with heterogeneous price- and time-sensitivities. In this environment, the platform uses service tim-

ing and pricing to balance demand-capacity management, and discrimination across heterogeneous

customers. Discrimination becomes relatively more prominent and demand-capacity management

becomes relatively less prominent as customer heterogeneity increases and as price-sensitive cus-

tomers become more time-sensitive. We characterize the most general mechanism, which translates

into a dynamic screening menu of prices and probabilistic allocations—catered to each customer

segment and dynamically updated based on real-time information. This mechanism gives rise to

endogenous demand dynamics—alternating between queue-building and queue-clearing periods.

The proposed dynamic menu can be implemented by leveraging online or mobile technologies,

which enable platforms to fine tune prices and service levels over time and across customer seg-

ments. In the context of our motivating examples, such a menu could be implemented as follows:

– For an on-demand platform, the menu would propose different prices and wait times (e.g.,

$10 service in 5 minutes, $5 service in 30 minutes). Many platforms use dynamic pricing

(e.g., surge pricing). Some also provide differentiated services (e.g., Uber X, Uber Pool, Uber

Express Pool), leveraging dynamic pricing and dynamic waiting (Korolko et al. 2018). Our

mechanism achieves similar objectives without resorting to separate service lines.

– In manufacturing and logistics, the menu would propose different prices and lead times (e.g.,

same-day delivery for $30, 2-day delivery for $10, 1-week delivery for free). Such differentiation

is common in e-commerce. Our mechanism would dynamically update prices and lead times

based on incoming demand, demand backlogs, delivery capacity, and customers’ preferences.

– In cloud computing, the menu would propose different prices and computing resources—

leading to different completion times. Currently, differentiation stems from guaranteed pay-as-

you-go services vs. “best effort” services on a spot market. In practice, providers use dynamic

pricing but perhaps insufficient service differentiation (Kilcioglu and Maglaras 2015).

One of our main findings is that the price charged to time-sensitive agents does not increase with

demand—driven by information asymmetries, capacity restrictions and non-transferable capacity.

To charge a high price, the platform needs to create service differentiation by delaying (or rejecting)

requests from a high proportion of price-sensitive agents. Under higher demand, this strategy may

result in a longer queue, which the platform might not be able to fulfill. As a result, under high
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demand, the platform may provide more timely services to price-sensitive customers, resulting in

a lower price charged to time-sensitive customers to maintain incentive compatibility.

Our results show that this dynamic mechanism provides significant profit improvements, as com-

pared to dynamic posted prices and static menus. We also propose a demand-dependent mechanism

(less information-intensive and easier to implement) that is close to optimal; yet, the optimal mech-

anism achieves higher profits, by up to 3–4%. Ultimately, this paper combines principles of dynamic

pricing and screening mechanisms by designing a dynamic menu of prices and service levels, each

catered to a customer segment and dynamically adjusted based on real-time information.
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Appendix A: Optimal Policy in Regions 2 and 3

Region 2 We already know from Lemma 3 that the optimal policy satisfies Γ∗(D,Γ) ≥ χ(D,Γ) for all

D{H,L},Γ∈Γ. In other words, the optimal policy involves late service prioritization. But within that regime,

the platform can adopt a strategic idleness policy (in which case Γ∗(D,Γ)>χ(D,Γ)) or not (in which case

Γ∗(D,Γ) = χ(D,Γ)). Lemma 4 asserts that, if the platform policy does not feature strategic idleness for a

certain Γ0, then it does not feature strategic idleness too for any Γ≥ Γ0 (for the same incoming demand D).

Lemma 4. In Region 2, if the optimal policy function satisfies ζ(D,Γ0) = Γ0 in some state (D,Γ0) ∈

{H,L}×Γ, then for each Γ≥ Γ0, we have ζ(D,Γ) = min{Γ,1−D+ Γ̄D}.

Lemmas 2, 3 and 4 imply that the entire optimal policy function Γ∗(D,Γ) in Region 2 can be determined

from Γ∗(D,0). Indeed, Γ∗(D,Γ) stays constant at Γ∗(D,0) as long as Γ∗(D,Γ)<χ(D,Γ), that is as long as

Γ ∈ [0,1−D + Γ∗(D,0)).12 In this range, the optimal policy involves strategic idleness. Then, Γ∗(D,Γ) =

χ(D,Γ) for each Γ≥ 1−D+Γ∗(D,0)]—in which case the optimal policy no longer involves strategic idleness.

Proposition 9 elicits the optimal mechanism in Region 2, which is further divided into Sub-regions 2a, 2b

and 2c—sorted by increasing order of v0. Note that the optimal policy depends on whether the n-type or

the r-type agents comprise the majority of the incoming demand (i.e., σ < 0.5 vs σ≥ 0.5).13 Figure 4 shows

the optimal policy when σ < 0.5 but the other case where σ≥ 0.5 is not qualitatively different.

Proposition 9. We denote by
¯
v1 = σ+ (1− σ)δ(1− k)v1 and v̄1 = σ+ (1− σ) δ+δ

2(1−k)k

1+δk
v1. The optimal

policy in Region 2 is characterized as follows:

Sub-region 2a: When v0 ∈ (σ,
¯
v1],

Γ∗(H,Γ) =

{
min{1−σL, Γ̄H} if Γ≤ (1−σ)L,

min{Γ +H − 1, Γ̄H} if Γ≥ (1−σ)L.
Γ∗(L,Γ) = Γ̄L, ∀Γ∈Γ.

Sub-region 2b: When v0 ∈ (
¯
v1, v̄1],

Γ∗(H,Γ) =

{
Γ +H − 1 if Γ≤ 1−σH,

Γ̄H if Γ≥ 1−σH. Γ∗(L,Γ) = min{1−σH, Γ̄L} ∀Γ∈Γ.

Sub-region 2c: When v0 ∈ (v̄1, σ+ (1−σ)v1],

Γ∗(H,Γ) =

{
Γ +H − 1 if Γ≤ 1−σH,

Γ̄H if Γ≥ 1−σH. Γ∗(L,Γ) =

{
0 if Γ≤ 1−L,

min{Γ +L− 1, Γ̄L} if Γ≥ 1−L.

Region 3 Lemma 5 shows that the optimal policy remains invariant as Γ increases as long as some late

demand remains unserved, regardless of whether it comes from deliberate late service rejection (Γ∗(D,Γ)<

χ(D,Γ)) or from a large demand backlog (Γ∗(D,Γ) = χ(D,Γ) = Γ̄D).

Lemma 5. In Region 3, if the optimal policy is such that some late demand is unserved in (D,Γ0) ∈

{H,L}×Γ, that is ζ(D,Γ0)< Γ0, then we have Γ∗(D,Γ) = Γ∗(D,Γ0) for all Γ≥ Γ0.

12 This initial range is just a single point when D=H and Γ∗(H,0) =
¯
ΓH .

13 The two thresholds 1−σH and (1−σ)L satisfy 1−σH ≤ (1−σ)L ⇐⇒ σ≥ 0.5 (Assumption 2).
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Next, Lemma 6 indicates that, if there is no late demand, the platform provides as many timely services

as possible. In this case, transferring n-type agents to the next period would not generate more late services

in the current period, and the inter-temporal effect is too weak to offset the associated current-period loss.

Lemma 6. In Region 3, the optimal policy satisfies Γ∗(D,0) =
¯
ΓD, for each D ∈ {H,L}.

Proposition 10 elicits the optimal mechanism, which is further divided into Sub-regions 3a, 3b and 3c—

sorted by increasing order of v0. As in Region 2, the exact form of the optimal policy depends on whether

the n-type or the r-type agents comprise the majority of the incoming demand (i.e., σ < 0.5 vs σ≥ 0.5).14

Proposition 10. We denote by
¯̄
v1 = σ+ (1−σ) 1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
v1 and ¯̄v1 = σ+ (1−σ)(1 + δ(1− k))v1.

The optimal policy in Region 3 is characterized as follows:

Sub-region 3a: When v0 ∈ (σ+ (1−σ)v1,
¯̄
v1],

Γ∗(H,Γ) =

{
min{Γ +H − 1, Γ̄H} if Γ≤ (1−σ)L,

min{1−σL, Γ̄H} if Γ≥ (1−σ)L.
Γ∗(L,Γ) =

{
0 if Γ≤ 1−L,

min{Γ +L− 1, Γ̄L} if Γ≥ 1−L.

Sub-region 3b: When v0 ∈ (
¯̄
v1, ¯̄v1],

Γ∗(H,Γ) =
¯
ΓH , ∀Γ. Γ∗(L,Γ) =

{
0 if Γ≤ 1−L,

min{Γ +L− 1, Γ̄L} if Γ≥ 1−L.

Sub-region 3c: When v0 ∈ (¯̄v1,1),

Γ∗(H,Γ) =
¯
ΓH , ∀Γ. Γ∗(L,Γ) =

¯
ΓL, ∀Γ.

Appendix B: Static and Demand-dependent Mechanism

B.1. Formulation of Static Mechanism

The full formulation of Problem (PS) is given as follows:

V S(0) = max
qr,qt,ql,pr,pt,pl

{
k (qrσHpr + qt(1−σ)Hpt + δED [VS(D,ΓHS )])
+(1− k) (qrσLpr + qt(1−σ)Lpt + δED [VS(D,ΓLS)])

}
s.t. ICr : qr(1− pr)≥ qt(1− pt),

ICn : qt(v0− pt) + ql(v1− pl)≥ qt(v0− pt),

IR : pr ≤ 1, pt ≤ v0, pl ≤ v1,

CC : qrσD+ qt(1−σ)D+ qlΓ≤ 1, ∀(D,Γ)∈ {H,L}×{ΓHS ,ΓLS},

T C : ΓDS = (1− qt)(1−σ)D, ∀D ∈ {H,L},

SS : VS(D,Γ) = qrσDpr + qt(1−σ)Hpt + qlΓpl + δED′
(
VS(D′,ΓDS )

)
, ∀(D,Γ)∈ {H,L}×{ΓHS ,ΓLS}.

B.2. Formulation of Demand-dependent Mechanism

The full formulation of Problem (PDD) is given as follows:

V DD(0) = max
qr(D),qt(D),ql(D,Γ)
pr(D),pt(D),pl(D,Γ)

{
k (qr(H)σHpr(H) + qt(H)(1−σ)Hpt(H) + δED [VDD(D,ΓHDD)])
+(1− k) (qr(L)σLpr(L) + qt(L)(1−σ)Lpt(L) + δED [VDD(D,ΓLDD)])

}

14 The two thresholds 1−σL and (1−σ)H satisfy 1−σL≤ (1−σ)H ⇐⇒ σ≤ 0.5 (Assumption 2).
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s.t. ICr : qr(D)(1− pr(D))≥ qt(D)(1− pt(D)), ∀D ∈ {H,L}

ICn : qt(D)(v0− pt(D)) + ql(D,Γ)(v1− pl(D,Γ))≥ qt(D)(v0− pt(D)), ∀(D,Γ)∈
{
{H,L}×{ΓHDD,ΓLDD}

}
IR : pr(D)≤ 1, pt(D)≤ v0, pl(D,Γ)≤ v1, ∀(D,Γ)∈

{
{H,L}×{ΓHDD,ΓLDD}

}
,

CC : qr(D)σD+ qt(D)(1−σ)D+ ql(D,Γ)Γ≤ 1, ∀(D,Γ)∈
{
{H,L}×{ΓHDD,ΓLDD}

}
.

T C : ΓDDD = (1− qt(D))(1−σ)D, ∀D ∈ {H,L},

SS : VDD(D,Γ) = qr(D)σDpr(D) + qt(D)(1−σ)Hpt(D) + ql(D,Γ)Γpl(D,Γ) + δED′
(
VDD(D′,ΓDDD)

)
,

∀(D,Γ)∈
{
{H,L}×{ΓHDD,ΓLDD}

}
.

B.3. Optimal Policy under Demand-dependent Mechanism

Proposition 11 elicits the optimal policy under the demand-dependent mechanism.

Proposition 11. The solution to problem PDD satisfies qr(D) = 1, pt(D) = v0, and pr(D) = 1−qt(D)(1−

v0) for each D ∈ {H,L}. Moreover:

• When σ < 0.5.

— Region A: If v0 ≤ σ+ δ(1−σ)v1k, then qt(H) = 0, qt(L) = 0.

— Region B: If σ+ δ(1−σ)v1k≤ v0 ≤ σ+ δ(1−σ)v1, then qt(H) = d(1−2σ)

(1−σ)H
, qt(L) = 0.

— Region C: If v0 ≥ σ+ δ(1−σ)v1, then qt(H) = 1−σH
(1−σ)H

, qt(L) = 1.

• When σ≥ 0.5.

— Region A’: If v0 ≤ σ+ δ(1−σ)v1(1− k), then qt(H) = 0, qt(L) = 0.

— Region B’: If σ+ δ(1−σ)v1(1− k)≤ v0 ≤ σ+ δ(1−σ)v1, then qt(H) = 0, qt(L) = d(2σ−1)

(1−σ)L
.

— Region C: If v0 ≥ σ+ δ(1−σ)v1, then qt(H) = 1−σH
(1−σ)H

, qt(L) = 1.

Appendix C: Two-period Model and Extensions

We first replicate our model in two-period setting (Section C.1). We then add stochasticity on the composi-

tion of demand across r-type and n-type customers (Section C.2) and endogenous supply-side participation

(Section C.3). All proofs are reported in Appendix EC.4.

C.1. Baseline Two-period Model

We formulate the model presented in the paper in a finite horizon consisting of two periods, indexed by

τ ∈ {1,2}. We assume that there is no late demand in Period 1 (i.e., Γ1 = 0) and that n-type agents cannot

be served after Period 2. The platform’s problem is thus given as follows:

V2(D2,Γ2) = max
qr,2,qt,2,ql,2
pr,2,pt,2,pl,2

pr,2qr,2σD2 + pt,2qt,2(1−σ)D2 + pl,2ql,2Γ2,

s.t. ICr,2 and ICn,2,

pr,2 ≤ 1, pt,2 ≤ v0, pl,2 ≤ v1,

1≥ qr,2σD2 + qt,2(1−σ)D2 + ql,2Γ2.

V1(D1,0) = max
qr,1,qt,1
pr,1,pt,1

pr,1qr,1σD1 + pt,1qt,1(1−σ)D1 + δ (kV2(H,Γ′) + (1− k)V2(L,Γ′)) ,

s.t. ICr,1 and ICn,1,
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pr,1 ≤ 1, pt,1 ≤ v0,

1≥ qr,1σD1 + qt,1(1−σ)D1,

Γ′ = (1− qt,1)(1−σ)D1.

The platform still extracts all the surplus from n-type customers, serves all r-type customers, serves late

demand as long as capacity is sufficient, and faces a trade-off between the price charged to r-type customers

and the timely services provided to n-type customers. We reformulate the problem by optimizing the number

of n-type customers transferred to the next period denoted by Γ′τ (Dτ ,Γτ ). The Bellman equations become:

V1(D1,0) = max
Γ′1∈[ΓD1

,ΓD1
]
σD1(1− (1−σ)D1−Γ′1

(1−σ)D1
(1− v0)) + ((1−σ)D1−Γ′1)v0 + δED2

(V2(D2,Γ
′
1)) ,

V2(D2,Γ2) = max
Γ′2∈[ΓD2

,ΓD2
]
σD2(1− (1−σ)D2−Γ′2

(1−σ)D2
(1− v0)) + ((1−σ)D2−Γ′2)v0 + min{Γ2,1−D2 + Γ′2}v1,

where Γ′τ ∈ [0, (1−σ)L] if Dτ =L and Γ′τ ∈ [H − 1, (1−σ)H] if Dτ =H.

Proposition 12. The optimal solution is given in Table 2.

Region Definition Period 1 policy Period 2 policy

Region 1 v0 ∈ [v1, σ) Γ′1(L) = ΓL, Γ′1(H) = ΓH No timely service to n-type customers

Region 2-i v0 ∈ [σ,σ+ (1−σ)δ(1−k)

1+δ(1−k)
v1) Γ′1(L) = ΓL, Γ′1(H) = 1−σL Prioritize late services

Region 2-ii v0 ∈ [σ+ (1−σ)δ(1−k)v1
1+δ(1−k)

, σ+ (1−σ)δv1
1+δk

) Γ′1(L) = ΓL, Γ′1(H) = ΓH Prioritize late services

Region 2-iii v0 ∈ [σ+ (1−σ)δ

1+δk
v1, σ+(1−σ)v1) Γ′1(L) = ΓL, Γ′1(H) = ΓH Prioritize late services

Region 3 v0 ∈ [σ+(1−σ)v1,1) Γ′1(L) = ΓL, Γ′1(H) = ΓH Maximize timely services

Table 2 Optimal policy in the baseline setting

The optimal policy is similar—albeit less rich—than that in the infinite-horizon setting. Under strong

inter-type heterogeneity (Region 1), the platform adopts extreme discrimination by providing timely services

only to r-type customers. Under weaker inter-type heterogeneity (Regions 2 and 3), the platform prioritizes

late services when time preferences are weak and timely services otherwise.

Moreover, the price charged to r-type customers is not monotonic with demand in Period 1. For instance, in

Region 2-i, the platform provides timely services to n-type customers under high demand (so that pr,1(H)< 1)

but not under low demand (so that pr,1(L) = 1). In Period 2, the price pr,2(D2,Γ2) is non-decreasing with D2

due to the absence of inter-temporal dynamics—a crucial feature underlying our non-monotonicity result.

Corollary 1. The price pr,1(D1,Γ1) is not an increasing function of D1.

C.2. Stochastic Demand Composition

In practice, many platforms face variations in the customer mix over time. For instance, demand composition

may vary between peak periods (with perhaps a higher fraction of time-sensitive customers) and off-peak

periods (with perhaps a higher fraction of price-sensitive customers). To address this situation, let στ denote

the fraction of incoming r-type customers in period τ = 1,2. We assume that στ follows a binary distribution

over {σ,σ} with σ < σ and P(σ= σ) = µ.
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We extend Assumptions 1 and 2 by assuming that σH < 1 (the platform can always serve all r-type

customers) and that H − 1≥ 1− σH (the platform cannot serve all the late demand in Period 2 if demand

is high in both periods and if it provides no timely services in Period 1).

The state in Period τ becomes (Dτ ,Γτ , στ ). The full formulation is given in Appendix EC.4.2. We reformu-

late the problem by optimizing the number of n-type customers transferred to the next period Γ′τ (Dτ ,Γτ , στ ):

V1(D1,0, σ1) = max
Γ′1

σ1D1

(
1− (1−σ1)D1−Γ′1

(1−σ1)D1
(1− v0)

)
+ ((1−σ1)D1−Γ′1)v0 + δE (V2(D2,Γ

′
1, σ2)) .

V2(D2,Γ2, σ2) = max
Γ′2

σ2D2

(
1− (1−σ2)D2−Γ′2

(1−σ2)D2
(1− v0)

)
+ ((1−σ2)D2−Γ′2)v0 + min{Γ2,1−D2 + Γ′2}v1,

where (1−στ )Dτ −min{1−σDτ , (1−στ )Dτ} ≤ Γ′τ (Dτ ,Γτ , στ )≤ (1−στ )Dτ .

Proposition 13 shows that the optimal policy follows the same structure as in the baseline model. The only

distinction is that, as the r-type customers comprise a larger fraction of the demand, Region 1 becomes larger

and Region 3 becomes smaller—so the platform becomes less likely to serve incoming n-type customers.

Proposition 13. The optimal solution in Period 2 is given in Table 3.

Region Definition Period 2 policy

Region 1–σ2 v0 ∈ [v1, σ2) No timely service to n-type customers

Region 2–σ2 v0 ∈ [σ2, σ2 + (1−σ2)v1) Prioritize late services

Region 3–σ2 v0 ∈ [σ2+(1−σ2)v1,1) Maximize timely services

Table 3 Optimal policy in Period 2 with stochastic demand composition

Proposition 14 shows that, again, the price charged to r-type customers is not monotonic with demand.

This stems from the same dynamics as in the baseline setting. It suggests that this result is not an artifact

of the assumption that σ remains constant but holds in more general settings.

Proposition 14. The price pr,1(D1,Γ1, σ1) is not an increasing function of D1.

Finally, Proposition 15 shows that the price charged to r-type customers pr,τ (Dτ ,Γτ , στ ) is monotonic

with the fraction of r-type customers στ . This is an expected result, showing that the baseline model (with

a constant σ) captures the main elements of our setting.

Proposition 15. The price pr,τ (Dτ ,Γτ , στ ) is an increasing function of στ .

C.3. Endogenous Capacity

In practice, many platforms face endogenous supply-side dynamics—when suppliers are self-scheduled based

on on-platform revenue opportunities. To address this situation, we still consider a unit mass of suppliers but

each supplier now has an outside option u, uniformly drawn between 0 and ū. The distribution of outside

options is publicly known but each supplier’s outside option is private information. In each period τ ∈ {1,2},

the platform optimizes its pricing and allocation policy as well as a per-service wage wτ . The choice of wτ

impacts the platform’s capacity, denoted by S(wτ ) = min
{
wτ
ū
,1
}

.
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The full problem formulation is given in Appendix EC.4.3. We reformulate the problem with two decision

variables—the number of transferred n-type customers Γ′τ (Dτ ,Γτ ) and the wage wτ (Dτ ,Γτ ):

V1(D1,0) = max
w1,Γ′1

{
min{σD1, S(w1)}

(
1− (1−σ)D1−Γ′1

(1−σ)D1
(1− v0)−w1

)
+ ((1−σ)D1−Γ′1) (v0−w1)

+δ ((1− k)V2(L,Γ′1) + kV2(H,Γ′1)) ,

}

V2(D2,Γ2) = max
w2,Γ′2

{
min{σD2, S(w2)}

(
1− (1−σ)D2−Γ′2

(1−σ)D2
(1− v0)−w2

)
+ ((1−σ)D2−Γ′2) (v0−w2)

+ min{Γ2, S(w2)−D2 + Γ′2} (v1−w2),

}
where (1−σ)Dτ −max{S(wτ )−σDτ ,0} ≤ Γ′τ (Dτ ,Γτ )≤ (1−σ)Dτ , and 0≤wτ ≤ ū.

We assume that ū is small enough so that it is always optimal for platform to increase wages in order

to serve r-type customers or to provide late services to n-type customers—as shown in Lemma 7. Then,

the platform determines whether to serve incoming n-type customers based on the discriminatory incentives

under demand-side information asymmetries (as in earlier versions of the model) and the quadratic cost of

service provision under supply-side information asymmetries (a new feature due to endogenous capacity).

Assumption 3. ū≤ v1
2

.

Lemma 7. The platform increases the wage until (i) all r-type customers are served; and (ii) if some late

demand remains unserved, it is not possible to further increase supply (i.e., S(w) = 1).

Proposition 16. The optimal solution in Period 2 is given in Table 4.

Region Definition Period 2 policy

Region 1–ū v0 ∈ [v1, σ+ 2(1−σ)ūσL)

Serve r-type customers and late demand

No timely service to n-type customers

w2(D2,Γ2) = min{ū, (σD2 + Γ2)ū}

Region 2.i–ū v0 ∈ [σ+ 2(1−σ)ūσL,σ+ 2(1−σ)ū)

Prioritize late services

Provide timely services as long as w2(D2,Γ2)≤ v0−σ
2(1−σ)

w2(D2,Γ2) = max
{

min{ū, (σD2 + Γ2)ū} ,min
{

v0−σ
2(1−σ)

, (D2 + Γ2)ū
}}

Region 2.ii–ū v0 ∈ [σ+ 2(1−σ)ū, σ+ (1−σ)v1)

Prioritize late services

Provide as many timely service as possible

w2(D2,Γ2) = min{ū, (D2 + Γ2)ū}

Region 3–ū v0 ∈ [σ+ (1−σ)v1,1)

Maximize timely services

Provide as many late services as possible

w2(D2,Γ2) = min{ū, (D2 + Γ2)ū}

Table 4 Optimal policy in Period 2 with endogenous supply-side

Proposition 16 shows that the optimal policy has the same structure as the baseline. The platform still

serves no incoming n-type customer in Region 1, prioritizes late services in Region 2 and prioritizes timely

services in Region 3. Yet, there are two novelties. First, the platform may serve incoming n-type customers

without providing as many timely services as possible. Indeed, in Region 2.ii–ū, the platform increases the

wage up to a certain point—thus leaving some incoming n-type customers unserved (unlike in Region 2.i–ū).

This does not stem from discrimination (unlike in Region 1) but from the added cost of service provision
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due to supply-side information asymmetries. Second, extreme discrimination is more prevalent than in the

baseline model. Indeed, when v0 ∈ (σ,σ+ (1−σ)ūσL), the platform would serve incoming n-type customers

with exogenous capacity, but does not with endogenous capacity. This is also due to the added cost of service

provision—so the capacity is just sufficient to serve r-type customers and late demand.

Next, Proposition 17 shows that the price charged to r-type customers is not monotonic with demand.

Again, this result is not an artifact of our setting with exogenous capacity but holds more generally.

Proposition 17. The price pr,1(D1,Γ1) is not an increasing function of D1.

Finally, Proposition 18 shows that the wage is monotonic with incoming and late demand. Again, this

suggests that the baseline model (with exogenous capacity) captures the main elements of our setting.

Proposition 18. The wage wτ (Dτ ,Γτ ) is a non-decreasing function of Dτ and Γτ .

Appendix D: Reformulation of Problem (PG)

Proposition 19 extends Proposition 2 to Problem (PG). The proof is identical, thus omitted for conciseness.

Proposition 19. The optimal solution to problem (PG) satisfies, in each state (D,
−→
Γ ):

(i) pm(D,
−→
Γ ) = vm, for each m∈ {0,1, · · · ,M}.

(ii) qr(D,
−→
Γ ) = 1, and pr(D,

−→
Γ )≥ v0.

(iii) If ΓM > 0, then qM(D,
−→
Γ ) = min

1,
1−σD−qt(D,

−→
Γ)(1−σ)D−

M−1∑
m=1

qm(D,
−→
Γ)Γm

ΓM

.

(iv) Constraint ICr is binding, and hence pr(D,
−→
Γ ) = 1− qt(D,

−→
Γ )(1− v0).

We now reformulate Problem (PG) with
−→
Γ ′ = (Γ′1, · · · ,Γ′M) as the unique choice variable:

VG(D,
−→
Γ ) = max

Γ′
σD

(
1− (1−σ)D−Γ′1

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ′2)v0 +

M−1∑
m=1

vm(Γm−Γ′m+1)

+ min

{
ΓM ,1−D−

M−1∑
m=1

Γm +

M∑
m=1

Γ′m

}
vM + δED

[
VG(D,

−→
Γ ′)
]
,

s.t. Γ′1 ∈ [
¯
ΓD, Γ̄D], with Γ̄D = (1−σ)D and

¯
ΓD = max(D− 1,0),

Γ′m+1 ∈ [0,Γm], ∀m∈ {1, · · · ,M − 1},

1≥D+

M−1∑
m=1

Γm−
M∑
m=1

Γ′m.
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Proofs of Statements

Appendix EC.1: Proofs on the Pricing and Allocation Mechanism

In this appendix, we proceed to prove the statements related to the characterization of the optimal

policy under the pricing and allocation mechanism defined in the paper. For notational ease, let V̄

be the unconditional value function before the realization of the demand takes place, i.e., V̄ (Γ) =

kV (H,Γ) + (1− k)V (L,Γ) for each Γ ∈ Γ. We also denote its partial derivative with respect to Γ

by V̄ ′, so V̄ ′(Γ) = kV ′(H,Γ) + (1− k)V ′(L,Γ),∀Γ∈Γ.

EC.1.1. Proof of Proposition 1

The spate space of Problem (P) is included in X = {H,L} × [0, (1− σ)H]. Let B(X) be the set

of bounded functions defined over X. We know that (B(X), | · |) defines a complete metric space

(where | · | denotes the supremum metric).

Moreover, let T =B(X)→B(X) be a mapping such that, for all f ∈B(X) and (D,Γ)∈X:

Tf(D,Γ) = max
qr(D,Γ),qt(D,Γ),ql(D,Γ)
pr(D,Γ),pt(D,Γ),pl(D,Γ)

pr(D,Γ)qr(D,Γ)σD+ pt(D,Γ)qt(D,Γ)(1−σ)D+ pl(D,Γ)ql(D,Γ)

+ δ[kf(H,Γ′) + (1− k)f(L,Γ′)]

s.t. ICr and ICn,

pr(D,Γ)≤ 1, pt(D,Γ)≤ v0, pl(D,Γ)≤ v1,

1≥ qr(D,Γ)σD+ qt(D,Γ)(1−σ)D+ ql(D,Γ)Γ,

Γ′(D,Γ) = (1− qt(D,Γ))(1−σ)D.

We note that T (·) satisfies Blackwell sufficiency conditions (i.e., monotonicity and discounting) to

define a contraction mapping (Blackwell 1965):

• Monotonicity: If for f, g ∈ B(X), f(D,Γ) ≥ g(D,Γ) for all (D,Γ) ∈X then we have T (f) ≥

T (g). This immediately follows from the definition of T

• Discounting: There exists a β ∈ (0,1) such that T (f(D,Γ) + c)≤ T (f(D,Γ) + βc. Again, this

immediately follows from the definition of T , with β = δ.

Therefore T (·) is a contraction mapping. It follows directly that the equation T (·) has a unique

fixed point (from Banach’s fixed point theorem), hence Problem (P) admits a unique solution

(Blackwell 1965, Bertsekas 2012).

EC.1.2. Proof of Proposition 2

We consider a given state (D,Γ) and consider the optimal policy of Problem P. For notational

ease, we denote the policy by (pr, pt, pl, qr, qt, ql), and removing the dependency on (D,Γ). To prove
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each statement in sequence, we will reason by contradiction and construct an alternative solution

(p̃r, p̃t, p̃l, q̃r, q̃t, q̃l) that strictly increases the platform’s objective function.

Proof that the incentive constraint ICr is binding : Let us consider an optimal solution and assume

by contradiction that the incentive constraint ICr is not binding, i.e., qr (1− pr)> qt[1− pt]. Then

we necessarily have pr < 1, and we define an alternative solution by setting p̃r = pr + ε, with ε > 0

such that p̃r ≤ 1 and qr (1− p̃r)≥ qt[1− pt]. By construction, Constraints (4) and (6) are satisfied.

Moreover, Constraints (7) and (8) remain unchanged. Finally, Constraint (5) is also satisfied as

the right-hand side decreases with pr. Therefore, the solution remains feasible. Moreover, we have

qr > 0, so the platform’s value function strictly increases when pr is increased to p̃r. This contradicts

the optimality of (pr, pt, pl, qr, qt, ql).

Proof that pr ≥ v0: Let us assume by contradiction that pr < v0.

If qr > qt, then we consider the deviation such that p̃r = v0, p̃t = v0, and p̃l = v1, and q̃r = qr, q̃t = qt

and q̃l = ql. By construction, Construction, Constraint (6) is satisfied. Since p̃r = v0, Constraint (5)

is also satisfied. Constraint (4) is also satisfied since p̃r = p̃t and qr ≥ qt. As we did not change

the allocation variables, Constraint (7) is also satisfied. Finally, the platform’s objective function

strictly increases, as p̃rq̃rσD> prqrσD, q̃tp̃t(1−σ)D≥ qtpt(1−σ)D and q̃lp̃l(1−σ)D≥ qlpl(1−σ)D,

and the future value remains unchanged since the value of Γ̃′ = (1− q̃t)(1−σ)D= (1−qt)(1−σ)D=

Γ′. This contradicts with the optimality of (pr, pt, pl, qr, qt, ql).

If 0 < qr < qt, then we consider the deviation such that p̃r = v0, p̃t = v0, and p̃l = v1, q̃r = q̃t =

sqr + (1−σ)qt and q̃l = ql. By construction, Construction, Constraint (6) is satisfied. Since p̃r = p̃t

and q̃r = q̃t, Constraint (4) is satisfied and since p̃r = v0, Constraint (5) is satisfied. Moreover, by

construction, we have p̃rq̃rσD + q̃tpt(1 − σ)D + q̃lΓ = prqrσD + qtpt(1 − σ)D + qlΓ ≤ 1, so Con-

straint (7) is satisfied. Finally, the platform’s objective function strictly increases as follows:

p̃rq̃rσD+ p̃tq̃t(1−σ)D+ p̃lq̃lΓ + δV̄ (Γ̃′)

= v0(σqr + (1−σ)qt)σD+ v0(σqr + (1−σ)qt)(1−σ)D+ v1qlΓ + δV̄ ((1− q̃t)(1−σ)D)

= qrv0σD︸ ︷︷ ︸
>qrprσD

+ qtv0(1−σ)D︸ ︷︷ ︸
≥qtpt(1−σ)D

+v1qlΓ︸ ︷︷ ︸
≥plqlΓ

+δ V̄ ((1− q̃t)(1−σ)D)︸ ︷︷ ︸
≥V̄ ((1−qt)(1−σ)D)

> prqrσD+ ptqt(1−σ)D+ plqlΓ + δV̄ (Γ′)

Ifqr = 0, then in order not to violate ICr we must also have pt = 0. In this case, the platform

could simply deviate to an q̃r = 1, p̃r = 1, q̃t = qt = 0, q̃l = ql∗Γ−σD
Γ

, p̃l = v1, and can get strictly

better off by not violating any of the constraints.15

15 In this case the value of pt is irrelevant as there are no timely rides are allocated to price-sensitive agents.
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Note that the last inequality stems from the fact that q̃t = sqr + (1− σ)qt > qt and V (D,Γ) is

non-decreasing in Γ, which can be easily verified. This again contradicts with the optimality of

(pr, pt, pl, qr, qt, ql). Notice that this also proves that qr ≥ qt.
Proof that pt = v0 and pl = v1: Let us assume by contradiction that pt < v0 (resp. pl < v1). From

the results above, we restrict our attention to the case where the incentive constraint ICr is binding

and pr ≥ v0. In the case where qt = 0 (resp. ql = 0), we can set pt = v0 (resp. pl = v1) without loss

of generality. We now assume that qt > 0 (resp. ql > 0). Since pt < v0 (resp. pl < v1) and pr ≥ v0,

Constraint ICn is not binding. We consider p̃t = pt + ε (resp. p̃l = pl + ε), with ε > 0 such that

pt + ε ≤ v0 (resp. pl + ε ≤ v1) and such that the incentive constraint ICn remains satisfied. By

construction, this new solution does not violate Constraints (5) and (6). Constraints (7) and (8)

remain unchanged, while Constraint (4) is loosened. Moreover, the new solution strictly increases

the value function (Equation (3)). This contradicts the optimality of (pr, pt, pl, qr, qt, ql).

Proof that qr = 1: Suppose qr < 1 to get a contradiction. If the resource constraint (Constraint (7))

is not binding, then the platform could increase qr by an arbitrarily small ε and can get strictly

better of. This contradicts with the optimality.

If, on the other hand, the resource constraint (Constraint (7)) is binding, then qrσD + qt(1−
σ)D + qlΓ = 1. In the earlier steps we have already shown that pt = v0, pl = v1, and (due to the

binding ICr) pr = 1− qt
qr

(1− v0)≥ v0.

• If ql > 0, then consider the following deviation, q̃r = qr + ε, and q̃l = ql− εσDΓ without altering

any other variable (we obviously have Γ > 0 since ql > 0). Clearly, under this deviation all

the constraints of problem P are satisfied. Moreover the platform’s objective value strictly

increases as follows:

p̃rq̃rσD+ q̃tpt(1−σ)D+ q̃lp̃lΓ + δV̄ (Γ̃′)

= prqrσD+ qtpt(1−σ)D+ qlplΓ + δV̄ (Γ′) + prσDε− plσDε

> prqrσD+ qtpt(1−σ)D+ qlplΓ + δV̄ (Γ′) because pr ≥ v0 > v1 = pl

This contradicts with the optimality of (pr, pt, pl, qr, qt, ql).

• If ql = 0, then we must have qt > 0 since the resource constraint (Constraints (7)) is binding,

and we always have σD < 1 from Assumption 1. Consider the deviation in which q̃r = qr + ε,

q̃t = qt− σ
1−σε, and p̃r = 1− q̃t

q̃r
(1−v0). By construction, q̃r(1− p̃r) = q̃t(1−v0), so Constraint (4)

is satisfied. Moreover, we have by construction q̃rσD+ q̃t(1−σ)D+ q̃lΓ = qrσD+qt(1−σ)D+

qlΓ, so Constraint (7)) is also satisfied. Finally, Constraint (5) is also satisfied, since it was

satisfied under the original 6-tuple (pr, pt, pl, qr, qt, ql), and now we have p̃r > pr. Note that the

platform’s objective function strictly increases as follows:

p̃rq̃rσD+ p̃tq̃t(1−σ)D+ p̃lq̃lΓ + δV̄ (Γ̃′)
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=

(
1− q̃t

q̃r
(1− v0)

)
q̃rσD+ v0q̃t(1−σ)D+ plqlΓ + δV̄ (Γ̃′)

= (q̃r− q̃t)σD+ q̃tv0D+ plqlΓ + δV̄ (Γ̃′)

= (qr− qt)σD+

(
ε+

σ

1−σ
ε

)
σD+ qtv0D−

σ

1−σ
v0Dε+ plqlΓ + δV̄ (Γ̃′)

> (qr− qt)σD+ qtv0D+ plqlΓ + δV̄ (Γ′) because v0 < 1 and Γ̃′ > Γ′

= prqrσD+ ptqt(1−σ)D+ plqlΓ + δV̄ (Γ′) because Constraint (4) is binding

This again contradicts with the optimality of (pr, pt, pl, qr, qt, ql).

Proof that If Γ> 0, then ql(D,Γ) = min
{

1, 1−σD−qt(D,Γ)(1−σ)D

Γ

}
: Let us assume that Γ> 0 and,

by contradiction, that ql < 1 and 1> qrσD+ qt(1−σ)D+ qlΓ. Then we can define q̃l = ql + ε, with

ε > 0 such that q̃l < 1 and 1> qrσD+ qt(1−σ)D+ q̃lΓ. By construction, Constraint (7) is satisfied,

and Constraints (4), (6) and (8) remain unchanged. Moreover, note that, since we have proved

that pt = v0, pl = v1 and pr ≥ v0, Constraint (5) is automatically satisfied. Finally, since pl = v1 > 0

and Γ> 0, the new solution strictly increases the value function. This contradicts the optimality

of (pr, pt, pl, qr, qt, ql).

Proof that pr = 1−qt(1−v0): We have already shown that the incentive constraint ICr is binding,

i.e., qr (1− pr) = qt[1− pt]. Since qr = 1 and pt = v0, it yields directly pr = 1− qt(1− v0).

This completes the proof.

EC.1.3. Proof of Proposition 3

Let us first re-write the Bellman equation for Problem (P):

V (D,Γ) = max
Γ′∈[

¯
ΓD,Γ̄D ]

Ṽ (D,Γ,Γ′)

= max
Γ′∈[

¯
ΓD,Γ̄D ]

{
σD

(
1− (1−σ)D−Γ′

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ′)v0 + min{Γ,1−D+ Γ′}v1 + δV̄ (Γ′)

}
To see that the value function V (D,Γ) is non-decreasing in Γ, note that

σD
(

1− (1−σ)D−Γ′

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ′)v0 + min{Γ,1−D+ Γ′}v1 is non-decreasing in Γ, and

that the term V̄ (Γ′) does not depend on Γ. Therefore, we directly obtain, for any D ∈ {L,H} and

any Γa < Γb:

V (D,Γb)≥ Ṽ (D,Γb,Γ
∗(D,Γa))≥ Ṽ (D,Γa,Γ

∗(D,Γa)) = V (D,Γa)

Let us now turn to the proof of concavity. We define Γλ = λΓa+ (1−λ)Γb, and aim to show that

V (D,Γλ)≥ λV (D,Γa) + (1− λ)V (D,Γb). We proceed by value iteration. Specifically, we initialize

V0(D,Γ) = 0,∀(D,Γ) ∈ {H,L}×Γ, and consider the following recursive sequence of functions, for

n≥ 0:

V̄n−1(Γ) = kVn−1(H,Γ) + (1− k)Vn−1(L,Γ),∀Γ∈Γ,
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Ṽn(D,Γ,Γ′) = σD
(

1− (1−σ)D−Γ′

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ′)v0 + min{Γ,1−D+ Γ′}v1 + δV̄n−1(Γ′),

Vn(D,Γ) = max
Γ′∈[

¯
ΓD,Γ̄D ]

Ṽn−1(D,Γ,Γ′).

By value iteration, we know that the sequence Vn converges to the optimal value function V (Bert-

sekas 2012). We will show by induction over n≥ 0 that Vn(D,Γλ)≥ λVn(D,Γa) + (1−λ)Vn(D,Γb).

By taking the limit when n→∞, this will yield concavity of V . First, note that the property is

clearly satisfied for n= 0. We now assume that it holds for some n− 1 and show it for n≥ 1.

For each Γ∈Γ, we introduce the following notations:

Γ∗n(D,Γ) = argmax
Γ′∈[

¯
ΓD,Γ̄D ]

Ṽn(D,Γ,Γ′).

We also define yλ = λΓ∗n(D,Γa) + (1− λ)Γ∗n(D,Γb). We have: Vn(D,Γλ) ≥ Ṽn(D,Γλ, yλ), which

yields:

Vn(D,Γλ)≥ σD
(

1− (1−σ)D−yλ
(1−σ)D

(1− v0)
)

+ ((1−σ)D− yλ)v0 + min{Γλ,1−D+ yλ}v1 + δV̄n−1(yλ)

Moreover, we have:

λV (D,Γa) + (1−λ)V (D,Γb)

= λ
[
σD

(
1− (1−σ)D−Γ∗n(D,Γa)

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ∗n(D,Γa))v0 + min{Γa,1−D+ Γ∗n(D,Γa)}v1 + δV̄n−1 (Γ∗n(D,Γa))

]
+ (1−λ)

[
σD

(
1− (1−σ)D−Γ∗n(D,Γb)

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ∗n(D,Γb))v0 + min{Γb,1−D+ Γ∗n(D,Γb)}v1 + δV̄n−1 (Γ∗n(D,Γb))

]
= σD

(
1− (1−σ)D−yλ

(1−σ)D
(1− v0)

)
+ ((1−σ)D− yλ)v0

+λmin{Γa,1−D+ Γ∗n(D,Γa)}v1 + (1−λ) min{Γb,1−D+ Γ∗n(D,Γb)}v1

+ δ
[
λV̄n−1 (Γ∗n(D,Γa)) + (1−λ)V̄n−1 (Γ∗n(D,Γb))

]
Note that the first line of the last equality stems from the fact that the first two terms of the

function Ṽn are linear in Γ′. Moreover, from the induction hypothesis, we know that V̄n−1(yλ) ≥

λV̄n−1 (Γ∗n(D,Γa)) + (1−λ)V̄n−1 (Γ∗n(D,Γb)). Therefore, a sufficient condition is to show that:

min{Γλ,1−D+ yλ} ≥ λmin{Γa,1−D+ Γ∗n(D,Γa)}+ (1−λ)min{Γb,1−D+ Γ∗n(D,Γb)}

We separate four cases:

1. If Γa ≤ 1−D+ Γ∗n(D,Γa) and Γb ≤ 1−D+ Γ∗n(D,Γb), then we have Γλ ≤ 1−D+ yλ, and we

directly obtain:

min{Γλ,1−D+ yλ}︸ ︷︷ ︸
=Γλ

= λmin{Γa,1−D+ Γ∗n(D,Γa)}︸ ︷︷ ︸
=Γa

+(1−λ)min{Γb,1−D+ Γ∗n(D,Γb)}︸ ︷︷ ︸
=Γb

.

2. If Γa ≤ 1−D+ Γ∗n(D,Γa) and Γb > 1−D+ Γ∗n(D,Γb), then we distinguish two sub-cases:
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– If Γλ ≤ 1−D + yλ, we write λΓa + (1− λ) (1−D+ Γ∗n(D,Γb)) < λΓa + (1− λ)Γb = Γλ,

which yields:

min{Γλ,1−D+ yλ}︸ ︷︷ ︸
=Γλ

≥ λmin{Γa,1−D+ Γ∗n(D,Γa)}︸ ︷︷ ︸
=Γa

+(1−λ)min{Γb,1−D+ Γ∗n(D,Γb)}︸ ︷︷ ︸
=1−D+Γ∗n(D,Γb)

.

– If Γλ > 1−D+ yλ, we write λΓa + (1− λ) (1−D+ Γ∗n(D,Γb))≤ λ (1−D+ Γ∗n(D,Γa)) +

(1−λ) (1−D+ Γ∗n(D,Γb)) = 1−D+ yλ, which yields:

min{Γλ,1−D+ yλ}︸ ︷︷ ︸
=1−D+yλ

≥ λmin{Γa,1−D+ Γ∗n(D,Γa)}︸ ︷︷ ︸
=Γa

+(1−λ)min{Γb,1−D+ Γ∗n(D,Γb)}︸ ︷︷ ︸
=1−D+Γ∗n(D,Γb)

.

3. If Γa > 1−D+ Γ∗n(D,Γa) and Γb ≤ 1−D+ Γ∗n(D,Γb), we proceed as in Case 2. by symmetry.

4. If Γa > 1−D+ Γ∗n(D,Γa) and Γb > 1−D+ Γ∗n(D,Γb), then we have Γλ > 1−D+ yλ, and we

directly obtain:

min{Γλ,1−D+ yλ}︸ ︷︷ ︸
=1−D+yλ

= λmin{Γa,1−D+ Γ∗n(D,Γa)}︸ ︷︷ ︸
=1−D+Γ∗n(D,Γa)

+(1−λ)min{Γb,1−D+ Γ∗n(D,Γb)}︸ ︷︷ ︸
=1−D+Γ∗n(D,Γb)

.

This proves that Vn(D,Γλ) ≥ λVn(D,Γa) + (1 − λ)Vn(D,Γb), and completes the proof that the

value function V is concave in Γ. We conclude by invoking the fact that a concave function is

differentiable almost everywhere.

EC.1.4. Some Remarks on the Partial Derivative of V (D,Γ)

In the remainder of the appendix, we extensively use the partial derivative of the value function

V (D,Γ) with respect to Γ, denoted by V ′(D,Γ). From Equation (9), we have:

V (D,Γ) = σD

(
1− (1−σ)D−Γ∗(D,Γ)

(1−σ)D
(1− v0)

)
+ ((1−σ)D−Γ∗(D,Γ))v0

+min{Γ,1−D+ Γ∗(D,Γ)}v1 + V̄ (Γ∗(D,Γ)).

Therefore we can get the derivative of V (D,Γ) as follows:

V ′(D,Γ) =
∂Γ∗(D,Γ)

∂Γ

(
σ− v0

1−σ
+ V̄ ′(Γ∗(D,Γ))

)
+
∂min{Γ,1−D+ Γ∗(D,Γ)}

∂Γ
v1.

As we will see ∂Γ∗(D,Γ)

∂Γ
is either equal to 1 or 0. Moreover, the second term on the RHS can have

two different values: v1 and 0. Therefore, V ′(D,Γ) can take four different expressions:

If
∂Γ∗(D,Γ)

∂Γ
= 0 and 1−D+ Γ∗(D,Γ)≤ Γ, then V ′(D,Γ) = 0 (EC.1)

If
∂Γ∗(D,Γ)

∂Γ
= 0 and 1−D+ Γ∗(D,Γ)> Γ, then V ′(D,Γ) = v1 (EC.2)

If
∂Γ∗(D,Γ)

∂Γ
= 1 and 1−D+ Γ∗(D,Γ)≤ Γ, then V ′(D,Γ) =

σ− v0

1−σ
+ V̄ ′(Γ∗(D,Γ)) (EC.3)

If
∂Γ∗(D,Γ)

∂Γ
= 1 and 1−D+ Γ∗(D,Γ)> Γ, then V ′(D,Γ) =

σ− v0

1−σ
+ v1 + V̄ ′(Γ∗(D,Γ)) (EC.4)

Before proceeding further, we highlight the intuition behind each of these four cases:
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• We have Equation (EC.1), because in this case, increasing the value of Γ does not change the

number of agents transferred to the next period, and the number of late rides.

• We have Equation (EC.2), because in this case, increasing the value of Γ increases the number

of late rides at a 1:1 rate, without altering the number of agents transferred to the next period.

• We have Equation (EC.3), because in this case, increasing the value of Γ, increases the number

of agents transferred to the next period at a 1:1 rate, without altering the number of late

rides.

• We have Equation (EC.4), because in this case, increasing the value of Γ, increases both the

number of late rides, and the number of agents transferred to the next period at a 1:1 rate.

EC.1.5. Proof of Lemma 1

It is sufficient to show that ∂Ṽ (D,Γ,Γ′)
∂Γ′ is a weakly increasing function of Γ and D. Notice that the

first two terms of the RHS of equation (13) are constant. The fourth term (i.e., the intertemporal

effect) does not depend on the value of Γ and D. Therefore, we just need to show that the third

term (i.e., the effect on late rides) is weakly increasing function of Γ and D. Notice that this term

is a step function of Γ′, and satisfies:

∂min{Γ,1−D+ Γ′}v1

∂Γ′
=

{
v1 if Γ′ < Γ +D− 1,
0 if Γ′ ≥ Γ +D− 1.

This directly shows that ∂Ṽ (D,Γ,Γ′)
∂Γ′ is a weakly increasing function of Γ and D.

EC.1.6. Proof of Lemma 2

Let us consider Γ0 such that ζ∗(D,Γ0) > Γ0, i.e., 1 − D − Γ∗(D,Γ0) > Γ0. We have
∂min{Γ0,1−D−Γ∗(D,Γ0)}v1

∂Γ′ = 0. Since Ṽ is differentiable almost everywhere, we have from Equa-

tion (13):

∂Ṽ (D,Γ0,Γ
∗(D,Γ0)− ε)
∂Γ′

=
σ(1− v0)

1−σ
− v0 + δV̄ ′(Γ∗(D,Γ0)− ε)≥ 0,

∂Ṽ (D,Γ0,Γ
∗(D,Γ0) + ε)

∂Γ′
=
σ(1− v0)

1−σ
− v0 + δV̄ ′(Γ∗(D,Γ0) + ε)≤ 0.

Let us now consider Γ≤ Γ0. We have ζ(D,Γ,Γ∗(D,Γ0)> Γ0 ≥ Γ, so ∂min{Γ,1−D+Γ∗(D,Γ0)}v1
∂Γ′ = 0.

We therefore obtain, as earlier:

∂Ṽ (D,Γ,Γ∗(D,Γ0)− ε)
∂Γ′

=
σ(1− v0)

1−σ
− v0 + δV̄ ′(Γ∗(D,Γ0)− ε)≥ 0,

∂Ṽ (D,Γ,Γ∗(D,Γ0) + ε)

∂Γ′
=
σ(1− v0)

1−σ
− v0 + δV̄ ′(Γ∗(D,Γ0) + ε)≤ 0.

In other words, we have proved that:

∂Ṽ (D,Γ,Γ∗(D,Γ0)− ε)
∂Γ′

=
∂Ṽ (D,Γ,Γ∗(D,Γ0)− ε)

∂Γ′
≥ 0
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∂Ṽ (D,Γ,Γ∗(D,Γ0) + ε)

∂Γ′
=
∂Ṽ (D,Γ,Γ∗(D,Γ0) + ε)

∂Γ′
≤ 0

Therefore Γ∗(D,Γ0) is also an optimal choice in state (D,Γ) too.16

EC.1.7. Proof of Proposition 4

We have, from Equation (13):

∂Ṽ (D,Γ,Γ′)

∂Γ′
≥ σ(1− v0)

1−σ
− v0 =

σ− v0

1−σ
≥ 0, ∀(D,Γ)∈ {H,L}×Γ, ∀Γ′ ∈ [

¯
ΓD, Γ̄D].

Therefore we always have: Γ∗(D,Γ) = Γ̄D, ∀(D,Γ) ∈ {H,L} × Γ. Notice that at the boundary

v0 = s, Γ∗(D,Γ) = Γ̄D is not necessarily unique, but is still an optimal solution.

EC.1.8. Proof of Lemma 3

By contradiction, let us consider Γ0 such that ζ∗(D,Γ0) < Γ0 and ζ∗(D,Γ0) < 1−D + Γ̄D (i.e.,

1−D+ Γ∗(D,Γ0)< Γ0 and Γ∗(D,Γ)< Γ̄D). This implies that:

∂min{Γ0,1−D+ Γ∗(D,Γ0)}v1

∂Γ′
= v1.

In consequence:

∂Ṽ (D,Γ0,Γ
∗(D,Γ0))

∂Γ′
≥ σ(1− v0)

1−σ
− v0 + v1 > 0

This contradicts the fact that Γ∗(D,Γ0) is optimal in state (D,Γ0). Notice that at the boundary

v0 = σ+ (1−σ)v1, the claim is correct without loss of generality.

EC.1.9. Proof of Lemma 4

Let us consider Γ0 such that ζ∗(D,Γ0) = min{Γ0,1−D + Γ̄D}. First, if ζ∗(D,Γ0) = 1−D + Γ̄D,

then Γ∗(D,Γ0) = Γ̄D and from Lemma 1, we know that for each Γ≥ Γ0 we have Γ∗(D,Γ) = Γ̄D, so

ζ∗(D,Γ) = 1−D+ Γ̄D. We now assume that Γ∗(D,Γ0)< Γ̄D. This implies that ζ∗(D,Γ0) = Γ0, i.e.,

Γ∗(D,Γ0) = 1−D + Γ0. Therefore, ∂min{Γ0,1−D+Γ∗(D,Γ0)}v1
∂Γ′ = 0, and then, for an arbitrarily small

ε > 0, we know that:

∂Ṽ (D,Γ0,Γ
∗(D,Γ0) + ε)

∂Γ′
=
σ(1− v0)

1−σ
− v0 + δV̄ ′(Γ∗(D,Γ0) + ε)≤ 0.

Let us consider Γ> Γ0 and assume by contradiction that ζ∗(D,Γ)> Γ.17 This can be re-written as

1−D+ Γ∗(D,Γ)> Γ, or Γ∗(D,Γ)>D− 1 + Γ. This implies that, for some ε′ > 0 arbitrarily small,

we have:
∂Ṽ (D,Γ,D− 1 + Γ + ε′)

∂Γ′
=
σ(1− v0)

1−σ
− v0 + δV̄ ′(D− 1 + Γ + ε′)> 0.

But for sufficiently small ε′ and ε we must have D − 1 + Γ + ε′ > Γ∗(D,Γ0) + ε. Due to the

concavity of the value function V , we therefore have V̄ ′(D− 1 + Γ + ε′)≤ V̄ ′(Γ∗(D,Γ0) + ε). This

is in contradiction with the two inequalities above.

16 These arguments are based on the assumption that the value of Γ∗(D,Γ0) is in the interior of the interval [
¯
ΓD, Γ̄D],

so that it is possible to take the partial derivative at Γ∗(D,Γ0)± ε. However, the result goes through for boundary
values as well, we just need to consider +ε or −ε for lower and upper bounds respectively.

17 Notice that, in Lemma 3, we already argued that ζ∗(D,Γ)≥min{Γ,1−D+ Γ̄D}.
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EC.1.10. Proof of Proposition 9

We already showed that, in region 2, the optimal policy function will be automatically pinned

down once we figure out the value of Γ∗(D,0), as follows:

Γ∗(D,Γ) =

{
Γ∗(D,0) if Γ≤ 1−D+ Γ∗(D,0),

min{Γ +D− 1, Γ̄D} if Γ≥ 1−D+ Γ∗(D,0).

We therefore aim to determine Γ∗(D,0) for D ∈ {H,L}. Note that Γ∗(D,0) can be (i equal to the

lower bound
¯
Γ (ii an interior solution in the interval (

¯
ΓD, Γ̄D), or (iii equal to the upper bound Γ̄D

In the following, we list all these possibilities for each demand realization D ∈ {H,L} separately.

H1) Γ∗(H,0) =
¯
ΓH

H2) Γ∗(H,0) = Γ1 ∈ (
¯
ΓH , Γ̄H)

H3) Γ∗(H,0) = Γ̄H

L1) Γ∗(L,0) =
¯
ΓL

L2) Γ∗(L,0) = Γ2 ∈ (
¯
ΓL, Γ̄L)

L3) Γ∗(L,0) = Γ̄L

Now, we elaborate on all of these cases separately to find out whether and when these possibilities

can be part of an optimal policy function Γ∗(D,Γ). Before doing so, we first point out some initial

observations regarding each of these cases. These observations will be useful in later stages. While

describing underlying properties of these cases, the parameter value of σ becomes particularly

important. In some cases, we further need to consider two subcases depending on whether σ < 0.5

or σ≥ 0.5.

Case H1: If the optimal policy function satisfies H1, then we must have the following:

Γ∗(H,Γ) =

{
Γ +H − 1 if Γ≤ 1−σH,

Γ̄H if Γ≥ 1−σH.

∂+Ṽ (H,0,
¯
ΓH)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(

¯
ΓH)≤ 0.

V ′(H,Γ) =

{
σ−v0
1−σ + v1 + δV̄ ′(Γ +H − 1) if Γ≤ 1−σH, (Equation (EC.4))

0 if Γ≥ 1−σH. (Equation (EC.1))

Notice that at Γ = 1− σH, the derivative V ′(D,Γ) does not exists. The two expressions provided

above, the first one is when Γ≤ 1− σH, and the other is when Γ≥ 1− σH, are respectively the

left and the right derivatives of V (D,Γ) at Γ = 1−σH. In what follows, we follow this convention,

in that the expressions provided at a kink point of a piece-wise defined derivative are respectively

the left and the right derivatives at the kink point.
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Case H2: If the optimal policy function satisfies H2, then we must have the following:

Γ∗(H,Γ) =


Γ1 if Γ≤ Γ1 + 1−H

Γ +H − 1 if Γ∈ [Γ1 + 1−H,1−σH]

Γ̄H if Γ≥ 1−σH

∂−Ṽ (H,0,Γ1)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′−(Γ1)≥ 0.

∂+Ṽ (H,0,Γ1Γ1)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(Γ1)≤ 0.

V ′(H,Γ) =


v1 if Γ≤ Γ1 + 1−H (Equation (EC.2))

σ−v0
1−σ + v1 + δV̄ ′(Γ +H − 1) if Γ∈ [Γ1 + 1−H,1−σH] (Equation (EC.4))

0 if Γ≥ 1−σH (Equation (EC.1))

Case H3: If the optimal policy function satisfies H3, then we must have the following:

Γ∗(H,Γ) = Γ̄H , ∀Γ∈Γ.

∂−Ṽ (H,0, Γ̄H)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′−(Γ̄H)≥ 0

V ′(H,Γ) =

{
v1 if Γ≤ 1−σH (Equation (EC.2))

0 if Γ≥ 1−σH (Equation (EC.1))

Case L1: If the optimal policy function satisfies L1, then we must have the following:

∂+Ṽ (L,0,0)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(

¯
ΓL)≤ 0.

Subcase L1a: If σ≥ 0.5, then

Γ∗(L,Γ) =

{
0 if Γ≤ 1−L

Γ +L− 1 if Γ≥ 1−L

V ′(L,Γ) =

{
v1 if Γ≤ 1−L (Equation (EC.2))

σ−v0
1−σ + v1 + δV ′(Γ +L− 1) if Γ≥ 1−L (Equation (EC.4))

Subcase L1b: If σ < 0.5, then

Γ∗(L,Γ) =


0 if Γ≤ 1−L

Γ +L− 1 if 1−L≤ Γ≤ 1−σL
Γ̄L if Γ≥ 1−σL

V ′(L,Γ) =


v1 if Γ≤ 1−L (Equation (EC.2))

σ−v0
1−σ + v1 + δV ′(Γ +L− 1) if 1−L≤ Γ≤ 1−σL (Equation (EC.4))

0 if Γ≥ 1−σL (Equation (EC.1))
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Case L2: If the optimal policy function satisfies L2, then we must have the following:

∂−Ṽ (L,0,Γ2)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′−(Γ2)≥ 0.

∂+Ṽ (L,0,Γ2)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(Γ2)≤ 0.

In this case we define subcases based on i) whether σ < 0.5, or σ≥ 0.5, and ii) whether Γ2 < 1−σH

or Γ2 ≥ 1−σH. Notice that when Γ2 ≥ 1−σH, we automatically have σ≥ 0.5. Therefore we have

three subcases in total.

Subcase L2a: If Γ2 < 1−σH, and σ≥ 0.5, then

Γ∗(L,Γ) =

{
Γ2 if Γ≤ 1−L+ Γ2,

Γ +L− 1 if Γ≥ 1−L+ Γ2.

V ′(L,Γ) =

{
v1 if Γ≤ 1−L+ Γ2, (Equation (EC.2)

σ−v0
1−σ + v1 + δV ′(Γ +L− 1) if Γ≥ 1−L+ Γ2. (Equation (EC.4))

Subcase L2a’: If Γ2 < 1−σH, and σ < 0.5, then

Γ∗(L,Γ) =


Γ2 if Γ≤ 1−L+ Γ2,

Γ +L− 1 if Γ∈ [1−L+ Γ2,1−σL],

Γ̄L if Γ≥ 1−σL.

V ′(L,Γ) =


v1 if Γ≤ 1−L+ Γ2, (Equation (EC.2))

σ−v0
1−σ + v1 + δV ′(Γ +L− 1) if Γ∈ [1−L+ Γ2,1−σL], (Equation (EC.4))

0 if Γ≥ 1−σL. (Equation (EC.1))

Subcase L2b: If Γ2 ≥ 1−σH, then

Γ∗(L,Γ) = Γ2, ∀Γ∈Γ.

V ′(L,Γ) = v1, ∀Γ∈Γ.

Case L3: If the optimal policy function satisfies L3, then we must have the following:

Γ∗(L,Γ) = Γ̄L, ∀Γ∈Γ.

∂−Ṽ (L,0, Γ̄L)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′−(Γ̄L)≥ 0

In this case, we have two subcases depending on the value of σ.

Subcase L3a: If σ≥ 0.5, then Γ̄L > 1−σH and:

V ′(L,Γ) = v1, ∀Γ∈Γ. (Equation (EC.2))
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Subcase L3b: If σ < 0.5, then Γ̄L ≤ 1−σH and:

V ′(L,Γ) =

{
v1 if Γ≤ 1−σL, (Equation (EC.2))

0 if Γ≥ 1−σL. (Equation (EC.1))

We carry out an analysis by separately examining the cases that are based on the value of

Γ∗(H,0), i.e., the cases H1 H2 and H3. Since the problem that we deal with is of a discrete nature,

we are likely to end up with corner solutions. For the sake of a clarified exposition, as long as it

does not cause any loss of generality, we focus on the corner solutions.

We first examine the instances in which we must have an interior solution for Γ∗(H,0), i.e., the

case H2. Suppose Γ∗(H,0) = Γ1 ∈ (
¯
ΓH , Γ̄H). The question is which one(s) of the cases L1, L2, and

L3 may coexist with H2 in the optimal mechanism. The fact that we must have an interior solution

for Γ∗(H,0) implies that:
σ− v0

1−σ
+ δV̄ ′(

¯
ΓH)> 0.

Therefore, we can immediately preclude the case L1. We can also preclude L2, because it would

require that Γ(H,0) = Γ1 = Γ2 = Γ(L,0); and since Γ1 >
¯
ΓH > 1−σH, this is possible only in subcase

L2b. However in subcase L2b, we know that V ′(L,Γ1) = v1. In addition, since Γ1 ∈ (
¯
ΓH , Γ̄H), we

must have V ′(H,Γ1) = 0 (Case H2). Therefore, V̄ ′(Γ1) = kV ′(H,Γ1) + (1− k)V ′(L,Γ1) = (1− k)v1.

Then in order to comply with the optimality conditions of H2, i.e.,
∂−Ṽ (H,0,Γ1)

∂Γ′ ≥ 0 and
∂+Ṽ (H,0,Γ1)

∂Γ′ ≤

0, we must have v0 = σ + δ(1− k)(1− σ)v1. But in this case, the platform is indifferent between

setting Γ1 and Γ̄H in state (H,0), and simply can choose the former. Therefore we do not have to

have an interior solution for Γ∗(H,0). An analogous contradiction follows in subcase L3a.

Thus, only Case L3b can co-exist with an interior solution for Γ(H,0). To comply with the

optimality conditions of H2, we must have Γ1 = 1− σL, since the value of V ′(L,Γ) changes only

at 1− σL. Finally, since V̄ ′−(1− σL) = v1, Condition H2 implies that σ−v0
1−σ + δ(1− k)v1 ≥ 0. All of

these arguments regarding the case H2 is summarized in the following claim.

Claim EC.1. In Region 2, if the optimal solution Γ(H,Γ) is unique and satisfies Case H2, then

we have:

i) Γ1 = 1−σL.

ii) σ < 0.5, and Γ∗(L,Γ) satisfies L3b.

iii) v0 ≤ σ+ (1−σ)δ(1− k)v1.

Next, we focus on Case H3, i.e., the case in which we have Γ∗(H,0) = Γ̄H . The underlying

optimality condition in this case, σ−v0
1−σ + δV̄ ′−(Γ̄H) ≥ 0. By concavity of V̄ (Proposition 3), this

implies that σ−v0
1−σ + δV̄ ′−(

¯
ΓL) ≥ σ−v0

1−σ + δV̄ ′−(Γ2) ≥ 0. This excludes Cases L1 and L2 and we only

left with Case L3. Let us assume that Case H3 co-exists with Case L3b. However, we know that
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V ′(H, Γ̄H) = 0 (Case H3), and also V ′(L, Γ̄H) = 0 (Case L3b). Therefore, σ−v0
1−σ +δV̄ ′−(Γ̄H) = σ−v0

1−σ < 0,

where the strict inequality follows from the fact that we are in Region 2 (v0 > s). This contradiction

the above condition; hence, Case H3 can only co-exist with Case L3a. We then have V̄ ′−(Γ̄H) = v1,

so σ−v0
1−σ +δV̄ ′−(Γ̄H)≥ 0 implies v0 ≤ σ+(1−σ)δ(1−k)v1. This is summarized in the following claim.

Claim EC.2. In region 2, if the optimal solution of Γ(H,Γ) satisfies Case H3, then we have:

i) σ≥ 0.5 and Γ∗(L,Γ) satisfies L3a.

ii) v0 ≤ σ+ (1−σ)δ(1− k)v1.

Finally, we turn to Case H1, i.e, Γ∗(H,0) =
¯
ΓH . Following the same strategy as before, we consider

all the cases L1, L2, and L3, and and see which one(s) can coexist with H1.

Let us first consider the coexistence of Case L3 with Case H1. Starting with Subcase L3a, we

we know that V ′(L,Γ) = v1, for each Γ ∈ Γ. Also, from Case H1, we know that V ′(H,
¯
ΓH) = 0.

Therefore, ∂Ṽ (H,0,Γ′)
∂Γ′ = σ−v0

1−σ +δ(1−k)v1 ≤ 0 constant along Γ′ ∈ [
¯
ΓH , Γ̄H ]. Moreover, in Subcase L3a,

we have Γ̄L ≥ 1−σH, therefore Assumption 2 implies that V ′(H, Γ̄L) = 0. Therefore, we must have:
∂−Ṽ (L,0,Γ̄L)

∂Γ′ = σ−v0
1−σ + δ(1− k)v1 ≥ 0. This together with the earlier expression requires that σ−v0

1−σ +

δ(1− k)v1 = 0. Hence, ∂Ṽ (H,0,Γ′)
∂Γ′ = 0, and the platform is indifferent between choosing anything in

the interval
¯
ΓH , Γ̄H ] at (H,0). This possibility, however, is already covered in Case H3 (Claim EC.2).

Now consider the coexistence of Subcase L3b together with Case H1, for which a necessary

condition is Γ̄L ≤
¯
ΓH . This condition, however, is automatically satisfied since σ < 0.5. Moreover,

we have the following optimality conditions.

∂+Ṽ (H,0,
¯
ΓH)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(

¯
ΓH)≤ 0.

∂−Ṽ (L,0, Γ̄L)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′−(Γ̄L)≥ 0.

From Case H1, we know that V ′(H,
¯
ΓH) = 0. In addition, since Γ̄L <

¯
ΓH < 1 − σL, we have

V ′(L,
¯
ΓH) = V ′(L, Γ̄L) = v1 (Case L3b). Finally, as we have Γ̄L < 1−σH in Case L3b, the condition

of Case H1 implies that V ′−(H, Γ̄L) = σ−v0
1−σ + v1 + δ(1− k)v1. We therefore obtain:

∂+Ṽ (H,0,
¯
ΓH)

∂Γ′
=
σ− v0

1−σ
+ δ(1− k)v1 ≤ 0.

∂−Ṽ (L,0, Γ̄L)

∂Γ′
=
σ− v0

1−σ
+ δ

(
k

[
σ− v0

1−σ
+ v1 + δ(1− k)v1

]
+ (1− k)v1

)
≥ 0.

The following claim summarizes all of these arguments to characterize the conditions under which

the optimal solution satisfies Cases H1 and L3b.

Claim EC.3. In region 2, if the optimal solution Γ∗(H,Γ) satisfies Cases H1 and L3b together,

then we must have:
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i) σ < 0.5.

ii) v0 ∈ [σ+ (1−σ)δ(1− k)v1, σ+ (1−σ) δ+δ
2(1−k)k

1+δk
v1].

We now investigate the coexistence of Case H1 and Case L1. We then have:

∂+Ṽ (L,0,0)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(

¯
ΓL)≤ 0.

We have V ′(L,0) = v1 (Case L1). Moreover, we obtain from the conditions of Case H1:

V ′+(H,0) =
σ− v0

1−σ
+ v1 + δkV ′+(H,H − 1) + δ(1− k)V ′+(L,H − 1)

=
σ− v0

1−σ
+ v1 + δ(1− k)

(
σ− v0

1−σ
+ v1 + δkV ′+(H,0) + δ(1− k)v1

)
We obtain:

V ′+(H,0) =
σ− v0

1−σ

(
1 + δ(1− k)

1− δ2(1− k)k

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2(1− k)k

)
Therefore the condition that is needed for the optimality of

¯
ΓL in state (L,0) translates into:

v0 ≥ σ+ (1−σ) δ+δ
2(1−k)k

1+δk
v1. Then the next claim summarizes these arguments.

Claim EC.4. In region 2, if the optimal solution Γ(H,Γ) satisfies Cases H1 and L1, then we

must have: v0 ≥ σ+ (1−σ) δ+δ
2(1−k)k

1+δk
v1.

We examine whether it is possible to have H1 and L2 in an optimal solution. First, consider

Case L2b, i.e., when Γ2 ≥ 1− σH, which also requires that σ ≥ 0.5. We know that 1− L+ Γ2 ≥

1−L+ 1−σH = (1−σ)H per Assumption 2. Therefore, Γ≤ 1−L+ Γ2 for all Γ∈Γ. Since we are

in Region L2, this implies that V ′(L,Γ) = v1 for all Γ∈Γ. Therefore,

∂Ṽ (L,0,Γ′)

∂Γ′
=
σ− v0

1−σ
+ δ (kV ′(H,Γ′) + (1− k)V ′(L,Γ′) )

=
σ− v0

1−σ
+ δ(1− k)v1 because V ′(H,Γ) = 0 (Case H1) and V ′(L,Γ) = v1

If σ−v0
1−σ + δ(1− k)v1 > 0, then Γ2 would be suboptimal at (L,0), since the platform could simply

choose Γ̄L and get strictly better off. Therefore, we must have σ−v0
1−σ + δ(1− k)v1 ≤ 0. If σ−v0

1−σ +

δ(1− k)v1 = 0, then all the values within the interval [1− σH, Γ̄L] are optimal in state (L,0). If

on the other hand, σ−v0
1−σ + δ(1− k)v1 < 0, then 1− σH is strictly better than all the other values

included in the interval [1− σH, Γ̄L] at state (L,0). In consequence, Γ2 = 1− σH without loss of

any generality. We further need to make sure that setting 1−σH−ε is not strictly better at (L,0).

In other words, we must have:

∂−Ṽ (L,0,Γ′)

∂Γ′
=
σ− v0

1−σ
+ δ
(
kV ′−(H,Γ′) + (1− k)V ′−(L,Γ′)

)
≥ 0.
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But we know that:

V ′−(H,1−σH) =
σ− v0

1−σ
+ v1 + δ(1− k)v1.

Then by using this we can get the corresponding necessary condition. The following claim summa-

rizes these findings.

Claim EC.5. In region 2, if the optimal solution Γ(H,Γ) satisfies Cases H1 and L2b, then

Γ2 = 1−σH without loss of any generality. Moreover, we have:

i) σ≥ 0.5.

ii) v0 ∈ [σ+ (1−σ)δ(1− k)v1, σ+ (1−σ) δ+δ
2(1−k)k

1+δk
v1].

If we have Case H1 together with Case L2a, i.e, Γ2 < 1− σH, and σ ≥ 0.5, then following some

algebra one can show that:

V ′(H,Γ) =


σ−v0
1−σ + v1(1 + δ(1− k)) if Γ≤ Γ2

σ−v0
1−σ

(
1+δ(1−k)

1−δ2k(1−k)

)
+ v1

(
1+δ(1−k)+δ2(1−k)2

1−δ2k(1−k)

)
if Γ∈ [Γ2,1−σH]

0 if Γ∈ [1−σH, (1−σ)H]

V ′(L,Γ) =

{
v1 if Γ≤ 1−L+ Γ2

σ−v0
1−σ

(
1+δk

1−δ2k(1−k)

)
+ v1

(
1+δ

1−δ2k(1−k)

)
if Γ≥ 1−L+ Γ2

The optimality conditions can be written as follows:

∂−Ṽ (L,0,Γ2)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′−(Γ2)≥ 0.

∂+Ṽ (L,0,Γ2)

∂Γ′
=
σ− v0

1−σ
+ δV̄ ′+(Γ2)≤ 0.

It yields:
σ− v0

1−σ
+ δk

(
σ− v0

1−σ
+ v1(1 + δ(1− k))

)
+ δ(1− k)v1 ≥ 0

σ− v0

1−σ
+ δk

(
σ− v0

1−σ

(
1 + δ(1− k)

1− δ2k(1− k)

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2k(1− k)

))
+ δ(1− k)v1 ≤ 0

Following some simple algebra, one can find that these inequalities respectively boil down to:

σ− v0

1−σ
(1 + δk) + v1(δ+ δ2(1− k)k)≥ 0.

σ− v0

1−σ
(1 + δk) + v1(δ+ δ2(1− k)k)≤ 0.

These two conditions are satisfied together if and only if

σ− v0

1−σ
(1 + δk) + v1(δ+ δ2(1− k)k) = 0.
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We obtain, for each Γ′ ∈ (Γ2,1−σH]:

∂Ṽ (L,0,Γ′)

∂Γ′
=
σ− v0

1−σ
+ δ

k V ′(H,Γ′)︸ ︷︷ ︸
=V ′(H,Γ2)

+(1− k)V ′(L,Γ′)︸ ︷︷ ︸
=V ′(L,Γ2)


=
σ− v0

1−σ
+ δk

[
σ− v0

1−σ

(
1 + δ(1− k)

1− δ2k(1− k)

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2k(1− k)

)]
+ δ(1− k)v1

= 0

The equality stems from the fact that V ′(H,Γ′), and V ′(L,Γ′) stays constant over Γ′ ∈ (Γ2,1−σH].

Therefore, the platform does not get hurt by increasing Γ∗(L,0) up to 1−σH. Hence it is without

loss of generality to assume that Γ2 = 1 − σH, and this case is already covered in Case L2b

(Claim EC.5).

If we have Case H1 together with Case L2a’, i.e, Γ2 < 1−σH, and σ < 0.5, then following some

algebra one can show that:

V ′(H,Γ) =


σ−v0
1−σ + v1(1 + δ(1− k)) if Γ≤ Γ2

σ−v0
1−σ

(
1+δ(1−k)

1−δ2k(1−k)

)
+ v1

(
1+δ(1−k)+δ2(1−k)2

1−δ2k(1−k)

)
if Γ∈ [Γ2, (1−σ)L]

σ−v0
1−σ + v1 if Γ∈ [(1−σ)L,1−σH]

0 if Γ∈ [1−σH, (1−σ)H]

V ′(L,Γ) =


v1 if Γ≤ 1−L+ Γ2

σ−v0
1−σ

(
1+δk

1−δ2k(1−k)

)
+ v1

(
1+δ

1−δ2k(1−k)

)
if Γ∈ [1−L+ Γ2,1−σL]

0 if Γ∈ [1−σL, (1−σ)H]

Then checking the conditions that guarantee the optimality of Γ2 at (L,0), we get the same

expressions above when we analyzed coexistence of Case L2a and Case H1. More precisely, putting

the optimality conditions together, we reach that, it is possible to sustain Case H1 together with

Case L2a’ in an optimal policy, only if the following condition holds.

σ− v0

1−σ
(1 + δk) + v1(δ+ δ2(1− k)k) = 0.

This in turn implies that:

∂Ṽ (L,0,Γ′)

∂Γ′
=
σ− v0

1−σ
+ δ
(
kV ′−(H,Γ′) + (1− k)V ′−(L,Γ′)

)
= 0, ∀Γ′ ∈ (Γ2, (1−σ)L].

Then the platform is indifferent between setting anything in (Γ2, (1− σ)L] in state (L,0). Then

this possibility is already covered in the coexistence of Cases H1 and L3b (Claim EC.3).

We conclude by putting Claims EC.1, EC.2, EC.3, EC.5, and EC.4 together.
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EC.1.11. Proof of Lemma 5

Let us consider a state (D,Γ0) such that ζ∗(D,Γ0)< Γ0, i.e., the number of drivers that the platform

can assign a late ride in state (D,Γ0) is lower than the number of agents waiting for a late ride.

Thus transferring more people to the next period in this optimal outcome would also increase

the number of late rides that the platform generates in this period. However, it is sub-optimal to

do so. Therefore, for ε > 0 sufficiently small, we obtain from Equation (13), using the fact that
∂min{Γ0,1−D−Γ∗(D,Γ0)}v1

∂Γ′ = v1:

∂V (D,Γ0,Γ
∗(D,Γ0) + ε)

∂Γ′
=
σ− v0

1−σ
+ v1 + δV̄ ′(Γ∗(D,Γ0) + ε)≤ 0

Moreover, for each Γ≥ Γ0, we have ∂min{Γ0,1−D−Γ∗(D,Γ0)}v1
∂Γ′ = v1, so for ε > 0 sufficiently small:

∂V (D,Γ,Γ∗(D,Γ0) + ε)

∂Γ′
=
σ− v0

1−σ
+ v1 + δV̄ ′(Γ∗(D,Γ0) + ε)

=
∂V (D,Γ0,Γ

∗(D,Γ0) + ε)

∂Γ′

≤ 0

Therefore, at each state (D,Γ) satisfying Γ≥ Γ0, we have Γ∗(D,Γ)≤ Γ∗(D,Γ0). At the same time,

we know from Lemma 1 that Γ∗(D,Γ)≥ Γ∗(D,Γ0). This concludes the proof.

EC.1.12. Proof of Lemma 6

In order to prove Lemma 6 we first show that V ′(D,Γ)≤ v1 for each D ∈ {H,L}. And for this we

consider the two cases D=L, and D=H separately.

• Let us prove that V ′(L,Γ) ≤ v1. Note, first, that V ′(L,0) = v1. Indeed, from Lemma 2, we

already know that Γ∗(L,Γ) is constant over [0,1−L] because ζ∗(L,Γ) = 1−L+ Γ∗(L,Γ)> Γ

for each Γ< 1−L. Therefore ∂Γ∗(L,Γ)

∂Γ
= 0, and since 1−L+ Γ ∗ (L,Γ)> Γ when Γ∈ [0,1−L),

we have V ′(L,0) = v1 (Equation (EC.2)). Given the concavity of V (D,Γ) as a function of Γ

(Proposition 3), we obtain V ′(L,Γ)≤ v1 for each Γ∈Γ.

• We now prove that V ′(H,Γ)≤ v1. We consider two possibilities separately: 1) Γ∗(H,0)>
¯
ΓH ,

and 2) Γ∗(H,0) =
¯
ΓH .

— If Γ∗(H,0) >
¯
ΓH , then ζ∗(H,0) > 0. This implies that Γ∗(H,Γ) = Γ∗(H,0) for all Γ ∈

[0, ζ∗(H,0)) (Lemma 2). In other words, we have ∂Γ∗(H,Γ)

∂Γ
= 0, and 1−H + Γ∗(H,Γ)> Γ

for all Γ ∈ [0, ζ∗(H,0)). Then from Equation (EC.2), we must have V ′(H,0) = v1. Then

V ′(H,Γ)≤ v1 for all Γ∈Γ per concavity.

— We now treat the case where Γ∗(H,0) =
¯
ΓH .

If Γ∗(H,Γ) =
¯
ΓH = H − 1 for all Γ ∈ Γ. We have ∂Γ∗(H,Γ)

∂Γ
= 0. Moreover, 1 − H +

Γ∗(H,Γ) ≤ 1 − H + (1 − σ)H = 1 − σH and Γ = H − 1 ≥ 1 − σH per Assumption 2.

Therefore, ∂min{Γ,1−H+Γ∗(H,Γ)}
∂Γ

= 0 and V ′(H,Γ) = 0 fo all Γ∈Γ.
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If Γ∗(H,Γ) is not constant over Γ, then we prove that there exists ε̄ > 0 such that

Γ∗(H,ε) =
¯
ΓH + ε for all ε < ε̄. Indeed, let us assume that Γ∗(H,ε) >

¯
ΓH + ε. Then

ζ∗(H,ε)> ε and, from Lemma 2, Γ∗(H,0) = Γ∗(H,ε). This contradicts that Γ∗(H,0) =
¯
ΓH .

Conversely, if Γ∗(H,ε)<
¯
ΓH + ε for every ε > 0, then ζ∗(H,ε)< ε so from Lemma 5, we

need to have Γ∗(H,Γ) = Γ∗(H,0) for all Γ. This contradicts the fact that Γ∗(H,Γ) is not

constant over Γ.

Then we have ∂Γ∗(H,Γ)

∂Γ
= 1 so per Equation (EC.4):

V ′(H,0) =
σ− v0

1−σ
+ v1 + δV̄ ′(H,H − 1)

We now prove that V ′(H,H − 1) = 0. First, note that: 1 − H + Γ∗(H,Γ) > Γ for

each Γ ≥ H − 1, since 1 − H − Γ̄H = 1 − σH < H − 1 by Assumption 2m so we have
∂min{Γ,1−H+Γ∗(H,Γ)}

∂Γ
= 0. We now show that Γ∗(H,Γ) stays constant for Γ ≥ H − 1. By

contradiction, suppose Γ∗(H,Γ) does not stay constant for Γ≥H−1. Then by monotonic-

ity (Lemma 1), there exist Γ0 and Γ1 satisfying H − 1≤ Γ0 < Γ1, such that Γ∗(H,Γ1)>

Γ∗(H,Γ0), and Γ∗(H,Γ0) is not optimal at (H,Γ1). Therefore:

V (H,Γ1) = σH
(

1− (1−σ)H−Γ∗(H,Γ1)

(1−σ)H
(1− v0)

)
+ ((1−σ)H −Γ∗(H,Γ1))v0+

(1−H + Γ∗(H,Γ1)) + δV̄ (Γ∗(H,Γ1))

>σH
(

1− (1−σ)H−Γ∗(H,Γ0)

(1−σ)H
(1− v0)

)
+ ((1−σ)H −Γ∗(H,Γ0))v0+

(1−H + Γ∗(H,Γ0)) + δV̄ (Γ∗(H,Γ0))

But from the optimality of Γ∗(H,Γ0) in state (H,Γ0), we know that:

V (H,Γ0) = σH
(

1− (1−σ)H−Γ∗(H,Γ0)

(1−σ)H
(1− v0)

)
+

((1−σ)H −Γ∗(H,Γ0))v0 + (1−H + Γ∗(H,Γ0)) + δV̄ (Γ∗(H,Γ0))

≥ σH
(

1− (1−σ)H−Γ∗(H,Γ1)

(1−σ)H
(1− v0)

)
+

((1−σ)H −Γ∗(H,Γ1))v0 + (1−H + Γ∗(H,Γ1)) + δV̄ (Γ∗(H,Γ1))

This gives us a contradiction. Therefore, Γ∗(H,Γ) stays constant for Γ ≥ H − 1 and
∂Γ∗(H,Γ)

∂Γ
= 0. It comes V ′(H,H − 1) = 0. We also showed that V ′(L,H − 1)≤ v1. Finally

we have σ−v0
1−σ +v1 < 0 since we are in Region 3. Therefore , V ′(H,0)≤ 0+ δ× (k×0+(1−

k)× v1) = v1, and hence by concavity V ′(H,Γ)≤ v1, for each Γ∈Γ.

In summary, we have shown that V ′(D,Γ)≤ v1 for each (D,Γ) ∈ {H,L}×Γ. We now use that

result to show that Γ∗(H,0) =
¯
ΓD, for each D ∈ {H,L}. Suppose by contradiction that Γ∗(D,0)>

¯
ΓD for some D ∈ {H,L}. If Γ∗(H,0)>

¯
ΓH , then there exists an arbitrarily small ε > 0 such that:

∂Ṽ (H,0,Γ∗(H,0)− ε)
∂Γ′

=
σ− v0

1−σ
+ δV̄ ′(Γ∗(H,0)− ε)
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≤ σ− v0

1−σ
+ δv1 from the claim above

< 0 because v0 >σ+ (1−σ)v1 (Region 3)

This contradicts the fact that Γ∗(H,0) is optimal is state (D,0). An analogous logic follows to

show that Γ∗(L,0) =
¯
ΓL.

EC.1.13. Proof of Proposition 10

Following the preliminary steps that we had in the main text, we can conclude that, in region 3,

the policy function Γ∗(H,Γ) can be in three different shapes, which we denote by A1, A2, and A3:

A1) It is constant and equal to
¯
ΓH for each Γ∈Γ.

A2) It increases with slope 1 up to the upper bound Γ̄H .

Γ∗(H,Γ) =

{
Γ +H − 1 if Γ≤ 1−σH
Γ̄H if Γ≥ 1−σH

A3) It increases with slope 1 up to Γ1 ∈ (
¯
ΓH , Γ̄H) and stays constant afterwards.

Γ∗(H,Γ) =

{
Γ +H − 1 if Γ≤ Γ1−H + 1

Γ1 if Γ≥ Γ1−H + 1

We already know the optimal policy satisfies Γ∗(L,Γ) =
¯
ΓL = 0 for all Γ ≤ 1− L. For the same

reason that we had three possible values for Γ∗(H,Γ), the policy function Γ∗(L,Γ) can be in three

different shapes in this region, which we denote by B1, B2, and B3:

B1) It is constant and equal to
¯
ΓL = 0 for each Γ∈Γ.

B2) It stays constant over Γ≤ 1−L, and then it increases with slope 1 as long as it is feasible.

— Sub-case B2a: If σ≥ 0.5, then Γ∗(L,Γ) =

{
0 if Γ≤ 1−L

Γ− 1 +L if Γ≥ 1−L

— Sub-case B2b: If σ < 0.5, then Γ∗(L,Γ) =


0 if Γ≤ 1−L

Γ− 1 +L if 1−L≤ Γ≤ 1−σL
Γ̄L if Γ≥ 1−σL

B3) It stays constant over Γ ≤ 1 − L, and then it increases with slope 1 up to a certain value

Γ2 ∈ (
¯
ΓL, Γ̄L) and stays constant afterwards.

Γ∗(L,Γ) =


0 if Γ≤ 1−L

Γ +L− 1 if Γ∈ [1−L,Γ2 + 1−L]

Γ2 if Γ∈ [Γ2 + 1−L, (1−σ)H]

In what follows, we analyze the three cases A1, A2, and A3 separately, and try to see under what

circumstances these cases may arise in the optimal solution. This step involves in analyzing the

coexistence of these cases with the three possibilities that we addressed for the function Γ∗(L,Γ),

i.e., cases B1, B2, and B3.
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Case A1: In this case V (H,Γ) is constant, and hence V ′(H,Γ) = 0, ∀Γ∈Γ. Moreover, since it is

optimal to set Γ∗(H,Γ) to its minimum value, i.e.,
¯
ΓH =H−1, we have

∂+Ṽ (H,Γ,
¯
ΓH )

∂Γ′ ≤ 0. It therefore

yields, from Equation (EC.4) that:

σ− v0

1−σ
+ v1 + δ(1− k)V ′+(L,

¯
ΓH)≤ 0 (EC.5)

Let us first consider the case in which σ−v0
1−σ + v1 + δ(1 − k)v1 ≤ 0. In this case we must have

Γ∗(L,Γ) = 0, ∀Γ ∈Γ, since V (D,Γ) is concave and V ′(L,0) = v1. Then Γ∗(D,Γ) remains constant

over Γ, so Cases A1 and B1 can coexist.

Let us now consider the case where σ−v0
1−σ +v1 +δ(1−k)v1 > 0. We already know that Γ∗(L,Γ) = 0,

and V ′(L,Γ) = v1, for each Γ ∈ [0,1 − L]. Now, since σ−v0
1−σ + v1 + δ(1 − k)v1 > 0, we must have

Γ∗(L,Γ) = Γ +L− 1 as long as Γ +L− 1≤ 1−L. This immediately rules out Case B1. We also

know that
∂+Ṽ (H,Γ,

¯
ΓH )

∂Γ′ ≤ 0, for each Γ∈Γ. But we have:

∂+Ṽ (L,Γ,L− 1)

∂Γ′
=
∂+Ṽ (H,Γ,

¯
ΓH)

∂Γ′
=
σ− v0

σ
+ v1 + δV̄ ′(1−L)≤ 0, ∀Γ≥ 1−L.

Therefore, Γ∗(L,Γ) ≤
¯
ΓH = H − 1 = 1− L without loss of generality, for each Γ ∈ Γ. This yields

Γ∗(L,Γ) = min{Γ̄L,1−L,Γ +L− 1} for all Γ> 1−L. In addition, note that, from Assumption 2,

we have Γ̄H − 1 + L < 1− L, so Γ− 1 + L < 1− L for all Γ. Therefore, this is incompatible with

Case B3. Hence, the only remaining possibility is B2. In order it to coexist with A1, we need to

make sure that Equation (EC.5) is satisfied. Since V ′+(L,1−L) = σ−v0
1−σ + v1 + δ(1− k)v1 , this is

equivalent to:
σ− v0

1−σ
(1 + δ(1− k)) + v1(1 + δ(1− k) + δ2(1− k)2)≤ 0.

The following claim summarizes these findings.

Claim EC.6. In region 3, if the optimal solution Γ(H,Γ) satisfies Case A1, then there are two

possibilities:

i) v0 ≥ σ+ (1−σ)v1(1 + δ(1− k)), and Γ∗(L,Γ) satisfies Case B1.

ii) v0 ∈
[
σ+ (1−σ)v1

1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
, σ+ (1−σ)v1(1 + δ(1− k))

)
, and Γ∗(L,Γ) satisfies Case

B2.

Case A2: In this case, we have, for all Γ≥ Γ̄+1−H,
∂−Ṽ (H,Γ,Γ̄H )

∂Γ′ ≥ 0. Note that we have, in Case

A2, Γ∗(H,Γ) = Γ1, so ∂Γ∗(D,Γ)

∂Γ
= 0 for Γ≥ Γ1−H + 1 . Moreover, 1−H + Γ∗(H,Γ)≤ 1−H + (1−

σ)H = 1−σH and Γ̄H =H−1≥ 1−σH per Assumption 2, which yields ∂min{Γ,1−D+Γ∗(D,Γ)}
∂Γ

v1. Per

Equation (EC.1), we obtain V ′−(H, Γ̄H) = 0. This implies that

σ− v0

1−σ
+ v1 + δ(1− k)V ′−(L, Γ̄H))≥ 0
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Due to the concavity of V (Proposition 3), it implies:

σ− v0

1−σ
+ v1 + δ(1− k)V ′−(L,Γ))≥ 0, ∀Γ∈Γ.

Therefore, the optimal solution of Γ∗(L,Γ) must be of the form B2. Moreover, we must have σ≥ 0.5,

because otherwise we would have 1− σL < Γ̄H and V ′(L, Γ̄H) = 0, which contradicts the above

inequality v0 > σ+ (1− σ)v1 in Region 3. Then the derivative of the value functions V (L,Γ), and

V (H,Γ) can be written as follows:

V ′(H,Γ) =

{
σ−v0
1−σ + v1 + δV̄ ′(Γ +H − 1) if Γ≤ 1−σH, Equation (EC.4)

0 if Γ≥ 1−σH. Equation (EC.1)

V ′(L,Γ) =

{
v1 if Γ≤ 1−L, Equation (EC.2)

σ−v0
1−σ + v1 + δV̄ ′(Γ +L− 1) if Γ≥ 1−L. Equation (EC.4)

Since Γ̄H +L− 1 = 1−σH and Γ̄H +L− 1≤ 1−L due to Assumption 2, we have:

V ′−(L, Γ̄H) =
σ− v0

1−σ
+ v1 + δkV ′−(H,1−σH) + δ(1− k)v1.

Moreover, we have:

V ′−(H,1−σH) =
σ− v0

1−σ
+ v1 + δ(1− k)V ′−(L, (1−σ)H) because V ′−(H, (1−σ)H) = 0

=
σ− v0

1−σ
+ v1 + δ(1− k)

(
σ− v0

1−σ
+ v1 + δkV ′−(H,1−σH) + δ(1− k)v1

)
because (1−σ)H ≥ 1−L due to Assumption 1

=
σ− v0

1−σ

(
1 + δ(1− k)

1− δ2(1− k)k

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2(1− k)k

)
.

Hence we can get:

V ′−(L, Γ̄H) =
σ− v0

1−σ

(
1 + δk

1− δ2(1− k)k

)
+ v1

(
1 + δ

1− δ2(1− k)k

)
.

Therefore the following comprises a necessary condition:

σ− v0

1−σ

(
1 + δ(1− k)

1− δ2(1− k)k

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2(1− k)k

)
≥ 0.

The following claim summarizes these findings regarding the case A2.

Claim EC.7. In region 3, if the optimal solution Γ(H,Γ) satisfies Case A2 only if:

i) σ≥ 0.5, and Γ∗(L,Γ) satisfies B2a.

ii) v0 <σ+ (1−σ)v1
1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
.
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Case A3: As is in Case A2, for each Γ∈
¯
ΓH , Γ̄H ], Γ∗(H,Γ) is constant, and 1−H+Γ∗(H,Γ)≤ Γ;

therefore we have V ′(H,Γ) = 0 from Equation (EC.1). Thus, if the optimal policy Γ∗(H,Γ) is of

the form A3, then for all Γ> Γ1 + 1−H we must have:

∂−Ṽ (H,Γ,Γ1)

∂Γ′
=
σ− v0

1−σ
+ v1 + δ(1− k)V ′−(L,Γ1)≥ 0, (EC.6)

∂+Ṽ (H,Γ,Γ1)

∂Γ′
=
σ− v0

1−σ
+ v1 + δ(1− k)V ′+(L,Γ1)≤ 0, (EC.7)

Moreover we have:

V ′(H,Γ) =

{
σ−v0
1−σ + v1 + δ(1− k)V ′L(Γ +H − 1) if Γ≤ Γ1 + 1−H

0 if Γ≥ Γ1 + 1−H

We distinguish three cases.

A3-1) If Γ1 ≥ Γ̄L, and s≥ 0.5, then Γ∗(L,Γ) is of the form B2a. To see this, first note that, due

to the optimality of Γ1 at Γ1−H + 1, we know that:

σ− v0

1−σ
+ v1 + δV̄−(Γ1)≥ 0.

But then, for each Γ> 1−L, setting the value Γ′ equal to L− 1 + Γ, which is feasible, is optimal.

In other words:

∂Ṽ (L,Γ,Γ +L− 1)

∂Γ′
=
σ− v0

1−σ
+ v1 + δV̄ ′(Γ +L− 1)≥ 0, ∀Γ≥ 1−L.

This stems from the fact that V̄ ′(Γ+L−1)≥ V̄ ′(Γ1) since Γ+L−1< Γ1 and V (D,Γ) is a concave

function of Γ. In this case, we also know that:

V ′L(Γ) =

{
v1 if Γ≤ 1−L

σ−v0
1−σ + v1 + δV̄ ′(Γ +L− 1) if Γ≥ 1−L

Suppose Γ≤ Γ1 + 1−H, then we have

V ′(H,Γ) =
σ− v0

1−σ
+ v1 + δ(1− k)V ′(L,Γ +H − 1).

Moreover, since H − 1 = 1−L (Assumption 2), we have Γ +H − 1> 1−L , and:

V ′(L,Γ +H − 1) =
σ− v0

1−σ
+ v1 + δkV ′(H,Γ) + δ(1− k)V ′(L,Γ)

In addition, when Γ≤ Γ1 + 1−H, from Assumption 2 we must have Γ≤ 1−L since Γ1 + 1−H <

(1−σ)H + 1−H = 1−σH <H − 1 = 1−L. Therefore, V ′(L,Γ) = v1. It comes:

V ′(H,Γ) =
σ− v0

1−σ
+ v1 + δ(1− k)

(
σ− v0

1−σ
+ v1 + δkV ′(H,Γ) + δ(1− k)v1

)
.
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Therefore,

V ′(H,Γ) =

{
σ−v0
1−σ

(
1+δ(1−k)

1−δ2(1−k)k

)
+ v1

(
1+δ(1−k)+δ2(1−k)2

1−δ2(1−k)k

)
if Γ≤ Γ1 + 1−H

0 if Γ≥ Γ1 + 1−H

V ′(L,Γ) =


v1 if Γ≤ 1−L

σ−v0
1−σ

(
1+δk

1−δ2(1−k)k

)
+ v1

(
1+δ

1−δ2(1−k)k

)
if Γ∈ [1−L,Γ1]

σ−v0
1−σ + v1 (1 + δ(1− k)) if Γ≥ Γ1

Then the inequalities (EC.6), and (EC.7) can be written as:

σ− v0

1−σ
+ v1 + δ(1− k)

(
σ− v0

1−σ

(
1 + δk

1− δ2(1− k)k

)
+ v1

(
1 + δ

1− δ2(1− k)k

))
≥ 0,

σ− v0

1−σ
+ v1 + δ(1− k)

(
σ− v0

1−σ
+ v1 (1 + δ(1− k))

)
≤ 0.

After rewriting these conditions we get:

σ− v0

1−σ

(
1 + δ(1− k)

1− δ2(1− k)k

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2(1− k)k

)
≥ 0,

σ− v0

1−σ
(1 + δ(1− k)) + v1

(
1 + δ(1− k) + δ2(1− k)2

)
≤ 0.

These conditions can hold at the same time if and only if both holds with equality. But this means

that the value function V (H,Γ) is constant and hence Γ∗(H,Γ) could be increased up to Γ̄H (the

value function would be unchanged). This, however, is already covered in case A2

A3-2) If Γ1 ≥ Γ̄L, and s < 0.5, then by proceeding as previously, we show that Γ∗(L,Γ) is of the

form B2. But since not all the values of Γ +L−1 are included in [
¯
ΓL, Γ̄L] because Γ̄H −L+ 1> Γ̄L

(since σ < 0.5), Γ∗(L,Γ) is now of the form B2b. Note that V ′(L,Γ) = 0, for every Γ∈ [1−σL, (1−
σ)H]. This implies that we must have Γ1 ≤ 1− σL; because otherwise V ′(H,Γ1 + 1−H − ε) =

σ−v0
1−σ + v1 + δ(1−k)V ′(L,Γ +H−1) for ε > 0 infinitesimally small. Then by following similar steps

with the previous case, we reach:

V ′(L,Γ) =


v1 if Γ≤ 1−L

σ−v0
1−σ

(
1+δk

1−δ2(1−k)k

)
+ v1

(
1+δ

1−δ2(1−k)k

)
if Γ∈ [1−L,Γ1]

σ−v0
1−σ + v1 (1 + δ(1− k)) if Γ∈ [Γ1,1−σL]

0 if Γ∈ [1−σL, (1−σ)H]

Following the arguments of the previous section one can see that Γ1 = 1− σL, and the following

constitutes a necessary condition.

σ− v0

1−σ
+ v1 + δ(1− k)

(
σ− v0

1−σ

(
1 + δk

1− δ2(1− k)k

)
+ v1

(
1 + δ

1− δ2(1− k)k

))
≥ 0,

which is equivalent to:

σ− v0

1−σ

(
1 + δ(1− k)

1− δ2(1− k)k

)
+ v1

(
1 + δ(1− k) + δ2(1− k)2

1− δ2(1− k)k

)
≥ 0.
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A3-3) If Γ1 ≤ Γ̄L, then Γ1 is amongst the possible realizations of Γ∗(L,Γ). However, in this case,

the value of Γ +L− 1, the maximal value of Γ′ in state (L,Γ), is always less than Γ1. To see this

note that Γ +L− 1≤ (1− σ)H +L− 1 = 1− σH <H − 1< Γ1 from Assumption 2. This suggests

that the optimal policy Γ′(L,Γ) is linearly increasing with slope 1 when Γ > 1− L, but it never

reaches to the maximal value. The former point follows from the fact that σ−v0
1−σ + v1 + V̄ ′−(Γ1)≥ 0,

and due to the concavity of V̄ , σ−v0
1−σ +v1 + V̄ ′−(Γ′)≥ 0 for each Γ′ ≤ Γ1. In consequence, the optimal

policy function Γ∗(L,Γ) is in form of B2a and σ ≥ 0.5. We conclude as in the case where Γ1 > ¯
¯
Γ

and σ≥ 0.5 (Case A3-1).

The following claim summarizes our analysis in Case A3 . It points out that, if the policy function

Γ∗(H,Γ) is of the form A3, then we can only have the second possibility (A3-2) out of the three.

Claim EC.8. In region 3, if the optimal solution Γ(H,Γ) satisfies Case A3 only if:

i) Γ1 = 1−σL.

ii) σ < 0.5 and Γ∗(L,Γ) is of the form B2b.

iii) v0 ≤ σ+ (1−σ)v1
1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
,

We conclude by putting Claims EC.6, EC.8, and EC.7 together.

Appendix EC.2: Proofs on First-best and Dynamic Pricing
Mechanisms

EC.2.1. Proof of Proposition 5

We first characterize properties of the optimal solution in Lemma EC.1, analogous to Proposition 2.

The proof of these properties follows from the same arguments, and is thus omitted for conciseness.

Lemma EC.1. The optimal solution to Problem PFB satisfies:

(i) qFBr (D,Γ) = 1 for each (D,Γ)∈ {H,L}×Γ.

(ii) If Γ> 0, then qFBl (D,Γ) = min
{

1, 1−σD−qFBt (D,Γ)(1−σ)D

Γ

}
.

We now turn to the proof of Proposition 5. We have, by definition, ṽ0 = σ+(1−σ)v0. By construc-

tion, the following equality is satisfied:

σD

(
1− (1−σ)D−Γ′

(1−σ)D
(1− ṽ0)

)
+ ((1−σ)D−Γ′)ṽ0 = σD+ ((1−σ)D−Γ′)v0

From Equation (9), Problem P with valuation parameter ṽ0 is given by:

V (D,Γ) = max
Γ′∈[

¯
ΓD,Γ̄D ]

{
σD

(
1− (1−σ)D−Γ′

(1−σ)D
(1− ṽ0)

)
+ ((1−σ)D−Γ′)ṽ0 + min{Γ,1−D−Γ′}v1

+ δ (kV (H,Γ′) + (1− k)V (L,Γ′))

}
= max

Γ′∈[
¯
ΓD,Γ̄D ]

σD+ ((1−σ)D−Γ′)v0 + min{Γ,1−D+ Γ′}v1 + δ (kVf (H,Γ′) + (1− k)Vf (L,Γ))
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From Equation (20), we obtain that the problem is equivalent to Problem PFB. The optimal

policy is then obtained by applying the result of Proposition 10 by noting that ṽ0 ∈ (σ+(1−σ)v1,1)

for any v0 ∈ (v1,1) and that the relationship between v0 and ṽ0 is monotonic. Specifically, we have:

• ṽ0 ∈ (σ+ (1−σ)v1,
¯̄
v1], if and only if v0 ∈

(
v1,

1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
v1

]
.

• ṽ0 ∈ (
¯̄
v1, ¯̄v1], if and only if v0 ∈

(
1+δ(1−k)+δ2(1−k)2

1+δ(1−k)
v1, (1 + δ(1− k))v1

]
.

• ṽ0 ∈ (¯̄v1,1), if and only if v0 ∈ ((1 + δ(1− k))v1,1).

EC.2.2. Proof of Proposition 6

From the formulation of PDP , the Blackwell sufficiency conditions (monotonicity, and discounting)

are clearly satisfied, hence a solution to Problem PDP always exists. Moreover, since the quantity

of rides provided x(D,Γ, p0), as well as the number of people transferred to the next period Γ′ both

stay constant over (0, v1], (v1, v0], and (v0,1], the optimal price always satisfies p0(D,Γ)∈ {1, v0, v1}.

In a given state (D,Γ), we assume, without loss of generality, that in case the platform is

indifferent between charging p0 ∈ {1, v0} and v1, it chooses price p0. We first prove that, if p∗0(D,Γ)∈

{1, v0} for each (D,Γ), then the optimal policy follows the one given in the proposition. We then

show that this policy is applied if and only if v1 ≤max{σL,v0L}.

We assume that p∗0(D,Γ)∈ {1, v0} for each (D,Γ). In this case, VDP (D,Γ) does not depend on the

value of Γ. Therefore, the platform determines the price p0 by optimizing the current-period profit,

i.e. p0× x(D,Γ, p0). Specifically, for each Γ, p∗0(H,Γ) = 1 if σH ≥ v0, and p∗0(H,Γ) = v0 otherwise.

Similarly, p∗0(L,Γ) = 1 if σL ≥ v0L, and p∗0(L,Γ) = v0 otherwise. We therefore obtain the policy

given in the proposition.

We now show that this policy is applied if and only if v1 ≤max{σL,v0L}.

• Let us assume that p∗0(D,Γ) ∈ {1, v0} for each (D,Γ) and, by contradiction, that v1 >

max{σL,v0L}. Note that, since p∗0(D,Γ) ∈ {1, v0}, Vs(D,Γ) does not depend on Γ. Let us

consider Γ0 > 1−L. We have:

If p∗0(L,Γ0) = 1, then VDP (L,Γ0) = σL+ δ (kVDP (H, (1−σ)L) + (1− k)VDP (L, (1−σ)L))

If p∗0(L,Γ0) = v0, then VDP (L,Γ0) = v0L+ δ (kVDP (H,0) + (1− k)VDP (L,0))

However, if the platform deviates in the period under consideration by charging a price v1 with-

out changing the policy in any of the subsequent periods, then its total expected discounted

profit, denoted by Ṽs(L,Γ0, v1), becomes:

ṼDP (L,Γ0, v1) = v1 + δ (kVDP (H,Γ′) + (1− k)VDP (L,Γ′)) where Γ′ = (1−σ)L

[
1− 1

L+ Γ0

]
Since, by assumption, v1 > max{σL,v0L}, and VDP (D,Γ) does not depend on Γ, we obtain

that ṼDP (L,Γ0, v1)>Vs(L,Γ0). This contradicts the optimality of p∗0(L,Γ0).
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• Let us assume that v1 ≤max{σL,v0L}. Note that setting p0 = v1 can bring a per-period profit

of at most v1. However, we have identified above a policy that yields a per-period profit of

max{σL,v0L} in low-demand periods and of max{σH,v0} in high-demand periods. Therefore,

this policy dominates any policy that involves charging v1 in some states.

Appendix EC.3: Proofs on Static and Demand-dependent Mechanisms
EC.3.1. Proof of Proposition 7

For each (D,Γ)∈ {H,L}×{ΓHS ,ΓLS}, we have:

VS(D,Γ) = π(D,Γ) + δ
(
kVS(H,ΓDS ) + (1− k)VS(L,ΓDS )

)
,

where π(D,Γ) = qrσDpr + qt(1−σ)Dpt+ qlΓpl is the within-period profit. Following some algebra:

V S(0) = kπ(H,0) + (1− k)π(L,0)

+
δ

1− δ
(
k2π(H,ΓHS ) + k(1− k)π(H,ΓLS) + (1− k)kπ(L,ΓHS ) + (1− k)2π(L,ΓLS)

)
Under the optimal static menu, the capacity constraint must bind in state (D,Γ) = (H,ΓHS ):

qrσH + qt(1−σ)H + ql (1− qt)(1−σ)H︸ ︷︷ ︸
=ΓH

S

= 1.

From this equation, we obtain:

qt ≤
1−σH

(1−σ)H
,

ql =
1−σH − qt(1−σ)H

(1− qt)(1−σ)H
.

Following the same logic as in Proposition 2, we can see that the optimal solution satisfies:

qr = 1, pt = v0, pl = v1, pr = 1− qt(1− v0).

Therefore, the platform’s profit-maximization problem becomes:

max
qt≤ 1−σH

(1−σ)H



k [σH(1− qt(1− v0)) + qtv0(1−σ)H] + (1− k) [σL(1− qt(1− v0)) + qtv0(1−σ)L]

δk2

1−δ

[
σH(1− qt(1− v0)) + qtv0(1−σ)H + 1−σH−qt(1−σ)H

(1−qt)(1−σ)H
(1− qt)(1−σ)Hv1

]
+ δk(1−k)

1−δ

[
σH(1− qt(1− v0)) + qtv0(1−σ)H + 1−σH−qt(1−σ)H

(1−qt)(1−σ)H
(1− qt)(1−σ)Lv1

]
+ δ(1−k)k

1−δ

[
σL(1− qt(1− v0)) + qtv0(1−σ)L+ 1−σH−qt(1−σ)H

(1−qt)(1−σ)H
(1− qt)(1−σ)Hv1

]
+ δ(1−k)2

1−δ

[
σL(1− qt(1− v0)) + qtv0(1−σ)L+ 1−σH−qt(1−σ)H

(1−qt)(1−σ)H
(1− qt)(1−σ)Lv1

]


Following some algebra, the problem becomes:

max
qt≤ 1−σH

(1−σ)H

Constant+
1

1− δ
[kH + (1− k)L] [qt(v0−σ− δ(1−σ)v1)]

Therefore the optimal solution satisfies: qt = 0 and ql = 1−σH
(1−σ)H

if v0 ≤ σ+δ(1−σ)v1, and qt = 1−σH
(1−σ)H

and ql = 0 otherwise.
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EC.3.2. Proof of Proposition 11

For each (D,Γ)∈ {H,L}×{ΓHDD,ΓLDD}, we have:

VDD(D,Γ) = π(D,Γ) + δ
(
kVDD(H,ΓDDD) + (1− k)VDD(L,ΓDDD)

)
,

where π(D,Γ) = qr(D)σDpr(D) + qt(D)(1 − σ)Dpt(D) + ql(D,Γ)Γpl(D,Γ) is the within-period

profit. Following some algebra, we get:

V DD(0) = kπ(H,0) + (1− k)π(L,0)

+
δ

1− δ
(
k2π(H,ΓHDD) + k(1− k)π(H,ΓLDD) + (1− k)kπ(L,ΓHDD) + (1− k)2π(L,ΓLDD)

)
Following the same logic as in Proposition 2, we can see that the optimal solution satisfies:

qr(D) = 1, ∀D ∈ {H,L},

pt(D) = v0, ∀D ∈ {H,L},

pl(D,Γ) = v1, ∀(D,Γ)∈
{
{H,L}×{ΓHDD,ΓLDD}

}
pr(D) = 1− qt(D)(1− v0), ∀D ∈ {H,L},

qt(H)≤ 1−σH
(1−σ)H

.

For a given menu, the number of late services provided in state (D,Γ)∈ {{H,L}×{ΓHDD,ΓLDD}} is

given by min{RD,Γ}, where RD = 1−σD− qt(D)(1−σ)D is the number of suppliers that remain

available upon provision of timely services. The platform’s problem becomes:

max
qt(H)≤ 1−σH

(1−σ)H
,

qt(L)



k [σH(1− qt(H)(1− v0)) + qt(H)v0(1−σ)H]

+(1− k) [σL(1− qt(L)(1− v0)) + qt(L)v0(1−σ)L]

+ δk2

1−δ [σH(1− qt(H)(1− v0)) + qt(H)v0(1−σ)H + v1 min{RH ,ΓHDD}]

+ δk(1−k)

1−δ [σH(1− qt(H)(1− v0)) + qt(H)v0(1−σ)H + v1 min{RH ,ΓLDD}]

+ δ(1−k)k

1−δ [σL(1− qt(L)(1− v0)) + qt(L)v0(1−σ)L+ v1 min{RL,ΓHDD}]

+ δ(1−k)2

1−δ [σL(1− qt(L)(1− v0)) + qt(L)v0(1−σ)L+ v1 min{RL,ΓLDD}]


Note that 1 − σH − qt(H)(1 − σ)H ≤ (1 − qt(H))(1 − σ)H, since 1 − σH ≤ (1 − σ)H; therefore

min{RH ,ΓHDD} = RH . Similarly 1 − σL − qt(L)(1 − σ)L ≥ (1 − qt(L))(1 − σ)H, since 1 − σL ≤

(1−σ)L; therefore min{RL,ΓLDD}= ΓLDD. We then distinguish two cases, following simple algebra:

1) If qt(H)H − qt(L)L≥ d(1−2σ)

1−σ , then min{RH ,ΓLDD}=RH and min{RL,ΓHDD}= ΓHDD.

2) If qt(H)H − qt(L)L≤ d(1−2σ)

1−σ , then min{RH ,ΓLDD}= ΓLDD and min{RL,ΓHDD}=RL.

In order to solve the above problem, we define two sub-problems, which we refer to as (P1
DD) and

(P2
DD), based on whether qt(H)H − qt(L)L≥ d(1−2σ)

1−σ or not. Then by comparing the solutions of

Problems (P1
DD) and (P2

DD) , we will derive the optimal solution of the overall Problem (PDD).
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Problem (P1
DD) With min{RH ,ΓLDD}=RH , min{RL,ΓHDD}= ΓHDD, the problem becomes:

max
qt(L)

qt(H)≤ 1−σH
(1−σ)H

Constant+
1

1− δ

{
qt(H)Hk [v0−σ− δv1(1−σ)(2− k)]
+qt(L)L(1− k) [v0−σ− δv1(1−σ)(1− k)]

}

s.t. qt(H)H − qt(L)L≥ d(1− 2σ)

1−σ
.

• When σ < 0.5

— When v0 ≤ σ+ δ(1−σ)v1, the solution to Problem (P1
DD) satisfies:

qt(H) =
d(1− 2σ)

(1−σ)H
, qt(L) = 0.

— When v0 ≥ σ+ δ(1−σ)v1, the solution to Problem (P1
DD) satisfies:

qt(H) =
1−σH

(1−σ)H
, qt(L) = 1

• When σ≥ 0.5.

— When v0 ≤ σ+ δ(1−σ)v1(1− k), the solution to Problem (P1
DD) satisfies:

qt(H) = 0, qt(L) = 0.

— When v0 ∈ [σ+ δ(1−σ)v1(1− k), σ+ δ(1−σ)v1], the solution to Problem (P1
DD) satisfies:

qt(H) = 0, qt(L) =
d(2σ− 1)

(1−σ)L
.

— When v0 ≥ σ+ δ(1−σ)v1, the solution to Problem (P1
DD) satisfies:

qt(H) =
1−σH

(1−σ)H
, qt(L) = 1

Problem (P2
DD) With min{RH ,ΓLDD}= ΓLDD, min{RL,ΓHDD}=RL, the problem becomes:

max
qt(L)

qt(H)≤ 1−σH
(1−σ)H

Constant+
1

1− δ

{
qt(H)Hk [v0−σ− δv1(1−σ)k]
+qt(L)L(1− k) [v0−σ− δv1(1−σ)(1 + k)]

}

s.t. qt(H)H − qt(L)L≤ d(1− 2σ)

1−σ
.

• When σ < 0.5

— When v0 ≤ σ+ δ(1−σ)v1k, the solution to Problem (P2
DD) satisfies:

qt(H) = 0, qt(L) = 0.

— When v0 ∈ [σ+ δ(1−σ)v1k,σ+ δ(1−σ)v1], the solution to Problem (P2
DD) satisfies:

qt(H) =
d(1− 2σ)

(1−σ)H
, qt(L) = 0.
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— When v0 ≥ σ+ δ(1−σ)v1, the solution to Problem (P2
DD) satisfies:

qt(H) =
1−σH

(1−σ)H
, qt(L) = 1.

• When σ≥ 0.5.

— When v0 ≤ σ+ δ(1−σ)v1, the solution to Problem (P1
DD) satisfies:

qt(H) = 0, qt(L) =
d(2σ− 1)

(1−σ)H
.

— When v0 ≥ σ+ δ(1−σ)v1, the solution to Problem (P1
DD) satisfies:

qt(H) =
1−σH
(1−σ)L

, qt(L) = 1

Now by using the solutions of (P1
DD) and (P2

DD), we characterize the solution to Problem (PDD).

• When σ < 0.5, the solution to problem (P2
DD) solves the global problem. Indeed, the solutions

of (P1
DD) and (P2

DD) differ only when v0 ≤ σ + δ(1 − σ)v1k; in this region, the solution to

Problem (P2
DD) (pt(H) = pt(L) = 0) yields a higher value of the objective function.

• When σ≥ 0.5, the solution to problem (P1
DD) solves the global problem. Indeed, the solutions

of (P1
DD) and (P2

DD) differ only when v0 ≤ σ+ δ(1− σ)v1(1− k); in this region, the solution

to Problem (P1
DD) (pt(H) = pt(L) = 0) yields a higher value of the objective function.

EC.3.3. Proof of Proposition 8

Recall that the maximum relative gain is defined as:

Rmax = max
v0∈(v1,1)

R(v0), where R(v0) =
V (0)−V DD(0)

V DD(0)
.

Proof that Rmax ≥R1(k, d, v1, σ). Let us denote v+
0 = σ+ δ(1−σ)v1, which defines the boundary

between Regions B and C for the demand-dependent mechanism. Moreover, as δ→ 1, v+
0 converges

to the boundary between Region 2c and Region 3a for the optimal mechanism.

Demand-dependent Mechanism:

In Region B, ΓLDD = (1−σ)L and ΓHDD = 1−σL. Let VDD be the vector of steady-state values:

VDD =

[
V DD(ΓLDD)
V DD(ΓHDD)

]
.

We have:

VDD =

[
(1− k) [σL+ (1−σ)Lv1] + k[σHpβr + (1− 2σ)dv0 + (1−σ)Lv1]

(1− k)[σL+ (1−σL)v1] + k[σHpβr + (1− 2σ)dv0 + (1−σ)Lv1]

]
+ δ

[
(1− k) k

(1− k) k

]
×VDD,

where

pβr = 1− (1− 2σ)d

(1−σ)H
(1− v0).
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Moreover, we have:

V DD(0) = (1− k) [σL] + k [σH] + δ
[
(1− k) k

]
×VDD

After some algebra, we get:

V DD(0) = 1
1−δ

[
σL(1− k) +σHpβrk+ (1− 2σ)dv0k︸ ︷︷ ︸

=σHk+(1−2σ)d
v0−σ
1−σ k

+δ(1−σ)Lv1(1− k+ k2) + δ(1−σL)v1(1− k)k
]

General Mechanism:

In Region 2c, there are 5 steady-state values of Γ: 0 < (1 − σ)L < H − 1 < 1 − σL < (1 − σ)H.

Moreover, we know that V (1− σL) = V ((1− σ)H), since the first-period and continuation profits

are identical with these two different values of Γ. Then, let V be a vector defined as:

V =


V (0)

V ((1−σ)L)
V (H − 1)
V (1−σL)

 .
We have:

V =


(1− k) [Lv0] + k[σHpαr + (1−σH)v0]

(1− k) [Lv0 + (1−σ)Lv1] + k[σHpβr + (1− 2σ)dv0 + (1−σ)Lv1]

(1− k) [Lv0 + dv1] + k[σH + (1−σH)v1]

(1− k) [σL+ (1−σL)v1] + k[σH + (1−σH)v1]


︸ ︷︷ ︸

F

+δ


(1− k) 0 k 0

(1− k) 0 0 k

(1− k) 0 0 k

0 (1− k) 0 k


︸ ︷︷ ︸

A

×V,

where

pαr = 1− 1−σH
(1−σ)H

(1− v0), and pβr = 1− (1− 2σ)d

(1−σ)H
(1− v0).

Then V = (I− δA)
−1

F yields:

V (0) =
1

1− δ

(
4∑
i=1

µi
µ1 +µ2 +µ3 +µ4

F(i)

)
,

where

µ1 = 1 + δ2k2− δk− δ2k,

µ2 = δ3k2− δ3k3,

µ3 = δk+ δ3k3− δ2k2− δ3k2,

µ4 = δ2k2.

Then by denoting µ̄= µ1 +µ2 +µ3 +µ4 = 1 + δ2k2− δ2k, and after some algebra we get:

V (0) = 1
(1−δ)µ̄

(
Lv0(1− k)(µ1 +µ2 +µ3) +σL(1− k)µ4 +σHkµ̄+ (µ1(1−σH) +µ2(1− 2σ)d) v0−σ

1−σ k
+(1−σ)Lv1µ2 + dv1(1− k)µ3 + (1−σL)v1(1− k)µ4 + (1−σH)v1k(µ3 +µ4)

)
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Relative Gain at v0 = v+
0 :

We get:

R(v+
0 ) =

(
(µ1 +µ2 +µ3)L(v+

0 −σ)(1− k) +µ1(1−σH)
v+0 −σ
1−σ k− (µ1 +µ3 +µ4)(1− 2σ)d

v+0 −σ
1−σ k+ dv1(1− k)µ3

+(1−σ)Lv1 (µ2− δ(1− k+ k2)µ̄) + (1−σL)v1(1− k) (µ4− δkµ̄) + (1−σH)v1k(µ3 +µ4)

)
σL(1− k) +σHpβrk+ (1− 2σ)dv+

0 k+ δ(1−σ)Lv1(1− k+ k2) + δ(1−σL)v1(1− k)k
.

By using the fact that v0 = v+
0 , and taking the limit when δ→ 1, we get:

lim
δ→1

R(v+
0 ) =

(1−σ)Lv1k
2(1− k)2

σL(1− k) +σHk+ (1− 2σ)dv1k+ (1−σ)Lv1(1− k+ k2) + (1−σL)v1(1− k)k
.

Proof that Rmax ≥R2(d, v1, σ) when k= 0.5. Let us denote v−0 = max{v1, σ+ δ(1−σ)kv1}, which

either defines the boundary between Regions A and B for the demand-dependent mechanism, or

the case where v0 = v1 (if Region A does not exists). Moreover, when k = 0.5, we know that,

when v−0 = σ+ δ(1− σ)kv1, v−0 defines the boundary between Regions 2a and 2b for the optimal

mechanism. When v−0 = v1, v−0 may belong to Region 2b or to Region 2c.

Demand-dependent Mechanism:

In Region B, ΓLDD = (1−σ)L and ΓHDD = 1−σL. We already know that:

V DD(0) = 1
1−δ

[
σL(1− k) +σHk+ (1− 2σ)d v0−σ

1−σ k+ δ(1−σ)Lv1(1− k+ k2) + δ(1−σL)v1(1− k)k
]

General Mechanism

There are 3 steady-state values of Γ: (1− σ)L < 1− σL < (1− σ)H. We know that V (1− σL) =

V ((1−σ)H). Let V be a vector defined as:

V =

[
V ((1−σ)L)
V (1−σL)

]
.

We have:

V =

[
(1− k) [σL+ (1−σ)Lv1] + k[σHpβr + (1− 2σ)dv0 + (1−σ)Lv1]

(1− k)[σL+ (1−σL)v1] + k[σH + (1−σH)v1]

]
︸ ︷︷ ︸

F

+δ

[
(1− k) k

(1− k) k

]
×V,

where

pβr = 1− (1− 2σ)d

(1−σ)H
(1− v0).

From Region 2b’s optimal policy (Γ∗(H,0) =H − 1, and Γ∗(H,H − 1) = (1−σ)H) we get:

V (0) = (1− k) [σL] + k [σHpαr + (1−σH)v0] + δk(1− k) [σL+ dv1] + δk2 [σH + dv1]

+ δ(1− k)V ((1−σ)L) + δ2k(1− k)V ((1−σ)L) + δ2k2V ((1−σ)H)

This can be rewritten as follows:

V (0) = (1− k)σL(1 + δk) + kσH(1 + δk) + k(1−σH)
v0−σ
1−σ

+ δkdv1 +
δ

1− δ
[
(1− k) δk

]
F
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After some algebra, we get:

V (0) = 1
1−δ

[
σL(1− k) +σH + (1− δ)k(1−σH) v0−σ

1−σ + δ(1− δ)kdv1 + δ(1− 2σ)dv0−σ
1−σ k(1− k)

+δ(1−σ)Lv1(1− k) + δ2(1−σL)v1k(1− k) + δ2(1−σH)v1k
2

]
Relative Gain at v0 = v−0 :

We get:

R(v−0 ) =
−((1− δ)k+ δ2k)(1− 2σ)d v0−σ

1−σ − δ(1−σ)Lv1k
2 + δ2(1−σH)v1k

2− (δ− δ2)(1−σL)v1(1− k)k

σL(1− k) +σHk+ (1− 2σ)d v0−σ
1−σ k+ δ(1−σ)Lv1(1− k+ k2) + δ(1−σL)v1(1− k)k

.

By using the facts that δ→ 1, k= 0.5 and v−0 = max{σ+ δ(1−σ)kv1, v1}, we get the ratio:

R(v−0 )→


(1−2σ)dv1

8σ+2(1−2σ)dv1+6(1−σ)Lv1+2(1−σL)v1
if v−0 = σ+ δ(1−σ)kv1,

(1−2σ)d
(1−v1)σ

1−σ

4σ+2(1−2σ)d
v1−σ
1−σ +3(1−σ)Lv1+(1−σL)v1

if v−0 = v1.

Appendix EC.4: Proofs of Appendix C
EC.4.1. Baseline Two-period Model

The following lemma asserts that the initial findings provided in Proposition 2 carry over to the

two-period setting. The proof uses identical arguments, and is thus omitted for conciseness.

Lemma EC.2. The solution to above problem satisfies, at each τ ∈ {1,2}, in each state (Dτ ,Γτ ):

(i) pt,τ (Dτ ,Γτ ) = v0, and pl,τ (Dτ ,Γτ ) = v1.

(ii) qr,τ (Dτ ,Γτ ) = 1, and pr,τ (Dτ ,Γτ )≥ v0.

(iii) If Γτ > 0, then ql,τ (Dτ ,Γτ ) = min
{

1,
1−qr,τ (Dτ ,Γτ )σDτ−qt,τ (Dτ ,Γτ )(1−σ)Dτ

Γτ

}
.

(iv) Constraint ICr,τ is binding, and hence pr,τ (Dτ ,Γτ ) = 1− qt,τ (Dτ ,Γτ )(1− v0).

EC.4.1.1. Proof of Proposition 12

Period 2: The problem in Period 2 can be written as follows:

V2(D2,Γ2) = max
Γ′2

Ṽ2(D2,Γ2,Γ
′
2), where:

Ṽ2(D2,Γ2,Γ
′
2) = σD2

(
1− (1−σ)D2−Γ′2

(1−σ)D2
(1− v0)

)
+ ((1−σ)D2−Γ′2)v0 + min{Γ2,1−D2 + Γ′2}v1.

Taking the partial derivative with respect to Γ′2 we get:

∂Ṽ2(D2,Γ2,Γ
′
2)

∂Γ′2
=

{
σ−v0
1−σ If Γ2 < 1−D2 + Γ′2
σ−v0
1−σ + v1 If Γ2 ≥ 1−D2 + Γ′2

(EC.8)

In Region 1, we have v0 ≤ σ, so
∂Ṽ2(D2,Γ2,Γ

′
2)

∂Γ′2
≥ 0. Therefore, the platform provides no timely

service to n-type customers.

In Region 2, we have v0 ∈ (σ,σ+ (1− σ)v1], so
∂Ṽ2(D2,Γ2,Γ

′
2)

∂Γ′2
≥ 0 if and only if Γ2 ≥ 1−D2 + Γ′2.

Therefore, the platform rejects timely services to n-type customers as long as it increases the

number of late services. In other words, the platform prioritizes late services.
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In Region 3, we have v0 ∈ (σ+ (1−σ)v1,1), so
∂Ṽ2(D2,Γ2,Γ

′
2)

∂Γ′2
< 0. Therefore, the platform provides

as many timely services as possible.

Period 1: The problem in Period 1 can be written as follows:

V1(D1,0) = max
Γ′1

Ṽ1(D1,0,Γ
′
1), where:

Ṽ1(D1,0,Γ
′
1) = σD1

(
1− (1−σ)D1−Γ′1

(1−σ)D1
(1− v0)

)
+ ((1−σ)D1−Γ′1)v0 + δED2

(V2(D2,Γ
′
1)) .

Taking the partial derivative with respect to Γ′1 we get:

∂Ṽ1(D1,0,Γ
′
1)

∂Γ′1
=
σ− v0

1−σ
+ δED2

(V ′2(D2,Γ
′
1)) . (EC.9)

From the optimal policy in Period 2, we know that, when σ < 0.5:

ED2
(V ′2(D2,Γ2)) =


k σ−v0

1−σ + v1 if Γ2 ∈ [0,1−σH),

(1− k)v1 if Γ2 ∈ [1−σH,H − 1),

(1− k)
(
σ−v0
1−σ + v1

)
if Γ2 ∈ [H − 1,1−σL),

0 if Γ2 ≥ 1−σL.

In Region 1,
∂Ṽ1(D1,Γ1,Γ

′
1)

∂Γ′1
≥ 0, so the platform provides no timely service to n-type customers.

In Region 2, the sign of
∂Ṽ1(D1,Γ1,Γ

′
1)

∂Γ′1
depends on the value of ED2

(V ′2(D2,Γ
′
1)).

• Under low demand, Γ′1(L,0) ≤ (1− σ)L ≤ 1− σH. Therefore, ED2
(V ′2(D2,Γ

′
1)) = k σ−v0

1−σ + v1

and
∂Ṽ1(L,0,Γ′1)

∂Γ′1
= σ−v0

1−σ (1+δk)+δv1. We obtain that
∂Ṽ1(L,0,Γ′1)

∂Γ′1
≥ 0 if and only if v0 ≤ σ+ (1−σ)δv1

1+δk

(Regions 2-i and 2-ii). So Γ′1(L,0) = ΓL in Regions 2-i and 2-ii and Γ′1(L,0) = ΓL in Region 2-iii.

• Under high demand, Γ′1(H,0)∈ [H − 1, (1−σ)H], so:

∂Ṽ1(H,0,Γ′1)

∂Γ′1
=

{
σ−v0
1−σ (1 + δ(1− k)) + δ(1− k)v1 if Γ′1 ∈ [H − 1,1−σL),
σ−v0
1−σ < 0 if Γ′1 ∈ [1−σL, (1−σ)H].

(EC.10)

Therefore, Γ′1(H,0)≤ 1−σL in Region 2. We obtain Γ′1(H,0) = 1−σL if v0 ≤ σ+ (1−σ)δ(1−k)

1+δ(1−k)
v1

(Region 2-i), and Γ′1(H,0) = ΓH otherwise (Regions 2-ii and 2-iii).

In Region 1,
∂Ṽ1(D1,Γ1,Γ

′
1)

∂Γ′1
< 0, so the platform provides as many timely service as possible.

EC.4.2. Stochastic Demand Composition

The platform’s problem is given by:

V2(D2,Γ2, σ2) = max
qr,2,qt,2,ql,2
pr,2,pt,2,pl,2

pr,2qr,2σ2D2 + pt,2qt,2(1−σ2)D2 + pl,2ql,2Γ2

s.t. ICr,2 and ICn,2,

pr,2 ≤ 1, pt,2 ≤ v0, pl,2 ≤ v1,

1≥ qr,2σ2D2 + qt,2(1−σ2)D2 + ql,2Γ2.
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V1(D1,0, σ1) = max
qr,1,qt,1
pr,1,pt,1

pr,1qr,1σ1D1 + pt,1qt,1(1−σ1)D1 + δED2,σ2
(V2(D2,Γ

′, σ2))

s.t. ICr,1 and ICn,1,

pr,1 ≤ 1, pt,1 ≤ v0,

1≥ qr,1σ1D1 + qt,1(1−σ1)D,

Γ′ = (1− qt,1)(1−σ1)D1.

Lemma EC.3 provides analogous statements to Proposition 2. The proofs of Lemma EC.3 and

Proposition 13 follow usual arguments and are omitted for conciseness.

Lemma EC.3. The optimal solution to above problem satisfies, at each τ , in each state (Dτ ,Γτ ):

(i) pt,τ (Dτ ,Γτ , στ ) = v0, and pl,τ (Dτ ,Γτ , στ ) = v1.

(ii) qr,τ (Dτ ,Γτ , στ ) = 1, and pr,τ (Dτ ,Γτ , στ )≥ v0.

(iii) If Γτ > 0, then ql,τ (Dτ ,Γτ , στ ) = min
{

1,
1−qr,τ (Dτ ,Γτ )στDτ−qt,τ (Dτ ,Γτ ,στ )(1−στ )Dτ

Γτ

}
.

(iv) Constraint ICr,τ is binding, and hence pr,τ (Dτ ,Γτ , στ ) = 1− qt,τ (Dτ ,Γτ , στ )(1− v0).

EC.4.2.1. Proof of Proposition 14

It suffices to show that there exists σ1 ∈ {σ,σ}, and Γ1 such that pr,1(H,Γ1, σ1)< pr,1(L,Γ1, σ1).

Recall that the platform’s problem in Period 1 is given by:

V1(D1,0, σ1) = max
Γ′1

Ṽ1(D1,0, σ1,Γ
′
1), where:

Ṽ1(D1,0, σ1,Γ
′
1) = σ1D1

(
1− (1−σ1)D1−Γ′1

(1−σ1)D1
(1− v0)

)
+ ((1−σ1)D1−Γ′1)v0 + δED2,σ2

(V2(D2,Γ
′
1, σ2)) .

We obtain:

∂Ṽ1(D1,0, σ1,Γ
′
1)

∂Γ′1
=
σ1− v0

1−σ1

+ δED2,σ2
(V ′2(D2,Γ

′
1, σ2)) .

Let us assume that σ < σ+ (1−σ)v1 and that v0 ∈ [σ,σ+ (1−σ)v1]. In this region, the optimal

policy in Period 2 involves late service prioritization (Region 2–σ). Therefore, for any σ2 ∈ {σ,σ}:

V2(L,Γ2, σ2) =


Lv0 + Γ2v1 if Γ2 ∈ [0,1−L),

σ2L
(

(1− (1−σ2)L−Γ2
(1−σ2)L

(1− v0)
)

+ ((1−σ2)L−Γ2)v0 + Γ2v1 if Γ2 ∈ [1−L,1−σ2L),

σ2L+ (1−σ2L)v1 if Γ2 ≥ 1−σ2L.

V2(H,Γ2, σ2) =

{
σ2H

(
(1− (1−σ2)H−Γ2

(1−σ2)H
(1− v0)

)
+ ((1−σ2)H −Γ2)v0 + Γ2v1 if Γ2 ∈ [0,1−σ2H),

σ2H + (1−σ2H)v1 if Γ2 ≥ 1−σ2H.
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From our assumptions, we know that 1−σH < 1−σH < 1−L< 1−σH < 1−σL. Therefore:

ED2,σ2
(V ′2(D2,Γ2, σ2)) =



(1− k)
(
µ(σ−v0

1−σ ) + (1−µ)(σ−v0
1−σ )

)
+ v1 if Γ2 < 1−σH,

(1− k)(1−µ)(σ−v0
1−σ ) + (1− kµ)v1 if Γ2 ∈ [1−σH,1−σH),

(1− k)v1 if Γ2 ∈ [1−σH,1−L),

(1− k)
(
µ(σ−v0

1−σ ) + (1−µ)(σ−v0
1−σ ) + v1

)
if Γ2 ∈ [1−L,1−σL),

(1− k)(1−µ)
(

(σ−v0
1−σ ) + v1

)
if Γ2 ∈ [1−σL,1−σL),

0 if Γ2 ≥ 1−σL.

Let us focus on the case with σ1 = σ. Let us then define v0 < v̄0 ∈ [σ,σ+ (1−σ)v1] as:

v0 =
σ(1−σ)(1 + δ(1− k)µ) +σ(1−σ)δ(1− k)(1−µ) + (1−σ)(1−σ)δ(1− k)

(1−σ)(1 + δ(1− k)µ) + (1−σ)δ(1− k)(1−µ)
,

v̄0 =
σ(1−σ) +σ(1−σ)δ(1− k)(1−µ) + (1−σ)(1−σ)δ(1− k)

(1−σ) + (1−σ)δ(1− k)(1−µ)
.

After some algebra, we can check that v0 ∈ [v0, v̄0]⊂ [σ,σ+ (1− σ)v1], that Γ′1(L,0, σ) = (1− σ)L,

and that Γ′1(H,0, σ) = 1−σL< (1−σ)H. Therefore, pr,1(L,0, σ) = 1, and pr,1(H,0, σ)< 1.

EC.4.2.2. Proof of Proposition 15

Let us first prove that Γ′τ (Dτ ,Γτ , στ ) is non-decreasing with στ . Starting with Period 2, we have:

∂Ṽ2(D2,Γ2, σ2,Γ
′
2)

∂Γ′2
=

{
σ2−v0
1−σ2

if Γ2 < 1−D2−Γ′2,
σ2−v0
1−σ2

+ v1 if Γ2 ≥ 1−D2−Γ′2.

Since
∂Ṽ2(D2,Γ2,σ2,Γ

′
2)

∂Γ′2
is non-decreasing with σ2, we obtain Γ′2(D2,Γ2, σ2)≥ Γ′2(D2,Γ2, σ

′
2) if σ2 >σ

′
2.

Similarly, we have, in Period 1:

∂Ṽ1(D1,0, σ1,Γ
′
1)

∂Γ′1
=
σ1− v0

1−σ1

+ δED2,σ2
(V2(D2,Γ

′
1, σ2)) .

Again,
∂Ṽ1(D1,Γ1,σ1,Γ

′
1)

∂Γ′1
is non-decreasing with σ1, so Γ′1(D1,Γ1, σ1)≥ Γ′1(D1,Γ1, σ

′
1) if σ1 >σ

′
1.

For any τ = 1,2, let us consider στ >σ
′
τ . We have:

pr,τ (Dτ ,Γτ , στ ) = 1− (1−στ )Dτ −Γ′(Dτ ,Γτ , στ )

(1−στ )Dτ

(1− v0)

= v0 +
Γ′(Dτ ,Γτ , στ )

(1−στ )Dτ

(1− v0)

> v0 +
Γ′(Dτ ,Γτ , σ

′
τ )

(1−σ′τ )Dτ

(1− v0)

= pr,τ (Dτ ,Γτ , σ
′
τ )

EC.4.3. Endogenous Capacity

The platform’s problem is given by:

V2(D2,Γ2) = max
w2

qr,2,qt,2,ql,2
pr,2,pt,2,pl,2

(pr,2−w2) qr,2σD2 + (pt,2−w2) qt,2(1−σ)D2 + (pl,2−w2) ql,2Γ2
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s.t. ICr,2 and ICn,2,

pr,2 ≤ 1, pt,2 ≤ v0, pl,2 ≤ v1,

S(w2)≥ qr,2σD2 + qt,2(1−σ)D2 + ql,2Γ2.

V1(D1,0) = max
w1

qr,1,qt,1
pr,1,pt,1

(pr,1−w1) qr,1σD1 + (pt,1−w1) qt,1(1−σ)D1 + δ (kV2(H,Γ′) + (1− k)V2(L,Γ′))

s.t. ICr,1 and ICn,1,

pr,1 ≤ 1, pt,1 ≤ v0,

S(w1)≥ qr,1σD1 + qt,1(1−σ)D,

Γ′ = (1− qt,1)(1−σ)D1.

Lemma EC.4 is the analog of Lemma EC.2. Its proof is omitted for conciseness.

Lemma EC.4. The optimal solution to above problem satisfies, at each τ , in each state (Dτ ,Γτ ):

(i) pt,τ (Dτ ,Γτ ) = v0, and pl,t(Dτ ,Γτ ) = v1.

(ii) qr,τ (D,Γ) = min
{

1, S(wτ )

σDτ

}
, and pr,τ (Dτ ,Γτ )≥ v0.

(iii) If Γ> 0, then ql,τ (Dτ ,Γτ ) = min
{

1,
S(wτ )−qr,τ (Dτ ,Γτ )σDτ−qt,τ (Dτ ,Γτ )(1−σ)Dτ

Γτ

}
.

(iv) Constraint ICr,τ is binding, and hence pr,τ (Dτ ,Γτ ) = 1− qt,τ (Dτ ,Γτ )(1− v0).

EC.4.3.1. Proof of Lemma 7

We first show that the platform always serves r-type customers. Suppose by contradiction

that qr,τ (D,Γ)< 1. From Lemma EC.4, we know that the platform serves only r-type customers

(ql,τ (D,Γ) = qt,τ (D,Γ) = 0) and charges a price pr,τ (Dτ ,Γτ ) = 1. We obtain that S(wτ (Dτ ,Γτ )) =
wτ (Dτ ,Γτ )

ū
< 1. The platform’s profit is then:

Πτ =
wτ
ū

(1−wτ ) .

Let us now increase the wage by ε > 0. The platform can serve more r-type customers without

serving any n-type customers, so that pr,τ (Dτ ,Γτ ) = 1. The resulting profit is

Π̃τ =

(
wτ + ε

ū

)
(1−wτ − ε) =

wτ
ū

(1−wτ ) +
ε

ū
(1− 2(wτ + ε)) .

Note that wτ < ū≤ v1
2
< 1

2
, so 1− 2wτ > 0. For ε > 0 sufficiently small, we thus obtain Π̃τ >Πτ .

We now show that, if some late demand is left unserved in Period 2, then S(w2(D2,Γ2)) = 1.

Suppose by contradiction that ql,2(D2,Γ2)< 1 and S(w2(D2,Γ2))< 1 (i.e., w2(D2,Γ2)< ū). Then,

note that the cost of service provision is S(w2(D2,Γ2))×w2(D2,Γ2) = w2(D2,Γ2)2

ū
. Let Rev2 be the

platform’s revenue in Period 2. Its profit is then given by:

Π2 =Rev2−
w2

2

ū
,
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Now, consider increasing the wage by ε > 0. This increases the capacity by ε
ū
. Let us allocate

the additional capacity to provide more late services. This deviation does not change the price

pr,2(D2,Γ2). The platform’s revenue thus increases by ε
ū
v1. Its profit becomes:

Π̃2 =Rev2 +
ε

ū
v1−

(w2 + ε)2

ū
= Π2 +

ε

ū
(v1− 2w2− ε) .

Note that wτ < ū≤ v1
2

, so v1− 2wτ > 0. For ε > 0 sufficiently small, we thus obtain Π̃τ >Πτ .

EC.4.3.2. Proof of Proposition 16

First, we prove that in Region 3–ū (v0 ≥ σ+ (1− σ)v1), the platform prioritizes timely services

over late services. Suppose by contradiction that ql,2(D2,Γ2) > 0 and qt,2(D2,Γ2) < (1 − σ)D2.

Denote the number of timely (resp., late) services by At (resp., Al), and let w2(D2,Γ2) be the

corresponding wage level. Then the platform’s profit in Period 2 is given by:

Π2 = σD2

(
1− At

(1−σ)D2

(1− v0)

)
+Atv0 +Alv1−

(w2(D2,Γ2))2

ū
.

Let us increase At and decrease Al by ε > 0. This does not change the total number of services

provided nor the wage level. The platform’s profit in Period 2 becomes:

Π̃2 = σD2

(
1− At + ε

(1−σ)D2

(1− v0)

)
+ (At + ε)v0 + (Al− ε)v1−

(w2(D2,Γ2))2

ū
.

But then ∂Π̃2
∂ε

= v0−σ−(1−σ)v1
1−σ > 0, so Π̃2 >Π2. Thus, in Region 3–ū, the platform provides as many

timely services as possible, and then serves late demand as much as possible.

Second, we show that in Region 1–ū and in Region 2–ū, the platform prioritizes late services

over timely services provided to n-type customers. Suppose by contradiction that qt,2(D2,Γ2)> 0

and ql,2(D2,Γ2)< Γ2. Let us increase Al and decrease At by ε > 0. This does not change the total

number of services provided nor the wage level. The platform’s profit in Period 2 becomes:

Π̃2 = σD2

(
1− At− ε

(1−σ)D2

(1− v0)

)
+ (At− ε)v0 + (Al + ε)v1−

(w2(D2,Γ2))2

ū
.

Then ∂Π̃2
∂ε

=−v0−σ−(1−σ)v1
1−σ > 0, so for ε > 0 we obtain Π̃2 >Π2. Thus, in Region 1–ū and in Region 2–

ū, the platform first serves r-type customers, then the late demand, and then it may provide timely

services to n-type customers. Let, again, rewrite the problem by changing the decision variable into

the number of timely services provided to n-type customers, denoted by At. We know that At = 0

when σD2 + Γ2 ≥ 1. To distinguish between Region 1–ū and in Region 2–ū, we now focus on the

case where σD2 + Γ2 < 1. Let Ṽ (D2,Γ2,At) be the platform’s profit in Period 2 in state (D2,Γ2)

for a given choice of At ∈ [0,min{1−σD2 + Γ2, (1−σ)D2}]. We have:

Ṽ2(D2,Γ2,At) = σD2

(
1− At

(1−σ)D2
(1− v0)

)
+Atv0 + Γ2v1− (σD2 + Γ2 +At)

2ū.
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We obtain:

∂Ṽ2(D2,Γ2,At)

∂At
=
v0−σ
1−σ

− 2(σD2 + Γ2 +At)ū,

At = max

{
0,min

{
v0−σ

2(1−σ)ū
−σD2−Γ2,1−σD2−Γ2, (1−σ)D2

}}
.

After serving r-type customers and the late demand, the platform can thus increase the wage

up to v0−σ
2(1−σ)

to provide timely services to n-type customers.

• In Region 1–ū, v0 ≤ σ+2(1−σ)ūσL, so σD2 +Γ2 ≥ σL≥ v0−σ
2(1−σ)ū

. Therefore, At = 0: no n-type

customer receives a timely service. We obtain w2(D2,Γ2) = min{ū, (σD2 + Γ2)ū}.

• In Region 2.i–ū, σL ≤ v0−σ
2(1−σ)ū

≤ 1. The platform increases the wage to provide timely

services as long as it is feasible and w2(D2,Γ2) ≤ v0−σ
2(1−σ)

. If the platform provides

timely services, the wage is min
{

v0−σ
2(1−σ)

, (D2 + Γ2)ū
}

. Otherwise, the wage is ū if

σD2 + Γ2 ≥ 1 or (σD2 + Γ2)ū when v0−σ
2(1−σ)

≤ σD2 + Γ2 < 1. We obtain w2(D2,Γ2) =

max
{

min{ū, (σD2 + Γ2)ū} ,min
{

v0−σ
2(1−σ)

, (D2 + Γ2)ū
}}

.

• In Region 2.ii–ū, v0−σ
2(1−σ)ū

≥ 1, so At = min{1−σD2−Γ2, (1−σ)D2}: the platform increases

the wage as long as it can provide timely services. Thus, w2(D2,Γ2) = min{ū, (D2 + Γ2)ū}.

EC.4.3.3. Proof of Proposition 17

Recall that the platform’s problem is given by:

V1(D1,0) = max
Γ′1

Ṽ1(D1,0,Γ
′
1), where:

Ṽ1(D1,0,Γ
′
1) = σD1

(
1− (1−σ)D1−Γ′1

(1−σ)D1
(1− v0)

)
+ ((1−σ)D1−Γ′1)v0− (D1−Γ′1)2ū+ δED2

(V2(D2,Γ
′
1) .

Therefore:

∂Ṽ1(D1,0,Γ
′
1)

∂Γ′1
=
σ− v0

1−σ
+ 2ū(D1−Γ′1) + δED2

(V ′2(D2,Γ
′
1) .

Let us focus on Region 2.ii–ū. We have:

V2(L,Γ2) =


Lv0 + Γ2v1− (L+ Γ2)2ū if Γ2 ∈ [0,1−L),

σL
(

(1− (1−σ)L−Γ2
(1−σ)L

(1− v0)
)

+ ((1−σ)L−Γ2)v0 + Γ2v1− ū if Γ2 ∈ [1−L,1−σL),

σL+ (1−σL)v1− ū if Γ2 ≥ 1−σL.

V2(H,Γ2) =

{
σH

(
(1− (1−σ)H−Γ2

(1−σ)H
(1− v0)

)
+ ((1−σ)H −Γ2)v0 + Γ2v1− ū if Γ2 ∈ [0,1−σH),

σH + (1−σH)v1− ū if Γ2 ≥ 1−σH.

Indeed:

• If D2 = L and Γ2 ∈ [0,1−L), the platform provides σL services to r-type customers at price

v0, Γ2 late services, and (1− σ)L timely services to n-type customers. Overall, the platform

provides L+ Γ2 services by setting a wage equal to (L+ Γ2)2ū.
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• If D2 = L and Γ2 ∈ [1−L,1−σL), the platform provides σL services to r-type customers

at price 1 − (1−σ)L−Γ2
(1−σ)L

(1 − v0), Γ2 late services, and 1 − σL − Γ2 timely services to n-type

customers. The platform sets its capacity to 1 by setting a wage of ū.

• If D2 =L and Γ2 ≥ 1−σL, the platform provides σL services to r-type customers at price 1,

and 1−σL late services. The platform sets its capacity to 1 by setting a wage of ū.

• If D2 =H and Γ2 ∈ [0,1−σH), the platform provides σH services to r-type customers at price

1− (1−σ)H−Γ2
(1−σ)H

(1− v0), Γ2 late services, and 1− σH −Γ2 timely services to n-type customers.

The platform sets its capacity to 1 by setting a wage of ū.

• If D2 =H and Γ2 ≥ 1− σH, the platform provides σH services to r-type customers at price

1, and 1−σH late services. The platform sets its capacity to 1 by setting a wage of ū.

With σ < 0.5, we have (1−σ)L< 1−σH <H − 1 = d= 1−L< 1−σL< (1−σ)H. We obtain:

V ′2(L,Γ2) =


v1− 2ū(L+ Γ2) if Γ2 ∈ [0,1−L),
σ−v0
1−σ + v1 if Γ2 ∈ [1−L,1−σL),

0 if Γ2 ≥ 1−σL.

V ′2(H,Γ2) =

{
σ−v0
1−σ + v1 if Γ2 ∈ [0,1−σH),

0 if Γ2 ≥ 1−σH.

ED2
(V ′2(D2,Γ2)) =


k
(
σ−v0
1−σ + v1

)
+ (1− k) (v1− 2ū(L+ Γ2)) if Γ2 ∈ [0,1−σH),

(1− k) (v1− 2ū(L+ Γ2)) if Γ2 ∈ [1−σH,H − 1),

(1− k)
(
σ−v0
1−σ + v1

)
if Γ2 ∈ [H − 1,1−σL),

0 if Γ2 ≥ 1−σL.

We know that Γ′1(L,0)≤ (1−σ)L< 1−σH. Therefore, we obtain, from the first-order conditions:

Γ′1(L) = min

{
max

{
0,

1

2ū(1 + δ(1− k))

(
σ− v0

1−σ
(1 + δk) + δv1 + 2ūL(1− δ(1− k))

)}
, (1−σ)L

}
.

Similarly, we know that Γ′1(H,0)≥H−1. Clearly, Γ′1(H,0)< 1−σL; otherwise, ED2
(V ′2(D2,Γ2)) =

0 and, since we are in Region 2.ii–ū, we get
∂Ṽ1(D1,0,Γ

′
1)

∂Γ′1
= σ−v0

1−σ + 2ū(D1 − Γ′1) ≤ 0. Therefore,

ED2
(V ′2(D2,Γ2)) = (1− k)

(
σ−v0
1−σ + v1

)
. We obtain, from the first-order conditions:

Γ′1(H) = min

{
max

{
H − 1,H +

1

2ū

(
σ− v0

1−σ
(1 + δ(1− k)) + δ(1− k)v1

)}
, (1−σ)H

}
Suppose that v0 = σ+ 2(1−σ)ū (which is admissible in Region 2.ii–ū). Then:

Γ′1(L) = min

{
max

{
0,

1

2ū(1 + δ(1− k))
(−2ū(1 + δk) + δv1 + 2ūL(1− δ(1− k)))

}
, (1−σ)L

}
,

Γ′1(H) = min

{
max

{
H − 1,H − 1− δ(1− k) +

δ(1− k)v1

2ū

}
, (1−σ)H

}
.

Then, let us set k is sufficiently large, and consider ū∈
[

δ(1−k)v1
1−σH+δ(1−k)

, δv1
2(1+δk)+L((2−σ)δ(1−k)−σ)

]
. This

is possible because, as k→ 1, this interval converges to
[
0, δv1

2(1+δ)−Lσ

]
⊂
[
0, v1

2

]
. For these values of

ū, we obtain Γ′1(L,0) = (1−σ)L, and Γ′1(H,0) =H − 1, and thus pr,1(H,0)< pr,1(L,0) = 1.
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EC.4.3.4. Proof of Proposition 18

Recall that the platform adjusts the wage to match capacity with the number of services. From

Lemma 7, the platform increases the supply as much as possible to provide more late services. The

number of services, hence the wage, thus increases with late demand. We now show that they also

increase with incoming demand. In period τ = 2, this result follows from Proposition 13:

• In Region 1–ū, the platform never provides a timely service to n-type customers. The number

of services is then min{1, σD2 + Γ2}, which is clearly non-decreasing with with D2.

• In Region 2.i–ū, the platform provides σD2 services to r-type customers and min(1−σD2,Γ2)

services to n-type customers. If the platform does not provide any timely service to n-

type customers, it thus provides min(1, σD2 + Γ2) services—which is non-decreasing with

D2. Otherwise, the number of timely services provided to n-type customers satisfies At ∈{
v0−σ

2(1−σ)ū
−σD2−Γ2,1−σD2−Γ2, (1−σ)D2

}
, so the total number of services falls within

v0−σ
2(1−σ)

ū, 1, or D2 + Γ1, which is also non-decreasing with D2.

• In Region 2.ii–ū and Region 3–ū, the platform aims to satisfy all the demand, and thus provides

min{1,D2 + Γ2} services—which is again non-decreasing with D2.

Turning to Period 1, let us denote the number of timely services provided to n-type customers

by A1(D1) = (1− σ)D1 − Γ′1. Moreover, the wage level satisfies w1(D1,0) = (σD1 +A1(D1))ū and

the cost of service provision is (σD1 +A1(D1))2ū. We can write the platform’s problem as follows:

V1(D1,0) = max
w1,A

Ṽ1(D1,A), where:

Ṽ1(D1,A) = σD1

(
1− A

(1−σ)D1

(1− v0)

)
+Av0− (σD1 +A)2ū+ δED2

(V2(D2, (1−σ)D1−A)) .

Moreover, the value function V2 is concave. This can be shown using the same arguments as in

the main paper. The proof is omitted for conciseness.

It is sufficient to show that the number of services is larger under high demand than under low

demand. Suppose by contradiction that σH +A1(H)<σL+A1(L). From the optimality of A1(L)

and A1(H), we have, for ε > 0 sufficiently small:

∂Ṽ1(L,A)

∂A

∣∣∣
A=A1(L)−ε

=
σ

1−σ
(1− v0) + v0−ED2

(V ′2(D2, (1−σ)L−A1(L) + ε))− 2ū(σL+A1(L)− ε)> 0,

∂Ṽ1(H,A)

∂A

∣∣∣
A=A1(H)+ε

=
σ

1−σ
(1− v0) + v0−ED2

(V ′2(D2, (1−σ)H −A1(H)− ε))− 2ū(σH +A1(H) + ε)< 0.

Therefore we have:

ED2
(V ′2(D2, (1−σ)H −A1(H)− ε))≥ σ

1−σ
(1− v0) + v0− 2ū(σH +A(H) + ε)

>
σ

1−σ
(1− v0) + v0− 2ū(σL+A(L) + ε)

≥ ED2
(V ′2(D2, (1−σ)L−A1(L)− ε)) .

For small ε > 0, (1−σ)H −A(H)− ε > (1−σ)L−A(L)− ε. It contradicts the concavity of V2.
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