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Abstract. This paper assembles a toolkit for the assessment of model risk when model
uncertainty sets are defined in terms of an F-divergence ball around a reference model. We
propose a new family of F-divergences that are easy to implement and flexible enough to
imply convincing uncertainty sets for broad classes of reference models. We use our
theoretical results to construct concrete examples of divergences that allow for significant
amounts of uncertainty about lognormal or heavy-tailedWeibull referencemodels without
implying that the worst case is necessarily infinitely bad. We implement our tools in an
open-source software package and apply them to three risk management problems from
operations management, insurance, and finance.
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1. Introduction
F-divergences, also known as ϕ-divergences or f -di-
vergences, are a class of distance measures for prob-
ability models that were first proposed independently
in the 1960s by Csiszár (1963), Morimoto (1963), and
Ali and Silvey (1966). Since then, they have found
applications in variousfields such as probability theory,
statistics, information theory, operations research, and
most recently, machine learning. This paper is moti-
vated by applications of F-divergences in the assess-
ment of model risk in economics and business. The
basic idea is that a decision maker who is uncertain
about the accuracy of his reference model can aug-
ment calculations under this model with best and
worst cases over all models that lie within a divergence
ball of fixed radius from the reference model. This
idea goes back to the operations research literature on
robust optimization and robust control (Whittle 1990,
Bertsimas and Sim 2004, Ben-Tal et al. 2009). Related
ideas have been applied and developed in quantitative
finance and economics (see Föllmer and Schied 2011
andHansen and Sargent 2011 for seminal monographs).

The F-divergence quantifies how strongly an al-
ternative model differs from a given reference model.
To this end, one asks howstrongly the twomodels differ
in the probabilities they assign to possible outcomes.

The function F that defines the F-divergence can be
interpreted as a cost function that is applied to the
relative differences in probabilities, that is, to the change
of measure from the reference model to the alternative.
The F-divergence between the models is then simply
the expectation over potential outcomes of this cost
function under the referencemodel. If the function F is
relatively flat, the divergence makes little distinction
between small and large local differences in assigned
probabilities. In contrast, a function F with a steep
growth behavior puts considerable penalties on large
differences between the two models.
Themost prominent F-divergence is Kullback-Leibler

(KL) divergence, also known as relative entropy. KL-
divergence corresponds to a particular choice of the cost
function F and became the default choice in many
applications (Hansen and Sargent, 2011). However,
for many purposes, other F-divergences have similar
theoretical properties and could be used just as well.
For instance, the monograph by Pardo (2005) de-
velops rich statistical theories that apply, essentially,
to thewhole class ofF-divergences. For our application
of assessing model risk, the possibility of a flexible
choice of F is emphasized, for example, in Breuer and
Csiszár (2016), Csiszár and Breuer (2018), and Ben-Tal
et al. (2013). Going one step further, Kruse et al. (2019)
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argues that carefully choosing the divergence is nec-
essary for assessing model risk convincingly across
different reference models, especially when the state
space is unbounded. They show that there is a con-
siderable gap between the most commonly used di-
vergences, KL-divergence andpolynomial divergence,
with many important reference models falling into the
range where neither divergence is suitable.

A consequence of a fixed cost function F is that,
depending on the reference model, Fmay be growing
too quickly or too slowly, thus taking too few or too
many alternative models into account. This results
in aworst-case analysis that is either overly optimistic
or pessimistic. The function F thus has to be chosen
with the reference model in mind.

The aim of this paper is to develop the modeling of
uncertainty sets with flexible choices of F from a
theoretical possibility into a viable option for handling
model uncertainty in challenging practical problems
using an open-source software package. This package
makes it easy to incorporate the resulting worst- and
best-case analysis into management processes.

As a foundational step, we provide a methodology
for constructing F-divergences that fit a previously
defined purpose while still being straightforward to
implement in relevant practical problems. The theoret-
ical toolkit we assemble consists of three components.

The first component is a new parametrization of the
class of F-divergences. The idea is to specify the di-
vergence not in terms of the cost function F itself but
in terms of its derivative, the marginal cost function.
In particular, we suggest to build divergences from
marginal cost functions that have closed-form in-
verse functions. The advantage is that when using an
F-divergence constraint in an optimization problem,
first-order conditions can easily be resolved. The only
price we pay is that when evaluating the divergence,
the dimensionality of the integral we need to compute
is increased by one. To make this tradeoff more
tangible, in our numerical illustration of worst-case
hedging errors, we trade in a 180-dimensional inte-
gral for a 181-dimensional integral by specifying the
marginal cost function F′ in place of the cost function F.
What we gain is a worst-case change of measure that
can be computed efficiently without numerically in-
verting a nonlinear function at each evaluation.

The second component of the toolkit is a charac-
terization of worst-case analysis under this new class
of divergences. Technically, our results build on the
earlier literature, in particular Breuer and Csiszár
(2016). However, our focus on a broad but well-behaved
subclass of F-divergences yields explicit sufficient con-
ditions and expressions for worst-case models that
are easy to handle in practice. In addition, we provide
new results that address situationswhere a quantity of
interest depends on a possibly high-dimensional vector

of input risk factors. We show how to carry over the
properties needed in the worst-case analysis from the
input risk factors, which tend to be easier to analyze,
to the quantity of interest. Moreover, we prove that it is
irrelevant whether uncertainty sets are defined on the
level of the joint distribution of the risk factors or on
the level of the quantity of interest. It is thuswithout loss
of generality to conduct a worst-case analysis on the
level of the univariate output quantity. This property is
a major advantage of uncertainty sets that are defined
in terms of F-divergences rather than, for example,
Wasserstein distances. A validworst-case analysis under
F-divergences can be conducted in a postprocessing
step, relying solely on observations of the quantity of
interest without access to the underlying risk factors.
The third component is a series of results on the

contents of divergence balls for given combinations of
divergence and referencemodel. The purpose of these
results is to guide the choice or design of F-diver-
gences in applications to robust risk assessment. In
particular, we characterize those marginal cost func-
tions that are critical for a given reference model in the
sense that models in the uncertainty set have finite
moments up to a certain order but not necessarily
higher. For the classical divergences, KL-divergence
and polynomial divergence, criticality results of this
type are shown in Kruse et al. (2019). For instance, KL-
divergence is critical for Gaussian reference models
witha cutoff at the secondmoment. Thus,KL-divergence
balls around Gaussian models contain models with a
diverse range of tail behaviors; however, there is the im-
plicit moment constraint that expected value and variance
must be finite, guaranteeing a well-defined worst-case
analysis. Similarly, polynomial divergences are critical
for power law reference models. Our new results
characterizeF-divergenceswith similar implicitmoment
constraints for general reference models. The order of
finitemoments is a parameter of choice in the construction.
After introducing this toolkit, we proceed by ap-

plying it to two broad classes of reference models. To
this end, we provide explicit constructions of diver-
gences that are critical for Weibull-type models and
for generalized lognormal models. Although the names
of both model classes refer to well-known parametric
families of distributions, our divergences have broader
applicability. For example, Gaussian tail behavior is
Weibull type because only the tail behavior determines
which worst-case changes of measure are critical. To be
more precise, if the log-density behaves asymptotically
like a (possibly fractional) polynomial, then the distri-
bution is Weibull type. What heavy-tailed Weibull
models and generalized lognormal models have in
common is that the density decreases faster than pol-
ynomially but more slowly than exponentially in the
tail. Functions that fall between polynomial and ex-
ponential growth behavior are not as well studied as
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their polynomial and exponential counterparts. Closed-
form inverses for derivatives are rare. Thus, the con-
struction strongly relies on the first three parts of the
toolbox: The third component determines the ideal
growth behavior of F, the first component clarifies
that it suffices to specify the marginal cost function,
and the second component provides the technical
results that provide the foundation for the worst-
case analysis.

In the open-source Python package divbox, we
provide an implementation of best- and worst-case
analysis with a flexible choice of the divergence.
divbox takes a sample from the nominal model as an
input and returns worst- and best-case expected values
together with suitable asymptotic confidence bounds.
With this package, worst-case analysis is effectively as
easy as computing a sample mean with associated
standard errors.

Our paper concludes with three practical illustra-
tions from the fields of operations management, in-
surance, and finance. In the first illustration, we study
worst- and best-case scenarios for the gains from
having a centralized inventory in a multilocation
newsvendor problem with heavy-tailed demand. In
the second illustration, we consider worst cases of an
insurance loss that is modeled as a sum of correlated
Weibull random variables. In the third example, we
consider the absolute hedging error that arises from
hedging a call option only over a sequence of discrete
time points, trading off hedging quality against trans-
action costs. We impose a lognormal (Black-Scholes)
reference model for the option’s underlying stock.

In all three settings, the actual target quantity no
longer has a Weibull or lognormal distribution, but
the quantity of interest inherits the type of tail be-
havior from the input risk factors. Our tools enable us
to conduct worst-case analyses that are easy to im-
plement and provide an explicit control on the amount
and type of model uncertainty. Moreover, we take into
account the possibility of qualitatively heavier tails than
the reference model while still obtaining finite worst
cases. In future work, these worst-case computations
could serve an input for a robust optimization of stra-
tegic decisions.

2. A Toolkit for Robust Risk Assessment
In this section, we introduce the three components of
our toolkit for robust risk assessment with general
F-divergences. Section 2.1 introduces the setting and
the new parametrization of F-divergences. Section 2.2
characterizes worst-case distributions for this class of
divergences. Section 2.3 studies the contents of un-
certainty sets induced by F-divergences. In particular,
we provide conditions under which an F-divergence
is critical for a given reference model in the following
sense: Finiteness of a certain moment determines

whether an alternative model is a candidate for in-
clusion in the uncertainty set or not.1

2.1. A Class of F-Divergences
Let (Ω,F ,P) be a probability space and let X :Ω → R

be a random variable. We denote by ν the distribution
ofX underP and call ν the referencemodel. Throughout
the paper, we denote by S ⊆ R the (bounded or un-
bounded) support of ν. We assume that ν has a
density2 f such that

∫
S
|x| f (x)dx < ∞.We are interested

in uncertainty sets around this reference model that
are defined in terms of an F-divergence that quantifies
how alternativemodels differ from ν. To this end, let η
be a second distribution on S, which is absolutely
continuouswith respect to ν. Here and throughout the
paper, we denote the density of η by g.3 For a convex
function F with F(1) � 0, the F-divergence between ν
and η is defined as

DF η|ν( ) � ∫
S
F

g x( )
f x( )

( )
f x( )dx, (1)

with the convention that F( 00 ) · 0 � 0. If η is not ab-
solutely continuous with respect to ν, then we set
DF(η|ν) � +∞. This is the classical definition of F-di-
vergences from Csiszár (1963), Morimoto (1963), and
Ali and Silvey (1966).
How differences between models are measured

depends crucially on the choice of the function F. In
this paper, we propose a new parametrization of the
function F. This parametrization facilitates choosing F
in a problem-specific way while keeping the worst-
case analysis of the following sections practicable.
The key idea is to specify F in terms of a transformed
derivative function H.
Let H :R → R be a continuous, strictly increasing

function such that limy→∞ H(y) � ∞ and H(0) � 0. We
define the function F : (0,∞) → R by4

F y
( ) � ∫ y

1
H log z( )( )

dz (2)

for all y ∈ (0,∞).We extend F to a (convex) function on
[0,∞) by defining F(0) � limy↓0 F(y) ∈ (0,∞]. The next
lemma proves several technical properties of the func-
tion F. In particular, it verifies that we have a valid
F-divergence; that is, F is convexwith F(1) � 0. Like all
our results, the lemma is proved in the Appendix.

Lemma 1. F is strictly convex, continuously differentiable

and satisfies F(1) � 0, F′(1) � 0, and limy→∞ F(y)
y � ∞ (i.e.,

F is cofinite). In particular, F is nonnegative and attains its
minimum 0 at 1. If H is continuously differentiable with
H′(0) � 1, then F is twice continuously differentiable
with F′′(1) � 1.

Let us briefly discuss our assumptions and the
implied properties of F.
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Remark 1. (i) We thus restrict attention to divergences
with F′(1) � 0. This is without loss of generality:We can
always change the slope of F(y) in a single point by
adding c (y − 1), c ∈ R, to F without changing the value
of the divergence in (1). The assumption ensures that F
is nonnegative and possesses a global minimum in 1.
This is in line with the interpretation of F as a cost
function that isminimalwhen themodel is not changed.
(ii) Any sufficiently smooth, convex function F with
F(1) � 0 can be written in the form (2) for some in-
creasing H. Thus, in principle, the class of divergences
in (2) is almost the same as the usual class of F-di-
vergences. The advantage of defining F-divergences in
terms of F′(·) � H(log(·)) rather than F comes from a
modeling perspective. In applications to worst-case
analysis and robust optimization, it is a considerable
advantage to have a closed-form expression for the
inverse of the derivative F′ as this appears in the worst-
case change of measure. See Section 2.2 for details. If
the function H is chosen such that it has a closed-form
inverse, then this property comes for free. (iii) The
property F′′(1) � 1 is important in statistical appli-
cations of F-divergences (see Pardo 2005 who calls
F-divergences with this property standard). It can
be understood as a normalization of the divergence
for small perturbations. When we develop F into a
Taylor approximation around 1, F(y) ≈ F′(1)(y − 1) +
1
2 F

′′(1)(y − 1)2, where the linear term is spurious as
argued in (i), we see that two divergenceswith the same
value of F′′(1) will tend to give similar values when
g/f ≈ 1. In terms of the functionH, the property F′′(1) �
1 becomes H′(0) � 1.

To illustrate how F andH are related, we consider the
two most prominent F-divergences: KL-divergence
and polynomial divergence.5 In particular, we see
that KL-divergence corresponds to the identity func-
tionH(y) � y. In this sense, divergences that arise from
other choices of H can be viewed as distortions of
KL-divergence.

Example 1.
(i) KL-divergence lies in our class of divergences:

ChoosingH(y) � y, y ∈ R, in (2) leads toFKL(y) :� F(y) �
y log(y) − y + 1 and thus

DKL η|ν( )
:� DF η|ν( ) � ∫

S

g x( )
f x( ) log

g x( )
f x( )

( )
− g x( )
f x( ) + 1

[ ]
× f x( )dx �

∫
S
log

g x( )
f x( )

( )
g x( )dx,

for any distribution η that is absolutely continuous
with respect to ν. This is not the textbook choice of FKL,
which would be y log(y), but rather a modification
that satisfies F′(1) � 0 as discussed in Remark 1 (i).

(ii) Polynomial divergences also lie in our class of
divergences: Let p > 1. Then the choice H(y) � e(p−1)y−1

p−1 ,
y ∈ R, leads to Fp(y) :� F(y) � yp−p(y−1)−1

p(p−1) and thus

Dp η|ν( )
:� DF η|ν( ) �∫

S

g x( )
f x( )

( )p−p g x( )
f x( ) − 1

( )
− 1

p p − 1
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× f x( )dx �

∫
S

g x( )
f x( )

( )p−1
p p − 1
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ f x( )dx (3)

for any distribution η that is absolutely continuous
with respect to ν.

It iswell known thatDp(η|ν) converges toDKL(η|ν) in
the limit p ↓ 1 (if all these divergences are finite). The
convergence is based on the fact that x ≈ ex − 1 if x is
close to zero. Hence, it follows that e

(p−1)y−1
p−1 → y as p ↓ 1.

Example 1 shows that, for fixed p > 1, there is nev-
ertheless a considerable gap between the functions H
in the two cases: Although H grows linearly in the
case of KL-divergence, it grows exponentially for
polynomial divergences.6 In Section 3, we discuss
examples of divergences that lie between these ex-
tremes. In these examples, H has, respectively, poly-
nomial growth behavior, or superpolynomial but
subexponential growth behavior.

2.2. Worst-Case Analysis
In this section, we study the worst-case expected
value of the random variableX under all distributions
within a radius κ > 0 from the reference model ν,

W ν,F, κ( ) � sup
η:DF η|ν( )≤κ

Eη X[ ]

� sup
η:DF η|ν( )≤κ

∫
S
xg x( )dx, (4)

where distances between models are measured by
an F-divergence that satisfies the assumptions of the
previous section. As we define the supremum as the
worst case,X should be thought of as a loss. Equation (4)
thus spells out theworst-case expected loss for a given
triple (ν, F, κ). From a risk management perspective,
the quantity W(ν, F, κ) coincides with the F-entropic
value at risk, a coherent risk measure introduced in
Ahmadi-Javid (2012). In Section 4, we extend the
discussion to best-case expected values.
In the following, we derive a condition that ensures

that the worst-case problem for our F-divergence
has a finite solution and provide an expression for the
worst case. To achieve this, we build on results of
Breuer andCsiszár (2016). Themajor difference to their
more general approach is that our sufficient conditions
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and worst-case densities can be formulated explicitly in
terms of the function H without invoking the ma-
chinery of convex analysis.

Proposition 1. Let L � limy→−∞ H(y) ∈ [−∞, 0). Assume
that for all α ∈ [0,∞) it holds that∫

S
|x| exp H−1 α|x|( )( )

f x( )dx < ∞. (5)

Then the worst case in (4) is finite and there exists κmax ∈
(0,∞] such that for allκ ∈ (0, κmax) there exists (αwc

1 , αwc
2 ) ∈

R × (0,∞) such that the worst-case model ηwc in (4) has
the density

gwc x( ) � 1 αwc
1 +αwc

2 x>L{ } exp H−1 αwc
1 + αwc

2 x
( )( )

f x( ),
x ∈ S. (6)

Moreover, for all κ ∈ (0, κmax) the parameters (αwc
1 , αwc

2 ) ∈
R × (0,∞) are uniquely characterized by the conditions
that gwc integrates to 1 and that DF(ηwc|ν) � κ. Further-
more, if the support of ν is unbounded from above, that is,
supS � ∞, then κmax � ∞ and the previous statements
hold for all κ > 0.

For KL-divergence and most other concrete ex-
amples of F-divergences considered in this paper, we
have L � −∞ so that the indicator function in the
worst-case density can be ignored. For polynomial
divergencewith p > 1,we obtain L � − 1

p−1. Intuitively,
the positive parameter αwc

2 can be understood as a gen-
eralized exponential tilting parameter that increases
the weight on large realizations of X compared with
the reference model. The parameter αwc

1 is then chosen
in such away that gwc is a probability density, balancing
the effect of αwc

2 .
To understand the role of κmax, consider for a

moment a discrete example where X takes values 1
and 0 with equal probability under ν. X can be
thought of as the indicator for some adverse event. In
this case, the worst possible alternative model η∗ puts
all probability mass on the adverse outcome 1 so that
Eη∗[X] � 1. Thus, the worst possible change of mea-
sure doubles the probability of one outcome while
setting the probability of the other to zero. A quick
calculation shows that DKL(η∗|ν) � log(2).7 The worst
possible case can thus be achieved within a finite KL-
radiusof thenominalmodel, andwehaveκmax � log(2).
For κ < κmax, the worst case can be characterized
using a discrete analogue of (6). For κ ≥ κmax, we
simply have W(ν,F, κ) � 1 and worst-case probabili-
ties of 1 and 0.

In principle, the same situation could arise for con-
tinuous distributions. If the support of ν is bounded
from above then κmax may be finite and thus the
worst-case model is given by (6) only for sufficiently
small radii κ. In Appendix B, we investigate this issue

further, showing that κmax is infinite evenwith bounded
support if we use KL-divergence, polynomial diver-
gence or one of the new divergences from Section 3 and
if X is continuously distributed near the top of its
support under ν.
The integral condition (5) of Proposition 1 ensures

that the worst case is finite and the worst-case model
is of the form (6) for sufficiently small radii κ. Because
by assumption we have that

∫
S
|x| f (x)dx < ∞ and that

H−1 is bounded on every compact subset of [0,∞), it
follows that condition (5) is always satisfied if S is
bounded. The following lemma gives a simple sufficient
condition for (5) for cases where S is unbounded, pos-
tulating that the integrand in (5) vanishes faster than
|x|−1. Moreover, we show that if a reference model
satisfies (7), then this property also holds for all more
light-tailed reference models.

Lemma 2.
(i) A sufficient condition for (5) is that for all α ∈ (0,∞)

there exists ε > 0 such that8

lim sup
|x|→∞

|x|2+ε exp H−1 α|x|( )( )
f x( ) < ∞. (7)

(ii) Consider two reference models ν and ν̂ with re-
spective densities f and f̂ . Assume that (7) is satisfied for ν
and that

lim sup
|x|→∞

f̂ x( )
f x( ) < ∞. (8)

Then ν̂ satisfies (7) as well.

For the case of KL-divergence, proposition 3.1 in
Glasserman and Xu (2014) provides an extension of (6)
to the case where additional constraints of the form
Eη[Φ(X)] ≤ λ are imposed on the worst-case distri-
bution. Although a thorough analysis of this case is
beyond the scope of this paper, we note that formally
going through the Lagrangian analysis (similar to
Kruse et al. 2019, p.432) shows that the worst-case
density with additional constraints is given by

gwc x( ) � 1 αwc
1 +αwc

2 x+αwc
3 Φ x( )>L{ } exp H−1 αwc

1 + αwc
2 x

((
+αwc

3 Φ x( )))f x( ), x ∈ S, (9)
analogously to the statement in Glasserman and Xu
(2014), where the additional parameter αwc

3 is deter-
mined by the additional constraint.

2.3. Contents of Divergence Balls
The third component of our toolkit consists of two
propositions that investigate the contents of diver-
gence balls around a given reference model implied
by a choice ofH. Understanding what a divergence ball
of a given radius contains is crucial for interpreting
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the results of a worst-case analysis from an applied
point of view.

For the baseline case of a KL-divergence ball around
a Gaussian nominal model, the situation is clear: KL-
divergence balls around Gaussian reference models
containmodelswith finite second (and lower)moments
but no models for which the second moment is infinite.
Put differently, we can observe some densities that
behave like |x|−t−1 in the tail (or tails) when studying a
KL-divergence ball around a Gaussian model if t > 2.
No such densities exist in the ball for t < 2. Gaussian
models thus admit some power-law models in the di-
vergence ball but not all. We are interested in extending
this type of result to general H and ν.

In Kruse et al. (2019), it is shown that it crucially
depends on the interplay between the reference model
and the F-divergence to decided which alternative
models are taken into consideration. For a broad class
of referencemodels that includes (heavy-tailed)Weibull
and lognormal models, the traditional choices of KL-
divergence and polynomial divergence have their draw-
backs: KL-divergence balls contain power laws with
arbitrarily heavy tails so that the worst-case expected
value is infinite even in arbitrarily small divergence
balls. In contrast, polynomial divergence balls only
containmodels for which all moments are finite and for
which the heaviness of tails is similar to the refer-
ence model.

In the following, we demonstrate that by creating a
suitable match between the function H and the ref-
erence model we can control the number of moments
that alternative models in the divergence ball pos-
sess.9 The motivation for this analysis is twofold.
First, it suggests a method for constructing diver-
gences that come with an explicit control on the
heaviness of tails of alternative models. We apply this
method to concrete classes of distributions in the next
section. Second, on a more abstract level, the analysis
here and, especially, the examples in the next section
demonstrate that defining divergences in terms of the
function H enables us to tailor divergences to specific
needswithoutgivingupclosed-formworst-casedensities.

Up to some technical conditions, the two results can
be summarized as follows: Suppose that there exists
θ > 1 such that the functions H(ϕ(x)) and xθ have a
similar growth behavior as x → ∞ where we define
ϕ � − log( f ). Then all models η that admit a finite
moment of order θ have a finite divergence DF(η|ν)
(Proposition 2). Finiteness of higher moments is not
guaranteed, however. Conversely, all sufficiently reg-
ular models whose tails are heavier than x−t−1 for some
t < θ have infinite divergence from ν (Proposition 3).10

In the initial example of KL-divergence, H(y) � y,
and a Gaussian reference model, ϕ ∼ x2, we find that
H(ϕ(x)) is a quadratic polynomial. Indeed, the second
moment, θ � 2, is the critical level for inclusion in the

divergence ball. For the construction of new diver-
gences in the remainder of the paper, the main im-
plication of the two propositions is that they suggest
to create a match between the nominal model and
the divergence by choosing H such that H(ϕ(x)) grows
like xθ for some θ.

Proposition 2. Let θ > 1.Assume that F(0) < ∞ and that11

lim sup|x|→∞
H(ϕ(x))1S (x)

|x|θ < ∞,whereϕ � − log( f ). Let η be a
distribution on S that is absolutely continuous with respect
to ν and has density g. Suppose that

∫
S∩[−k,k] F(g(x)f (x))f (x)dx <

∞ for all k ∈ (0,∞), that lim sup|x|→∞ g(x) < 1, and that∫
S
|x|θg(x)dx < ∞. Then DF(η|ν) < ∞.

Remark 2. In theprecedingproposition,we consider alter-
native models with finite θth moment

∫ ∞
0 |x|θg(x)dx<∞.

As argued previously (see also Kruse et al. 2019), when
onewants to includemodelswithmoments up to orderθ
in the uncertainty sets, the divergence needs to be tai-
lored to the reference model (and the threshold θ). This
observation is reflected by the condition limsup|x|→∞
H(ϕ(x))1S (x)

|x|θ <∞, which connects the divergence D to the

reference model η and the threshold θ. The indicator
function 1S ensures that the condition only imposes a
growth assumption where the support S of ν is un-
bounded. The remaining conditions are also needed to
ensure thatDF(η|ν) < ∞ but they do not concern the tail
behavior of η. For example, ν being not absolutely
continuouswith respect to η and F(0) � ∞would imply
DF(η|ν) � ∞. Therefore, we impose F(0) < ∞. This as-
sumption holds true for KL-divergence, α-divergence,
and the new divergences proposed in the next section.
Likewise, the condition

∫
S∩[−k,k] F(g(x)f (x))f (x)dx < ∞ for all

k ∈ (0,∞) rules out alternative distributions that already
have infinite distance to ν on bounded intervals. It is
satisfied, for example, if the density g

f of η with respect
to ν is bounded from above on every compact subset
of S. Finally, lim sup|x|→∞ g(x) < 1 is a weak regularity
assumption on η.

We now turn to the converse direction and verify
that all sufficiently regular models whose tails are
heavier than a power law with some infinite moment
of order t < θ are excluded from any divergence ball
around the reference model. To this end, we assume
that the support of ν is unbounded from above. A
similar statement holds in the case where S is un-
bounded from below.

Proposition 3. Let θ > 1 and let t ∈ (1, θ). Assume that
F(0)<∞, that there exists x̂∈ (0,∞) such that (x̂,∞) ⊂ S and
that there exists ỹ ∈ (1,∞) such that H is continuously differ-
entiable on (ỹ,∞).Moreover, assume that limsupy→∞

H′(y)
H(y) <∞

and that for all c ∈ (0,∞) it holds that lim infx→∞
H(ϕ(x)−(t+1) log(x)−c)

xt > 0. Let η be a distribution on S that is
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absolutely continuous with respect to ν and has density g.
Suppose that lim infx→∞ xt+1g(x) > 0 and that limx→∞
g(x)
f (x) � ∞. Then DF(η|ν) � +∞.

3. Explicit Divergences for Weibull and
Lognormal Models

In this section, we use the tools assembled in the
previous section to propose two new explicit F-di-
vergences. Following the discussion in Section 2.3, the
intended reference models for these new divergences
are, respectively, of Weibull type and of generalized
lognormal type. In both cases, the support of the
reference models is the nonnegative real line. From a
technical perspective, a reference model is of Weibull
type if the log-density ϕ is a (possibly fractional)
polynomial, whereas it is of generalized lognormal
type if the log-density is a polynomial in log(x). Just
like polynomial divergence, both new divergences
have an additional parameter that can be used to
adjust the growth behavior of the cost function and
thus the level of the implicit moment constraint in the
sense of Section 2.3.

3.1. The Weibull Case
Throughout this section, we assume that S � [0,∞)
and that there exists a constant k > 0 such that the ref-
erence model satisfies ϕ ∈ Θ(xk) where ϕ � − log( f ).12
We refer to this assumption on the tail asymptotics
of the reference model as the Weibull case because
varying k > 0 covers the entire family of Weibull dis-
tributions including the heavy-tailed case k ∈ (0, 1). For
the heavy-tailed case, previous divergences have con-
siderable limitations as argued in Kruse et al. (2019).
However, the assumption on the reference model
covers other reference distributions such as expo-
nential tail behavior (k � 1) and Gaussian tail be-
havior (k � 2). If X is Gaussian, then |X|q, q > 0, sat-
isfies the assumption with k � 2/q. In particular, in
order to apply the results of this section, it is not
necessary that the reference density is available in
closed form: Tail asymptotics in the sense of ϕ ∈ Θ(xk)
are sufficient.

The divergences we construct can be combined
with any model from these classes to obtain diver-
gence balls that respect finiteness of the θth moment
as an additional constraint. To be more precise, for
θ > max{k, 1}, our divergences for the Weibull case
are given by

H y
( ) � k

θ y + 1
( )θ

k−1
( )

for y ≥ 0

y for y < 0.

{
(10)

The inverse is given by

H−1 x( ) �
θ
k x + 1
( )k

θ−1 for x ≥ 0
x for x < 0.

{
(11)

In the limiting case θ � k, we thus recover the KL-
divergence H(y) � y. Generally, guided by the results
of the previous section, the function H is chosen in
such a way that H(ϕ(x)) behaves like xθ for large x, as
is verified here. The next lemma states some key
properties of H.

Lemma 3. The function H is strictly increasing with
limy→∞H(y) �∞,H(0) � 0 and L � limy→−∞ H(y) � −∞.
Moreover, H is convex and continuously differentiable with
H′(0) � 1. Finally, H is increasing in θ.

The fact that H(y) ≥ y for all y ≥ 0 and H(y) � y for
all y ≤ 0 ensures that F ≥ FKL (cf. Example 1) and
consequently that the divergences defined throughH
are weakly larger than the KL-divergence. Similarly,
the fact that H increases in θ on [0,∞) and does not
depend on θ on (−∞, 0), implies that the divergence
DF(η|ν) increases in θ. For an uncertainty set with
fixed radius κ, this implies that the set of models that
are taken into account as alternatives shrinks as we
impose finiteness of more moments. The next lemma
confirms that the tools of the previous section are
applicable in this setting: Worst cases are finite, and
the θth moment is the cutoff for inclusion into di-
vergence balls.

Lemma 4. It holds that F(0) � 1, that limsupx→∞
H(ϕ(x))

xθ <∞, that limsupy→∞
H′(y)
H(y)<∞, and that liminfx→∞

H(ϕ(x)−(t+1)log(x)−c)
xt >0 for all t∈(1,θ) and c∈ (0,∞). More-

over, Condition (7) is satisfied. Thus, the assertions of Prop-
ositions 1–3 hold true.

The main implication of Proposition 1 is an explicit
formula for worst-case densities, gwc(x) � hwc(x)f (x),
where the worst-case change of measure hwc is given by

hwc x( ) �
exp θ

k αwc
1 + αwc

2 x
( ) + 1

( )k
θ−1

( )
for αwc

1 + αwc
2 x ≥ 0

exp αwc
1 + αwc

2 x
( )
for αwc

1 + αwc
2 x < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (12)

and where the two parameters (αwc
1 , αwc

2 ) ∈ R × (0,∞)
are such that gwc is a probability density that has a
specified divergence from f .13 Moreover, Proposi-
tions 2 and 3 confirm that the θth moment is indeed
the cutoff for inclusion in the divergence ball.

Remark 3. In the previous exposition, we presented the
functionH in terms of k andθ and thus in dependence on
the reference model and a target constraint on moments.
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This facilitates an application of Propositions 2 and 3.
Alternatively, one can also introduce the same function
independently of the reference model with a single pa-
rameter β ≥ 1:

H y
( ) � 1

β y + 1
( )β−1( )

for y ≥ 0
y for y < 0.

{
(13)

Similarly to polynomial divergence, this gives a one-
parameter family of divergences that converge to KL-
divergence in the limit β ↓ 1.14 The case distinction in
the definition ofH implies that we treat y ≤ 0 as in KL-
divergence. As y corresponds to the logarithm of the
change of measure between the reference and the
alternative model, these are exactly the possible out-
comes that are more likely under the reference model
thanunder thealternative.Our functiondiffers fromKL-
divergence for those outcomes that are more likely
under the alternative than under the reference model. A
piecewise definition like this is convenient to avoid is-
sues such as taking powers of negative numbers. Fig-
ure 1 displays the function F implied by (13) for the
case β � 1 that corresponds toKL-divergence (in gray)
and for a case with β > 1 (in black). The functions
coincide for y ≤ 1, whereas for y > 1, we see indeed a
markedly higher penalty for β > 1 than in the KL case.

3.2. The Generalized Lognormal Case
In this section, we provide an analogous analysis to
the previous section for reference models that are
generalized lognormal distributions. Although the
assumptions on the reference model are more rigid
than in the previous section,15 the results can nev-
ertheless be transferred to more general settings in-
volving lognormal distributions using Proposition 4.
This is demonstrated in the setting of worst-case
hedging errors in Section 6.

Throughout this section, we assume that the ref-
erence model is a generalized lognormal distribution.
Thus, the support is given by S � [0,∞), and there
exist r ≥ 2, σ > 0, and μ ∈ R such that

f x( ) � 1
Z · x exp − 1

rσr
| log x( ) − μ|r

( )
, (14)

with Z � 2r1/rσΓ(1 + 1/r). Similarly, as in the Weibull
case, our divergences depend on a parameter θ > 1
that can be interpreted in terms of a moment re-
striction. The divergence is implicitly defined through

H y
( ) � 1

θσ( )r e r θσ( )ry+1( )1r−1 − 1
( )

for y ≥ 0

y for y < 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

The inverse is thus given by

H−1 x( ) �
1

r θσ( )r log θσ( )rx + 1( )(( + 1)r−1) for x ≥ 0
x for x < 0.

{
(16)

The next lemma verifies that this choice of H satisfies
the basic properties we need.

Lemma 5. The function H is strictly increasing with
limy→∞H(y) �∞,H(0) � 0 and L � limy→−∞ H(y) � −∞.
Moreover, H is continuously differentiable with H′(0) � 1.
In the standard lognormal case r � 2, H is also convex and
increasing in θ.

Notice that we only have convexity of H in the
special case r � 2. This case corresponds to the stan-
dard lognormal distribution found, for example, in
financial applications. In that case, we also have
monotonicity in θ, implying that with fixed radius a
larger θ yields smaller worst-case expectations be-
cause of heavier restrictions on the divergence balls.
The next lemma confirms that the tools for worst-case
analysis from Section 2 are again applicable.

Lemma 6. It holds that F(0) � 1, that limsupx→∞
H(ϕ(x))

xθ <∞, that limsupy→∞
H′(y)
H(y) <∞, and that liminfx→∞

H(ϕ(x)−(t+1) log(x)−c)
xt >0 for all t ∈ (1, θ) and c ∈ (0,∞). More-

over, Condition (7) is satisfied. Thus, the assertions of
Propositions 1–3 hold true.

In particular, the worst-case densities are given by
gwc(x) � hwc(x)f (x) with

hwc x( ) �
exp 1

r θσ( )r log θσ( )r αwc
1 +αwc

2 x
( )({((

+1)+1}r−1)
)

for αwc
1 +αwc

2 x≥ 0
exp αwc

1 +αwc
2 x

( )
for αwc

1 +αwc
2 x< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

Finally, although the divergence is defined in terms of
the reference model via σ and r, the dependence on σ

Figure 1. Function F Induced by (13) for β � 1 (Gray Line)
and for β � θ/k with θ � 2 and k � 0.3 (Black Line)
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can formally be removed by defining the diver-
gence via

H y
( ) � 1

βr e rβry+1( )1r−1 − 1
( )

for y ≥ 0

y for y < 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for β ≥ 0. For a generalized lognormal reference model
with volatility parameter σ, finiteness of the β

σth mo-
ment is thus the threshold for inclusion of alternative
models into divergence balls as discussed in Propo-
sitions 2 and 3.

4. Risk Factors, Transformations, and the
Wasserstein Distance

In many applications, the univariate output quan-
tity X that is the object of our worst-case analysis de-
pends in a complex way on many driving risk factors
Z � (Z1, . . . ,Zn). For example, in Section 6, we study a
financial settingwhereX is the absolute hedging error
of a discrete hedging strategy, whereas the Zi rep-
resent stock prices at different time points. In a sit-
uation like this, it seems plausible that the true model
uncertainty concerns the joint distribution of the stock
prices Zi while the mappingX � G(Z) from prices Z to
terminal portfolio values X is a known deterministic
function. The two main results of this section, Prop-
ositions 4 and 5, reconcile this multivariate viewpoint
with the univariate worst-case analysis of Section 2.2.
Proposition 4 shows how to transfer the sufficient
condition (5) from Proposition 1 from the risk factors
to the output quantityX. Proposition 5 shows that the
univariate, output-based worst-case analysis of Sec-
tion 2.2 is equivalent to a multivariate worst-case
analysis at the level of the risk factors. In the final part
of this section, we argue that this equivalence is an im-
portant advantage of the F-divergence approach to
model uncertainty compared with the Wasserstein ap-
proach, which has recently attracted considerable atten-
tion (Pflug and Pichler 2014, Esfahani and Kuhn 2018).

4.1. Sufficient Conditions for Multivariate Problems
In typical applications where X is a function of many
risk factors, X � G(Z), the marginal distributions of
the Zi are chosen from well-known parametric fam-
ilies, whereas the nominal distribution of X is more
complex. The nominal density f of X may thus not be
available explicitly. This makes a direct application of
Proposition 1 to X difficult because Condition (5)
cannot be verified directly. In Proposition 4, we
provide sufficient conditions under which the nom-
inal distribution of X inherits Condition (5) from the
marginal distributions of the risk factors.

For instance, in the hedging example of Section 6,
the stock prices Zi at different time points are lognor-
mally distributed under the nominal model, whereas

the absolute hedging error X is a complicated non-
linear function of theZi whose density is not known in
closed form. Using Proposition 4, we can verify
Condition (5) individually for the risk factors Zi and
then conclude that the condition is inherited by X.

Proposition 4. Fix a function H that satisfies the standing
assumptions from the beginning of Section 2.1 and n + 1
reference models ν and ν1, . . . , νn. Assume (i) that there are
random variables X and Z1, . . . ,Zn with marginal distri-
butions X ∼ ν and Zi ∼ νi and a constant C such that

|X| ≤ C 1 +∑n
i�1

|Zi|
( )

,

almost surely (a.s.), (ii) that the distributions ν1, . . . , νn all
satisfy (5), and (iii) that there exists x̄ ∈ [0,∞) such that
x �→ x exp(H−1(x)) is convex on (x̄,∞). Then ν also sat-
isfies (5).

The proposition is based only on the marginal
distributions and does not make any assumptions
on the dependence structure of the Zi. The convex-
ity condition (iii) on x �→ x exp(H−1(x)) is satisfied by
all specific examples of divergences considered in
this paper.

4.2. Equivalence of Univariate and Multivariate
Worst-Case Analysis

When X is a function of many underlying risk factors
Zi, it may seemmore natural to formulate uncertainty
sets at the level of themultivariate joint distribution of
the Zi than at the level of the univariate distribution of
X like we did thus far.We next show that this does not
affect the outcome of a worst-case analysis. If we
define the uncertainty set with the same F and κ on the
joint distribution of the risk factors rather than on the
marginal distribution ofX, we obtain the same worst-
case distribution and worst-case expectation for X.
Moreover, the worst-case joint distribution of the Zi

can be recovered from the univariate worst-case analy-
sis. This equivalence between the univariate and mul-
tivariate worst-case problems under F-divergence is
established in Proposition 5.

Proposition 5. Suppose the real-valued random variable X
satisfies our standing assumptions, and there exists a ran-
dom variable Z � (Z1, . . . ,Zn) taking values in U ⊆ Rn

such that X � G(Z) a.s. for some measurable function
G : Rn → R+. Denote by νZ the distribution of Z under the
reference model and assume that it has Lebesgue density
fZ : U → R. In particular, the implied distribution of G(Z)
under νZ is ν. Consider the multivariate analogue of (4) with
the same F and κ,

sup
ηZ:DF ηZ |νZ( )≤κ

EηZ G Z( )[ ], (18)
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where the supremumnow runs over n-variate distributions
ηZ and the F-divergence is the n-variate generalization
of (1), that is,

DF ηZ|νZ( ) � ∫
U
F

gZ z( )
fZ z( )

( )
fZ z( )dz,

with gZ denoting the Lebesgue density of ηZ. Then the two
suprema in (4) and (18) coincide. Moreover, if the supre-
mum in (4) is finite and attained by a distribution with
density gwc(x) � hwc(x)f (x), then the supremum in (18) is
attained by

ĝwcZ z( ) � hwc G z( )( )fZ z( ). (19)

Likewise, if the supremum in (18) is finite and attained by a
distribution with density ĝwc(z) � hwcZ (z)fZ(z), then the
supremum in (4) is attained by

ĝwc x( ) � EνZ hwcZ Z( )|G Z( ) � x
[ ]

f x( ).

Remark 4. (i) Already the univariate version of this
result has some interesting implications. Suppose that
Z is a real-valued random variable and X � G(Z) is a
monotonic transformation of Z. Then, for any fixed
radius κ, it does not make a difference whether we
maximize the expectation of X over an F-divergence
ball around the nominal distribution of X or the ex-
pectation of G(Z) over an F-divergence ball around the
nominal distribution of Z. Transforming the data does
not change the worst case. (ii) As a special case of (i),
Proposition 5 enables us to translate the worst-case
analysis of Proposition 1 into a best-case analysis.
Denote by ν̄ the nominal distribution of Z � −X. We
can write the best-case problem for X as

inf
η :DF η|ν( )≤κEη X[ ] � − sup

η :DF η|ν( )≤κ
Eη −X[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

� − sup
η̄ :DF η̄|ν̄( )≤κ

Eη̄ Z[ ]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,
where the second step applies Proposition 5 with
G(z) � −z.We thus arriveat aworst-caseproblem for−X,
which can be solved using Proposition 1.16 Denoting
by ḡwc the resultingworst-case density for−X, we find
that the best-case density for X is of the form

gbc x( ) � ḡwc −x( ) � 1 αbc
1 −αbc

2 x>L{ }
× exp H−1 αbc

1 − αbc
2 x

( )( )
f x( ), x ∈ S, (20)

with (αbc
1 , α

bc
2 ) ∈ R × (0,∞). The only difference to the

worst-case density is thus the minus sign in front of
αbc
2 , corresponding to an exponential tilting toward

small realizations of X.

A major consequence of Proposition 5 is that a
worst-case analysis that is based on the univariate
worst case problem (4) leads to the same result as a
multivariate worst-case analysis that is based on
perturbing the distributions of the underlying risk
factors. Moreover, by (19), the solution to the uni-
variate problem pins down an explicit worst case for
the joint distribution of the risk factors.

4.3. Comparison with the Wasserstein Approach
Our observed equivalence between the univariate and
multivariate worst-case problems stands in marked
contrast to what happens under the main competitor
of the F-divergence approach to model uncertainty:
the Wasserstein approach. For two distributions μ1
and μ2 on Rn, the Wasserstein distance dW is given by

dW μ1, μ2
( ) � inf

X1,X2( )∼μ∈M μ1,μ2( )Eμ |X1 − X2|[ ],

where | · | denotes the Euclidean norm. The infimum
runs over the set M(μ1, μ2) of all couplings of μ1 and
μ2, that is, over the set of all possible joint distribu-
tions of X1 and X2 on Rn × Rn such that X1 ∼ μ1
and X2 ∼ μ2.
The Wasserstein analogues of the two equivalent

worst-case problems in Proposition 5 are given by

sup
η : dW η,ν( )≤κ

Eη X[ ] (21)

and

sup
ηZ : dW ηZ,νZ( )≤κ

EηZ G Z( )[ ]. (22)

These two problems are far from equivalent. The
univariate problem (21) is almost degenerate. The
worst-case distribution is simply an upward shift
of ν by κ.17 The worst-case expected value is thus
Eν[X] + κ, simply adding the radius as a safety mar-
gin.18 In particular, this univariate Wasserstein ap-
proach does not respect the structure of the problem;
that is, there does not necessarily exist a distribution of
the underlying risk factors that can generate the worst-
case distribution for G(Z). For instance, if X � G(Z) is
a probability that takes values in [0, 1] depending on
the realization of the risk factors, the worst-case model
may shift X outside the unit interval. The resulting
worst case cannot be rationalized with realizations
of Z or meaningfully interpreted as a probability. The
multivariate problem (22) does not face these draw-
backs because it directly perturbs the distribution of
the risk factors. However, despite impressive prog-
ress in the recent literature (Esfahani and Kuhn 2018
and the references therein), solving this problemmay
be quite challenging depending on the complexity of G
and the dimensionality of Z.
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The F-divergence approach provides an attractive
middle ground between the extremes of the two
Wasserstein problems (21) and (22). Solving the uni-
variate worst-case problem using Proposition 1 may
not be quite as easy as adding a safety margin, but
depending on the setting, it may be much easier than
solving a complex, high-dimensional optimization
problem. Proposition 5 guarantees that the solution of
the univariate problem coincides with that of its
multivariate version. This guarantee does not even
require explicit knowledge of the function G and the
risk factors Z. It does not matter which model of the
form X � G(Z) generates the nominal distribution of X.
The univariate F-divergence worst case can be ratio-
nalized within any such model (i.e., by Proposition 5,
there always exists a distribution of Z that generates
the right distribution of G(Z)).

The equivalence between the univariate and the
multivariate worst-case problems under F-divergence
arises because the worst-case change of measure in
themultivariate problem is a deterministic function of
X � G(Z). Thus, even though the uncertainty set in
the multivariate problem is much richer than in the
univariate one, the worst case is achieved by a change
of measure that lies in both uncertainty sets and thus
only depends on X. From a practical perspective, this
implies that a worst-case analysis based on Propo-
sition 1 can be conducted in a postprocessing step
given only a sample of X without precise knowledge
of the underlying model, exactly in the same way in
which onemight compute a samplemean or standard de-
viation.19 This direction is explored further in Section 5.

5. Numerical Approach
In this section, we outline our computational strategy
and introduce divbox, a Python package for worst-
and best-case analysis with F-divergences.

5.1. Computational Strategy
5.1.1. Nonlinear Importance Sampling. Our numerical
approach is based on Monte Carlo simulation with
importance sampling as proposed in Glasserman and
Xu (2014). To this end, we generate a sample of m
independent copies of X, denoted by x1 to xm, under
the reference model and approximate the worst-case
expected value by importance sampling,

Eηwc X[ ] � Eν XT αwc
1 + αwc

2 X
( )[ ]

≈ 1
m

∑m
j�1

xjT α̂m
1 + α̂m

2 xj
( )

, (23)

where the function T is the tilting function in the
change of measure in (6), that is,

gwc x( ) � T αwc
1 + αwc

2 x
( )

f x( ).

Aswe do not know the exact values of αwc
1 and αwc

2 , we
determine their approximations α̂m

1 and α̂m
2 numerically

in such a way that the sample equivalents of the con-
straints DF(ηwc|ν) � κ and Eν[hwc(X)] � 1 are satisfied:

1
m

∑m
j�1

F T α̂m
1 + α̂m

2 xj
( )( ) � κ (24)

and
1
m

∑m
j�1

T α̂m
1 + α̂m

2 xj
( ) � 1. (25)

5.1.2. Confidence Bounds. We thus approximate the
worst-case expected value by the exact worst-case
expectation for the empirical distribution of the sam-
ple. This is analogous to an approximation of the ex-
pected value by a sample mean. However, because of
the nonlinear dependence of the parameters α̂m on the
sample, we cannot apply the usual Monte Carlo
confidence intervals to quantify the sampling un-
certainty in (23). Thus,we resort to classical tools from
the econometrics literature. The estimator (23) can be
interpreted as a method of moments estimator. In
particular, following the reasoning around theorem 2
in chapter 8 of Manski (1988), under certain technical
conditions the approximation error

E m( ) � Eν XT αwc
1 + αwc

2 X
( )[ ]

− 1
m

∑m
j�1

xjT α̂m
1 + α̂m

2 xj
( )

vanishes asm goes to infinity and the distribution of the
scaled error

̅̅̅
m

√
E(m) converges to a normal distribution

with mean zero and variance v2 � w�(B−1)�ΣB−1w.
Defining, U � αwc

1 + αwc
1 X,Σ is the covariance matrix

of the random vector

T U( )
F T U( )( )
XT U( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

under the nominal model ν, the 3 × 3 matrix B is de-
fined as

B �
Eν T′ U( )[ ] Eν F′ T U( )( )T′ U( )[ ] 0
Eν T′ U( )X[ ] Eν F′ T U( )( )T′ U( )X[ ] 0
0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and the vector w is

w �
Eν XT′ U( )[ ]
Eν X2T′ U( )[ ]

−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The basic idea is to linearize the estimator (23) and the
constraints around the true parameter values αwc

1 and
αwc
2 to obtain expressions that behave like sample

averages and thus satisfy classical stochastic limit
theorems. This leads to consistency and asymptotic
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normality first for the pair of parameters (α̂m
1 , α̂

m
2 ) and

then also for the estimatedworst-case expected value.
Finally, to practically compute asymptotic standard
errors based on v2 � w�(B−1)�ΣB−1w, we estimate B, Σ
and w from their sample analogues.

5.1.3. Implementation. To achieve an efficient imple-
mentation for the new divergences from Section 3,
we need to exploit that evaluating F involves many
very similar numerical integrations, especially for
large sample sizes. To this end, in every call, we first
evaluate F on a grid that covers the entire range of
sample values and then use spline interpolation to fill
in the gaps. Thisworks verywell as the functions F are
constructed to be smooth (see Appendix C.2 for more
details and an example).

Moreover, we need appropriate starting values
when solving the nonlinear system of Equations (24)
and (25) for α̂m

1 and α̂m
2 .

20 To this end, we exploit the
observation from Remark 1 (iii) that, up to first order,
all divergences with F′′(1) � 1 have similar magni-
tudes in small balls. Thus, starting values that work
well for one such divergence can be expected to also
work well for the others. The polynomial divergence
with p � 2 is particularly tractable. For this diver-
gence,we haveT(y) � 1 + y and F(y) � 1

2 (y2 − 1), where
weneglect the indicator function involving L to obtain
simpler results. Denoting by a1 and a2 the resulting
values of αwc

1 and αwc
2 , (25) becomes a1 � −a2Eν[X] and

thus (24) turns into a22Varν(X) � 2κ. The positive so-
lution of this equation21 is given by a2 �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2κ/Varν(X)

√
.

Replacing the mean and variance by their empirical
counterparts, we obtain starting values for searching
α̂m
1 and α̂m

2 , which work very well in practice.22

5.2. The divbox Package
For KL-divergence, polynomial divergence and the
two newdivergences fromSection 3,we implemented
this approach for computing worst- and best-case
expected values and asymptotic standard errors in
the Python package divbox. As discussed in Section 4,
a major advantage of the F-divergence approach to
model uncertainty is that we obtain worst-case models
that respect the structure of the underlying problem
while requiring minimal knowledge about the nominal
model in the worst-case analysis. The worst-case anal-
ysis happens in a postprocessing step, similar to the
computation of a sample mean or sample quantile. A
typical application of divbox is as follows:

from divbox import supmean
X=SimulateLosses()
WCMean=supmean(X,div=’KL’,kappa=1)

Here, the first line loads the supmean command
from divbox. In the second line, SimulateLosses stands

for a generic, problem-dependent function that simu-
lates a vector X of realized loss scenarios under the
nominal model. This may well be a complex simu-
lation based on a black-box scenario generator. The
third line computes the worst-case mean of X over a
KL-divergence ball with radius 1 using the method-
ology outlined previously. A comprehensive intro-
duction to divbox is provided in Appendix C.
In the previous description, we focused on appli-

cations of our toolkit within a well-specified nominal
model coupled with a Monte Carlo approach. How-
ever, the tools from the divbox package can also di-
rectly be applied to empirical rather than simulated
data. In fact, our reasoning about convergence of the
estimator as the sample size increases is based on
ideas from the econometrics literature that were origi-
nally developed for that type of setting.
It is a well-known advantage of the Wasserstein

approach to model risk that, even in a continuous
setting, the true data-generating process will lie within
a sufficiently large ball around the nominal model.
In contrast, under the F-divergence paradigm, a ball
around a distribution with discrete support only in-
cludes distributions with (at most) the same discrete
support. The reason is that the F-divergence approach
reweights probability mass, whereas the Wasserstein
approach shifts it around. Yet, for the same reason, as
argued in Section 4, worst-case postprocessing based
on F-divergences respects the structure of an un-
derlying multivariate model, whereas the Wasser-
stein approach does not. Together with our asymp-
totic standard errors and the resulting confidence
bounds, worst-case expectations that are estimated
from a sample are informative about the underlying
data-generating process while respecting the struc-
ture of the problem.

6. Illustrations
This section illustrates our toolkit in the context of
three practical problems from the fields of operations
management, insurance, and finance. We focus on
situations where the quantity of interest has Weibull
or lognormal tail behavior so that the newly con-
structed F-divergences from Section 3 come in natu-
rally. Of course, these are just some examples for the
many applications of heavy-tailed reference models. In
actuarial and financial regulation, the lognormal dis-
tribution appears in many standard models for losses
under Solvency II and Basel III (Frachot et al. 2004,
Hürlimann 2009). For applications beyond finance, see
Kleiber and Kotz (2003) and Clauset et al. (2009). The
latter paper also emphasizes that if one heavy-tailed
model is plausible, then it is often hard to rule out others
as alternatives, leading to model misspecification risk
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regarding tail behavior.Moreover, in all three examples,
a worst-case analysis based on KL-divergence would
lead to infinite worst cases.

6.1. Inventory Pooling Under Heavy-Tailed Demand
Bimpikis and Markakis (2016) study the value of
having a pooled inventory in a static multilocation
newsvendor problem where demand at individual
locations follows a heavy-tailed distribution. Intui-
tively, having a pooled inventory for several locations
enables the firm to balance demand fluctuations across
locations, thus reducing costs fromholdinga too large or
too small inventory compared with a situation where
each location has its own inventory. Bimpikis and
Markakis (2016) argue that the gains from inven-
tory pooling are smaller under heavy-tailed demand
than an intuition based on light-tailed demand models
might suggest. The reason is that a sum of heavy-tailed
random variables tends to be dominated by very few
large summands. In the following, we study how sen-
sitive the gains from inventory pooling are when it
comes to model misspecification.

In the model of Bimpikis and Markakis (2016), a
firm sells an identical good at n locations. Under the
lognormal nominal model, demand is independent
across locations and demand Di at location i is given
by Di � a exp(bZi), where Zi is standard normal and
(a, b) � (100, 21

2). The firm faces backorder costs p for
each unit by which demands exceeds inventory and
holding costs h for each unit by which inventory
exceeds demand where (h, p) � (1, 1). The firm’s re-
alized costs Cd(q) under a fully decentralized inven-
tory scheme where each location has inventory q is
given by23

Cd q
( ) � h

∑n
i�1

max q −Di, 0
( ) + p

∑n
i�1

max Di − q, 0
( )

.

Under a centralized inventory scheme where all lo-
cations share the same inventory of size Q, realized
costs are given by

Cc Q( ) � hmax Q −∑n
i�1

Di, 0

( )

+ pmax
∑n
i�1

Di −Q, 0

( )
.

We denote by q∗ν and Q∗
ν the nominally optimal in-

ventory levels, that is, the respective minimizers of
Eν(Cd(q)) and Eν(Cc(Q)).24 The nominal gains per lo-
cation from inventory pooling are thus given by Eν[X]
where X � (Cd(q∗ν) − Cc(Q∗

ν))/n. In the following, we
study how the expectation of X reacts to worst-case
perturbations of the underlying demand model for
varying numbers of locations n.

Our analysis of worst- and best-case gains from
inventory pooling is based on the divergence for the
lognormal case r � 2 defined in (15) with θ � 2. To
determine the volatility parameter σ in the diver-
gence, we apply Proposition 4: Whereas X itself is not
lognormally distributed, it is a piecewise linear function
of the location-specific demands Di that are lognor-
mally distributed with volatility parameter b. Thus,
we can choose σ � b.
For each n, we follow aMonte Carlo approach with

500,000 simulations of X. To compute worst and best
cases, we use the supmean and infmean commands
from the divbox package. To illustrate the asymptotic
standard errors from divbox, we also present confi-
dence bounds based on a smaller sample of 1,000
simulations. Here, we add two standard errors to the
supmean for an upper bound and subtract two standard
errors from the infmean for a lower bound. All com-
putations are based on a radius of κ � 0.1.
The dashed line in Figure 2 shows the expected

gains from centralization under the nominal model as
the number of locations increases from 2 to 40. These
gains increase from 29.3 to 156.2 as the number of
locations goes up. Compared with the expected costs
of E[Cd(q∗ν)] � 229.1 without centralization, this cor-
responds to cost reductions by, respectively, 12.8%
and 68.2%. Thus, there are sizeable economies of scale
in inventory pooling. The solid lines show the cor-
responding best- and worst-case expected values.
Here, we observe similar economies of scale although
the level of the cost reduction has changed substan-
tially. The dotted lines provide a test of our asymp-
totic standard errors. Although these more conser-
vative bounds are based on much noisier estimates,

Figure 2. Worst- and Best-Case Expected Gains from
Inventory Pooling as Functions of n (Solid Lines)

Note. The dashed line is the nominal mean, and the dotted lines are
confidence bounds based on a smaller sample size.
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they provide meaningful confidence bounds for our
more precise estimates represented by the solid lines.25

6.2. Proportional Reinsurance Under Different
Claim Dependences

As a second example, we consider proportional re-
insurance. The reinsurer provides protection for a
fixed percentage of the total claim amount. The total
claim amount is equal to the sum of individual claims
or losses Li, i � 1, . . . ,n. Our quantity of interest is thus

R � ρ
∑n
i�1

Li, (26)

where ρ ∈ (0, 1) is the fraction the reinsurer covers.
Under the reference model ν, we assume that loss Li
has a Weibull distribution with parameters (ki, λi).
The marginal density of Li is thus given by

fi x( ) � ki
λi

x
λi

( )ki−1
e− x/λi( )ki .

This information about marginal distributions is suffi-
cient to compute the reference mean Eν[R]. In the fol-
lowing, we study the impact of different assumptions
about the dependence structure of the Li on worst-
case expected values. In particular, we compare the
cases where the Li are independent or dependent with
a dependence structure modeled through a Gauss-
ian copula or a t-copula. The t-copula is particularly
well suited for modeling dependence in the tails.
Although the density of R is not available in closed
form even in the independent case, Proposition 4 im-
plies that the divergences defined in (10) are appli-
cable with k � mini ki. The parameter k in the diver-
gence is thus chosen such that it matches the most
heavy-tailed of the risk factors Li. For the remaining
parameter in the divergence, we set θ � 2 throughout
the analysis. For the parameters, we consider n � 5 risk
factors Li with

k1, . . . , k5( ) � 0.3, 0.4 . . . , 0.7( ) and λi � 1.1−
1
ki

and ρ � 0.3. The function F with (θ, k) � (2, 0.3) thus
corresponds to the black curve in Figure 1.

We follow aMonte Carlo approachwithm � 500, 000
simulations and apply the divbox package for the
worst-case analysis. When the Li are independent, we
simulate independent uniform random variables and
transform them into Weibull distributed variables by
applying the quantile functions of the marginal Weibull
distributions. When assuming a copula for the depen-
dence structure, we similarly transform a sample of
dependent uniform random variables into dependent
Weibull. The Gaussian copula needs as an input a
correlationmatrixΣ, whereas the t-copula needs both a

correlation matrix and a degrees of freedom param-
eter v. Throughout, our simulations we use v � 2 and

Σ �

1 −0.25 0.25 0 0.25
−0.25 1 0 0.25 0.25
0.25 0 1 0 0.25
0 0.25 0 1 0.5

0.25 0.25 0.25 0.5 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

In Figure 3, we illustrate the impact of increasing
the radius κ and thereby the model uncertainty on the
worst-case expected value under independence,
the Gaussian copula and the t-copula. Recall that the
expected value under the reference model is identi-
cal for all three dependence assumptions and equals
Eν[R] ≈ 4.02. As expected, the worst-case expected
values increase quickly with κ. Moreover, the worst
cases are quite sensitive to the dependence between
the risk factors. In particular, the t-copula, which
accounts for tail dependence, yields markedly higher
worst-case expected values for any given radius.

6.3. Discrete Hedging of a Call Option
In this section, we consider the problem of discrete hedg-
ing of a call option under a lognormal (i.e., Black-Scholes)
reference model with transaction costs. Model risk for
this problem has previously been studied (Glasserman
and Xu 2014, Schneider and Schweizer 2015). The
latter paper also shows that worst-cases based on KL-
divergence are in general infinite for this problem.
The call option hasmaturity T > 0 and strike price K.

Its underlying is the stock S, so that the terminal
payoff is given by h(ST) � max(ST − K, 0). Under the

Figure 3. Worst-Case Expected Values as Functions of κ for
Independent Losses (Solid Line), the Gaussian Copula
(Dashed Line), and the t-Copula Case (Dashed-Dotted Line)
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reference model, S is a geometric Brownian motion
with drift μS, volatility σS and initial value S0. More-
over, there is a risk-free bond B in the market with
interest rate ρ. Over the time horizon [0,T], a risk
manager hedges the option through a trading strat-
egy in the underlying and the bond with portfolio
changes at a fixed sequence of n trading dates ti � iT/n,
i � 0, . . . , n − 1. The hedging strategy in S and B is
financed by an initial investment. The bondposition is
adjusted only to finance the changes in the position in
S and to cover transaction costs. We denote by φS

ti
the

number of stocks and by φB
ti
the number of bonds held

over the interval [ti, ti+1). We assume that the hedge
position φS

ti
in S is chosen as the position one would

hold at ti under continuous trading in the absence of
transaction costs, that is, as a Black-Scholes call delta.
This implies in particular that 0 < φS

ti
< 1. The initial

investment corresponds to the price of the option in
the Black-Scholesmodel. Thus, in the limit n → ∞ and
in the absence of model risk and transaction costs, the
hedging strategywould perfectly replicate the payoff.
Transaction costs consist of a fixed component k0
and a component k that is proportional to trading
volume. In particular, when the number of stocks held
changes by vi at time ti, the agent incurs transaction
costs of k0 + k|vi|Sti .

Our key quantity of interest is the absolute termi-
nal hedging error resulting from such a discretized
delta hedge:

X � |h ST( ) − φS
tn−1ST − φB

tn−1BT |.
Even if the reference model is correct, the claim is
not perfectly replicated because of the discrete trad-
ing and the transaction costs. Although the distri-
bution of X is not available in closed form, the facts
that transaction costs are linear in Sti and that φS

ti
is

bounded, 0 < φS
ti
< 1, imply that there exists a con-

stant C such that

X ≤ C 1 +∑n
i�1

Sti

( )
.

The individual stock prices Sti are lognormally dis-
tributed with volatility parameter σi � σS

̅̅
ti

√
. We can

thus conclude from Proposition 4 that the divergence
for the lognormal case r � 2 defined in (15) is appli-
cable if we choose σ � maxi σi � σS

̅
T̅

√
. We fix θ � 2

throughout the analysis.
We set the parameters of the reference model to

μ� 0.05, σ� 0.3, ρ� 0.01,T� 1, S0 � 1, andK � 1. For the
transaction costs, we assume k0 � 0.0002 and k � 0.005.
The number of portfolio rebalancings n is varied in
the following illustration. For the radius, we choose
κ � 0.3. Our illustrations use 500,000 simulated hedg-
ing errors and the worst-case computations are based
on the divbox package.

Figure 4 shows how varying the hedging frequency
from 12 to 180 times per year affects the absolute
hedging error. Increasing the number of portfolio
rebalancings first decreases and then increases the
hedging error, both under the reference model and
under the worst-case model. This U-shape results
from a tradeoff between transaction costs and risk
reduction. As the hedging frequency increases, the
stochastic component of the payoff is replicated more
closely, but there are also higher and higher trans-
action costs. In the worst case, hedging errors are
significantly larger. Importantly, the optimal hedging
frequency is quite different under the nominal model
and the worst case. Although the nominal model
implies an optimal number of 76 rebalancings, the
worst-case analysis suggests to rebalance the port-
folio 109 times and thus 43.4% more frequently.
For all trading frequencies, the hedging errors can

be written as functions of the stock prices under the
finest trading frequency. In this sense, all the hedging
errors in the figure can be interpreted as worst cases
over the same uncertainty set by Proposition 5, making
the numbers comparable.

7. Managerial Implications
In this paper, we provide a toolkit for making the
divergence approach tomodel uncertainty applicable
to a broad set of problems from finance, insurance,
and beyond. Our toolkit consists of three components: a
new parametrization of F-divergences, a collection of
results that define a meaningful worst-case analysis
for the new divergences in practical problems, and
verifiable conditions on the divergences that enable
risk managers to tailor them to specific purposes

Figure 4. Expected Absolute Hedging Errors as Functions
of the Number of Portfolio Rebalancings n Under the
Reference Model (Dashed Line) and in Worst-Case
Expectation (Solid Line)
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guided by economic considerations. In particular,
unlike some previous approaches, our tools are well
suited for lognormal and Weibull-type reference
models that are popular modeling frameworks for
moderately heavy-tailed phenomena. The Python
implementation of our approach in the divbox package
makes it easy to integrate into existing risk manage-
ment processes.

Although the illustrations of the previous section
give some indication of the potential practical im-
plications of our approach, they are naturally just first
steps in this direction. A brief look at the earlier lit-
erature on robustness and model risk based on tra-
ditional divergencemeasures confirms that a lot more
can be done. For instance, there are many further
potential applications. Any field where risk man-
agement calculations meet stochastic modeling is a
potential field of application for our toolkit.

There are also further ways in which our tools can
be used. In the hedging example, we study the ro-
bustness of a specific hedging strategy: delta hedging.
In a natural next step, one might compare the ro-
bustness of different types of strategies using our
approach. For instance, in the hedging example, one
could study how a change from delta hedging to
delta-gamma hedging affects hedging errors under
model uncertainty. From these comparisons, it is
only a small conceptual step to robust optimization: A
risk manager could use the uncertainty sets implied
by our new divergence measures to determine, for
example, hedging strategies that respond to model
uncertainty in an optimal way. Similarly, in the in-
ventory management example, a next step might be
to consider alternative inventory strategies that ac-
count for model risk, thus integrating our toolkit into
strategic decision.

Finally, thus far,we implicitly assumed that adecision
maker is interested in our toolkit because of an intrinsic
preference for good risk management under uncer-
tainty. Although this motivation is perfectly valid, other
motivations are conceivable as well. For instance, our
tools might be used to address model risk when con-
structing internal models within a regulatory frame-
work such as Solvency II or Basel III. In fact, providing a
better protection against model risk has been a common
theme of various recent reforms in financial regulation.26

Acknowledgments
The authors thank Thomas Breuer, Pavel Cizek, and Volker
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Appendix A. Proofs

Proof of Lemma 1. Clearly, F is continuously differentiable
with increasing derivative F′(y) � H(log(y)). Cofiniteness
then follows from limy→∞ F′(y) � ∞ and L’Hospital’s rule.

By definition, we have F(1) � 0. Convexity and F′(1) � 0
imply nonnegativity of F. Finally, if H is continuously
differentiable with H′(0) � 1, we find F′′(y) � H′(log(y))/y
and thus F′′(1) � 1. □

Proof of Proposition 1. In order to connect our claims to the
results of Breuer and Csiszár (2016),27 we need to introduce
some concepts from convex analysis. We extend the def-
inition of F to (−∞, 0) by setting F(y) � +∞ for y ∈ (−∞, 0).
Let K :R2 → (−∞,∞] satisfy for all (α1, α2) ∈ R2 that

K α1, α2( ) �
∫
S
F∗ α1 + α2x( )f x( )dx,

where F∗:R → R is the convex conjugate of F; that is, F∗
satisfies for all x ∈ R that F∗(x) � supy∈R(xy − F(y)). In order to
show that the worst case is given by (6), we need to show that
K(α1, α2) is finite. The fact that H is strictly increasing im-
plies that F∗(x) � x exp(H−1(x)) − F(exp(H−1(x))) for all x > L
and F∗(x) � −F(0) for all x ≤ L. Moreover, it holds that
(F∗)′(x) � 1{x>L}eH

−1(x). Because F (and hence also F(0)) is
nonnegative, it holds for all α1, α2 ∈ R that

K α1, α2( ) ≤
∫
S
1 α1+α2x>L{ } α1 + α2x( )eH−1 α1+α2x( )

[
− F eH

−1 α1+α2x( )
( )]

f x( )dx

≤
∫
S
1 α1+α2x>L{ } α1 + α2x( )eH−1 α1+α2x( )f x( )dx

≤
∫
S
|α1| + |α2‖x|( )eH−1 |α1 |+|α2‖x|( )f x( )dx. (A.1)

Because x �→ (|α1| + |α2‖x|)eH−1(|α1 |+|α2‖x|) is bounded on any
compact subinterval of R and increasing in |α1|+ |α2‖x|, As-
sumption (5) then ensures thatK(α1,α2)<∞ for all (α1,α2) ∈R2

because α|x| > |α1| + |α2‖x| for α > |α2| and |x| is sufficiently
large. It follows that K is differentiable on R2 (see the text
preceding (3.20) in Breuer and Csiszár 2016 or Csiszár and
Matúš 2012, corollary 3.8). In particular, K is essentially
smooth.28 It follows from Breuer and Csiszár (2016, corollary
4.6) that κmax > 0 (in the notation of Breuer and Csiszár 2016).
If the support of ν is unbounded to the right, this implies that
κmax � ∞ (see the last sentence in Breuer and Csiszár 2016,
remark 3.2). Because F is convex and satisfies F(1) � 0, as-
sumption (3.5) in Breuer and Csiszár (2016) is satisfied.
Then, theorem 4.2 of Breuer and Csiszár (2016) ensures that
for all κ < κmax that there exists (αwc

1 , αwc
2 ) ∈ R × (0,∞) with∫

S
gwc x( )dx� 1 and αwc

1 +αwc
2

∫
S
xgwc x( )dx−K αwc

1 ,αwc
2

( ) � κ,

(A.2)
where

gwc x( ) � F∗( )′ αwc
1 + αwc

2 x
( )

f x( )
� 1 αwc

1 +αwc
2 x>L{ } exp H−1 αwc

1 + αwc
2 x

( )( )
f x( ). (A.3)

Moreover, any (α1, α2) ∈ R × (0,∞) satisfying (A.2) leads to
a probability measure η (via (A.3)) that attains the sup in (4).
If the support of ν is bounded from above, then the worst case
in (4) is clearly finite for every κ > 0. If the support is un-
bounded from above, then the worst case in (A.2) is for every
κ > 0 given by

∫
S
xgwc(x)dx and is finite by (A.2). By strict
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convexity of F, the maximizer in (4) is unique (see also the text
following display (3.7) in Breuer and Csiszár 2016). It follows
that (αwc

1 , αwc
2 ) is the unique solution of (A.2) in R × (0,∞).

Finally, observe that

κ � αwc
1 + αwc

2

∫
S
xgwc x( )dx − K αwc

1 , αwc
2

( )
�
∫
S

αwc
1 + αwc

2 x
( )

F∗( )′ αwc
1 + αwc

2 x
( )[ −F∗ αwc

1 + αwc
2 x

( )]
f x( )dx

�
∫
S
F

gwc x( )
f x( )

( )
f x( )dx � DF ηwc|ν( )

.

Hence, (αwc
1 , αwc

2 ) ∈ R × (0,∞) is the unique solution of∫
S
gwc(x)dx � 1 and DF(ηwc|ν) � κ in R × (0,∞). □

Proof of Lemma 2. We begin with (i) and fix α > 0. Because
H−1 is bounded from above on every compact subset of [0,∞),
it follows that

∫
S∩[−r,r] |x| exp(H−1(α|x|))f (x)dx < ∞ for every

r > 0. Condition (7) ensures that there exists C > 0 such that
|x| exp(H−1(α|x|))f (x) ≤ C

|x|1+ε for all x ∈ S with |x| large enough.
This proves (5). It remains to prove (ii). This claim follows
immediately from

lim sup
|x|→∞

|x|2+ε exp H−1 α|x|( )( )
f̂ x( )

≤ lim sup
|x|→∞

|x|2+ε exp H−1 α|x|( )( )
f x( )

[ ]
lim sup
|x|→∞

f̂ x( )
f x( )

[ ]
< ∞

where we used that all factors are nonnegative. □

Proof of Proposition 2. Let γ � − log(g). First, observe that
the fact that H is increasing implies for all y > 1 that

F y
( ) ≤ y − 1

( )
H log y

( )( ) ≤ yH log y
( )( )

. (A.4)
By assumption, there exist x̄,C ∈ (0,∞) such that g(x) ≤ 1 and
H(ϕ(x)) ≤ C|x|θ for all x ∈ S with |x| ≥ x̄. This implies for all
x ∈ S with |x| ≥ x̄ that

H log
g x( )
f x( )

( )( )
� H ϕ x( ) − γ x( )( ) ≤ H ϕ x( )( ) ≤ C|x|θ.

This together with (A.4) implies that

DF η|ν( ) � ∫
S
1 g x( )≤f x( ){ }F

g x( )
f x( )

( )
f x( )dx

+
∫
S
1 g x( )>f x( ){ }F

g x( )
f x( )

( )
f x( )dx

≤ F 0( ) +
∫
S∩ −x̄,x̄[ ]

F
g x( )
f x( )

( )
f x( )dx

+
∫
S∩ −x̄,x̄[ ]c

1 g x( )>f x( ){ }F
g x( )
f x( )

( )
f x( )dx

≤ F 0( ) +
∫
S∩ −x̄,x̄[ ]

F
g x( )
f x( )

( )
f x( )dx

+
∫
S∩ −x̄,x̄[ ]c

1 g x( )>f x( ){ }H log
g x( )
f x( )

( )( )
× g x( )dx

≤ F 0( ) +
∫
S∩ −x̄,x̄[ ]

F
g x( )
f x( )

( )
f x( )dx

+ C
∫
S∩ −x̄,x̄[ ]c

1 g x( )>f x( ){ }|x|θg x( )dx < ∞. □

Proof of Proposition 3. First observe that because
lim supy→∞

H′(y)
H(y) < ∞, there exist y0 ∈ (ỹ,∞) and C ∈ (0,∞),

such that H′(y) ≤ CH(y) for all y ∈ (y0,∞). This implies for all
d > 0 that ∫ y0+d

y0
H log z( )( )

dz

y0 + d
( )

H log y0 + d
( )( ) − y0H log y0

( )( )
�

∫ y0+d
y0

H log z( )( )
dz∫ y0+d

y0
H log z( )( ) +H′ log z( )( )

dz
≥ 1
1 + C

.

This proves that∫ y0+d
1 H log z( )( )

dz

y0 + d
( )

H log y0 + d
( )( ) ≥ ∫ y0

1 H log z( )( )
dz

y0 + d
( )

H log y0 + d
( )( )

+ 1
1 + C

1 − y0H log y0
( )( )

y0 + d
( )

H log y0 + d
( )( )( )

.

Taking the limit d → ∞ shows that

lim inf
y→∞

F y
( )

yH log y
( )( ) � lim inf

y→∞

∫ y
1 H log z( )( )

dz

yH log y
( )( )

≥ 1
1 + C

> 0.

This implies that there exist ȳ, ε1 ∈ (0,∞) such that F(y) ≥
ε1yH(log(y)) for all y ∈ (ȳ,∞). By assumption there exist
x̄ ∈ (x̂,∞) and δ ∈ (0, 1) such that g(x) ≥ δ

xt+1, that H(ϕ(x)−
(t + 1) log(x) + log(δ)) ≥ ε2xt, and that g(x) ≥ ȳf (x) for all x ∈
(x̄,∞). This implies that

DF η|ν( ) ≥ ∫ ∞

x̄
1 g x( )≥ȳf x( ){ }F

g x( )
f x( )

( )
f x( )dx

≥ ε1

∫ ∞

x̄
1 g x( )≥ȳf x( ){ }H log

g x( )
f x( )

( )( )
g x( )dx

≥ ε1

∫ ∞

x̄
H ϕ x( ) − t + 1( ) log x( ) + log δ( )( )

× g x( )dx ≥ ε1ε2

∫ ∞

x̄
xtg x( )dx

≥ ε1ε2δ

∫ ∞

x̄

1
x
dx � ∞. □

Proof of Lemma 3. Monotonicity in y, convexity, and the
limiting values are obvious. For continuous differentiability,
it suffices to consider the left and right derivatives at y � 0.
We have limy↑0 H′(y) � 1 and

lim
y↓0

H′ y
( ) � lim

y↓0
y + 1
( )θ

k−1� 1.

To see monotonicity in θ, notice first thatH(y) is independent
of θ for y ≤ 1. For y > 1, we can write

H y
( ) � ∫ y

1
H′ x( )dx �

∫ y

1
y + 1
( )θ

k−1dx.

The integrand is increasing in θ and thus so is the in-
tegral. □
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Proof of Lemma 4. It holds that

F 0( ) � lim
y↓0

F y
( ) � lim

y↓0
y log y

( ) − y + 1 � 1.

Next, observe that

lim sup
x→∞

H ϕ x( )( )
xθ

� k
θ
lim sup

x→∞
ϕ x( )
xk

+ 1
xk

( )θ
k− 1

xθ

[ ]

� k
θ

lim sup
x→∞

ϕ x( )
xk

( )θ
k

< ∞,

and that

liminf
x→∞

H ϕ x( )− t+1( )log x( )−c( )
xt

� k
θ
liminf
x→∞

ϕ x( )− t+1( )log x( )−c+1
xtk/θ

( )θ
k− 1

xt

[ ]
≥ k
θ

liminf
x→∞

ϕ x( )
xk

( )θ
k

>0,

for all t∈ (1,θ) and c ∈ (0,∞). Furthermore, it holds thatH′(y) �
(y + 1)θk−1 for all y ∈ (0,∞), which implies that lim supy→∞
H′(y)
H(y) � 0. Finally, let α > 0 and ε > 0. The assumption ϕ ∈ Θ(xk)
ensures that

lim sup
x→∞

θ
k αx( ) + 1
( )k

θ−1 + 2 + ε( ) log x( )
xk

− ϕ x( )
xk

( )
< 0.

This implies that

lim sup
x→∞

H−1 αx( ) + 2 + ε( ) log x( ) − ϕ x( )( )
� lim sup

x→∞
xk

θ
k αx( ) + 1
( )k

θ−1 + 2 + ε( ) log x( )
xk

([

−ϕ x( )
xk

)]
� −∞.

Hence, Condition (7) is satisfied. □

Proof of Lemma 5. Monotonicity and the limiting values are
obvious. For continuous differentiability, we consider the left
and right derivatives at y � 0. We have limy↑0 H′(y) � 1 and

lim
y↓0

H′ y
( ) � lim

y↓0
e r θσ( )ry+1( )1r−1 r θσ( )ry + 1

( )1
r−1� 1.

Convexity for r � 2 follows from H′′(y) � 0 for y < 0 and

H′′ y
( ) � e 2 θσ( )2y+1( )−12−1

×
θσ( )2 2 θσ( )2y + 1

( )1
2−1

( )
2 θσ( )2y + 1
( )3

2
≥ 0,

for y ≥ 0.Monotonicity ofH(y) in θ for r � 2 and y ≥ 0 follows
from d2

dθ dyH(y) ≥ 0 and d
dθH(y)|y�0 � 0. To see this, note that

d
dθ

H y
( ) � 2ye 2 θσ( )2y+1( )−12−1

θσ 2 θσ( )2y + 1
( )1

2
−

2 e 2 θσ( )2y+1( )−12−1 − 1
( )

θσ( )3
,

and

d2

dθ dy
H y
( ) � 2θσye 2 θσ( )2y+1( )−12−1

2 θσ( )2y + 1
( )3

2

× 2 θσ( )2y + 1
( )1

2−1
( )

≥ 0. □

Proof of Lemma 6. As in the proof of Lemma 4, it holds that
F(0) � 1. Observe that ϕ(x) � 1

rσr | log(x) − μ|r + log(Zx). It
follows that

lim
x→∞ r θσ( )rϕ x( ) + 1

( )1/r−θ log x( )
� lim

x→∞ θr| log x( ) − μ|r + r θσ( )rlog Zx( ) + 1
( )1/r

− θ log x( )

� θ lim
x→∞ log x( ) 1 − μ

log x( )
⃒⃒⃒⃒ ⃒⃒⃒⃒r

+ rσr log Zx( ) + 1
θ

log x( )r
( )1/r

−1
( )

� θ lim
h→0

1 − μh
⃒⃒ ⃒⃒r+rσrhr−1 + rσr log Z( ) + 1

θ

( )
hr

( )1/r−1
h

� θ

r
lim
h→0

−rμ 1 − μh
( )r−1+r r − 1( )σrhr−2 + r rσr log Z( ) + 1

θ

( )
hr−1

1 − μh
⃒⃒ ⃒⃒r+rσrhr−1 + rσr log Z( ) + 1

θ

( )
hr

( ) r−1( )/r

� θ −μ + r − 1( )σr1 r�2{ }
( )

.

This implies that

lim sup
x→∞

H ϕ x( )( )
xθ

� lim sup
x→∞

1
θσ( )r e r θσ( )rϕ x( )+1( )1r−θ log x( )−1 − 1

xθ

( )
< ∞.

Next, observe that, for all t ∈ (1, θ) and c ∈ (0,∞), it
holds that

lim
x→∞ r θσ( )r ϕ x( ) − t + 1( ) log x( ) − c

( ) + 1
( )1/r

− t log x( ) � ∞.

This implies for all t ∈ (1, θ) and c ∈ (0,∞) that

lim inf
x→∞

H ϕ x( ) − t + 1( ) log x( ) − c
( )

xt
� ∞.

Furthermore, it holds that H′(y)�(r(θσ)ry+1)1r−1e(r(θσ)ry+1)1r−1
for all y ∈ (0,∞), which implies that lim supy→∞

H′(y)
H(y) � 0. Fi-

nally, let α > 0 and ε > 0. It holds that

lim sup
x→∞

log θσ( )r αx( ) + 1( ) + 1
( )r−1

+ r θσ( )r 2 + ε( ) log x( ) − r θσ( )rϕ x( )
log x( )r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1 − θr < 0.
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This implies that

lim sup
x→∞

H−1 αx( ) + 2 + ε( ) log x( ) − ϕ x( )( )

� lim sup
x→∞

log x( )r
r θσ( )r

log θσ( )r αx( ) + 1( ) + 1
( )r − 1

+ r θσ( )r 2 + ε( ) log x( ) − r θσ( )rϕ x( )
log x( )r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −∞.

Hence, Condition (7) is satisfied. □

Proof of Proposition 4. Let α > 0. We need to show that

E |X| exp H−1 α|X|( )( )[ ]
< ∞.

Let ψ:[0,∞) → [0,∞) be the function that satisfies for all x ∈
[0,∞) that x �→ x exp(H−1(αx)). It follows from monotonicity
of ψ and the assumption that |X| ≤C(1+∑n

i�1 |Zi|) that
E |X| exp H−1 α|X|( )( )[ ] � E ψ |X|( )[ ]

≤ E ψ C 1 +∑n
i�1

|Zi|
( )( )[ ]

.

Moreover, by assumption, ψ is convex for sufficiently large x
for α � 1. This implies that for any fixed α there exists x̂ such
that ψ is convex on (x̂,∞). Without loss of generality, assume
that C ≥ x̂. It follows from Jensen’s inequality that

E ψ C 1 +∑n
i�1

|Zi|
( )( )[ ]

� E ψ
1
n

∑n
i�1

C 1 + n|Zi|( )
( )[ ]

≤ 1
n

∑n
i�1

E ψ C 1 + n|Zi|( )( )[ ]
.

For each summand on the right-hand side, we obtain fi-
niteness from (5), arguing as in the proof of Proposition 1 (see
the text succeeding (A.1)). This concludes the proof. □

Proof of Proposition 5. For the proof, we first redefine our
two optimization problems (4) and (18) as optimization
problems over changes of measures. Define sets of mea-
surable functions

SX � h : S → R|h ≥ 0,{
Eν h X( )[ ] � 1,Eν F h X( )( )[ ] ≤ κ}

and similarly
SZ � h : U → R|h ≥ 0,{

EνZ h Z( )[ ] � 1,EνZ F h Z( )( )[ ] ≤ κ
}
.

Problems (4) and (18) then become

sup
h∈SX

Eν Xh X( )[ ] and sup
h∈SZ

EνZ G Z( )h Z( )[ ].

We wish to show that both suprema coincide. For h ∈ SX,
define hG : U → [0,∞) by hG(z) � h(G(z)). Then we can write

sup
h∈SX

Eν Xh X( )[ ] � sup
h∈SX

EνZ G Z( )hG Z( )[ ]

≤ sup
h∈SZ

EνZ G Z( )h Z( )[ ].

To see this, it suffices to note that for all h ∈ SX, we have
hG ∈ SZ, that is,

EνZ hG Z( )[ ] � EνZ h G Z( )( )[ ] � Eν h X( )[ ] � 1

and

EνZ F hG Z( )( )[ ] � EνZ F h G Z( )( )( )[ ]
� Eν F h X( )( )[ ] ≤ κ.

For the converse inequality, define for h ∈ SZ the univari-
ate function

h̄ x( ) � EνZ h Z( )|G Z( ) � x[ ].
Indeed, we have the chain of inequalities

sup
h∈SZ

EνZ G Z( )h Z( )[ ] � sup
h∈SZ

EνZ G Z( )EνZ h Z( )|G Z( )[ ][ ]
� sup

h∈SZ
Eν Xh̄ X( )[ ] ≤ sup

h∈SX
Eν Xh X( )[ ],

where the last inequality uses that h ∈ SZ implies h̄ ∈ SX. To
see this, notice that

Eν h̄ X( )[ ] � EνZ EνZ h Z( )|G Z( )[ ][ ]� EνZ h Z( )[ ] � 1,

and, by Jensen’s inequality and the convexity of F,

Eν F h̄ X( )( )[ ] � EνZ F EνZ h Z( )|G Z( )[ ]( )[ ]
≤ EνZ F h Z( )( )[ ] ≤ κ.

Thus, the two suprema coincide. Moreover, it follows that
if hwc ∈ SX attains the supremum in (4), then hwcG ∈ SZ at-
tains the supremum in (18). Similarly, if hwc ∈ SZ attains
the supremum in (18), then h̄wc ∈ SX attains the supremum
in (4). □

Appendix B. Behavior with Bounded Support
When the support of the nominal model is bounded from
above, then the worst-case expected value converges to the
upper bound of the support as the radius κ increases under
very mild conditions on the underlying F-divergence. The
results of this section clarify whether this convergence to
the upper bound, denoted by M, happens gradually as the
radius κ converges to infinity or whether an expected value
ofM can already be achieved for balls with a finite radius. In
the latter case, there exists a threshold κmax < ∞ such that
for all κ ≥ κmax, the worst case expected value equals M. In
this section, we show that for the divergences we are in-
terested in the picture is very simple. If the nominal model
has an atom at M, ν({M}) > 0, then the model that puts all
mass on M lies within a finite radius of the nominal model.
If the nominal model does not possess such an atom on M,
then the worst-case expected value is strictly less than
M for any finite radius κ. It only converges to M in the
limit κ → ∞.29

Our analysis is based on the study of a function G(b) that
corresponds to the minimal radius that is necessary to in-
clude an alternative model with mean b in the divergence
ball around a given nominal model. The crucial question
then becomes whether G(b) converges to infinity as b ap-
proaches M or not. We proceed in three steps. In the first
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step, we show the result we need for KL-divergence: Up to
technical conditions,GKL diverges and κmax is infinite if and
only if ν does not possess an atom in M.

Proposition B.1. Let ν be a distribution with finite mean
and support S ⊂ R. Suppose that M � supS < ∞ and define
m � inf S ∈ {−∞} ∪ R. For a distribution η with support in S let
η̄ � ∫

S
xη(dx) ∈ [−∞,M] denote its mean. Let GKL:(m,M] →

[0,∞] be given by GKL(b) � infη|η̄�b DKL(η|ν).
(i) If ν({M}) � 0, then limb↗M GKL(b) � ∞.
(ii) If ν({M}) > 0, then limb↗M GKL(b) � − log(ν({M})).

Proof of Proposition B.1. Note thatGKL is a convex function
with GKL(b) ≥ GKL(η̄) � 0.

(i) Kullback’s inequality ensures that for all distributions η
with η̄ ∈ R and for all t ∈ R we have that

DKL η|ν( ) ≥ tη̄ − log
∫
S
etxν dx( )

( )
.

This implies for all b ∈ (m,M] and t ∈ R that

GKL b( ) ≥ tb − log
∫
S
etxν dx( )

( )
� −t M − b( ) − log

∫
S
e−t M−x( )ν dx( )

( )
.

By choosing t � 1
M−b we obtain that

GKL b( ) ≥ −1 − log
∫
S
e−

M−x
M−bν dx( )

( )
.

Because e−M−x
M−b → 0 for ν-almost all x ∈ S as b ↗ M, we obtain

with dominated convergence that

lim
b↗M

GKL b( ) ≥ −1 − log lim
b↗M

∫
S
e−

M−x
M−bν dx( )

( )
� −1 − log 0( ) � ∞.

(ii) For all n ∈ N, let ηn � (1 − 1
n)δM + 1

n ν. Then it holds that
η̄n → M as n → ∞. Moreover, we have that

GKL η̄n
( ) ≤ DKL ηn|ν( )
�
∫
S\ M{ }

FKL
1
n

( )
dν + FKL

1 − 1
n + 1

n ν M{ }( )
ν M{ }( )

( )
ν M{ }( )

� FKL
1
n

( )
1 − ν M{ }( )( ) + FKL

1 − 1
n + 1

n ν M{ }( )
ν M{ }( )

( )
ν M{ }( )

→ − log ν M{ }( )( ).
This implies that limb↗M GKL(b) ≥ − log(ν({M})). Convexity
of FKL ensures that limb↗MGKL(b)≤GKL(M)�−log(ν({M})),
which completes the proof. □

In the second step, we show that under mild conditions
on the function H the associated F-divergence can be
bounded from below by an increasing linear function of
KL-divergence.

Lemma B.1. Consider a function H with associated F-divergence
DF as introduced in Section 2.1. Assume that lim infy→∞ H(y)

y > 0,
that H is differentiable at 0 with H′(0) > 0, and that F(0) < ∞.

Then there exists δ1 > 0 and δ2 ≥ 0 such that for all nominal
models ν and alternative distributions η, we have DF(η|ν) ≥
δ1DKL(η|ν) − δ2.

Proof of Lemma B.1. Let R :R → [0,∞) satisfy for all y ∈
R \ {0} that R(y) � |H(y)|

|y| and that R(0) � |H′(0)|. Continuity of
H, differentiability of H at 0, and the fact that H(0) � 0 ensure
that R is a continuous function. Moreover, the fact that
H′(0) > 0 and the fact that H is strictly increasing show that
infy∈K R(y) � miny∈K R(y) > 0 for all compact subsets K ⊂ R.
This together with the assumption lim infy→∞ R(y) > 0 im-
plies that there exists δ1 > 0 such that for all y ≥ 0, we have
R(y) ≥ δ1. Therefore, we obtain for all x ∈ [1,∞) that F(x) �∫ x
1 H(log(z))dz ≥ δ1

∫ x
1 log(z)dz � δ1FKL(x). Furthermore, as

F(0) < ∞, both FKL and F are bounded and continuous
functions over the interval [0, 1]. Thus, there exists δ2 ≥ 0
such that F(x) ≥ δ1FKL(x) − δ2 for all x ≥ 0. This yields
the claim. □

Under the conditions of the previous lemma, the F-di-
vergence ball of radius κ is contained in the KL-divergence
ball of radius (κ + δ2)/δ1. Thus, if an infinite KL-radius is
needed to attain an expected value of M, the same is true
under the F-divergence. Together with a matching result
about the case where ν has an atom inM, this is the content
of the next corollary.

Corollary B.1. Consider a function H with associated F-diver-
gence DF as introduced in Section 2.1 and assume that F(0) < ∞.
Let ν be a distribution with finite mean and supportS ⊂ R. Suppose
that M � supS < ∞ and define m � inf S ∈ {−∞} ∪ R. For a
distribution η with support in S, let η̄ � ∫

S
xη(dx) ∈ [−∞,M]

denote its mean. Let GF:(m,M] → [0,∞] be given by GF(b) �
infη̄�b DF(η|ν), b ∈ S.

(i) Suppose that ν({M}) � 0, that lim infy→∞ H(y)
y > 0 and that

H is differentiable at 0 with H′(0) > 0. Then limb↗M GF(b) � ∞.
(ii) Suppose that ν({M}) > 0, then

lim
b↗M

GF b( ) � F 0( ) 1 − ν M{ }( )( )

+ F
1

ν M{ }( )
( )

ν M{ }( ) < ∞.

Proof of Corollary B.1. Claim (i) follows from Proposi-
tion B.1 (i) and the observation that by Lemma B.1 there exists
δ1 > 0 and δ2 ≥ 0 such that GF(b) ≥ δ1GKL(b) − δ2. Thus, when
GKL goes to infinity, GF goes to infinity as well. Claim (ii)
followsby the same argument as in part (ii) of PropositionB.1. □

Remark B.1. The divergences for the Weibull and general-
ized lognormal cases from Section 3 satisfy the conditions in
the corollary. To see this, notice first that the associated
functions H are differentiable with H′(0) � 1 and that H(y)
grows faster than linearly for y > 0. Moreover, for both di-
vergences, we have F(0) � FKL(0) � 1. Similarly, for polynomial
divergence with p > 1 as defined in Remark 1, we have
Fp(0) � 1/p < ∞, and the function H grows exponentially
and is smooth. Thus, both parts of the corollary apply. In
particular, we have κmax � ∞ under all three divergences
unless ν has an atom in M.
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Appendix C. Documentation of the divbox Package
The divbox package implements worst-case and best-case
expected values using the methods described in Section 5.
The package is written in Python 3 and requires the numpy
and scipy packages. divbox provides three commands:
supmean, infmean, and supinfsummary. The easiest way to
install the package is to copy the file divbox.py into the
working directory and to load the commands within Py-
thon using, for example:

from divbox import supmean, infmean, supinfsummary

C.1. Use
All three commands get as first and mandatory input X, a
sample of observations from the nominal model. supmean
computes the maximal expected value over all alternative
models within a given radius kappa of the empirical dis-
tribution using a specified divergence. For instance, for 100
draws fromauniformdistribution on [0, 1], we can compute
the largest and smallest possible expected values over a KL-
divergence ball of radius 0.1 via

import numpy.random as rand

X=rand.uniform(0,1,100)
sm=supmean(X,div=’KL’,kappa=0.1)
im=infmean(X,div=’KL’,kappa=0.1)

and get as results, for example, sm = 0.627 and im = 0.378.
The command supinfsummary provides those two numbers
and additional summary statistics. The printed output of

supinfsummary(X,div=’KL’,kappa=0.1)

for this simulation is

Nominal Mean: 0.502886434127069 (s.e.: 0.0281273

12339710164)

Sample Range: [ 0.012850703030013455, 0.97788516

91135755 ]

Sample Size: 100

Sup-Mean: 0.6273753261429902 (s.e.: 0.02766167

0689737333)

Effective Sample Size: 83.06296783691072

Maximal Radius kappamax: 4.605170185988092

Inf-Mean: 0.3782897481811803 (s.e.: 0.0277872266

40836125)

Effective Sample Size: 82.99539693100944

Maximal Radius kappamax: 4.605170185988092

The first three output lines are descriptive of the data X.
The command provides the nominal mean together with its
standard error, that is, the sample standard deviation of X
divided by the square root of the sample size. It also reports
the range from the smallest to the largest sample and the
sample size. The next three lines concern the computation of
the sup-mean. This mean comes together with its asymp-
totic standard error as derived in Section 5.We also provide
the value of the maximal radius kappamax for the empirical
distribution, that is, the minimum necessary radius for
shifting all probability mass to the sample maximum.30 As
an additional measure for the reliability of our approxi-
mation, we report the effective sample size, a standard
diagnostic for weight degeneration in Importance Sam-
pling estimators that can be interpreted as an equivalent

number of independent, identically distributed samples
that corresponds to our (weighted) sample (see chapter 9.3
of Owen 2013). For small kappa, this is only slightly below
the original sample size, whereas for kappa close to kap-
pamax, it declines to 1, reflecting the fact that all probability
mass is then concentrated in a single sample. The final three
output lines give the corresponding information for the
inf-mean.31

In addition to KL-divergence, divbox contains polyno-
mial divergences (with parameter p), the Weibull diver-
gences of Section 3.1 (with parameters k and θ), and the
generalized lognormal divergences of Section 3.2 (with
parameters r, σ, and θ). These can be applied using

supinfsummary(X,div=’Polynomial’, kappa=0.1, p=2)
supinfsummary(X,div=’Weibull’, kappa=0.1, k=0.5,
theta=2)

supinfsummary(X,div=’Lognormal’, kappa=0.1, r=2,
sigma=1, theta=2)

In this example with bounded support, there is little dif-
ference between the four divergences regarding whether
worst cases are well-defined and regarding the contents
and interpretation of the uncertainty sets. Thesematters are
completely different for the heavy-tailed illustrations in
Section 6. The file illustrations.py contains functions that
simulate scenarios for these settings. In run_illustrations.py,
these simulations are evaluated using divbox with suitable
divergence choices derived in Section 6.

C.2. Syntax
In the following,we describe in detail the possible input and
return arguments of the function supmean. The function
infmean takes and returns exactly the same arguments. The
function supinfsummary takes the same arguments except
the parameter monitor. It does not return any output
besides a printed summary.

The only mandatory argument is the vector of data X.
Calling supmean(X) simply returns the sample mean. X has
to be the first argument. The remaining arguments can be
entered in arbitrary order. If a certaindivergencemisses a given
input parameter, that parameter is set to a default value. If a
parameter is assigned that is notusedby the chosendivergence,
then this input is simply ignored. Thus, for example, the fol-
lowing three lines give the same output—the supremum
over a KL-divergence ball of radius 0.1:

supmean(X,div=’KL’, kappa=0.1)
supmean(X, kappa=0.1)
supmean(X, theta=3, kappa=0.1, p=2, div=’KL’)

where the second line uses the default value of div, which
is ‘KL’. The parameters of the remaining divergences are
as follows:

• Polynomial divergence is chosenwith div=‘Polynomial’.
This divergence, defined in Remark 1, has one parameter p
> 0 with default value p=2. For p=1, the divergences col-
lapse to KL-divergence.32

• Weibull divergence is chosen with div=‘Weibull’. This
divergence, defined in (10), has two parameters, a parameter k,
which can be interpreted as the maximal heaviness of Weibull
tails, and a parameter theta, which can be interpreted as a
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bound for existence of moments. The default values are
(k,theta)=(0.5,2).33

• (Generalized) lognormal divergence is chosen with
div=‘Lognormal’. This divergence, defined in (15), has three
parameters: a parameter sigma>0, which can be interpreted
as a bound on (generalized) volatility; a parameter theta>1,
which is similar to Weibull divergence; and a parameter r>1,
which parametrizes the generalized lognormal family of
distributions. The default values are r=2, which corresponds
to the usual lognormal distribution and (sigma,theta)=(1,2).

The remaining arguments monitor, prec, and nbin have a
more technical role.

• The argument monitor takes values 0 and 1. Under the
default, monitor=0, supmean computes and returns only
the sup-mean. With the choice monitor=1, it returns (in this
order) the sup-mean, its standard error, the effective sample
size, and the value of kappamax. Thus, monitor=1 is, for
example, used when calling supmean within supinfsum-
mary, whereas monitor=0 may be preferable when using
supmean within the objective of a minimization.

• The argument prec takes values 0 and 1 and determines
whether splines are used in the evaluation of the function F
for the Weibull and lognormal divergences. Under the de-
fault, prec=0, the function F is evaluated using quadrature for
input vectors of length less than nbin. For longer input
vectors, we compute the 1/(1+nbin), 2/(1+nbin),. . ., nbin/(1+
nbin) sample quantiles of the input vector and evaluate the
function F on these values and on the extremal sample values
using quadrature. Afterward, we use cubic splines to extend
the function to the entire sample. The default value of nbin is
nbin=100. Under the slower but more precise alternative
prec=1, the function F is evaluated using quadrature regard-
less of sample size. For example, the following three lines
compute a sup-mean under the Weibull divergence with de-
fault parameters and radius 0.1 with increasing precision:

supmean(X, div=’Weibull’, kappa=0.1)
supmean(X, div=’Weibull’, kappa=0.1, nbin=1000)
supmean(X, div=’Weibull’, kappa=0.1, prec=1)

For a sample of 10,000 draws from a uniform distribution
on [0, 1], the three commands have execution times of 0.1,
0.7, and 3.1 seconds, with results of 0.6120488907480726,
0.6120488907488051, and 0.6120488907488054, respectively.
When we increase the sample size to a million, computation
times become 9.5, 10.3, and 387.8 seconds, with results of
0.6148296693502018, 0.6148296693506876, and 0.6148296693506875,
respectively. Thus, in this example, the precision of the
computationally cheaper default version seems to be com-
pletely sufficient for practical purposes, especially when ac-
counting for additional simulation error.

Endnotes
1This notion of criticality is introduced in Kruse et al. (2019) for the
special cases of KL-divergence and polynomial divergence.
2By density, we always mean density with respect to the Lebesgue
measure on R. In particular, f (x) � 0 for x ∈ R \ S.
3Absolute continuity with respect to ν implies absolute continuity
with respect to the Lebesgue measure.
4 For y < 1, we follow the standard convention that

∫ y
1 � − ∫ 1

y .

5Polynomial divergence is variously known as α-divergence, power-
divergence, or Cressie-Read divergence. Moreover, up to monotonic
transformations, it coincides with the Rényi divergence and the
Tsallis divergence.
6Kruse et al. (2019) show that there is a wide class of models for
which neither KL-divergence nor polynomial divergence has certain
desirable properties for robustness analysis. This is reflected in the
vastly different growth behaviors of the functions H we see here.
7For more general F-divergences, we have DF(η∗|ν) � 1

2 (F(0) + F(2)),
which is also finite as long as F(0) < ∞.
8Here and in the following, we denote by |x| → ∞ the pair of limits
x → ∞ and x → −∞.
9Of course, this does not mean that such a tailored divergence only
suits a single reference model. For instance, KL-divergence is
meaningful also for non-Gaussian reference models. It is only the
threshold at which existence of moments is (not) guaranteed that
changes if we change the reference model or the divergence.
10These implicit moment constraints are much weaker than explicit
moment constraints as considered in Glasserman and Xu (2014) (see
also (9)). By imposing explicit upper bounds on moments of the
worst-case distribution, finiteness of KL worst cases can easily be
guaranteed. However, the resulting worst-case analysis is then
conditional on these moment bounds being justified. In contrast, a
worst-case analysis based on our results just requires finiteness of
certain moments. It seems much more innocent to assume that, for
example, a quantity has a finite variance than to assume that the
variance is below an explicit upper bound.
11Wedefine the expression in the limit as 0 for x /∈ S such that 1S(x) � 0.
12Here ϕ1 ∈ Θ(ϕ2) means that ϕ1 and ϕ2 are asymptotically equiv-
alent: 0 < lim infx→∞

ϕ1(x)
ϕ2(x) ≤ lim supx→∞

ϕ1(x)
ϕ2(x) < ∞.

13This function hwc is continuous in x as the terms in the exponent
coincide at the cutoff points where αwc

1 + αwc
2 x � 0.

14The function H from (13) has a formal resemblance to the
function F in the definition of polynomial divergence. However,
as H enters the definition of F together with a logarithmic transfor-
mation, the function H associated with polynomial divergence looks
rather different from the function here (see Remark 1 (ii)). In particular,
the polynomial growth behavior of H lies between the linear growth
of H in KL-divergence and the exponential growth of H in polyno-
mial divergence. This leads to uncertainty sets that are more restrictive
than those under KL-divergence but richer than those under poly-
nomial divergence.
15 In the Weibull case, it is sufficient to specify tail asymptotics rather
than a specific class of reference densities. Intuitively, the lognormal
case is harder to handle than the Weibull case because lognormal
distributions are more heavy-tailed and closer to power laws than
Weibull-type distributions. How well behaved the perturbed den-
sities are thus becomes harder to guarantee.
16The technical conditions in Proposition 1 are such that if X satisfies
them then −X satisfies them as well.
17To see this, note that the upper bound Eη[X] ≤ Eν[X] + dW(ν, η) ≤
Eν[X] + κ is attained by η � ν(· − κ).
18The implications of this can be seen in the illustrations of Section 6.
Under a univariateWasserstein approach, the three curves in Figure 3
would all collapse to the same straight line, Eν[X] + κ, whereas the
worst cases and best cases in Figures 2 and 4 would simply become
upward and downward shifts of the nominal curves. TheWasserstein
robustness analysis dependson thenominalmodel only through itsmean,
whereas the F-divergence approach uses the entire distribution of X.
19This argument does not stand in conflict with the discussion of
Section 2.3. In heavy-tailedmodels, the choice of the divergence should
be an informed one. When perturbing heavy-tailed models, potential
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integrability problems should not be neglected—just like they should
not be neglected when computing sample means and standard de-
viations in heavy-tailed models. Having some knowledge about the
tail behavior of the underlying model is always useful.
20Basically, existence and uniqueness of a solution are guaranteed
because these two equations describe the worst-case problem for the
empirical distribution of the sample. This problem has similar
properties as the continuous version studied in Proposition 1 but
without potential integrability problems because of the finite sup-
port. We only need to verify that the radius κ is not too large as
discussed in Appendix B. When it is admissible to put all mass on
the largest realization in the sample, the worst-case mean has reached
its largest possible value, and we have reached κmax.
21The negative solution corresponds to the best-case change of measure.
22 For the case of KL-divergence, the approximation αwc

2 ≈̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2κ/Varν(X)

√
can also be found as the leading term of a rigorous

asymptotic expansion in Lam (2016).
23 For notational simplicity, we assume that inventory under de-
centralization is identical across locations. Given the symmetry and
convexity of the objective, there can be no gain from choosing
asymmetric inventory schemes.
24While q∗ν is available in closed form as the (p/(p + h))-quantile of the
lognormal variable Di, we rely on Monte Carlo simulations with an
independent sample of m � 500, 000 copies of

∑n
i�1 Di to estimate Q∗

ν .
25 In particular, as expected from a plot containing many realizations
of an asymptotic 95% confidence bound, the dotted lines lie outside
the solid lines most of the time but not always. We have not included
confidence bounds based on the larger sample size of m � 500, 000
because these bounds are so tight that they are visually indistin-
guishable from the solid lines.
26 See, for example, the European Banking Authority’s Guide for the
Targeted Review of Internal Models (TRIM) of February 2017, which
states that “An institution should have a model risk management
framework in place that allows it to identify, understand andmanage
its model risk.. . .” (European Banking Authority 2017)
27Observe that as opposed to (4), Breuer and Csiszár (2016) formulate
the worst-case problem as aminimization problem (see equation (3.6)
in Breuer and Csiszár 2016). When referring to Breuer and
Csiszár (2016) in the arguments that follows, we tacitly make
the appropriate adjustments.
28 In particular, the conditions onK(α1, α2) of propositionA2 in Breuer
and Csiszár (2016) imply that K fulfills the property called essential
smoothness and that its effective domain, that is, the subset of R2

where K is finite, is the whole space. If necessary, one can easily
extend the result to the case where the effective domain is an open
subset of R2 that contains some points with α2 > 0. See footnote 7 in
Breuer and Csiszár (2016).
29By allowing ν to possess atoms, we make the framework of this ap-
pendix slightly more general than that of our main analysis in Section 2.
30As argued in Appendix B, when X is continuously distributed,
then the theoretical κmax is infinite, which implies that the empirical
kappamax increases indefinitely with the sample size. For instance,
with a sample size of 10,000, we obtain a kappamax of about 9.2 in
this example.
31With continuously distributed data, the values of kappamax in the
two computations will typically be the same. Differences appear with
discrete data when the sample maximum and minimum are attained
multiple times and in different multiplicities.
32 In our theoretical results, we restrict attention to the case p>1. The
reason is that polynomial divergences with 0<p<1 are less restrictive
than KL-divergence regarding tail behavior. Thus, the theoretical
worst-case mean tends to be infinite even for light-tailed nominal

models with unbounded support (Kruse et al. 2019). Our imple-
mentation covers the case p<1 but the expected stability issues
may appear.
33This divergence only depends on the ratio k/theta and collapses to
KL-divergence for theta=k. The theoretical results of Section 3.1 re-
quire theta > max(1,k), but this restriction is not implemented in
the code.
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