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The theory of convex risk functions has now been well established as the basis for identifying the families

of risk functions that should be used in risk-averse optimization problems. Despite its theoretical appeal,

the implementation of a convex risk function remains difficult, as there is little guidance regarding how

a convex risk function should be chosen so that it also well represents a decision maker’s subjective risk

preference. In this paper, we address this issue through the lens of inverse optimization. Specifically, given

solution data from some (forward) risk-averse optimization problem (i.e., a risk minimization problem with

known constraints), we develop an inverse optimization framework that generates a risk function that renders

the solutions optimal for the forward problem. The framework incorporates the well-known properties of

convex risk functions—namely, monotonicity, convexity, translation invariance, and law invariance—as the

general information about candidate risk functions, as well as feedback from individuals—which include an

initial estimate of the risk function and pairwise comparisons among random losses—as the more specific

information. Our framework is particularly novel in that unlike classical inverse optimization, it does not

require making any parametric assumption about the risk function (i.e., it is non-parametric). We show how

the resulting inverse optimization problems can be reformulated as convex programs and are polynomially

solvable if the corresponding forward problems are polynomially solvable. We illustrate the imputed risk

functions in a portfolio selection problem and demonstrate their practical value using real-life data.

1. Introduction

The theory of convex risk functions, established since the work of Artzner et al. (1999) and

later generalized by Föllmer and Schied (2002), Ruszczyński and Shapiro (2006), and others, has

played a central role in the development of modern risk-averse optimization models. The work of

Ruszczyński and Shapiro (2006) in particular brings to light the intimate relationship between con-

vex risk functions and optimization theory and provides necessary tools for analyzing the tractabil-

ity of risk-averse optimization problems involving convex risk functions. The unified scheme that

Ruszczyński and Shapiro (2006) provided through convex analysis also explains the success of sev-

eral convex risk functions that have now been widely applied for risk minimization, among which the

most well known is arguably Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev (2000)).
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It was however not for the purpose of optimization (i.e., risk minimization), at least not solely,

that the theory was first established. Rather, the motivation lay in the need for alternative mea-

sures of risk that could better characterize how individuals perceive risk. For example, the property

of convexity, which led to the term “convex” risk function, was postulated by the theory as an

essential and universal characteristic of how risk-averse individuals would perceive risk, namely

that diversification should not increase risk. The industry-standard measure of risk, Value-at-Risk

(VaR), unfortunately does not satisfy the property of convexity, whereas CVaR, as its counterpart,

which does satisfy convexity, has become a popular theory-supported alternative. Other proper-

ties of the theory that have also been widely referenced in justifying the choice of a measure

for risk include monotonicity and translation invariance (Föllmer and Schied (2002)), law invari-

ance (Kusuoka (2001)), positive homogeneity (Artzner et al. (1999)), and comonotonicity (Acerbi

(2002)), among others. Each of these properties represents a certain well-grounded rationale for

how risk might be perceived over random variables. Some are applicable fairly generally (e.g.,

monotonicity and law invariance), whereas some others can be domain dependent (e.g., positive

homogeneity and comonotonicity).

However, despite the general attractive features of convex risk functions from the point of view

of both optimization and risk modelling, very little guidance has been provided to date regarding

how to choose a convex risk function that can also well represent a decision maker’s subjective

perception of risk. In current practice, the choice of a convex risk function is mostly ad hoc and

involves very little knowledge of decision makers’ true risk preferences. This raises the question

of how ones’ risk preferences may be observed and how to generate a convex risk function that

complies with the observed preferences. Delage and Li (2018) appear to be the first to address this

question, by proposing a means to construct a convex risk function from the assessments provided

by the decision maker, who compares pairs of risky random losses. Their work is closely related to

the scheme of preference (or utility) elicitation (see, e.g., Clemen and Reilly (2014)), where queries

are considered for extracting users’ preferences in establishing their utility functions. One of the

main challenges facing this line of inquiry is that in reality decision makers may only be able to

provide limited responses because of potential time and cognitive constraints, and thus the elicited

preference information is often incomplete. This situation is formulated in Delage and Li (2018) as

a preference robust optimization problem where a worst-case risk measure is sought that complies

with a finite number of pairwise preference relations elicited from the decision maker. Similar ideas

can be found also in the context of expected utility theory. Armbruster and Delage (2015) and

Hu and Mehrotra (2015) consider the formulation of a worst-case expected utility function based

on limited preference information, whereas Boutilier et al. (2006) considers a worst-case regret

criterion over utility functions.
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In this paper, we attempt to provide an alternative perspective on the search of a convex risk

function that takes into account decision makers’ true risk preferences, namely through the lens of

inverse optimization. The motivation is that in many current applications, it becomes possible to

have access to the record of the decisions made by individuals, and the past decisions, if optimal,

provide useful preference information. Such kinds of preference information may be viewed as a

special form of pairwise preference relations, where the random variable chosen according to a

made decision is considered preferable to the random variables that could be chosen by alternative

decisions. In the case that the alternative decisions are finite, the pairwise preference relations

are also finite, which can then be handled by existing frameworks such as Delage and Li (2018).

However, this work emphasizes the case where the alternative decisions may be described through

a convex set, which leads to infinitely many pairwise relations that existing frameworks cannot

handle. Moreover, we also recognize that, in practice, even though individuals may perceive risk

differently, they often start by agreeing upon some seemingly reasonable risk measure. They then

adjust their measurement of risk after receiving more precise preference information. One such

example is that many investors tend to follow the principle of safety first (Roy (1952)), which

states that the top concern of an investor is to avoid a possible catastrophic event. They would

thus naturally start by choosing a downside risk measure that they feel safe enough to apply (e.g.,

Fabozzi (2015)). For example, this could be the CVaR risk measure that has now been widely

applied in various areas. Although staying aligned with the downside risk measure is desirable,

decisions made by individuals are often inconsistent with (e.g., more aggressive than) what the risk

measure prescribes. In this paper, we refer to such a risk measure as a reference risk function, which

should be followed closely before more precise preference information can be revealed. A natural

framework to address the above issues is the setup of inverse optimization; namely, given the

solutions for some forward problem (i.e., a decision optimization problem with known constraints),

the inverse problem seeks a risk function that renders the solutions optimal for the forward problem

by minimally deviating from the reference risk function. Our formulation of the inverse problem will

allow for incorporating preference information in both the forms of pairwise relations and “most

preferable” decisions in convex sets of alternatives, and also the important properties of convex risk

functions, namely the monotonicity, convexity, translation invariance, and law invariance. We show

how the resulting inverse optimization problems can be tractably analyzed by applying conjugate

duality theory (Rockafellar (1974)).

To the best of our knowledge, little has been discussed in the literature about inverse optimiza-

tion for convex risk functions. Bertsimas et al. (2012) considered inverse optimization for a financial

application involving the use of coherent risk measures, but they assumed that the measure is given

a priori and focused instead on the estimation of parameters characterizing random returns and
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risk budgets. Iyengar and Kang (2005) also applied inverse optimization to estimate parameters of

expected returns in a financial problem. More generally, inverse optimization methods have been

developed for linear programs (Ahuja and Orlin (2001), Dempe and Lohse (2006)), conic programs

(Iyengar and Kang (2005)), and convex separable programs (Zhang and Xu (2010)) for estimat-

ing the parameters that characterize the programs. Early works also include Burton and Toint

(1992), Zhang and Liu (1996), and Hochbaum (2003), who focused on network and combinatorial

optimization problems (see Heuberger (2004) for a survey), whereas more recent works include

Schaefer (2009) on integer programs, Chan et al. (2014) on multi-objective programs, Ghate (2015)

on countably infinite linear programs, Chan et al. (2018) on the issue of sub-optimality of an

observed solution, and Keshavarz et al. (2011), Bertsimas et al. (2014), Aswani et al. (2015), and

Mohajerin Esfahani et al. (2015) on various issues related to the observations of multiple responses

from an agent solving a parametric optimization problem.

In much of the literature referenced above, the problems are structured in a parametric fashion,

and the goal is to estimate the parameters that characterize the forward problems from observed

decisions. However, the parametric assumption is too limiting for the purpose of identifying a

decision maker’s true risk function because it restricts the class of functions to which the true

risk function may belong. It also provides no guarantee regarding the convergence to the true

risk function even if some elicited information, such as pairwise preference relations, is available.

In contrast, the inverse optimization formulations presented in this paper are parameter-free and

search over the entire space of convex risk functions for the true risk function. With the collection

of more elicited information, their solutions can converge to the true risk function, if it is a convex

risk function. In this sense, our work broadens the scope of inverse optimization and opens the

door for nonparametric approaches to function estimation through inverse optimization. However,

we should note that Bertsimas et al. (2014) provide a kernel method for inverse optimization,

which can also be considered non-parametric. While their method focuses on estimating a function

characterizing all the subgradients associated with an unknown function, the method developed in

this paper addresses directly the estimation of the unknown function. More detailed discussions

along this line are provided later in Section 3. We should also mention that the inverse problem

considered in this paper generally falls into the class of inverse problems that focus on estimating

the objective function of an optimization problem. Although this class of inverse problems is known

to be tractable in a parametric setting, the class of inverse problems that seek to impute parameters

defining the feasible region of an optimization problem is generally much less tractable (see, e.g.,

Birge et al. (2017)). This paper’s focus on the former may help explain why tractably solving the

inverse problem, even in a non-parametric setting, is a reasonable hope.
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Our formulation of the inverse problem does require, albeit implicitly, an assumption that may

affect the scope of application of our inverse models, and we should point it out here. Namely, our

formulation assumes that in the case where decisions are based on some probabilistic views (or

beliefs) of the decision makers, these views (i.e., the probabilistic assessments of random outcomes),

either stay unchanged over time or, if not, can always be disclosed together with the decisions

made. This may not always be possible because some decision makers may only have a vague sense

of probability driven by their intuition and find it cognitively too demanding to articulate how

their views change over time. As extensively discussed in this paper, while it is possible to address

the case where decision makers take no view or a constant (personal) view on the likelihood of

outcomes, namely by applying non-law-invariant risk functions, it remains an open question as to

how a (law-invariant) risk function can possibly be learned from past decisions when the decision

makers did hold different probabilistic views over time but were not able to disclose them. This

question is important because the scenario, as described, could happen in practice; and from a

statistical point of view, the use of law-invariant risk function can be necessary. As a preliminary

step, we have conducted some experiments, which we describe in this paper, to examine first how

the performances of the solutions optimized based on imputed risk functions may be affected by

the misspecification of probability distributions in our inverse models (i.e., distributions applied

in the models are inconsistent with the actual views of the decision maker). We observe that,

despite the misspecification, the performances can still be noticeably improved towards the optimal

performances as more decision data are incorporated into the inverse models. However, it still

requires the full development of a formal and rigorous theory to satisfactorily answer the question,

and we leave this for future study.

One natural application of our inverse optimization framework is to identify a risk function

that captures the risk preference of an investor from his/her past investment decisions (see, e.g.,

Delage and Li (2018)). While this is the application that we primarily focus on in this paper, we

should point out that our framework can also be naturally applied to other settings that involve

budget allocation decisions under uncertainty. For instance, Haskell et al. (2018) consider a setting

of homeland security and the problem of learning the risk preference of the Department of Homeland

Security (DHS), which makes decisions to allocate budget across a number of cities so as to protect

them from potential terrorist attacks. While covering these other applications in depth may go

beyond the scope of this paper, the framework established in this paper shall provide the basis for

further exploring these other applications.

We briefly summarize our main contributions below:
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1. We develop for the first time an inverse-optimization framework for convex risk functions that

generates a risk function incorporating the following information: 1) the properties of monotonic-

ity, convexity, translation invariance, and law invariance promoted in the theory of convex risk

functions, 2) observable optimal solutions from forward problems, 3) a reference risk function, and

4) elicited pairwise preference relations.

2. We formulate the inverse optimization problem in a non-parametric fashion and show that for

a large number of cases, the computational tractability of the inverse problem is largely determined

by the forward problem: namely that the former is polynomially solvable if the latter is so.

3. Methodologically speaking, we show that to solve the inverse problem it suffices to search

over a particular class of risk functions for an optimal solution. This class of risk functions is

representable in terms of the random variables resulting from the observed decisions and a fixed

set of parameters. Based on this representation, the inverse problem reduces to determining the

values of the parameters in the representation, and these values correspond to the amounts of risk

estimated for the chosen random variables. The number of parameters needed in the representation

is set by the number of observed decisions. This offers an intuitive and computationally tractable

interpretation of the (non-parametric) inverse problem.

4. We demonstrate the application of our framework in a portfolio selection problem and provide

computational evidence that the imputed risk functions utilize well the preference information

contained in observable solutions and a reference risk function. This leads to a solution that can

be well justified in terms of both its performance evaluated based on the true risk function and

the reference risk function. We also demonstrate how quickly the performances of the solutions

optimized based on the imputed risk functions can converge to the performances of the solutions

optimized based on the true risk function, as the number of observed decisions increases.

2. Forward and Inverse Problem of Risk Minimization

We begin by formalizing the forward problem of risk minimization and characterizing the problem

using the theory of convex risk functions. We then proceed to the formulation of the inverse

problem.

2.1. Forward problem of risk minimization

Our general setup of the forward problem follows closely the setup in the literature of choice over

acts (i.e., random variables Z : Ω→R) (Savage (1954)). In this setup, it is assumed that a decision

maker’s preference over random variables can be specified and that the forward problem seeks

the most preferable random variables. In the special case where a probability measure P can be

identified over the sigma-algebra Σ of sample space Ω, the preference can be alternatively defined
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over the distributions, denoted by FZ , of the random variables. This special case is considered in

the literature of choice over lotteries (i.e., distributions) (Von Neumann and Morgenstern (1944)).

We will first continue formalizing the forward problem under the general setting, and the special

case will follow naturally as we proceed. Without loss of generality, we assume that any random

variable Z represents some form of loss, by which we mean that it has the interpretation that for

any ω ∈Ω, the larger the value of Z(ω) is, the worse it is. We denote by � a system of preference

relations that is complete, transitive, and continuous 1, where Z1 �Z2 denotes that Z1 is preferred

to Z2. A risk function ρ is a numerical representation that captures the preference relation � in

terms of the riskiness of random losses (i.e., a random loss Z is preferable if it is perceived less

risky). In this paper, we will focus on the case where a risk function ρ is defined over random losses

based on a sample space with finitely many outcomes Ω := {ωi}
M
i=1. In this setting, any random loss

Z can be represented also by a vector ~Z ∈R
|Ω|, where (~Z)i =Z(ωi), and the random loss resulting

from a decision x∈R
n can be written by ~Z(x) := (Z(x,ω1), ...,Z(x,ωM))⊤ ∈R

|Ω|. If a random loss

Z2 is perceived at least as risky as Z1 (i.e., Z1 �Z2), the risk function ρ :R|Ω| →R should satisfy

ρ(~Z1)≤ ρ(~Z2). Accordingly, a solution x∗ is optimal if and only if it satisfies ρ(~Z(x∗))≤ ρ(~Z(x)),

∀x∈X , and a risk minimization problem can be formulated as

min
x∈X

ρ(~Z(x)). (1)

Throughout this paper, we assume that the function ~Z(x) is convex in x (i.e., Z(x,ωi) is convex

in x for all ωi ∈Ω), and the feasible set X ⊆R
n is a convex set.

It is hypothesized in the theory of convex risk functions (Föllmer and Schied (2002)) that any

risk function ρ that represents a reasonable or “rational” preference system would satisfy certain

axioms. The most widely known ones are the following three:

1. (Monotonicity) ρ(~Z1)≤ ρ(~Z2) for any Z1(ω)≤Z2(ω), ∀ω ∈Ω,

2. (Convexity) ρ(λ~Z1 +(1−λ)~Z2)≤ λρ(~Z1)+ (1−λ)ρ(~Z2), where 0≤ λ≤ 1, and

3. (Translation Invariance) ρ(~Z + c) = ρ(~Z)+ c.

The first axiom, monotonicity, captures the fact that any reasonable preference system would

never prefer a random loss that is known to have higher loss for any possible outcome (i.e., any

Z1, Z2 such that Z1(ω)≤ Z2(ω), ∀ω ∈Ω must lead to Z1 �Z2). The axiom of convexity describes

the diversification preference, namely that any convex combination (diversification) λZ1 + (1 −

λ)Z2 must be (at least equally) preferable to non-diversified counterparts (i.e., Z1 or Z2). Lastly,

translation invariance is necessary when a monetary interpretation of risk is required, which is the

case in finance where a deterministic amount such as cash can always be used to offset the risk

1 These are the conditions required to ensure that there exists a function ρ that captures the system of preference
relations (Debreu (1954)).
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by the same amount. The corresponding preference system is insensitive to any constant amount

c added to or subtracted from all random losses (i.e., Z1 � Z2 ⇒ Z1 + c� Z2 + c). Based on these

three axioms, we define the following class of functions that capture risk-averse preferences.

Definition 1. (Risk-averse functions) Let R denote the set of functions that satisfy axioms

(1)–(3) and ρ(~0) = 0.

The condition ρ(~0) = 0 is imposed for the purpose of normalization so that risk estimated based on

different risk functions is comparable. We now also formalize the special case where a probability

measure P can be defined over (Ω,Σ). This naturally leads to the consideration of the following

axiom for a risk function (see, e.g., Kusuoka (2001)).

4. (Law Invariance) ρ(~Z1) = ρ(~Z2), for any Z1 ∼P Z2 (distributionally equivalent).

The above axiom immediately implies that the risk function in this case is essentially a function

of distributions. We define the following class of functions when the distributions for all random

variables are available.

Definition 2. (Law-invariant risk-averse functions) Let RF ⊂R denote the set of risk-averse

functions that are law invariant. Without loss of generality, we can equivalently write ρ(~Z) as ρ(FZ)

(i.e., a function of distributions FZ).

Depending on the decision maker’s knowledge about the distribution, one may decide which class

of risk functions (i.e., risk-averse versus law-invariant risk-averse) is more appropriate to assume in

defining the forward problem. In particular, we provide the following examples, which cover three

possible cases: the case with no distribution, the case with ambiguous distributions, and the case

with a specific distribution. The first two cases can be treated as special cases of our general setup

(i.e., preference over acts), whereas the third case invokes the property of law invariance.

Example 1. (General case) If a decision maker’s choices are made by knowing only that there

are |Ω| possible outcomes for the uncertain losses, we may assume that the individual solves a

forward problem based on a certain risk-averse function ρ∈R.

Example 2. (Distributional ambiguity) If a decision maker actually has in mind a certain

distribution-based convex risk measure ρ̂(·; q), where q denotes the distribution, for evaluating risk

but is concerned about the estimation error associated with an empirical distribution p̂, we may

assume that she is ambiguity-averse and that her choices follow a distributionally robust version

of the risk measure. Namely, it can take the following form with uncertain probability q:

ρ↑(Z) = sup
q

{

ρ̂(Z; q)
∣

∣

∣
D(q, p̂)≤ d, ~1⊤q= 1, q ≥ 0

}

,

where D measures the difference between two distributions and is usually defined based on some

φ-divergence function (see Ben-Tal et al. (2013) for more details). It is not hard to confirm that in
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this case ρ↑ ∈R. Of course, in reality we do not know the structure of ρ̂ and D and may assume

only that the true risk function is a risk-averse function ρ∈R.

Example 3. (Known Distribution) Suppose that a decision maker can identify which distribu-

tion q to use in ρ̂(·; q) and that the information about the distribution is available. In this case, we

may assume that the individual solves a certain law-invariant risk-averse function ρ∈RF based on

the distribution q.

Remark 1. One scenario that can also be of practical interest but is not covered above is the

case where a decision maker solves some distribution-based risk measure ρ̂(·; q) but the individual

does not reveal which distribution q is used. While it remains possible to address this case if q stays

unchanged over time, namely by assuming that the true risk function is a risk-averse function ρ∈R

because ρ̂(·; q)∈R for a fixed q, it becomes less clear how to address the case when the distribution q

may differ from one time point to another. In the latter, the observed decisions can actually appear

inconsistent with the assumption ρ∈R. This can be easily seen by considering for instance the case

where the decision maker’s true risk function is the simple expected value function. We may observe

between two random variables Xi and Xj that at one point Eq1 [Xi] > Eq1 [Xj] and at the other

point Eq2 [Xi]<Eq2 [Xj] based on two different distributions q1 and q2. Clearly, there exists no ρ∈R

that can capture such preferences. For this reason, we find it necessary to assume throughout this

paper that in the case where the decision makers applied different distributions, these distributions

can always be disclosed together with the decisions made. Later in the numerical section, Section

5.2, we will revisit this assumption and address the case where the disclosed distributions may not

be fully accurate.

2.2. Inverse problem of risk minimization

In the inverse problem, the risk function ρ is unknown, but one has access to decisions made

according to forward problems as defined in the previous section. The goal is to generate a risk

function ρ that renders the observed decisions as optimal as possible in the forward problem.

Specifically, let (xt, ~Zt(·),X t) represent each observation, which denotes that xt was made with

respect to the random vector ~Zt(·) and the feasible region X t. We can write down the following

optimality condition that characterizes the risk function ρ through the observed decisions.

Optimality Condition: Given a list of observations
{

(xt, ~Zt(·),X t)
}

t∈T
, where |T |<∞, the set of

risk functions that render the decisions optimal admits

Rinv :=
{

ρ
∣

∣

∣
ρ(~Zt(xt))≤ ρ(~Zt(x)), ∀x∈X t, t∈ T

}

.

Note that the risk function ρ does not depend on t (i.e., the decision maker’s risk preference is

assumed to stay constant when the past decisions were made). In the case where |T | is small, the
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above set may not be sufficient to build a meaningful inverse problem, since it can contain some

degenerate form of functions. It would thus be necessary to assume that some “prior” knowledge

about the risk function can be acquired. The most direct way to acquire such knowledge is through

preference elicitation (e.g., Clemen and Reilly (2014)) where the decision maker would be asked to

make comparisons among a selective list of random variables. We can also borrow the concept of

reference solution from the literature of inverse optimization, which stands for a solution that can

be used as a reference while searching for an alternative better solution.

Elicited Preference Relations: Given a list of pairs of random losses {(Lk,Uk)}k∈K, where |K|<∞,

that satisfy Lk �Uk for k ∈K, we define the set

Rel({(Lk,Uk)}k∈K) :=
{

ρ
∣

∣

∣
ρ(~Lk)≤ ρ(~Uk), ∀k ∈K

}

.

Reference Risk Function: Given a reference risk function ρ̃ ∈ R and a parameter ǫ ≥ 0 that

describes the maximum discrepancy between the candidate risk function and the reference risk

function, the following set of risk functions can be defined accordingly:

Rref(ǫ) := {ρ | ||ρ− ρ̃||∞ ≤ ǫ} ,

where || · ||∞ stands for the infinity norm defined over functions ρ :R|Ω| →R.

Remark 2. The constraints defining Rinv can also be viewed as a special case of the constraints

inferred from preference elicitation. While the random losses ~Zt(x) considered in Rinv are “forward-

problem” dependent, in preference elicitation any pair of random losses may be considered for

comparison. We take such a unified perspective in formulating the inverse problem.

Remark 3. It is worth mentioning here that it is also possible to consider norms other than

the infinity norm in the definition of Rref . For instance, one might consider L2 norm ||ρ||φ :=

(
∫

ρ(z)2φ(dz))1/2 for some probability measure φ. However, it may not be clear whether this is

practically useful because one may find it hard to specify the measure φ and to interpret the norm.

In the case where φ is discrete, which requires only comparing ρ and ρ̃ over finite points, the

analysis presented in this paper can easily accommodate such a case.

With the above definitions ofRinv,Rel, andRref , one may consider different criteria to determine

which risk function described by the above sets is the optimal choice. In particular, we consider

the following four criteria. The first three are primarily concerned about the fitting of risk levels,

whereas the fourth one addresses the fitting of prescribed decisions. The first criterion follows most

closely the spirit of classical inverse optimization.



11

1. Minimizing the deviation from the reference risk function ρ̃:

inf
ρ,ǫ∈R

ǫ

subject to ρ∈R (orRF in the case of law invariance), (2)

ρ∈Rref (ǫ)∩Rinv ∩Rel({(Lk,Uk)}k∈K).

This model assumes that in addition to capturing the preferences implied by the observed deci-

sions, there is a practical need to stay aligned with the reference risk function whenever possible.

As mentioned in the introduction, the reference risk function can for example be the CVaR risk

measure used to implement the safety-first principle. In general, one can apply the model to gen-

erate an alternative risk function that not only renders the observed decisions optimal but also

maximally aligns with the chosen downside risk measure.

One may argue that in some cases the observed decisions might not be “rigorously” optimal

given that human beings are not perfectly rational. We can accommodate such a possibility by

replacing the set Rinv with the following set based on sub-optimality:

Rinv(γ) =
{

ρ
∣

∣

∣
ρ(~Zt(xt))≤ ρ(~Zt(x))+ γt, ∀x∈X t, t∈ T

}

.

Thus, if observed decisions are known to be sub-optimal, the following model may be considered

that seeks to close the optimality gap.

2. Minimizing the sub-optimality of observed decisions:

inf
ρ,γ∈R|T |

∑

t∈T

γt

subject to ρ∈R (orRF in the case of law invariance), (3)

ρ∈Rinv(γ)∩Rel({(Lk,Uk)}k∈K)∩Rref(ǫ
∗),

where ǫ∗ ∈ (0,∞] is fixed beforehand.

Here, one’s priority is to ensure that the imputed risk function will render the observed decisions

as favorable as possible. One may choose to set ǫ∗ =∞ if needed. The central idea behind this

model is that the observed decisions, albeit sub-optimal, still closely follow the decision maker’s

true preference. However, if the accuracy of the decision data is in doubt, one may instead fix

γ = γ∗ to some value γ∗ larger than the optimal solution in (3). Moreover, if the concern is about

potential risk underestimation, the following model provides a means to examine the worst possible

risk.
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3. For any ~Z, seek a worst-case risk function 2 :

ρ(~Z) := supρ′ ρ
′(~Z)

subject to ρ′ ∈R (orRF in the case of law invariance), (4)

ρ′ ∈Rinv(γ
∗)∩Rel({(Lk,Uk)}k∈K)∩Rref (ǫ

∗),

where γ∗ ∈ [0,∞)|T | and ǫ∗ ∈ (0,∞] are fixed beforehand.

The last criterion we consider is closely related to the idea behind the second criterion, where

the goal is to reconcile the decision data. The difference is that not only do we like to ensure the

optimal solution generated from the imputed risk function is aligned with the decision maker’s risk

preference, but we also want the solution itself to be close to the observed decision. To formalize

this, we define the following set parameterized by a decision x′:

R̃inv(x
′) =

{

ρ
∣

∣

∣
ρ(~ZT (x′))≤ ρ(~ZT (x)), ∀x∈X T

}

.

Note that to facilitate our later discussion in Section 4, we consider here only the case of single

observation indexed by T (indicating the most recent observation). Clearly, by fixing x′ := xT , the

above set reduces to Rinv. Our last criterion can be modelled as follows.

4. Minimizing the deviation from an observed decision:

inf
ρ,x′∈X

||x′ −xT ||

subject to ρ∈R (orRF in the case of law invariance), (5)

ρ∈ R̃inv(x
′)∩Rref(ǫ

∗),

where || · || is an arbitrary norm and ǫ∗ ∈ (0,∞] is fixed beforehand.

More detailed discussion about the case of multiple observations will be given in Section 4. The

above model is particularly useful when there is a preference for the status quo decision xT . For

instance, an investor can prefer that the portfolio generated from the imputed risk function does

not differ much from his most current portfolio.

3. Solving the Inverse Problems

In this section, we address first the inverse problems (2)–(4). In particular, we will base our dis-

cussions primarily on the inverse problem (2), which best highlights the fundamental complexity

behind all the inverse problems. Once we walk through the steps it takes to resolve the complexity,

2 Although it may not be immediately obvious, one can actually confirm that the worst-case function ρ is itself a
feasible solution to the constraints in (4) (see Lemma EC.3.1) and hence the problem can be equivalently stated
as: seek a function ρ ∈ R(or RF ) ∩ Rinv(γ

∗) ∩Rel({(Lk,Uk)}k∈K) ∩Rref (ǫ
∗) such that ρ ≥ ρ′, ∀ρ′ ∈ R(or RF ) ∩

Rinv(γ
∗)∩Rel({(Lk,Uk)}k∈K)∩Rref (ǫ

∗).
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it will also be clear how to solve inverse problems (3)–(4). To put the problem into perspective, let

us recast first the inverse problem (2) into

inf
ρ

||ρ− ρ̃||∞

subject to ρ∈R (or RF in the case of law invariance), (6)

ρ( ~W t)≤ ρ( ~W ), ∀ ~W ∈Wt, t∈ T , (7)

ρ(Lk)≤ ρ(Uk), ∀k ∈K, (8)

where ~W t := ~Zt(xt) and Wt :=
{

~Zt(x)
∣

∣

∣
x∈X t

}

.

The above problem cannot be solved by traditional analysis for inverse optimization due to the

non-parametric nature of the risk function ρ. In a more specialized setting where one removes the

optimality constraints (7) and replaces the norm || · ||∞ by a norm that requires only comparing ρ

and ρ̃ over finite points (see Remark 3), the problem might be solvable based on the non-parametric

method developed in Delage and Li (2018). This method hinges on the observation that if only

finitely many points need to be compared (e.g., (8) involving only |K|<∞ pairs), the problem can

be reduced to a finite-dimensional convex program whose size grows polynomially with the number

of points needing comparison. Unfortunately, in the setting of the above inverse problem, because

of the infinity norm and the optimality constraints (7) it necessarily involves infinitely many points

(e.g., ∀ ~W ∈ Wt) that must be compared and thus renders the method of Delage and Li (2018)

inapplicable.

While these difficulties may put in doubt the tractability of the inverse problem (6)–(8), our key

finding is that it is possible to bypass the difficulties by new analysis based on conjugate duality

theory (see, e.g., Rockafellar (1974)). Our goal here is to present from a high-level perspective the

key analysis steps to approach the problem. The technical details of the theory and proofs can be

found in Appendix EC.1 and EC.4.

3.1. Imputing risk-averse functions

We start by considering the general case where the observed decisions to a forward problem were

made over acts, as described in Example 1. That is, we intend to solve the inverse problem (6)–(8)

with ρ∈R. From here on, we make the following assumption about the reference risk function ρ̃.

Definition 3. A risk function ρ is called a coherent risk measure if ρ∈R and it further satisfies

ρ(λ~Z) = λρ(~Z) for any λ≥ 0 (scale invariance).

Assumption 1. The reference risk function ρ̃∈R is a coherent risk measure.

The above assumption is not stringent because most risk measures applied in practice are coher-

ent risk measures. Moreover, we apply the following well-known representation result of coherent
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risk measures and assume that such a representation is available (see Appendix EC.2 for the rep-

resentations of several popular risk measures).

Theorem 1. (Artzner et al. (1999)) Any coherent risk measure admits the supremum represen-

tation of

ρ(~Z) = sup
p∈C

p⊤ ~Z, (9)

where C is a non-empty, closed, convex set of probability measures (i.e., C ⊆∆ ⊆ R
|Ω| with ∆ :=

{

p∈R
|Ω|
∣

∣

∣

~1⊤p= 1, p≥ 0
}

).

For convenience, in this paper we say that the coherent risk measure ρ is supported by the set

C. Our first observation to solving the inverse problem (6)–(8) is that it is possible to identify a

subset of risk functions that is “sufficiently” large to contain an optimal solution to the inverse

problem. We rely on the following definition to characterize this subset of risk functions.

Definition 4. Given a set of random losses {~Zj}j∈J̄ for some J̄ and a set C̄ ⊆∆ ⊆ R
|Ω|, we

say that a function ρ is supported by the pair ({~Zj}j∈J̄ , C̄) if it belongs to the following set of

functions:

L({~Zj}j∈J̄ , C̄) :=

{

ρδ

∣

∣

∣

∣

∣

∃δ ∈R
|J̄ |, ∀~Z, ρδ(~Z) = sup

p∈C̄

p⊤ ~Z −max
j∈J̄

{

p⊤ ~Zj − δj

}

}

.

We also need the following definition that will be applied throughout the rest of this paper.

Definition 5. Let { ~Xj}j∈J be the random losses in the union { ~W t}t∈T ∪{~Lk}k∈K∪{~Uk}k∈K∪~0.

Without loss of generality, we assume { ~Xt}t∈T = { ~W t}t∈T .

Proposition 1. Given that Assumption 1 holds and the set of optimal solutions is non-empty,

there must exist a function ρδ ∈ L({ ~Xj}j∈J ,C), where C is the set that supports the reference risk

function ρ̃, which is optimal to the inverse problem (6)–(8). Moreover, given any optimal solution

ρ0 to the inverse problem (6)–(8), there always exists a function ρδ ∈ L({ ~Xj}j∈J ,C) that is also

optimal and bounds from above the solution ρ0:

ρδ(~Z)≥ ρ0(~Z), ∀~Z, (10)

namely, by setting δj = ρ0( ~Xj), ∀j ∈J .

Proof of Proposition 1 The general strategy of the proof is to show that if there exists a risk

function ρ0 ∈R that is optimal to the inverse problem with some optimal value u∗ <∞, there must

exist a risk function ρδ ∈L({ ~Xj}j∈J ,C) that is also optimal to the problem, namely by setting

δj = ρ0( ~Xj), ∀j ∈ J .

We leave the details of confirming this claim and that it implies (10) to Appendix EC.4. �
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The above result implies firstly that there is no loss of optimality if we restrict our search of

an optimal solution to the set L({ ~Xj}j∈J ,C). This significantly reduces the complexity of solving

the inverse problem (6)–(8) because the search over the set L({ ~Xj}j∈J ,C) can be effectively done

by searching the space of parameter δ. This provides the assurance that even though one cannot

identify a decision maker’s risk function through any parametric form, it is still possible to learn the

risk function by tuning only a finite number of parameters (i.e., |J | many parameters). Moreover,

we know from the inequality (10) that in the case where the optimal solution to the inverse problem

is not unique, the optimal solution found in the set L({ ~Xj}j∈J ,C) would be the most “robust”

because it provides the most conservative estimate of risk. What can appear counterintuitive is

that the representation of ρδ does not depend on the feasible set Wt =
{

~Zt(x)
∣

∣

∣
x∈X t

}

, and one

may wonder how an imputed risk function ρδ then takes into account the information about the

set Wt. The short answer is that the information would be incorporated into the risk function

ρδ when it comes to the point of determining the value of the parameter δ 3. To show how the

value of δ can be calculated, we first need the following intermediate result. The result shows that

searching over the set L({ ~Xj}j∈J ,C) can be equivalently formulated as a finite-dimensional system

of constraints over the parameter δ where the solution δ corresponds to how function values may

be assigned over the set { ~Xj}j∈J that supports the risk function.

Proposition 2. Given any ρδ ∈ L({~Zj}j∈J̄ , C̄), there must exist yj ∈ C̄, j ∈ J̄ such that ρδ

satisfies the following system of constraints:

ρδ(~Zj)+ y⊤
j (~Zi− ~Zj)≤ ρδ(~Zi), ∀i 6= j,

yj ∈ C̄, ∀j ∈ J̄ .

Conversely, given any solution {y∗
j }j∈J̄ , {δ

∗
j }j∈J̄ that satisfies the system below:

δj + y⊤
j (

~Zi− ~Zj)≤ δi, ∀i 6= j, (11)

yj ∈ C̄, ∀j ∈ J̄ ,

there must exist a ρδ ∈L({~Zj}j∈J̄ , C̄) that satisfies ρδ(~Zj) = δ∗j , namely the function

ρδ∗(~Z) = sup
y∈C̄

y⊤ ~Z −max
j∈J̄

{

y⊤ ~Zj − δ∗j

}

. (12)

3 To provide a better grasp of this, let us suppose for now that one is able to efficiently determine if δ belongs to the
following set:

Θ :=
{

δ ∈R
|J |

∣

∣

∣
∃ρ∈R∩Rinv ∩Rel({(Lk,Uk}k∈K) such that ρ( ~Xj) = δj , ∀j ∈J

}

.

Then, one can quickly confirm that because of (10) there exists δ ∈ Θ such that ρδ will necessarily satisfy the
optimality condition (i.e., ρδ ∈ Rinv). Indeed, we have ρδ( ~W

t) = ρ0( ~W
t) ≤ ρ0(~Z) ≤ ρδ(~Z), ∀~Z ∈Wt. This explains

why the complexity actually lies in dealing with the set Θ. It is not necessarily clear, however how one can tractably
search over the set Θ. The fact that L({ ~Xj}j∈J ,C) ⊇ {ρδ | δ ∈ Θ} suggests that we may first consider the relaxed
problem of searching over the set L({ ~Xj}j∈J ,C).
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We next show that by restricting ourselves to the search in the set L({ ~Xj}j∈J ,C), we can

also identify how to search in the subset L({ ~Xj}j∈J ,C) ∩Rinv ∩R({(Lk,Uk)}k∈K). Namely, it is

equivalent to adding additional constraints to the system (11). This final system comprises finite-

dimensional convex constraints.

Proposition 3. Given any ρδ ∈ L({ ~Xj}j∈J ,C), the function further satisfies ρδ ∈ Rinv ∩

R({(Lk,Uk)}k∈K) if and only if there exists yj ∈ C, j ∈ J such that δ satisfies the following system:

δj + y⊤
j ( ~Xi− ~Xj)≤ δi, ∀i, j ∈J , i 6= j, (13)

yj ∈ C, ∀j ∈J , (14)

y⊤
t
~Xt ≤ ht(yt), ∀t∈ T , (15)

δi ≤ δj, ∀(i, j)∈ B, (16)

where ht(y) :=minx

{

y⊤ ~Zt(x)
∣

∣

∣
x∈X t

}

and B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj)∈ {(~Lk, ~Uk)}k∈K

}

.

One can thus resort to solving the above system (13)–(16) to determine more efficiently the values

of the parameters δj, j ∈ J , so that its corresponding risk function ρδ would necessarily satisfy all

the imposed conditions. It is also clear at this point that the above system indeed incorporates the

information about the set Wt =
{

~Zt(x)
∣

∣

∣
x∈X t

}

(i.e., in the definition of ht(y)).

As the final step, we discuss how to ensure that the risk function ρδ also minimizes the objective

function ||ρδ− ρ̃||∞. It turns out that the absolute difference between ρδ(~Z) and ρ̃(~Z) at any random

loss ~Z can always be bounded by the difference at one of the random losses from the set { ~Xj}j∈J

(which supports the risk function ρδ). This is due to the piecewise linear structure embedded in the

representation of ρδ (i.e., the term maxj∈J {p
⊤ ~Xj − δj}

4). As a result, we need only to seek a risk

function ρδ that minimizes the absolute differences over finite points (i.e., maxj∈J |ρδ( ~Xj)− ρ̃( ~Xj)|).

Combining this with the above observation that ρδ can be found by solving a finite-dimensional

convex system over the parameter δ, we arrive at the conclusion that to solve the inverse problem

(2), one only needs to solve a convex program over the parameter δ. This main result is presented

below, and its detailed proof can be found in Appendix EC.4. We note here that the steps we

present to analyze the problem are particularly important from a methodological perspective. This

for example enables us to unravel the more complicated case presented in the next section.

Theorem 2. Given that Assumption 1 holds and that the set of optimal solutions is non-empty,

the inverse optimization problem (2) can be solved by a risk function ρδ ∈L({ ~Xj}j∈J ,C), where C

is the support set of the reference risk function ρ̃ and the parameter δ is calculated by solving

min
δ∈R|J |,yj∈R|Ω|

maxj∈J |δj − ρ̃( ~Xj)| (17)

subject to (13), (14), (15), (16).

4 In particular, the linearity of each piece in the term has the implication that the largest difference can always be
found at the support points ~Xj , j ∈J .
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The problem (17) is a convex optimization problem and is polynomially solvable if

1. given any t ∈ T , the forward problem minx∈X t ρ(~Zt(x)) is polynomially solvable in the case

where ρ(~Zt(x)) :=
∑|Ω|

i=1 yiZ
t(x,ωi) for any y ∈R

|Ω|
+ , and

2. the support set C for ρ̃ is equipped with an oracle that can for any p∈R
|Ω| either confirm that

p∈ C or provide a hyperplane that separates p from C in polynomial time.

Intuitively, the above theorem summarizes a two-step procedure to identify an optimal risk

function to the inverse problem (2). First, it computes the parameter δ by solving (17) so that it

can determine the function values ρδ(~Z) over finite points { ~Xj}j∈J , namely by setting ρδ( ~Xj) =

δj, j ∈ J . Then, it interpolates (and extrapolates) other function values (i.e., ρδ(~Z) for any ~Z),

based on the structure of ρδ (i.e., the definition of the set L({ ~Xj}j∈J ,C)). It is guaranteed by the

theorem that a risk function ρδ interpolated (and extrapolated) as such will necessarily satisfy all

the imposed conditions and reach the optimal value. The main computational complexity of the

procedure lies in solving the problem (17), whose complexity, roughly speaking, is in the same order

of the complexity of the forward problem. It is thus assured by the theorem that one can always

efficiently learn decision makers’ risk preference from their past decisions as long as the forward

problems that they solved are amenable to efficient solution methods. This is the case, for example,

when one tries to learn about investors’ risk functions from their past investment decisions, given

that many portfolio selection problems (i.e., the forward problem) can be solved efficiently. Note

that the condition about the oracle is very mild, which is usually required for proving any general

tractability result. Note also that the problem (17) can be solved efficiently as a conic program

(Nemirovski (2007)), under mild regularity conditions, if the forward problem and the set C are

conic representable.

To help deepen one’s understanding and intuition about how the function values are interpolated

(and extrapolated), we present the following two alternative formulations of ρδ.

Corollary 1. The risk function ρδ ∈L({ ~Xj}j∈J ,C) can be equivalently formulated as

ρδ(~Z) = sup
p,s∈R

p⊤ ~Z − s

subject to p⊤ ~Xj − s≤ δj, ∀j ∈J ,

p∈ C.

It can also be formulated as

ρδ(~Z) = inf
t∈R

t

subject to ~Z − t∈A,
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where A :=
{

~Z
∣

∣

∣
ρδ(~Z)≤ 0

}

. In the case C :=
{

p∈∆
∣

∣

∣

~R⊤
ν p≤ bν , ν ∈ V

}

and |V|<∞, we have

A=

{

~Z

∣

∣

∣

∣

∃θ ∈R
|J |
+ , ϑ∈R

|V|
+ ,

~Z ≤
∑

j∈J θj( ~Xj − δj)+
∑

ν∈V ϑν(~Rν − bν),
∑

j∈J θj = 1

}

.

The first formulation of ρδ indicates that once the parameter δ is determined, the function ρδ

then evaluates any random loss ~Z by a linear function p⊤ ~Z − s that bounds from below all δs

(i.e., all assigned function values over { ~Xj}j∈J ) as tightly as possible subject to its sub-gradient p

bounded by C. In the second formulation, the definition of the set A is well known in the risk theory

(see, e.g., Artzner et al. (1999)), which stands for an “acceptance set” (i.e., the set of random losses

with acceptable (non-positive) risk). In particular, here the function value ρδ(~Z) can be translated

into the minimum amount of cash (i.e., constant t) required to render the final loss ~Z− t acceptable

(i.e., lying in the set A). This sub-level set, as shown above in the second formulation of A, can be

viewed as a monotone convex set generated from the non-negative span of the sets { ~Xj − δj}j∈J

and {~Rν − bν}ν∈V . This sheds light on how the whole contour
{

~Z
∣

∣

∣
ρδ(~Z) = 0

}

(which determines

ρδ(~Z) for any ~Z value) is interpolated (and extrapolated) once δ is determined: namely, having set

ρδ( ~Xj) = δj, ∀j ∈ J over the finite points is equivalent to fixing first the points { ~Xj − δj}j∈J on

the boundary of A. Then, the rest of the boundary of A is interpolated by spanning a cone from

{~Rν − bν}ν∈V at every point in the monotone convex hull of { ~Xj − δj}j∈J .

Figure 1 provides an illustration, in two states, of the updates of ρδ as more information is

acquired. In each of the plots, the level set
{

~Z
∣

∣

∣
ρδ(~Z) = 0

}

is drawn over losses ~Z bounded between

-1 and 1. Note that because of the property of translation invariance, this level set completely

characterizes the risk function ρδ
5. In all three plots, we consider a decision maker optimiz-

ing a linear function ~Zt(x) = Ztx ∈ R
2, where Zt ∈ R

2×5, subject to budget constraints X :=
{

x∈R
5
∣

∣

∣

~1⊤x=1, x≥ 0
}

. In the first plot, we have Z1 =

(

0.5 0.225 0.275 0.5 0.65
0.15 0.05 −0.1 −0.15 −0.1

)

and the

observed decision x1(3) = 1 and 0 otherwise. Here, the risk function ρδ is updated according to

the largest possible δ1 that is feasible. To verify this, one can see from the dash lines the range

of feasible subgradients that render the decision x1 optimal. For any other convex function that

assigns Z1x1 a value larger than δ1 (i.e., the level set is “farther” from Z1x1), its subgradient at the

point Z1x1 − δ1 will fall outside the range of feasible subgradients. In the next plot, an additional

observation is considered. We have Z2 =

(

0.55 0.425 0.5 0.75 0.90
−0.3 −0.35 −0.5 −0.55 −0.5

)

and the observed deci-

sion x2(3) = 1 and 0 otherwise. One can see that δ1, which is feasible in the first plot, is no longer

feasible. This is because to make the subgradients at Z2x2− δ2 feasible (i.e., rendering x2 optimal)

and retain the convexity of the sublevel set A, we must reduce δ1. One would not be able to find

5 That is, ρδ( ~X) = c⇒ ρδ( ~X − c) = 0, which implies that any other level set is just the zero-level set shifted along ~1
by c.
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any other level set that is farther from Z1x1 (and resp. Z2x2) than δ1 (and resp. δ2) and retains

the convexity of A. In the last plot, we assume that a CVaRβ measure with β = 0.4 is provided as

the reference risk function ρ̃, which is supported by the set C :=
{

p
∣

∣

∣

~1⊤p= 1, 0≤ p≤ β
}

. Now the

values of δ1 and δ2 can only be feasible if the subgradients at Z1x1−δ1 and Z2x2−δ2 are “confined”

by C. Moreover, the set A is “extrapolated” by C also (e.g., over the points
{

~Z
∣

∣

∣
Z(ω1)< 0

}

).
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Figure 1 The updates of the set A=
{

~Z
∣

∣

∣
ρδ(~Z)≤ 0

}

: with one observed decision (Left), with two observed

decisions (Center), and with CVaR0.4 additionally as the reference risk function (Right)

It is valuable to point out here the similarities and differences between our approach and other

non-parametric approaches. In particular, Bertsimas et al. (2014) also consider a non-parametric

inverse problem, albeit in a very different setting from ours, and show that it is possible to reduce

the problem by restricting the search of an optimal solution to a smaller class of functions supported

by finite points only. More specifically, they show that to seek a subgradient function y :R|Ω| →R
|Ω|

that satisfies the optimality conditions

y( ~W t)⊤( ~W − ~W t)≥ 0, ∀ ~W ∈Wt, t∈ T , (18)

it suffices to search in the set
{

y :R|Ω| →R
|Ω|
∣

∣

∣
∃αi,t ∈R, yi(~Z) =

∑

t∈T αi,tk( ~W
t, ~Z), i= 1, ..., |Ω|

}

,

where k : R|Ω| ×R
|Ω| → R is a kernel function. The insight here is that such a class of functions

provides sufficient flexibility to locally fit any given values y( ~W t), t ∈ T . There is however a fun-

damental difficulty to apply this method in our setting: namely that it is not amenable to incor-

porating global properties such as convexity. On the other hand, the class of functions we consider

(i.e., L({ ~Xj}j∈J ,C)) can both provide the flexibility for local fitting and incorporate the global

properties of convex risk functions. We should note, however, that their kernel approach does not

rely on convex analysis as we do in this paper and hence might be useful to handle the case of

non-convexity where local and global optimality do not coincide.
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Although in a different context there is another non-parametric approach for convex interpo-

lation, which has been successfully applied for instance in regression under the name of convex

regression (Boyd and Vandenberghe (2004)). This approach seeks a convex function that best fits

observed function values over finite points { ~Xj}j∈J . The approach involves solving the constraints

(13) also to determine the function values over finite points, and it uses a piecewise linear function

to interpolate other function values. In this vein, closer to the context of this paper is the work of

Delage and Li (2018) mentioned earlier in the section (also Armbruster and Delage (2015)), which

in fact involves also solving the constraints (13) to determine function values over finite points and

from there to identify the worst-case convex function. Indeed, as these works and our work are

both concerned about convexity, the constraint (13) naturally arises. Our work in this sense can be

viewed as a generalization of these works: namely that our work further addresses the comparison

of function values over infinite points by expanding the system (13) and interpolating via a richer

class of functions L({ ~Xj}j∈J ,C).

The discussions up to this point have laid enough ground work for solving other inverse problems.

In particular, to solve the inverse problem (3), one needs only note that the property of translation

invariance enables us to formulate the constraint in Rinv(γ) equivalently as

Rinv(γ) =
{

ρ
∣

∣

∣
ρ(~Zt(xt)− γt)≤ ρ(~Zt(x)), ∀x∈X t, t∈ T

}

.

Based on the same analysis, we arrive at the following.

Corollary 2. Under the same assumption in Theorem 2, the inverse optimization problem (3)

can be solved by a risk function ρδ ∈L({ ~Xj}j∈J ,C), where C is the support set of the reference risk

function ρ̃ and the parameter δ is calculated by solving

min
δ∈R|J |,yj∈R|Ω|,γ∈R|T |

∑

t∈T

γt

subject to y⊤
t
~Xt ≤ ht(yt)+ γt, t∈ T ,

|δj − ρ̃( ~Xj)| ≤ ǫ∗, ∀j ∈J ,

(13), (14), (16).

To solve the problem (4), we know already from Lemma EC.3.1 that there exists a feasible

function ρ that bounds from above all other feasible functions. Following the proof of Proposition 1,

one can further confirm that there must exist ρδ ∈L({ ~Xj}j∈J ,C) that bounds from above the risk

function ρ. We can thus conclude that it suffices to search in the set L({ ~Xj}j∈J ,C) for a worst-case

risk function by maximizing all δs. This can be formulated equivalently as the following problem.
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Corollary 3. Under the same assumption in Theorem 2, the inverse optimization problem (4)

can be solved by a risk function ρδ ∈L({ ~Xj}j∈J ,C), where C is the support set of the reference risk

function ρ̃ and the parameter δ is calculated by solving

max
δ∈R|J |,yj∈R|Ω|

∑

j∈J

δj

subject to y⊤
t
~Xt ≤ ht(yt)+ γ∗

t , ∀t∈ T ,

|δj − ρ̃( ~Xj)| ≤ ǫ∗, ∀j ∈J ,

(13), (14), (16).

3.2. Imputing permutation-invariant risk-averse functions

We introduce in this section the notion of permutation invariance, which will enable us to identify

a subclass of risk-averse functions that can be of practical interest. The notion also provides the

basis for the discussion of law invariance in Section 3.3. We say that an operator σ : R|Ω| → R
|Ω|

is a permutation operator over ~Z ∈ R
|Ω| if it satisfies (σ(~Z))i = (~Z)g−1(i) for any ~Z ∈ R

|Ω|, where

g : {1, ..., |Ω|} → {1, ..., |Ω|} is a bijective function that permutes over |Ω| elements. We denote by

Σ the set of all permutation operators.

Definition 6. (Permutation-invariant risk-averse functions) Let R denote the set of

permutation-invariant risk-averse functions defined by

R :=
{

ρ∈R
∣

∣

∣
ρ(~Z) = ρ(σ(~Z)), ∀σ ∈Σ, ∀~Z ∈R

|Ω|
}

.

Here we should revisit Example 2 in Section 2.1, which provides an important class of

permutation-invariant risk-averse functions. Namely, any distributionally robust risk measure ρ↑

defined based on a phi-divergence criteria and an empirical distribution p̂ = 1
M
~1 satisfies ρ↑ ∈

R. This is not hard to confirm once one recognizes that the function D(q, p̂) satisfies D(q, p̂) =

D(σ(q), p̂), ∀σ ∈Σ. Indeed, although a distributionally robust risk measure provides more conser-

vative estimates of risk, in principle it should not be sensitive to the ordering of ~Z given that

ρ↑ are built based on samples. More generally, in any case where the decision maker is found to

be insensitive to the ordering, one may consider solving the inverse problems by replacing ρ ∈R

with ρ ∈R. Moreover, we should assume in the inverse problems that the reference risk function

ρ̃ employed is also permutation invariant. As shown in Lemma EC.3.2, it is equivalent to making

the following assumption.

Assumption 2. The support set of the reference risk function ρ̃, now denoted by C, satisfies

p∈ C ⇔ σ(p)∈ C.
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It is technically involved however to solve the inverse problems that take into account all the

possible permutations. In particular, difficulty arises when one seeks a risk function satisfying the

optimality condition that now takes the form

ρ(σ( ~W t))≤ ρ(σ′( ~W )), ∀ ~W ∈Wt, ∀σ,σ′ ∈Σ, t∈ T ,

where the set
{

σ′( ~W )
∣

∣

∣
σ′ ∈Σ, ~W ∈Wt

}

is non-convex. However, as detailed in Appendix EC.4,

Proposition EC.1, one can resolve this difficulty by following closely the steps presented in the previ-

ous section. Namely, one can apply the following definition to search over the subset L({ ~Xj}j∈J ,C),

which necessarily contains an optimal solution to the inverse problem, and there again the conjugate

duality theory comes to our rescue.

Definition 7. Given a support set C̄ that is permutation invariant, we say that a function ρδ

is permutation invariant and supported by the pair ({~Zj}j∈J̄ , C̄) if it belongs to the following set

of functions

L({~Zj}j∈J̄ , C̄) :=

{

ρδ

∣

∣

∣

∣

∣

∃δ ∈R|J̄ |, ρδ(~Z) = sup
p∈C̄

p⊤ ~Z − max
σ∈Σ,j∈J̄

{

p⊤σ(~Zj)− δj

}

}

.

The figure below provides some intuition of the above functions, where we continue the examples

presented in Figure 1. In particular, we see that the sub-level set A now takes a symmetric shape.
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Figure 2 The update of the set A=
{

~Z
∣

∣

∣
ρδ(~Z)≤ 0

}

in Figure 1: with ρδ now further satisfying

permutation-invariance

However, there is also the difficulty of handling the size of the inverse problems, which grows

exponentially with respect to the input data of ~Xj because of the need to take into account all the

permutations (e.g. σ( ~Xj), ∀σ ∈Σ). We detail also in Appendix EC.4 how to reduce the problems

to programs that grow only polynomially in the size of the input data (e.g., |J |).
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Proposition 4. Given that Assumption 2 holds and that the set of optimal solutions is non-

empty, the inverse problem (6)–(8) with R :=R can be solved by a risk function ρδ ∈L({ ~Xj}j∈J ,C),

where C is the support set of the reference risk function ρ̃ and the parameter δ is calculated by

solving

min
δ,yj ,vi,j ,wi,j

max
j∈J

|δj − ρ̃( ~Xj)| (19)

subject to ~1⊤vi,j +~1⊤wi,j ≤ δi− δj + y⊤
j
~Xj, ∀j ∈J , ∀i 6= j, (20)

~Xiy
⊤
j − vi,j~1

⊤ −~1w⊤
i,j ≤ 0, ∀j ∈ J , ∀i 6= j,

yj ∈ C, ∀j ∈J ,

y⊤
t
~Xt ≤ ht(yt), ∀t∈ T , (21)

δi ≤ δj, ∀(i, j)∈B,

where δ ∈ R
|J |, yj ∈ R

|Ω|, vi,j ∈ R
|Ω|, wi,j ∈ R

|Ω|, the set B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj) ∈ {(~Lk, ~Uk)}k∈K

}

, and ht denotes the function ht(y) :=

minx

{

y⊤ ~Zt(x)
∣

∣

∣
x∈X t

}

.

Moreover, the supremum representation in L({ ~Xj}j∈J ,C) can be reduced to

sup
p∈R|Ω|,t∈R,vj∈R|Ω|,wj∈R|Ω|

p⊤ ~Z − t (22)

subject to ~1⊤vj +~1⊤wj ≤ t+ δj, ∀j ∈J ,

~Xjp
⊤ − vj~1

⊤ −~1w⊤
j ≤ 0, ∀j ∈J ,

p∈ C.

The fact that the size of the above programs (19) and (22) grows only polynomially, rather than

exponentially, with respect to the input data should provide a strong incentive to consider applying

the above models. In particular, we should emphasize here that the above models offer an oppor-

tunity to learn a decision maker’s risk function potentially much faster, in terms of requiring fewer

observations of past decisions to reach certain learning performance, than the models presented in

the previous section. Indeed, recall from the representation of the risk function ρδ that for each

random loss ~Xj chosen by an observed decision, the representation will automatically incorporate

exponentially many more points (i.e., all the permutations of ~Xj) and carry over the preference

relations learned from ~Xj to all its permutations. In other words, the above models allow for incor-

porating “exponentially” more preference information with the “cost” of taking only polynomially

longer time to solve the models. This should stress the importance of always checking first whether

a decision maker is sensitive or not to the ordering (i.e., σ(Z) for different σ). Following the same

analysis, we can derive similar results for the inverse problems (3)–(4). For brevity, we defer them

to Appendix EC.3, Corollary EC.1 and EC.2.
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3.3. Imputing law-invariant risk-averse functions

As mentioned in Section 2.1, imposing the condition of law invariance on a risk-averse function is

equivalent to considering it as a function of distributions. That is, we necessarily assume by default

that the distributions of all random variables are available, as discussed also in Example 3, Section

2.1. For this reason, we should start by assuming that all elements involved in the inverse problems

are distribution-based.

Assumption 3. Each entry of the random loss ~Zt(x) admits the form of (~Zt(x))i =Z(x, ξt(ωi)),

where ξt : Ω→R
m. The random vector ξt has finite support

{

ξt1, ..., ξ
t
τ t0

}

and a probability distribu-

tion Fξt that satisfies P(ξt = ξto) = p̄ξ
t

o for o= 1, ..., τ t
0.

We also make the following assumption about the reference risk function ρ̃.

Assumption 4. The reference risk function ρ̃ is law invariant (i.e., ρ̃∈RF ).

The key to solving the inverse problems that account for distributions lies in identifying the

connection between the condition of law invariance and permutation invariance discussed in the

previous section. Namely, supposing that the probability measure P is uniform, one can observe

that for any two random losses Z1, Z2 that share the same distribution, their vector representations

~Z1, ~Z2 ∈R
|Ω| must satisfy ~Z1 = σ(~Z2) for some σ ∈Σ. That is, in the case of uniform probability

measure, a law-invariant risk measure must satisfy ρ∈R. To exploit this fact further, we make the

following mild assumption.

Assumption 5. All probability distributions of random losses take rational numbers as proba-

bility values.

In this case, given any discrete probability distribution FZ specified by a pair of support and

probability vector (~S, p̄) ∈R
τ ×R

τ (i.e., FZ =
∑τ

o=1 p̄oDirac((~S)o), where Dirac is the Dirac mea-

sure with all its weight on (~S)o), one can always equivalently express the probability value p̄o,

o= 1, ..., τ by a ratio no/M , no ∈ {1, ...,M} for some M ∈ Z
+. The random loss Z ∼ FZ can thus

be equivalently defined as a mapping from an outcome space Ω with M uniformly distributed out-

comes to R that satisfies Z(ω) ∈
{

(~S)1, ..., (~S)τ

}

and |
{

ω ∈Ω
∣

∣

∣
Z(ω) = (~S)o

}

|= p̄oM , o= 1, ..., τ .

However, it might be costly to implement such a procedure because the constant M might need

to be large and thus significantly increases the size of the optimization problems (20) and (22). In

the following proposition, we show that the optimization problems can always be further reduced

to programs whose sizes depend (almost) only on the size of the supports of distributions (i.e.,

|supp(FZ)| = τ), rather than the size of the outcome space (i.e., M). The proof is deferred to

Appendix EC.4.
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Proposition 5. Let {Fj}j∈J be the distributions of the random losses in the support set

{ ~Xj}j∈J , and each distribution Fj be specified by a pair of (~Sj, p̄
j) ∈ R

τj × R
τj such that Fj =

∑τj
o=1 p̄

j
oDirac((~Sj)o). Given that Assumption 3, 4, and 5 hold and that the set of optimal solu-

tions is non-empty, the inverse problem (6)–(8) with RF can be solved by a risk function ρFδ ∈

LF ({Fj}j∈J ,C0), where

LF ({Fj}j∈J ,C0) :=
{

ρFδ
∣

∣ ∃δ ∈R|J |, ρFδ (FZ) = (23)
}

,

sup
p∈Rτ ,vj∈R

τj ,wj∈Rτ ,t∈R

p⊤~S− t (23)

subject to ~1⊤vj +~1⊤wj ≤ t+ δj, ∀j ∈J ,

~Sjp
⊤ −Λj ◦ (vj~1

⊤)−~1w⊤
j ≤ 0, ∀j ∈ J ,

p∈ C0 ⊆R
τ
+,

◦ is the Hadamard product; the coefficient Λj is calculated by (Λj)m,n = p̄n/p̄
j
m, n= 1, ..., τ , m =

1, ..., τj ; and the parameter δ is calculated by solving the following optimization problem

min
δ,yj,vi,j ,wi,j

max
j∈J

|δj − ρ̃( ~Xj)|

subject to ~1⊤vi,j +~1⊤wi,j ≤ δi− δj + y⊤
j
~Sj, ∀j ∈J , ∀i 6= j, (24)

~Siy
⊤
j −Λi,j ◦ (vi,j~1

⊤)−~1w⊤
i,j ≤ 0, ∀j ∈ J , ∀i 6= j, (25)

yj ∈ Cj ⊆R
τj
+ , ∀j ∈J ,

y⊤
t
~St ≤ ht(yt), ∀t∈ T , (26)

δi ≤ δj, ∀(i, j)∈ B,

where δ ∈ R
|J |, yj ∈ R

τj , vi,j ∈ R
τi, wi,j ∈ R

τj ; ~St := (Z(xt, ξt1), ...,Z(xt, ξt
τ t0
))⊤; the set

B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj) ∈ {(~Lk, ~Uk)}k∈K

}

; and ht denotes the function ht(y) :=

minx

{

∑τ t0
o=1 yoZ(x, ξto)

∣

∣

∣
x∈X t

}

. The coefficient Λi,j is calculated by (Λi,j)m,n = p̄jn/p̄
i
m, n=1, ..., τj ,

m= 1, ..., τi.

Moreover, the above set Cj, j ∈ {0}∪J can be derived from the set C (i.e., the support set of the

reference risk function ρ̃ in the case where P is uniform) using

Cj =
{

y
∣

∣

∣
HFj

((λFj
)−1 ◦ y) ∈ C

}

, (27)

where F0 := FZ, y ∈R
τj , λFj

:= (p̄j1|Ω|, ..., p̄
j
τj
|Ω|)⊤ and (λFj

)−1◦λFj
=~1, and HFj

:Rτj →R
|Ω| stands

for an operator associated with Fj that generates a vector in R
|Ω| from a vector in the dimension

of |supp(Fj)|. Specifically, it replicates each entry ỹo of a given vector (ỹ1, ..., ỹτj )
⊤ ∈ R

τj by p̄jo|Ω|

many times, where we denote the replications by ~yo, and generates a vector (Y (ω1), ..., Y (ω|Ω|)) in

R
|Ω| by concatenating the replication vectors (i.e., (~y⊤

1 , ..., ~y
⊤
τj
) := (ỹ1, ..., ỹ1, ỹ2, ..., ỹ2, ..., ỹτj , ..., ỹτj )).
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It is not hard to confirm that the convex programs presented above are similar to those presented

in the previous section (see Proposition 4). In particular, the programs here would recover the ones

presented in Proposition 4 if we set the size of the support to be the same across all the distributions

and assign equal weight to each support. In other words, there is simply more freedom in these

programs to describe distributions in terms of both support and probabilities. More importantly,

this extra freedom adds no additional computational burden (in the sense that incorporating this

information only affects the parameter values, but not the size, of the above convex programs).

Thus, this may provide a further reason to encourage the decision maker to disclose the probability

information (see Remark 1). Similar results for the inverse problems (3)–(4) can be found in

Appendix EC.3, Corollary EC.3 and Corollary EC.4.

It is the complexity of the set Cj that appears to remain dependent on the size of the outcome

space |Ω|. As shown in the examples below, such a dependency can often be removed by considering

more specifically the exact form of the reference risk function ρ̃. This would thus allow the whole

problem in Proposition 5 to be recast independently from the exact construction of the sample

space. In particular, we consider below the implementation of several popular risk measures as

the reference risk function ρ̃ and derive their corresponding set Cj using the relation (27). The

distribution Fj here is generally expressed by Fj =
∑τj

o=1 p̄oDirac((~S)o). The support set C required

in (27) can be identified through the dual representation of these risk measures (see Appendix

EC.2) with the use of a uniform probability measure (i.e., P({ωi}) =
1
M
, ∀ωi ∈Ω).

Example 4. (Risk measures and their corresponding set of support Cj)

1. (Maximum loss) The risk function is defined by ρ̃(Z) =maxi{Z(ωi)}, and its corresponding

set of support Cj is simply

Cj =
{

q ∈R
τj
+

∣

∣

∣
q⊤~1 = 1

}

.

2. (Expectation) The risk function ρ̃(Z) =E[Z] has the following set of support:

Cj =
{

q ∈R
τj
+

∣

∣ q= p̄
}

.

3. (Mean-upper-semideviation) The risk function is defined by

ρ̃(Z) =E[Z] + γE[|Z −E[Z]|], γ ∈ [0,
1

2
],

and its set of support takes the form

Cj =

{

q ∈R
τj
+

∣

∣

∣

∣

∣

qo = p̄o(1+ γ(ho−

τj
∑

o=1

p̄oho)), o= 1, ..., τj ,

τj
∑

o=1

p̄o|ho|
t ≤ 1, h≥ 0

}

.
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4. (Conditional value-at-risk (CVaR)) The risk function can be defined by

ρ̃(Z) =
1

1−α

∫ 1

α

F−1
Z (t)dt,

where F−1
Z stands for the generalized inverse distribution function, and its corresponding set of

support admits

Cj =

{

q ∈R
τj
+

∣

∣

∣

∣

qo ≤
1

1−α
p̄o, o=1, ..., τj , q

⊤~1= 1

}

.

5. (Spectral risk measures) As a generalization of CVaR, the risk function is defined by

ρ̃(Z) =

∫ 1

0

F−1
Z (t)φ(t)dt,

where the function φ : [0,1]→ [0,1] is non-decreasing and satisfies
∫ 1

0
φ(t)dt= 1. The function φ is

also known as the risk spectrum. We should note that it is not possible to derive the reduced set Cj

that is independent of the sample space Ω for general spectral risk measures because one can always

seek a more “detailed” spectrum φ by increasing the size of the sample space. Even so, for practical

purposes, a “step-wise” spectrum, φ−(p) :=
∑K

k=1 φ̄k1(pk−1,pk](p) for some 0 < φ̄1 < · · · < φ̄K and

0 = p0 < p1 < · · ·< pK = 1, is usually sufficient, which can approximate any general spectrum to a

pre-determined precision. By assuming that pk takes rational numbers as values, we prove at the

end of Appendix EC.4 that, based on the representation C =Conv(
{

σ(φ̄), σ ∈Σ
}

) from Example

EC.2.6, the set of support Cj can be reduced to

Cj =
{

q
∣

∣

∣
q= Q̄φ̄, Q̄~1 = p̄, Q̄⊤~1= pφ, Q̄≥ 0

}

,

where Q̄∈R
τj×K and (pφ)k := (pk − pk−1), k= 1, ...,K.

4. Solving the Inverse Problem in Decision Space

There is a distinct difference, from the complexity point of view, between the inverse problem

(5) and the inverse problems addressed in the previous section. In particular, in this setting both

the risk function ρ and the decision variable x are variables and the problem becomes non-convex

even in the simplest case where ρ is linear (i.e., ρ(~Z) = y⊤ ~Z for some unknown y). The goal of

this section is to discover cases where the problem can be solved in a relatively efficient way, by

which we mean from a practical standpoint. In particular, we assume the following structure for

the problem. Note that for simplicity we suppress the index T in ~ZT (x) and X T in the rest of this

section.

Assumption 6. The loss function ~Z(x) is linear; namely, it generally admits ~Z(x) = Zx for

some Z ∈R
|Ω|×n, and in the case of law invariance it has finite support {ξ⊤o x}

τ0
o=1 and a probability

distribution Fξ that satisfies P(ξ= ξo) = p̄ξo for o= 1, ..., τ0. In addition, the feasible set X is a non-

empty, bounded full-dimensional polytope that takes the form X := {x |Ax≥ b} for some A∈R
N×n

and b∈R
N .
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We show in the following proposition that the inverse problem (5) reduces to solving an inverse

linear optimization problem.

Proposition 6. In the case where Assumption 1 and 6 hold, the inverse problem (5) can be

solved by a risk function ρδ ∈ L({ ~Xj}j∈{1,2},C), where C is the support set of the reference risk

function ρ̃, and ~X1 =Zx∗, δ1 = y∗⊤Zx∗, ~X2 =~0, δ2 = 0. The values of x∗ and y∗ are calculated by

solving

min
x′∈Rn,y∈R|Ω|

||x′ −xT ||

subject to x′ ∈ argmin
x

{

y⊤Zx
∣

∣Ax≥ b
}

, (28)

y ∈ C.

Moreover, the above problem can be solved by the following mixed-integer program (MIP):

min
x′∈Rn,y∈R|Ω|,u∈RN ,η∈RN

||x′ −xT ||

subject to Ax′ − b≥ 0, (29a)

A⊤u=Z⊤y, (29b)

Ax′ − b≤Mη, (29c)

u≤M(1− η), (29d)

u≥ 0, y ∈ C, η ∈ {0,1}N , (29e)

for a sufficiently large M .

The problem (28) has also been studied in the context of inverse linear optimization, and it

is known that it may be solved in closed-form in the special case where y is unconstrained and

the rank of Z equals the dimension of x (Chan et al. (2018)). Unfortunately, the problem in the

general form (28) is known to be difficult to solve, as the set of feasible solutions to (28) is non-

convex. Nevertheless, the MIP program that we present above can be very relevant from a practical

standpoint. In particular, in the case where the 1-norm or ∞-norm is applied in the objective

function, this class of programs can often be solved efficiently as mixed-integer linear programs

(MILPs) on a large scale using commercial solvers such as Gurobi or Cplex.

Next, we consider the case where ρ satisfies permutation-invariance. Because we must take into

account all possible permutations, the inverse problem (5) in this case is more involved and cannot

be reduced as cleanly as (28). Nevertheless, we show in the following proposition that it remains

possible to solve the problem through a MIP program where the number of binary variables grows

in the order of O(|Ω|2).
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Proposition 7. In the case where Assumption 2 and 6 hold, the inverse problem (5) can be

solved by a risk function ρδ ∈ L({ ~Xj}j∈{1,2},C), where C is the support set of the reference risk

function ρ̃ and ~X1 =Zx∗, δ1 = y∗⊤Zx∗, ~X2 =~0, and δ2 = 0. The values of x∗ and y∗ are calculated

by solving the following mixed-integer program (MIP):

min
x′∈Rn,y∈R|Ω|,u∈RN ,η∈RN ,νij

||x′ −xT ||

subject to (Zx′)i ≤ (Zx′)j +Mνij , ∀i, j ∈ {1, ..., |Ω|}, i 6= j, (30a)

(Zx′)j ≤ (Zx′)i+M(1− νij), ∀i, j ∈ {1, ..., |Ω|}, i 6= j, (30b)

yi ≤ yj +Mνij, ∀i, j ∈ {1, ..., |Ω|}, i 6= j, (30c)

yj ≤ yi +M(1− νij), ∀i, j ∈ {1, ..., |Ω|}, i 6= j, (30d)

Ax′ − b≥ 0,

A⊤u=Z⊤y,

Ax′ − b≤Mη,

u≤M(1− η),

u≥ 0, y ∈ C, νij ∈ {0,1}, η ∈ {0,1}N ,

for a sufficiently large M .

As detailed in Appendix EC.4, by carefully examining constraints that take into account all the

permutations, the constraints boil down to requiring an ordering matching condition between Zx′

and subgradient y (i.e., (Zx′)i′ ≤ · · · ≤ (Zx′)i′′ ⇔ yi′ ≤ · · · ≤ yi′′). We can equivalently state this

condition by the first four constraints (30a)–(30d) using binary variables. To address the case of law

invariance, we employ the same technique used in Section 3.3 to first map the distribution Fξ⊤x to

a random variable Zx∈R
|Ω| over an outcome space Ω with a uniform probability measure. Based

on this constructed random variable, we can then apply the previous proposition to formulate a

MIP program. We show in the following proposition how the program can be further reduced to a

program depending only on the size of the support {ξ⊤o x}
τ0
o=1.

Proposition 8. In the case where Assumption 4, 5, and 6 hold, the inverse problem (5) can be

solved by a risk function ρFδ ∈LF ({Fj}j∈{1,2},C0), where F1 =
∑τ0

o=1 p̄
ξ
oDirac((ξ⊤o x

∗)o), δ1 = y∗⊤Ξx∗,

F2 =Dirac(0), δ2 =0, and Ξ := [ξ1, · · · , ξτ0]
⊤. The values of x∗ and y∗ are calculated by solving the

following mixed-integer program (MIP):

min
x′∈Rn,y∈R

τ0 ,u∈RN ,η∈RN ,νij

||x′ −xT ||

subject to ξ⊤i x
′ ≤ ξ⊤j x

′ +Mνij, ∀i, j ∈ {1, ..., τ0}, i 6= j,
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ξ⊤j x
′ ≤ ξ⊤i x

′ +M(1− νij), ∀i, j ∈ {1, ..., τ0}, i 6= j,

yi ≤ yj +Mνij, ∀i, j ∈ {1, ..., τ0}, i 6= j, (31)

yj ≤ yi +M(1− νij), ∀i, j ∈ {1, ..., τ0}, i 6= j, (32)

Ax′ − b≥ 0,

A⊤u=Ξ⊤(p̄ξ ◦ y),

Ax′ − b≤Mη,

u≤M(1− η),

u≥ 0, y ∈ C1, νij ∈ {0,1}, η ∈ {0,1}N ,

for a sufficiently large M .

Moreover, the set C0 can be derived from (27) and the set C1 can be derived from C1 :=
{

y
∣

∣

∣
HF1

(( 1
|Ω|

)y)∈ C
}

, where C is the support set of the reference risk function ρ̃ in the case of

uniform probability measure.

All the MIP programs presented above could be solved in seconds in our experiments conducted

in the next section. It is natural to consider extending the inverse problem (5) more generally to

incorporate multiple observations (or preference elicitation relations). Unfortunately, not only do

these more general cases quickly become intractable to analyze, but it also appears unreasonable to

assume that their solutions admit any particular structure as observed in the above propositions.

To solve these problems directly, one faces the complexity of bilinear constraints that are highly

interdependent, which is computationally intractable even on a small scale.

Although it appears not possible to solve the problems in general, we believe the true value

of the above MIP programs lies in providing a reasonable means to “extrapolate” an optimal

decision from the observed sub-optimal decision. What we meant by extrapolation here is that the

decision is extrapolated from the optimality condition of some risk-averse function over the set of

feasible decisions. This guarantee should make the extrapolated decision a more ideal candidate

to incorporate in the inverse models than the original observed decision. Hence, we recommend

applying the MIP programs in either one of the following two ways when there is a need to

incorporate more observations:

1. First, solve the MIP programs based on the latest observation of decision xT . Obviously, if

the observed decision xT is already optimal, then the MIP programs will return xT . Otherwise,

replace xT by the solution x∗ generated from the programs and then run the inverse model (3)

discussed in the previous section by setting the optimality condition associated with x∗ to be tight

(i.e, γT = 0).
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2. Same as above, but run the inverse model (3) without imposing γT = 0.

Based on the results in the above propositions, in either case there must exist at least one feasible

risk function (even in case 1) that renders the decision x∗ optimal. The difference is that the first

approach essentially puts absolute priority on the fitting to the decision x∗, whereas the second

approach treats the sub-optimality of each observed decision equally important to improve. Thus,

if one’s main interest is to fit perfectly the decision (based on most current information), one can

apply the first approach. Otherwise, if the interest is to seek a potentially better decision as the

input to the other inverse models, one may apply the second approach.

5. Numerical Study

In this section, we illustrate the use of inverse optimization on a portfolio selection problem. We

simulate the situation where a fund manager is required to construct a portfolio that aligns with a

client’s personal preference but has fairly limited opportunity to assess the client’s risk preference.

We assume that the client’s true risk function satisfies the conditions of monotonicity, convexity,

and translation invariance and that his/her past investments were made according to the following

forward risk minimization problem:

min
x

{

ρ(−
∑

i

xi
~Ri)

∣

∣

∣

∣

∣

~1⊤x=1, x≥ 0

}

,

where ~Ri ∈R
|Ω| denotes the random returns of an asset i and xi stands for the proportion of the

total wealth invested in the asset i. The non-negativity constraint x≥ 0 assumes that the client

considers only long positions.

Remark 4. Although throughout this paper we have assumed the ability to specify the con-

straints that define the forward problem, we should mention here a few words about the possibility

that the constraints may be misspecified. For instance, although the long-only constraint is common

in the practice of portfolio management, at times the client may actually be open to taking some

short positions without the manager’s awareness. The question then arises as to how well in this

case our inverse models capture the true risk function (by assuming the long-only constraint in the

forward problem) and if it is possible to detect potential misspecification. As discussed with more

details in Appendix EC.5, we find it generally not possible to conclude, solely based on observed

decisions, if there is any constraint misspecification. However, even without this confirmation, we

discuss in the appendix why and how our inverse models may still be effective in capturing the

true risk function.

In Section 5.1, we demonstrate the case with limited observations of made decisions. In Section

5.2, we consider more generally the cases where multiple observations are available. All compu-

tations are carried out in Matlab 2014a using GUROBI 5.0 as an optimization solver. YALMIP

(Lofberg (2004)) is used to implement our models in Matlab.



32

5.1. The case of single observation

In this section we first consider the case of small |T |, particularly |T | = 1. We assume in all

experiments that the client’s true risk preference is captured by the risk measure, optimized-

certainty-equivalent (OCE), which was first introduced by Ben-Tal and Teboulle (2007). This class

of risk measures was widely referred to in both the literature of optimization (e.g., Natarajan et al.

(2010)) and risk theory (e.g., Drapeau and Kupper (2013)), given its generality and its one-to-one

correspondence to a (dis-)utility function. Namely, it is defined as

ρOCE(~Z) := inf
t∈R

{

t+E[u(~Z − t)]
}

,

where the function u :R→ [−∞,∞) stands for a proper, closed, convex, and nondecreasing disu-

tility function that satisfies u(0) = 0 and ∂u(0) ∋ 1 and ∂u denotes the subdifferential of u. We

assume that the client’s risk preference is captured by the OCE risk measure, denoted by ρsOCE(
~Z),

with the exponential disutility function us(x) :=
1
s
(esx − 1), where s is a parameter that controls

the level of risk aversion. This class of disutility function is fairly standard in the literature (see,

e.g., Natarajan et al. (2010)).

We assume further that one chooses a reference risk function ρ̃ by following the safety-first

principle but is not fully ignorant of the upside of uncertain outcomes. Specifically, the reference

risk function takes the following form of spectral risk measure, where a CVaR-90% is chosen to

capture downside risk and a small weight λ= 0.2 is put on the average:

ρSpec(~Z) := λE[~Z] + (1−λ)ρCV aR−90%(~Z).

We ran our experiments against the dataset of daily historical returns from 335 companies

that are part of the S&P500 index during the period from January 1997 to November 2013. We

conducted 5000 experiments, each consisting of randomly choosing a time window of 60 days and

5 stocks from the 335 companies. The first thirty days of data were used for in-sample calculation,

whereas the second thirty days were for out-of-sample evaluation.

The following steps were taken to simulate how the manager may employ imputed risk functions.

First, to simulate the past investment, we solved the forward problem based on the OCE risk

measure ρsOCE with different choices of the parameter s. Then, we fed the obtained portfolio xs
OCE

together with the pre-specified spectral risk measure ρSpec into the model in Proposition 5 to

generate an imputed convex risk function ρsIC . Finally, we solved the forward risk minimization

problem again based on the imputed risk function ρsIC to obtain a portfolio xs
IC . Note that in solving

the forward problem, it is possible that the optimal portfolio may not be unique. Throughout our

experiments, we added a regularization term λ̂||x||2 to the objective function with a small weight
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λ̂ = 10−6 so as to ensure the uniqueness of the optimal solution. Intuitively, we looked for the

most diversified portfolio among the optimal portfolios, as the L2 norm is known to encourage the

diversification (DeMiguel et al. (2009)).

We compared both in-sample and out-of-sample performances of the portfolios xs
OCE, xSpec, and

xs
IC optimized respectively based on the OCE risk measures ρsOCE , the spectral risk measure ρSpec,

and the imputed risk functions ρsIC . In establishing the outcome space Ω and the associated distri-

bution used in any of these risk functions, we used a uniform distribution constructed based on the

first thirty days of joint returns in each sample. In comparing the out-of-sample performances, we

additionally compute the optimal out-of-sample portfolios x̂s
OCE and x̂Spec optimized respectively

based on the risk measure ρsOCE and ρSpec using the out-of-sample data (i.e., the second thirty days

of joint return in each sample). We benchmark the performances of the in-sample portfolios (i.e.,

xs
OCE, xSpec, and xs

IC) against the optimal out-of-sample portfolios x̂s
OCE and x̂Spec.

Table 1 and 2 present respectively the in-sample and out-of-sample results in terms of the

averages. In reading the tables, when an entry corresponds to the portfolio xs
IC or xs

OCE and/or the

measure ρsOCE parameterized by s, the s−value on the top of each column is the value specifying

the parameter. All values in the tables are calculated by averaging the performances over 5000

experiments. We also provide other statistics in terms of boxplot in Figure 3 and 4. Note that the

plus sign “+” in the boxplots refers to the average.

portfolio ρ
s
OCE

(in lost p.p. relative to xs
OCE) ρSpec (in lost p.p. relative to xSpec)

s= 0.1 s= 1 s= 10 s= 100 s= 0.1 s= 1 s= 10 s= 100

xSpec 0.33 0.25 0.16 0.04 0.00 0.00 0.00 0.00
x

s
IC

0.05 0.03 0.02 0.01 1.27 0.95 0.39 0.04
x

s
OCE

0.00 0.00 0.00 0.00 1.86 1.26 0.49 0.08

Table 1 Comparison of the average in-sample performances in lost percentage points (lower is less risky) of the

portfolios xSpec, x
s
IC , and xs

OCE with respect to different choices of the parameter s. Each portfolio in the left is

evaluated based on the true risk measure ρsOCE (relative to the performances of xs
OCE), whereas in the right is

evaluated based on the reference risk function ρSpec (relative to the performances of xSpec).

It is not surprising to see in Table 1 that, in terms of in-sample performance, the best-performing

portfolios are those optimized according to the measures used for performance evaluation. Note

that the portfolios optimized based on the reference risk function (i.e., xSpec) can be deemed

unsatisfactory when evaluated according to the true risk measure ρsOCE . They underperform the

optimal portfolios xs
OCE by an amount up to 33 basis points (i.e., 0.33 p.p.), which can be difficult to

justify in terms of their alignment with the performances desired by the client. On the other hand,

the portfolios optimized based on the imputed risk functions (i.e., xs
IC) perform more closely to the
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Figure 3 Comparison of the in-sample performances in terms of boxplot. (a) Evaluations based on the true risk

measure ρsOCE (relative to the performances of xs
OCE), where each pair of boxplots consists of xs

IC (right) and

xSpec (left). (b) Evaluations based on the reference risk function ρSpec (relative to the performances of xSpec),

where xs
IC (left) and xs

OCE (right).

optimal portfolios xs
OCE with less than 5 basis points’ difference. Note that although by construction

the imputed risk functions ρsIC guarantee the optimality of the portfolios xs
OCE , minimizing ρsIC

in the forward problem does not necessarily lead to the same optimal solution (i.e., xs
IC 6= xs

OCE).

Even so, the benefit of incorporating the solution xs
OCE into the imputed risk function ρsIC is still

clear when one considers the improvement of xs
IC over xSpec in terms of the true risk (i.e., ρsOCE).

It is expected also from our formulation of the inverse problem that the imputed risk function ρsIC

should not differ too significantly from the spectral risk measure ρSpec. We can see that the results

evaluated based on ρSpec provide the evidence for that (i.e., that the portfolio xs
IC also performs

more similarly to the optimal portfolio xSpec in this case than the portfolio xs
OCE). This also

confirms the effectiveness of the imputed risk functions ρsIC to take into account the information

contained in the reference risk function ρSpec. Moreover, from Figure 3 we can further see that the

improvements of xs
IC over xSpec (in terms of ρsOCE) and xs

OCE (in terms of ρSpec) are also evident

across all the statistics presented in the boxplots. The observation that the performances of xs
IC

in fact dominate the performances of the others indicates a clear gain from employing an imputed

risk function.

The out-of-sample results presented in Table 2 are calculated by subtracting the performances

of the optimal out-of-sample portfolios x̂s
OCE and x̂Spec from the performances of the in-sample

portfolios xs
OCE, xSpec, and xs

IC . Like Table 1, the best performances (i.e., the lowest values) are

bold in Table 2. Perhaps quite surprisingly, in the cases of s = 0.1,1,10, the in-sample portfolio

xs
OCE actually underperforms the portfolio xSpec when evaluated according to the true risk measure

ρsOCE. This means that in these cases the portfolios optimized based on ρsOCE do not generalize

well to out-of-sample data. It is possible to explain this by drawing the connection between the
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portfolio ρ
s
OCE

(in lost p.p. relative to x̂s
OCE) ρSpec (in lost p.p. relative to x̂Spec)

s= 0.1 s= 1 s= 10 s= 100 s= 0.1 s= 1 s= 10 s= 100

xSpec 0.55 0.42 0.37 1.10 1.12 1.26 1.12 1.11
x

s
IC

0.57 0.47 0.37 0.99 2.25 1.79 1.13 1.02
x

s
OCE

0.57 0.49 0.39 0.95 2.91 2.08 1.18 0.99

Table 2 Comparison of the average out-of-sample performances in lost percentage points (lower is less risky)

of the portfolios xSpec, x
s
IC , and xs

OCE with respect to different choices of the parameter s. Each portfolio in the

left is evaluated based on the true risk measure ρsOCE (relative to the optimal out-of-sample portfolio x̂s
OCE),

whereas in the right is evaluated based on the reference risk function ρSpec (relative to the optimal out-of-sample

portfolio x̂Spec).

s=0.1 s=1 s=10 s=100
0

0.5
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s=0.1 s=1 s=10 s=100
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Figure 4 Comparison of the out-of-sample performances in terms of boxplots, where each group of boxplots

consists of xs
IC (center), xSpec (left), and xs

OCE (right). (a) Evaluations based on the true risk measure ρsOCE

(relative to the optimal out-of-sample portfolio x̂s
OCE). (b) Evaluations based on the reference risk function ρSpec

(relative to the optimal out-of-sample portfolio x̂Spec).

risk measure ρsOCE and expectation, namely that ρsOCE is close to expectation when s is small. It is

well known in portfolio optimization that portfolios optimized based on sample averages are highly

unstable and suffer from poor out-of-sample performances. Indeed, we can see from Figure 4 (a)

that, in the cases s= 0.1 and s= 1, the performances of xs
OCE are not only higher in terms of the

average but also in terms of the spread, in comparison with that of xSpec. We believe the reason

why portfolios optimized based on ρSpec appear more stable is that ρSpec provides more conservative

estimates of risk than ρsOCE for small s. This can be seen by comparing Figure 4 (a) and (b), where

the values of the former are clearly smaller than the latter, except the case of s= 100 where the

two are more similar. Actually, we see in the case of s= 100, which is the most risk-averse case,

the portfolio xs
OCE turns to outperform xSpec also in terms of both risk measures ρsOCE and ρSpec.

These observations appear to align with the common belief in robust optimization that solutions

optimized based on more conservative estimates are likely to enjoy more stable performances.
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Interestingly, in all cases, the performance of the in-sample portfolio xs
IC consistently falls

between the performances of the two portfolios xSpec and xs
OCE in most of the statistics. Hence,

in the cases where the portfolios optimized based on the true risk measure ρsOCE may suffer from

the instability issue, the imputed risk function ρsIC can also be considered as a useful surrogate

for generating more stable portfolios. That the imputed risk function ρsIC resembles only partially

the true risk function ρsOCE (through an observed decision) and is more similar to the reference

risk function ρSpec otherwise appears to provide a mechanism to dampen the potential over-fitting

issue. This also provides a further reason why one should consider choosing a more conservative

risk measure as the reference risk function: not only is it practically more sensible (as mentioned in

the introduction), but it also provides the basis for the bias-variance tradeoff (i.e., biased towards

more conservative estimates with the hope to reduce the variance). Note that from Figure 4 (a),

we see that in the cases s= 0.1 and s= 1, the performance of xSpec is worse than that of xs
OCE in

the lower quantiles and this can be the price paid for using more conservative risk measures (i.e.,

ρSpec). The imputed risk function ρsIC partially corrects the bias (from the observed decision) and

reaches a finer level of bias-variance tradeoff. One may consider also tuning the parameter of the

reference risk function (e.g., λ in ρSpec) to explore different tradeoff levels.

5.2. The case of multiple observations

In this section, we consider incorporating multiple observations in the inverse models and focus on

studying the resulting performances as |T |→∞. We use the historical returns of the same 335 com-

panies considered in the previous section. Following closely the experiment setup in Delage and Li

(2018), here we consider weekly returns and assume that at every given time point the client

applies the latest 13 weeks of joint returns to construct plausible scenarios (i.e., |Ω|=13). In each

of our experiments, we randomly draw five assets from the pool of 335 and |T | samples of their

13-week returns Rt ∈ R
13×5, t = 1, ..., |T |. Based on each sample Rt, we solve the forward prob-

lem using the true risk function, which gives us the observations (xt,Rtx,X ), t= 1, ..., |T |, where

X :=
{

x
∣

∣

∣

~1⊤x=1, x≥ 0
}

. We then apply suitable inverse models, as detailed below, to generate

the risk functions. To evaluate the performances resulting from the use of the imputed risk func-

tions, we randomly select an alternative sample of 13-week returns R̂ of the 5 assets, solve the

forward problem based on the sample R̂ and the imputed risk function, and evaluate the perfor-

mance of the resulting portfolio based on the true risk function. We repeat such an experiment

1000 times for evaluating average performance.

In particular, we simulate both the case where the client has incomplete knowledge about the

underlying distribution and is ambiguity-averse (like Example 2) and the case where the client is

able to identify and reveal the distribution (like Example 3). Finally, we simulate the case where

the client did not optimally make the decisions according to the true risk function.
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The case of distributional ambiguity We assume in this scenario that the client’s true risk

preference is captured by the following form of distributionally robust risk measure

ρs,↑OCE(
~Z) := sup

q∈∆

{

ρsOCE(
~Z; q)

∣

∣

∣

∣

∣

|Ω|
∑

i=1

|qi− q̂i| ≤ d

}

,

where variation distance is applied to measure the difference between distributions and we set

d = 0.1. Recall that the notation ρsOCE(
~Z; q) refers to the use of distribution q in evaluating the

OCE risk measure and that q̂ stands for the empirical distribution.

Here, the measure of variation distance is chosen because of its simplicity, which is perhaps

easier to interpret than other distance measures. Of course, in our simulation, the manager has

no knowledge about this form (neither the function ρsOCE nor the uncertainty set of q) and has

access only to decisions made according to the function ρs,↑OCE(
~Z). Confirming that the client is

insensitive to the ordering of outcomes, the manager can choose to implement the inverse model

(4) and assume that the client’s true risk function is permutation invariant (i.e., setting ρ∈R :=R

in (4)). The convex program presented in Corollary EC.2 in Appendix EC.3 is implemented.

Figure 5 shows the average performances based on the true risk function ρs,↑OCE(
~Z) for various risk

aversion parameter s. We also provide the performance evaluation for the famous (1/N)-investment

rule (i.e., setting xd = (1/5), d = 1, ...,5), which has often been considered as a popular rule-of-

thumb for dealing with ambiguity. The boxplots presented in this figure (and also Figure 6, 7, and

8) provide the statistics of ρ(~ZS(x
s
IC(S)))− ρ(~ZS(x

s
OCE(S)))+

1
|S|

∑

S∈S ρ(
~ZS(x

s
OCE(S))), where ρ

represents the true risk function (i.e., ρ := ρs,↑OCE in Figure 5), ~ZS(·) is the total return estimated

based on each sample of historical returns (denoted by S ∈ S), and xs
IC(S) (resp. x

s
OCE(S)) stands

for the portfolio optimized based on the imputed risk function (resp. the true risk function) and each

sample S. One can see in Figure 5 that as the number of observations |T | increases, the performance

of portfolios optimized based on the imputed risk functions ρδ converge to the performance of

portfolios optimized based on the true risk function ρs,↑OCE(
~Z). The rate of convergence is fast for

a small number of samples (i.e., the performance is improved most rapidly when |T | is small),

and it generally takes about 10–50 samples to reach a good accuracy (i.e., with less than 0.1

p.p. difference). This is encouraging because it indicates how the risk preference can be efficiently

captured even without complete knowledge of the underlying distribution. One can also see that

the (1/N)-investment rule unfortunately provides a poor proxy of one’s optimal decision and that

the cost of its naive form is high. In this sense, the inverse optimization approach can already serve

as a useful alternative even when, for instance, only a single observation is available |T |=1.
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Figure 5 Comparison of the average perceived risk (in lost percentile points) for the portfolio obtained using

either imputed risk function ρδ or 1/N-investment rule with up to 100 observed decisions. We also report the best

average perceived risk that could be obtained if the representation of this perception was exactly known. In

particular, the true risk function ρs,↑OCE above is set by (a) s=0.1, (b) s=1, and (c) s= 10.
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The case of known distributions In this scenario, we assume that the client’s true risk

function is the OCE risk measure and that she can identify and reveal the distribution q used for

evaluating the risk function ρsOCE(
~Z; q). The manager in this case can choose to solve the inverse

model (4) and assume that the client’s true risk function is law invariant (i.e., setting ρ ∈ RF

in (4)). The convex program presented in Corollary EC.4 in Appendix EC.3 is implemented. In

each of our experiments, we sample uniformly from the probability simplex ∆ a distribution q to

simulate the distribution provided by the client.

Figure 6 shows the average performances evaluated based on the true risk function ρsOCE(
~Z) for

various risk aversion parameters s. We see that the rate of convergence here is similar to what we

observed for the case of distributional ambiguity. The only minor difference we noticed is that in

the case of large samples |T | = 100, the convergence seems to be slighter stronger in the case of

known distributions (i.e., it is more evident that the average performance gets closer to the lower

bound), particularly in Figure 6 (a) and (b). While we cannot comment with certainty, this might

indicate the benefit of incorporating exact distribution information.

Although we have mentioned earlier that it is important to have the decision maker reveal the

distributions in use, one may wonder what would result from some unintended inaccuracy. As

a preliminary step to answer this question, we simulate here a situation where the distributions

provided by the client for inputting into our inverse models might be different from the actual ones

she used for solving the forward problem. As mentioned in Remark 1, it would not be reasonable

to consider distributions that are too different from the ones used by the decision maker (i.e.,

reflecting completely different views of which outcome is more or less likely to occur). Here, we

assume that the distributions input into the inverse models are at least similar to those used

by the decision maker in that they both assign the probability to each historical return in a

non-decreasing fashion with respect to the time of the observed returns. This is an assumption

commonly made in finance for example. In other words, the distribution q should satisfy q ∈∆e =
{

p∈∆
∣

∣ p1 ≤ · · · ≤ p|Ω|

}

where pi is now indexed according to the time of each observed return (i.e.,

p|Ω| is now the probability assigned to the most recent observed return). We stress that the risk

function itself does not depend on the time (i.e., it stays constant). In each of the experiments we

randomly sample one distribution q′ from ∆e for solving the forward problem to generate observed

decisions and then sample another distribution q′′ from ∆e for solving the inverse model. The

sampling is done by generating a vector uniformly from the probability simplex ∆ and then sorting

the vector. Note that in this case we apply first the inverse model (3) because the observed decisions

now may not necessarily be optimal with respect to q′′. Once we find the minimum gaps γ, we

substitute them into the model (4) and solve (4) to obtain the parameter δ. The convex program

presented in Corollary EC.3 in Appendix EC.3 is additionally implemented.
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Figure 6 Comparison of the average perceived risk (in lost percentile points) for the portfolio obtained using

either imputed risk function ρFδ or 1/N-investment rule with up to 100 observed decisions. We also report the

best average perceived risk that could be obtained if the representation of this perception was exactly known. In

particular, the above true risk function ρsOCE is set by (a) s=0.1, (b) s=1, and (c) s= 10.
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Figure 7 shows the average performance evaluated based on the true risk function ρsOCE(~Z; q)

with the true distributions (i.e., q := q′). Interestingly, even in this case one can see that the imputed

risk functions still greatly benefit from the observed decisions. While the performance does not

converge as exactly as the case of known distributions in, for instance, the case |T |= 100, it does

exhibit strong convergence rate overall.

The case of sub-optimal observed decisions We consider now the case where the observed

decisions are sub-optimal. Here we use the same setting described in the case of distributional

ambiguity as the testbed. In each of the experiments, after obtaining the observed decision xt from

optimizing the true risk function (i.e., the distributionally robust risk measure), we generate a

sub-optimal decision x̂t by perturbing xt as follows:

x̂t = λ̃(
1

5
)~1+ (1− λ̃)xt,

where λ̃ is uniformly generated from [0,0.1]. That is, we take a convex combination between xt

and a portfolio assigning equal weight to each asset.

To address the sub-optimality of decisions x̂t, we consider solving both the inverse model (3)

and the inverse model (5). In particular, to implement the inverse model (5), for each sub-optimal

decision we apply first the program (30a) to seek an alternative optimal decision x̃t and then follow

the first approach discussed in the end of Section 4 to incorporate multiple observations.

Figure 8 presents the results of average performances for the portfolios generated from the two

approaches (i.e., (3) versus first solving (5) then solving (3)). There appears no noticeable difference

between the performances of the portfolios generated from the two approaches. However, in Figure

9 one can see that the optimal portfolios x̃t generated based on the model (5) are far closer to the

observed sub-optimal decisions x̂t than the optimal portfolios generated based on the model (3)

only. Hence, if the client has a concern about what portfolio x specifically the model would suggest

to invest and whether it is aligned with her past investment decision, the model (5) might be easier

to justify for that purpose.

Computation time We present in Table 3 the computation time taken in an experiment for

the case of distributional ambiguity. We ran the inverse model (4) for different numbers of assets

and outcomes. As seen, the time is not sensitive to the number of assets but grows more noticeably

in the number of outcomes. The rate of growth in general is fairly consistent with how the size of

the convex program like (20) grows in the number of observed decisions and outcomes. Namely, the

program has O(|Ω||T |2) decision variables and O(|Ω|2|T |2) constraints, given that the set { ~Xj}j∈J

consists of only random losses selected by observed decisions xt, t∈ T (and zero vector ~0).
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Figure 7 Comparison of the average perceived risk (in lost percentile points) for the portfolio obtained using

either imputed risk function ρFδ or 1/N-investment rule with up to 100 observed decisions. We also report the

best average perceived risk that could be obtained if the representation of this perception was exactly known. In

particular, the above true risk function ρsOCE is set by (a) s=0.1, (b) s=1, and (c) s= 10.
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Figure 8 Comparison of the average perceived risk (in lost percentile points) for the portfolio obtained using

either imputed risk function ρδ or 1/N-investment rule with up to 100 observed decisions. We also report the best

average perceived risk that could be obtained if the representation of this perception was exactly known. In

particular, the true risk function above ρs,↑OCE is set by (a) s= 0.1, (b) s= 1, and (c) s= 10. Each pair of boxplots

consists of a boxplot based on x̂t (left) and based on x̃t (right).
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Number of observed decisions 1 5 10 50 100
Number of assets

5 0.01 0.07 0.61 22.96 159.00
100 0.01 0.11 0.62 22.05 160.00
300 0.01 0.08 0.52 28.12 165.00

Number of observed decisions 1 5 10 50 100
Number of outcomes

13 0.01 0.07 0.61 22.96 159.00
26 0.02 0.63 4.28 152.14 863.97
39 0.07 1.06 5.69 373.91 8050.00

Table 3 Computation time in seconds: with fixed number of outcomes |Ω|=13 (Top), and with fixed number of

assets, 5 assets (Bottom).

Figure 9 The L2-norm distances between the optimal portfolios generated from imputed risk functions and the

observed portfolios x̂t out of all experiments with sub-optimal observed decisions: ρ1 denotes risk functions

generated from the inverse model (3) (left), and ρ2 denotes risk functions generated from the inverse model (5)

(right).

Out-of-Sample Performance Finally, we conducted out-of-sample testing based also on the

setting described in the case of distributional ambiguity. In particular, in each of the experiments

we further collected the realized return of each portfolio in the week that follows right after the

weeks used for portfolio optimization. Then, we calculated for each portfolio the realized risk (i.e.,

calculating the distributionally robust risk measure ρs,↑OCE based on the collected samples). The

results can be found in Figure 10. We observe that the sign of convergence remains strong in

these results. This provides further evidence of how the imputed risk function closely resembles

the true risk function in general. Another observation is that the convergence of the out-of-sample

performance in general is not as “regular” as the convergence of the in-sample performance. In

particular, in the case of high risk-aversion (i.e., s= 10), the realized risk of the portfolios generated

based on the imputed risk function already reach a similar level as that of the portfolios generated

based on the true risk function, with only a small number of observations. After reaching that
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level, the performance then slightly goes up and down as more observations are acquired. We

believe that this is related to the fact that the inverse model used in the experiments for the

case of distributional ambiguity is the one that seeks the worst-case risk function. As the worst-

case function may encourage a more conservative choice of a portfolio, it thus might not be that

surprising why such a portfolio already performs well, even with a small number of observed

decisions, when evaluated based on a highly risk-averse OCE risk measure.

6. Conclusions

We proposed in this paper a non-parametric inverse optimization framework for risk averse opti-

mization problems involving convex risk functions. The framework allows one to impute a risk

function based on preference information acquired from multiple sources, including preference elici-

tation, observed decisions made for a forward problem, and a reference risk function. The framework

can be flexibly applied to generate a risk function based on different criteria. We showed that in

general the solution can be efficiently identified by solving convex programs and demonstrated in

numerical experiments that the imputed risk function that incorporates the information of past

decisions could indeed generate risk estimates that are significantly closer to the true risk level. In

addition to the portfolio selection application considered in this paper, other applications such as

homeland security (Haskell et al. (2018)) could also benefit from the development of our framework.

We leave the study of these other applications as our future work.
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Additional Material

EC.1. Results about conjugate duality theory and the function
ρδ ∈L({~Zj}j∈J̄ , C̄)

Recall that the conjugate ρ∗ of a function ρ : R|Ω| → R is defined as ρ∗(p) = sup~Z

{

p⊤ ~Z − ρ(~Z)
}

,

and the biconjugate ρ∗∗ of ρ is defined as ρ∗∗(~Z) = supp

{

p⊤ ~Z − ρ∗(p)
}

.

Theorem EC.1.1. (Conjugate Duality Theory (see, e.g., Rockafellar (1974) for detailed

proofs)) Given any function ρ :R|Ω| → R, the biconjugate ρ∗∗ satisfies ρ∗∗ ≤ ρ, and if ρ is convex,

then the following must hold.

1. ρ= ρ∗∗, and

2. given any given ~Z∗ ∈ dom(ρ) such that ρ(~Z∗) is subdifferentiable at ~Z∗, the subdifferential

satisfies ∂ρ(~Z∗) = ∂ρ∗∗(~Z∗) = argmaxp

{

p⊤ ~Z∗ − ρ∗(p)
}

.

In the following lemma, we provide the conjugate of the risk function ρδ ∈L({~Zj}j∈J̄ , C̄).

Lemma EC.1.1. The conjugate function of the risk function ρδ ∈L({~Zj}j∈J̄ , C̄) admits the form

ρ∗δ(y) =

{

maxj∈J̄ {y
⊤ ~Zj − δ∗j} if y ∈ C̄

∞ if y /∈ C̄
,

where δ∗j := ρδ(~Zj), ∀j ∈ J̄ .

Proof of Lemma EC.1.1 By definition, we have

ρ∗δ(y) = sup
~Z

{y⊤ ~Z − ρδ(~Z)} ≥max
j∈J̄

{y⊤ ~Zj − ρδ(~Zj)}=max
j∈J̄

{y⊤ ~Zj − δ∗j}.

To show the other direction, note first that

ρ∗δ(y) = sup
~Z

{

y⊤ ~Z − ρδ(~Z)
}

= sup
~Z

{

y⊤ ~Z −

(

sup
p∈C̄

p⊤ ~Z −max
j∈J̄

{

p⊤ ~Zj − δj

}

)}

= sup
~Z

inf
p∈C̄

{

(y− p)⊤ ~Z +max
j∈J̄

{

p⊤ ~Zj − δj

}

}

= inf
p∈C̄

sup
~Z

{

(y− p)⊤ ~Z +max
j∈J̄

{

p⊤ ~Zj − δj

}

}

=max
j∈J̄

{

y⊤ ~Zj − δj

}

, if y ∈ C̄, or ∞ otherwise,

where the fourth equality follows the Sion’s minimax theorem (Sion (1958)), as the function is

linear in ~Z, convex in p, and the set C̄ is compact.
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We can then show that

ρ∗δ(y) =max
j∈J̄

{

y⊤ ~Zj − δj

}

≤max
j∈J̄

{

y⊤ ~Zj − δ∗j

}

, for y ∈ C̄,

since

δ∗j = ρδ(~Zj) = sup
p∈C̄

{

p⊤ ~Zj −max
i∈J̄

{

p⊤ ~Zi − δi

}

}

≤ sup
p∈C̄

{

p⊤ ~Zj − (p⊤ ~Zj − δj)
}

= δj.

�
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EC.2. Dual representation of convex risk functions

Theorem EC.2.1. (see, e.g., Ruszczyński and Shapiro (2006)) A risk function ρ satisfies the

axiom of monotonicity, convexity, and translation invariance if any only if it admits the represen-

tation

ρ(~Z) = sup
p∈∆

{p⊤ ~Z − ρ∗(p)}, (EC.1)

where ∆ :=
{

p∈R
|Ω|
∣

∣

∣

~1⊤p=1, p≥ 0
}

.

The following is a list of risk functions that have been considered in this paper as the candidates

for the reference risk function ρ̃.

Risk function Formulation

Maximum loss maxi{Z(ωi)}
Expectation E[Z]

Mean-absolute-deviation E[Z] + γE[|Z −E[Z]|], γ ∈ [0, 1
2
]

Mean-upper-semideviation E[Z] + γ(E[([Z −E[Z]]+)s])1/s, γ ∈ [0,1], s≥ 1

Conditional Value-at-Risk (CVaR) 1
1−α

∫ 1

α
F−1

Z (t)dt, α∈ [0,1)

Spectral risk measures
∫ 1

0
F−1

Z (t)φ(t)dt,

φ is nonnegative, non-decreasing, and
∫ 1

0
φ(t)dt=1

Table EC.1 Several well-known risk functions, where F−1
Z stands for the generalized inverse distribution

function.

All the risk functions in Table EC.1 are law invariant convex risk functions, and we provide their

dual representations based on (EC.1). In Example EC.2.2 to EC.2.5, we denote by p̄ ∈ R
|Ω| the

probability mass function (i.e., p̄i = P({ωi}), ωi ∈Ω).

Example EC.2.1. (Maximum loss) Its dual representation is simply (EC.1) with ρ∗(p) = 0.

Example EC.2.2. (Expectation) Its dual representation is also trivial: (EC.1) with ρ∗(p) = 0

and ∆ replaced by C := {q | q= p̄}.

Example EC.2.3. (Mean-absoulte-deviation) Its dual representation has been studied in

Ruszczyński and Shapiro (2006): namely, (EC.1) with ρ∗(p) = 0 and ∆ replaced by C :=

{q | qi = p̄i(1+ γ(hi−
∑

i p̄ihi)), ||h||∞ ≤ 1} and h∈R
|Ω|.

Example EC.2.4. (Mean-upper-semideviation) The derivation of its dual representation is sim-

ilar to that of the previous example (see, e.g., Ruszczyński and Shapiro (2006)); namely, the rep-

resentation is given by

ρ(~Z) =max
p∈C

p⊤ ~Z,

where C := {q | qi = p̄i(1+ γ(hi−
∑

i p̄ihi)),
∑

i p̄i|hi|
t ≤ 1, h≥ 0}, h∈R

|Ω| and t= s
s−1

.
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Example EC.2.5. (Conditional Value-at-Risk (CVaR)) The following dual representation of

CVaR is fairly standard:

ρ(~Z) =max
p∈C

p⊤ ~Z,

where C :=
{

q
∣

∣

∣
qi ≤

1
1−α

p̄i, 1
⊤q= 1, q ≥ 0

}

.

Note that in the following example we assume that the probability mass function p̄ is uniform

so that we can write the dual representation in terms of permutation operators. This provides the

basis to derive a more general representation in Example 4.

Example EC.2.6. (Spectral risk measures) Given that P({ωi}) = 1/M for ωi ∈Ω, any spectral

risk measure can be equivalently written as 6:

ρ(~Z) = φ⊤ϕ(~Z),

where ϕ : RM → R
M denotes an ordering operator such that ϕ(~Z)1 ≤ · · · ≤ ϕ(~Z)M , and φ ∈ R

M

satisfies φ≥ 0,
∑M

i=1 φi = 1, and φ1 ≤ · · · ≤ φM . It is not difficult to verify that the following dual

representation attains the same optimal value as the one above:

ρ(~Z) =max
p,σ

{

p⊤ ~Z
∣

∣

∣
p= σ(φ), σ ∈Σ

}

,

where σ is an operator that permutes aM -dimensional vector, and Σ is the set of all such operators.

It can be further reformulated as follows using the convex hull operator Conv(·):

ρ(~Z) = max
p∈R

M
+ ∩C

p⊤ ~Z,

where C := {q | q ∈Conv({σ(φ), σ ∈Σ})} .

6 Indeed, letting ḡ : {1, ...,M}→ {1, ...,M} be an one-to-one mapping such that Z(ωḡ(1))≤Z(ωḡ(2))≤ · · · ≤Z(ωḡ(M)),
we have for any t ∈ ( j−1

M
, j

M
], j ∈ {1, ...,M}, F−1

Z (t) = Z(ωḡ(j)) must hold. This can be verified via the definition
F−1
Z (t) = inf{z :

∑

Z(ωi)≤z P({ωi}) ≥ t}. Namely, since P({ωi}) =
1
M

we must have
∑

Z(ωi)≤Z(ωḡ(j))
P({ωi}) ≥ t∗,

t∗ ∈ ( j−1
M

, j

M
]. And there must not exist z < Z(ωḡ(j)) such that

∑

Z(ωi)≤z
P({ωi}) ≥ t∗ because such z must be z ∈

{Z(ωḡ(k))}k=1,...,j−1 and it contradicts the fact that
∑

Z(ωi)≤Z(ωḡ(k))
P({ωi})≤

k
M

for any k ∈ {1, ..., j−1}. Hence, we

can write ρ(~Z) =
∑M

j=1(
∫

j
M
j−1
M

F−1
Z (t)φ(t)dt)=

∑M

j=1(
∫

j
M
j−1
M

φ(t)dt)Z(ωḡ(j)) =
∑M

j=1 φjZ(ωḡ(j)), where φj :=
∫

j
M
j−1
M

φ(t)dt.
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EC.3. Additional Results

Lemma EC.3.1. Let ρ := supρ′∈R0
ρ′, where R0 :=R (orRF )∩Rinv(γ

∗)∩Rel({(Lk,Uk)}k∈K)∩

Rref(ǫ
∗) for some fixed γ∗ ∈ [0,∞) and ǫ∗ ∈ (0,∞]. We have ρ∈R0.

Proof of Lemma EC.3.1 We skip the steps of confirming that ρ ∈ R (or RF ) and ρ ∈

Rel({(Lk,Uk)}k∈K) because these steps can be found in Proposition 1 in Delage and Li (2018). We

are left to show that ρ∈Rinv(γ
∗)∩Rref (ǫ

∗). We can confirm that ρ∈Rinv(γ
∗), because

ρ( ~W t) = sup
ρ′∈R0

ρ′( ~W t)≤ sup
ρ′∈R0

ρ′( ~W )+ γ∗ = ρ( ~W )+ γ∗, ∀ ~W ∈Wt,

where we use the fact that the condition ρ′( ~W t)≤ ρ′( ~W )+ γ∗, ∀ ~W ∈Wt holds for any ρ′ ∈R0.

We can also confirm that ρ∈Rref (ǫ
∗), because

ρ(~Z) = sup
ρ′∈R0

ρ′(~Z)≤ ρ̃(~Z)+ ǫ, ∀Z,

and

ρ(~Z) = sup
ρ′∈R0

ρ′(~Z)≥ ρ′′(~Z)≥ ρ̃(~Z)− ǫ, ∀Z,

where ρ′′ is some function satisfying ρ′′ ∈R0. In the last inequality of the first line we use the fact

that the condition −ǫ≤ ρ′ − ρ̃≤ ǫ holds for any ρ′ ∈R0. �

Lemma EC.3.2. A risk function ρ satisfies ρ∈R if and only if it admits a supremum represen-

tation ρ(~Z) = supp

{

p⊤ ~Z − ρ∗(p)
}

that satisfies ρ∗(p) = ρ∗(σ(p)), ∀σ ∈ Σ. As a result, a coherent

risk measure (9) is permutation invariant if and only if its support set C satisfies p∈ C ⇔ σ(p) ∈ C.

Proof of Lemma EC.3.2 We can first show that ρ is indeed permutation invariant given

ρ∗(σ(p)) = ρ∗(p), since

ρ(σ(~Z)) = sup
p

p⊤σ(~Z)− ρ∗(p) = sup
p

σ−1(p)⊤ ~Z − ρ∗(p) = sup
p

p⊤ ~Z − ρ∗(σ(p)) = ρ(~Z). (EC.2)

To show the other direction, we apply the definition of the conjugate and have for any σ ∈Σ,

ρ∗(σ(p)) = sup
~Z

~Z⊤σ(p)− ρ(~Z) = sup
~Z

σ−1(~Z)⊤p− ρ(~Z) = sup
~Z

~Z⊤p− ρ(σ(~Z)),

and hence for any permutation-invariant ρ (i.e., ρ(σ(~Z)) = ρ(~Z)), we must have ρ∗(σ(p)) = ρ∗(p). In

the case of coherent risk measure, the fact that ρ∗(p) satisfies ρ∗(p) = 0 for p∈ C and ∞ otherwise

implies immediately the symmetry of C. �
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Corollary EC.1. Under the same assumption in Proposition 4, the inverse optimization prob-

lem (3) can be solved by the risk function (22), and the parameter δ is calculated by solving the

convex program

min
δ,yj,vi,j ,wi,j ,γ

∑

t∈T

γt

subject to ~1⊤vi,j +~1⊤wi,j ≤ δi− δj + y⊤
j
~Xj, ∀j ∈J , ∀i 6= j,

~Xiy
⊤
j − vi,j~1

⊤ −~1w⊤
i,j ≤ 0, ∀j ∈J , ∀i 6= j,

yj ∈ C, ∀j ∈J ,

y⊤
t
~Xt ≤ ht(yt)+ γt, ∀t∈ T ,

δi ≤ δj, ∀(i, j)∈B,

|δj − ρ̃( ~Xj)| ≤ ǫ∗, ∀j ∈ J ,

where δ ∈ R
|J |, yj ∈ R

M , vi,j ∈ R
M , wi,j ∈ R

M , and γ ∈ R
|T |; the set B :=

{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj) ∈ {(~Lk, ~Uk)}k∈K

}

; and ht denotes the function ht(y) :=

minx

{

y⊤ ~Zt(x)
∣

∣

∣
x∈X t

}

.

Corollary EC.2. Under the same assumption in Proposition 4, the inverse optimization prob-

lem (4) can be solved by the risk function (22), and the parameter δ is calculated by solving the

convex program

max
δ,yj ,vi,j ,wi,j

∑

j∈J

δj

subject to ~1⊤vi,j +~1⊤wi,j ≤ δi− δj + y⊤
j
~Xj, ∀j ∈J , ∀i 6= j,

~Xiy
⊤
j − vi,j~1

⊤ −~1w⊤
i,j ≤ 0, ∀j ∈ J , ∀i 6= j,

yj ∈ C, ∀j ∈J ,

y⊤
t
~Xt ≤ ht(yt)+ γ∗

t , ∀t∈ T ,

δi ≤ δj, ∀(i, j)∈B,

|δj − ρ̃( ~Xj)| ≤ ǫ∗, ∀j ∈J ,

where δ ∈ R
|J |, yj ∈ R

M , vi,j ∈ R
M , wi,j ∈ R

M ; the set B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj) ∈ {(~Lk, ~Uk)}k∈K

}

; and ht denotes the function ht(y) :=

minx

{

y⊤ ~Zt(x)
∣

∣

∣
x∈X t

}

.

Corollary EC.3. Under the same assumption in Proposition 5, the inverse optimization prob-

lem (3) can be solved by the risk function (23), and the parameter δ is calculated by solving the

convex program

min
δ,yj,vi,j ,wi,j ,γ

∑

t∈T

γt
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subject to ~1⊤vi,j +~1⊤wi,j ≤ δi − δj + y⊤
j
~Sj, ∀j ∈ J , ∀i 6= j,

~Siy
⊤
j −Λi,j ◦ (vi,j~1

⊤)−~1w⊤
i,j ≤ 0, ∀j ∈J , ∀i 6= j,

yj ∈ Cj ⊆R
τj
+ , ∀j ∈ J ,

y⊤
t
~St ≤ ht(yt)+ γt, ∀t∈ T ,

δi ≤ δj, ∀(i, j)∈B,

|δj − ρ̃( ~Xj)| ≤ ǫ∗, ∀j ∈J ,

where δ ∈ R
|J |, yj ∈ R

τj , vi,j ∈ R
τi , wi,j ∈ R

τj , and γ ∈ R
|T |; ~St := (Z(xt, ξt1), ...,Z(xt, ξt

τ t0
))⊤; the

set B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj)∈ {(~Lk, ~Uk)}k∈K

}

; and ht denotes the function ht(y) :=

minx

{

∑τ t0
o=1 yoZ(x, ξto)

∣

∣

∣
x∈X t

}

. The coefficient Λi,j is calculated by (Λi,j)m,n = p̄jn/p̄
i
m, n=1, ..., τj ,

m= 1, ..., τi. Moreover, the above sets Cj, j ∈J , can be derived as indicated in Proposition 5.

Corollary EC.4. Under the same assumption in Proposition 5, the inverse optimization prob-

lem (4) can be solved by the risk function (23), and the parameter δ is calculated by solving the

convex program

max
δ,yj,vi,j ,wi,j

∑

j∈J

δj

subject to ~1⊤vi,j +~1⊤wi,j ≤ δi− δj + y⊤
j
~Sj, ∀j ∈J , ∀i 6= j,

~Siy
⊤
j −Λi,j ◦ (vi,j~1

⊤)−~1w⊤
i,j ≤ 0, ∀j ∈ J , ∀i 6= j,

yj ∈ Cj ⊆R
τj
+ , ∀j ∈J ,

y⊤
t
~St ≤ ht(yt)+ γ∗

t , ∀t∈ T ,

δi ≤ δj, ∀(i, j)∈ B,

|δj − ρ̃( ~Xj)| ≤ ǫ∗, ∀j ∈ J ,

where δ ∈ R
|J |, yj ∈ R

τj , vi,j ∈ R
τi, and wi,j ∈ R

τj ; ~St := (Z(xt, ξt1), ...,Z(xt, ξt
τ t0
))⊤; the set

B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj) ∈ {(~Lk, ~Uk)}k∈K

}

; and ht denotes the function ht(y) :=

minx

{

∑τ t0
o=1 yoZ(x, ξto)

∣

∣

∣
x∈X t

}

. The coefficient Λi,j is calculated by (Λi,j)m,n = p̄jn/p̄
i
m, n=1, ..., τj ,

m= 1, ..., τi. Moreover, the above sets Cj, j ∈J , can be derived as indicated in Proposition 5.
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EC.4. Proofs
Proof of Proposition 1

Proof of Proposition 1 The proof consists of two parts. In the first part of the proof, we show

that for any optimal solution ρ0, the domain of its conjugate function must admit the set C. Then,

in the second part we confirm the optimality of ρδ where δj = ρ0( ~Xj), ∀j ∈J .

(Part I) Prove that any optimal solution ρ0 admits the following representation

ρ0(~Z) = sup
p∈C

p⊤ ~Z − ρ∗0(p), (EC.3)

where ρ∗0(p) := sup~Z p⊤ ~Z − ρ0(~Z).

We start by invoking the theory of conjugate duality (Theorem EC.1.1 (1.)), which states that

given that ρ0 ∈R we can always represent ρ0 by

ρ0(~Z) = sup
p

p⊤ ~Z − ρ∗0(p). (EC.4)

The rest is to show that the conjugate ρ∗0 must satisfy ρ∗0(p) =∞ for any p∈R
|Ω| \ C. We prove

this by contradiction. Suppose that there exists a solution p0 ∈R
|Ω| \ C such that ρ∗0(p0)<∞. The

fact that C is a closed convex set implies that (by hyperplane separation theorem) there must exist

a nonzero vector ~R∈R
|Ω| and b∈R such that

p⊤ ~R≤ b, ∀p∈ C, (EC.5)

p⊤0 ~R> b (or equivalently p⊤0 ~R= b+ ǫ for some ǫ > 0) (EC.6)

hold. Let us consider a random loss ~Z := λ~R for some λ > 0. Based on the dual representation of

the reference risk function ρ̃, we have

ρ̃(λ~R) = sup
p∈C

λp⊤ ~R≤ λb (due to (EC.5)). (EC.7)

Based on (EC.4), we also have for the fixed p0

ρ0(λ~R)≥ p⊤0 (λ
~R)− ρ∗0(p0) = λb+λǫ− ρ∗0(p0) (due to (EC.6)). (EC.8)

By subtracting (EC.7) from (EC.8), we arrive at

ρ0(λ~R)− ρ̃(λ~R)≥ λǫ− ρ∗0(p0)→∞,

as λ→∞. This contradicts the fact that ρ0 gives the optimal value u∗ := ||ρ0 − ρ̃||∞ <∞.

(Part II) Verify the optimality of ρδ, where δj = ρ0( ~Xj), ∀j ∈J .
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To proceed, we need to prove first the following inequalities between ρ0 and ρδ:

ρ0(~Z) = sup
p∈C

p⊤ ~Z − ρ∗0(p) (due to (EC.4))

= sup
p∈C

p⊤ ~Z −

{

sup
~Z

p⊤ ~Z − ρ0(~Z)

}

≤ sup
p∈C

p⊤ ~Z −

{

max
j∈J

{

p⊤ ~Xj − ρ0( ~Xj)
}

}

= ρδ(~Z), ∀~Z, (EC.9)

and

ρδ( ~Xi) = sup
p∈C

p⊤ ~Xi −

{

max
j∈J

{

p⊤ ~Xj − ρ0( ~Xj)
}

}

≤ sup
p∈C

p⊤ ~Xi−
{

p⊤ ~Xi − ρ0( ~Xi)
}

= ρ0( ~Xi), ∀i∈J . (EC.10)

The inequalities (EC.9) and (EC.10) imply, first, that ρδ(~0) = ρ0(~0) = 0 (i.e., ρδ satisfies the

normalization condition). One can confirm also that based on the representation theory (Theorem

EC.2.1), ρδ must be monotonic, convex, and translation invariant by its construction. Hence, ρδ ∈R.

The inequalities (EC.9) and (EC.10) imply also that ρδ satisfies the constraints (7) and (8) because

they lead to the following:

ρδ(~Lk)≤ ρ0(~Lk)≤ ρ0(~Uk)≤ ρδ(~Uk), ∀k ∈K,

ρδ( ~W
t)≤ ρ0( ~W

t)≤ ρ0( ~W )≤ ρδ( ~W ), ∀ ~W ∈Wt, ∀t∈ T .

Finally, we verify that ρδ reaches the optimal value of u∗ (i.e., ||ρδ − ρ̃||= u∗). We have

ρδ(~Z) = sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − ρ0( ~Xj)
}

≤ sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − (ρ̃( ~Xj)+u∗)
}

(since ρ0( ~Xj)≤ ρ̃( ~Xj)+u∗, ∀j ∈J )

≤ sup
y∈C

y⊤ ~Z − (y⊤~0− (ρ̃(~0)+u∗)) = ρ̃(~Z)+u∗, ∀~Z, (EC.11)

and also have

ρδ(~Z) = sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − ρ0( ~Xj)
}

≥ sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − (ρ̃( ~Xj)−u∗)
}

(since ρ0( ~Xj)≥ ρ̃( ~Xj)−u∗, ∀j ∈J )

= sup
y∈C

y⊤ ~Z −u∗ −max
j∈J

{

y⊤ ~Xj − ρ̃( ~Xj)
}

≥ sup
y∈C

y⊤ ~Z −u∗ = ρ̃(~Z)−u∗, ∀~Z, (EC.12)
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where the second inequality follows the dual representation of ρ̃; namely for any j ∈J ,

ρ̃( ~Xj) = sup
y∈C

y⊤ ~Xj ⇔ y⊤ ~Xj − ρ̃( ~Xj)≤ 0, ∀y ∈ C.

�

Proof of Proposition 2

Proof of Proposition 2 Because ρδ ∈R, we know from the theory of conjugate duality (Theorem

EC.1.1 (1.)) that

ρδ(~Z) = ρ∗∗δ (~Z), ∀~Z

must hold. Obviously, the condition can be equivalently stated in terms of the following two inequal-

ities:

ρδ(~Z)≥ ρ∗∗δ (~Z), ∀~Z,

ρδ(~Z)≤ ρ∗∗δ (~Z), ∀~Z.

The first inequality, however, is always satisfied given that it is implied by the construction of

bi-conjugate function (see Theorem EC.1.1). Therefore, it suffices to proceed with the second

inequality.

Consider the above second inequality with ~Z = ~Zj, j ∈ J̄ . By expanding the biconjugate ρ∗∗δ

based on its definition and using the conjugate function ρ∗δ derived in Lemma EC.1.1, we have the

following:

ρ∗∗δ (~Zj)≥ ρδ(~Zj), ∀j ∈ J̄

⇔ sup
y

{

y⊤ ~Zj − ρ∗δ(y)
}

≥ ρδ(~Zj), ∀j ∈ J̄

⇔ sup
y∈C̄

{

y⊤ ~Zj −max
i∈J̄

{

y⊤ ~Zi − ρδ(~Zi)
}

}

≥ ρδ(~Zj), ∀j ∈ J̄

⇔ ∃yj ∈ C̄ : y⊤
j
~Zj −max

i∈J̄

{

y⊤
j
~Zi − ρδ(~Zi)

}

≥ ρδ(~Zj), ∀j ∈ J̄

⇔ ∃yj ∈ C̄ : y⊤
j
~Zj − y⊤

j
~Zi + ρδ(~Zi)≥ ρδ(~Zj), ∀i 6= j,

where in the fourth line we apply the fact that C̄ is closed and bounded (i.e., compact). This

completes the first part of the proof.

To prove the other direction, note that for any feasible solution {δ∗j }j∈J̄ and {y∗
j }j∈J̄ we can

always construct a ({~Zj}j∈J̄ , C̄)-supported risk function (12). It always satisfies ρδ(~Zj)≤ δ∗j because

ρδ(~Zj)≤ sup
y∈C̄

y⊤ ~Zj − y⊤ ~Zj + δ∗j = δ∗j ,

and satisfies ρδ(~Zj)≥ δ∗j because

ρδ(~Zj)≥ y∗⊤
j

~Zj −max
i∈J̄

{

y∗⊤
j

~Zi − δ∗i

}

≥ δ∗j (due to the feasibility of {δ∗j}j∈J̄ and {y∗
j }j∈J̄ ).

This proves the existence of a risk function ρδ ∈L({~Zj}j∈J̄ , C̄) that satisfies ρδ(~Zj) = δ∗j . �
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Proof of Proposition 3

Proof of Proposition 3 We seek a function ρδ ∈L({ ~Xj}j∈J ,C) that further satisfies the system

below:

xt ∈ arg min
x∈X t

ρδ(~Z
t(x)), ∀t∈ T , (EC.13)

ρδ(~Lk)≤ ρδ(~Uk), ∀k ∈K. (EC.14)

Due to the monotonicity of ρδ ∈R, we can equivalently write the optimization problem in (EC.13)

as

min
(x, ~W )∈Πt

ρδ( ~W ), where Πt :=
{

(x, ~W )
∣

∣

∣

~W ≥ ~Zt(x), x∈X t
}

.

Because Πt is convex and ~W t ∈ { ~Xj}j∈J , we can characterize the optimality condition for the

problem; namely, there must exist a subgradient y ∈ ∂ρδ( ~W
t) such that

y⊤( ~W − ~W t)≥ 0, ∀(x, ~W )∈Πt ⇔ y⊤ ~W t ≤ min
x∈X t

y⊤ ~Zt(x).

Moreover, applying the theory of conjugate duality (Theorem EC.1.1) (2.), which states that

∂ρδ( ~W
t) = ∂ρ∗∗δ ( ~W t) = argmax

y

{

y⊤ ~W t − ρ∗δ(y)
}

,

we can further characterize the set of subgradients ∂ρδ( ~W
t) in terms of inequality constraints,

given that

y ∈ ∂ρ∗∗δ ( ~W t)

⇔{y : y⊤ ~W t − ρ∗δ(y)≥ ρδ( ~W
t)}

⇔ {y : y⊤ ~W t −max
j∈J

{

y⊤ ~Xj − ρδ( ~Xj)
}

≥ ρδ( ~W
t), y ∈ C}

⇔ {y : y⊤ ~W t − y⊤ ~Xj + ρδ( ~Xj)≥ ρδ( ~W
t), ∀j ∈J , y ∈ C}, (EC.15)

where in the third line the conjugate ρ∗δ(y) derived in Lemma EC.1.1 is applied.

Finally, applying Proposition 2, we can equivalently describe the set of risk functions ρδ by the

system of constraints (11). Thus by replacing ρδ( ~Xj) with δj in (EC.14) and (EC.15), we arrive at

the final formulation. �

Proof of Theorem 2

Proof of Theorem 2 To complete the proof, we need only to show that given that ρδ ∈

L({ ~Xj}j∈J ,C) the objective function ||ρδ − ρ̃||∞ can be reduced to

max
j∈J

{

|ρδ( ~Xj)− ρ̃( ~Xj)|
}

. (EC.16)
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To confirm this, let u∗ = (EC.16). Obviously by the definition of u∗, we can also write

−u∗ ≤ ρδ( ~Xj)− ρ̃( ~Xj)≤ u∗, ∀j ∈J .

The direction ||ρδ − ρ̃||∞ ≥ u∗ is clear. To prove the other direction (i.e., ||ρδ − ρ̃||∞ ≤ u∗), note first

that because ρδ ∈R, we can apply the theory of conjugate duality (Theorem EC.1.1 (1.)) and use

the conjugate ρ∗δ derived in Lemma EC.1.1 to write ρδ as

ρδ(~Z) = ρ∗∗δ (~Z) = sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − ρδ( ~Xj)
}

.

Based on this representation, we can then derive

ρδ(~Z) = sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − ρδ( ~Xj)
}

≤ sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − (ρ̃( ~Xj)+u∗)
}

(since ρδ( ~Xj)≤ ρ̃( ~Xj)+u∗, ∀j ∈J )

≤ sup
y∈C

y⊤ ~Z − (y⊤~0− (ρ̃(~0)+u∗)) = ρ̃(~Z)+u∗, ∀~Z, (EC.17)

and also have

ρδ(~Z) = sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − ρδ( ~Xj)
}

≥ sup
y∈C

y⊤ ~Z −max
j∈J

{

y⊤ ~Xj − (ρ̃( ~Xj)−u∗)
}

(since ρδ( ~Xj)≥ ρ̃( ~Xj)−u∗, ∀j ∈ J )

= sup
y∈C

y⊤ ~Z −u∗ −max
j∈J

{

y⊤ ~Xj − ρ̃( ~Xj)
}

≥ sup
y∈C

y⊤ ~Z −u∗ = ρ̃(~Z)−u∗, ∀~Z, (EC.18)

where the second inequality follows the supremum representation of ρ̃; namely for any j ∈J ,

ρ̃( ~Xj) = sup
y∈C

y⊤ ~Xj ⇔ y⊤ ~Xj − ρ̃( ~Xj)≤ 0, ∀y ∈ C.

We thus conclude that to determine the parameter δ, it suffices to solve the problem (17). Since

the problem is a convex program, we can apply the famous result of Grötschel et al. (1981), which

states that for a convex program like (17), it can be solved in polynomial time by using the ellipsoid

method if and only if for any z∗ := (δ∗, y∗
j ) it takes polynomial time to either confirm that z∗ is

in the feasible set Z or generate a hyperplane that separates z∗ from Z. Hence, if the function

ht(yt) can be evaluated in polynomial time (i.e., the forward problem can be solved in polynomial

time), and the oracle for the set C exists, it can be shown fairly straightforwardly that it also takes

polynomial time to confirm z∗ ∈Z or separate z∗ from Z. This completes the proof. �
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Proof of Corollary 1

Proof of Corollary 1 By introducing a dummy variable s that bounds from above

maxj∈J

{

p⊤ ~Xj − δj

}

, we have the first formulation. The second formulation with the linear con-

straints is the dual of the first formulation that can be obtained by applying linear duality theory.

Note that strong duality always holds here because, obviously, there always exists a feasible solu-

tion to the first formulation (e.g., by setting s∗ =maxj∈J

{

p∗⊤ ~Xj − δj

}

for any feasible p∗ ∈ C).

�

Proof of Proposition 4 As mentioned in Section 3.2, in the case of permutation invariance

one must deal with the issue that the optimality conditions are defined over non-convex sets
{

σ( ~W )
∣

∣

∣
σ ∈Σ, ~W ∈Wt

}

and the issue that the size of
{

σ( ~Xj)
}

σ∈Σ,j∈J
grows exponentially.

We first show how the inverse problem (6)–(8) with R :=R can still be formulated as a convex

program by following closely the steps established in Section 3.1. This bypasses the issue of non-

convexity. We summarize this first step in the following proposition. After proving this proposition,

we then continue to prove how to reduce the size of the problem presented in the proposition from

exponentially many to polynomially many.

Proposition EC.1. Given that Assumption 2 holds and that the set of optimal solutions is non-

empty, the inverse problem (6)–(8) with R :=R can by solved a risk function ρδ ∈L({ ~Xj}j∈J ,C),

and the parameter δ is calculated by solving

min
u,δ,yσ,j

u

subject to −u≤ δj − ρ̃( ~Xj)≤ u, ∀j ∈J ,

δj + y⊤
σ,j(σ

′( ~Xi)−σ( ~Xj))≤ δi, ∀(σ, j)∈Σ×J , ∀i 6= j, ∀σ′ ∈Σ,

yσ,j ∈ C, ∀(σ, j)∈Σ×J , (EC.19)

y⊤
σ∗,t

~Xt ≤ ht(yσ∗,t), ∀t∈ T ,

δi ≤ δj, ∀(i, j)∈ B,

where σ∗ in yσ∗,t corresponds to the permutation such that σ∗( ~X) = ~X; u∈R, δ ∈R
|J |, yσ,j ∈R

M ;

the set B :=
{

(i, j)∈ {1,2, ...,J }2
∣

∣

∣
( ~Xi, ~Xj)∈ {(~Lk, ~Uk)}k∈K

}

; and ht denotes the function ht(y) :=

minx

{

y⊤ ~Zt(x)
∣

∣

∣
x∈X t

}

.

Proof of Proposition EC.1 (Step 1) Like Proposition 1, we claim that the set L({ ~Xj}j∈J ,C)

contains an optimal solution to the problem. We prove this by showing that if there exists a

permutation-invariant risk function ρ0 that is optimal for the problem with the optimal value
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u∗ <∞, there must exist a risk function ρδ ∈ L({ ~Xj}j∈J ,C) that is also optimal to the problem,

namely by setting

δj = ρ0( ~Xj).

This can be proved by following exactly the steps in Proposition 1. Namely, by letting { ~Xj}j∈J

in L({ ~Xj}j∈J ,C) of Proposition 1 now represent all random losses in {σ( ~Xj)}σ∈Σ,j∈J and letting

C now take the form of C, we can conclude based on the result in Proposition 1 that the following

function ρδ ∈L({σ( ~Xj)}σ∈Σj∈J ,C) must also be optimal:

ρδ(~Z) := sup
p∈C

p⊤ ~Z − max
σ∈Σ,j∈J

{

p⊤σ( ~Xj)− ρ0(σ( ~Xj))
}

.

Note that due to the fact that ρ0 is permutation invariant, the above function can be simplified to

ρδ(~Z) = sup
p∈C

p⊤ ~Z − max
σ∈Σ,j∈J

{

p⊤σ( ~Xj)− ρ0( ~Xj)
}

= ρδ(~Z).

This completes the first step of the proof.

(Step 2) Following Proposition 2, we can boil down the problem of search over the set

L({ ~Xj}j∈J ,C) into identifying feasible solutions yσ,j and δj in the following systems:

δj + y⊤
σ,j(σ

′( ~Xi)−σ( ~Xj))≤ δi, ∀i, j ∈J , ∀σ,σ′ ∈Σ, (EC.20)

yσ,j ∈ C, ∀j ∈J , ∀σ ∈Σ.

(Step 3) We will follow closely the steps in Proposition 3. However, one can see that because

we seek only a function ρδ ∈ L({ ~Xj}j∈J ,C), which is permutation invariant, we can reduce the

constraints

xt ∈ arg min
x∈X t

ρδ(σ(~Z
t(x))), ∀t∈ T , ∀σ ∈Σ, (EC.21)

ρδ(σ
′(~Lk))≤ ρδ(σ(~Uk)), ∀k ∈K, ∀σ′, σ ∈Σ (EC.22)

into

xt ∈ arg min
x∈X t

ρδ(~Z
t(x)), ∀t∈ T , (EC.23)

ρδ(~Lk)≤ ρδ(~Uk), ∀k ∈K. (EC.24)

We will follow the same arguments used in Proposition 3 to further reduce the constraint (EC.23).

Note that although it looks quite repetitive, one should be careful to derive it based on structure

of ρδ. First, the monotonicity of ρδ allows us to equivalently write the constraint (EC.23) as
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min
(x, ~W )∈Πt

ρδ( ~W ), where Πt :=
{

(x, ~W )
∣

∣

∣

~W ≥ ~Zt(x), x∈X t
}

.

Because Πt here is convex and ~W t ∈ { ~Xj}j∈J , we can now write down the optimality condition

that there must exist a subgradient y ∈ ∂ρδ( ~W
t) such that

y⊤( ~W − ~W t)≥ 0, ∀(x, ~W )∈Πt ⇔ y⊤ ~W t ≤ min
x∈X t

y⊤ ~Zt(x).

Because ρδ is obviously convex, we again apply the theory of conjugate duality (Theorem EC.1.1)

(2.), which states that

∂ρδ( ~W
t) = ∂ρ

∗∗

δ ( ~W t) = argmax
y

{

y⊤ ~W t − ρ
∗

δ(y)
}

.

We now further characterize the set of subgradients ∂ρδ( ~W
t) by

y ∈ ∂ρ
∗∗

δ ( ~W t)

⇔{y : y⊤ ~W t − ρ
∗

δ(y)≥ ρδ( ~W
t)}

⇔ {y : y⊤ ~W t − max
σ∈Σ,j∈J

{

y⊤σ( ~Xj)− ρδ(σ( ~Xj))
}

≥ ρδ( ~W
t), y ∈ C}

⇔{y : y⊤ ~W t − y⊤σ( ~Xj)+ ρδ(σ( ~Xj))≥ ρδ( ~W
t), ∀j ∈J , ∀σ ∈Σ, ∀y ∈ C}, (EC.25)

where in the third line the conjugate ρ
∗

δ(y) derived in Lemma EC.1.1 is applied.

(Step 4) Now, following the proof of Theorem 2, it is straightforward to see that the objective

function in this case can be reduced to

max
σ∈Σ,j∈J

{

|ρδ(σ( ~Xj))− ρ̃( ~Xj)|
}

. (EC.26)

Moreover, in applying Step 2 we can equivalently describe the set of risk functions ρδ by the sys-

tem of constraints (EC.20). Thus by replacing ρδ(σ( ~Xj)) with δj in (EC.24), (EC.25) and (EC.26),

we arrive at the final formulation. �

(Continue the proof of Proposition 4) Now, we show how to reduce the optimization

problems presented Proposition EC.1 (including the problem in the definition of L({ ~Xj}j∈J ,C)).

We consider first the reduction of the problem (EC.19). Note first that the constraints associated

with yσ∗,t can be equivalently written as, with yσ∗,t replaced by yt,

y⊤
t
~Xt ≤ ht(yt), ∀t∈ T ,

δt + y⊤
t (σ(

~Xi)− ~Xt)≤ δi, ∀t∈ T , ∀i∈J \{t}, ∀σ ∈Σ, (EC.27)

yt ∈ C, ∀t∈ T .
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We show that the other constraints, namely the second and the third constraint in (EC.19) in

general can also be reduced to

δj + y⊤
j (σ

′( ~Xi)− ~Xj)≤ δi, ∀j ∈J , ∀i 6= j, ∀σ′ ∈Σ, (EC.28)

yj ∈ C, ∀j ∈J .

We prove this by showing that given any feasible solution (u∗, δ∗, yσ,j) of the problem (EC.19) we

can always construct a feasible solution (u∗, δ∗, ȳσ′′,j) with ȳσ′′,j satisfying

ȳσ′′,j :=
1

|Σ|
σ′′(
∑

σ∈Σ

σ−1(yσ,j)), ∀σ
′′ ∈Σ,

which gives the same optimal value u∗.

To verify its feasibility for the second constraint of (EC.19), by substitution we have

ȳ⊤
σ′′,j(σ

′( ~Xi)−σ′′( ~Xj)) =
1

|Σ|
(
∑

σ∈Σ

y⊤
σ,j(σ(σ

′′−1(σ′( ~Xi)))− ~Xj)≤
1

|Σ|
(
∑

σ∈Σ

(δi− δj)) = δi− δj,

where the last inequality is due to the feasibility of yσ,j. For the third constraint of (EC.19), feasibil-

ity can be verified as follows. Since yσ,j ∈ C, we have σ−1(yσ,j)∈ C. We also have
∑

σ∈Σ
1
|Σ|

σ−1(yσ,j)∈

C because the summation is a convex combination and the set C is convex. Given this, we also have

ȳσ′′,j ∈ C by the definition of C. Hence, we can replace yσ,j by σ(yj) for some yj ∈R
M in the second

and third constraints in (EC.19) and arrive at the reduction (EC.28).

Now, both the constraint (EC.27) and (EC.28) can be re-arranged into the following general

form

y⊤
j σ(

~Xi)≤ δi − δj + y⊤
j
~Xj, ∀σ ∈Σ, ∀j ∈ J . (EC.29)

We show in general how the constraint in the form of y⊤
j σ(

~X)≤ b, ∀σ ∈Σ for some ~X and b can be

reduced, which can then be applied to reduce (EC.27) and (EC.28). Recall first that a permutation

matrix Qσ is a matrix that satisfies σ( ~X) = Qσ
~X and (Qσ)m,n ∈ {0,1} and Q⊤

σ
~1 = ~1, Qσ

~1 = ~1.

Hence, y⊤
j σ( ~X)≤ b, ∀σ ∈Σ can be re-written as maxσ∈Σ y

⊤
j Qσ

~X ≤ b and also as

max
Q∈Conv({Qσ}σ∈Σ)

y⊤
j Q

~X ≤ b.

Applying the result of Birkhoff (1946), we can reformulate the convex hull of all permutation

matrices into linear constraints and arrive at the following formulation:

max
Q

{

y⊤
j Q

~X
∣

∣

∣
Q⊤~1 =~1, Q~1=~1, Q∈R

M×M
+

}

≤ b.

By deriving the dual problem of the above linear program, we have

minv,w

{

~1⊤v+~1⊤w
∣

∣

∣

~Xy⊤ − v~1⊤ −~1w⊤ ≤ 0
}

≤ b

⇔ ∃v,w : ~1⊤v+~1⊤w≤ b, ~Xy⊤ − v~1⊤ −~1w⊤ ≤ 0.
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Strong duality holds for the above linear programs because there always exists a permutation

matrix satisfying the above constraints. We apply this dualization procedure to (EC.29), which

leads to the final formulation of the problem (20).

Finally, we consider the reduction of the problem in the definition of L({ ~Xj}j∈J ,C). The opti-

mization problem can be equivalently formulated as

sup
p∈C,t

p⊤ ~Z − t

subject to p⊤σ( ~Xj)≤ t+ δj, ∀σ ∈Σ, ∀j ∈ J . (EC.30)

We can apply the same dualization procedure above to reduce again the constraint (EC.30), which

leads to the final formulation. �

Proof of Proposition 5

Proof of Proposition 5 Given that Assumption 5 holds, we can always convert the probability

values specified in the distribution of Z(x, ξt) (that satisfies Assumption 3) and the set of dis-

tributions {Fj}j∈J to ratios in the form of n/M for some fixed M ∈ Z
+ and n ∈ {1, ...,M}. By

considering an outcome space with M uniformly distributed outcomes, we can equivalently define

the random loss ~Z(x) as a mapping from Ω := {ωi}
M
i=1 to R that satisfies Z(x, ξ(ωi))∈ {Z(x, ξo)}

τ0
o=1

and | {ωi |Z(x, ξ(ωi)) =Z(x, ξo)} |= p̄ξoM , and similarly ~Xj as a mapping Xj : Ω→R that satisfies

Xj(ωi)∈ {(~Sj)o}
τj
o=1 and |{ωi |Xj(ωi) = (~Sj)o}|= p̄joM .

Suppose now that the optimization problems (20) and (22) are formulated based on the above

definition of random losses. We show in what follows how the problems can be further reduced.

Note first that by replacing the objective function p⊤ ~Z − t in (22) with a new variable s, we can

reformulate its first constraint into

~1⊤vj +~1⊤wj − p⊤ ~Z ≤ δj − s, ∀j ∈J .

We can then write all the constraints on the variable p in (22) by

p∈ G(~Z, s,{δi}i∈J ), (EC.31)

where G(~Y , t,{δi}i∈J ) is a parameterized set represented by the following system of constraints on

y: ∃vi,wi such that

~1⊤vi +~1⊤wi − y⊤~Y ≤ δi− t, ∀i∈ J , (EC.32)

~Xiy
⊤ − vi~1

⊤ −~1w⊤
i ≤ 0, ∀i∈ J , (EC.33)

y ∈ C. (EC.34)
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Given any fixed {δ∗j }j∈J , the constraints in the optimization problem (20) can also be equivalently

written as

yt ∈ G( ~Xt, δ
∗
t ,{δ

∗
i }i∈J )∩

{

y
∣

∣

∣
y⊤ ~Xt ≤ ht(y)

}

, ∀t∈ T , (EC.35)

yj ∈ G( ~Xj, δ
∗
j ,{δ

∗
i }i∈J ), ∀j ∈ J \T . (EC.36)

We present only the reduction of the constraints (EC.35) with (EC.32)–(EC.34), given that the

same steps can be applied to reduce the constraints (EC.36) (with (EC.32)–(EC.34)) and (EC.31)

(with (EC.32)–(EC.34)).

Because it suffices to consider (EC.35) for any fixed t, from here on we consider only t= 1 and

drop the index t for the variables to simplify the presentation. Given a fixed set of {δ∗j }j∈J , let

y∗, v∗i , w
∗
i denote a feasible solution that satisfies (EC.35) and (EC.32)–(EC.34). For o= 1, ..., τ0,

let I(1)
o denote the set of indices n of ~X1 such that ( ~X1)n = (~S1)o, and therefore |I(1)

o |= p̄(1)o M . We

claim that the solution v∗i together with the following y∗∗ ∈ R
M , w∗∗

i ∈ R
M that satisfies for any

n∈ I(1)
o ,

(y∗∗)n =
1

|I(1)
o |

∑

a∈I
(1)
o

(y∗)a, (w∗∗
i )n =

1

|I(1)
o |

∑

a∈I
(1)
o

(w∗
i )a,

o= 1, ..., τ0, will also satisfy (EC.35) and (EC.32)–(EC.34).

The constraint (EC.35) and (EC.32)–(EC.33) can be verified fairly straightforwardly by the

direct substitution. To verify the third constraint (EC.34), we construct a sequence of solutions

y
(1)
∗ , ..., y

(τ0)
∗ that satisfies y

(τ0)
∗ = y∗∗ and that y

(τ0)
∗ ∈ C. For o= 1, ..., τ0, let Σo denote the set of all

permutation operators σ that satisfy (σ(y∗))a = (y∗)a, ∀a /∈ I(1)
o . In other words, the set consists

of all permutations that permute only the entries a ∈ I(1)
o . Set o = 1 and we construct y

(1)
∗ by

y
(1)
∗ :=

∑

σ∈Σ1

1

|I
(1)
o |!

σ(y∗). One can confirm that y
(1)
∗ satisfies

(y(1)
∗ )ñ =

1

|I(1)
1 |

∑

a∈I
(1)
1

(y∗)a

for ñ ∈ I(1)
1 and (y

(1)
∗ )ñ = (y∗)ñ otherwise. Given that y∗ ∈ C, we must have σ(y∗) ∈ C by the

definition of C and therefore y
(1)
∗ ∈ C because the summation is a convex combination. For o≥ 2,

we can construct y
(o)
∗ =

∑

σ∈Σo

1

|I
(1)
o |!

σ(y
(o−1)
∗ ). If y

(o−1)
∗ ∈ C, y(o)

∗ ∈ C must hold and y
(o)
∗ satisfies that

for any ñ ∈ I(1)

o′ , o
′ = 1, ..., o,

(y(o)
∗ )ñ =

1

|I(1)

o′ |

∑

a∈I
(1)

o′

(y∗)a,

and (y(o)
∗ )ñ = (y∗)ñ otherwise. By induction, y(τ0)

∗ ∈ C and y(τ0)
∗ = y∗∗.
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Hence, we can reduce the constraints (EC.35) and (EC.32)–(EC.34) by imposing for some ỹ ∈R
τ0 ,

w̃ ∈ R
τ0 that for a ∈ I(1)

o , o = 1, ..., τ0, (y)a = (ỹ)o and (wi)a = (w̃i)o. This leads to the following

constraints

~1⊤vi +1⊤(λ1 ◦ w̃i)− (λ1 ◦ ỹ)
⊤~S1 ≤ δi− δ1, (EC.37)

~Xiỹ
⊤ − vi~1

⊤ −~1w̃⊤
i ≤ 0, (EC.38)

HF1
(ỹ)∈ C, (EC.39)

(λ1 ◦ ỹ)
⊤~S1 ≤min

x∈X
(λ1 ◦ ỹ)

⊤ ~Z ′(x), (EC.40)

where λ1 := (|I(1)
1 |, ..., |I(1)

τ0
|) and ~Z ′(x) := (Z(x, ξ1), ...,Z(x, ξτ0))

⊤.

We now show that the above four constraints can be further reduced. Let I(i)
o denote the set of

indices n of ~Xi such that ( ~Xi)n = (~Si)o, o= 1, ..., τi, and therefore |I(i)
o |= p̄ioM .

It is not difficult to see that for any (vi)a such that a∈ I(i)
o the constraints associated with (vi)a

are identical in (EC.38). Because reducing (vi)a, for any a, is always feasible for (EC.37), if there

exists any (v∗i )a 6= (v∗i )b for a, b ∈ I(i)
o , we can always make them equal by reducing the larger one

(without violating any constraint). We can thus conclude that we can always impose for some

ṽi ∈ R
τi that (vi)a = (ṽi)o for any a ∈ I(i)

o . This leads to the reformulation of the first constraint

(EC.37) into

~1⊤(λi ◦ ṽi)+ 1⊤(λ1 ◦ w̃i)− (λ1 ◦ ỹ)
⊤~S1 ≤ δi− δ1,

where λi := (|I(i)
1 |, ..., |I(i)

τi
|) and (EC.38) into

~Siỹ
⊤ − ṽi~1

⊤ −~1w̃⊤
i ≤ 0.

Letting (λi ◦ ṽi) = v̂i, (λ1 ◦ w̃i) = ŵi, and (λ1 ◦ ỹ) = ŷ, we have (EC.38) become

~Si((λ1)
−1 ◦ ŷ)⊤− ((λi)

−1 ◦ v̂i)~1
⊤ −~1((λ1)

−1 ◦ ŵi)
⊤ ≤ 0, (EC.41)

and (EC.39) become

HF1
((λ1)

−1 ◦ ŷ)∈ C,

and (EC.37), (EC.40) reduce respectively to (24) (with j = 1) and (26) (with t= 1).

Finally, multiplying (EC.41) with (~1λ⊤
1 ), we have

(~1λ⊤
1 ) ◦ (~Si((λ1)

−1 ◦ ŷ)⊤− ((λi)
−1 ◦ v̂i)~1

⊤ −~1((λ1)
−1 ◦ ŵi)

⊤)≤ 0,

which leads to the final formulation for (25) (with j = 1). �
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Proof of Proposition 6

Proof of Proposition 6 Following Proposition 3, we can equivalently formulate the problem as

min
x′,δZ ,y0,yZ

||x′ −xT ||

subject to y⊤
0 Zx′ ≤ δZ ,

δZ − y⊤
ZZx′ ≤ 0,

y⊤
ZZx′ ≤min

x

{

y⊤
ZZx |Ax≥ b

}

,

y0, yZ ∈ C.

Observe first that given any solution x′, yZ , one can always set y0 = yZ and δZ = y⊤
ZZx′ to satisfy

the first two constraints. The third constraint, by definition, is equivalent to the constraint (28).

Hence, the above problem is indeed equivalent to the first optimization problem in Proposition 6.

We can equivalently state the constraint (28) in terms of the KKT condition for linear programs,

which is

Ax′ − b≥ 0, (EC.42)

A⊤u=Z⊤y,

u≥ 0, (EC.43)

(Ax′ − b)⊤u=0. (EC.44)

It is known that constraints (EC.42), (EC.43), and (EC.44) can be equivalently stated as the

linear complementarity constraints (Ax′− b)i ·ui = 0, ∀i (Luo et al. (1996)). By introducing binary

variables ηi ∈ {0,1}, we can apply the Big-M method to equivalently formulate these constraints

as the constraints (29a)–(29e) provided that the constant M is sufficiently large.

Finally, because δZ = y⊤
ZZx′, we can obtain the risk function ρδ by setting ~X1 := Zx∗, ~X2 =~0,

and δ1 := δ∗Z = y∗⊤
Z Zx∗, δ2 = 0 with the optimal solution x∗ and y∗

Z . �

Proof of Proposition 7

Proof of Proposition 7 Following the proof in Proposition 4 (in particular, (EC.28)), we can

equivalently formulate the problem as

min
x′,δZ ,y0,yZ

||x′ −xT ||

subject to y⊤
0 σ(Zx′)≤ δZ , ∀σ ∈Σ,

δZ − y⊤
ZZx′ ≤ 0,

y⊤
Z (σ(Zx′)−Zx′)≤ 0, ∀σ ∈Σ, (EC.45)

y⊤
ZZx′ ≤min

x

{

y⊤
ZZx |Ax≥ b

}

,

y0, yZ ∈ C.
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To show how one may reduce the problem, let us start by focusing on the constraint (EC.45):

y⊤
Zσ(Zx′)≤ y⊤

ZZx′, ∀σ ∈Σ.

By taking a closer look at this inequality, we can recognize that it is an instance of the rearrange-

ment inequality, which states that yZ is feasible to the constraints if and only if its ordering matches

the ordering of Zx′:

(Zx′)i ≤ (Zx′)j ⇔ (yZ)i ≤ (yZ)j, ∀i 6= j.

We can thus apply the Big-M method to reformulate the above condition as the constraints (30a),

(30b), (30c), and (30d) with sufficiently large M.

Moreover, for any yZ ∈ C satisfying the above matching condition, we can observe that

y⊤
ZZx′ ≥ (

1

|Ω|
1)⊤Zx′

must hold. To see this, one may assume without loss of generality that (Zx′)1 ≤ · · · ≤ (Zx′)|Ω| and

to minimize y⊤
ZZx′ over yZ ∈ C that satisfies (yZ)1 ≤ · · · ≤ (yZ)|Ω|, one can confirm that yZ = 1

|Ω|
1

gives the minimum. This implies that given any yZ satisfying (EC.45), there always exists a feasible

y0 and δZ for the first two constraints, namely by setting y0 =
1
|Ω|

1 and δZ = y⊤
ZZx′. Hence, we can

remove the first two constraints and arrive at the final formulation.

Finally, we can obtain the risk function ρδ by setting ~X1 :=Zx∗, ~X2 =~0, and δ1 := δ∗Z = y∗⊤
Z Zx∗

and δ2 = 0 with the optimal solution x∗ and y∗
Z . �

Proof of Proposition 8

Proof of Proposition 8 Like the proof of Proposition 5, we first construct random variables in

a outcome space Ω endowed with a uniform probability measure. We can then apply Proposition

7, and thereafter we show how the problem can be further reduced.

Given the finite supports {ξ⊤o x}
τ0
o=1 and the associated probability values {p̄ξo}

τ0
o=1, we define

random loss Zx as a mapping from Ω to R that satisfies (Zx)i ∈ {ξ⊤o x}
τ0
o=1 and |

{

i | (Zx)i = ξ⊤o x
}

|=

p̄ξoM . Let Io denote the set of indices i of (Zx)i such that (Zx)i = ξ⊤o x and therefore |Io|= p̄ξoM .

Using this definition of Zx, we can apply Proposition 7 to formulate the MIP model (30c). We

claim that given any feasible solution (x′∗, y∗, u∗, η∗, ν∗
i,j) to (30c), one can always retain feasibility

after replacing y∗ by an alternative y∗∗ that satisfies for any i∈ Io,

(y∗∗)i =
1

|Io|

∑

a∈Io

(y∗)a,

o= 1, ..., τ0.

First, given the definition of Io, clearly for any y∗ that are ordered the same way as Zx′∗ (i.e.,

(Zx′∗)i ≤ (Zx′∗)j ⇔ y∗
i ≤ y∗

j ), it must hold also that (Zx′∗)i ≤ (Zx′∗)j ⇔ y∗∗
i ≤ y∗∗

j . It is also clear
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that A⊤u∗ = Z⊤y∗ = Z⊤y∗∗. Finally, to check y∗∗ ∈ C, one can find the necessary arguments to

prove it in the proof of Proposition 5.

Hence, this implies that without loss of generality, we can impose for some ỹ ∈ R
τ0 that for

a ∈ Io, o = 1, ..., τ0, (y)a = (ỹ)o must hold. This leads to the constraints (31) and (32) in ỹ and

the constraint A⊤u = Ξ⊤(p̄ξoM ◦ ỹ) and HFξ
(ỹ) ∈ C. By setting y = Mỹ, we arrive at the final

formulation. �

Proof of Example 4 (5. Spectral risk measures)

Proof of Example 4 (5. Spectral risk measures) Let M ∈ Z
+ be a constant such that pk, k =

1, ...,K, and p̄o, o = 1, ..., τj , can be expressed in the form of n/M , n ∈ {1, ...,M}. First, given

the stepwise spectrum φ−(p), to apply the representation C in Example EC.2.6 (i.e., C), we

have φj =
∫

j
M
j−1
M

φ−(t)dt= φ̄k

M
for any j ∈ {1, ...,M} such that pk−1 ≤

j−1
M

< j
M

≤ pk, and therefore

|
{

j
∣

∣

∣
φj =

φ̄k

M

}

|= (pk −pk−1)M . To see how the constraint HFj
((λFj

)−1 ◦y) ∈ C can be reduced, we

apply first the result of Birkhoff (1946) to reformulate C into

C =
{

q
∣

∣

∣
q=Qφ, Q~1=~1, Q⊤~1 =~1, Q≥ 0

}

.

Let I(j)
o , o=1, ..., τj , denote the set of indices n ofHFj

((λFj
)−1◦y) such that (HFj

((λFj
)−1◦y))n =

((λFj
)−1 ◦ y)o and therefore |I(j)

o | = (λFj
)o. It is obvious that the constraint HFj

((λFj
)−1 ◦ y) ∈ C

has a feasible solution if and only if the following set of constraints

qi = qj, ∀i, j ∈ I(j)
o , o= 1, ..., τj , q=Qφ, Q~1 =~1, Q⊤~1=~1, Q≥ 0 (EC.46)

has a feasible solution. We show first how (EC.46) can be reduced. Let (q∗,Q∗) denote a feasible

solution for the above constraints. We claim that the solution q∗ together with the following

construction of Q∗∗

(Q∗∗)(ñ,:) =
1

|I(j)
o |

∑

n∈I
(j)
o

(Q∗)(n,:), ñ ∈ I(j)
o , o= 1, ..., τj

will also be feasible. The notation (V )(k,:) (respectively (V )(:,k)) refers to the kth-row (respectively

kth-column) of the matrix V . The claim can be fairly straightforward to verify by direct substitu-

tion, which gives q∗ =Q∗∗φ, Q∗∗~1=~1, and Q∗∗⊤~1 =~1.

Hence, we can reduce (EC.46) by imposing that for any ñ ∈ I(j)
o , o= 1, ..., τj , (Q)(ñ,:) = (Q̄)(o,:)

for some Q̄∈R
τj×M , which leads to

qi = q̄o, ∀i∈ I(j)
o , o=1, ..., τj , q̄= Q̄φ, Q̄~1=~1, ((λFj

~1⊤) ◦ Q̄)⊤~1=~1, Q̄≥ 0, (EC.47)
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where q̄ ∈ R
τj . Moreover, the constraint HFj

((λFj
)−1 ◦ y) ∈ C can be equivalently written as y ∈

R
τj
+ ∩C, where

C :=
{

q̄
∣

∣

∣
q̄= ((λFj

~1⊤) ◦ Q̄)φ, Q̄~1 =~1, ((λFj
~1⊤) ◦ Q̄)⊤~1=~1, Q̄≥ 0

}

.

Letting Q̂= (λFj
~1⊤) ◦ Q̄, we have

C =
{

q̄
∣

∣

∣
q̄= Q̂φ, Q̂~1= λFj

, Q̂⊤~1=~1, Q̂≥ 0
}

. (EC.48)

Next, let I(φ)
k denote the set of indices j of φ such that φj =

φ̄k

M
for k = 1, ...,K and there-

fore |I(φ)
k | = (pk − pk−1)M . Given this, we show that the constraints in (EC.48) can be further

reduced. Let q̄∗, Q̂∗ be a feasible solution for (EC.48). We claim that q̄∗ together with the following

construction of Q̂∗∗

Q̂∗∗
(:,ñ) :=

1

|I(φ)
k |

∑

n∈I
(φ)
k

Q̂∗
(:,n), ñ∈ I(φ)

k , k=1, ...,K

is also feasible for the constraints. Similarly, the claim can be verified by the direct substitution,

which gives Q̂∗∗φ= q̄∗, Q̂∗∗~1= λFj
, and (Q̂∗∗)⊤~1=~1.

Hence, we can also impose that for any ñ∈ I(φ)
k , k= 1, ..,K, Q̂(:, ñ) = Q̃(:, k) for some Q̃∈R

τj×K

in (EC.48), which leads to the reformulation of the first and second constraint in C into

q̄= ((~1λ⊤
φ ) ◦ Q̃)(

1

M
φ̄), and ((~1λ⊤

φ ) ◦ Q̃)~1= λFj
,

where (λφ)k := (pk − pk−1)M , and therefore also the set C into

C =

{

q̄

∣

∣

∣

∣

q̄= (
1

M
)(~1λ⊤

φ ) ◦ Q̃φ̄, ((~1λ⊤
φ ) ◦ Q̃)~1= λFj

, Q̃⊤~1=~1, Q̃≥ 0

}

.

Letting Q̇= ( 1
M
)(~1λ⊤

φ ) ◦ Q̃, we arrive at the final reduced form. �
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EC.5. Further discussion about the issue of constraint misspecification
raised in Remark 4

As mentioned in Remark 4, it is possible that the forward problem assumed in our inverse models

does not well represent the true problem that the decision maker solved. In this section, we attempt

to discuss this issue more formally and provide some ideas that might help (partially) resolve the

issue.

The forward problem in this paper is completely characterized by the feasible sets X t, t ∈ T ,

and from this point on we assume that the sets take the form of X t :=
{

x
∣

∣ gtj(x)≤ 0, j = 1, ..., J t
}

,

t∈ T . To differentiate the feasible sets X t assumed in our inverse models from the “true” feasible

sets (i.e., the ones based on which the past decisions xt, t∈ T were optimized), we denote by X̄ t,

t∈ T the true feasible sets and thus xt ∈ X̄ t, t∈ T follows. To facilitate our discussion, we assume

that the decision makers are rational 7 (i.e., the past decisions were optimally made with respect

to the true risk function ρ∗). We can thus write down the following optimality condition that must

hold for the observed decisions xt, t∈ T with respect to the true risk function ρ∗:

ρ∗(~Zt(xt))≤ ρ∗(~Zt(x)), ∀x∈ X̄ t, t∈ T . (EC.49)

Recall that our inverse models take as input the observed decisions xt, t ∈ T and the feasible

sets X t, t∈ T and that they seek a risk function ρ from the following set:

Rinv =
{

ρ
∣

∣

∣
ρ(~Zt(xt))≤ ρ(~Zt(x)), ∀x∈X t, t∈ T

}

. (EC.50)

The question here is how the discrepancy between X t and X̄ t would affect the risk function ρ

generated from the inverse models and if the models can actually detect such a discrepancy. A

trivial case where we can easily draw the conclusion, without even running the inverse models,

is that if there are some observed decisions that are simply not feasible with respect to X t (i.e.,

xt 6∈ X t), then one can easily tell which constraint is misspecified by checking which one is violated

(i.e., gtj(x
t)> 0 for some j ∈ {1, ..., J t} and t∈ T ).

We thus focus primarily on the case where all the observed decisions are feasible with respect to

X t (i.e., xt ∈ X t, t ∈ T ) but the feasible sets X t may be misspecified (i.e., X t 6= X̄ t). The inverse

models in this case could either return a message of infeasibility (i.e., Rinv = ∅) or a feasible risk

function ρ that can fit all the observed decisions with respect to X t. The case of infeasibility would

allow one to detect the sets X t being misspecified, because we know from (EC.49) and (EC.50)

that if the sets X t are correctly specified (i.e., X t = X̄ t), then ρ∗ ∈Rinv (i.e., Rinv 6= ∅). In the case

7 This assumption is in fact necessary; otherwise in the case where there does not exist a risk function ρ that fits
all the observed decisions, one cannot tell if it is because of the sub-optimality of the observed decisions or the
misspecification of constraints.
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where the inverse models do return a feasible risk function ρ, it appears, however, as discussed

below, generally not possible to detect any misspecification of X t.

In particular, let us consider the case motivated by our portfolio management example where

the client might not necessarily take into account the long-only constraint. In this case, the feasible

set X t is only a subset of the true feasible set X̄ t (i.e., X t ⊂ X̄ t), and we know from (EC.49) that

the following must hold:

ρ∗(~Zt(xt))≤ ρ∗(~Zt(x)), ∀x∈X t, t∈ T . (EC.51)

That is, we have ρ∗ ∈Rinv. In other words, despite X t 6= X̄ t, in this case the inverse models can

still narrow down a smaller set of risk functions that includes the true risk function ρ∗ as a feasible

candidate. This also demonstrates why one would not be able to detect the discrepancy between

X t and X̄ t, given that it is not even possible to rule out ρ∗ from the set Rinv. The only difference

in this case between applying the set X t and the true feasible set X̄ t in (EC.50) is that the latter

might allow for a faster rate of convergence of the set Rinv to the true risk function ρ∗. But it

appears not possible to detect such a difference without knowing what the true risk function is. In

other cases where X t 6= X̄ t but X t 6⊂ X̄ t, it is possible that the true risk function ρ∗ may no longer

be feasible (i.e., ρ∗ /∈Rinv). It remains unclear, however, how one can detect such infeasibility, given

that all one knows from the output of the inverse models is that there exists a risk function ρ that

perfectly fits all the observed decisions.

Although in general it appears not possible to detect ρ∗ /∈ Rinv (and thus also X t 6= X̄ t), we

provide here some idea as to how one may quantify potential risk underestimation because of

constraint misspecification. The idea here can also be applied to the case where one is able to

confirm ρ∗ /∈Rinv (e.g., the case Rinv = ∅ as mentioned earlier) and tries to fix the issue. This idea

comes from the observation made earlier that if X t ⊂ X̄ t, our inverse models would necessarily still

include the true risk function ρ∗ as a feasible candidate. So, given the sets of potentially misspecified

feasible sets X t, t∈ T and observed decisions xt, t∈ T , what one can do is to construct alternative

feasible sets X t
∗ that satisfy

xt ∈X t
∗ ⊂X t ∩ X̄

t
, t∈ T , (EC.52)

(i.e., each X t
∗ is a subset of both the potentially misspecified set and the true feasible set). By

replacing the sets X t, t ∈ T with the subsets X t
∗ , t ∈ T in (EC.50), one can apply instead the

following set in the inverse models:

R∗
inv =

{

ρ
∣

∣

∣
ρ(~Zt(xt))≤ ρ(~Zt(x)), ∀x∈X t

∗ , t∈ T
}

. (EC.53)

The condition X t
∗ ⊂ X t implies that Rinv ⊂ R∗

inv, and the condition X t
∗ ⊂ X̄ t implies that the

above set always contains the true risk function ρ∗ (i.e., ρ∗ ∈ R∗
inv). With these guarantees, one
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can apply our inverse model (4) to generate a risk function ρ↑ that bounds from above the true

risk function ρ∗ (i.e., ρ↑ ≥ ρ∗) and any risk function generated from the original set Rinv (i.e.,

ρ↑ ≥ ρ, ∀ρ ∈ Rinv). Hence, ρ
↑ provides a means to measure potential risk underestimation from

constraint misspecification. More specifically, one may compare the risk estimates obtained from a

risk function that is generated with respect to potentially misspecified constraints against ρ↑. If the

difference is small, this may be regarded as a signal that the impact of constraint misspecification

is less of a concern. Otherwise, the difference provides the upper bound on the potential risk

underestimation from constraint misspecification. Ideally, one should seek the largest X t
∗ that

satisfies (EC.52), given that the larger the constructed set X t
∗ is, the tighter the bound ρ↑ is (and

hence the more informative the bound is).

Here, we give two examples of how the set X ∗
t may be constructed. In the first one, we assume

the form of the constraints gtj(x) is known but it is only some of the “right-hand-side” parameters

that are prone to misspecification: gtj(x) := ht
j(x)− btj ≤ 0, j = 1, ..., J t, where ht

j(x) is known but

btj may be misspecified for some j and t. For example, it is common also in portfolio management

that upper bounds must be imposed over the amount of investment for each asset (i.e., gtj(x) =

xj − btj ≤ 0, j = 1, ...,dim(x), t ∈ T ) for diversification purposes, but the values of the bounds

may not be known exactly. To construct the set X ∗
t in this case, one can lower the values of the

parameters btj that are prone to misspecification, so that they guarantee xt ∈ X t
∗ ⊂ X̄ t (e.g., by

setting btj := ht
j(x

t)). In the second example, we assume that the true feasible set X̄ t does not change

over time (i.e., X̄ t = X̄ , ∀t ∈ T ). One can then always construct the convex hull of the observed

decisions X∗ := Conv({xt}t∈T ) so that X∗ ⊂ X̄ . These examples are meant for demonstrating the

general principle that one may apply for constructing the set X ∗
t .
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