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Abstract. This paper presents a structural discrete choice model with social influence for
large-scale social networks. The model is based on an incomplete information game and
permits individual-specific parameters of consumers. It is challenging to apply this type of
models to real-life scenarios for two reasons: (1) The computation of the Bayesian–Nash
equilibrium is highly demanding; and (2) the identification of social influence requires the
use of excluded variables that are oftentimes unavailable. To address these challenges, we
derive the unique equilibrium conditions of the game, which allow us to employ a sto-
chastic Bayesian estimation procedure that is scalable to large social networks. To facilitate
the identification, we utilize community-detection algorithms to divide the network into
different groups that, in turn, can be used to construct excluded variables. We validate the
proposed structural model with the login decisions of more than 25,000 users of an online
social game. Importantly, this data set also contains promotions that were exoge-
nously determined and targeted to only a subgroup of consumers. This information
allows us to perform exogeneity tests to validate our identification strategy using
community-detection algorithms. Finally, we demonstrate the managerial usefulness of
the proposedmethodology for improving the strategies of targeting influential consumers
in large social networks.
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1. Introduction
With the development of information technology
and, especially, the proliferation of different forms of
social media sites, social influence has become an
essential factor of consumers’ decision making. The
existence of social influence implies that choices are
mutually dependent, such that the choice of a con-
sumer both influences and depends on choices of
other consumers in the social network (Hogan et al.
2003, Gupta et al. 2006, Gupta and Mela 2008, Ahn
et al. 2015). The ability to identify and quantify the
strength of social influence on choice within a net-
work, thus, has numerous applications. For example,
in the field of customer-relationship management
(e.g., Kumar and Reinartz 2012), managers may want
to focus greater retention efforts on consumers whose
decisions to leave the firm would have stronger spill-
over effects on other customers (Ascarza et al. 2017).

In targeted marketing, choices by influential con-
sumers might be considered as more profitable for
marketing communications and promotional activi-
ties under the presumption that their choices would
trigger desired actions by other consumers (e.g.,
product adoption or higher engagement in social
networks; seeHinz et al. 2011, Toker-Yildiz et al. 2017,
and van der Lans et al. 2010). In education, students
may be more likely to study if their friends also study
hard and have less time for other activities (Glaeser
and Scheinkman 2001). Similarly, decisions about
participating in crime, smoking, and the decision to
join the labor force are all marked by social influ-
ence (Glaeser and Scheinkman 2001, Lee et al. 2014,
Nicoletti et al. 2018).
Although the benefits of knowing the extent of

social influence in the choices of consumers are intui-
tively appealing, the assessment task is challenging.
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First, identifying social influence from choice data is
difficult because of confounding factors, such as cor-
related (homophily) and exogenous effects (Manski
1993). For example, the observation that two con-
sumers make similar choices is not necessarily
attributable to social influence. The behavioral simi-
larities can be attributed to common traits (correlated
effects or homophily) or the exposure to the same ex-
ogenous shocks (exogenous effects). Second, although
game-theoretic models have become an essential tool
for the analysis of social interactions (Brock and
Durlauf 2001), the empirical application of these
models to large social networks is limited. This is
because the application faces a scaling problem
(Hartmann 2010) that makes it difficult to apply such
models to large social networks. For example, the ex-
tant algorithms such as nested fixed points and
Mathematical Programming with Equilibrium Con-
straints have been used to study interactions of up to a
few hundred people or firms (e.g., Zhu and Singh
2009, Hartmann 2010,Misra 2013, and Lee et al. 2014).
However, these methods do not scale well to business
settings that may involve interactions between tens
of thousands of heterogeneous consumers.

To fill this gap in the literature, this paper extends
the discrete choice model with social influence in-
troduced by Brock and Durlauf (2001) and extended
in Lee et al. (2014) to empirical settings with a large
social network and individual-specific parameters.
Allowing for individual-specific parameters is im-
portant, as consumers may respond differently to
social influence, leading to different policy implica-
tions, as highlighted in our empirical applications. To
address the scalability and identification issues as
discussed above, we propose two novel solutions.
First, we derive the uniqueness and local stability
conditions of the game-theoretic model, which enable
us to apply the scalable stochastic Bayesian estima-
tion procedure introduced by Imai et al. (2009). By
doing so, we expand the application domain of this
pseudo-fixed-point procedure from structural demand
models (Imai et al. 2009, Sun and Ishihara 2018) to
games on large social networks. Second, to facilitate
the identification of social influence, we propose to use
community-detection algorithms (Fortunato 2010) to
uncover latent communities that are likely to be ex-
posed to different time-varying unobserved shocks.
With the learnt communities, we construct excluded
variables using community-specific time fixed effects.
One of the key benefits of this novel identification
strategy is that it does not require observing excluded
variables that are often difficult to obtain in prac-
tice (Imbens 2014).

We apply the proposed methods to an online gam-
ing data set that contains a complete network with
login activities of over 25,000 users across 30 days.

Common for many other online games, tasks in the
game require team efforts, making social influence an
important driving factor for users’ login decisions.
Importantly, this data set contains observed exoge-
nous shocks (i.e., targeted promotions on holidays),
which allow us to validate the identification strategy
based on latent communities. In particular, we follow
Rivers and Vuong (1988) and perform exogeneity
tests for the structural models. The results of the tests
support the value of communities for the identifica-
tion of social influence. Based on the estimates of the
structural model, we further quantify the social in-
fluence of a user by comparing the observed scenario
to a counterfactual scenario where a user becomes
inactive. We then apply this insight to policy simu-
lations to illustrate the effectiveness of different tar-
geting strategies. These policy simulations show the
benefits of incorporating individual-specific param-
eters into the model, as it increases the expected
performance of targeting strategies about 10-fold.
Moreover, as a novel insight, our counterfactual
studies illustrate that optimal social targeting strat-
egies should not only consider whom to target, but
also when to target certain consumers.
The remainder of this paper is organized as follows.

In Section 2, we describe our proposed model, derive
the local stability condition of the network game, and
characterize its uniqueness. In Section 3, we discuss
model identification and community-detection al-
gorithms, introduce our estimation method, and dem-
onstrate its scalability with simulation studies. In
Section 4, we describe the data of our empirical ap-
plication, which consists of users’ login decisions in
an online game. This section also reports estimation
results and validation of our identification strategy,
and provides policy simulations that demonstrate the
managerial usefulness of the proposed model for
targeting decisions. In Section 5, we conclude and
discuss directions for future research.

2. A Local Interaction Choice Model on
Social Networks

2.1. The Model
Consider a group of N consumers connected by a
social network. An N × N adjacency matrix A is used
to represent this social network, with nondiagonal
elements aij ∈ [0,∞) indicating the weight consumer i
puts on consumer j when making a decision. The
diagonal elements aii, by convention, are set to zero,
and we allow connections to be asymmetric (aij ≠ aji).
Suppose these i = 1,...N consumers are making a bi-
nary choice decision at time period t by choosing one
of the actions from a discrete set with dit = {0,1}.
Without loss of generality, the utility of choosing
action dit = 0 is normalized to 0.
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To specify the utility function of the discrete choice
model with social influence, we follow Brock and
Durlauf (2001) and Lee et al. (2014), but allow pa-
rameters to be individual-specific. Consequently, the
latent utility of consumer i choosing dit = 1 at time t is
assumed to be additive-separable and partitioned
into three terms as follows:

U(dit � 1|xit, d−it,Θi) � V(xit; βi) + S(dit, d−it;γi) + εit.

(1)

In this equation, xit is a K × 1 vector of individu-
al characteristics that may change over time, and βi
the associated parameter vector and assumed to be
individual-specific. Parameter γi captures the sus-
ceptibility to social influence of consumer i. The
term V(xit; βi) represents the deterministic private
utility that depends on xit. S(dit, d−it;γi) captures the
social utility which depends on decisions of other
consumers d−it. The parameter set Θi, which contains
{βi, γi} and possible parameters of the distribution of
εit, is assumed to be compact. Finally, εit is an inde-
pendent and identically distributed (i.i.d.) (across
consumers and time periods) random shock and as-
sumed to follow a cumulative distribution function F
that is twice continuously differentiable and a prob-
ability distribution function f that is bounded and
strictly positive.

To further specify the model, we assume that only
the direct friends j ∈ Ni of consumer i will directly
influence the decision of consumer i, with Ni repre-
senting all consumers that are connected to consumer
i (i.e., aij> 0). Furthermore,we specify the social utility
function as responding to the decisions of friends:1

S(dit � 1, djt;γi) � γi

∑
j∈Ni

aijμe
ijt(djt � 1). (2)

In Equation (2), μe
ijt(djt � 1) � Ei(djt � 1|Iit) is the ex-

pectation of the decisions of consumer j formed by
consumer i. The expectation is formed based on the
information set Iit, which includes the individual
characteristics {xjt,∀j � 1,⋯,N} and social network
structure A. The information set Iit is assumed to be
publicly known.

For the data-generating process, we make the fol-
lowing assumptions: (1) The observed social network
is mature, which implies that consumers do not form
new connections or dissolve old ones, and there are no
new consumers joining the network;2 (2) consumers
are myopic, which implies that observations of dif-
ferent time periods are independent realizations of
the network game; and (3) the distribution of random
shocks F is common knowledge, but the random
shock εit is only observed by consumer i, and not by
other consumers. The last assumption leads to a static
gamewith incomplete information, where consumers

react to the expectations over behaviors of their
friends. Incomplete information is realistic in large
networks, as consumers are likely to rely on incom-
plete or partial information (e.g., characteristics of
their friends) to form expectations over friends’ de-
cisions (Lee et al. 2014). In contrast, previous research
(e.g., Hartmann 2010) with the complete-information
assumption considered social influence in small groups,
where consumers can exchange information freely and
frequently. Furthermore, adisadvantageof the complete-
information assumption is that it almost always leads to
multiple equilibria (Galeotti et al. 2010), which limit its
application to relatively small groups (Soetevent and
Kooreman 2007). Finally, the literature on global game
theory illustrates how the introduction of (a small
amount of) incomplete information may lead to unique
equilibrium solutions and provides interesting and
novel economic intuitions (Carlsson andDamme 1993).
Given the specification above, the probability of

consumer i choosing an action dit at time t can be
represented as,

Pr
(
dit � 1|Iit,μe

it

) � F

(
Vit + γi

∑
j∈Ni

aijμe
ijt(djt � 1)

)
. (3)

In Equation (3),Vit =V(xit;βi), the intrinsic utility term
as specified above, and μe

ijt is consumer i’s expectation
about the behaviors of a friend j. To make the model
tractable, we further impose the rational expectation
condition (Hansen et al. 1991),3 which implies that,
in equilibrium, the expectations of consumers are
consistent with the actual choice behaviors, as de-
scribed by the equilibrium choice probabilities—that
is, ueijt(djt � 1) � p∗jt(djt � 1), ∀i∈N\j. Consequently, in
equilibrium, the probability of consumer i choosing
dit = 1 at time t is,

p∗it � F

(
Vit + γi

∑
j∈Ni

aijp∗jt

)
. (4)

By stacking the equations above across all consumers,
we obtain the following system of N equations:

P∗
t � F(Δt + ΓAP∗

t ), (5)

whereΔt � [V1t, ..,VNt]′ is an (N× 1) vector containing
consumers intrinsic utilities, Γ is an (N × N) diagonal
matrix, with γi as the ith diagonal element, and P∗

t an
(N × 1) vector containing equilibrium choice proba-
bilities at time t. Combining Equations (1)–(5) and
stacking the decision variables dit in the (N × T)-
matrix Y and xit in the (N × K × T)-matrixX, we obtain
the likelihood:

L(Θ|Y,X,A) � ∏
i∈N

∏
t∈T

(p∗it)dit(1 − p∗it)1−dit ,
subject to : P∗

t � F(Δt + ΓAP∗
t), ∀t∈T.

(6)
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2.2. The Problem of Multiple Equilibria
The applicability of the proposed game-theoretic choice
model depends on whether there exists an equilibrium
choice outcome given the individual-specific parame-
ters. Under the assumption that F is continuous, there
exists a solution to the system of Equations (5), based
on Brouwer’s fixed-point theorem. Although the sys-
tem of Equations (5) admits an equilibrium solution,
this solution may not be unique, and multiple equi-
libria could exist, as discussed in previous research
(Brock and Durlauf 2001, Mazzeo 2002, Bajari et al.
2010, Ellickson and Misra 2011, Vitorino 2012). The
existence of multiple equilibria would prevent us
from pinning down a unique outcome and, thus,
reduces the usefulness of our model for counterfac-
tual studies that require equilibrium computations.
For homogeneous parameters and a general network
structure, there is no simple way to identify the
number of equilibria (Lee et al. 2014). In the situation
of individual-specific parameters, it becomes even
more challenging to determine the number of equilibria.
Fortunately, it is possible to derive the sufficient con-
ditions for a locally stable equilibrium,whichwe further
prove to be unique. This is particularly beneficial in the
current situation of large social networks, which re-
quires an efficient estimationmethod. The local stability
condition theoretically justifies the focus on the unique
equilibrium, which is necessary to apply the proposed
estimation procedure.Next, we discuss these conditions.

2.3. Ex Ante Equilibrium Selection with
Local Stability

A commonly used method to deal with multiple
equilibria is the “refinement of Nash equilibrium”
(Myerson 1978). Following Brock and Durlauf (2001),
we utilize a refinement criterion named “local sta-
bility.” Local stability implies that the game con-
verges to the original equilibrium if there is an
infinitesimal perturbation in one or more consumers’
equilibrium behaviors. Using such a refinement scheme
has important theoretical and practical implications.
First, if an equilibrium is not stable, a slight deviation by
one of the consumers will cause other consumers to
deviate further away from the equilibrium. In such
situations, it is, thus, practically difficult, if not impos-
sible, for the system to reach the equilibrium. Second, an
important advantage of structural models is its ability
to perform counterfactual analysis. Without the equi-
librium refinement, we need to compute all possible
equilibria, which might lead to multiple and possibly
contradicting policy implications. Finally, the search for
multiple equilibria becomes a nearly impossible task,
with many heterogeneous consumers with individual-
specific parameters.

Proposition 1 (Local Stability Condition). Under the
condition that |γi | ·degi · f

max( · )< 1, where degi is the weighted
degree of consumer i (i.e., degi � ∑

j∈Niaij) and f max(·), the
maximal value of f(·), we have (1) the equilibrium is locally
stable; and (2) the locally stale equilibrium is also unique.

Proof: See Online Appendix A for the proof.
Proposition 1 implies that if the susceptibility to

social-influence parameters are in parameter space
for all consumers, with |γi | < 1/(degi · fmax( · )), we
obtain a locally stable equilibrium that is also unique.
Note that this sufficient condition must hold for all
individuals and extends the unique equilibrium re-
striction with homogenous parameters (Lee et al.
2014) to the case with individual-specific parame-
ters.4 Allowing for individual-specific parameters
results in individual-specific restrictions that are less
stringent compared with the homogeneous situation.
The reason is as follows: In the case of homogeneous
parameters, the restriction for all consumers is deter-
mined by the inverse of the maximumweighted degree
in the network; in contrast, in the case of individual-
specific parameters, the restriction is individual-specific
and only depends on a consumer’s own weighted
degree. Moreover, we also show that the unique
equilibrium is locally stable, which implies that the
equilibrium is a likely outcome of the game. Finally,
the uniqueness of the locally stable equilibrium en-
ables us to apply the stochastic Bayesian Markov
chainMonteCarlo (MCMC) algorithm. The algorithm
significantly reduces computational complexity and
enables us to estimate the proposed social-influence
model on large social networks.
To further understand the local stability condition,

consider a two-node social network with two con-
nected consumers, 1 and 2. An intuitive process to
understand the choice equilibrium of the proposed
model is to assume an initial probability of con-
sumer 1 choosing d1 = 1. This consumer influences the
other consumer, which changes the choice probability
of consumer 2. Subsequently, because consumer 2
changes its choice probability and influences con-
sumer 1 as well, consumer 1 changes its own choice
probability. This procedure repeats until both con-
sumers reach a steady state, which equals the equi-
librium solution of the model. The susceptibility to
social-influence parameter serves as a factor that
discounts the order of influence (e.g., first order:
consumer 1 influences consumer 2; second order:
consumer 2 influences consumer 1 after being influ-
enced by consumer 1; etc.). The restriction on the
susceptibility to social-influence parameters ensures
that the system converges to a unique steady state
given the (best-response) dynamic process described
above. Conceptually, the restriction implies that so-
cial influence decreases as it propagates over the
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social network. This property is especially appealing
if one adds a third consumer to the example that is
only connected to consumer 2. The change of behavior
of consumer 2 due to the change of behavior of con-
sumer 1 will affect consumer 3. However, this indirect
effect of consumer 1 on consumer 3 is weaker than the
direct effect of consumer 1 on 2, because of the restriction
on social influence. Similar diminishing effects will oc-
cur if the network is extended with more consumers,
wherein the social effects become weaker as the dis-
tances between two consumers increase.

Finally, although previous research derived the
explicit formof the unique equilibriumwhen the error
distribution F is a type-I extreme value distribution
(Brock and Durlauf 2001, Lee et al. 2014), we derive it
for a general form of F in the following proposition.

Proposition 2 (Explicit Form of the Unique Locally
Stable Equilibrium). Given the unique locally stable con-
dition (Proposition 1), the equilibrium of this game defined
by Equation (5) can be expressed as an infinite composition
function evaluated at the intrinsic choice probability F(Δ):

P∗ � G∞( F(Δ)|Ω).
G∞(z|Ω) � limm→∞Gm(z|Ω) is the infinite composition
function of G(z|Θ), with Gm(z|Ω) � G ◦G ◦ ... ◦G⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟

m operations

(z|Ω)

and G(z|Ω) � F(Δ + ΓAz), where Ω � {Δ, Γ, A}.
Proof: See Online Appendix A for the proof.
Proposition 2 provides an exact formula for the

equilibriumchoiceprobability,whichequalsG∞(F(Δ)|Ω).
This formula is particularly useful to express the in-
tuition behind our counterfactual analysis, as we
show in Sections 4.4.1 and 4.5.

3. Identification and Estimation Method
3.1. Model Identification
In line with previous research of static games (Bajari
et al. 2010, Ellickson and Misra 2011, Vitorino 2012)
and dynamic discrete choice models (Rust 1987, Hotz
and Miller 1993, Magnac and Thesmar 2002), we
assume i.i.d. error terms εit across consumers and
time (Section 2.1). In practice, the i.i.d. assumption
may be challenging, as friendships are not formed
randomly (i.e., homophily), and consumers may be
exposed to the same external shocks (i.e., exogenous
effects), resulting in a possible omitted variable bias
(Manski 1993). This challenges the identification of
the susceptibility to social-influence parameter γi. To
address the challenge, we assume that the researcher
observes T independent realizations of the game. This
allows us to estimate individual fixed effects and
consider individual-specific parameters for other vari-
ables in Equation (1) with a random-coefficient speci-
fication. The inclusionof individualfixedeffects controls

for homophily by capturing unobserved characteristics
that may be correlated across consumers (Narayanan
and Nair 2013, Shriver et al. 2013).5 In addition, to
control for external shocks that are common to all
consumers, we include time fixed effects.
However, the inclusionof commonexogenous shocks

may not fully address the concerns over identification,
because there may be unobserved variables that tem-
porarily affect a subset of connected consumers. If
omitted, these variables may be absorbed by the social-
influence parameters, resulting in upward-biased esti-
mates of social-influence parameters. In such a scenario,
the identification of social-influence parameters hinges
on the inclusion of excluded variables, which directly
shift theutilities of some consumers and indirectly affect
the utilities of others through social influence (see Bajari
et al. 2010 and Vitorino 2012 for more details). Pre-
vious research often used group-specific shocks as
excluded variables, such as those of school grades,
families, or neighborhoods (De Giorgi et al. 2010, Lin
2010, Nicoletti et al. 2018). This is because consumers
in the same group are more likely to be exposed to the
same external shocks. For example, Shriver et al.
(2013) grouped surfers into geo-locations and used
varying wind speeds across days at these locations as
instruments for surfers’ blogging activities. However,
in many applications, such time-varying excluded
variables are difficult or even impossible to obtain
(Imbens 2014), which limits the application of the
proposed structuralmodel. To address this challenge,
we propose to exploit the network structure to identify
subsets of consumers who are likely to be members of
the same group and, hence, affected by the same group-
specific common temporal shocks. To this end, we
utilize community-detection algorithms (Newman 2006,
Blondel et al. 2008, Rosvall and Bergstrom 2008,
Ronhovde and Nussinov 2009).
Previous research shows that social networks con-

sist of different communities, which tend to have a
denser network structure (Fortunato 2010). Con-
sumers from the same community often have simi-
lar interests, speak the same languages, live in the
same geographic regions, and bear other similari-
ties. An important advantage of community detection
is that latent communities are often more predictive
of actual social group memberships than individu-
al characteristics (Yang et al. 2013). For example,
Fortunato (2010) found that results from community-
detection algorithms accurately predict how mem-
bers of a karate club were divided into two social
groups after a conflict happened between members.
Such prediction was difficult to produce with indi-
vidual characteristics alone. Similarly, Yang et al.
(2013) found that network connections are more pre-
dictive of actual social group membership across
multiple social media sites (e.g., Flickr, Twitter,
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Google+, and Facebook) than clusters formed based
on thousands of individual characteristics. Hence,
similar to those in observed groups (e.g., school
grades and neighborhoods), people in different com-
munities are likely to be exposed to different “local-
ized” external temporal shocks. To capture the effects
of these external shocks, we propose to use community-
specific time fixed effects as excluded variables that
only affect people in the same community at a certain
time, but are excluded from the decisions of others in
different communities.

Our community-detection approach to identify social
influence is particularly attractive when observed ex-
cluded variables are unavailable to researchers. How-
ever, even if such information is available, the excluded
variables constructed from communities can comple-
ment the observed ones (Newman and Clauset 2016).
Moreover, based on the findings of Yang et al. (2013),
it is plausible that excluded variables based on
community-specific time fixed effects are superior to
time fixed effects of observed groups, as communities
are often more related to behaviors of consumers.6

3.2. Challenges in Estimation
Previous literature suggested two approaches to es-
timate discrete choice models with interactions. The
first approach consists of an iterative process with
two steps (Zhu and Singh 2009, Bajari et al. 2010). The
first step solves the system of nonlinear equations
(e.g., Equation (5)), and the second step maximizes
the likelihood function given the equilibrium de-
rived in the first step. The second approach, named
Mathematical Programming with Equilibrium Con-
straints, involves a direct and exhaustive search over
the parameters and equilibria space (Su and Judd
2012). Such a constrained optimization approach has
been applied in marketing to a static entry game with
incomplete information (Vitorino 2012). A common
limitation of the two approaches is the high com-
putational complexity. Previous research only ap-
plied thesemethods to empirical settings with groups
that are substantially smaller than online social net-
works. For example, Zhu and Singh (2009) considered
the entry decisions of three retailers and Vitorino
(2012) up to nine stores in each market. Lee et al.
(2014) adopted the first estimation approach and
applied their model to a collection of networks, each
with at most a few hundred people. However, their
estimation method is infeasible for large social net-
works with heterogeneous consumers. In sum, it is
infeasible to apply previous estimation procedures to

empirical settings of large social networks in the
current research.
An important reason for the complexity of previous

estimation procedures is the consideration of multi-
ple equilibria.7 Ourmodeling context admits complex
interactions (both strategic complementarities γi > 0
and substitutions γi < 0) between many consumers
with individual-specific parameters. To reduce the
complexity of the estimation, we ex ante select a
unique equilibrium based on the local stability con-
dition (see Proposition 1), following the theory of
learning in games (Fudenberg and Levine 1998).
Such a treatment is important for our research, as it
enables us to apply a stochastic Bayesian MCMC
estimation procedure with the insights from Imai
et al. (2009), which significantly reduces computa-
tional complexity. The procedure was originally de-
veloped to estimate dynamic discrete choice models
and has been applied in structural demand estimation
by Sun and Ishihara (2018). Similar to our model,
dynamic discrete choice models contain a value func-
tion, which is the unique solution to a nonlinear system
of equations. Subsequently, the value function is in-
troduced into the likelihood function for parameter
estimation. The stochastic Bayesian MCMC procedure
eases the need to solve the nonlinear system of equa-
tions. The procedure derives a “pseudo” solution,
instead of an exact solution that is computationally
demanding. By doing so, the procedure replaces a
complex loop with a direct evaluation step, which
significantly reduces computational demands. An-
other advantage of the stochastic estimation proce-
dure is that it allows for the natural incorporation of
individual-specific parameters through a hierarchical
Bayesian structure.

3.3. The Stochastic MCMC Algorithm
Next, we present a detailed description of the sto-
chastic Bayesian MCMC algorithm.
The Stochastic Bayesian MCMC Algorithm. Start

with initializing a guess of the solution to the system of
equations and a parameter vector—that is, 〈p̂∗(0)i ,Θ(0)

i 〉.
At iteration (r), we execute the following steps:
Step 1: Use pseudo-solution p̂∗(r−1)i in the likelihood

function todrawparameter vectorΘ(r)
i using a standard

MCMC procedure (e.g., Gibbs-sampling).
Step 2(a): Derive a candidate pseudo-solution p̃∗(r)i

based on the history of iterations stored in memory8

Hr
i � {p̂∗(l)i ,Θ(l)

i }r−1l�r−R, where the term p̃∗(l)i is the pseudo-
solution at iteration (l), Θ(l)

i is the parameter vector
drawn at iteration (l) andR is set by the researcher and
represents the length of the history (i.e., how many
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previous iterations). The candidate pseudo-solution
p̃∗(r)i is a weighted average of previous pseudo-solutions,
which is computed as follows:

p̃ ∗(r)
i (Hr

i ) �
∑r−1
l�r−R

ω
(
Θ

(l)
i ,Θ(r)

i

)
p̂∗(l)i ,where

ω
(
Θ(l)

i ,Θ(r)
i

)
�

Kh

(
Θ(l)

i ,Θ(r)
i

)
∑r−1

l�r−RKh

(
Θ(l)

i ,Θ(r)
i

). (7)

In the above equation, Kh(·) is a multivariate kernel
density with bandwidth h. In theory, any form of
density function can be applied here (e.g., a Gauss-
ian kernel).

Step 2(b): Using the candidate pseudo-solution
p̃∗(r)i , we apply the operation defined in Equation (5)
only once to obtain the final pseudo-solution, with
p̂∗(r)i � F(Vi + γi

∑Ni
j�1 aijp̃

∗(r)
j ). Store this value p̂∗(r)i along

with parameter vector Θ(r)
i in memory and go to it-

eration (r + 1).
Our algorithm differs from Imai et al. (2009) in two

aspects. First, all the posterior distributions in Step 1
are standard, and, thus, we can use a Gibbs sampler,
which generally converges faster than Metropolis–
Hastings steps. Second, Steps 2(a) and 2(b) use policy-
function iterations to approximate the equilibrium
solution of the game (Equation (5)), instead of value-
function iterations to approximate the fixed point of
the Bellman equation.

To prove that the parameter estimates converge to
the true posterior distribution, we show that Steps
2(a) and 2(b) converge to the true equilibrium of the
game defined in Equation (5).9 Suppose the parameter
sets Θ(r)

i (∀i � 1,⋯,N) stay fixed at a value Θ∗
i for each

iteration r. With fixed parameters, weights ω in Equa-
tion (7) for all historical draws equal 1/R. Assume
that we start with a vector of choice probabilities p0.
In the first iteration, we derive p1 � F(Δ + ΓAp0), and,
subsequently, in the second iteration, p2 � FΔ + ΓA ×
(12 p0 + 1

2 p
1)). Given the contraction-mapping property

(see proof for Proposition 1), we derive the following,⃦⃦⃦
p2 − p1

⃦⃦⃦
∞ �

⃦⃦⃦⃦
F
(
Δ + ΓA

(
1
2
p0 + 1

2
p1
))

− F
(
Δ + ΓAp2

)⃦⃦⃦⃦
∞

≤ 1
2
λ
⃦⃦⃦
p1 − p0

⃦⃦⃦
∞, (8)

where ‖u − v‖∞ � max(|u − v|) is the maximum dis-
tance between two elements of vectors u and v and
λ ∈ (0,1). The same relationship holds for additional
iterations. The contraction-mapping property ensures
that the discrepancy between derived choice probabili-
ties decreases across iterations, and the stochastic algo-
rithm eventually converges to the equilibrium of the
game. As noted by Imai et al. (2009), the stochastic
algorithm gives more weights to equilibrium-choice

probabilities that are closer to the current parameter
draw and ensures the convergence when parameters
vary across iterations.
In sum, the proposed stochastic algorithm guar-

antees that the parameter simulations converge to the
true posterior distributions after a sufficiently large
number of iterations. Online Appendix B.2 further
provides a detailed description of the full stochastic
Bayesian MCMC procedure that we applied in the
empirical application. Moreover, simulation studies
reveal that the proposed method recovers the pa-
rameters accurately, while significantly reducing com-
putational complexity, as shown next.

3.4. Scalability Analysis of the Algorithm
To examine the performance of the stochastic Bayesian
MCMC procedure, we demonstrate parameter recov-
ery, as well as CPU time for model estimation. All
models were estimated on a standard desktop with an
Intel® Xeon� E-2176M Processor (six core, 2.70 GHz,
4.40-GHz Turbo, 12-MB cache) and 32-GB DDR4 in-
ternal memory. We compared the proposed estima-
tion procedure (i.e. “Stochastic”) with the traditional
Bayesian MCMC method (i.e. “Deterministic”). In
contrast to the stochastic BayesianMCMCprocedure,
the deterministic method follows a full iterative ap-
proach to solve the equilibrium-choice probabilities,
which is similar to maximum-likelihood approaches
used in previous literature.

3.4.1. Simulating Data. To generate the data, we used
the following specification for the utility function
(see Equation (1)):

U(dit � 1|xit, d−it,Θi)
� β0i + λt + β1ixit + λcom

t xcomi + γi

∑
j∈Ni

ãijp∗jt + εit.

(9)

In Equation (9), we assume a decision-making process
of binary choices dit of consumer i at period t and
random shocks following an i.i.d. standard normal
distribution with εit ~ N(0,1). We row-normalize the
adjacency matrix as in the empirical application, with
ãij as the ijth entry of the row-normalized adjacency
matrix Ã and

∑
j∈Ni ãij � 1. With the row-normalized

adjacency matrix Ã and standard normal errors εit,
the susceptibility to social-influence parameters γi∈
(− ̅̅̅̅

2π
√

,
̅̅̅̅
2π

√ ), a direct result from applying the local
stability condition in Proposition 1. Individual and
timefixed effects are capturedbyβ0i andλt, respectively.
We allow choices to be affected by an individual- and
time-varying explanatory variable xit that is simu-
lated from a standard normal distribution. Finally,we
divide consumers into two communities of equal
sizes and then create a community dummy xcomi that
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equals one if individual i is from the first community
and zero otherwise, as the second community serves
as baseline. Finally, community-specific time fixed
effects are captured by λcom

t .
In our simulation analyses, we considered both

situations with and without individual-specific pa-
rameters. In the homogeneous case,we set β1i and γi to
the same values for all consumers. In the heteroge-
neous case, we generate individual-specific parameters
from normal distributions common to all consumers, with
β1i ~ N(μβ1

,σ2β1) and γi ~N(μγ,σ
2
γ)I( −

̅̅̅̅
2π

√
<γi <

̅̅̅̅
2π

√ ).
In both cases, we simulated individual-fixed effects,
time-fixed effects, and community-specific effects from
uniform distributions as specified below. Using these
variables and parameters, we computed equilibrium
choice probabilities by solving the system of Equa-
tions (5) with the convergence tolerance set to 10−15.
After computing the equilibrium choice probabilities,
we simulated latent utilities and derived users’ binary
choices accordingly.

Given the setup, we investigate the computational
demands as a function of sample size and the mag-
nitude of the susceptibility to social influence. Sample
size affects the computational demand of each iter-
ation, and the magnitude of social influence affects
the rate of convergence (i.e., how many iterations are
needed) of the equilibrium choice probabilities. In our
simulations, we generated 10 different sample sizes,
with N set to {200, 400,...,2,000}. The number of time
periods T was fixed to 100, similar to the empirical
application. As we included community-specific time
fixed effects, we followed Girvan andNewman (2002)
to simulate networkswith known communities.10 The
density of the simulated networks was kept at 0.01,
which results in, on average, 2,4,...,20 friends for
different sample sizes. We simulated four scenarios
for both the homogeneous and heterogeneous pa-
rameter cases, with the true values of susceptibility
to social-influence parameters set to, respectively,
{−1.00, −0.01, 0.01, 1.00}. In the heterogeneous cases,we
set the corresponding variance σ2γ to {0.25, 0.01, 0.01,
0.25}. In all scenarios, we simulated individual fixed
effects β0i from a uniform distribution between −1.00
and 1.50. The mean of parameter β1i was set to one,
with a variance σ2β1

� .25 in the heterogeneous case.
The time fixed effects λt and community-specific time
fixed effects λcom

t were simulated from a uniform
distribution between−0.50 and 0.50. The combination
of all factors leads to 40 scenarios for either the ho-
mogeneous or the heterogeneous case (10 sample
sizes × 4 social-influence conditions).

3.4.2. Simulation Results: Comparison Between the
Deterministic and Stochastic Algorithm. In the esti-
mation,we ran a total of 10,000 iterations and used the

first 5,000 draws as the burn-in period, long after the
convergence of the runs. For the stochastic method,
we set the length of history R to 20 and chose a
Gaussian kernel with bandwidth equal to the rule-of-
thumb procedure proposed by Scott and Sain (2005).
For all estimation runs, we set the initial values of all
parameters to half of their true values. The first two
column groups of Table 1 present the true and esti-
mated values of social-influence parameters with the
deterministic and stochastic estimation procedure.11

Estimation results of both algorithms are virtually
identical, and all 95% posterior intervals contain the
true parameter values.
As discussed above, the main advantage of the

stochastic method is the improvement of the effi-
ciency of estimation. To examine the efficiency gain,
we recorded the CPU time of each iteration for all
simulation conditions. As the computational demand
depends on the magnitude of social influence, but
not the sign, we combined the simulation results with
the same absolute values of (mean) social influence.
Figure 1 summarizes the computational demands
(seconds per 10 iterations) of both methods across
different scenarios. First, in all scenarios, the sto-
chastic method shows substantial efficiency gains
over the deterministic method, especially for larger
sample sizes and social-influence parameters of lar-
ger magnitude. Second, although the computational
complexity of the deterministic method is polynomial
in the sample sizes, the complexity of the stochastic
method is linear, which makes it especially valuable
for large sample sizes. Third, the computational com-
plexity of the stochastic method does not depend on the
magnitude of social influence, whereas the determin-
istic method is substantially more demanding for social
influence of larger magnitude. In conclusion, the pro-
posed stochastic estimation procedure accurately re-
covers true parameters, but significantly reduces the
computational burden.

3.4.3. SimulationResults: The ImportanceofCommunities.
To investigate the importance of community-specific
time fixed effects for the identification of social-
influence parameters, we further estimated models
that ignore these effects (i.e., λcom

t � 0 in Equation (9))
on the same data simulated in Section 3.4.1. The last
column group of Table 1 presents the estimation re-
sults of social-influence parameters and Online Ap-
pendix C.2 reports the estimates of the fixed effects.
In line with the expectation, the mean estimates of
social influence are biased upward, especially in
situations with stronger social influence. For both
the homogenous and heterogenous cases, the 95%
posterior intervals do not contain the true values of
social influence. These results show that ignoring
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community-specific time fixed effects results in sub-
stantial biases, even if individual fixed effects are
considered. This is because individual fixed effects
control for time-invariant unobservables, but not

time-varying unobservables.12 Overall, the simulation
results highlight the importance of considering com-
munities for the identification of social-influence
parameters.

Table 1. Estimates of Social-Influence Parameters in Simulation Studies

True parameter

Deterministic approach Stochastic approach Without communities

N = 200 N = 2,000 N = 200 N = 2,000 N = 200 N = 2,000

Homogeneous: γ
−1.00 −0.98 −0.99 −0.98 −1.00 −0.87 −0.88

(−1.10, −0.86) (−1.11, −0.87) (−1.09, −0.85) (−1.09, −0.89) (−0.99, −0.74) (−1.00, −0.76)
−0.10 −0.11 −0.10 −0.11 −0.09 −0.08 −0.09

(−0.23, −0.01) (−0.18, −0.02) (−0.20, −0.01) (−0.18, −0.01) (−0.20, 0.03) (−0.23, 0.08)
0.10 0.10 0.10 0.10 0.10 0.13 0.12

(0.00, 0.22) (0.05, 0.20) (0.01, 0.19) (0.02, 0.19) (0.01, 0.25) (−0.02, 0.25)
1.00 1.04 1.01 1.04 1.02 1.19 1.19

(0.89, 1.18) (0.80, 1.17) (0.91, 1.18) (0.88, 1.14) (1.04, 1.32) (1.05, 1.36)
Heterogeneous: μγ

−1.00 −1.03 −1.00 −1.02 −1.01 −0.82 −0.83
(−1.18, −0.88) (−1.13, −0.87) (−1.18, −0.87) (−1.13, −0.90) (−0.97, −0.66) (−0.97, −0.69)

−0.10 −0.09 −0.10 −0.10 −0.09 −0.08 −0.08
(−0.22, 0.04) (−0.15, −0.08) (−0.26, 0.04) (−0.17, −0.04) (−0.20, 0.07) (−0.17, 0.01)

0.10 0.09 0.09 0.09 0.09 0.12 0.12
(−0.04, 0.21) (0.03, 0.15) (−0.01, 0.19) (0.01, 0.14) (−0.01, 0.25) (0.06, 0.19)

1.00 0.98 0.99 0.97 0.98 1.19 1.20
(0.84, 1.15) (0.85, 1.13) (0.83, 1.12) (0.84, 1.13) (1.05, 1.34) (1.03, 1.37)

Heterogeneous: σ2γ
0.25 0.25 0.25 0.26 0.26 0.29 0.30

(0.07, 0.48) (0.09, 0.41) (0.07, 0.50) (0.10, 0.42) (0.11, 0.53) (0.12, 0.49)
0.01 0.01 0.01 0.01 0.01 0.01 0.01

(0.00, 0.06) (0.00, 0.04) (0.00, 0.05) (0.00, 0.04) (0.01, 0.06) (0.00, 0.07)
0.01 0.01 0.01 0.01 0.01 0.01 0.01

(0.00, 0.06) (0.00, 0.04) (0.00, 0.05) (0.00, 0.04) (0.00, 0.10) (0.00, 0.04)
0.25 0.26 0.26 0.26 0.25 0.20 0.21

(0.12, 0.49) (0.10, 0.41) (0.10, 0.43) (0.12, 0.41) (0.16, 0.36) (0.07, 0.37)

Note. The 95% posterior confidence intervals are in the parentheses.

Figure 1. CPU Times per 10 Iterations of Different Estimation Methods
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4. Empirical Application: Login Decisions
in an Online Game

To illustrate the applicability of our model, we ob-
tained a data set that contains information about
Asian users from a massive multiplayer online role-
playing game.Online gaminghas become amultibillion-
dollar industry with the global revenue of $83.10 billion
in 2019.13 Importantly, online games provide useful
data about social and economic interactions (Bainbridge
2007) and are thereby ideal empirical contexts to study
social influence. The online game we study is based
on a Western fairytale storyline and was globally one
of the largest games at the time of the data collection.
Like many other online games, the game is free to play
and relies on in-gamepurchases of users as the revenue
source (i.e., a freemium model). Therefore, it is im-
portant for the online game to keep users active by
stimulating users’ logins to the game. In the game,
users form friendships, and social influence is an
important driving factor of user behaviors. Therefore,
it is important to keep track of those influential users,
whose login activities stimulate more frequent logins
of other users.We observe login decisions to the game
(as 0–1 decisions) and users’ profiles, such as gender
and geo-locations (i.e., cities), as well as network
connections in the game.

Login decisions are likely to follow our modeling
assumptions, as the utility of a login for a user de-
pends on the online status of other users. For example,
users may share information and complete tasks to-
gether (e.g., slaying monsters and finding treasures).
However, it is difficult for users to coordinate or
observe the login decisions of their friends before
logging in online. Moreover, even if users can com-
municate outside the game and inform their friends
that they are likely to play during a certain time
period, friends may not know exactly when they
would be online. Therefore, users may respond to the
expectations of the logins of their friends, which
depend on the time of login decisions and charac-
teristics of their friends. Following the assumptions in
Section 2, users are assumed to be myopic, and their
login decisions in different time periods are, there-
fore, independent realizations of the same network
game. To provide some support for this assump-
tion, we followed a procedure similar to Gruber and
Köszegi (2001), which used a preannouncement of
an increase in the cigarette tax to test the forward-
looking tendencies of smokers. In our data, we ob-
serve an in-game preannouncement of a major game
update. The announcement happened on Day 26 and
lasted until the end of the observation period, which
was just before the actual update. The update made
available new content (i.e., new tasks and territories),
and some of them could only be accessed if users

reached aminimum level. Hence, if userswere forward-
looking, we would expect an increase in their logins
during the announcement period, as increased logins
would enable them to reach the minimum levels re-
quired by the new contents. We ran a probit regression
of login decisions with all exogenous variables that
we used in the fullmodel, such as individual and time
fixed effects, and the announcement dummy. The
results revealed no empirical evidence of forward-
looking tendencies (the coefficient of the announce-
ment dummy is −0.014, with standard error 0.021).14

4.1. Data Description
The data contain 30 days of login records of 25,418
users in a complete social network of the online game.
To start gaming, users must select one game server,
choose a character from a range of hero classes (e.g.,
warriors, archers), and use their selected avatars to
enjoy the game contents. Given that many in-game
tasks require team efforts, users have incentives to
form in-game friendships. Notably, users can only
befriend others on the same game server. We thus
observed a full network of all users (around 110,000
users) from one server. Given the full network, we
obtained a giant component of around 30,000 users. In
this giant component, any two users can reach each
other, and none of the users has friends outside of the
giant component. We then removed inactive users,
who did not log in during the observation period of
30 days, to obtain the final data set of 25,418 ac-
tive users.
Although users can always change their friend-

ships in the game, we observed a mature and stable
social network with only few changes. During the
observation period, only 130 users (0.051%) formed
new friendshipswith one another (i.e., 65 newpairs of
friends), and none of them defriended any other
users. New friendships were formed on 24 out of
30 days (i.e., days without any new friendships are {6,
13, 14, 18, 21, 26}), and we did not find any upward or
downward trends in friendship formation (Man–
Kendall test: Z = 0.66, p = 0.51).15 At the end of the
observation period, the average degree of the network
is 5.87 (with standard deviation: 6.98). The degree
distribution (d) is power-law likewith p(d) � (α̂ − 1)d−α̂,
where parameter α̂ is estimated at 1.17 (standard
error: 0.001). The mean percentage of common con-
nections between two friends is 2.57%, with a mini-
mum overlap of 0.00%, median 0.00%, andmaximum
50.27% (see Structural Equivalence in Table 2).
We observed login activities of users over a period

of 30 days. To capture login decisions, we sliced days
in quarters (i.e., 12 a.m.–6 a.m., 6 a.m.–12 p.m.,
12 p.m.–6 p.m., and 6 p.m.–12 a.m.) and constructed a
dummy variable that equals one if a user logs into the
game during a quarter of the day, and zero otherwise.
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Because of the inclusion of individual fixed effects, we
did not incorporate time-invariant individual char-
acteristics, such as gender (48.76% are female) and
geographical location (i.e., users were in 211 cities).
Importantly, we observed time-varying in-game pro-
motions, of which one was a regular promotion for all
users and two were targeted to users of either gender.
The regular promotion rewarded users with in-game
items (e.g., magic potions and costumes) if they logged
in during the promotion. The two targeted promotions
corresponded to popular public events, International
Women’s Day andWhite Day,16 which were targeted
at females and males, respectively. Similar to the
regular promotion, during the targeted promotions,
targeted users were rewarded with valuable in-game
items if they logged in. Hence, the targeted promo-
tions were exogenously determined and shifted logins
of only a selected group of users.Moreover, most users
befriend both females and males and have on average
48.98% (standard deviation (std.): 33.69%) of friends
from the opposite sex (females: 45.03% with std.
31.63% and males: 52.73% with std. 35.13%). The
targeted promotions are, thus, valuable sources of
variation that we can exploit for the identification of
social influence. For the regular promotion, we used a
dummy with one denoting the quarter-days with the
promotion, and zero otherwise. For the targeted
promotions, we used two dummy variables with one
denoting a user targeted during the quarter-days of
the promotions, and zero otherwise.

Summary statistics of all variables are presented in
Table 2. As the first evidence of social influence, we
find a positive correlation between users’ own logins
and the average logins of direct friends (r = 0.21; on
average, 35.31% of friends are online when a user logs
in and 18.57%when a user does not log in). Moreover,
we also find significant, but weaker, correlations
between users’ own logins and the average login
decisions of their second-order (r = 0.19) and third-
order (r = 0.13) friends. The differences between the
correlations are significant (first versus second order:
Z score = 27.59, p < 0.00; second versus third order: Z
score = 108.81, p < 0.00), which indicate that social

influence may weaken over the network. Such a
pattern is in line with the implications of the unique
equilibrium condition. As expected, all promotions
show positive and significant (p < 0.00) correlations
with logins. Finally, we also explored whether login
decisions varied across time (see Figure 2) and found
that users were less likely to login during the first
quarter (12 a.m.–6 a.m., average login probability
6.67%) and second quarter (6 a.m.–12 p.m., average
login probability 10.92%), compared with the third
quarter (12 p.m.–6 p.m., average login probability
22.97%) and fourth quarter (6 p.m.–12 a.m., average
login probability 24.08%).

4.2. Community Detection
As discussed in Section 3.1, we propose to use
community-specific time fixed effects to facilitate
the identification of social influence. To do so, we
must divide the social network into different com-
munities, with many connections within commu-
nities and few connections between communities.
We followed Lancichinetti and Fortunato (2009), who
recommended four types of algorithms for undi-
rected and unweighted networks. These algorithms
are as follows: (1) Spectral Bisection (Newman 2006),
(2) Infomap (Rosvall and Bergstrom 2008), (3) Blondel
(Blondel et al. 2008), and (4) RN (Ronhovde and
Nussinov 2009). For the first three methods, we
used the C++ igraph library (Csardi and Nepusz
2006). We used the RN algorithm implemented in
C++ (Ronhovde and Nussinov 2009) and specified 11
different parameter values to weight connections
within and between communities (i.e., the γ param-
eter in Ronhovde and Nussinov 2009, which we set to
0.01, 0.1, 0.2, 0.3... and 1). In total, we compared 14
community-detection algorithms. To select the opti-
mal solution, we adapted four quality measures
based on Leskovec et al. (2010). Intuitively, a good
community-detection solution should result in com-
munities where people are densely linked within
communities and sparsely between communities. The
adapted measures reflect this fundamental criterion.
Specifically, the four quality measures are as follows:

Table 2. Descriptive Statistics of Variables

Variables Mean Standard deviation Min Max Correlation (with Y)

Login Y 0.16 0.37 0.00 1.00 1.000
Social Influence Average Friends’ Logins 0.21 0.29 0.00 1.00 0.212
Exogenous Effects Regular Promotion 0.04 0.20 0.00 1.00 0.002
Targeted Promotions Promotion (Women’s Day) 0.02 0.13 0.00 1.00 0.004

Promotion (White Day) 0.02 0.13 0.00 1.00 0.006
Network Measures Degree Centrality 5.87 6.98 1.00 76.00 0.13

Structural Equivalence 0.03 0.05 0.00 0.50 0.02
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(1) Conductance (i.e., the percentage of connections
between communities over all the connections in the
network), (2) Expansion (i.e., the average number of
friends an individual has outside of his commu-
nity), (3) Average Out-Degree Friends (Average-ODF;
i.e., the average percentage of friends that an individual
has outside of his/her community), and (4) Flake-ODF
(i.e., the percentage of people that have fewer friends
within than outside of their own communities). For each
criterion, lower values indicate better performances.
Table 3 reports the performance measures for each of
the 14 community-detection algorithms. Overall, the
Blondel algorithm provides the best performance on
all measures, except for the Flake–ODF measure. It
has a similar, but slightly lower, performance compared
with RN algorithm with parameter 0.01 (0.0044 versus
0.0001, respectively, for Blondel and RN algorithm).
Therefore, we decided to use the communities detected
by the Blondel algorithm in our follow-up analysis.17

Using the algorithm, we detected 125 communities,
with sizes ranging from 26 to 817 users.18 For an
average user, 80.7% of his friends are in the same
community (min: 7.7%, median 66.7%, max: 100%)
and, on average, belong to 3.12 different communities
(min: 1.00, median: 2.00, max: 24.00). This variety in
community-membership of friends facilitates the iden-
tification of social influence, on the condition that
different communities experience different external
shocks. To test this, we ran an analysis of variance
(ANOVA) on the average logins of communities
across time, with communities and various time fixed
effects as factors. In particular, we included quarter-of-
the-day effects, day-of-the-week effects, and linear and
quadratic trends. The ANOVA results reveal the sig-
nificantmain effect of communities (F = 20.75, p< 0.00),
as well as significant interactions between communities
and quarter-of-the-day effects (F = 20.65, p < 0.00),
linear trend (F = 40.76, p < 0.00), and quadratic trend

Figure 2. Aggregate Logins over Time

Table 3. Performance of Different Community-Detection Algorithms

Algorithms Conductance Expansion Average-ODF Flake-ODF

Bisection 0.3700 2.1735 0.2547 0.1371
Infomap 0.4608 2.7064 0.2963 0.2220
Blondel 0.0032* 0.0190* 0.0062* 0.0044
RN (r = 1.0) 0.3955 2.3232 0.2705 0.1551
RN (r = 0.9) 0.3722 2.1864 0.2568 0.1332
RN (r = 0.8) 0.3412 2.0043 0.2393 0.1083
RN (r = 0.7) 0.2998 1.7608 0.2128 0.0688
RN (r = 0.6) 0.2446 1.4369 0.1772 0.0426
RN (r = 0.5) 0.2012 1.1818 0.1459 0.0176
RN (r = 0.4) 0.0829 0.4868 0.0737 0.0168
RN (r = 0.3) 0.0292 0.1716 0.0314 0.0058
RN (r = 0.2) 0.0092 0.0539 0.0128 0.0042
RN (r = 0.1) 0.0041 0.0241 0.0066 0.0035
RN (r = 0.01) 0.0110 0.0647 0.0098 0.0001*

*The best-performing algorithm on corresponding criterion.

7586
Chen, van der Lans, and Trusov: Efficient Estimation of Network Games

Management Science, 2021, vol. 67, no. 12, pp. 7575–7598, © 2021 The Author(s)



(F = 5.82, p < 0.00). Figure 3 shows the average logins
of different communities across different quarter days.
As shown in the plot, the average logins vary sub-
stantially across quarter days, with some communities
more active in the third quarter (12 p.m.–6 p.m.) and
others in the fourth quarter (6 p.m.–12 a.m.). Overall,
these variations make the inclusion of community-
specific time fixed effects a useful approach for the
identification of social-influence parameters.

4.3. Model Specification
For the empirical application, we specify the utility
function (Equation (1)) as follows:

U(dit�1|xit,d−it,Θi)
�β0i+λt+β1ixt+β2x

prom
it +λcity

t xcityi +λcom
t xcomi

+γi

∑
j∈Ni

ãijp∗jt+εit. (10)

First, we assume a standard normal distribution for
i.i.d. error term εit, which implies that login decisions
follow a probit choice model.19 As in the simulation
studies, we row-normalized adjacency matrix A, so
that all susceptibility to social-influence parameters
are bounded with |γi | <

̅̅̅̅
2π

√
.20 We incorporated in-

dividual (β0i) and time fixed effects (λt), and set the
effects of two time periods (i.e., quarter day 1 and 85)
to zero for identification.21 The vector xt contains the
regular promotion. Finally, we included three sets of
excluded variables based on the following variables:
(1) two targeted promotions (xpromit ), (2) a vector of 211
cities dummies (xcityi ), and (3) a vector of 125 com-
munity dummies (xcomi ). For the latter two, we set one
city and one community as baselines. In the estima-
tion, we allowed the effects of the regular promotion
(β1i) and the susceptibility to social influence (γi) to be

individual-specific using random coefficient specifi-
cations with normal distributions. We did not allow
the effects of targeted promotions β2 to be individual-
specific, because only a subset of users were targeted.
Finally, parameter vectors λ

city
t and λcom

t capture,
respectively, the city- and community-specific time
fixed effects at time t.

4.4. Estimation Results and Model Validation
To illustrate the importance of incorporating individual-
specific parameters and examine the efficacy of dif-
ferent excluded variables, we compared our model
to several nested alternatives. In addition, we also
validated the identification strategy of incorporating
community-specific time fixed effects by construct-
ing exogeneity tests from a reduced-form analysis, as
shown in Section 4.4.2.

4.4.1. Estimation Results and Model Comparisons. We
estimated six different models, which all include in-
dividual fixed effects (β0i), exogenous effects (xt), and
social influence (γ). Model 6 is the full model as
specified in Equation (10). Model 1 assumes that the
effects of the regular promotion and social influence
are homogeneous across users (i.e., β1i and γi are the
same across all consumers). In contrast, all the re-
maining models allow for individual-specific parame-
ters. Model 2 does not incorporate any excluded vari-
ables (β2 � λ

city
t � λcom

t � 0), whereas model 3 only
incorporates targeted promotions as excluded vari-
ables (λcity

t � λcom
t � 0) and model 4 adds city-specific

time fixed effects (λcom
t � 0). Finally, model 5 only

includes community-specific time fixed effects (β2 �
λ
city
t � 0) and corresponds to situations where re-

searchers do not directly observe any exogenous
excluded variables. All models were estimated with

Figure 3. Average Logins of Different Quarters Across Different Communities
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the stochastic Bayesian MCMC method (see Online
Appendix B.2 for the detailedMCMC procedure). We
used 20,000 draws after a burn-in period of 10,000,
long after the convergence (for the convergence di-
agnostics, see Online Appendix G).

Table 4 reports the estimation results of the models,
as well as the fit statistics (Log Marginal Density
(LMD)). The fit statistics indicate that the inclusion of
individual-specific parameters strongly improvesmodel
performances (i.e., LMD of Model 1 = −9.503 × 105

versus Model 6 = −8.483 × 105). Moreover, compared
with model 2, adding observed excluded variables (i.e.,
targeted promotions and city-specific time fixed effects)
improvesmodelfit (LMDofModel 2 = −8.511 × 105 versus
Model 3 = −8.504 × 105 versusModel 4 = −8.499 × 105).
Interestingly, if we only add community-specific time
fixed effects as in model 5, model fit improves much
stronger, which indicates that communities may cap-
ture important differences between users (LMD of
Model 5 = −8.495 × 105). Finally, the full model 6,
which includes both observed excluded variables and
community-specific time fixed effects, best describes
the data (LMD Model 6 = −8.483 × 105).

We next compare the estimates of social-influence
parameters ofdifferentmodels. First, ignoring individual-
specific parameters (model 1) significantly reduces
the estimate of the susceptibility to social influence

(mean estimate: 0.69 versus 0.91, respectively, for
model 1 and model 6). Second, ignoring excluded
variables significantly inflates the mean estimates of
the susceptibility to social influence (1.11 versus 0.91,
respectively, for model 2 and model 6, with all pos-
terior draws of model 2 exceeding those of model 6).
This highlights the importance of excluded variables
for the identification of social influence. The param-
eter estimates of model 3 to model 5 further highlight
the power of community-specific time fixed effects.
Compared with model 2, the inclusion of targeted
promotions and city-specific time fixed effects re-
duces the upward bias in the mean estimates of social
influence (1.08 versus 1.03, respectively, for model 3
and model 4). However, these estimates are still
significantly different from the full model (all pos-
terior draws of models 3 and 4 are larger than those of
model 6). In contrast, if only community-specific time
fixed effects are included as excluded variables as
in model 5, the mean estimate of social influence
becomes close to that of the full model (mean esti-
mates: 0.93 versus 0.91, respectively, for model 5 and
model 6, with 4.63% of the posterior draws in model 6
larger than those of model 5). Figure 4 further illus-
trates the differences between the individual-specific
estimates of the susceptibility to social influence for
models 2–6. Model 5 produces a histogram of the

Table 4. Estimation Results of Different Models

Variables

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Homogeneous
parameters

Without city and community
and targeted promotions

Without city and
community

Without
community

Without city and
targeted promotions Full model

Social Influence
Mean 0.69 1.11 1.08 1.03 0.93 0.91

(0.65, 0.74) (1.08, 1.14) (1.05, 1.11) (1.00, 1.07) (0.89, 0.97) (0.87, 0.95)
Variance — 0.74 0.70 0.63 0.68 0.61

(0.70, 0.77) (0.68, 0.73) (0.61, 0.65) (0.66, 0.70) (0.59, 0.63)
Individual Fixed Effects
Post hoc mean −1.14 −1.71 −1.66 −1.56 −1.50 −1.47
Post hoc variance 0.48 0.42 0.40 0.34 0.33 0.38

Promotions
Regular promotion 0.07 0.05 0.06 0.06 0.07 0.09

(0.02, 0.12) (0.04, 0.06) (0.05, 0.08) (0.00, 0.10) (0.01, 0.13) (0.02, 0.15)
Promotion

(Women’s Day)
0.11 — 0.07 0.06 — 0.06

(0.09, 0.13) (0.05, 0.10) (0.04, 0.08) (0.04, 0.08)
Promotion

(White Day)
0.19 — 0.06 0.07 — 0.07

(0.17, 0.21) (0.04, 0.09) (0.05, 0.10) (0.05, 0.10)
Time Fixed Effects Incl. Incl. Incl. Incl. Incl. Incl.
City-Specific

Time Fixed Effects
Incl. Excl. Excl. Incl. Excl. Incl.

Community-Specific
Time Fixed Effects

Incl. Excl. Excl. Excl. Incl. Incl.

LMD −950,255 −851,128 −850,403 −849,942 −849,485 −848,334

Notes. The 95% posterior confidence intervals for selected parameters are in parentheses. Estimates are bolded if the 95% posterior confidence
intervals do not contain zero. For individual fixed effects, the mean and variance are computed post hoc based on individual draws. Excl.,
excluded; Incl., included.
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median posterior estimates of the individual-specific
social-influence parameters that are very similar to
those of the full model 6. Overall, these patterns
provide initial support that community-specific
time fixed effects are useful for the identification of
social influence, which we further explore in the
next section.

We focus on the estimates of the full model (model 6),
because it has the best model fit, and parameter
estimates are qualitatively similar across models.
First and foremost, we find a significant estimate of
the susceptibility to social influence (mean: 0.91) that
varies strongly across consumers (variance: 0.61),22 as
illustrated in Figure 4. Although the susceptibility to
social-influence parameter is overall positive, some
users are not affected by their friends’ login decisions
or have a slightly negative value. In particular, for
5.31% of all users, the median posterior estimates of
the individual-specific social-influence parameters
are negative. For the marketing variables, the regular
promotion has a positive effect on logins (mean es-
timate: 0.09). Similarly, both targeted promotions
significantly increase logins, and show comparable

effects (mean estimates: 0.06 and 0.07, respectively,
for International Women’s Day and the White Day).
Using these estimates, we quantified Influencei—

that is, the social influence of user i on all other users in
the network. To do so, we compared the current
scenario with a counterfactual scenario where user i
becomes inactive (i.e., the intrinsic utility is set to−∞).
We did this for all time periods T in our data and
subsequently computed the average across time pe-
riods, with the following equation:

Influencei � 1
T

∑T
t�1

∑
j∈N\i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Gj

∞( F(Δt))⏟̅̅̅̅⏞⏞̅̅̅̅⏟
Login probability of user j at time t,

if user i logs in as usual

− Gj
∞( F(Δt |Vit � −∞))⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

Login probability of user j at time t,
if user i becomes inactive

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Figure 4. Histograms of Median Posterior Estimates of Individual-Specific Social-Influence Parameters
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Using Equation (11), Figure 5 reports the results of the
influence that each user has on other users in the
network. As illustrated in Figure 5, logins of almost all
users have a positive impact on login decisions of
others, and only 51 users out of 25,418 users have
negative influence (min influence: −0.40). This is
consistent with our observations that users in the
online game treated friendships very carefully for
gameplay. Interestingly, the shape of Figure 5 is right
skewed, with a small group of gamers having a
disproportionally larger social influence (maximum
social influence = 0.94 logins per quarter day). This
shape is possibly driven by the distribution of the
number of friends of users, which follows a power-law
distribution as discussed in Section 4.1. In line with
this, we find that social influence is positively cor-
related with degree centrality (r = 0.61 and p < 0.01).

4.4.2. Validation of the Identification of Social Influence.
To identify social influence, we propose to include
community-specific time fixed effects to proxy for
exogenous “local shocks” that only affect users in the
same community. Our estimation results support that
community-specific time fixed effects indeed reduce
the upward bias in the mean estimate of the social-
influence parameters. However, the identification of
the proposed structural model, as any structural
model, relies on structural assumptions. To further
validate the estimates of social-influence parameters

of the structural model, we constructed an exogeneity
test that utilizes instrumental variables (Hausman
1978, Rivers and Vuong 1988), which is executed as
follows. With the estimation of the structural models
in Table 4, we first computed the expected equilib-
rium login probabilities P̂∗

t using Equation (5) and
then derived the expected percentages of friends
that are online (i.e., ÃP̂∗

t). We then used ÃP̂∗
t as the

variable of social influence and estimated a reduced-
form model that is analogous to the linear-in-means
specification (Manski 1993). The reduced-formmodel
has the same specification as Equation (10), except
that equilibrium login decisions are replaced by the pre-
dicted values (i.e., ÃP̂∗

t) from the structural estimations:

U(dit � 1|xit, p̂∗t ,Θi)
� β0i + λt + β1ixt + β2x

prom
it + λ

city
t xcityi + λcom

t xcomi
+ γi

∑
j∈Ni

ãijp̂∗jt + ηit.

(12)

We assume that the error term ηit follows a standard
normal distribution, and user i logs into the game at
time period t (i.e., dit = 1) if the latent utility is positive.
Thus, the model corresponds to a probit model with
the predicted percentages of friends that are online as
the variable of social influence. Using this model, we
examined whether the structural models are well-
specified with exogeneity tests on ÃP̂∗

t .

Figure 5. The Distribution of Social Influence on Others Across Users
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To construct the exogeneity test, we adopt a control-
function approach by specifying afirst-stagemodelwith
ÃP̂∗

t as the dependent variable (Wooldridge 2010):∑
j∈Ni

ãijp̂∗jt � α0i + λt + α1ixt

+α2x̄
prom
it + λ̄

city
t x̄cityi + λ̄com

t x̄comi + νit. (13)

In Equation (13), x̄promit � ∑
j∈Ni ãijx

prom
jt is the fraction of

user i’s friends that are targeted during the targeted pro-
motions. Similarly, x̄cityi �∑

j∈Ni ãijx
city
j and x̄comi �∑

j∈Ni×
ãijxcomj are the vectors containing the fraction of user i’s
friends in each city and community, respectively.
Following the control-function approach (Petrin and
Train 2010),we assume the error terms of thefirst- and
second-stage model to be correlated, with ηit = θνit + eit.
The test for the exogeneity of ÃP̂∗

t is equivalent to
the test whether θ = 0 (Wooldridge 2010). The main
challenge of implementing the test is to identify an
instrumental variable that is excluded from user i’s
login decisions, but indirectly affects logins of the
user through his friends. In our data set, we observed
two targeted promotions and used x̄promit , the fraction
of friends that are targeted by the two promotions, as
instrumental variables. Because all users were informed
about targeted promotions beforehand, rational users
would integrate these promotions into their expecta-
tions about the login decisions of their friends, making
targeted promotions a valuable instrument.

Next, we discuss how the proposed instruments,
x̄promit , satisfy three conditions, as discussed by Imbens
(2014): (1) exogeneity, (2) exclusion restriction, and
(3) relevance. First, the proposed instruments are
exogenous, as the two targeted promotions depend
on the timing and nature of the public events, which
are exogenous. Second, the proposed instruments are
excluded from the login decisions of user i. This is
because we control for targeted promotions xpromit of
user i and timefixed effectsλt as explanatory variables
in Equation (12). Any remnant impact of targeted
promotions on the focal user is through his friends.
Third, to examine the relevance of the instruments, we
ran two first-stage regressions, as in Equation (13),
with the endogenous variables (i.e., ÃP̂∗

t ) calculated
from the full model (model 6 in Table 4) and one of the
two instruments. As seen from models (b) and (c) in
Table 5, the parameter estimates of the instruments
are positive and significant (estimates: 0.009 and
0.008, respectively, for the targeted promotion on
International Women’s Day and White Day, with
none of the posterior draws negative). To further
examine whether the instruments are relevant, we
ran a baseline model (model a) without instruments.
The differences between LMDs (i.e., logged Bayes
factors) of both regressions and the baselinemodel are
87.21 and 57.25, respectively, which are very strong
evidence that the instruments are relevant (Kass and
Raftery 1995). In addition, we also ran likelihood-ratio

Table 5. Estimation Results of the First-Stage Model

Variables

Model (a) Model (b) Model (c) Model (d)

No instrument
With Women’s Day

instrument
With White Day

instrument
With both
instruments

Instruments (Fraction of Friends Targeted)
Promotion (Women’s Day) — 0.009 (0.004, 0.014) — 0.009 (0.005, 0.013)
Promotion (White Day) — — 0.008 (0.001, 0.016) 0.008 (0.002, 0.014)
Average Individual Fixed Effects of Friends
Post hoc Mean 0.52 0.52 0.52 0.53
Post hoc Variance 0.45 0.45 0.45 0.45
Average Time Effects of Friends
Regular Promotion 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 0.02 (0.01, 0.02) 0.02 (0.00, 0.02)
Time Fixed Effects Incl. Incl. Incl. Incl.
Average City-specific Time Fixed Effects of Friends Incl. Incl. Incl. Incl.
Average Community-specific Time Fixed Effects of

Friends
Incl. Incl. Incl. Incl.

LMD −762,612 −762,524 −762,554 −762,436
Bayes Factor (log) — 87.21 57.25 145.38
F statistics — 351.19 252.82 493.86

Notes. The dependent variable is the average expected logins of friends as computed based on the structural model (full model 6 in Table 4).
Models (a)–(c) are estimated separately from the second-stage model, and model (d) is estimated jointly with the second-stage model. The 95%
posterior confidence intervals for selected parameters are in parentheses. Estimates are bolded if the 95% posterior confidence intervals do not
contain zero. F statistics and Bayes factors are calculatedwithmodel (a) as the baselinemodel. For individual fixed effects, themean and variance
are computed post hoc based on individual draws. Excl., excluded; Incl., included.
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tests that compared models (b) and (c) with model (a).
The F statistics are 351.19 (p < 0.00) and 252.82 (p <
0.00), respectively, for models (b) and (c), both much
larger than the rule-of-thumb value 10.00 (Staiger and
Stock 1997). In sum, these analyses empirically sup-
port the validity of the instruments.

For the control-function approach, we jointly es-
timated Equations (12) and (13). Table 6 presents the
results from the control-function estimation, as well
as the direct estimation. We tested specifications of
structural models 4–6 in Table 4,23 to examine the
usefulness of communities in the structural estima-
tion. The estimation results reveal the following. First,
the full model 6 shows no evidence of endogeneity, as
the estimate of covariance θ is insignificant, with the
posterior 95% confidence interval containing zero.
Second, the estimate of covariance θ based on the
variable of social influence from model 5 is also in-
significant (95% posterior confidence interval: [−0.38,
0.06]), whereas that from model 4 is significant (95%
posterior confidence interval: [−0.48, −0.38]). These
results support the specification of model 5, which
only includes community-specific timefixed effects as
excluded variables. In contrast, model 4, which in-
cludes targeted promotions and city-specific time
fixed effects, is not supported by the exogeneity test.
Overall, these results further support the use of com-
munities to construct excluded variables to identify
social influence.

4.5. Implications for Targeting
An advantage of the structural model is that it allows
researchers to perform counterfactual simulations to
evaluate the effectiveness of new strategies not cov-
ered in the data. In this section, we illustrate the
potential managerial usefulness of the proposed struc-
tural model of social influence. As discussed in Sec-
tion 4.1, keeping users active is vital for the survival of
online games, as users’ engagement generates reve-
nue through in-game purchases. To increase the ac-
tivity level of users, the online game could leverage
the “social multiplier effect” by targeting a small
group of influential users. Traditionally, to increase
engagement, companiesmainly target consumers based
on their usage patterns (Ballings and Van den Poel
2015) or strategic positions in the network, such as
degree centrality (Hinz et al. 2011, Chen et al. 2017).
As a novel enhancement to these approaches, we
propose to leverage how users respond to social in-
fluence across time and illustrate how the online game
can improve the effectiveness of targeting. The im-
portant role of timing in marketing communications
has been recognized by both marketing practitioners

and academics (Drèze and Bonfrer 2009). We are all
used to receive telemarketing calls right before din-
nertime and an inflow of promotional emails to our
mailboxes between 9 a.m. and 10 a.m. in the morning.
Clearly, these times are not chosen randomly, but
reflect marketers’ anticipation of returns on their ef-
forts. Likewise, in the domain of social networks, the
timing of reaching out to influential consumers may
play a critical role.
We argue that when choosing the optimal timing in

network settings, marketers need to consider several
factors. First, marketers need to consider the proba-
bility that themarketing intervention changes the target’s
behavior. This is a well-known principle of marketing
communication, as it would be wasteful to stimulate an
action of consumers who are highly likely to take the
action without additional stimulation, or are highly
unlikely to react to the stimulation. Second, depending
on the time of the intervention, a consumer’s response
(i.e., changes in behaviors) may vary. In the online
game, there are times of targeting that are preferable
to some users, but less popular among others. Finally,
how users respond to their friends may also depend
on the time of the day. Hence, to optimally select the
right targets with the highest potential impact on the
network, it is important to have a model that captures
all of the above dimensions. The model developed in
this paper may serve this purpose, as it allows one to
predict the individual-specific responses to a certain
amount of direct and/or social stimulation that is
received at a given time.
The intuition behind the proposed time-/social-

awareness targeting approach is as follows. At a
given point in time, themost promising targets are the
network members who (1) are likely to respond
(i.e., to change their behavior) to the direct marketing
stimulation, and (2) have the most direct (i.e., friends)
and indirect connections (i.e., friends of friends) who
are likely to respond to the social stimulation that is
resulted from the target’s change of actions. We ex-
plore the performance contribution of these factors
through policy simulations. To obtain the perfor-
mance of a targeting decision, we assume that the
company is able to stimulate the intrinsic login utility
of a group of users S ⊂N ≡ {1,2,...,N} (i.e., S is a subset
of all network users, and N is the set of all users). For
each user s in set S, we assume that the intrinsic utility
increases by δs due to the targeting efforts. We set δs
equal to the estimated individual-specific response of
user s to the regular promotion from model 6. Fol-
lowing the intuition in Equation (11), the performance
at time t of targeting users in subset Swith marketing
stimulation δS (i.e., Π(δS)

St ) can be calculated as the
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overall increase of logins of the network, compared
with the situation without targeting:

Π(δS)
St � ∑

i∈N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Gi

∞( F(Δt + δS))⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
Login probability of user i at time t

with targeting

− Gi
∞( F(Δt))⏟̅̅̅̅⏞⏞̅̅̅̅⏟

Login probability of user i at time t
without targeting

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

where δS is a (N × 1)-vector indicating the change in
intrinsic utilities due to targeting (i.e., element i of δS

equals δi if i ∈ S, and zero otherwise), and Δt is a vector
of intrinsic utilities without targeting.

4.5.1. The Decision of “Whom to Target.” To examine
the decision of “whom to target”, we compared the
following four targeting approaches: (1) “Homoge-
neous Parameters,” (2) “Hub,” (3) “Responder,” and
(4) “Influencer.” We compared these heuristics us-
ing Equation (14) during the time of the regular

promotion (quarter days 85–104 or days 22–26). The
Homogeneous Parameters approach targets users
that maximize Equation (14), but uses the estimates of
model 1 (Homogeneous Parameters; see Table 4). The
Hub approach focuses on the dense regions of the
social network and targets those users with the most
connections. The Responder approach targets users
who are most likely to change their logins if incen-
tivized (i.e., with the highest increase in login prob-
abilities if targeted with the promotion). The Influ-
encer approach focuses on both responsiveness and
network positions and targets those users that max-
imize Equation (14) using the parameter estimates of
the full model 6. In all four targeting approaches, we
selected 1,000 users.
The targeting results of the four approaches are

presented in Table 7. The inclusion of individual-
specific parameters strongly improves the targeting
performance, as the expected performance of the
Homogeneous Parameters approach is the worst.
This highlights the importance of extending the tra-
ditional model (e.g., Lee et al. 2014) with individual-
specific parameters. Interestingly, targeting with the
Hub approach leads to much worse results than the
Responder approach (360.72 versus 3,627.50), which
highlights the importance of considering the responses
of users to the targeting incentives. In particular, the

Table 6. Testing the Specifications of Structural Models

Variables

Model 4 without community
Model 5 without city-
targeted promotions Model 6 full model

CF-Probit Probit CF-Probit Probit CF-Probit Probit

Social Influence
Mean 1.03 1.11 0.92 0.92 0.91 0.91

(1.01, 1.05) (1.08, 1.13) (0.91, 0.94) (0.91, 0.94) (0.86, 0.96) (0.89, 0.94)
Variance 0.78 0.80 0.67 0.67 0.66 0.66

(0.76, 0.81) (0.78, 0.83) (0.65, 0.69) (0.65, 0.69) (0.64, 0.68) (0.64, 0.67)
Individual Fixed Effects
Post hoc mean −1.63 −1.66 −1.52 −1.51 −1.52 −1.52
Post hoc variance 0.34 0.33 0.33 0.33 0.38 0.38

Promotions
Regular Promotion 0.06 0.06 0.06 0.06 0.08 0.08

(0.01, 0.12) (0.01, 0.11) (0.01, 0.11) (0.01, 0.11) (0.03, 0.14) (0.01, 0.15)
Promotion (Women’s Day) 0.06 0.06 0.06 0.06 0.06 0.06

(0.04, 0.08) (0.04, 0.08) (0.04, 0.09) (0.04, 0.09) (0.04, 0.08) (0.04, 0.08)
Promotion (White Day) 0.07 0.07 0.08 0.08 0.08 0.08

(0.05, 0.10) (0.05, 0.10) (0.05, 0.10) (0.05, 0.10) (0.05, 0.10) (0.05, 0.10)
Time Fixed Effects Incl. Incl. Incl. Incl. Incl. Incl.
City-Specific Time Fixed Effects Incl. Incl. Incl. Incl. Incl. Incl.
Community-Specific Time Fixed

Effects
Incl. Incl. Incl. Incl. Incl. Incl.

Covariance (θ) −0.43 — −0.16 — −0.10 —
(−0.48, −0.38) (−0.38, 0.06) (−0.31, 0.10)

Notes. “CF-Probit” stands for the second-stage probit models that are estimated with the control-function approach. The 95% posterior
confidence intervals for selected parameters are in parentheses. Estimates are bolded if the 95% posterior confidence intervals do not
contain zero. For individual fixed effects, the mean and variance are computed post hoc based on individual draws. Excl., excluded; Incl.,
included.
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1,000 most connected users have significantly lower
average responsiveness than the least connected 1,000
users (mean: 0.04 versus 0.08, with T-value: −10.12
and p < 0.00). This result is in line with previous
research (e.g., Gelper et al. 2020) and illustrates the
potential risks of the commonly used Hub approach,
as highly connected users may be nonresponsive to
marketing efforts. More importantly, the Influencer
approach, which considers both direct responsive-
ness and connectedness of users, significantly out-
performs all other approaches (expected targeting
performance = 4,268.87 versus 3,627.50, respectively,
for the Influencer and Responder approaches).

4.5.2. The Decision of “When to Target.” The timing of
marketing interventions plays an important role in
targeting, as consumers’ responsiveness is expected
to vary across time. In an environment where users
are connected by a social network, an additional level
of complexity arises from potential social respon-
siveness that may also be time-dependent. To explore
the effect of timing on network targeting, we assume
that the gaming company faces a decision of choos-
ing one of four quarters of the day (12 a.m.–6 a.m.,
6 a.m.–12 p.m., 12 p.m.–6 p.m., and 6 p.m.–12 a.m.),
during the five consecutive days of the regular

promotion. Based on this decision problem, we com-
pared two scenarios with the Influencer approach
that does not consider timing.24 In the first scenario,
named “Uniform Timing,” the company selects an
optimal quarter to stimulate all of the targeted users.
In the second scenario, named “Personalized Tim-
ing,” each targeted user is stimulated at a personal-
ized “optimal” quarter, which depends on the re-
sponsiveness of the user, aswell as the responsiveness
of the user’s friends.25

The simulation results are reported in Table 8.
Comparedwith the Influencer approach that does not
consider timing, the Uniform Timing approach im-
proves the targeting performance by 35.06% (targeting
performances: 1,441.38 and 1,067.22, respectively, for
the Uniform Timing and Influencer approaches).
Moreover, using a personalized promotion schedule
further improves the targeting performance by 15.61%
(targeting performance of the Personalized Tim-
ing: 1,607.96).
Finally, in Table 9, we compare the optimal sets of

users that are targeted at each quarter with a Uniform
Timing approach. As illustrated in this table, the
optimal selection of targeted users differs signifi-
cantly across the quarters of the day, with overlaps
ranging from 24.81% (quarters 1 and 3) to 46.95%

Table 7. Comparing Different Targeting Approaches: Who to Target?

Targeting approaches Targeting performances Improvement over homogeneous approach

Homogeneous parameters 360.72 (18.04) —
Hub 562.38 (28.12) 55.91%
Responder 3,627.50 (181.38) 905.64%
Influencer 4,268.87 (213.44) 1,083.44%

Notes. Targeting performances indicate the expected total number of additional logins during quarter
days 85–104 by targeting 1,000 users. The numbers in parentheses are the corresponding average
expected additional logins per quarter day. The Responder approach optimally selects targets based
on their responsiveness. The Hub approach optimally selects targets based on degree centrality. The
Influencer approach optimally selects users based on their responsiveness and the responsive-
ness of connected users in their network. The Homogeneous Parameters approach is similar to
the Influencer approach, but uses the model estimates with homogeneous parameters (model 1 in
Table 4).

Table 8. Comparing Different Targeting Approaches: When to Target?

Targeting approaches Targeting performances Improvement over influencer approach

Influencer (no timing) 1,067.22 (213.44) —
Uniform timing 1,441.38 (288.28) 35.06%
Personalized timing 1,607.96 (321.59) 50.67%

Notes. Targeting performances indicate the total number of additional logins by targeting 1,000 users on
five quarter-days, with each quarter-day on one of the five consecutive days. The numbers in paren-
theses are the corresponding average expected additional logins per quarter day. Both the Uniform
Timing and Personalized Timing approaches target the same set of users as the Influencer approach. The
Uniform Timing targets all users in the overall optimal quarter (i.e., quarter 4), while the Influencer
approach randomly selects a time period. The Personalized Timing approach personalizes the quarter of
the day for each individual.
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(quarters 3 and 4). In other words, the set of early
bird influencers are quite different from the night
owls. To the best of our knowledge, this important
targeting factor has received limited attention in the
extant marketing literature on targeting under so-
cial influence.

5. Discussion
The discrete choice model of social influence has
drawn much attention from both marketing aca-
demics and practitioners, because of the increasing
need to understand how consumers influence the
decisions of one another. As such, researchers de-
mand game-theoretic choice models that allow for
individual-specific parameters to capture the heter-
ogenous responses of consumers to social-influence
and marketing activities. Applying such models to
large social networks is challenging due to high
computational demands and the difficulties of obtain-
ing excluded variables for identification. In this pa-
per, we provided novel solutions to address these
two challenges. First, following Imai et al. (2009), we
proposed a stochastic Bayesian estimation proce-
dure that significantly reduced the computational
demands. Simulation studies showed that computa-
tional complexity reduced from polynomial to linear
in the network size, while all parameters were ef-
fectively recovered. Second, as a novel identification
strategy, we recommended constructing community-
specific time fixed effects as excluded variables based
on community-detection algorithms. The proposed
identification strategy builds on the idea that people
in different communities are likely exposed to dif-
ferent external shocks. The empirical analysis of login
decisions in an online game validated this identifi-
cation strategy with exogeneity tests that utilized
targeted promotions as instrumental variables.

With an empirical application that involves login
decisions of 25,000 users in an online game,we further
demonstrated the managerial usefulness of the pro-
posed methodology. First, although it is nearly im-
possible for traditional estimation methods to apply
the proposed structural model to such a large net-
work, the stochastic estimation procedure completed
the estimation in reasonable time. Second, based on

the model, we proposed a procedure for marketers to
quantify the social influence of users with counter-
factual simulations, which illustrated the importance
of incorporating individual-specific parameters. Fi-
nally, counterfactual simulations showed that the
model can significantly improve targeting decisions
compared with traditional approaches that focus on
network positions or responsiveness to marketing
stimuli. As a novel insight, these analyses highlighted
the importance of timing in targeting individual
consumers to leverage social influence, as the optimal
timing varies substantially across consumers.
Future research can apply our model to other

empirical scenarios, where social influence is a sig-
nificant driver of consumer choices. For instance,
Online Appendix I applies the proposed methodol-
ogy to the login decisions of users in an online social
network. In this empirical application, we did not
observe any excluded variables and further proved
the usefulness of the proposed identification strategy
based on latent communities. Interestingly, in this
application, we find a small group of users with
negative responses to social influence, which may be
explained by psychological reactance to social in-
fluence. For instance, recent reports suggested that
some users avoid their online friends, so that they are
not disturbed by chat requests.26 In addition, the
setting of donations is of potential interest, given that
donors’ decisions are often driven by social pressure
that is originated from the expectations about the
donation decisions of peers. Researchers can also
study the purchase decision of luxuryproducts,where a
purchase becomes less attractive if consumers expect
others to make the same purchase. Finally, the esti-
mation method can also be applied to interactions be-
tween other market agents, such as the competition
between firms (e.g., Seim 2006 and Vitorino 2012).
There are several opportunities to extend the pro-

posed model. First, the model can be extended to
multiple discrete-choice scenarios, where the equi-
librium is defined by a matrix of choice probabilities,
with each column corresponding to one of the op-
tions. Second, future research can incorporate net-
work formation. Although in the current version, we
includecommunity-specific shocks, anetwork formation

Table 9. The Overlap of Selected Users Across Quarters

Quarters of the day Quarter 1 Quarter 2 Quarter 3 Quarter 4

Quarter 1 (00:00–06:00) 100% 34.79% 24.81% 25.90%
Quarter 2 (06:00–12:00) 100% 34.04% 32.45%
Quarter 3 (12:00–18:00) 100% 46.95%
Quarter 4 (18:00–24:00) 100%

Notes. Overlaps indicate the percentage of users that are present in both optimal target sets Sq and Sq′,
with q and q′ corresponding to two quarters that are targeted with the Uniform Timing approach. For
instance, if q = 1 and q = 2, the overlap equals 34.79%.
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model may be useful to control for the endogeneity of
social networks.27 Moreover, a dynamic network
formation model can extend our model to social
networks that are in the growing or declining stage of
the lifecycle. Third, integrating a community-detection
procedure into the structural model to guide the se-
lection of the proper communities is another fruitful
direction for future research. Given the efficiency of
the stochastic estimation method, such a practice may
be feasible for very large networks. Moreover, con-
sidering behavioral similarities may improve the ac-
curacy of existing community-detection algorithms
that mainly rely on network structure (Fortunato
2010), sometimes complemented with user charac-
teristics (Yang et al. 2013). Finally, in some empirical
settings, it is conceivable that users are forward-
looking, such that they consider their friends’ fu-
ture reactions to their current decisions. The inclusion
of a forward-looking component into themodel changes
the static network game to a dynamic one. To apply
the stochastic estimation procedure, it is critical to
derive the conditions under which the dynamic net-
work game admits a unique solution.

In sum, we illustrated how the stochastic Bayesian
estimation procedure, in combination with commu-
nity detection, allows researchers to efficiently and
effectively estimate social influence in large social
networks. The proposed methodology is flexible and
does not require researchers to collect valid excluded
variables that are often difficult to obtain in empirical
applications. We hope that the current paper inspires
researchers to apply structural choicemodels of social
influence to large social networks.
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Endnotes
1Becausewe allow the susceptibility to social-influence parameter (γi)
to be individual-specific, the average and aggregate models are
mathematically equivalent. To illustrate this, define ãij � aij/Ni, the
row-normalized connection between individuals i and j, with degi
the (weighted) degree of individual i or summation of row i of
matrix A. Using the right-hand side of Equation (2), we have
γi
∑

j∈Ni aijμ
e
ijt(djt � 1) � γidegi

∑
j∈Ni ãijμ

e
ijt(djt � 1). For an aggregate

model (aij) and its average counterpart (ãij), we must have
γ
aggregate
i × degi � γ

average
i . However, in empirical applications, it is

common to assume a distribution for γi. Hence, in such scenarios,
the aggregate and average model differ in the distributional
assumptions of γi. In our empirical applications, we used model-
fit statistics to determine which specification is better.
2Under this assumption, the model can still be applied to social
networks that vary across time if consumers are not strategically

forming and/or dissolving connections in consideration of the
choice decisions.
3The rational expectation assumption implies that, to form a correct
belief about a friend j, consumer i needs to form correct expectations
about the choice probabilities of j’s friends. This may be a strong
assumption. Therefore, we follow the theory of learning in games
(Fudenberg and Levine 1998) and assume that consumers have al-
ready learned how to form expectations, and the game always rea-
ches the locally stable equilibrium (see Proposition 1). This is also in
linewith the assumption that consumers aremyopic and that the data
observed in each time period are from an independent realization of
the game.
4The condition for a unique equilibrium in the case of homogenous
parameters is |γ| < 1/(max(degi) · f max). Note that in both the ho-
mogenous and individual-specific parameter cases, these conditions
are sufficient, but not necessary.
5The inclusion of individual fixed effects may lead to a finite sample
bias when the number of time periods T is small. However, as shown
in Greene (2004), the bias decreases when T increases, and recent
research has shown that the bias becomes marginal when T is large
(see, for example, Ibanez et al. 2018 and Stafford 2015). Our empirical
data have 120 time periods, which allow for the inclusion of indi-
vidual fixed effects. To examine whether T of our empirical data are
sufficient, we followed Greene (2004) and performed simulation
studies with data sets that have 100 time periods. The simulation
results in Section 3.4 demonstrate that individual fixed effects, as well
as other parameters, are well-recovered.
6 In our empirical application, we find support for this conjecture, as
we were able to compare excluded variables based on community
detection with those constructed from observed geo-locations.
7 Some previous research assumed that only one equilibrium is re-
alized in the data and selected one equilibrium out of all possible
equilibria with criteria such as Pareto optimality (e.g., Hartmann 2010).
8Notice that with individual-specific parameters considered, the
algorithm requires large memory space to store previous draws. In
our application, instead of focusing on parameter vectors Θ, we use
draws of latent utilities (zi; see Online Appendix B.2). Such a strategy
reduces the array size from R × N × (K + 1) to R × N × 1 and, thus,
significantly reduces memory requirements.
9We further prove in Online Appendix B.1 that under assumptions of
the proposed model, the parameter draws from the proposed esti-
mator converge to the true posterior distributions. Specifically, we
show that the proposed estimator meets the conditions to apply
theorem 2 of Imai et al. (2009).
10 In the estimation, we assume that the community structure is
known. As illustrated by Girvan and Newman (2002) and
Newman (2006), the spectral bisection community-detection
method accurately recovered the community structure in net-
works that were generated by using this simulation approach. In
our empirical applications, we find that the estimation results are
robust for different community structures detected by different
methods, including the spectral bisection method (see Online
Appendices E and I.5.2).
11The estimates of the other parameters are almost identical for both
estimation methods. Because our focus is on social influence,
we only report the estimates of social-influence parameters in
Table 1. For the estimation of individual fixed effects, time fixed
effects, and community-specific time fixed effects, please refer to
Online Appendix C.
12We also estimated models that do not control for individual fixed
effects, which, as expected, also result in upward biased estimates of
social influence (see Online Appendix C.3).
13https://www.statista.com/study/39310/video-games-2018/ (acc-
essed June 2, 2020).
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14We acknowledge that the analysis does not fully rule out the
possibility that users are forward-looking. For instance, if users are
satiated, they may decide to postpone logging into the game, if they
expect that their friends are more likely to login in the future (we
thank an anonymous reviewer for pointing out this possible source of
forward-looking tendencies). Therefore, extending the model to in-
corporate forward looking is an important direction for future re-
search, which we discuss in the final section.
15 In the community-detection analysis, we compared the commu-
nities across daily networks and did not observe any differences. In
our estimation and subsequent analyses, we always take into con-
sideration the daily networks.
16White Day is a popular event in many East Asian countries and is
celebrated one month after Valentine’s Day. During this event, men
are expected to give gifts to their loved ones. The promotion in-
centivized male users to give gifts to female users in return for
valuable in-game items. See Online Appendix D for more details of
the promotions.
17We also compared our estimation results with communities ob-
tained using different algorithms and found that the estimation re-
sults are robust across different algorithms (see Online Appendix E).
18Collinearity diagnostics did not reveal multicollinearity problems,
with the maximum variance inflation factor equal to 3.84. Also, in
cases when a large number of communities are detected, regulari-
zation techniques (e.g., LASSO) could be used to address the potential
overfitting problem caused by the high dimensionality in the pre-
dictors (e.g., see Gillen et al. 2019 and Kang et al. 2016).
19To check the plausibility of the independence of error terms εit, we
tested the residuals of this model (full model 6 discussed below) for
each community. We used Breusch–Godfrey test and found no ev-
idence of serial correlation over time, with the p-values of the 125
communities ranging from 0.15 and 0.83. In addition, we used
Moran’s I to test for the possible spatial correlation between users
within each community and found no evidence of spatial correlation,
with p-values ranging from 0.22 to 0.99.
20To examine the validity of these restrictions on the susceptibility to
social-influence parameters, we also estimated the model without the
restrictions. Our estimation results are robust, and the restricted
model fits the data better. The results further support the validity of
our model specification (see Online Appendix F for more details). In
addition, we estimated a model with the aggregate specifica-
tion—that is, using the original adjacencymatrixA instead of the row-
normalized matrix Ã. The LMD of this model is −848,472, smaller
than that of the average model (LMD = −848,334 for model 6 of
Table 4). These results support the specification of the average model.
21To include the regular promotion, we must set another time fixed
effect to zero. Because the regular promotion lasted from quarter-day
85 to 104, we set quarter-day 85 to zero.
22We found a weak positive correlation between susceptibility to
social influence and degree centrality (r = 0.23, p < 0.01). Therefore,
being susceptible to social influence is not necessarily driven by the
number of friends, as some highly susceptible users may have only a
few friends.
23 For the first-stage estimation results of model 4 and model 5, please
see Online Appendix H.
24The Influencer approach effectively assumes that the company
randomly selected one of the four quarters to target users, resulting in
1/4 of the targeting performance in Table 7 as the expected perfor-
mance of this approach.
25Note that the selection of targets in both approaches follows the
Influencer strategy, but are enhanced with the time dimension. The
difference between the two scenarios is that in the Personalized
Timing case, the restriction of setting the same timing of the mar-
keting intervention for all users is relaxed.

26https://www.businessinsider.com/how-to-appear-offline-on-facebook
(accessed April 4, 2020).
27There is limited research integrating network formation into net-
work games. Goldsmith-Pinkham and Imbens (2013) developed an
approach that integrates a logistic regression model for social-
network formation into a linear-in-means model. However, it is
challenging to scale this model to large social networks, given that the
total number of potential links between consumers grows quadrat-
ically. With 25,418 users in our online gaming data, the logistic re-
gression needs to be applied to more than 646 million observations.
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