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Abstract

We consider the problem of optimal fleet sizing in a vehicle sharing system. Vehicles are available for
short-term rental and are accessible from multiple locations. A vehicle rented at one location can be
returned to any other location. The size of the fleet must account not only for the nominal load and for
the randomness in demand and rental duration but also for the randomness in the number of vehicles that
are available at each location due to vehicle roaming (vehicles not returning to the same location from
which they were picked up). We model the dynamics of the system using a closed queueing network and
obtain explicit and closed form lower and upper bounds on the optimal number of vehicles (the minimum
number of vehicles needed to meet a target service level). Specifically, we show that starting with any
pair of lower and upper bounds, we can always obtain another pair of lower and upper bounds with gaps
between the lower and upper bounds that are independent of demand and bounded by a function that
depends only on the prescribed service level. We show that the generated bounds are asymptotically
exact under several regimes. We use features of the bounds to construct a simple and closed form
approximation that we show to be always within the generated lower and upper bounds and is exact under
the asymptotic regimes considered. Extensive numerical experiments show that the approximate and
exact values are nearly indistinguishable for a wide range of parameter values. The approximation is
highly interpretable with buffer capacity expressed in terms of three explicit terms that can be interpreted
as follows: (1) standard buffer capacity that is protection against randomness in demand and rental times,
(2) buffer capacity that is protection against vehicle roaming, and (3) a correction term. Our analysis
reveals important differences between the optimal sizing of standard queueing systems (where servers
always return to the same queue upon service completion) and that of systems where servers, upon
service completion, randomly join any one of the queues in the system. We show that the additional
capacity needed to buffer against vehicle roaming can be substantial even in systems with vanishingly
small demand.
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1 Introduction

We consider a vehicle sharing system with a fixed number of vehicles distributed across multiple locations.
The vehicles are available for short term rental and are accessible from any location and can be returned to
any other location. In other words, the system allows for one-way trips, as opposed to one that requires round
trips in which a vehicle picked up at a location always returns to the same location. Demand at each location
is random and assumed to arise continuously over time according to a Poisson process. Rental duration is
also random and dependent on the origin and destination of the trip and so are the locations at which vehicles
are returned at the end of the trip.

Vehicle sharing systems with features similar to the ones described above are increasingly common
and include one-way car, bike, and scooter sharing systems. Features that are common to these systems
include on-demand access (vehicles are accessed without prior reservation and without requiring customers
to divulge trip duration or destination), multi-locations (vehicles can be accessed at multiple locations that
are spatially distributed), and one-way service (vehicles can be dropped off at locations that are different
from those at which they were picked up). These features, along with the associated randomness in demand,
rental duration, and returns, make the design (e.g., the scale and scope of these systems) and operation (e.g.,
dynamic vehicle allocation) of these systems challenging in some cases.

In this paper, we address the problem of how to optimally dimension a vehicle sharing system with
the above features. Specifically, for the class of vehicle sharing systems we consider, we are interested in
determining the minimum number of vehicles that can guarantee a specified service level, where the service
level refers to a threshold on the probability that a customer who seeks to rent a vehicle at a location would
find one available (the problem can also be viewed as one of minimizing the number of vehicles subject to a
service level constraint).

We model the dynamics of a vehicle sharing system using a closed queueing network (where the items
moving through the network correspond to vehicles) with two types of queues: pick-up queues modeled as
single server queues and corresponding to locations and transit queues modeled as infinite server queues and
corresponding to vehicles in transit. We first consider balanced systems (systems where each location is as
popular an origin as it is a destination). Using mean value analysis, we show how it is possible to obtain a
recursive relationship between the service level of a system with K vehicles and the service level of a system
with K − 1 vehicles. This recursive relationship (and its analogue for unbalanced systems) can be used to
efficiently compute the optimal number of vehicles (i.e., the minimum number of vehicles that meets the
service level constraint).

We use this recursive relationship to obtain explicit and closed form lower and upper bounds on the
optimal number of vehicles. Specifically, we show that starting with any pair of lower and upper bounds, we
can always obtain another pair of lower and upper bounds. In the case where the procedure is initialized with
a particular (and well specified) pair of bounds, the bounds can be made tighter with additional iterations. In
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all cases, we show that the gap between the lower and upper bounds is finite and bounded by 1
1−α , where α is

the service level (note that the bound on the gap is independent of the number of locations and the demand
level).

We show that the bounds generated using our procedure are exact (i.e., converge to the exact value of
the optimal number of vehicles) under several asymptotic regimes, including when the demand approaches
0 or infinity, the number of locations approaches infinity, and the service level approaches 1. We use
features of the bounds to construct a simple and closed form approximation that we show to be always within
the generated lower and upper bounds and is exact under the asymptotic regimes considered. Extensive
numerical experiments show that the approximate and exact values for the optimal number of vehicles are
nearly indistinguishable for a wide range of parameter values1.

The approximation reveals the following important insights into factors that affect the optimal number
of vehicles, or optimal capacity.

• Optimal capacity can be expressed as the sum of two terms: nominal load (number of vehicles needed
to handle the induced load on the system) and buffer capacity.

• Buffer capacity consists of three terms that can be interpreted as follows: standard buffer capacity that
is protection against randomness in demand and service (rental) times, buffer capacity that is protection
against vehicle roaming (vehicles not returning to the same location from which they were originally
and the resulting randomness in the service capacity available at each location), and a correction term.
We attribute the second term to vehicle roaming since it reduces to zero when vehicles do not roam
(i.e., return to the same location upon trip completion). Because this additional capacity can also
buffer against randomness from other sources, the overall need for buffer capacity diminishes and
there is a need for the correction term.

• The buffer capacity we attribute to protection against vehicle roaming is given by (N − 1) α1−α , which
is increasing in the number of locations N and the service level α. This buffer capacity is independent
of the demand level in contrast to the standard buffer capacity which increases with demand, as higher
demand translates into a higher load.

• The fact that the term (N − 1) α1−α is independent of demand means that even for vanishingly small
demand (or service times), buffer capacity can still be substantial.

• The above insights reveal fundamental differences between queueing systems where “servers” (i.e.,
the resources involved in fulfilling the demand from customers) always return to the same queue upon
completing service and queueing systems where servers roam (i.e, systems where, upon completing

1Our results apply to the important special case of a systemwith a single location, which corresponds to the widely studied Erlang
loss system. We show that our approximation, specialized to this case, performs well against approximations from the literature.
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service, a server may join another queue), with the additional capacity resulting from vehicle roaming
being substantial.

We extend our analysis to unbalanced systems (i.e., systems where some locations are more popular as a
destination than they are as an origin, or vice-versa). We discuss how an unbalanced system can be balanced
via vehicle repositioning and show how our results for balanced systems, including the approximation for
the optimal number of vehicles, can be adapted for unbalanced systems under repositioning.

The results in the paper highlight the fact that one-way vehicle sharing systems (and more generally
queueing systems where servers may roam) may be substantially more expensive to operate than systems
that require round trips. This implies that the economic viability of the one-way model crucially depends on
the additional revenue a service provider expects from the increased convenience of one-way service.

The rest of the paper is organized as follows. In Section 2, we review related literature. In Section 3, we
describe the model. In Section 4, we describe our procedure for generating bounds. In Section 5, we describe
the asymptotic results and the approximation. In Section 6, we draw managerial insights. In Section 7, we
discuss the case of unbalanced systems. In Section 8, we offer concluding comments.

2 Related Literature

Although the literature on the design, planning, and operation of on-demand vehicle sharing systems is
extensive and growing (see for example recent reviews in Freund et al. (2019), He et al. (2019), and
Benjaafar and Hu (2020)), papers that consider optimal fleet sizing, while accounting for the underlying
queueing dynamics, are relatively few. One of the earliest papers to consider a problem similar to ours is
George and Xia (2011). They use a closed queueing network model, as we do, to model systems dynamics
and develop exact and approximate solution algorithms to determine optimal fleet size where the objective is
to maximize system profit, but do not provide, as we do, explicit expressions (exact or approximate) for the
minimal fleet size. He et al. (2017) also consider a similar problem and a similar closed queueing network
formulation to ours. They use the fixed population mean (FPM) approach (see Whitt (2002)) to approximate
the closed queueing network with one that is open. They derive an approximation for the minimum fleet
size needed to meet a specified service level. The same approximation is used in Bellos et al. (2017) in a
different context for a system with a single location. The approximation in He et al. (2017) and Bellos et al.
(2017) corresponds to one of the upper bounds we identify (see expression (11) in this paper). As we show
in the paper, this bound is not asymptotically exact under the various regimes we consider.

Other papers that consider the optimal fleet sizing while accounting for the queueing dynamics include
Hu and Liu (2016), Zhang et al. (2019) and Li et al. (2019). These papers primarily rely on algorithms and
numerical procedures to determine the minimal fleet size. There are papers that rely on queueing models to
consider other design and operation aspects of vehicle sharing systems. For example, Banerjee et al. (2017)
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characterize the steady state distribution of a vehicle sharing system with price-dependent demand flows and
develop efficient algorithms for trip pricing and vehicle rebalancing. Braverman et al. (2019) establish a fluid
approximation of a large-scale ridesharing system and derive a fluid-based optimal empty vehicle routing
policy.

For the class of closed queueing networks implied by vehicle sharing systems, George et al. (2012) derive
the exact-order asymptotic growth rate of system throughput as the number of items (vehicles) increases and
Banerjee et al. (2017) provide a lower bound on the service level as the number of vehicles increases to infinity
in a balanced system that is induced by the optimal pricing under an elevated flow relaxation. Although
these results can be applied to obtain the optimal number of vehicles in an asymptotic sense, they do not
lead to closed-form approximations. The analysis and the approximation we propose lead to an exact-order
asymptotics that is consistent with that of George et al. (2012) and tighter than that of Banerjee et al. (2017).
Waserhole and Jost (2016) consider a setting similar to ours but assume that trips are instantaneous (i.e., trip
durations are zero). They obtain a relationship between service level and the number of vehicles that is a
special case of the relationship we obtain (see equation (8)) for when 1/µ = 0.

There is significant literature that focuses on approximating the normalizing constant of the steady-state
distribution in closed queueing networks (see for example Kogan and Birman (1992), Kogan (1992), and
Hofri and Kogan (1994) who consider a class of systems consisting of a single infinite-server queue and
many single-server queues with application in computer networks). Though they simplify computations,
these approximations do not typically yield simple closed form expressions for performance measures of
interest.

There is a large body of literature that considers the problem of optimal capacity in the context of a
queueing system with a single location (i.e., a system with multiple servers and a single queue). The problem
is often referred as the optimal staffing problem in reference to the staffing of call centers, an important
application; see for example Gans et al. (2003) and Whitt (2007). An important result from this literature
is the so-called square root staffing rule, whereby the number of servers is set equal to a + β

√
a where a

is the nominal load and β is a function of the service level (the probability that a customer does not need
to wait for service). The result arises naturally under a normal approximation of the number of customers
in the system and in heavy traffic under appropriate scaling. In particular, Halfin and Whitt (1981) show
that taking an M/M/n queueing system to heavy traffic by scaling the number of servers as a + β

√
a, the

probability that a customer does not wait for service is guaranteed to be strictly between zero and one, the
so-called Halfin-Whitt regime. The follow on literature on this topic is extensive and we refer the reader to
reviews by Gans et al. (2003), Whitt (2007), Mandelbaum and Zeltyn (2009), Dai and He (2014) and Ward
(2012). In our case, we consider a system with a network feature where servers are routed probabilistically
to different queues upon service completion. We show that the introduction of this feature adds a new
component to buffer capacity that is independent of demand and increasing in the number of locations. In
fact, in the limiting case of an infinitely large number of locations, buffer capacity ceases to depend on
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demand altogether.

A special case of the settingwe consider in this paper is the well-studied Erlang loss system (an M/M/n/n

queueing system). Although the literature on Erlang loss systems is extensive (see for example Jagerman
(1974), Cooper (1981), Harel (1988), Janssen et al. (2008), Adelman (2008)), literature on the optimal
sizing of these systems is relatively limited. There is significant literature that studies, for a given number
of servers, the blocking probability (the probability that an arriving customer finds all servers busy, also
known as the Erlang loss formula). This includes literature that offers various bounds and approximation;
see for example, Janssen et al. (2008), and Adelman (2008) and the references therein. However, the inverse
problem (the problem of determining the number of servers needed to guarantee a certain threshold on the
blocking probability) is less studied. In this paper, we show that the results we obtain for a general network
can be specialized for the case of an Erlang loss system. In particular, we show that our approximation,
specialized for a single location problem, performs well relative to approximations considered among the
best in the literature such as those in Berezner et al. (1998) and Harel (2010).

Finally, we note that there is emerging literature that considers the issues of optimal service capacity
in the context of ridesharing platforms (platforms that connect passengers with independent drivers, such
as Uber and Lyft). In this setting, service capacity is determined indirectly via the choice of wages the
platform pays the drivers; see for example Cachon et al. (2017), Taylor (2018), Benjaafar et al. (2020) and
the references therein. Papers that consider the spatial features of ridehailing include Castillo et al. (2018),
Afeche et al. (2018), Bimpikis et al. (2019) and Besbes et al. (2020). Besbes et al. (2019) study the problem
of optimal service capacity when the ridehailing system is modeled as a single multi-server queue with a
state-dependent service rate (the state dependency is needed to account for the customer pick up time portion
of total service time). They show that, under heavy traffic, a square root staffing approach is not sufficient to
achieve a Halfin-Whitt-like regime and that instead buffer capacity that is proportional to the nominal load
to the power of 2/3 is needed to account for pick up time.

3 Model Description and Preliminaries

Consider a vehicle sharing system where K vehicles are available for short-term rental. Vehicles can be
picked up and dropped off at one of N locations. Customers arrive continuously over time at each location
according to a Poisson process with arrival rate λi at location i, where i = 1, . . . ,N . A vehicle picked up at
location i is returned to location j with probability pi j , where

∑N
j=1 pi j = 1 for all i. The rental duration for

a vehicle picked up at location i and returned to location j follows a distribution that has rational Laplace
transform and a mean 1

µi j
.2 A customer who arrives at a location and finds no vehicles available at that

location immediately leaves the systemwithout renting. We consider a balanced systemwhere λi =
∑

j λjpji.

2The family of distributions that have rational Laplace transform is dense in all non-negative distributions (Botta et al., 1987).
Exponential, hypoexponential, hyperexponential, mixed generalized Erlangs, and generalized hyperexponential distributions all
belong to this family.
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This condition implies that each location is as popular an origin as it is a destination. A special case of a
balanced system is a symmetric system where λi = λj for any i , j and pi j = pi j′ = 1

N for any pair j and
j ′. Note that balance arises naturally in many vehicle sharing systems because of the rebalancing of vehicles
that is typically carried out by the service provider; see Section 7 for further discussion. In Section 7, we
provide analysis for unblanced systems.

The system as described above can be viewed as a closed queueing network where the items moving
through the network correspond to vehicles. In particular, each location can be viewed as a single server
queue with service times corresponding to the customer inter-arrival times at that location. We refer to such
queues as pickup queues. A vehicle that is picked up at location i with intended destination j can be viewed
as entering an infinite-server queue with service times corresponding to the travel times between location i

and j. We refer to such queues as transit queues. Note that a pick up queue is associated with each location
i for i = 1, . . . ,N and a transit queue (i, j) is associated with each pair of locations i and j for which pi j > 0.
A vehicle that completes service at transit queue (i, j) joins pick-up queue j. Without loss of generality, we
assume that the routing matrix specified by the probabilities pi j is irreducible (i.e., a vehicle at any location
i can reach any other location in finitely many steps with positive probability). The network, as specified
above, is an instance of a BCMP network (Baskett et al., 1975)3.

Our objective is to characterize the relationship between service level and the number of vehicles in the
system which, in turn, would allow us to determine the minimum number of vehicles needed to achieve a
specified service level. To do so, we can proceed in at least one of two ways. The first involves characterizing
the probability distribution of system states while the other does not. We describe the first approach next.
The state space can be specified by the number of vehicles at each pick up and transit queue. Let Xi denote
the number of vehicles in pick up queue i (this corresponds to the number of idle vehicles in location i) and
Yi j denote the number of vehicles in transit queue (i, j) (this corresponds to the number of rented vehicles
from location i destined to location j) for i, j ∈ V where V = {1, . . . ,N}. The state space can then be defined
as S =

{
(X,Y )

��� ∑i∈V Xi +
∑

i, j∈V Yi j = K
}
, where X is the vector with components Xi and Y is the matrix

with component Yi j for i, j ∈ V . A BCMP network is known to have a product form for the steady state
probability distribution over the system states (Baskett et al., 1975). In particular,

Pr(X = x,Y = y) = C
∏
i∈V

(
νi
λi
)xi

∏
i, j

(
νi j

µi j
)yi j

1
yi j!

(1)

3A queueing network is called a BCMP network if (i) it has a finite number of queues (locations in our case) and a finite number
of classes of items, (ii) the routing among the queues is governed by fixed transition probabilities, and (iii) the arrival processes and
service disciplines are of the types specified in §2.1 of Baskett et al. (1975). Since our network is closed (i.e., no external arrivals)
and the queues have either one server with exponential service times or infinite servers with service time distributions having rational
Laplace transform, this condition (iii) is satisfied.
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for all (x, y) ∈ S, where C is a normalization constant that satisfies∑
(x,y)∈S

Pr(X = x,Y = y) = C
∑
(x,y)∈S

∏
i∈V

(
νi
λi
)xi

∏
i, j

(
νi j

µi j
)yi j

1
yi j!
= 1, (2)

νi is the steady state throughput of pick-up queue i (the average number of vehicles successfully rented at
location i per unit time), and νi j is the steady state throughput of transit queue (i, j) (the average number of
vehicles picked up at location i and returned to location j per unit time).

The throughput rates can be computed as follows. Noting that, in steady state, the rate at which vehicles
are returned to location i is equal to the rate at which they are picked up at location i leads to the following
set of balance equations

N∑
j=1

νjpji = νi, (3)

for all i = 1, . . . ,N . Moreover, νi j = νipi j . Because the routing matrix [pi j] is irreducible, the N balance
equations in (3) allow us to solve for the throughput rates νi’s up to a scalar multiple. This is sufficient
for computing the probability distribution since this scalar multiple can be subsumed in the normalization
constant in (2).

Let Λ :=
∑
i∈V

λi denote the total arrival rate to the network, ν :=
∑
i∈V

νi the total throughput rate, and

αi :=
νi
λi

the long run fraction of customers who find an available vehicle (also the probability in steady state that a
customer finds an available vehicle upon arrival at location i). We refer to αi as the service level at location
i. Recall that for a balanced network, λi =

∑
j λjpji for all i = 1,2, · · · ,N . This condition makes the λi’s

a solution to (3), implying that the throughput rates have the form νi = αλi for all i, where α is a scalar
multiple that can be computed using the normalization equation (2). Noting that the service level at location
i is given by αi = νi

λi
, we have αi = α for all i. That is, perhaps consistent with intuition, in a balanced

network, the service level is the same at all locations.

Having obtained the probability distribution of the systems states, various system performance metrics
can in principle be calculated. However, the computational effort involved can be significant. In particular,
solving for the normalization constant C is challenging since the number of states

(K+N+N2−1
K

)
increases

exponentially in N and K . Moreover, the fact that performance measures of interest are not in closed form
limits our ability to carry out further analysis. Therefore, in what follows, we resort to a different approach,
mean value analysis, which allows us to bypass the need to compute the steady state distribution in order to
compute throughput rate, the measure that is of primary interest for our analysis in this paper.

Mean value analysis relies on the random observer property (Reiser and Lavenberg, 1980), which states
that an arrival to any queue in a BCMP network with K items (vehicles in our case) observes the stationary
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distribution of an identical network with K − 1 items (vehicles). As we describe below, this property can be
exploited to derive a relationship between the throughput of a system with K vehicles and the throughput
of a system with K − 1 vehicles. This relationship can be used to recursively compute the throughput for a
system with K vehicles.

Let 1
µ :=

∑
i, j∈V

νi j
νµi j

denote the average rental time of a vehicle in the network (note that we use the fact

that νi jν is the proportion of effective rentals that originate in location i and terminate in location j). Because,
in a balanced network, νiλi =

ν
Λ
and νi j = νipi j , we can also express the average rental time as 1

µ =
∑

i, j∈V

λipi j
Λµi j

.

Let E[Xi(K)] denote the expected number of vehicles at a pick up queue i and E[Yi j(K)] denote the expected
number of vehicles at a transit queue (i, j) given there are K vehicles in the system (let also νi(K), νi j(K),
ν(K), and α(K) be similarly defined). By Little’s Law,∑

i, j∈V

E[Yi j(K)] =
ν(K)
µ

. (4)

Because
∑

i, j∈V
E[Yi j(K)] +

∑
i∈V
E[Xi(K)] = K , we have

∑
i∈V

E[Xi(K)] = K −
ν(K)
µ

. (5)

Noting that the expected number of vehicles at a pick up queue i observed by an arriving vehicle at
location i is, by virtue of the random observed property, given by E[Xi(K − 1)], the expected time the vehicle
spends in that queue is given by 1+E[Xi (K−1)]

λi
. Applying Little’s Law, we obtainE[Xi(K)] = νi(K)

1+E[Xi (K−1)]
λi

,
and hence ∑

i∈V

E[Xi(K)] =
∑
i∈V

{
νi(K)

1 + E[Xi(K − 1)]
λi

}
=
ν(K)
Λ

∑
i

{
1 + E[Xi(K − 1)]

}
. (6)

Substituting the expression in (5) for
∑
i∈V
E[Xi(K)] and

∑
i∈V
E[Xi(K − 1)] into (6) leads to K − ν(K)

µ =

ν(K)
Λ

[
N + (K − 1) − ν(K−1)

µ

]
, which yields for K ≥ 2,

ν(K) =
KΛµ

(K + N − 1)µ + Λ − ν(K − 1)
. (7)

Equation (7) provides a recursive relationship that allows us to compute the throughput for a system with
K vehicles knowing the throughput for a system with K − 1 vehicles. For K = 1, we can directly show that
ν(1) = Λµ

Nµ+Λ . Hence, by letting ν(0) := 0, equation (7) holds for all K ≥ 1. We are now ready to state the
following important lemma.
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Lemma 1. For K ≥ 1
α(K) =

K

(K + N − 1) + Λµ [1 − α(K − 1)]
, (8)

where α(0) := 0.

The result in the lemma follows immediately fromEquation (7) using the fact thatα(K) := ν(K)
Λ

. Lemma 1
provides a recursive relationship for computing the service level α(K) for a system with K vehicles knowing
the service level for a system with K − 1 vehicles. More importantly, equation (8) allows us to calculate the
minimum number of vehicles that can guarantee a specified service level. That is, (8) can be the basis for an
algorithm to solve for

K(α) := min{K ≥ 0 : α(K) ≥ α},

where α is the target service level that must be satisfied. A myopic search approach is sufficient here since
the service level can be shown to be monotonically increasing in K .

Although it is possible to efficiently compute the minimum number of vehicles to meet a specified service
level using (8), (8) does not provide an explicit expression for the minimum number of vehicles. This has two
shortcomings: (i) it is difficult to obtain insights into the determining factors behind optimal fleet sizing (a
main objective of this paper) and (ii) it may be difficult to carry out further analysis that involves the minimal
fleet size (e.g., endogenizing the service level using a profit maximization model as we do in Appendix C).

Remark 1 Throughout the paper, we abuse notation and use α to denote a fixed scalar value for service level
and α(K) to refer to service level as a function of the number of vehicles. We similarly abuse notation and
use K and K(α) to refer respectively to a fixed number of vehicles and the minimum number of vehicles
needed to meet a target service level α.

4 Bounds

In this section, we derive closed form bounds for the minimum number of vehicles K(α) needed to guarantee
a specified service level α, to which we refer as the minimal fleet size. We show that the gap between
these bounds narrows to 1 under various asymptotic regimes (i.e., they provide approximations that are
asymptotically exact). Moreover, we describe how each pair of lower and upper bounds can be used, with
proper initialization, to construct another tighter pair of lower and upper bounds.

We rewrite equation (8) as follows

α(K) =
K

(K + N − 1) + Λµ [1 − α(K) + ∆α(K)]
,
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where ∆α(K) := α(K) − α(K − 1), which, by simple algebra, yields

K =
Λ

µ
α(K) + (N − 1)

α(K)
1 − α(K)

+
Λ

µ

α(K)
1 − α(K)

∆α(K). (9)

The above expression suggests that bounds on ∆α(K) can be used to obtain bounds on K(α). In the lemma
below, we obtain such bounds (the proof of Lemma 2 and all other results, unless indicated otherwise, can
be found in the Appendix).

Lemma 2. For all K , 0 < ∆α(K) < µ
Λ
.

The bounds on ∆α(K) in Lemma 2 immediately lead to the bounds on K(α) described in the following
proposition.

Proposition 1. For α > 0,

K(α) >
Λ

µ
α + (N − 1)

α

1 − α
:= L0, and (10)

K(α) <
Λ

µ
α + N

α

1 − α
+ 1 := U0 (11)

The bounds in Proposition 1, though simple to obtain, are surprisingly tight. This can be seen from the
difference between the lower and upper bounds, given by U0 − L0 =

1
1−α . This difference is independent of

the number of locations N and the demand level Λ (in particular, it does not increase with an increase in
either parameter).

Next, we describe an iterative procedure that allows us to produce even tighter bounds and to lead to
approximations that are asymptotically exact. In particular, given any pair of lower and upper bounds, we
show that it is possible to produce another (tighter under proper initialization and up to an upper bound on
the number of iterations) pair of lower and upper bounds.

We first briefly describe the idea of how we generate the iterative bounds. Note that by (8) we have

∆α(K) =
K

(K + N − 1) + Λµ (1 − α(K − 1))
−

K − 1
(K + N − 2) + Λµ (1 − α(K − 2))

which we can rewrite as

∆α(K) =
(N − 1) + Λµ [1 − α(K − 1)] + K Λµ [∆α(K − 1)]

[(K + N − 1) + Λµ (1 − α(K − 1))][(K + N − 2) + Λµ (1 − α(K − 2))]
. (12)

Note that (12) provides us with a relationship between∆α(K) and∆α(K−1). By iterating on this relationship
s − 1 times, we can obtain a relationship between ∆α(K) and ∆α(K − s). A pair of lower and upper bounds
on ∆α(K) can be obtained by replacing ∆α(K − s) with its lower and upper bounds. That is, each iteration
yields a different pairs of bounds on ∆α(K). In turn, this allows us to obtain iteratively bounds on K(α).
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Suppose L andU are known lower and upper bounds for K(α) (i.e., L ≤ K(α) ≤ U). We define quantities
ηts(L,U, α) and ζ ts (L,U, α), for s = 1,2, · · · , bLc − 1, t = 0,1,2, · · · , bLc − 1 and L ≥ 2, that can be computed
iteratively as follows:

ηts(L,U, α) :=
(N − 1) + Λµ (1 − α) + (L − t)Λµ η

t+1
s−1(L,U, α)[

(U + N) + Λµ (1 − α)
]2

ζ ts (L,U, α) :=
(N − 1) + Λµ [1 − α +

t+1
(L+N−t−1)+Λµ (1−α)

] + (U − t)Λµ ζ
t+1
s−1(L,U, α)

[(L + N − t − 1) + Λµ (1 − α)][(L + N − t − 2) + Λµ (1 − α)]
,

where we let ηt0(L,U, α) := 0 and ζ t0(L,U, α) := µ
Λ
. That is, ηts and ζ ts are recursively defined starting with

boundary values 0 and µ
Λ
(recall that these two boundary values correspond to lower and upper bounds on

∆α(K) per Lemma 2).

In the following lemma, we show that ηts(L,U, α) and ζ ts (L,U, α) are respectively lower and upper bounds
for ∆α(K).

Lemma 3. If L ≤ K(α) ≤ U, then η0
s (L,U, α) < ∆α

(
K(α)

)
< ζ0

s (L,U, α) and η1
s (L,U, α) < ∆α

(
K(α)−1

)
<

ζ1
s (L,U, α) for 1 ≤ s ≤ L − 1.

The idea for the proof can be seen from the similarities between (12) and the definitions of ηts(L,U, α)
and ζ ts (L,U, α). By iterating (12) multiple times and replacing ∆α(K − t) with ηts(L,U, α) and ζ ts (L,U, α),
we can prove by induction that η0

s (L,U, α) and ζ0
s (L,U, α) are lower and upper bounds of ∆α(K(α)). With

the bounds on ∆α(K(α)) and ∆α(K(α) − 1), we can obtain bounds on K(α) by (9).

Proposition 2. If L ≤ K(α) ≤ U, then

K(α) >
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
η0
s (L,U, α), and

K(α) <
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
ζ1
s (L,U, α) + 1

for any s ≥ 1 such that (L + N − s − 1) + Λµ (1 − α) > 0.

The above proposition shows that, startingwith any pair of lower and upper bounds, successive bounds can
be achieved. It immediately follows that, by applying Proposition 2 to the bounds (L0,U0) in Proposition 1,
we can obtain additional pairs of lower and upper bounds. In this case, the bounds obtained are successively
tighter (for the upper bound, this is subject to a maximum value on the number of iterations).
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Corollary 1. For s = 1, ..., L0 − 1, Ls < K(α) < Us, where

Ls :=
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
η0
s (L0,U0, α), and (13)

Us :=
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
ζ1
s (L0,U0, α) + 1. (14)

Moreover, Ls ≥ Ls−1 for any s > 0; and Us ≤ Us−1 for 0 < s < 1
6
N−1
1−α if N ≥ 4.

Note that while the lower bounds always improve with each iteration, the upper bounds do as long as
s < 1

6
N−1
1−α (this threshold on s increases in N and α); see the Appendix for further discussion.

5 Asymptotic Analysis and Approximations

In this section, we examine the asymptotic performance of the lower and upper bounds (Ls,Us) identified
in the previous section and consider the extent to which they can be used as a basis for constructing
approximations for the optimal number of vehicles K(α).

The following proposition shows that the bounds inCorollary 1 converge toK(α) under several asymptotic
regimes.

Proposition 3. For any pair of bounds, (Ls,Us), where s ≥ 1, specified in Corollary 1, the following holds.

1. For fixed N , lim
Λ→0+
(Us − Ls) = 1, lim

Λ→0+
Ls = (N − 1) α1−α , and lim

Λ→0+
Us = (N − 1) α1−α + 1.

2. For fixed N , lim
Λ→∞
(Us − Ls) = 1 + αs+1

1−α , lim
s→∞

{
lim
Λ→∞
(Us − Ls)

}
= 1,

lim
Λ→∞

{
Λ

µ
α + (N − 1)

α

1 − α
+ (1 − αs)

α

1 − α
− Ls

}
= 0,

and
lim
Λ→∞

{
Λ

µ
α + (N − 1)

α

1 − α
+

α

1 − α
+ 1 −Us

}
= 0.

3. For fixed Λ, lim
N→∞
(Us − Ls) = 1,

lim
N→∞

{
Λ

µ
α + (N − 1)

α

1 − α
− Ls

}
= 0,

and
lim
N→∞

{
Λ

µ
α + (N − 1)

α

1 − α
+ 1 −Us

}
= 0.
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4. Let Λ = Nλ. For fixed λ, lim
N→∞
(Us − Ls) = 1 +

(
λ
µ α

1
(1−α)+

λ
µ

)s
, lim
s→∞

{
lim
Λ→∞
(Us − Ls)

}
= 1, and

lim
N→∞

{
Nλ
µ
α + (N − 1)

α

1 − α
+

α

1 − α

λ
µ (1 − α)

1
(1−α) +

λ
µ (1 − α)

[
1 −

(
λ
µα

1
(1−α) +

λ
µ

)s]
− Ls

}
= 0,

lim
N→∞

{
Nλ
µ
α + (N − 1)

α

1 − α
+

α

1 − α

[
λ
µ (1 − α)

1
(1−α) +

λ
µ (1 − α)

+

1
1−α

1
(1−α) +

λ
µ (1 − α)

(
λ
µα

1
(1−α) +

λ
µ

)s]
+ 1 −Us

}
= 0.

5. For fixed Λ and N > 1, lim
α→1
(Us − Ls) = 1, s ≥ 2,

lim
α→1

{
Λ

µ
α + (N − 1)

α

1 − α
− Ls

}
= 0, s ≥ 1,

lim
α→1

{
Λ

µ
α + (N − 1)

α

1 − α
+ 1 −Us

}
= 0, s ≥ 2, and

lim
α→1

{
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

N
(N − 1)2

+ 1 −U1

}
= 0.

Proposition 3 shows that the lower and upper bounds become exact (i.e., converge to the exact optimal value
of K(α) under several asymptotic regimes), including when the demand Λ approaches 0, the number of
locations N approaches infinity (for fixed Λ, corresponding to a setting where an increase in N corresponds
to an increase in the density of pick up and drop off locations), and the service level α approaches 1.
When demand Λ approaches infinity (for fixed N), the gap between the lower and upper bound approaches
1 + αs+1

1−α which is decreasing in s and approaches 1 as s approaches infinity. When the number of locations
N approaches infinity (for fixed λ, corresponding to an increase in the service region), the gap between the

lower and upper bound approaches 1+
(

λ
µ α

1
(1−α)+

λ
µ

)s
which is decreasing in s and approaches 1 as s approaches

infinity. These results suggest that these bounds possess properties similar to those of the exact value for
K(α).

5.1 From Bounds to an Approximation

Motivated by the bounds, we propose next a closed form approximation, denoted by K̂(α), for K(α) that falls
between the lower and upper bounds Ls andUs and satisfies the asymptotic properties of the lower and upper
bounds, and other properties of K(α) per Proposition 3. First note that Ls and Us share the first two terms
(namely, Λµα and (N −1) α1−α ). Hence, any approximation reduces to approximating the third term. This term
would ideally, per the results in Proposition 3, (i) converge to 0 as Λ → 0+, α → 0, and N → ∞ for fixed
Λ, (ii) converge to α

1−α as Λ→ ∞ for fixed N , and (iii) converge to α
1−α

λ
µ (1−α)

1
(1−α)+

λ
µ (1−α)

= α
1−α

Λ
Nµ (1−α)

1
(1−α)+

Λ
Nµ (1−α)

as

N →∞ where Λ = Nλ for fixed λ. An expression that satisfies these properties is given by
Λ
µ α

N
(1−α)+

Λ
µ (1−α)

.
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Proposition 4. For s = 0, . . . , L0 − 1 (i.e., all indices with which (Ls,Us) is well-defined in Corollary 1),
Ls < K̂(α) < Us − 1 where

K̂(α) =
Λ

µ
α + (N − 1)

α

1 − α
+

Λ
µ

N
1−α +

Λ
µ (1 − α)

α. (15)

Note that, by Propositions 3 and 4, (15) is exact under several asymptotic regimes, including when the
demand approaches 0 or approaches infinity, the number of locations approaches infinity for a fixed Λ or for
a fixed demand density per location, and the service level α approaches 1.

Moreover, we can show that K̂(α) possesses several important properties that are satisfied by the exact
value K(α). In the following lemma, we state these properties (which are of independent interest). For
clarity, we use the notation K(α,Λ, µ,N) and K̂(α,Λ, µ,N) to indicate the dependence of K(α) and K̂(α) on
Λ, µ, and N and state compactly results regarding the impact of these parameters.

Lemma 4. The following properties are satisfied by K(α,Λ, µ,N).

(1) K(α,CΛ,Cµ,N) = K(α,Λ, µ,N) for any C > 0.

(2) K(α,Λ, µ,N) increases in N .

(3) α(NK,Nλ, µ,N) ≤ α(K, λ, µ,1). That is, K(α,Nλ, µ,N) ≥ NK(α,λ, µ,1) if K(α,Λ, µ,N) is defined as
a continuous inverse of the function α(K,Λ, µ,N).

(4) lim
λ→∞
{K(α,Nλ, µ,N) − NK(α,λ, µ,1)} = 0 if K(α,Λ, µ,N) is defined as a continuous inverse of the

function α(K,Λ, µ,N).

Property 1 states K(α,Λ, µ,N) depends on the parameters Λ and µ only through their ratio Λµ . Property
2 states that more vehicles are needed to guarantee the same service level if the number of locations
increases even thoughΛ and µ remain unchanged. Property 3 states that an N-location system requires more
vehicles than N independent single-location systems if their per location demand and service level are the
same. Property 4 states that the difference between an N-location system and N independent single-location
systems vanishes as λ becomes very large.

Proposition 5. The approximation K̂(α,Λ, µ,N) satisfies properties 1-4 in Lemma 4.

To assess the performance of the approximation K̂(α,Λ, µ,N), we conducted extensive numerical ex-
periments to compare K(α,Λ, µ,N) and K̂(α,Λ, µ,N). In particular, we varied N = 2, · · · ,100, Λ = 1i,
i = 1, · · · ,1000, and α = 0.03 j, j = 1, · · · ,33 for fixed µ = 1. This constituted 3,267,000 cases. The range
of the parameter values associated with these cases is chosen so that the starting value for each parameter
is equal or nearly equal to the smallest possible value and the largest value yields results that are consistent
with those obtained under the relevant asymptotic regimes (i.e., values that are large enough to lead to results
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similar to those obtained when these values reach their limit). For each case, we recorded the difference
between K(α) and dK̂e, where the notation d·e refers to the integer ceiling of the argument, and the relative
difference K(α)−dK̂ e

K(α) . We find that the value of the difference for all the cases considered to be always no
smaller than 0 and less than 5 with a mean of 0.015 and the relative difference to be less than 33% with
a mean of 0.056‰. The difference is observed to be larger when the following conditions simultaneously
hold: N is small, α is large, and Λ is large but not too large (since, from Proposition 3, case 2, we know that
the approximation is exact when Λ→∞ for given N and α). The relative difference is observed to be larger
when K(α) is small (i.e., when both N and Λ, or α are small). Representative results are shown in Table 1,
illustrating how remarkably accurate the approximation is.

Parameters K(α) dK̂e dL0e bU0c K(α) − dK̂e K(α)−dK̂ e
K(α)

α = 0.9
N = 4

Λ

1 28 28 28 37 0 0.00%
10 37 37 37 46 0 0.00%

100 120 119 117 123 1 0.83%
200 211 210 207 214 1 0.47%

1000 934 934 927 935 0 0.00%

α = 0.9
Λ = 30

N
2 39 38 36 46 1 2.56%
4 55 55 55 64 0 0.00%
8 91 91 91 100 0 0.00%

16 163 163 163 172 0 0.00%
32 307 307 307 316 0 0.00%

α = 0.9
Λ = 20N

N
2 48 47 45 55 1 2.08%
4 101 101 99 109 0 0.00%
8 209 209 207 217 0 0.00%

16 425 425 423 433 0 0.00%
32 857 857 855 865 0 0.00%

N = 4
Λ = 40

α

0.03 2 2 2 2 0 0.00%
0.30 14 14 14 14 0 0.00%
0.60 30 30 29 31 0 0.00%
0.90 65 64 64 73 1 1.54%
0.99 337 337 337 436 0 0.00%

Table 1: Representative numerical results
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5.2 Case of a Single Location

The case of a single location (N = 1) with exponentially distributed rental times corresponds to the well
studied Erlang loss system, with vehicles returning to the same location upon completing service. Hence,
it is worthwhile (though the single location is not the focus of this paper) to compare the approximation in
(15) to the approximations obtained in the literature that consider Erlang loss systems. In Appendix D.2, we
list notable results for the approximation of the inverse Erlang Loss formula, which include (5), (6) and (21)
in Berezner et al. (1998), and (35), (36), (39), and (40) in Harel (2010). For ease of reference, we rewrite
these approximations in the appendix using our notation. We add the initial “B” to equation numbers when
we refer to expressions from Berezner et al. (1998), and the initial “H” when we refer to expressions from
Harel (2010). Specifically, the maximum of (B.6) and (B.21) (referred to as (B.621) in our paper) and (H.36)
are lower bounds for K(α,Λ, µ,1), and (B.5) and (H.35) are upper bounds. To the best of our knowledge,
(H.39) and (H.40) are among the best performing approximations found in the literature. Note that the upper
bound (B.5) and lower bound (B.6) are just special cases of our simple bounds U0 and L0 for N = 1. Except
for these two, the other approximations, especially (B.21), do not have a simple form, which makes them
less tractable (e.g., if used as part of a larger model) and more difficult to interpret (see the discussion in
Section 6).

To further assess the effectiveness of our approximation, we carried out extensive numerical experiments
to compare its performance to that of (39) and (40) in Harel (2010). Fixing µ = 1, we varied Λ (Λ = 1i,
i = 1, · · · ,1000) and α (α = 0.03 j, j = 1, · · · ,33). For the cases tested, the mean absolute gaps between
K(α,Λ, µ,1) and K̂(α,Λ, µ,1), (B.621), (B.5), (H.39), (H.40) are 1.51, 2.55, 3.10, 2.06, and 0.64, respectively.
That is, the approximation error of approximation (15) is among the best ones for Erlang loss systems.
Interested readers are referred to Appendix D.2 for further numerical comparisons using the same examples
considered by Berezner et al. (1998) and Harel (2010). Hence, a secondary contribution of the paper is to
the literature on Erlang loss systems.

A potential limitation of (15), as an approximation for the case of N = 1, is that it does not satisfy the
result in regime 5 (α → 1) of Proposition 3. That is, when N = 1, K̂(α,Λ, µ,1) does not approach infinity
as α→ 1 (note that K̂(α,Λ, µ,1) still satisfies all of the other results of Proposition 3). However, as implied
by the following proposition, this issue arises only when α is nearly 1.

Proposition 6. When N = 1, lim
K→∞

{
[1 − α(K)](K!)(Λµ )

−K
}
∈ (0,1). That is, 1

1−α(K) grows to infinity in the

order of O
(
(K!)(Λµ )

−K
)
as K →∞. In contrast, when N > 1, lim

K→∞

{
[1 − α(K)] K

N−1
}
= 1, i.e., 1

1−α(K) grows
to infinity in the order of O(K) as K →∞.4

4Note that the exact-order asymptotics we show in the proposition holds not only for the true K(α) but also for the approximation
K̂(α). The second statement (for N > 1) of the proposition provides an exact-order asymptotics that is tighter than the lower bound
result in Lemma 20 of Banerjee et al. (2017) who show that the service level is at least 1 − O( 1√

K
) as K → ∞. Moreover, it is

consistent with the asymptotic approximation, α(K) ≈
(
1 − 1

K

)N−1
, implied by (14) in George et al. (2012) (a Taylor expansion of

their result yields α(K) = 1 − N−1
K + o( 1

K ) as K →∞).
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Note that (K!)(Λµ )
−K increases with K at a very fast rate (faster than any exponential function), and K

N−1

linearly increases in K . Because K(α,Λ, µ,N) is in fact the inverse function of α(K), the above proposition
implies that the order in which K(α,Λ, µ,N) grows to infinity as α→ 1 is fundamentally different for N = 1
and N > 1. When N > 1, lim

α→1
K(α,Λ, µ,N) grows to infinity in the order of O( 1

1−α ). When N = 1,
lim
α→1

K(α,Λ, µ,1) grows to infinity at a very slow rate. This rate is so negligible that it is smaller than that of
any power series of order O((1 − α)−δ), δ > 0. In Appendix D.1, we describe a correction term that could
be added if necessary so that the resulting approximation for the optimal fleet size approaches infinity as
α→ 1.

6 Insights

In order to obtain insights into the determinants of minimal fleet size, it is useful to consider the benchmark
case of a network where vehicles always return to the location from which they were picked up. That is, there
is no vehicle roaming and the network can be viewed as consisting of N independent queues. To isolate the
impact of roaming5, consider the case of a symmetric system, where the demand and service rates at each
location are given by λi = ΛN and µi j = µ for all i, j = 1, · · · ,N . The problem in this case decomposes into
N independent subsystems, with each subsystem consisting of a single location, with the optimal fleet size
given by:

NK̂(α,
Λ

N
, µ,1) =

Λ

µ
α + B0, (16)

where B0 =
N Λµ

N
1−α+

Λ
µ (1−α)

α. The above expression consists of two terms: the nominal load Λµα and additional
buffer capacity B0. This additional capacity is protection against the randomness in demand and service
times.

Contrast equation (16) with equation (15) for the original system with vehicle roaming which can be
rewritten as follows:

K̂(α,Λ, µ,N) =
Λ

µ
α + B0 + (N − 1)

α

1 − α
− B0(1 −

1
N
). (17)

The following observations can be made.

• Buffer capacity in a system with roaming can be viewed as consisting of three terms which can be
interpreted as follows: standard buffer capacity that is protection against randomness in demand and
service times, B0, buffer capacity that is protection against roaming, (N − 1) α1−α , and a correction
term, −B0(1 − 1

N ) (we refer to this term as a “correction” term because it is negative).

• We attribute the second term to vehicle roaming since it reduces to zero when N = 1 (more about this
below). However, because this additional capacity can also buffer against randomness from demand

5Formally, we use the term a “vehicle network with roaming” to refer to an N-location network with a routing probability matrix
with components pi j ≥ 0, i, j ∈ {1, · · · ,N} that is irreducible.
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and service times, the overall need for buffer capacity diminishes and there is a need for the correction
term −B0(1 − 1

N ).

• The magnitude of the correction term (i.e., B0(1 − 1
N )) increases with the number of locations. In the

limit, as N →∞, the correction term approaches B0. That is, the standard buffer capacity is no longer
needed, with the buffer capacity (N − 1) α1−α sufficient to protect against both vehicle roaming and
randomness in demand and service times. The optimal fleet size then reduces to Λµα + (N − 1) α1−α .

• The standard buffer capacity term B0 increases in the ratio of demand rate to service rate, Λµ , and the
service level, α, and increases in the number of locations, N . The buffer capacity term, (N − 1) α1−α ,
is independent of the demand and service rates and increases in the service level and the number of
locations.

• The fact that the term (N − 1) α1−α is independent of demand means that even for vanishingly small
demand (or service times), buffer capacity can be substantial (for example, a system with 2 locations
and a service level of 0.95, the minimal fleet size is 20 vehicles when Λ → 0; contrast that with the
minimal fleet size of 2 for the benchmark case where vehicles always return to the location from which
they originated).

• A system without roaming requires fewer vehicles than a system with roaming, with the difference
given by ∆K̂ = (N − 1)( α1−α −

B0
N ). This difference increases in N and α, with ∆K̂ →∞ as N →∞ or

α → 1, and decreases in Λµ , with ∆K̂ → (N − 1) α1−α as Λµ → 0 and ∆K̂ → 0 as Λµ → ∞; see Figure 1
for a numerical illustration of these effects.

• The impact of an increase in the service level is different in the two systems. In a system with roaming,
the minimal fleet size increases at a rate that is of order O( 1

1−α ). In contrast, in a system without
roaming, the minimal fleet size increases at a rate of an order that is smaller than any power series
O((1 − α)−δ), δ > 0, per Proposition 6 in Section 5.2. Figure 1a provides a numerical illustration of
this result.

An intuitive explanation for why vehicle roaming requires additional capacity buffering and why the
buffer capacity term (N − 1) α1−α may be attributed to this roaming feature is that “roaming,” even for
balanced systems, creates short term unbalances in the distribution of vehicles across locations, requiring
the additional buffering. Put a different way, vehicle roaming produces randomness in the service capacity
available at each location. This feature is present in any irreducible closed queueing network (i.e., a network
where the probability routing matrix [pi j] is irreducible). This intuition is supported by considering the
following three examples.

Example 1: Consider a system where vehicles picked up at one location are always returned to the same
location (i.e., pii = 1 for i = 1, . . . ,N) – the benchmark case we have considered so far. In this case, vehicles
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Figure 1: Minimal Fleet Size With and Without Vehicle Roaming (µ = 1)

do not roam, the routing matrix is not irreducible, and the service capacity available at each location is
constant. In this case, and per equation (17), the term (N − 1) α1−α is no longer part of the buffer capacity.

Example 2: Consider a system where vehicles picked up at location i are always returned to location i + 1
for i = 1, . . . ,N − 1) and vehicles picked up at location N are returned to location 1 (i.e., pi,i+1 = 1 for
i = 1, . . . ,N − 1 and pN ,1 = 1). That is, one could view pick up locations arranged on a circular road. In
such a network, there is no randomness in the routing of vehicles. However, vehicles still roam, the routing
matrix is irreducible, and the service capacity available at each location is random. This system, assuming
the demand arrival rate is the same at each location, satisfies the requirement of a balanced and irreducible
network. Hence, buffer capacity, per equation (15), contains the term (N − 1) α1−α .

Example 3(a): Consider a balanced system where trips durations are zero (i.e. 1
µ = 0), per the setup

described in Waserhole and Jost (2016). In such a network, there is no randomness in trip durations.
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However, vehicles still roam, the routing matrix is irreducible, and the service capacity available at each
location is random. Hence, buffer capacity, per equation (15) contains the term (N − 1) α1−α .

Example 3(b): Consider the same setup as in Example 3(a), except that the inter-arrival times of customers
at each location is now deterministic and pi j = 1

N . In other words, there is no randomness in demand.
However, vehicles still roam, the routing matrix is irreducible, and the service capacity available at each
location is random. In this case, even though the demand process at the different locations is not Poisson, we
can prove that the optimal buffer size is the same as that of Example 3(a) and contains the term (N − 1) α1−α .

Example 1 illustrates that absent the roaming feature, the term (N − 1) α1−α disappears. Examples 2, 3(a),
and 3(b) illustrate, respectively, that this term is present even if there is no randomness in vehicles routing
and even if there no uncertainty in service times and customer inter-arrival times.

7 Unbalanced Networks

In this section (and the accompanying appendix), we discuss how our analysis and results can be extended
to the case of unbalanced networks where the condition λi =

∑
j λjpji may not hold for all locations. In

an unbalanced network, the problem of determining a fleet size that guarantees a specified service level at
each location may not have a feasible solution (George and Xia, 2011). That is, even with an infinitely
large number of vehicles, it may not be possible to achieve a target service level (if this target is sufficiently
high) at each location. In particular, per Proposition 7 in the Appendix, the service levels at some locations
(so-called non-bottleneck locations) are bounded by specific thresholds. The average numbers of vehicles
at these locations and in transit are also bounded by finite fixed thresholds (no matter how large is the total
number of vehicles) and so are the associated throughputs.

In view of these challenges, it is common practice for operators of vehicle sharing systems to periodically
reposition vehicles to reduce the degree of unbalance. In what follows, we show how we can account for such
vehicle repositioning and how vehicle repositioning impacts fleet sizing. We also consider the problem of
optimal vehicle repositioning when repositioning is costly. We adopt the approach of He et al. (2017) which
models the process of vehicle repositioning as one where the requests for vehicle repositioning are issued
continuously over time to move a vehicle from one location to another. If a vehicle is present at that location,
then the move is carried out. Otherwise, the request is ignored. The process by which repositioning requests
are sent to a location i is modeled as a Poisson process with rate ψi ≥ 0. Vehicles are repositioned from
location i to location j according to transition probabilities qi j with repositioning time having a mean 1

θi j
. In

other words, repositioning requests function as “virtual” demand for rentals at a particular location and are
governed by similar dynamics as those of actual rentals. Treating vehicles repositioning as an uncontrolled
process is of course an approximation of how repositioning may occur in practice. However, for the purpose
of making decision over long time scales (e.g., deciding on the size of the fleet) such an approximation can
be reasonable (see He et al. (2017) for further discussion and justifications).
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Given the above specification, a vehicle repositioning policy can be fully characterized by the vector of
rates {ψi ≥ 0 | i ∈ V} and the matrix of routing probabilities {qi j ≥ 0 | i, j ∈ V,

∑
j

qi j = 1}. The network, in

the presence of repositioning6, is balanced if

λi + ψi =
∑
j

(λjpji + ψjqji), for all i ∈ V . (18)

Let Ψ :=
∑
i∈V

ψi denote the total repositioning rate, and 1
θ :=

∑
i, j∈V

ψiqi j
Ψθi j

denote the average duration

of repositioning trips. Then, the total demand rate for rentals (actual+virtual) is given by Λ + Ψ and the
average trip duration (averaged over both actual rentals and repositioning trips) is given by Λ

Λ+Ψ
1
µ +

Ψ
Λ+Ψ

1
θ .

Substituting Λ + Ψ and Λ
Λ+Ψ

1
µ +

Ψ
Λ+Ψ

1
θ for Λ and 1

µ in (15), we obtain the following modified version of the
approximation of the minimal fleet size:

K̂(α,Λ, µ,Ψ, θ,N) = (
Λ

µ
+
Ψ

θ
)α + (N − 1)

α

1 − α
+

Λ
µ +

Ψ
θ

N
1−α + (

Λ
µ +

Ψ
θ )(1 − α)

α. (19)

In Figure 2, we illustrate, for an example with two locations, the impact of repositioning on the minimal
number of vehicles required to guarantee a service level at least α at every location. This impact is particularly
significant when γ or α is large. Noting that γ is the probability that a trip terminates at location 1 and 1− γ
is the probability that it terminates at location 2, the parameter γ measures how unbalanced the system is.
The larger the γ for γ > 0.5, the larger the degree of unbalance.
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Figure 2: Minimal Fleet SizeWith andWithout Repositioning (for a Two-location Unbalanced Network with
λ1 = λ2 = 50, µi j = 1, θi j = 1.5µi j , p11 = p21 = γ, and p12 = p22 = 1 − γ)

Note that there are multiple ways network balancing can be achieved. In setting where repositioning is

6Note that the network continues to be irreducible.
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costly and the cost depends on the origin and destination of the respositioned vehicle, the following problem
can be used to determine optimal repositioning:

min
ψi ,qi j

{
αci j

∑
i, j∈V

ψiqi j
θi j

}
,

subject to (18), where ci j refers to the cost per unit of time of repositioning a vehicle from location i

to location j. The problem can be easily solved by recognizing that it can be transformed into a linear
programing problem (e.g., reformulating the problem in terms of variables zi j , where zi j = ψiqi j and using
the fact that

∑
j zi j = ψi).

8 Concluding Remarks

The setting we consider can be viewed as an instance of a class of service systems where servers do not
necessarily return to their original queue upon service completion and may instead join other queues. It can
be viewed as an instance of an even broader class of service systems where the number of servers at each
queue is random (or varies according to some specified logic). In our case, this randomness is determined
by the demand process and the travel patterns of customers. In other settings, this randomness may arise for
different reasons, such as external shocks that affect server availability or servers being independent agents
who decide when to work and for how long (or who act strategically by deciding, based on the state of the
system, on which queue to join). The impact of this randomness on system performance appears to be less
well understood than the impact of other types of randomness, and hence is worthy of further study. There
are other ways to generalize the setting we consider, including allowing for limits on the number of vehicles
at each location.
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Appendix A Proofs

In the section, we provide proofs for our main results.

To prove Lemma 2, it is sufficient to prove the following more general lemma.

Lemma 5. (i) ∆α(K) ≤ µ
Nµ+Λ <

µ
Λ
holds for all K , and the first inequality is strict for K > 1.

(ii) ∆α(K) ≤ µ
(K+N−1)µ+Λ[1−α(K−1)] holds for all K and is strict for K > 1.

(iii) 0 < ∆α(K) < ∆α(K − 1). That is, α(K) is increasing concave in K .

(iv) ∆α(K) >
(N−1)+Λµ [1−α(K−1)]{
(K+N )+Λµ [1−α(K)]

}2 .

Proof of Lemma 5. First, note that from (8), we can obtain

∆α(K) =
(N − 1) + Λµ [1 − α(K − 1)] + K Λµ [∆α(K − 1)]

[(K + N − 1) + Λµ (1 − α(K − 1))][(K + N − 2) + Λµ (1 − α(K − 2))]
,

which also corresponds to equation (12) in the main text. We will use this result in the course of this proof.

We prove the results (i)–(iv) in sequence.

(i) We prove ∆α(K) ≤ µ
Nµ+Λ <

µ
Λ
by induction. Note that the inequalities are shown to be strict for

K > 1 in our proof.

• When K = 1, ∆α(1) = α(1) − α(0) = µ
Nµ+Λ <

µ
Λ
.

• Suppose that ∆α(k) ≤ µ
Nµ+Λ <

µ
Λ
holds for k ≤ K − 1, we then prove that the inequality strictly holds

for k = K .

By plugging α(K − 1) − α(K − 2) < µ
Λ
into (12), we have

α(K) − α(K − 1) <
1

(K + N − 2) + Λµ (1 − α(K − 2))
≤

µ

Nµ + Λ
<
µ

Λ
,

where the second inequality holds because α(k) ≤ kµ
Λ

for any k ≥ 0.

(ii) Second, note that the inequality ∆α(K) < µ
Λ
guarantees that (K + N − 1)+ Λµ [1− α(K − 1)] increases

in K . Therefore,

α(K) − α(K − 1) =
K

(K + N − 1) + Λµ (1 − α(K − 1))
−

K − 1
(K + N − 2) + Λµ (1 − α(K − 2))

<
K

(K + N − 1)µ + Λµ (1 − α(K − 1))
−

K − 1
(K + N − 1) + Λµ (1 − α(K − 1))

=
µ

(K + N − 1)µ + Λ(1 − α(K − 1))
,

2



for K ≥ 2 where both α(K) and α(K − 1) can be expressed by the recursive equation (8). Furthermore, it is
obvious that the above inequality also holds for K = 1 since α(0) = 0.

(iii) Next, we prove result (iii) by induction. On the one hand, by (12) and the fact that α(1) > α(0), a
simple induction proves α(K) > α(K − 1), ∀K . That is, ∆α(K) > 0. On the other hand, it is easy to verify
∆α(2) < ∆α(1). Assume that ∆α(k) < ∆α(k − 1) holds for k ≤ K − 1, we then prove ∆α(K) < ∆α(K − 1).
By (12), we know that ∆α(K) < ∆α(K − 1) holds if and only if

(N−1)+
Λ

µ
[1−α(K−1)] < ∆α(K−1)

{[
(K + N − 1) +

Λ

µ
(1 − α(K − 1))

] [
(K + N − 2) +

Λ

µ
(1 − α(K − 2))

]
− K
Λ

µ

}
.

Note that[
(K + N − 1) +

Λ

µ
(1 − α(K − 1))

] [
(K + N − 2) +

Λ

µ
(1 − α(K − 2))

]
− K
Λ

µ

=
[
(K + N − 3) +

Λ

µ
(1 − α(K − 3)) + 2 −

Λ

µ
(α(K − 1) − α(K − 3))

] [
(K + N − 2) +

Λ

µ
(1 − α(K − 2))

]
− K
Λ

µ
.

Thus, the condition is satisfied if

∆α(K − 1)

>
(N − 1) + Λµ (1 − α(K − 1)) + ∆α(K − 1)

{
K Λµ −

[
2 − Λµ (α(K − 1) − α(K − 3))

] [
(K + N − 2) + Λµ (1 − α(K − 2))

]}[
(K + N − 3) + Λµ (1 − α(K − 3))

] [
(K + N − 2) + Λµ (1 − α(K − 2))

]
=
(N − 1) + Λµ (1 − α(K − 2)) + ∆α(K − 1)

{
(K − 1)Λµ −

[
2 − Λµ (α(K − 1) − α(K − 3))

] [
(K + N − 2) + Λµ (1 − α(K − 2))

]}[
(K + N − 3) + Λµ (1 − α(K − 3))

] [
(K + N − 2) + Λµ (1 − α(K − 2))

] ,

which holds according to (12) because ∆α(K − 2) > ∆α(K − 1) by the induction assumption and that
[2 − Λµ (α(K − 1) − α(K − 3))] > 0 by the result (i) in this proposition.

(iv) Lastly, according to the result (i), (K + N)µ + Λ[1 − α(K)] increases in K because ∆α(K) ≤ µ
Λ
.

Therefore, both α(K) and (K + N)µ + Λ[1 − α(K)] increase in K , and hence equation (12) yields

α(K) − α(K − 1) >
(N − 1) + Λµ [1 − α(K − 1)]

[(K + N − 1) + Λµ (1 − α(K − 1))][(K + N − 2) + Λµ (1 − α(K − 2))]

>
(N − 1) + Λµ [1 − α(K − 1)]

[(K + N) + Λµ (1 − α(K))][(K + N) + Λµ (1 − α(K))]
.

�

Proof of Proposition 1. From (8), we have

K =
Λ

µ
α(K) + (N − 1)

α(K)
1 − α(K)

+
Λ

µ

α(K)
1 − α(K)

∆α(K)

3



Because K(α) is the smallest number that satisfies α(K) ≥ α, we know α
(
K(α) − 1

)
< α ≤ α

(
K(α)

)
.

Therefore,

K(α) =
Λ

µ
α
(
K(α)

)
+ (N − 1)

α
(
K(α)

)
1 − α

(
K(α)

) + Λ
µ

α
(
K(α)

)
1 − α

(
K(α)

)∆α (
K(α)

)
≥
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
∆α

(
K(α)

)
, (20)

K(α) − 1 =
Λ

µ
α
(
K(α) − 1

)
+ (N − 1)

α
(
K(α) − 1

)
1 − α

(
K(α) − 1

) + Λ
µ

α
(
K(α) − 1

)
1 − α

(
K(α) − 1

)∆α (
K(α) − 1

)
<
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
∆α

(
K(α) − 1

)
. (21)

First, it is easy to see
K(α) ≥

Λ

µ
α + (N − 1)

α

1 − α
,

since ∆α(K) > 0. The inequality is strict if K(α) ≥ 1, i.e., α > 0.

Second, by substituting ∆α(K) < µ
Λ
into the right hand side of (21), we obtain

K(α) <
Λ

µ
α + N

α

1 − α
+ 1.

�

Note that equation (12) also describes a recursive relationship between ∆α(K) and ∆α(K − 1). A series
of bounds on ∆α(K) can be obtained if we expand (12) for multiple times and bound ∆α(K − s) according
to Lemma 5. We introduce the following result as a corollary of Lemma 5.

Corollary 2. Let η̃0(K) := 0 and ζ̃0(K) := µ
(K+N−1)µ+Λ(1−α(K−1)) for all K ≥ 1. Define η̃s(K) and ζ̃s(K)

iteratively for s = 1,2, · · · ,K − 1, where K ≥ 2 as follows.

η̃s(K) =
(N − 1) + Λµ [1 − α(K − 1)] + K Λµ η̃s−1(K − 1)

{(K + N − 1) + Λµ [1 − α(K − 1)]}{(K + N − 2) + Λµ [1 − α(K − 2)]}
,

ζ̃s(K) =
(N − 1) + Λµ [1 − α(K − 1)] + K Λµ ζ̃s−1(K − 1)

{(K + N − 1) + Λµ [1 − α(K − 1)]}{(K + N − 2) + Λµ [1 − α(K − 2)]}
.

Then, η̃s(K) < ∆α(K) ≤ ζ̃s(K) for all 0 ≤ s ≤ K − 1. Furthermore, η̃s(K) > η̃s−1(K) and ζ̃s(K) < ζ̃s−1(K).

Proof of Corollary 2. By iterating equation (12) multiple times on its right hand side, we are able to
express ∆α(K) by ∆α(K − s), where the last iteration has terms (N − 1) + Λµ [1 − α(K − s)] + (K − s +

1)Λµ∆α(K − s) in its numerator. Noting that (K − s)∆α(K − s) ≤ α(K − s) by result (iii) of Lemma 5, we
know Λ

µ [1− α(K − s)]+ (K − s + 1)Λµ∆α(K − s) ≤ Λµ +
Λ
µ∆α(K − s) ≤ Λµ + ζ̃0(K − s). By replacing the term

(K − s + 1)Λµ∆α(K − s) with 0 on the right hand side of the iteration, we have ∆α(K) > η̃s(K). By replacing

4



the term Λ
µ [1− α(K − s)]+ (K − s + 1)Λµ∆α(K − s) with Λµ + ζ̃0(K − s) on the right hand side of the iteration,

we have ∆α(K) ≤ ζ̃s(K).

According to Lemma 5, η̃1(K) > 0 = η̃0(K) and

ζ̃1(K) =
(N − 1) + Λµ [1 − α(K − 1)]

{(K + N − 1) + Λµ [1 − α(K − 1)]}{(K + N − 2) + Λµ [1 − α(K − 2)]}

<
1

{(K + N − 1) + Λµ [1 − α(K − 1)]}
= ζ̃0(K)

for K ≥ 2. By the definition of η̃s(K) and ζ̃s(K), we can easily prove η̃s(K) > η̃s−1(K) and ζ̃s(K) < ζ̃s−1(K)

by induction. �

Although η̃s(K) and ζ̃s(K) bound ∆α(K) in general, they are not useful bounds for ∆α
(
K(α)

)
because

the value of K(α) is unknown. Thus, we replace the value K in the definitions of η̃s(K) and ζ̃s(K) with its
upper bound U and lower bound L to yield ηts(L,U, α) and ζ ts (L,U, α), whose expressions do not involve K

and hence are now practical bounds for ∆α(K). Recall that the definitions of ηts(L,U, α) and ζ ts (L,U, α) are
presented in the main text. Here we prove the following proposition.

Lemma 6. If L ≤ K(α) ≤ U, then η̃s
(
K(α) − t

)
≥ ηts(L,U, α) and ζ̃s

(
K(α) − t

)
≤ ζ ts (L,U, α), for all t ≥ 0

and 0 ≤ s ≤ L − 1.

Proof of Lemma 6. Note that ηts(L,U, α) and ζ ts (L,U, α) are defined in similar ways as η̃s(K) and ζ̃s(K) in
Corollary 2 with minor differences in the numerators and denominators. While the denominator of η̃s(K) is
updated according to K , that of ηts(L,U, α) depends only on U and α.

By the fact that L ≤ K(α) ≤ U and α
(
K(α) − 1

)
< α ≤ α

(
K(α)

)
, we prove the results by induction for

s = 0,1,2, · · · , L − 1.

• First, s = 0. We know that η̃0
(
K(α) − t

)
= ηt0(L,U, α) = 0 and ζ̃0

(
K(α) − t

)
≤ ζ t0(L,U, α), ∀t ≥ 0 by

result (i) of Lemma 5.
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• Suppose that we have proved the result for indices up to s − 1. Then, by the definition of η̃s, we have

η̃s(K(α) − t) =
(N − 1) + Λµ [1 − α

(
K(α) − t − 1

)
] +

(
K(α) − t

)
Λ
µ η̃s−1(K(α) − t − 1){

(K(α) + N − t − 1) + Λµ [1 − α
(
K(α) − t − 1

)
]

} {
(K(α) + N − t − 2) + Λµ [1 − α

(
K(α) − t − 2

)
]

}
>
(N − 1) + Λµ [1 − α

(
K(α) − t − 1

)
] +

(
K(α) − t

)
Λ
µ η̃s−1(K(α) − t − 1){

(K(α) + N) + Λµ [1 − α
(
K(α)

)
]

}2

>
(N − 1) + Λµ (1 − α) + (L − t)Λµ η̃s−1(K(α) − t − 1)[

(U + N) + Λµ (1 − α)
]2

≥
(N − 1) + Λµ (1 − α) + (L − t)Λµ η

t+1
s−1(L,U, α)[

(U + N) + Λµ (1 − α)
]2 = ηts(L,U, α),

where the first inequality holds because K + Λµ [1 − α(K)] increases in K (by result (i) of Lemma 5),
the second inequality follows from the fact that L ≤ K(α) ≤ U, α

(
K(α) − 1

)
< α ≤ α

(
K(α)

)
, and the

last inequality holds by the induction hypothesis.

On the other hand, by the definition of ζ̃s,

ζ̃s(K(α) − t) =
(N − 1) + Λµ [1 − α

(
K(α) − t − 1

)
] +

(
K(α) − t

)
Λ
µ ζ̃s−1(K(α) − t − 1){

(K(α) + N − t − 1) + Λµ [1 − α
(
K(α) − t − 1

)
]

} {
(K(α) + N − t − 2) + Λµ [1 − α

(
K(α) − t − 2

)
]

}
<

(N − 1) + Λµ
{
1 − α

(
K(α)

)
+ t+1

K(α)+N−t−1+Λµ
[
1−α(K(α)−t−1)

] } + (
K(α) − t

)
Λ
µ ζ̃s−1(K(α) − t − 1){

(K(α) + N − t − 1) + Λµ [1 − α
(
K(α) − t − 1

)
]

} {
(K(α) + N − t − 2) + Λµ [1 − α

(
K(α) − t − 2

)
]

}
<

(N − 1) + Λµ
{
1 − α + t+1

L+N−t−1+Λµ (1−α)

}
+

(
U − t

)
Λ
µ ζ̃s−1(K(α) − t − 1){

(L + N − t − 1) + Λµ (1 − α)
} {
(L + N − t − 2) + Λµ (1 − α)

}
≤

(N − 1) + Λµ
{
1 − α + t+1

L+N−t−1+Λµ (1−α)

}
+

(
U − t

)
Λ
µ ζ

t+1
s−1(L,U, α){

(L + N − t − 1) + Λµ (1 − α)
} {
(L + N − t − 2) + Λµ (1 − α)

}
=ζ ts (L,U, α),

where the second inequality follows from the fact that L ≤ K(α) ≤ U, α
(
K(α) − 1

)
< α ≤ α

(
K(α)

)
and the last inequality holds by the induction hypothesis. The first inequality holds because

1 − α
(
K − t − 1

)
= 1 − α(K) + α(K) − α(K − t − 1) ≤ 1 − α(K) + (t + 1)∆α(K − t)

≤ 1 − α(K) + (t + 1)
1

K − t + N − 1 + Λµ [1 − α(K − t − 1)]

from results (ii) and (iii) of Lemma 5.
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Proof of Lemma 3. The results follow directly from Corollary 2 and Lemma 6. �

Proof of Proposition 2. The results follow directly from Lemma 3 and inequalities (20) and (21). �

Proof of Corollary 1. By applying Proposition 2 to the bounds (L0,U0) established in Proposition 1, we
have Ls < K(α) < Us.

To prove Ls ≥ Ls−1 and Us ≤ Us−1, it is sufficient to show that ηts(L0,U0, α) > ηt
s−1(L0,U0, α) and

ζ ts (L0,U0, α) > ζ t
s−1(L0,U0, α) for s = 0,1, · · · .

For the monotonicity result of ηts, we can prove for any pair of positive bounds as argument of ηts(L,U, α).
It is obvious that ηt1(L,U, α) > 0 = ηt0(L,U, α), ∀t. According to the definition of ηts(L,U, α), we know
ηts(L,U, α) > ηt

s−1(L,U, α) for all 0 ≤ s ≤ L − 1, which is an analogue to the result η̃s(K) > η̃s−1(K) in
Corollary 2.

For the monotonicity result of ζ ts , we only prove the case with (L0,U0) as argument and for certain s’s.
Again, according to the definition of ζ ts (L,U, α), it is sufficient to prove ζ t1(L0,U0, α) < ζ t0(L0,U0, α). We
then examine the condition that can guarantee this inequality. Note that

ζ t1(L,U, α) =
(N − 1) + Λµ [1 − α +

t+1
(L0+N−t−1)+Λµ (1−α)

] + (U0 − t)Λµ ζ
t+1
0 (L0,U0, α)

[(L0 + N − t − 1) + Λµ (1 − α)][(L0 + N − t − 2) + Λµ (1 − α)]
<
µ

Λ
= ζ t0(K, L, α)

⇔
Λ

µ
(U0 − L0) +

(Λµ )
2(t + 1)

(L0 + N − t − 1) + Λµ (1 − α)
< [(L0 + N − t − 1) +

Λ

µ
(1 − α)][(L0 + N − t − 2) +

Λ

µ
(1 − α) −

Λ

µ
].

By substituting the values of L0 and U0 into the above inequality, we know that the condition

Λ

µ

[
1

1 − α
+ 1 +

Λ
µ (t + 1)

Λ
µ +

N−1
1−α − t

]
<

(
Λ

µ
+

N − 1
1 − α

− t
) (

N − 1
1 − α

− t − 1
)

is needed to guarantee ζ t1(L0,U0, α) < ζ t0(L0,U0, α). If t + 1 ≤ 1
6
N−1
1−α , simple algebra shows that the left hand

side is no greater than Λµ
2+ N−1

6
1−α −

Λ
µ

α
1−α and the right hand side is greater than Λµ

5
6
N−1
1−α + (

5
6
N−1
1−α )

2. When
N ≥ 4, the inequality holds regardless of the value of Λµ and α because 2 + N−1

6 ≤ 5
6 (N − 1). Noting that

s + t is constant in the iteration, the condition t + 1 ≤ 1
6
N−1
1−α requires s + 1 ≤ 1

6
N−1
1−α as well. Therefore,

ζ ts (L0,U0, α) < ζ t
s−1(L0,U0, α) and hence Us < Us−1 if s < 1

6
N−1
1−α and N ≥ 4. �

As one can see, ηts and ζ ts are defined using recursive equations that are similar to (12) for ∆α(K − t)’s,
t = 0,1, · · · ,K except that the unknown variables in (12) are replaced by their known bounds, e.g, K(α)

by L or U, α(K) by α, α(K − t) by α or α − t

L+N−t+Λµ (1−α)
, etc. On the one hand, the expressions of ηts

and ζ ts better resemble the recursive formulation of the actual ∆α(K), leading to better approximations, as
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more iterations are applied. On the other hand, the replacement of the unknown actual variables with their
bounds introduces additional errors with each iteration, which may lead to a deterioration in the quality of
the generated bounds. In particular, such relaxation errors could be significant for the upper bounds ζ ts ’s
because one of the approximate term, (t+1)Λ/µ

[L+N−t−1+Λµ (1−α)]2[L+N−t−2+Λµ (1−α)]
, is increasing convex in t (i.e.,

larger and larger relaxation errors are introduced with each iteration). We observe that the net effect is that
the upper bounds ζ1

s (L,U, α)’s may deteriorate with additional iterations when many iterations have already
been applied and the bound is already very close to the actual ∆α

(
K(α)

)
. This does not happen to the

lower bounds because the unknown variables in their expressions are replaced by the parameters that remain
constant over iterations. Thus, the η0

s (L,U, α)’s always increase (improve) over iterations. An illustration of
this effect is presented in Figure 3.

0 25 50 75 100 125 150 175 200
s

262

264

266

268

270
Us

K(α)

K̂(α)

Ls

Figure 3: The lower and upper bounds as a function of the number of iterations (α = 0.9, Λ = 200, µ = 1,
and N = 10)

Proof of Proposition 3. According to the definition of Ls and Us, it is sufficient to prove the following
results.

1. For fixed N and any finite s, t ≥ 1, lim
Λ→0+

Λ
µ η

0
s (L0,U0, α) = lim

Λ→0+
Λ
µ ζ

1
s (L0,U0, α) = 0.

2. For fixed N and any finite s, t ≥ 0, lim
Λ→∞

Λ
µ η

t
s(L0,U0, α) = 1 − αs, and lim

Λ→∞

Λ
µ ζ

t
s (L0,U0, α) = 1.

3. For fixed Λ and any finite s, t ≥ 1, lim
N→∞

Λ
µ η

t
s(L0,U0, α) = lim

Λ→0+
Λ
µ ζ

t
s (L0,U0, α) = 0.

8



4. For fixed λ = ΛN and any finite s, t ≥ 0,

lim
N→∞

Λ

µ
ηts(L0,U0, α) =

λ
µ (1 − α)

1
1−α +

λ
µ (1 − α)

[
1 −

(
λ
µα

1
1−α +

λ
µ

)s]
, and

lim
N→∞

Λ

µ
ζ ts (L0,U0, α) =

λ
µ (1 − α)

1
1−α +

λ
µ (1 − α)

+

1
1−α

1
1−α +

λ
µ (1 − α)

(
λ
µα

1
1−α +

λ
µ

)s
.

5. For fixed Λ > 0, N > 1, and any finite s, t ≥ 2, lim
α→1

Λ
µ η

t
s(L0,U0, α)

α
1−α = lim

α→1
Λ
µ ζ

t
s (L0,U0, α)

α
1−α = 0.

For s = 1, lim
α→1

Λ
µ η

t
1(L0,U0, α)

α
1−α = 0 and lim

α→1
Λ
µ ζ

t
1(L0,U0, α)

α
1−α =

Λ
µ

N
(N−1)2 .

These results can be proven by induction for s = 1,2, · · · . Noting that

L0 − t =
Λ

µ
α +
(N − 1)α

1 − α
− t, L0 + N − t − 1 +

Λ

µ
(1 − α) =

Λ

µ
+

N − 1
1 − α

− t,

U0 − t =
Λ

µ
α +

Nα
1 − α

+ 1 − t, and U0 + N +
Λ

µ
(1 − α) =

Λ

µ
+

N
1 − α

+ 1,

we know that (1) as Λ→ 0, lim
Λ→0

L0 = 0, lim
Λ→0

U0 = 1; (2) as Λ→∞,

L0 − t =
Λ

µ
α +O(1), L0 + N − t − 1 +

Λ

µ
(1 − α) =

Λ

µ
+O(1),

U0 − t =
Λ

µ
α +O(1), and U0 + N +

Λ

µ
(1 − α) =

Λ

µ
+O(1);

(3) as N →∞,

L0 − t =
Nα

1 − α
+O(1), L0 + N − t − 1 +

Λ

µ
(1 − α) =

N
1 − α

+O(1),

U0 − t =
Nα

1 − α
+O(1), and U0 + N +

Λ

µ
(1 − α) =

N
1 − α

+O(1);

(4) as N →∞ and Λ = Nλ,

L0 − t = N
(
λ

µ
+

1
1 − α

)
α +O(1), L0 + N − t − 1 +

Λ

µ
(1 − α) = N

(
λ

µ
+

1
1 − α

)
+O(1),

U0 − t = N
(
λ

µ
+

1
1 − α

)
α +O(1), and U0 + N +

Λ

µ
(1 − α) = N

(
λ

µ
+

1
1 − α

)
+O(1);

and (5) as α→ 1,

L0 − t =
(N − 1)α

1 − α
+O(1) =

N − 1
1 − α

+O(1), L0 + N − t − 1 +
Λ

µ
(1 − α) =

N − 1
1 − α

+O(1),

U0 − t =
Nα

1 − α
+O(1) =

N
1 − α

+O(1), and U0 + N +
Λ

µ
(1 − α) =

N
1 − α

+O(1).

The proofs for regimes 1, 2, 3, and 5 can be completed using induction by applying the above limits to the
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definition of ηts and ζ ts . Here, we only provide the detailed steps for regime 4, the case that requires most
involved expressions.

• For s = 0, Λµ η
t
0(L0,U0, α) = 0 and Λµ ζ

t
0(L0,U0, α) = 1, which satisfy the induction hypothesis for all t.

• Suppose that the results hold for subscript 0,1, · · · , s − 1 for all t, then

lim
N→∞

Λ

µ
ηts(L0,U0, α) =

λ
µ

{
1 + λ

µ (1 − α) + (
λ
µ +

1
1−α )α

λ
µ (1−α)

1
1−α+

λ
µ (1−α)

[
1 −

(
λ
µ α

1
1−α+

λ
µ

)s−1
]}

(λµ +
1

1−α )
2

=

λ
µ (1 − α)

1
1−α +

λ
µ (1 − α)

[
1 −

(
λ
µα

1
1−α +

λ
µ

)s]
,

lim
N→∞

Λ

µ
ζ ts (L0,U0, α) =

λ
µ

{
1 + λ

µ (1 − α) + (
λ
µ +

1
1−α )α

[
λ
µ (1−α)

1
(1−α)+

λ
µ (1−α)

+
1

1−α
1

(1−α)+
λ
µ (1−α)

(
λ
µ α

1
(1−α)+

λ
µ

)s−1
]}

(λµ +
1

1−α )
2

=

λ
µ (1 − α)

1
(1−α) +

λ
µ (1 − α)

+

1
1−α

1
(1−α) +

λ
µ (1 − α)

(
λ
µα

1
(1−α) +

λ
µ

)s
.

�

Proof of Proposition 4. We prove the result for all s = 0, . . . , L0 − 1 where (Ls,Us) is well-defined in
Corollary 1. We only consider the non-trivial case where L0 ≥ 1, i.e., (Λµ +

N−1
1−α )α ≥ 1. By comparing the

expressions of (13), (14), and (15), it suffices to prove that

ηts(L0,U0, α) <
1

N
(1−α)2 +

Λ
µ

< ζ t+1
s (L0,U0, α) (22)

holds for all s ≥ 0 and t ≥ 0. We prove by induction on progressing index s as follows.

• For s = 0, ηt0(L0,U0, α) = 0 <
[

N
(1−α)2 +

Λ
µ

]−1
<

µ
Λ
= ηt+1

0 (L0,U0, α), which satisfies the induction
hypothesis.

• Suppose that (22) holds for subscripts 0,1, · · · , s − 1 for all t, we then examine whether it holds for
subscript s. We know by definition that

η0
s (L0,U0, α) =

(N − 1) + Λµ (1 − α) + L0
Λ
µ η

1
s−1(L0,U0, α)

( N
1−α + 1 + Λµ )2

and

ζ1
s (L0,U0, α) =

(N − 1) + Λµ [1 − α +
2

(L0+N−2)+Λµ (1−α)
] + (U0 − 1)Λµ ζ

2
s−1(L0,U0, α)

(N−1
1−α − 1 + Λµ ) · (

N−1
1−α − 2 + Λµ )

.

10



By simple algebra, the former is smaller than
[

N
(1−α)2 +

Λ
µ

]−1
if[

L0
Λ

µ
η1
s−1(L0,U0, α) − 1

] [ N
(1 − α)2

+
Λ

µ

]
<

(Λ
µ
+

N
1 − α

) (Λ
µ
α + 2

)
+ 1;

the latter is greater than
[

N
(1−α)2 +

Λ
µ

]−1
if

(U0−1)
Λ

µ
ζ2
s−1(L0,U0, α)

[ N
(1 − α)2

+
Λ

µ

]
+

2Λµ
[

N
(1−α)2 +

Λ
µ

]
Λ
µ +

N−1
1−α − 1

>
(Λ
µ
+

N − 1
1 − α

)Λ
µ
α−

(Λ
µ
+

N − 1
1 − α

)
(3+

1
α
)+2.

Both of these conditions hold because

◦ L0
Λ
µ η

1
s−1(L0,U0, α)

[
N

(1−α)2 +
Λ
µ

]
< L0

Λ
µ =

(
Λ
µ +

N−1
1−α

)
Λ
µα by the induction hypothesis for subscript

s − 1.

◦ (U0 − 1)Λµ ζ
2
s−1(L0,U0, α)

[
N

(1−α)2 +
Λ
µ

]
> (U0 − 1)Λµ =

(
Λ
µ +

N
1−α

)
Λ
µα by the induction hypothesis

for subscript s − 1.

◦ −
(
Λ
µ +

N−1
1−α

)
(3 + 1

α ) + 2 < − 1
α (3 +

1
α ) + 2 < 0 because (Λµ +

N−1
1−α )α ≥ 1 in the non-trivial case.

Therefore, we obtain η0
s (L0,U0, α) <

[
N

(1−α)2 +
Λ
µ

]−1
< ζ1

s (L0,U0, α). Since ηts(L0,U0, α) decreases in

t and ζ ts (L0,U0, α) increases in t, we further obtain ηts(L0,U0, α) <
[

N
(1−α)2 +

Λ
µ

]−1
< ζ t+1

s (L0,U0, α)

for all t ≥ 0. The induction is completed.

�

Proof of Proposition 5. The proof is trivial according to (15). �

Proof of Proposition 6. By the monotonicity of α(K) and (8), we know that lim
K→∞

α(K) exists and equals to
1. By (8), we know that

1 − α(K) =
(N − 1) + Λµ [1 − α(K − 1)]

(K + N − 1) + Λµ [1 − α(K − 1)]
. (23)

If N > 1, then

lim
K→∞

{
[1 − α(K)]

K
N − 1

}
= lim

K→∞

{
(N − 1) + Λµ [1 − α(K − 1)]

N − 1
K

(K + N − 1) + Λµ [1 − α(K − 1)]

}
= 1.
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If N = 1, by (23), we know

1
1 − α(K)

= 1 +
K(Λµ )

−1

1 − α(K − 1)
, for all K , and (24)

1
1 − α(K)

+

Λ
µ

K − Λµ
= K(

Λ

µ
)−1

(
1

1 − α(K − 1)
+

Λ
µ

K − Λµ

)
, for all K , Λµ . (25)

On the one hand, letω(K) := K(Λµ )
−1ω(K−1) be recursively defined withω(1) := 1

1−α(1) = (
Λ
µ )
−1(1+ Λµ ).

Then, ω(K) = (K!)(Λµ )
−K (1 + Λµ ), and

1
1−α(K) ≥ ω(K) for all K ≥ 1 by comparing (24) and the definition of

ω(K) via induction. This implies that 1
1−α(K) ≥ (K!)(Λµ )

−K (1 + Λµ ), and hence

lim sup
K→∞

{
[1 − α(K)](K!)(

Λ

µ
)−K

}
≤

1
1 + Λµ

< 1. (26)

On the other hand, for any k > Λµ , let ω̄
k(K) := K(Λµ )

−1ω̄k(K − 1) be recursively defined for all K ≥ k,

where ω̄k(k − 1) := 1
1−α(k−1) +

Λ
µ

k−Λµ
. Then, ω̄k(K) = (K!)(Λµ )

−K ·

1
1−α(k−1)+

Λ
µ

k−Λµ

(k−1)!(Λµ )−(k−1) , and ω̄k(K) ≥ 1
1−α(K) +

Λ
µ

K−Λµ

for all K ≥ k by comparing (25) and the definition of ω̄k(K) via induction. This implies that

lim inf
K→∞

{
[1 − α(K)](K!)(

Λ

µ
)−K

}
≥ lim inf

K→∞

(k − 1)!(Λµ )
−(k−1)

1
1−α(k−1) +

Λ
µ

k− Λµ

[
1 +

Λ
µ (1 − α(K))

K − Λµ

]
=
(k − 1)!(Λµ )

−(k−1)

1
1−α(k−1) +

Λ
µ

k− Λµ

> 0. (27)

Let k →∞, we obtain

lim inf
K→∞

{
[1 − α(K)](K!)(

Λ

µ
)−K

}
≥ lim sup

k→∞

(k − 1)!(Λµ )
−(k−1)

1
1−α(k−1) +

Λ
µ

k−Λµ

≥

lim sup
k→∞

{
[1 − α(k − 1)](k − 1)!(Λµ )

−(k−1)
}

lim inf
k→∞

{
1 +

Λ
µ [1−α(k−1)]

k−Λµ

}
= lim sup

k→∞

{
[1 − α(k)](k!)(

Λ

µ
)−k

}
,

which suggests that

lim inf
K→∞

{
[1 − α(K)](K!)(

Λ

µ
)−K

}
= lim sup

K→∞

{
[1 − α(K)](K!)(

Λ

µ
)−K

}
and lim

K→∞

{
[1 − α(K)](K!)(Λµ )

−K
}
exits. Its value lies in (0,1) due to (26) and (27). �

Proof of Lemma 4. The proofs of properties 1 and 2 are straightforward. Property 1 obviously holds
because the recursive equation (8) depends only on the ratio of Λ to µ. From (8), we can also easily prove,
by induction, that α(K,Λ, µ,N) decreases in N , which immediately yields property 2.
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If (8) is extended to be appropriately defined for real-valued K , then K(α) can be re-defined as the
continuous inverse of α(K) such that K(α) := {K : α(K) = α}. In this case, (9) holds for real-valued K ,
which yields

K(α) =
Λ

µ
α + (N − 1)

α

1 − α
+
Λ

µ

α

1 − α
∆α

(
K(α)

)
.

By Lemma 3 and the proof of result 2 of Proposition 3, we obtain

1 − αs = lim
Λ→∞

Λ

µ
η0
s (L0,U0, α) <

Λ

µ
∆α

(
K(α)

)
< lim
Λ→∞

Λ

µ
ζ1
s (L0,U0, α) = 1,

which, by letting s → ∞ as Λ → ∞, proves that lim
Λ→∞
{K(α,Λ, µ,N) − (Λµα + N α

1−α )} = 0. This result is
sufficient to guarantee property 4.

The proof of property 3 is more involved. Note that the recursive equation (8) depends on the λi’s only
via Λ and the µi j’s only via µ. Therefore, balanced systems with the same total arrival rate and overall
average rental time have the same performance even though they may have different λi’s, µi j’s, and rental
time distributions. This implies that it is sufficient to prove that property 3 holds for a symmetric system
where each region has the same demand rate λ and each customer has the same exponentially distributed
rental time with mean 1

µ . We may also further restrict the routing matrix P as follows:

pi j =


1, if j = i + 1,

1, if i = N, j = 1,

0, otherwise,

which implies that a vehicle picked up at location i is dropped off at location i + 1 when i < N and vehicles
picked up at location N are dropped off at location 1. A graphic representation of this cyclic network is
shown in Figure 4. We use the notation Xi and Yi to denote the number of vehicles at location i’s pick-up
queue and transit queue respectively. In this network, the throughput of all the queues are the same and we
use the notation fN (K) to denote the throughput rate per location when the cyclic network has K vehicles
and N locations. This throughput is a concave function of K for any N (a result we use below) since the total
throughput of a closed Jackson queueing network is nondecreasing concave in the number of items in the
network (Shanthikumar and Yao (1988)).

X1 Y2 X2 Y3 XN Y1

λ λ λ

µ

µ

µ

µ

µ

µ

Figure 4: A cyclic queueing network representation of a one-way vehicle sharing system
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Next, we describe a network aggregation procedure due to Chandy et al. (1975) that we will deploy in
our proof. Consider a closed queuing network with exponential service queues. A subnetwork σ is a subset
of queues in the network such that items enter this subset through only one starting point and exit it through
only one endpoint. For example, the transit queue 2 and pick-up queue 2 in Figure 4 constitute a subnetwork,
while the transit queues 2 and 3 do not. A reduced network with σ “shorted” is a modification to the original
network in which the service times of all the servers in the subnetwork σ are set to zero. Let T(K) be the
throughput rate passing the endpoint of the shorted subnetwork when there are a total number of K items
in the reduced network. Then, we construct an equivalent network with a composite σc by replacing all
the queues in the original network, except those in the subnetwork σ, by a single composite queue which
has a state dependent service rate T(k) when there are k items in its queue. That is, the equivalent network
consists of the queues in the original subnetwork σ and a single composite queue.

Lemma 7 (Theorems 1 & 2 of Chandy et al. (1975)). The behavior of σ in the equivalent network is identical
to that in the original network, i.e., they have the same queue length and queue time distributions.

For our cyclic networkwith 2N queues and NK items (see Figure 4), we propose the following aggregation
procedure, consistent with the procedure described above, to construct an equivalent network with N

indentical queues and NK items. Specifically, we sequentially aggregate, starting with location 1, the pickup
and transit queues into a single queue (see Figure 5 for an illustration). The resulting equivalent network
(with the same throughput per location) has N identical queues, with each queue having a queue-length
dependent service rate function f1(·). Let Zi, i = 1,2, · · · ,N denote the length of each queue in the equivalent
network. By definition, the total throughput of the equivalent network can be derived as

∑
Z1+Z2+· · ·+ZN=NK

[P(Z1, Z2, · · · , ZN )

N∑
i=1

f1(Zi)],

which equals the total throughput rate of all pick-up queues in the original network, yielding

N fN (NK) =
∑

Z1+Z2+· · ·+ZN=NK

[P(Z1, Z2, · · · , ZN )

N∑
i=1

f1(Zi)]

≤
∑

Z1+Z2+· · ·+ZN=NK

[P(Z1, Z2, · · · , ZN )N f1(K)]

=N f1(K),

where the inequality holds by the concavity of f1(·) and Jensen’s inequality. Noting α(NK,Nλ, µ,N) =
fN (NK)

λ and α(K, λ, µ,1) = f1(K)
λ , we have α(NK,Nλ, µ,N) ≤ α(K, λ, µ,1). �
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X1 Y2 X2 Y3 XN Y1

λ λ λ

µ

µ

µ

µ

µ

µ

Z1 f1(Z1) X2 Y3 XN Y1

λ λ

µ

µ

µ

µ

Z1 f1(Z1) Z2 f1(Z2) ZN f1(ZN )

Figure 5: A graphical illustration of the aggregation procedure

Appendix B Dimensioning Unbalanced Networks

In this section, we derive recursive equations for unbalanced networks that are analogous to (8) for balanced
networks. These equations allow us to efficiently compute the average system performance and determine the
optimal fleet size, though not yielding closed-form expressions. We discuss how in an unbalanced network,
the problem of determining a fleet size that guarantees a specified service level at each location may not have
a feasible solution. That is, even with an infinitely large number of vehicles, it may not be possible to achieve
a target service level (if this target is sufficiently high) at each location; these results are due to George and
Xia (2011) and we refer the interested reader to their paper for more details.

First, note that the network continues to be a BCMP Network. Therefore, the stationary distribution of
system states can still be obtained via (1)–(3) and used to compute various performance measures, including
throughput at each transit and pickup queue, total system throughput, and service level at each location. Note
that because λi =

∑
j λjpji does not hold for all i, the service level induced in steady state by a given number

of vehicles is no longer the same at different locations. Hence, the dimensioning problem becomes one of
finding the smallest number of vehicles that guarantees that the smallest service level is greater or equal than
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the specified target service level. As in the case of a balanced network, this approach requires significant
computational effort and lacks interpretability.

Mean value analysis can alternatively be used. This requires some modifications from the balanced
system case which we describe next. Let ri j be the proportion of effective rentals that originate in location i

and terminate in location j when there is only a single vehicle in the system (i.e., K = 1) and let ri =
∑
j∈V

ri j .

From the point of view of this vehicle, its transitions between locations, regardless of the lengths of stay, are
governed by the transition probabilities pi j . Therefore, the ri’s are the steady-state probabilities of a discrete
timeMarkov Chain with transition matrix with elements {pi j} (which can be easily computed by substituting
νi with ri in (3) and requiring

∑
i∈V

ri = 1), and ri j = ripi j . Noting that the above argument does not involve the

lengths of stay which depend on the demand rates and the number of vehicles, it applies to each individual
vehicle even when there are multiple vehicles in the system. Therefore, the proportion of effective rentals
that originate in location i and terminate in location j in a system with K vehicles always equals ri j regardless
of K , i.e., νi j (K)ν(K) = ri j . From the balance equation of the above-mentioned single-vehicle Markov Chain, we
know that ri =

∑
j∈V

ri j =
∑
j∈V

rji. That is, ri is the proportion of effective rentals that originate in location i

and also the proportion of effective rentals that terminate in location i.

Noting that equations (4) and (5) also hold for unbalanced networks and that the first equality of (6)
remains valid leads to the following modified version of (6)

E[Xi(K)] = νi(K)
1 + E[Xi(K − 1)]

λi
=

ri
λi

(
1 + E[Xi(K − 1)]

)
ν(K), (28)

and ∑
i

E[Xi(K)] = ν(K)
∑
i

{ ri
λi
(1 + E[Xi(K − 1)])

}
. (29)

Substituting (5) into (29) leads to

ν(K) =
Kλµ

λ + µ + λµ
∑
i∈V

( ri
λi
E[Xi(K − 1)]

) , (30)

where λ := (
∑
i∈V

ri
λi
)−1 and µ =

( ∑
i, j∈V

ri j
µi j

)−1. By letting E[Xi(0)] = 0, equations (30) and (28) hold for

K ≥ 1, and can be used recursively to compute the throughput rate ν(K) and to do so efficiently (note
that, as with a balanced network, the computational effort does not depend on the state space). Having
obtained ν(K), other performance measures can be derived, including νi(K) = riν(K), νi j(K) = ri jν(K), and
αi(K) =

νi (K)
λi

(αi(K) can also be rewritten as αi(K) = ri
λi
ν(K), where ri

λi
is independent of K), which implies

that αi(K) > αj(K) if an only if ri
λi
>

rj
λ j
.

Let B = {i ∈ V : ri
λi
≥

rj
λ j
,∀ j ∈ V} denote the set of locations with the largest ratio ri

λi
(because the system

is unbalanced, not all the ratios can be equal and the set B is a proper subset of V). Let αi(∞) := lim
K→∞

αi(K)

and define similarly νi(∞), E[Xi(∞)], and E[Yi j(∞)]. The following proposition describes several useful

16



properties of unbalanced systems, including asymptotic results as K becomes large.

Proposition 7 (Reproduction of Theorems 1 of George and Xia (2011) with Minor Extension). 7

(i). αi(K), νi(K), E[Xi(K)], and E[Yi j(K)] increase in K , for all i, j ∈ V .

(ii). αi(∞) = 1 and αj(∞) =
rjλi
λ jri

< 1, for all i ∈ B, j ∈ V \ B.

(iii). νi(∞) = λi and νj(∞) =
rj
ri
λi < λj , for all i ∈ B, j ∈ V \ B.

(iv). E[Xi(∞)] = ∞ and E[Xj(∞)] =
αj (∞)

1−αj (∞)
< ∞, for all i ∈ B, j ∈ V \ B.

(v). E[Yi j(∞)] =
λipi j
µi j

αi(∞), for all i, j ∈ V .

Proof of Proposition 7. We prove results (i)–(v) in sequence.

(i). It is easy to prove by the coupling technique that ν(K), E[Xi(K)], and E[Yi j(K)] increase in K . Because
νi(K) = riν(K) and αi(K) = νi (K)

λi
, they increase in K as well. Since αi(K) is bounded above by 1, the

limit lim
K→∞

αi(K) exists.

(ii). By the expression αi(K) = ri
λi
ν(K), we know that αj (K)

αi (K)
=

rjλi
λ jri

and αj(∞) =
rjλi
λ jri

αi(∞), ∀i, j ∈ V, K ≥

1. Because ν(K) is bounded above by Λ, we know by (30) that lim
K→∞

∑
i∈V

( ri
λi
E[Xi(K − 1)]

)
= ∞. There

must exist at least one i′ ∈ V such that lim
K→∞

E[Xi′(K − 1)] = ∞. Noting that equation (28) can be
written as

E[Xi(K)] = αi(K)
(
1 + E[Xi(K − 1)]

)
, (31)

we must have αi′(∞) = 1 since it will lead to a contradiction otherwise. By the equation αi(∞) =
riλi′
λiri′

αi′(∞), we know that this i′ must be in B. Otherwise, αi(∞) is greater than 1 for i ∈ B. Thus, we
have αi(∞) = 1, and hence αj(∞) =

rjλi
λ jri

< 1, ∀i ∈ B, j ∈ V \ B.

(iii). This result follows directly from result (ii) and the expression νi(K) = αi(K)λi.

(iv). We prove by contradiction. Since E[Xi(K)] increases in K , it either grows unboundedly or converges
to a finite value as K → ∞. If lim

K→∞
E[Xi(K)] = C < ∞ for some i ∈ B, then by letting K → ∞ on

both sides of (31) we have C = 1 + C, leading to a contradiction. Thus, lim
K→∞

E[Xi(K)] = ∞ for any
i ∈ B.

Because lim
K→∞

αj(K) < 1 for j ∈ V \B and E[Xj(0)] = 0, it is also straightforward to see from (31) that

lim
K→∞

E[Xj(K)] < ∞. By letting K →∞ on both sides of (31), we have lim
K→∞

E[Xj(K)] =
αj (∞)

1−αj (∞)
< ∞,

∀ j ∈ V \ B.

(v). By Little’s Law, E[Yi j(K)] =
νi j (K)

µi j
=
νi (K)pi j
µi j

=
αi (K)λipi j

µi j
.

7The proposition recasts Theorem 1 of George and Xia (2011) using our notation and it extends by including νi(∞) and E[Xi(∞)].
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Proposition 7 shows while some location(s) can have arbitrarily high service level as the total number
of vehicles increases, the service levels at other locations are bounded by specific thresholds. That is, it is
impossible to achieve service levels above these thresholds even with an infinite number of vehicles. The
average numbers of vehicles at locations in V \ B and in transit are also bounded by finite fixed thresholds
(no matter how large is the total number of vehicles) and so are the associated throughputs. These results
are illustrated for an example with two locations in Figure 6. Figure 6 shows how even modest differences
in the relative popularity of locations (either as origins or destinations) can lead to significant differences in
the achievable service levels at these locations.

0 20 40 60 80 100 120 140
K

0.0

0.2

0.4

0.6

0.8

1.0

0.67

α1(K)

α2(K)

(a) γ = 0.6

0.5 0.6 0.7 0.8 0.9 1.0
γ

0.0

0.2

0.4

0.6

0.8

1.0
α1(∞)

α2(∞)

γ= 0.60,
α2(K) capped by 0.67

(b) K = ∞

Figure 6: A two-location unbalanced network with λ1 = λ2 = 50, µi j = 1, p11 = p21 = γ, and p12 = p22 =

1 − γ.

The intuition for the results is as follows. Note that in an unbalanced network, locations may be more
popular as an origin or as a destination. The popularity of a location as a destination relative to it being an
origin is indicated by the ratio ri

λi
, which is referred to as the relative utilization of the location by George and

Xia (2011). In the long run, vehicles accumulate at locations that are most popular as destination (relative to
their popularity as origin), i.e., with the greatest ri

λi
. These locations are referred to as bottleneck locations of

the closed network. In this case, the supply of vehicles the non-bottleneck locations receive depends on the
bottleneck throughput rates, which are bounded by the demand rates at the bottleneck locations regardless of
the fleet size. Therefore, no matter how large the fleet size is and how many vehicles are initially provisioned
to non-bottleneck locations, a large (majority) number of the vehicles will later accumulate and stay idle at
the bottleneck locations, guaranteeing an arbitrarily high service level there and at the same time making the
service levels at non-bottleneck locations bounded by specific thresholds in the long run.
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Appendix C An Application: Optimizing the Service Level

In this section, we briefly illustrate how the minimal fleet size approximation in (15) can be embedded in an
optimization problem. In particular, we illustrate how the service level can be endogenized by letting it to
be a decision that the service provider makes. We do not intend this to be a full treatment of the problem,
but simply an illustration of the usefulness of an approximation in supporting operational decision making
and in obtaining additional managerial insights8.

Let r denote the price the service provider charges for each rental per unit time the vehicle is rented. Let
also c denote the cost of a vehicle per unit of time (this cost may include the amortized purchase cost of the
vehicle as well as its operating cost). Assume c < r (otherwise offering the service would not be profitable)
and assume that the network is balanced. The service provider’s profit maximization problem can be stated
as follows:

maxαπ(α) = maxα
{
rΛ

1
µ
α − cK̂(α,Λ, µ,N)

}
= maxα

{
rΛα
µ
− c

[
Λ

µ
α + (N − 1)

α

1 − α
+

Λ

Nµ
1−α + Λ(1 − α)

α

]}
. (32)

Proposition 8. π(α) is concave in α. The optimal service level, α∗(N,Λ), is unique and has the following
properties:

1. α∗(N,Λ) > 0 if and only if c ≤
rΛ
µ

Λ
µ +N−1+ Λ

Nµ+Λ

;

2. for fixed Λ, α∗(N,Λ) decreases in N and lim
N→∞

α∗(N,Λ) = 0;

3. for fixed N , α∗(N,Λ) increases in Λ and lim
Λ→∞

α∗(N,Λ) = 1; and

4. for Λ
N ≡ λ, α∗(N,Λ) decreases in N . If λ <

cµ
r−c , then α∗(N,Λ) > 0 holds only for N ≤

cµ2

(µ+λ)(r−c)(
cµ
r−c −λ)

; otherwise, α∗(N,Λ) > 0 holds for any N and lim
N→∞

α∗(N,Λ) = 1 −
√

cµ
(r−c)λ .

The proposition shows that the problem is concave and, hence, admits a unique solution. Property 1 in
the proposition provides a necessary and sufficient condition for the service provider to realize a positive
profit. Property 2 shows that, all else being equal, there is a tradeoff between location density (number of
locations) and service level. Property 3 shows that, perhaps surprisingly, increased demand does not lead to a
deterioration in the service level but instead to an increase (because of the pooling effect, the service provider
makes additional investments in vehicles resulting in a higher service level). Property 4 shows that there is
a tradeoff between the size of the service region (where an increase in demand requires an increase in the
number of locations) and service level. If the demand density (average demand per location) is sufficiently

8It is possible to consider other problems, including determining location density (the optimal number of locations for fixed
demand), sizing of the service region (optimal demand level), and service pricing (optimal price to charge).
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large, then the firm is always profitable no matter how large the service region is; otherwise, the firm is
profitable only when the number of locations is sufficiently small. The underlying reason why the limit exists
is that, as N → ∞, the correction term B0(1 − 1

N ) approaches the standard buffer B0 and the minimal fleet
size reduces to Λµα + (N − 1) α1−α . That is, buffer capacity (N − 1) α1−α is sufficient to protect against both
vehicle roaming and randomness in demand and service times (see also the discussion in Section 6). These
results are illustrated graphically in Figure 7.
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Figure 7: The optimal service level (c = 0.2, r = 0.6, µ = 1)

Proof of Proposition 8. Since

π′′(α) = −2c
(2N − 1)(Λµ )

2(1 − α)2 + 2(N − 1) N2

(1−α)2 + N Λµ (4N − 3 − 3α)

[ N
1−α +

Λ
µ (1 − α)]2(1 − α)3

< 0,
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π(α) is concave in α and the profit maximization problem has a unique solution α∗(N,Λ). Furthermore, the
first order condition

π′(α∗) = r
Λ

µ
− c

[Λ
µ
+ (N − 1)

1
(1 − α∗)2

+
(Λµ )

2 + NΛ(1−2α∗)
µ(1−α∗)2

[ N
1−α∗ +

Λ
µ (1 − α∗)]2

]
= 0 (33)

is satisfied if α∗(N,Λ) is in (0,1). Next, we prove properties 1–4.

(1). Noting that the concavity of π(α) and that π(0) = 0, the solution α∗(N,Λ) is non-zero if and only if

π′(0) = r
Λ

µ
− c[
Λ

µ
+ (N − 1) +

Λ

Nµ + Λ
] > 0. (34)

(2). Since

∂2π

∂α∂N
(α) = −c

N3 + (Λµ )
3(1 − α)6 + (Λµ )

2(1 − α)4(3N − 1 − 2α) + N(Λµ )(1 − α)
2(3N − 1 + 2α)

(1 − α)2[N + Λµ (1 − α)2]3
≤ 0,

the profit function is submodular in (α,N) and hence the optimal service level α∗(N,Λ) decreases in
N . Moreover, we know by property 1 that α∗(N,Λ) = 0 when N is sufficiently large.

(3). Note that

∂2π

∂α∂Λ
(α) = r − c − c

N Λµ
1+2α
1−α + N2 1−2α

(1−α)3

[ N
1−α +

Λ
µ (1 − α)]3

.

By property 1, α∗(N,Λ) > 0 and hence the first order condition (33) holds at α∗(N,Λ) when Λ is
sufficiently large. In this case, by substituting (33) into the above expression, we know

∂2π

∂α∂Λ
(α∗) =

cµ
Λ(1 − α∗)2

(Λµ )
2N(3N − 2 − 4α∗)(1 − α∗) + N3(N − 1) 1

(1−α∗)2 + (
Λ
µ )

3N(1 − α∗)3 + 3Λµ N2(N − 1) 1
1−α∗

[ N
1−α∗ +

Λ
µ (1 − α∗)]3

≥0,

which implies that α∗(N,Λ) increases in Λ and lim
Λ→∞

α∗(N,Λ) exists by the monotone convergence
theorem. If ᾱ = lim

Λ→∞
α∗(N,Λ) < 1, then (33) fails when Λ is sufficiently large, which causes a

contradiction. Therefore, ᾱ = lim
Λ→∞

α∗(N,Λ) = 1.

(4). When ΛN = λ is held fixed, the first order condition (33) and the partial derivative ∂2π
∂α∂N (α; N, λ) can

be rewritten as

π′(α∗; N, λ) = r
Nλ
µ
− c

[ Nλ
µ
+ (N − 1)

1
(1 − α∗)2

+
(λµ )

2 + λ(1−2α∗)
µ(1−α∗)2

[ 1
1−α∗ +

λ
µ (1 − α∗)]2

]
= 0 (35)
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and

∂2π

∂α∂N
(α; N, λ) = r

λ

µ
− c

λ

µ
− c

1
(1 − α)2

.

By substituting (35) into ∂2π
∂α∂N (α; N, λ), we know

∂2π

∂α∂N
(α∗; N, λ) = −

c
N

λ
µ (1 + 2α) + 1

(1−α)2

[ 1
1−α +

λ
µ (1 − α)]2(1 − α)2

≤ 0.

Therefore, α∗(N,Λ) decreases in N when ΛN is held fixed.

Given ΛN = λ, the firm earns a positive profit if and only if (by rewriting property 1)

N(r
λ

µ
− c

λ

µ
− c) > −

cµ
µ + λ

,

whick holds for N ≤ cµ2

(µ+λ)(r−c)(
cµ
r−c −λ)

if λ <
cµ
r−c and for all N > 0 otherwise. In the latter case,

lim
N→∞

α∗(N,Λ; ΛN = λ) exists by the monotone convergence theorem. Let N →∞ in equality (35), we

obtain lim
N→∞

α∗(N,Nλ) = 1 −
√

cµ
(r−c)λ .

�
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Appendix D Additional Discussion of the Single Location Case

D.1 A Correction Term

Recall that per Proposition 6 our approximation has a minor shortcoming when N = 1 since it does not
approach infinity as α→ 1. Thus, a question that naturally arises is whether we should add a correction term
(a fourth term) to our approximation (15) for N = 1 to ensure that the approximation is consistent with the
fact that the minimal fleet size grows to infinity as α approaches 1. If we do so, this correction term would
be noticeable only when N = 1 and α is nearly 1. Note that such a term cannot be expressed in algebraic
form because it grows slower than 1

(1−α)δ for any δ > 0 as α → 1 per Proposition 6. In most practical
cases, adding this correction term would not be necessary. Extensive numerical experiments confirm that
the correction would be small for α ≤ 0.99 no matter how large Λ is. The largest value for the difference
|K(α,Λ, µ,1)− K̂(α,Λ, µ,1)| is 31.97, which is observed to occur when Λµ = 1826 and α = 0.99. In this case,
K(α,Λ, µ,1) is very large so that the percentage error is rather negligible. If we were to restrict our attention
to α ≤ 0.95, the largest gap reduces to 6.90.

It is important to note that most of the existing approximations in the literature share a similar limitation.
In particular, neither (H.39) nor (H.40) increases to infinity as α → 1 (i.e., even the best approximations in
the literature suffer from this relatively minor drawback).

If a correction term must be included, we propose adding the following term:

κ(α,Λ, µ,N) = ln(1 +
Λ

µ
) ln(1 + α) ln

( N
(1−α)2 +

Λ
µ

N−1
(1−α)2 +

Λ
µ

)
,

resulting in a modified expression for K̂(α,Λ, µ,N) given by:

K̂(α,Λ, µ,N) =
Λ

µ
α + (N − 1)

α

1 − α
+

Λ
µα

N
1−α +

Λ
µ (1 − α)

+ κ(α,Λ, µ,N). (36)

Note that κ(α,Λ, µ,N) satisfies the property that it grows at a smaller rate than that of any power series
O((1 − α)−δ) for δ > 0. It also satisfies the property κ(α,Λ, µ,N) → 0 under the five regimes considered in
Proposition 3 and κ(α,Λ, µ,1) → ∞ as α→ 1.

For the same numerical example considered in Section 5.2 (i.e., N = 1, µ = 1, Λ = 1i, i = 1, · · · ,1000,
and α = 0.03 j, j = 1, · · · ,33), we find that our modified approximation (36) (with a mean absolute error of
0.86 and a relative error of 1.02%) is comparable to the best one, (H.40) (with a mean absolute error of 0.64
and a relative error of 1.15%), from the literature.
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D.2 Comparisons with the Approximations of the Inverse Erlang loss formula in Berezner
et al. (1998) and Harel (2010)

In this section, we list notable approximations of the inverse of the Erlang Loss formula derived by Berezner
et al. (1998) and Harel (2010). For ease of reference, we rewrite these approximations using our notation,
and add an initial “B” to equation numbers when we refer to expressions from Berezner et al. (1998) and an
initial “H” when we refer to expressions from Harel (2010). Using the same numerical examples used by
Berezner et al. (1998) and Harel (2010), we compare the performance of our approximations against theirs.

Bounds from Berezner et al. (1998):

K(α,Λ, µ,1) <
Λ

µ
α +

1
1 − α

, (B.5)

K(α,Λ, µ,1) >
Λ

µ
α, (B.6)

K(α,Λ, µ,1) >
Λ

µ
α + (

1
1 − α

− 1) −
3µ

Λ(1 − α)3
− α

Λ
µ α

(
2

1 − α
+
Λ

µ
α

)
, and (B.21)

K(α,Λ, µ,1) > max{(B.6), (B.21)}. (B.621)

Bounds from Harel (2010):

K(α,Λ, µ,1) <

(
Λ

2µ
+

1
2(1 − α)

√
(
Λ

µ
)2(1 − α)2 + 4

Λ

µ
(1 − α)

)
α, K ≥ 2,Λ > 0, (H.35)

K(α,Λ, µ,1) >
Λ

µ
−

1
2
−

3Λ
2µ
(1 − α) +

√
4Λµ +

[
Λ
µ (1 − α) − 1

]2

2
, K ≥ 1,Λ > 0, (H.36)

K(α,Λ, µ,1) ≈
Λ

µ
α

2 + Λµ (1 − α)

1 + Λµ (1 − α)
, and (H.39)

K(α,Λ, µ,1) ≈
Λ

µ
− 2
Λ

µ
(1 − α) − 1 +

√
(
Λ

µ
)2(1 − α)2 + 2

Λ

µ
+ 1. (H.40)

We first compare our approximations (15) and (36) against those in Berezner et al. (1998) using the same
numerical example considered in their Table 1. Since Berezner et al. (1998) prove that their bounds are
strict, they use a strict ceiling of (B.621) and a strict floor of (B.5) as the lower and upper bounds for K(α),
respectively. The results in Table 2 show that our approximations (15) and (36) consistently perform better
than (B.621) and (B.5).

Next, we provide comparisons against those inHarel (2010) using the same numerical example considered
in their Tables 2, 3, and 4. Noting that Harel (2010) treats K as a real value K , we follow their setting and
keep decimal parts in our approximations. One can see that all the approximations (ours and theirs) perform
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α Λ
µ (B.621) K(α) (B.5) dK̂e d(36)e

0.99

1000 991 1029 1089 999 1011
10000 9901 9970 9999 9950 9954

100000 99070 99092 99099 99090 99091
1000000 990097 990099 990099 990099 990099

10000000 9900099 9900099 9900099 9900099 9900099

0.999

1000 1000 1072 1998 1000 1034
10000 9991 10170 10989 10000 10030

100000 99901 100293 100899 99991 100010
1000000 999001 999697 999999 999500 999507

10000000 9990700 9990925 9990999 9990909 9990910

Table 2: Comparisons with the approximations in Table 1 of Berezner et al. (1998)

well when α is not too close to 1. When α is small, all the approximations produce exact values. Significant
gaps are observed for the approximations when α = 0.99 and for some when α = 0.9. We further look
into the case of α = 0.99 for different values of Λµ . First, (H.35) significantly overestimates the exact value
for α = 0.99. When Λµ = 10 and α = 0.99, (H.39) performs the best. When Λµ = 100 and α = 0.99, our
approximation (36) performs the best. When Λµ = 1000 and α = 0.99, (H.40) performs the best.

α (H.35) Exact (H.40) (H.39) (H.36) K̂ (36)

0.99 36.65 17.44 13.38 18.90 12.54 10.00 21.40
0.90 14.56 12.53 11.69 13.50 11.16 9.82 13.51
0.80 10.93 10.27 10.00 10.67 9.70 9.14 10.91
0.70 8.85 8.58 8.48 8.75 8.32 8.11 9.06
0.60 7.24 7.12 7.08 7.20 7.00 6.92 7.47
0.50 5.85 5.80 5.78 5.83 5.74 5.71 6.04
0.40 4.58 4.56 4.55 4.57 4.53 4.52 4.72
0.30 3.38 3.37 3.37 3.38 3.36 3.36 3.47
0.20 2.22 2.22 2.22 2.22 2.22 2.22 2.28
0.10 1.10 1.10 1.10 1.10 1.10 1.10 1.13
0.01 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Table 3: Comparisons with the results in Table 2 of Harel (2010) for Λµ = 10

Hence, none of the approximations consistently outperforms the others when α = 0.99. In general,
(H.40) and (36) provide the best performance. While (H.40) and (15) appear to underestimate the exact
values, (36) overestimates by a very small amount except for the case of α = 0.99. In summary, all the
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α (H.35) Exact (H.40) (H.39) (H.36) K̂ (36)

0.99 160.19 116.88 111.21 148.50 108.00 99.98 114.64
0.90 98.24 96.25 96.35 98.18 95.47 94.50 96.55
0.80 83.82 83.42 83.52 83.81 83.29 83.20 83.81
0.70 72.26 72.14 72.18 72.26 72.11 72.10 72.36
0.60 61.46 61.42 61.44 61.46 61.41 61.41 61.54
0.50 50.98 50.96 50.97 50.98 50.96 50.96 51.03
0.40 40.66 40.65 40.65 40.66 40.65 40.65 40.69
0.30 30.42 30.42 30.42 30.42 30.42 30.42 30.44
0.20 20.25 20.25 20.25 20.25 20.25 20.25 20.26
0.10 10.11 10.11 10.11 10.11 10.11 10.11 10.12
0.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Table 4: Comparisons with the results in Table 3 of Harel (2010) for Λµ = 100

α (H.35) Exact (H.40) (H.39) (H.36) K̂ (36)

0.99 1080.69 1028.85 1024.84 1080.00 1016.44 999.00 1010.40
0.90 908.91 908.32 908.55 908.91 908.24 908.18 908.60
0.80 803.98 803.91 803.94 803.98 803.90 803.90 804.00
0.70 702.33 702.31 702.32 702.33 702.31 702.31 702.35
0.60 601.50 601.49 601.49 601.50 601.49 601.49 601.51
0.50 501.00 501.00 501.00 501.00 501.00 501.00 501.01
0.40 400.67 400.66 400.67 400.67 400.66 400.66 400.67
0.30 300.43 300.43 300.43 300.43 300.43 300.43 300.43
0.20 200.25 200.25 200.25 200.25 200.25 200.25 200.25
0.10 100.11 100.11 100.11 100.11 100.11 100.11 100.11
0.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01

Table 5: Comparisons with the results in Table 4 of Harel (2010) for Λµ = 1000

approximations in Harel (2010) and our approximations (15) and (36) perform well as long as α is not too
close to 1.
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