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Abstract

Automated investment managers, or robo-advisors, have emerged as an alternative to traditional

financial advisors. The viability of robo-advisors crucially depends on their ability to offer personalized

financial advice. We introduce a novel framework, in which a robo-advisor interacts with a client to solve

an adaptive mean-variance portfolio optimization problem. The risk-return tradeoff adapts to the client’s

risk profile, which depends on idiosyncratic characteristics, market returns, and economic conditions.

We show that the optimal investment strategy includes both myopic and intertemporal hedging terms

which are impacted by the dynamics of the client’s risk profile. We characterize the optimal portfolio

personalization via a tradeoff faced by the robo-advisor between receiving client information in a timely

manner and mitigating behavioral biases in the risk profile communicated by the client. We argue that

the optimal portfolio’s Sharpe ratio and return distribution improve if the robo-advisor counters the

client’s tendency to reduce market exposure during economic contractions when the market risk-return

tradeoff is more favorable.

1 Introduction

Automated investment managers, commonly referred to as robo-advisors, have gained widespread popularity

in recent years. The value of assets under management by robo-advisors is the highest in the United States,

exceeding $600 billion in 2019. Major robo-advising firms include Vanguard Personal Advisor Services, with

about $140 billion of assets under management, Schwab Intelligent Portfolios ($40bn), Wealthfront ($20bn),
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and Betterment ($18bn). Robo-advisors are also on the rise in other parts of the world, managing over $100

billion in Europe, and exhibiting rapid growth in Asia where the assets under management exceed $75 billion

solely in China (Statista [2020]).

The first robo-advisors were launched in the wake of the 2008 financial crisis and the ensuing loss of trust

in established financial services institutions. Examples of pioneering robo-advising firms are Betterment and

Wealthfront, which began offering services formerly considered exclusive to the general public, including

individuals who did not meet the minimum investment levels of traditional financial advisors. In the years

that followed, industry incumbents - such as Vanguard and Charles Schwab - followed suit and began offering

their own robo-advising services, taking advantage of their existing customer bases to quickly gain a large

market share. With the focus of most robo-advisors being on passive long-term portfolio management, the

rise of robo-advising since the financial crisis has also been compounded by the seismic shift towards passive

investing and low cost exchange-traded funds.1

Robo-advising is a term that encompasses various forms of digital financial advice for investment man-

agement and trading. A recent survey paper by D’Acunto and Rossi [2020] distinguishes between digital

tools and services that aid in active, short-term trading, with the client actively involved in the strategy

implementation, and robo-advisors that focus on long-term passive investing where the level of delegation is

higher. We develop a framework for automated investment management which belongs to the latter category,

where the robo-advisor uses quantitative methods and algorithms to manage the client’s portfolio. We ex-

plore how the robo-advisor can use features of the client’s risk profile to determine a frequency of interaction

with the client that ensures a high level of portfolio personalization.2 We also analyze the dilemma faced by

the robo-advisor in either catering to the client’s wishes, i.e., investing in accordance with the client’s risk

profile, or going against the client’s wishes in order to seek better investment performance.

In our framework, the robo-advisor interacts repeatedly with the client to learn about changes in her risk

profile. This risk profile is characterized by a risk aversion process, which captures three fundamental aspects

of individual investor behavior. First, the client’s risk aversion is sensitive to the passage of time, consistent

with empirical research that has identified a positive and potentially nonlinear trend in risk aversion as a

function of age (see, e.g., Brooks et al. [2018] and Hallahan et al. [2004]). This type of time-dependence has

also been used in the construction of Target Date Funds, which are widely used retirement portfolios that

reduce equity risk as the client gets closer to retirement.3 Second, risk aversion is impacted by idiosyncratic

1See https://www.cnbc.com/2018/09/14/the-trillion-dollar-etf-boom-triggered-by-the-financial-crisis.html
2Robo-advisors are fiduciaries under the Investment Advisers Act of 1940, and as such are subject to the duty of acting in

the client’s best interest.
3Target Date Funds are similar to the “set-and-forget” portfolios offered by the first generation of robo-advisors, where

changes in allocation over time are solely based on the client’s age. While TDFs have virtually stayed the same since their
inception over a quarter century ago, the technology-driven personalized advice of robo-advisors has continued to evolve.
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shocks, such as a change in disposable income or an increase in the client’s educational level or financial

literacy (see, e.g, Hallahan et al. [2004] and Allgood and Walstad [2016]). These shocks in particular capture

changes in unobservable factors driving the client’s risk aversion, consistent with empirical studies that have

identified a substantial variation in idiosyncratic risk preferences that are unexplained by consumer attributes

and demographic characteristics (see, e.g., Guiso and Paiella [2008], Sahm [2012], and Van de Venter et

al. [2012]). Third, the client’s risk aversion depends on realized market returns and prevailing economic

conditions. Specifically, the countercyclical nature of risk aversion has been extensively documented in the

literature (see Bucciol and Miniaci [2018], Cohn et al. [2015], and Guiso et al. [2018], among others, for

recent empirical and experimental evidence).

The robo-advisor adopts a multi-period mean-variance investment criterion with a finite investment

horizon. It is worth noting that most robo-advising firms employ asset allocation algorithms based on

mean-variance analysis, citing, among other things, its tractability and the intuitive interpretation of the

risk-return tradeoff (see, for instance, Beketov et al. [2018]). While these robo-advising algorithms assume

the risk-return tradeoff coefficient to be constant throughout the investment period, and statically reoptimize

the portfolio in response to change in the client’s risk profile, our framework enables the robo-advisor to

adapt the portfolio strategy to its own model of the client’s risk aversion process. Such a model is constructed

from two sources of information. First, the robo-advisor observes both realized market returns and changes

in the state of the economy, and continuously updates its model to reflect this information. Second, at times

of interaction with the client, the robo-advisor receives information about the idiosyncratic component of

the client’s risk aversion.

We show that the optimal stock market allocation consists of two components. The first component is

akin to the standard single-period Markowitz strategy but also takes into account the expected return and

variance of the optimal strategy throughout the investment period. The second component is intertemporal

hedging demand, which depends on the relation between the current market return and future portfolio

returns. A novel feature of our model is that this relation is driven by the client’s dynamic risk profile, in

contrast to extant literature (e.g., Liu [2007] and Basak and Chabakauri [2010]) where it depends only on the

correlation between market returns and changes in a stochastic state variable. To understand why hedging

demand arises in our model, consider the case where positive (negative) market returns have a tempering

(inflating) effect on the client’s risk aversion process. A positive market return thus leads to increased

future investment and higher anticipated portfolio returns, whereas a negative return has the opposite effect.

This positive relation between market returns and future portfolio returns amplifies the effect of the current

allocation on the variance of terminal wealth. As a result, for a client whose risk aversion is negatively
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correlated with market returns, there is a negative hedging demand, i.e., the robo-advisor reduces her market

exposure relative to a client whose risk aversion is not sensitive to market returns.

We show the existence of a tradeoff between the rate of information acquisition from the client and

the accuracy of the acquired information. On the one hand, if interaction does not occur at all times, the

robo-advisor may not always have access to up-to-date information about the client’s risk profile. On the

other hand, information communicated to the robo-advisor may not be representative of the client’s true risk

aversion, as the client is subject to behavioral biases, such as trend-chasing.4 For example, if recent market

returns have exceeded expectations, the client may feel overly exuberant and communicate a risk aversion

value that is lower than her actual risk aversion. Vice versa, following a market underperformance, the client

may feel overly pessimistic and exaggerate her risk aversion when communicating with the robo-advisor.

The suboptimality of high interaction frequencies then hinges on the fact that reducing the frequency of

interaction mitigates the effect of client’s biases. The rationale is that over longer time periods, fluctuations

in realized market returns average out. Such a behavioral pattern is consistent with the notion of myopic loss

aversion introduced in Benartzi and Thaler [1995], which refers to the empirical phenomenon that market

underperformance has a stronger impact on risk aversion than market overperformance.

We introduce a measure of portfolio personalization to analyze the aforementioned tradeoff. This measure

is defined in terms of the difference between the client’s actual risk aversion and the robo-advisor estimate

of it. The lower this measure, the closer the investment strategy implemented by the robo-advisor is to

the strategy matching the client’s risk profile. We show that for a fixed level of behavioral bias, quantified

as the client’s sensitivity to market return fluctuations, this measure is minimized by a unique interaction

frequency. Such a frequency allows the robo-advisor to strike a balance between obtaining information from

the client in a timely manner and ensuring that the communicated information is not overly biased by recent

market returns. Our result is supported by existing practices of robo-advising firms, which encourage clients

to refrain from making frequent changes to their risk profiles, and even limit their ability to do so.5 We also

show that the optimal interaction frequency is decreasing in the amount of behavioral bias, and increasing

in the rate at which the idiosyncratic component of the client’s risk aversion changes. Therefore, a higher

level of personalization is achieved for clients with limited behavioral biases and stable risk profiles.

We compare the investment performance of strategies that invest the same proportion of wealth in the

stock market during periods of economic growth but differ in their market exposure during contractions.

We show analytically that the Sharpe ratio of such strategies is generally increasing in the proportion of

4See Kahneman and Riepe [1998] for a discussion of common behavioral biases and strategies to overcome them.
5Wealthfront provides the following guidelines: “Our software limits our clients to one risk-score change per month. We

encourage people who attempt more than three risk-score changes over the course of a year to try another investment manager.”
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wealth allocated to the stock market in a state of contraction, when the market risk-return tradeoff is more

favorable.6 Because the client typically has a countercyclical risk aversion process, she would lean towards

reducing market exposure during economic contractions and, as a result, attain a lower Sharpe ratio from

her investment. The question that then arises is to what extent, if any, the robo-advisor should deviate from

the strategy implied by the client’s risk profile in order to improve the investment performance. We show

that the Sharpe ratio of the optimal portfolio is concave with respect to the change in the market allocation

when the economy moves to a state of contraction. This means that the Sharpe ratio drops more if the

allocation is reduced, compared to how much it improves if the allocation is increased by the same amount.

Our analysis thus suggests that a good middle ground for the robo-advisor is to rebalance the portfolio and

maintain prespecified weights throughout the business cycle. This investment pattern is also in line with

the long-term investment principle of riding out business cycles, and further reinforced by the fact that,

in practice, it is difficult to detect changes in economic regimes and thus estimate the prevailing market

risk-return tradeoff.

The remainder of the paper is organized as follows. In Section 2, we briefly review the related literature.

In Section 3, we introduce our robo-advising framework. In Section 4, we present the solution to the

associated optimal investment problem. In Section 5, we introduce and study performance metrics for the

robo-advisor’s investment strategy. Section 6 offers concluding remarks. Appendix A contains theoretical

and computational properties of the optimal investment strategy. Appendix B and Appendix C contain

proofs and auxiliary results related to Sections 4 and 5, respectively.

2 Literature Review

Our study contributes to the growing literature on robo-advising. D’Acunto and Rossi [2020] describe the

main components of robo-advising systems and propose a classification in terms of four main features: (i)

portfolio personalization, (ii) client involvement, (iii) client discretion, and (iv) human interaction. We offer a

quantitative framework that aligns with this classification and is consistent with that of the most prominent

stand-alone robo-advising firms. We proceed to briefly describe each of the four features and how they fit

into our framework.

(i) Portfolio personalization refers to the robo-advisor’s ability to offer financial advice tailored to the

client’s needs. A common criticism of robo-advising is the lack of customization, with risk profiling based

on information that is too limited.7 In our framework, the robo-advisor achieves portfolio personalization

6Since the seminal work of Fama and French [1989], it has been extensively documented that the market risk-return tradeoff
is countercyclical, i.e., higher at business cycle troughs than peaks.

7Risk profiling can, in principle, be infinitely customizable. Barron’s 2019 annual ranking of robo-advisors (available at https:
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by soliciting information from the client. We do not explicitly model the process of collecting information,

which can be based both on online questionnaires and on collection of client’s data from various sources (e.g.

savings and spending behavior, asset and liabilities).

(ii) Client involvement refers to the client’s participation in the design of the investment strategy. At

one end of the spectrum, there are robo-advisors that require the client to approve every single trading

decision. In this case, the client is actively involved and the term robo-advisor is descriptive, because the

client decides in what way to follow the advice provided. Our model lies at the other end of the spectrum,

where the robo-advisor automatically manages the portfolio on the client’s behalf and for which the term

robo-manager is more descriptive.

(iii) Client discretion is the client’s ability to override the robo-advisor’s recommendation. In our frame-

work, the client’s behavioral biases can be viewed as the client overriding the robo-advisor’s recommendations.

This is considered a low level of discretion. It is consistent with the operations of robo-advisors focusing on

long-term investing, where the client is allowed to adjust the level of portfolio risk, but has no control over

which parts of the investment portfolio are modified.

(iv) Human interaction refers to the degree of interaction between the client and a human-advisor. In

our framework, there is no human contact which is also the case for automated robo-advisors that strive to

minimize operating costs.

The above classification is qualitative in nature. The quantitative components of our framework are

constructed to resemble the algorithmic principles of actual robo-advisors. Beketov et al. [2018] provide

an industry overview based on the analysis of over 200 robo-advisors globally. Their study shows that a

large majority of robo-advisors use an asset allocation framework based on mean-variance analysis, with the

asset universe consisting of low cost exchange-traded funds. They also show that risk profiling of clients is

primarily done using online questionnaires.

Rossi and Utkus [2019a] conduct an extensive survey to study the “needs and wants” of individuals when

they hire financial advisors. They show that for traditionally-advised clients, algorithm aversion and the

inability to interact with a human are the main obstacles for switching to robo-advising, while robo-advised

clients do not have the same need for trust and access to expert opinion. Our model lends theoretical support

to the notion that robo-advisors may be less suitable for algorithmic-averse clients. Namely, the robo-advisor

can improve the portfolio performance by going against the wishes of the client, i.e., by investing in a way

//webreprints.djreprints.com/4642511400002.pdf) reports the latest growth in robo-advising to be in cash management,
with robo-advisors aiming to become everyday money managers of their clients, in addition to long-term investment planners.
Robo-advising firms already offer cash management services such as direct deposits of paychecks, automatic bill payments, and
FDIC-insured checking and savings accounts. This implies increased access to data which can in turn be used by robo-advisors
to improve investment recommendations.
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that may seem counterintuitive to the client. Doing so is more challenging for a robo-advisor than for a

human-advisor, because market returns are random, and an algorithmic-averse client will be less forgiving

to the robo-advisor in the event of adverse market returns.

From a methodological perspective, our work contributes to the literature on time-inconsistent stochastic

control (Björk and Murgoci [2013]). Other related works include Li and Ng [2010] who solve a multi-period

version of the classical Markowitz problem, and Basak and Chabakauri [2010] who solve a continuous-time

version of the same problem. Björk et al. [2014] solve the dynamic mean-variance problem in continuous

time, with the mean-variance utility function applied to returns as in the classical single-period mean-variance

analysis. A recent study of Dai et al. [2019] further develops a dynamic mean-variance framework based

on log-returns, with the aim of generating policies conforming with conventional investment wisdom. In all

of these works, the risk-return tradeoff is assumed to be constant throughout the investment horizon. By

contrast, in our model, the risk-return tradeoff coefficient is stochastic, with explicitly modeled dynamics

that can be used to generate investment policies tailored to the client’s risk profile.

Our paper is also related to the literature on portfolio optimization models where the security price

dynamics are driven by stochastic factors. Unlike Liu [2007] and Basak and Chabakauri [2010], intertemporal

hedging demand does not arise because of dependence between the stochastic factor and market returns,

which are assumed to be uncorrelated in our model. Rather, intertemporal hedging terms appear because

of the correlation between market returns and future changes in the investor’s risk aversion. Additionally,

the stochastic factor itself impacts the client’s risk aversion dynamics, which in turn determine the optimal

allocation. It is widely agreed upon that risk aversion varies with the business cycle, and this characteristic is

highly relevant for robo-advising where a significant challenge is to keep clients invested in the stock market

during economic downturns.8

3 Modeling Framework

Our robo-advising framework has four main components: (i) a regime switching model of market returns,

(ii) a mechanism of interaction between the client and the robo-advisor, (iii) a dynamic model for the client’s

risk preferences, and (iv) an optimal investment criterion. We describe each of these components in Sections

3.1-3.4.

8The seminal work of Campbell and Cochrane [1999] provides an asset pricing framework that rationalizes the counter-
cyclicality of both risk aversion and the market risk-return tradeoff; see, also, Lettau and Ludvigson [2010] for a survey of the
literature and extensive empirical evidence.
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3.1 Market and Wealth Dynamics

The market consists of a risk-free money market account, (Bn)n≥0, and a risky asset, (Sn)n≥0, whose

dynamics are described by the equations

Bn+1 = (1 + r(Yn))Bn, Sn+1 = (1 + Zn+1(Yn))Sn,

where B0 = 1 and S0 > 0 is a given constant. The risky asset is representative of the overall stock market,

and for this reason we will refer to returns of the risky asset as market returns.

The above dynamics are modulated by an observable state process, (Yn)n≥0, which captures macroeco-

nomic conditions affecting interest rates and market returns (cf. Hamilton [1989]). We assume the economic

state variable (Yn)n≥0 to be a time-homogeneous Markov chain with transition matrix P , taking values in a

finite set Y := {1, 2, . . . ,M}, for some M ≥ 1. Conditioned on Yn = y ∈ Y, the risk-free interest rate r(y) is

constant, while the risky asset’s return, Zn+1(y), admits a probability density function fZ|y which depends

only on the current economic state y, and has mean µ(y) and variance 0 < σ2(y) <∞.

For notational simplicity, we omit the dependence on the economic state. Hence, we use Zn+1 in place

of Zn+1(Yn), and denote its state-dependent mean and variance by µn+1 := µ(Yn) and σ2
n+1 := σ2(Yn),

respectively. Similarly, we use rn+1 in place of r(Yn), and let Rn+1 := 1 + rn+1. We denote by Z̃n+1 :=

Zn+1− rn+1 the excess return of the risky asset over the risk-free rate, which has state-dependent mean and

variance given by µ̃n+1 := µn+1 − rn+1 and σ2
n+1, respectively.

We denote by Xn the wealth of the client at time n, allocated between the risky asset and the money

market account, and use πn to denote the amount invested in the risky asset. For a given self-financing

trading strategy π := (πn)n≥0, the wealth process (Xπ
n )n≥0 follows the dynamics

Xπ
n+1 = Rn+1X

π
n + Z̃n+1πn, Xπ

0 = x0. (3.1)

The initial wealth, x0 ∈ R+, and the initial state of the economy, Y0 ∈ Y, are assumed to be non-random.

The random variables (Yn)n≥1 and (Zn)n≥0 are defined on a probability space (Ω,F ,P), which additionally

supports a sequence (εn)n≥1 of independent real-valued random variables. This source of randomness cap-

tures idiosyncratic changes to the client’s risk preferences. Moreover, (εn)n≥1 is independent of (Yn)n≥0 and

(Zn)n≥1. We use (Fn)n≥0 to denote the filtration generated by the three stochastic processes in our model:

Fn := σ(Y(n), Z(n), ε(n)), (3.2)
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where Y(n) := (Y0, . . . , Yn), Z(n) := (Z1, . . . , Zn), and ε(n) := (ε1, . . . , εn). We will use analogous notation to

denote the paths of other stochastic processes throughout the paper.

Remark 3.1. In our discrete-time model, the price of the risky asset is not restricted from becoming negative.

However, at any given time the optimal investment strategy presented in Section 4 does not depend on the

current price of the risky asset, but only on the first two moments of its returns distribution. Hence, for the

optimal investment problem to be well-defined, it is sufficient to assume the existence of a returns process

(Zn)n≥1 with a finite variance as described above.

3.2 Interaction between Client and Robo-Advisor

A key component of the proposed framework is the interaction between the client and the robo-advisor.

Following an initial interaction at the beginning of the investment process, the client and the robo-advisor

interact repeatedly throughout the investment period. At each interaction time, the client translates the

information communicated by the client into a numerical value, herein referred to as a risk aversion parameter.

In our quantitative framework, we abstract from the construction of such a mapping, effectively assuming

that the client communicates directly a single risk aversion parameter to the robo-advisor.9 Note that

between consecutive interaction times, the robo-advisor receives no input from the client.

The interaction schedule, denoted by (Tk)k≥0, is an increasing sequence of stopping times with respect

to the filtration (Fn)n≥0, defined in (3.2). That is, T0 = 0, Tk < Tk+1, and {Tk ≤ n} ∈ Fn, for any n ≥ 0.

Hence, interaction can be triggered by any combination of client-specific events, changes in the state of the

economy, and market events such as a cascade of negative market returns.

The rule used to determine the interaction schedule (Tk)k≥0 is decided at the beginning of the investment

process, and used throughout it. For future reference, we also define the process (τn)n≥0, where

τn := sup{Tk : Tk ≤ n},

is the last interaction time prior to and including time n.

3.3 Client’s Risk Aversion Process

We first introduce the client’s actual risk aversion process, (γCn )n≥0, which is an R+
0 -valued stochastic process

adapted to the filtration (Fn)n≥0 defined in (3.2). This means that at time n, the client’s risk aversion may

9The majority of robo-advisors elicit risk preferences by means of online questionnaires (Beketov et al. [2018]). The client
is presented with questions regarding, e.g., demographics, investment goals, education and financial literacy, and potential
reactions to hypothetical gambles and market events. We refer to Charness et al. [2013] for an outline of the pros and cons of
different methods used to assess risk preferences, and Cox and Harrion [2008] for a more comprehensive overview.
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have shifted from its initial value due to changes in economic regimes, Y(n), and realized market returns Z(n),

as well as because of idiosyncratic shocks to the client’s risk aversion, ε(n).

We also introduce the (Fn)n≥0-adapted process (ξn)n≥0, where ξn ∈ R+
0 is the risk aversion parameter

communicated by the client at the most recent interaction time, τn. Observe that the process (ξn)n≥0

depends on the interaction schedule (Tk)k≥0 and, by construction, it remains constant between consecutive

interaction times where no new information comes from the client, i.e., ξn = ξτn .

The robo-advisor then constructs a model of the client’s risk aversion process, denoted by (γn)n≥0, and

uses it to solve the optimal investment problem. While it is generally desirable for the model (γn)n≥0 to

accurately track the client’s actual risk aversion, (γCn )n≥0, the two processes may not coincide due to the

following reasons. First, the client and the robo-advisor may not interact at all times, so the robo-advisor

does not always have access to up-to-date information about the client’s risk preferences. Specifically, while

the robo-advisor observes both market returns and changes in the economic regime, it cannot observe in real

time the idiosyncratic shocks to the client’s risk aversion. Second, even if interaction were to occur at all

times, information communicated by the client may not be representative of the client’s true risk preferences

due to her behavioral biases (see Section 5.1 for further details).

Formally, the risk aversion process (γn)n≥0 is an R+
0 -valued stochastic process adapted to the robo-

advisor’s filtration, (FRn )n≥0, which is generated by the random variables (Dn)n≥0, defined as

Dn := (Y(n), Z(n), τ(n), ξ(n)) ∈ Dn, Dn := Yn+1 × Rn × Nn+1 × (R+
0 )n+1. (3.3)

It then follows that at time n, the risk aversion process may be written as

γn := γn(Dn) ∈ FRn , (3.4)

for a measurable function γn : Dn 7→ R+
0 .

Remark 3.2. The random variable Dn in (3.3) can be decomposed as Dn = (Mn, In), where Mn :=

(Y(n), Z(n)), and In := (τ(n), ξ(n)). This shows that the robo-advisor’s filtration (FRn )n≥0 has two sources

of information. The first component, Mn, reflects the fact that the robo-advisor has the ability to process

all available information about the market and the economy. The second component, In, is the result of its

interaction with the client, and contains both the history of interaction times and the communicated risk

aversion values. Under mild conditions, the robo-advisor’s filtration grows with the frequency of interaction,

and, if interaction occurs at all times, it becomes equal to the filtration (Fn)n≥0.10

10For example, assume the interaction times to be given by Tk = kφ, for some φ ≥ 1. If the sum of idiosyncratic shocks,
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3.4 Investment Criterion

The robo-advisor’s objective is to optimally invest the client’s wealth, taking into account the stochastic

nature of the client’s risk preferences. For this purpose, we develop a dynamic version of the standard

Markowitz [1952] mean-variance problem that adapts to the client’s changing risk preferences. We proceed

to introduce this criterion, which we refer to as an adaptive mean-variance criterion.

Let T ≥ 1 be a fixed investment horizon. For each n ∈ {0, 1, . . . , T − 1}, x ∈ R0, d ∈ Dn, and a control

law π := (πn)n≥0, we consider the mean-variance functional

Jn(x, d;π) := En,x,d[rπn,T ]− γn(d)

2
V arn,x,d[r

π
n,T ], (3.5)

where, at time n, the risk-return tradeoff γn is the robo-advisor’s model of the client’s risk aversion at this

time, and rπn,T is the simple return obtained by following the control law π until the terminal date T ,

rπn,T :=
Xπ
T −Xn

Xn
. (3.6)

The initial condition in (3.5) is given by Xn = x and Dn = d, and both the expectation and the variance are

computed with respect to the probability measure Pn,x,d(·) := P(·|Xn = x,Dn = d). For future reference,

we also introduce the probability measure Pn,d(·) := P(·|Dn = d).

Observe that the risk-return tradeoff γn does not depend on the client’s wealth. There are important

reasons behind this assumption. First, it is consistent with the Markowitz mean-variance criterion, which

is recovered as a special case of our model when there is a single investment period. Second, as we will see

in Section 4, the optimal investment strategy turns out to be consistent with that of an investor exhibit-

ing constant relative risk aversion (CRRA), i.e., whose proportion of wealth invested in the risky asset is

independent of the wealth level.11

The objective functional (3.5), together with the risk aversion process (3.4), define a family of sequentially

adaptive optimization problems, in the sense that at each time a new problem arises, with properties that

depend on realized market returns, economic state changes, and client-communicated information, but with

the same initially specified terminal date. Moreover, observe that it is the robo-advisor that solves the

optimization problem, and the initial condition of each optimization problem fixes the value of the stochastic

process that generates the robo-advisor’s filtration, as well as the value of the client’s wealth process.

(
∑n
k=1 εk)n≥0 is measurable with respect to the robo-advisor’s filtration, then (FRn )n≥0 increases to (Fn)n≥0, as φ ↓ 1.

11Empirical evidence suggests that CRRA is a good description of microeconomic behavior (see, e.g., extensive panel data
studies carried out in Brunnermeier and Nagel [2008], Chiappori and Paiella [2011], and Sahm [2012]). However, the evidence is
not universal. For instance, Calvet and Sodini [2014] and Guiso and Paiella [2008] reject CRRA in favor of decreasing relative
risk aversion.
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The control law π in (3.5), also referred to as a strategy or allocation, is such that for each n, the control

πn is a measurable real-valued function of the state variables Xn and Dn. Additionally, admissible control

laws are assumed to be self-financing and to satisfy the square-integrability condition E
[∑T−1

n=0 π
2
n

]
<∞.

Remark 3.3. We assume the investment horizon T to be deterministic and fixed. A stochastic horizon

can be captured through distributional assumptions on the risk aversion process (γn)n≥0. For example, the

possibility of client death can be modeled by introducing a time-dependent probability pn of the risk aversion

parameter γn+1 becoming “infinite”. The probability pn would be increasing in n, and infinity would be

an absorbing state reached only in the event that the client dies. In the death-state, the client’s portfolio

is liquidated and the client’s entire wealth is allocated to the risk-free asset. For the optimization problem

described in this section, a non-zero value of pn would have the effect of tilting the risky asset allocation

upward, because no more investing is possible after death. In the same vein as when accounting for client

death, we may impose conditions on the dynamics of the risk aversion process that halt investment if certain

market events or economic conditions occur.

Remark 3.4. There is a non-zero probability that the client’s wealth becomes negative. This can be

either due to short-selling or to an extreme negative return of the risky asset (see Remark 3.1). Although

the objective functional (3.5) and the optimal strategy presented in Section 4 are well-defined for negative

wealth levels, they are not economically meaningful and, in practice, the robo-advisor would liquidate the

client’s portfolio as soon as the wealth becomes negative.

In Appendix A.3, we modify the optimal strategy in a way that forces liquidation of the entire risky

position if the wealth is negative. We show that the change in expectation and variance of the optimal

portfolio’s return (given in (3.6)), resulting from imposing this liquidation condition, can be bounded by

a term that is extremely small for plausible values of the model parameters. It then follows that forcing

liquidation has a small impact on the value of the objective functional (3.5).

The liquidation condition is imposed ad hoc on the optimal strategy. Hence, it is myopic in the sense

that the modified strategy coincides with the optimal strategy until the wealth achieves a negative value.

In Appendix A.3, we also discuss how the optimal investment problem can be adjusted to handle portfolio

constraints which are typically imposed by robo-advising firms, such as no borrowing and no short-selling.

In that case, the constraints also affect the optimal strategy at times before they become binding, because

of the dynamic nature of the optimization problem.

Through the wealth dynamics (3.1), the mean-variance functional Jn depends on the control law π

restricted to the time points {n, n+ 1, . . . , T − 1} and the robo-advisor chooses the control πn given future
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control decisions πn+1:T := {πn+1, πn+2, . . . , πT−1}. Therefore, any candidate optimal control law π∗ is such

that for each n ∈ {0, 1, . . . , T − 1}, x ∈ R0, and d ∈ Dn,

sup
π∈A∗n+1

Jn(x, d;π) = Jn(x, d;π∗), (3.7)

where A∗n+1 := {π : πn+1:T = π∗n+1:T } is the set of control laws that coincide with π∗ after time n. If a

control law π∗ satisfying (3.7) exists, we define the corresponding value function at time n as

Vn(x, d) := Jn(x, d;π∗). (3.8)

It is worth noticing that when seeking an optimal control π∗n at time n, the robo-advisor takes into

account the dynamics of {γn, γn+1, . . . , γT−1}, i.e., the dynamics of the risk-return coefficient throughout the

investment horizon, with only the current value γn being known. At the subsequent time n+1, the dynamics

of the remaining values {γn+1, . . . , γT−1} are updated by the robo-advisor, and γn+1 becomes known. If

n+ 1 is a non-interaction time, this update is based only on information about market returns and economic

states, while if n+ 1 is a time of interaction it also accounts for information received from the client.

4 Optimal Investment Strategy

We analyze the optimization problem defined by the sequence of objective functionals (Jn)0≤n<T in (3.5) and

the optimality criterion in (3.7). It is well known that, even if the risk-return tradeoff (γn)n≥0 is constant

through time, the family of optimization problems defined by (3.5) is time-inconsistent in the sense that the

Bellman optimality principle does not hold. This means that if, at time n, the control law π∗ maximizes the

objective functional Jn, then, at time n+ 1, the restriction of π∗ to the time points {n+ 1, n+ 2, . . . , T − 1}

may not maximize Jn+1. We refer to Björk and Murgoci [2013] and references therein for a general framework

of time-inconsistent stochastic control in discrete time.

As standard in this literature, we view the optimization problem in (3.7) as a multi-player game, where

the player at each time n ∈ {0, 1, . . . , T − 1} is thought of as a future self of the client. Player n then wishes

to maximize the objective functional Jn, but decides only the strategy πn at time n, while πn+1, . . . , πT−1

are determined by her future selves. The resulting optimal control strategy, π∗, is the subgame perfect

equilibrium of this game, and can be computed using backward induction. At time n = T−1, the equilibrium

control π∗T−1 is obtained by maximizing JT−1 over πT−1, which is a standard single-period optimization

problem. For n < T − 1, the equilibrium control π∗n is then obtained by letting player n choose πn to
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maximize Jn, given that player n′ will use π∗n′ , for n′ = n+ 1, n+ 2, . . . , T − 1.

In Appendix B, we derive an extended Hamilton-Jacobi-Bellman (HJB) system of equations satisfied by

the value function of the optimization problem. The following result presents the solution to this system,

which is the optimal investment strategy for an interaction schedule (Tk)k≥0 and a risk aversion process

(γn)n≥0 of the general form, respectively introduced in Sections 3.2 and 3.3.

Proposition 4.1. The dynamic optimization problem (3.7) admits a solution π∗ of the form

π∗n(x, d) = π̃∗n(d)x, 0 ≤ n < T,

for x ∈ R0 and d ∈ Dn. The optimal proportion of wealth allocated to the risky asset is given by

π̃∗n(d) =
1

γn

En,d[Z̃n+1r̃
π∗

n+1,T ]

V arn,d[Z̃n+1r̃π
∗
n+1,T ]

−Rn+1

Covn,d[Z̃n+1r̃
π∗

n+1,T , r̃
π∗

n+1,T ]

V arn,d[Z̃n+1r̃π
∗
n+1,T ]

, (4.1)

where we recall that Rn+1 and Z̃n+1 have been defined in Section 3.1, and

r̃π
∗

n+1,T := 1 + rπ
∗

n+1,T =
Xπ∗

T

Xn+1
, (4.2)

is the terminal value of one dollar invested in the optimal strategy π∗ at time n+ 1.

The above proposition characterizes the structure of the optimal strategy. It shows that the optimal

allocation, i.e., the relative fraction of wealth allocated to each asset, is independent of the wealth level.

In Appendix A, we use backward induction to develop an explicit representation of the optimal strategy,

and discuss the computational complexity of this procedure. As a byproduct, we obtain formulas for the

expected value and variance of the optimal portfolio’s return, which in turn can be used to compute the

value function (3.8).

It is evident from (4.1) that the optimal strategy can be decomposed into two terms. The first term

resembles the standard single-period Markowitz strategy, µ̃n+1/(γnσ
2
n+1). However, rather than depending

only on statistics of the market return between n and n+1, it also accounts for the return r̃π
∗

n+1,T achieved by

the optimal portfolio between times n+ 1 and T . The second term in the decomposition is the intertemporal

hedging demand, which can be rewritten as

Covn,d
[
Z̃n+1r̃

π∗

n+1,T , r̃
π∗

n+1,T

]
= Covn,d

[
(Z̃n+1 − µ̃n+1)r̃π

∗

n+1,T , r̃
π∗

n+1,T

]
+ µ̃n+1V arn,d(r̃

π∗

n+1,T ),

where the first term captures the contribution of dynamic risk aversion. To analyze this term, it is convenient
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to first rewrite it as

Covn,d
[
(Z̃n+1 − µ̃n+1)r̃π

∗

n+1,T , r̃
π∗

n+1,T

]
= Covn,d

[
(Z̃n+1 − µ̃n+1)En+1,Dn+1

[r̃π
∗

n+1,T ],En+1,Dn+1
[r̃π
∗

n+1,T ]
]
,

which shows that its sign depends predominantly on the covariance between Z̃n+1 − µ̃n+1, i.e., the current

excess market return, and En+1,Dn+1
[r̃π
∗

n+1,T ], i.e., the future expected portfolio return. This covariance is

generally positive, resulting in a negative hedging demand. To see this, observe that we generally expect an

above average market return, Z̃n+1 − µ̃n+1 > 0, to push down the future risk aversion values (γk)n+1≤k<T ;

this, in turn, implies a positive relation between Z̃n+1− µ̃n+1 and future risky asset allocations (π̃∗k)n+1≤k<T .

As a result, the expectation En+1,Dn+1 [r̃π
∗

n+1,T ], achieved through the allocations (π̃∗k)n+1≤k<T , is larger

following a positive value of Z̃n+1 − µ̃n+1. Altogether, the current market return and the future expected

portfolio return thus move in the same direction, amplifying the effect of the current market return on the

variance of the terminal wealth and leading to a negative hedging demand.

This is akin to the intertemporal hedging term in Basak and Chabakauri [2010], which arises because

of covariation between market returns and the state variable. In their setting, the hedging demand would

vanish if market returns and changes in the state variable were uncorrelated, in which case trading in the

risky asset cannot hedge fluctuations in the state variable. In our setting, the hedging demand is driven

by the dynamic risk aversion process that links current market return with future portfolio returns. This

hedging demand appears even though the market returns in our model are conditionally independent of

changes in the state variable.12

Next, we consider the special case where intertemporal hedging due to dynamic risk aversion vanishes,

i.e., when future risk aversion values are conditionally independent of the current market return. In this

case, the optimal allocation strategy admits a more explicit expression, given only in terms of the first two

moments of the return variables Z̃n+1 and r̃π
∗

n+1,T .

Corollary 4.2. Given Dn = d, assume the risk aversion values (γn+1, γn+2, . . . , γT−1) to be independent of

the market return Z̃n+1. The optimal proportion of wealth allocated to the risky asset at time n is given by

π̃∗n(d) =
1

γn

µ̃n+1En,d[r̃π
∗

n+1,T ]

σ2
n+1En,d[(r̃π

∗
n+1,T )2] + µ̃2

n+1V arn,d[r̃
π∗
n+1,T ]

−Rn+1

µ̃n+1V arn,d[r̃
π∗

n+1,T ]

σ2
n+1En,d[(r̃π

∗
n+1,T )2] + µ̃2

n+1V arn,d[r̃
π∗
n+1,T ]

,

where µ̃n+1 = En,d[Z̃n+1] and σ2
n+1 = V arn,d[Z̃n+1].

12Conditionally on the value of Yn, the market return Z̃n+1 is independent of Yn+1 − Yn.
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The optimal allocation given in the corollary can alternatively be written as13

π̃∗n(d) =
µ̃n+1

γnσ2
n+1

En,d[r̃π
∗

n+1,T ]−Rn+1γn
(
En,d[(r̃π

∗

n+1,T )2]− (En,d[r̃π
∗

n+1,T ])2
)

En,d[(r̃π
∗
n+1,T )2] +

(
µ̃n+1

σn+1

)2(
En,d[(r̃π

∗
n+1,T )2]− (En,d[r̃π

∗
n+1,T ])2

) , (4.3)

which allows to pin down the relation with the optimal investment strategy in the classical mean-variance

setup. Specifically, it is proportional to the single-period Markowitz strategy, µ̃n+1/(γnσ
2
n+1), i.e., the

optimal allocation of a myopic investor whose objective functional spans a single period. This fraction

depends on the current economic conditions, and the client’s current risk aversion. The proportionality

factor in (4.3) depends on the future return of the investment strategy, r̃π
∗

n+1,T , which in turn depends on

both future economic conditions and the client’s future risk aversion dynamics. Consistently with intuition,

this factor is increasing in the first moment of r̃π
∗

n+1,T and decreasing in its second moment. In the final

time period, the proportionality factor is equal to one and the optimal allocation is given explicitly by the

Markowitz strategy in this time period.

5 Performance of the Robo-Advising Framework

We analyze the investment performance of the proposed robo-advising framework. Our analysis will be

based on a specific model that fits into the general framework, and which we introduce in Section 5.1.

In Section 5.2, we consider the interplay between interaction and portfolio personalization, and show the

existence of a tradeoff between the rate of information acquisition from the client and the effect of the client’s

behavioral biases. In Section 5.3, we explore how the optimal investment strategy is affected by transitions

between economic states and the associated changes in the client’s risk aversion. We also discuss whether

the robo-advisor should cater to client wishes or go against them to improve the investment performance.

5.1 A Robo-Advising Model

In the following paragraphs, we specify each component of the framework introduced in Sections 3.1-3.4.

Market Dynamics. The risky asset has conditionally Gaussian returns. That is, given the economic state

Yn = y at time n, the return Zn+1 has a Gaussian distribution with mean µ(y) and variance σ2(y).

State Process Dynamics. We assume a two-state economy (Yn)n≥0. This choice is supported by the

methodology of the National Bureau of Economic Research (NBER), which splits business cycles into periods

13An extension of formula (4.3) can be derived for the general model considered in Proposition 4.1 (see Appendix B).
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of economic expansions and contractions.14 We use y = 1 to denote the state of economic growth and y = 2

to denote the state of recession. We use P to denote the transition probability matrix, so that Pij is the

probability that the economy transits from state i to state j in a single time step.

Interaction Schedule. The sequence of interaction times is deterministic and equally spaced. The inter-

action schedule (Tk)k≥0 is then characterized by a fixed integer parameter φ ≥ 1, with Tk = kφ. The two

extreme cases are φ = 1, which corresponds to communication of risk preferences at all times, and φ ≥ T ,

which corresponds to risk preferences communicated only at the beginning of the investment process.

Client’s Risk Aversion. The client’s risk aversion process, (γCn )n≥0, is of the form

γCn = eηnγidn γ
Y
n . (5.1)

The first component, (eηn)n≥0, is deterministic and time-varying. For example, the specification eηn =

e−α(T−n) captures the empirical observation that risk aversion increases with age, with the parameter α ≥ 0

specifies the rate of increase.

The second component, (γidn )n≥0, depends on the client’s personal circumstances and has stochastic

dynamics, γidn = γidn−1e
εn , where (εn)n≥1 is an i.i.d. sequence of random variables. Specifically, εn = σεWn−σ

2
ε

2

with probability pε ∈ [0, 1], where σε > 0 and (Wn)n≥1 is an i.i.d. sequence of standard Gaussian random

variables, and εn = 0 with probability 1 − pε. This component captures idiosyncratic shocks to the client’s

risk aversion, which are unrelated to economic state transitions and market dynamics. The multiplicative

innovation terms (eεn)n≥1 are independent and with unit mean, making (γidn )n≥0 a martingale, devoid of a

predictable component.

The third component, (γYn )n≥0, is given by γYn = γ̄n(Yn), where γ̄n : Y 7→ R+
0 is a possibly time-varying

function of the current economic state. This component captures the empirical fact that risk aversion varies

with the business cycle.

Client’s Behavioral Bias. At time n, the risk aversion parameter communicated by the client at the

most recent interaction time, τn, is of the form

ξn = γCτnγ
Z
τn := γCτne

−β
(

1
φ

∑τn−1
k=τn−φ

(Zk+1−µk+1)
)
, (5.2)

14The work of Chauvet and Hamilton [2006] shows that a Markov switching model successfully identifies NBER’s business
cycle turning points.
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where γZτn is a factor that inflates or deflates the client’s actual risk aversion, γCτn , based on recent market

returns. Namely, the sum in the exponent is the cumulative excess return of the risky asset over its expected

value, since the previous interaction time, τn − φ. Because previous market returns have no predictive

value for future market returns, given the state of the economy, the factor γZτn is representative of common

behavioral biases, and the coefficient β ≥ 0 determines the magnitude of this effect.

We emphasize two important properties of the component γZτn . First, the convexity of the exponential

function allows us to capture loss aversion: the upward risk aversion bias following a market underperfor-

mance is greater than the downward bias when the market exceeds expectations by the same amount (Tversky

and Kahneman [1979]). Second, in a model with a single economic state y, we have E[γZτn ] = e
βσ2(y)

2φ , which

shows that the average effect of the behavioral bias decreases as the time between interaction increases,15

consistent with the notion of myopic loss aversion, introduced in Benartzi and Thaler [1995].

The bias γZτn may be interpreted as the client overriding the robo-advisor’s decisions. That is, at an

interaction time n, the robo-advisor proposes a portfolio tailored to the client’s characteristics, γCn , but the

client makes changes to the proposed allocation based on recent market returns. This results in a portfolio

allocation consistent with a risk aversion coefficient γCn γ
Z
n . The effect of this override, which is driven by

the client’s behavioral biases, prevails until the subsequent time of interaction, n+ φ, when the client again

adjusts the portfolio allocation proposed by the robo-advisor. This time, however, the adjustment is based

on market returns realized in the time interval [n, n+ φ].

Robo-Advisor’s Model of Client’s Risk Aversion. The risk aversion process (γn)n≥0 is of the form

γn = eηn−ητn ξn
γYn
γYτn

. (5.3)

The component ξn is the risk aversion parameter communicated by the client at the most recent interaction

time, τn, and, in the robo-advisor’s model, it stays constant until the subsequent time of interaction, τn +φ.

On the other hand, the model is adjusted for the passage of time through the factor eηn−ητn , and for changes

in economic states through the ratio γYn /γ
Y
τn . The above equation can be written in an alternative form as

γn = γn(d) = γZτnEn,d[γ
C
n ],

where we recall from (3.3) that Dn = d is the information set of the robo-advisor at time n. This shows that

the robo-advisor’s view of the client risk aversion is equal to the expectation of client’s actual risk aversion

15In a setup with multiple economic states we have, conditionally on Yτn−φ = y ∈ Y, that E[γZτn ] = e
βσ2(y)

2φ +O(1− Pφy,y).
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times bias factor from the previous interaction time.

From the above expression it can be observed that interaction impacts the robo-advisor’s inferred value

of the client’s risk aversion in two different ways. First, between interaction times, the expectation En,d[γCn ]

is not updated in response to changes in the idiosyncratic component of the client’s risk aversion, because

such changes cannot be inferred from observables like market returns or economic indicators. Second, a

higher interaction frequency comes at the expense of increased behavioral bias, tilting the robo-advisor’s

model further away from the client’s actual risk aversion.

Calibration of Risk Aversion Process. The multiplicative model introduced in this section provides a

parsimonious description of the client’s risk aversion. Under this specification, the risk aversion is guaranteed

to be non-negative, and its parameters can be estimated from historical portfolio allocations. We next sketch

a calibration procedure for models of this form.

Consider a sequence of historical portfolio allocations for a set of self-directed investors. Such data is

available to financial firms offering discount brokerage services, in particular the growing number of low-

cost online brokerages.16 Assume that the portfolio allocations are consistent with a myopic mean-variance

criterion, for which there exists a one-to-one relationship between allocations and risk aversion levels. Then,

the allocations can equivalently be viewed as historical sequences of implied risk aversion coefficients.

For a given client, the risk aversion model can be calibrated using the subset of investors that have

demographic characteristics similar to the client.17 Specifically, the three components of the risk aversion

process (5.1) and the behavioral bias in (5.2) can be estimated using the following sequential procedure.

First, the temporal component can be inferred from the initial portfolio composition chosen by investors at

different life stages. For a personalized service, this component can also be used to incorporate a client-specific

time-dependence of risk aversion. Adjusting for the effect of time, the average investment levels during each

economic regime (e.g., periods of expansions and contractions - see Section 5.3) then provide information

about the process component which depends on the economic state. Next, the extent of behavioral bias can

be estimated from the relationship between market returns and subsequent changes in the portfolio’s market

exposure.18 In addition, for a given client, data on financial literacy, investment experience, and cognitive

abilities, can be used to adjust the estimated behavioral bias (see, e.g., studies by Oechssler et al. [1997]

and Seasholes and Feng [2005]). Finally, after adjusting for the passage of time, economic regimes, and bias,

16See, among others, the seminal work of Barber and Odean [2000] where such a data set is analyzed and Glaser and Weber
[2009] for a more recent study using online brokerage data.

17In practice, robo-advising firms manage a finite number of portfolios and group clients with similar profiles into risk
categories. For instance, Wealthfront constructs a composite Risk Score ranging from 0.5 to 10, in increments of 0.5.

18The literature on individual investor performance focuses to a large extent on biases and investor’s mistakes. For instance,
Statman et al. [2006] study the role of investor overconfidence by examining the lead-lag relationship between market returns
and trading volume.
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Figure 1: The graphs plot the optimal allocation π̃∗
n as a function of the client’s risk aversion γCn , for the model in

Section 5.1, where we set Y0 = 1 and P equal to the two-dimensional identity matrix. In both graphs, the solid line
refers to the benchmark case of constant risk aversion and no behavioral bias, i.e., ηn = pε = β = 0.
Left panel: Impact of idiosyncratic risk aversion shocks, obtained by letting pε ∈ {0.05, 0.10} and σε = 0.64. Right
panel: Impact of behavioral bias, obtained by choosing β = 4 and γZn ∈ {0.76, 1.30}. These values of β and γZn
correspond to a cumulative market return between two interaction times which is 1.3 standard deviations above/below
its expected value. The annualized market parameters in state Y0 are set to r(Y0) = 0, µ(Y0) = 0.10, σ(Y0) = 0.20,
and one time step in the model corresponds to one month. The investment horizon is T = 36 months, and the time
between interaction is φ = 3 months. We show the allocations prevailing one year after the start of the investment
process, i.e., at time n = 12.

the size and frequency of allocation changes made by investors provide information about the idiosyncratic

component of the risk aversion process.

Sensitivity of Optimal Allocation to Idiosyncratic Shock and Behavioral Bias. In Figure 1,

we display how the optimal allocation in Proposition 4.1 depends on the variability of the idiosyncratic

component of the client’s risk aversion and the client’s behavioral bias. The left panel shows that if the

client’s idiosyncratic risk preferences fluctuate more due to a larger value of the parameter pε, then the

optimal allocation deviates more from that of the benchmark case with no idiosyncratic shocks. The right

panel shows that the client’s behavioral bias following a negative market return (γZn > 1) has a stronger

influence on the optimal allocation than the bias following a positive market return of the same magnitude

(γZn < 1). This numerical finding is consistent with the notion of loss aversion, as discussed above.

5.2 Interaction and Optimal Personalization

In our framework, the client and robo-advisor do not interact at all times and, thus, the robo-advisor is

not always immediately aware of changes in the client’s risk profile. While a higher interaction frequency is

the only way to reduce this information asymmetry, it also increases the amount of behavioral bias in the

communicated information. The goal of this section is to analyze this tradeoff quantitatively.
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We start by defining a measure of portfolio personalization. This measure depends on the relation between

the client’s risk aversion process, (γCn )n≥0, given by (5.1), and the robo-advisor’s model of the client’s risk

aversion, (γn)n≥0, given by (5.3). Recall from Section 4 that at time n = T − 1, the optimal risky asset

allocation is proportional to the risk tolerance parameter 1/γn, and it is approximately proportional to

1/γn for n < T − 1 (see (4.3)). We therefore choose to define personalization in terms of the expected

relative difference between the risk tolerance parameters 1/γn and 1/γCn , averaged over the investment

period. Specifically, for φ ≥ 1 and β ≥ 0, we introduce the personalization measure

R(φ, β) := E

[
1

T

T−1∑
n=0

∣∣∣ 1
γn
− 1

γCn
1
γCn

∣∣∣] . (5.4)

A lower value of R(φ, β) means a higher level of portfolio personalization. Full personalization is achieved if

and only if φ = 1 and β = 0, which leads to R(1, 0) = 0. This is because the processes (γn)n≥0 and (γCn )n≥0

coincide only in this case, when there is no behavioral bias and the client and the robo-advisor interact at all

times. Although not explicitly highlighted in the notation, we note that the value of R(φ, β) also depends

on the parameters pε ∈ [0, 1] and σε > 0, which govern the distribution of idiosyncratic risk aversion shocks.

For a given value of β, our objective is to study the dependence of the measure R on φ. For this, we

consider an approximation R̃ that is analytically more tractable than R. In the following proposition, we

characterize this approximation and show that it is minimized by a unique value of φ. In Figure 2, we show

graphically that R̃ and R are close, for different interaction frequencies and levels of behavioral bias.

Proposition 5.1. Set σ0 := σ(Y0). The following statements hold:

(i) The measure R(φ, β) satisfies the relation

Tφ
T
R̃(φ, β) + E ≤ R(φ, β) ≤ Tφ

T
R̃(φ, β) + E , (5.5)

where Tφ (resp. Tφ) is the largest (resp. smallest) multiple of φ that is less than (resp. greater than)

or equal to T , the error term E is of order O(p2
εσ

2
ε + β2) +O(1− PT−1

y0,y0), and

R̃(φ, β) :=

√
2

π

(βσ0√
φ

(
1− φ− 1

2
pε

)
+

√
β2σ2

0

φ
+ σ2

ε

φ− 1

2
pε

)
.

(ii) Let β and pε be such that β + pε > 0. Then, there exists a unique value of φ ≥ 1 that minimizes
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R̃(β, φ).19 Specifically,

arg min
φ≥1

R̃(φ, β) =


1, β = 0,

φ0 ∈ [1,∞), β > 0, pε > 0,

∞, pε = 0.

Furthermore, φ0 satisfies the monotonicity properties

∂φ0

∂β
> 0,

∂φ0

∂σ0
> 0,

∂φ0

∂pε
< 0,

∂φ0

∂σε
< 0. (5.6)

The error term of order O(1− PT−1
y0,y0) in the approximation (5.5) results from fixing the economic state

throughout the investment period. Typically, transitions between economic states are infrequent (see (5.12)

in Section 5.3) and the error term vanishes if the model consists of a single economic state. From the signs

of the derivatives given in (5.6), it can be seen that if the economy transits to a state with a higher return

volatility, i.e., if σ0 increases, the optimal time between consecutive interactions also increases. This is

because the client’s behavioral bias is based on market return fluctuations, which are magnified if the return

volatility is higher.

The above proposition confirms two intuitive claims. First, in the absence of behavioral biases, i.e.,

β = 0, it is optimal for the robo-advisor to interact with the client at all times. Second, if there are no

idiosyncratic risk aversion shocks, i.e., pε = 0, then it is optimal to never interact. Most interestingly, if both

β > 0 and pε > 0, then it may be suboptimal to interact at all times. This is because a higher frequency of

interaction comes at the expense of increased behavioral bias in the communicated risk aversion parameter.

Furthermore, the signs of the derivatives in (5.6) show that a larger value of β increases the optimal time

between consecutive interactions, while larger values of pε and σε imply a greater variance of idiosyncratic

risk aversion shocks and push down the optimal time between interaction. In the proof of the proposition,

we show that

pεσε
βσ0

< 1 =⇒ ∂R̃(φ, β)

∂φ

∣∣∣
φ=1

< 0,

which gives a sufficient condition for when it is optimal to refrain from interacting at all times.20 In the

above inequality, we compare the rate of change of the idiosyncratic risk-aversion component, as measured

by pεσε, with the amount of behavioral bias, quantified by the product βσ0 of the client’s sensitivity to

19If β = pε = 0, the values R(φ, β) and R̃(φ, β) are independent of φ.
20This condition is also close to being necessary. See Eq. (C.2) in Appendix C.
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Figure 2: The graphs plot the personalization measure R(φ, β) and its approximation R̃(φ, β) as a function of the
time φ between consecutive interactions. Each panel corresponds to a different value of the parameter β. We consider
the same market parameters and investment horizon as in Figure 1, with Y0 = 1, P = I2, and each time step in the
model corresponding to one month. The parameters of the risk aversion model are ηn = 0, pε = 0.05, and σε = 0.64.

market returns and the volatility of returns. If the latter is greater than the former, then the derivative of

R̃ at φ = 1 is negative, i.e., it is suboptimal to interact at all times.

To ensure a high level of personalization, the robo-advisor must construct a process (γn)n≥0 which is as

close as possible to the client’s actual risk aversion process (γCn )n≥0. A related measure of personalization

may thus be directly built on the proximity of the investment strategy corresponding to (γn)n≥0 and the

strategy corresponding to (γCn )n≥0. The latter is the strategy that achieves full personalization and can

only be attained if interaction occurs at all times and there is no behavioral bias, in which case the two risk

aversion processes coincide.

Denote by (π̃∗n(γn))0≤n<T and (π̃∗n(γCn ))0≤n<T the optimal allocations corresponding to (γn)0≤n<T and

(γCn )0≤n<T , respectively. In line with the definition of R(φ, β) in (5.4), we introduce the measure

S(φ, β) := E

[
1

T

T−1∑
n=0

∣∣∣ π̃∗n(γn)− π̃∗n(γCn )

π̃∗n(γCn )

∣∣∣] .
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A smaller value of S(φ, β) implies a higher level of personalization, and full personalization is achieved if and

only if S(φ, β) = 0. We observe that the difference between π̃∗n(γn) and π̃∗n(γCn ) is not a simple function of

the difference between γn and γCn . Nevertheless, in Appendix C we establish a direct relation between the

two measures R and S, namely,

S(φ, β) = R(φ, β) +O((φ− 1)pεσ
2
ε ) +O

(β2σ2

φ2

)
, (5.7)

which shows that a small difference between (γn)0≤n<T and (γCn )0≤n<T translates into a small difference

between the corresponding investment strategies. In the above equation, the first error term is due to the

idiosyncratic component of the client’s risk aversion and it vanishes if φ = 1. The second error term originates

from the client’s behavioral bias and it is maximized at φ = 1.

Figure 3 indicates that the value of φ that minimizes R(φ, β) is a lower bound for the value of φ that

minimizes S(φ, β). In other words, minimizing R(φ, β) provides a conservative estimate for the time between

interaction that minimizes the allocation difference S(φ, β). This is because R(φ, β) underestimates the

impact of the client’s behavior bias. Specifically, R(φ, β) equals the average relative difference between

(γCn )n≥0 and (γn)n≥0 in any single time interval defined by two consecutive interaction times. Instead, the

optimal allocation at any given time depends on all future allocations and, thus, on the future path of the

client’s risk aversion. As a result, the behavioral bias in future investment decisions feeds into the investment

decisions made at earlier times, and this is accounted for by the measure S(φ, β).

Remark 5.2. Uniformly spaced interaction times yield a conservative estimate for the optimal interaction

frequency. If the client were to interact with the robo-advisor at times triggered by market conditions, then

we expect interaction to be more likely to occur after a period of extreme returns. The client would either

be overly exuberant following a period of positive returns, or overly pessimistic after a period of negative

returns. This magnifies the impact of the client’s behavioral bias, relative to a uniform interaction schedule,

and would result in a larger value for φ.

5.3 Economic Transitions, Risk Aversion, and Investment Performance

We analyze how the optimal investment strategy is affected by economic state transitions and the correspond-

ing changes in the client’s risk aversion. To focus exclusively on the implications of economic transitions on

investment decisions, we let the client’s risk aversion depend only on the current economic state. In this

case, the risk aversion process in (5.3) takes the form γn = γ̄n(Yn). We calibrate this process so that the

resulting optimal allocation (π̃∗n)0≤n<T is time-homogeneous, given the current economic state. Specifically,
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Figure 3: The graphs plot the personalization measures S(φ, β) (left y-axis) and R(φ, β) (right y-axis) as a function
of the time φ between consecutive interactions. Each panel corresponds to a different value of the parameter β. The
model parameters are the same as in Figure 2.

in Appendix C (see Proposition C.1) we show that, for a given π̄ > 0 and δ > −1, there exists a unique risk

aversion process (γ
(δ)
n )n≥0 such that the corresponding optimal allocation is given by

π̃∗n =

 π̄, Yn = 1,

π̄(1 + δ), Yn = 2.
(5.8)

That is, in times of growth (y = 1), the client’s risky asset allocation is equal to π̄,21 and when the economy

transits to the recessionary regime (y = 2), the allocation changes to π̄(1+δ), where the value of δ determines

the change in allocation.

It is well known from empirical studies that both the market Sharpe ratio and the risk aversion of retail

investors are higher during periods of contractions. Consequently, retail investors may shift wealth away

from the risky asset precisely when the benefit of investing, as measured by the expected reward per unit

21For example, π̄ = 0.60 corresponds to the classical 60/40 portfolio composition. This strategy was popularized by Jack
Bogle, the founder of Vanguard, and is commonly used as a benchmark in portfolio allocation.
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risk, is higher.22 For these investors, a robo-advisor which caters to the client’s wishes would construct a

risk aversion process (γ
(δ)
n )n≥0 such that δ < 0. By contrast, a robo-advisor which goes against the client’s

wishes would construct a risk aversion process (γ
(δ)
n )n≥0 such that δ ≥ 0, i.e., invest more in the risky asset

when the economy is in a state of contraction and the return per unit risk is high.

The remainder of the section proceeds as follows. In Section 5.3.1, we analyze the Sharpe ratio achieved

by the optimal investment strategy and its dependence on the parameter δ. In Section 5.3.2, we analyze

numerically the dependence of the client’s terminal wealth distribution on δ and discuss how the robo-

advisor should balance the client’s risk preferences with the opportunity to improve the portfolio’s investment

performance.

5.3.1 Sharpe Ratio of Optimal Investment Strategy

The Sharpe ratio of the strategy (5.8) is defined as

sπ
∗
(δ) :=

µ̃π
∗

σπ∗
, (5.9)

where µ̃π
∗

and σπ
∗

are the long-run23 mean and volatility of the excess returns achieved by π∗:

µ̃π
∗

:= lim
T→∞

E
[ 1

T

T−1∑
n=0

(rπ
∗

n,n+1 − rn+1)
]
, (σπ

∗
)2 := lim

T→∞
E
[ 1

T

T−1∑
n=0

(rπ
∗

n,n+1 − rn+1 − µ̃π
∗
)2
]
.

We recall that rπ
∗

n,n+1 is the return of the strategy π∗, between times n and n + 1, and that rn+1 is the

risk-free rate. In Lemma C.2 we show that the Sharpe ratio (5.9) can be explicitly computed.

Figure 4 indicates that, for a fixed value of δ, the portfolio’s Sharpe ratio is increasing in the stationary

probability λ of the recessionary state (y = 2). Formally, λ := limn→∞ P(Yn = 2), and λ also equals the

long-run proportion of time spent in the recessionary state. Additionally, the Sharpe ratio is increasing in

a := µ̃(2)/µ̃(1), which is the relative change in mean excess returns between the two states, and decreasing

in b := σ(2)/σ(1), which is the relative change in the return volatility. These monotonicity properties turn

out to hold under mild conditions (see Lemma C.3).

Furthermore, Figure 4 shows that the Sharpe ratio (C.5) is generally increasing in δ, i.e., it is higher if a

larger amount of wealth is invested in the risky asset when the economy is in a state of recession and, thus,

22The economic state variable (Yn)n≥0 is assumed to be observable, and it follows from (5.1) that the client’s risk aversion
reacts instantaneously to a change in economic conditions. In reality, the economic state may be hidden, and its value can only
be inferred probabilistically. We expect that extending the model to such a setting would not have a qualitative effect on our
results. Namely, the extended model would capture the fact that, throughout the business cycle, the client is on average less
willing to invest in the risky asset when the market Sharpe ratio is high.

23We compute the “long-run” Sharpe ratio of the strategy π∗, which is independent of the initial economic state, Y0.
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the market Sharpe ratio is high. However, as the third panel shows, there may be situations when a larger

value of δ may result in a smaller Sharpe ratio.

In Lemma C.3, we derive the following characterization for the monotonicity of the Sharpe ratio with

respect to δ,

∂sπ
∗
(δ)

∂δ
> 0 ⇐⇒ 1 +

σ2(1)

µ̃2(1)
> a

(
1 +

b2σ2(1)

a2µ̃2(1)

)
(1 + δ). (5.10)

Whether or not the condition above is satisfied depends on the values of a and b, which determine the

difference in market Sharpe ratios between the two economic states. In particular, consider the case where

the allocation is the same in both economic states, i.e., δ = 0. For a fixed b > 1, it can be observed from

(5.10) that there exists a threshold a∗(b) > b that a needs to exceed for the condition to be satisfied. In other

words, for the portfolio’s Sharpe ratio to increase with additional investment during recessions, the market

Sharpe ratio needs to be sufficiently high in such an economic state. The reason for why a marginally higher

market Sharpe ratio may be insufficient is that larger market returns in an economic state increase both

the numerator and the denominator of the Sharpe ratio, because the “between-state” standard deviation of

returns is then higher. We refer to the discussion following Lemma C.3 for additional details.

Condition (5.10) is generally satisfied for empirically plausible parameter values. That is, the portfolio’s

Sharpe ratio increases if more wealth is allocated to the risky asset when the market Sharpe ratio is high.

However, Figure 4 indicates that the gain is modest, and that the Sharpe ratio decreases more when the

allocation to the risky asset is decreased, compared to how much it increases when the allocation to the risky

asset is increased by the same amount. In Appendix C, we show that sπ
∗
(δ) is concave in a neighborhood

of δ = 0, namely,

∂2sπ
∗
(δ)

∂δ2

∣∣∣∣
δ=0

∝ −σ
2(1)

µ̃2(1)

(
a2 + b2

σ2(1)

µ̃2(1)

)
λ+O(λ2). (5.11)

This confirms that in order to maintain a satisfactory Sharpe ratio, it is more important not to reduce the

risky asset allocation in a state of recession than to increase it.

5.3.2 Wealth Distribution and Cyclicality of Risk Aversion

The portfolio’s Sharpe ratio is determined by the first two moments of its returns, which may not be sufficient

to characterize the entire return distribution. Therefore, comparing portfolios in terms of their Sharpe ratios

therefore leaves out the impact of higher return moments. This is especially relevant in the presence of

multiple economic states, given that the unconditional return distribution is then leptokurtic and skewed.
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Figure 4: The graphs plot the Sharpe ratio (5.9) as a function of δ. We set the state-dependent parameters r, µ, σ
and the transition matrix P to the values specified in (5.12)-(5.13). This specification yields λ = 1/3, a = 2.1, and
b = 1.1. Left panel: We vary the parameter λ, while keeping a and b fixed. Middle panel: We vary the parameter a,
while keeping λ and b fixed. Right panel: We vary the parameter b, while keeping λ and a fixed. Each time step in
the model is one month, and we annualize the Sharpe ratio by multiplying (5.9) by

√
12.

We use numerical simulations to estimate the terminal distribution of the client’s wealth, for different

values of the parameter δ. We assume monthly portfolio rebalancing (a time step of one month) and set the

transition matrix of the state variable (Yn)n≥0 to

P =

[
P11 P12

P21 P22

]
=

[
0.95 0.05

0.10 0.90

]
. (5.12)

These transition probabilities are based on empirical values reported in Chauvet and Hamilton [2006], who

also show that a regime switching model captures well the economic state transitions described by the

NBER’s business cycle chronology. These values show that, on average, economic expansions last longer

than contractions.

We set the state-dependent return parameters in accordance with Tang and Whitelaw [2011], who report

historical averages for changes in the mean and volatility of stock market returns, as well as for changes in

the market Sharpe ratio, between the peak of the business cycle and the subsequent trough. Specifically, we

set the annual risk-free rate, mean and volatility of market returns to

r = (0.015, 0), µ = (0.081, 0.137), σ = (0.155, 0.173). (5.13)

Figure 5 shows the simulated distribution of the return of the optimal investment strategy at maturity,

and the corresponding annualized rate of return. It is evident from the figure that the skewness and kurtosis

are higher when the risky asset allocation is maintained or increased in a state of recession, and that in those

cases, the return upside is considerably higher, with a limited additional downside risk. The same pattern

28



is observed from the summary statistics of the simulations, reported in Table 1.

The above findings indicate that both the Sharpe ratio and the terminal wealth achieved by the strategy

defined in (5.8) are higher if δ ≥ 0, compared to the case δ < 0. In other words, the investment benefits

are greater if the risky asset allocation is maintained or increased during recessions (δ ≥ 0). The question

thus arises of how far the robo-advisor can reach “against the will” of a client whose risk preferences are

countercylical and thus consistent with the case δ < 0.

While higher expected returns will be obtained in the long run, the client may suffer from adverse market

moves in the short run, and may not have an adequate understanding of the long-term benefits. In a state of

recession, with worsening economic outlook and risk aversion rising, the client may be particularly sensitive

to what can be perceived as an investment mistake of the robo-advisor. The importance of this dilemma faced

by robo-advisors is emphasized by Rossi and Utkus [2019a], who show empirically that algorithm aversion,

i.e., the tendency of individuals to prefer a human forecaster over an algorithm, and to more quickly lose

confidence in an algorithm than in a human after observing them make the same mistake (Dietvorst et al.

[2015]), is one of the main obstacles for the adoption of robo-advising.

Our analysis suggests that a good middle ground for the robo-advisor is to encourage the client to simply

maintain a fixed portfolio composition, which is consistent with the long-term investing principle of riding

out business cycles. To that end, the robo-advisor may present statistics such as those reported in Table

1 and Figure 5 to the client. Thus, the client may observe that, over time, higher returns can be earned

with limited additional risk by maintaining exposure to the risky asset during recessions instead of reducing

it.24 This behavior would also be consistent with that of most robo-advising firms. Namely, modifying the

portfolio allocation based on economic conditions is a form of active management and, in general, robo-

advising firms which focus on long-term investing do not engage in such market timing.25 Rather, they urge

clients to stay the course through changing market conditions, in order to reap the benefits of long-term

investing.

24In the context our model, this amounts to “changing” the client’s risk aversion process from (γ
(δ)
n )n≥0 such that δ < 0, to

(γ
(0)
n )n≥0. We recall that (γ

(δ)
n ) is the risk aversion process implied by the strategy given in (5.8).

25One of the claimed benefits of robo-advising is that by managing the portfolio on the client’s behalf, the client is helped
to resist the temptation of attempting to time the market. The robo-advising firms Betterment and Wealthfront also mention
empirical work, such as the Dalbar’s annual Quantitative Analysis of Investors report, which shows that investors who try
to time the market tend to perform much worse than a “buy-and-hold” investor, and that the average investor significantly
underperforms a broad stock market index.
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Figure 5: Simulated distributions of the return of the strategy (5.8) between time 0 and time T (top panels),
and the corresponding annualized rate of return (bottom panels). The parameters of the strategy are π̄ = 0.6 and
δ ∈ {−0.3, 0, 0.3}. One time step in the model corresponds to one month, the market parameters are given in
(5.12)-(5.13), the initial economic state is Y0 = 1, and the investment horizon is T = 120 months.

Mean SD Skewness Kurtosis 90% VaR 95% VaR 99% VaR

δ < 0 0.740 0.485 0.838 4.257 -0.179 -0.067 0.117

δ = 0 0.881 0.589 0.970 4.712 -0.213 -0.085 0.118

δ > 0 1.036 0.735 1.231 5.934 -0.233 -0.091 0.134

δ < 0 0.053 0.029 0.066 3.011 -0.017 -0.006 0.012

δ = 0 0.061 0.032 0.092 3.016 -0.019 -0.008 0.012

δ > 0 0.068 0.037 0.162 3.089 -0.021 -0.009 0.014

Table 1: Summary statistics for the simulated return distributions in Figure 5. The top half of the table reports
statistics for the return of the strategy throughout the investment period. The bottom half of the table gives the
statistics for the annualized rate of return.

6 Concluding Remarks

The past decade has witnessed the rapid emergence of robo-advisors, which are online platforms allowing

clients to interact directly with automated investment algorithms. Recent literature has provided empirical

evidence on the characteristics of those investors who are more likely to switch to robo-advising, and how
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robo-advising tools affect the portfolio composition of investors.

In this work, we build a novel framework that incorporates important features of modern robo-advising

systems. In this framework, a robo-advisor undertakes the task of optimally investing a client’s wealth. The

client has a risk profile that changes in response to market returns, economic conditions, and idiosyncratic

events, and to which the robo-advisor’s investment performance criterion dynamically adapts. We derive

and analyze optimal investment strategies, and highlight the role of risk aversion process in driving the

intertemporal hedging demand.

The frequency of interaction between the client and robo-advisor determines the level of portfolio person-

alization, which is defined in terms of how accurately the robo-advisor is able to track the client’s risk profile.

We show that there exists an optimal interaction frequency, which maximizes portfolio personalization by

striking a balance between receiving information from the client in a timely manner, and mitigating the

effect of the client’s behavioral biases.

We quantify how the Sharpe ratio of the optimal investment strategy depends on the allocation of wealth

within economic regimes, and study the potential gains achieved by a robo-advisor’s strategy during periods

of high market Sharpe ratio. The implementation of this strategy may require the robo-advisor to go

against the client’s wishes, because both the client’s risk aversion and the market Sharpe ratio tend to be

countercyclical. We show that by simply rebalancing the portfolio to maintain constant weights throughout

the business cycle, the portfolio’s Sharpe ratio is close to being optimal. We also show that the portfolio

return distribution is significantly improved relative to the situation where the investment in the risky asset

is reduced during periods of economic contractions.

Our framework can be extended and further aligned to the practices of modern robo-advising systems.

Indeed, the market model can be allowed to include multiple tradable assets and portfolio rebalanced only if

the portfolio weights have drifted significantly from the target weights, due to price moves of the underlying

securities. Robo-advisors generally use such threshold updating rules to rebalance their portfolios (Beketov

et al. [2018]), while minimizing expense ratios and maximizing tax efficiency. Furthermore, the regime

switching model can be generalized to make the economic state variable hidden, in line with the fact that

economic conditions are typically not transparently observed, or observed with a lag. If the state variable is

hidden, then the robo-advisor runs the risk of not acting in the client’s best interest by making investment

decisions based on misclassified economic conditions. Finally, one may account for noise in the information

communicated by the client. As the level of noise is expected to increase with the frequency of interaction,

this would act as a further incentive to reduce interaction with the client.

Herein, market returns are assumed to be conditionally independent of economic state transitions. Nev-

31



ertheless, these transitions are commonly associated with significant market moves, in particular when the

economy enters a recession.26 Such market moves would effectively result in the client “buying high” and

“selling low”, and thus exacerbate the adverse effects of comonotonicity between risk aversion and the market

Sharpe ratio. This would further incentivize the robo-advisor to act against the client’s wishes, e.g., if a

market drop is likely to happen following a change in economic conditions, the portfolio’s market exposure

could be adjusted to account for the probability of a near term market drop.27

A Properties of Optimal Investment Strategy

A.1 Computation of Optimal Investment Strategy

In the following proposition, we provide a characterization of the optimal investment strategy given in

Proposition 4.1, which depends on recursively computable expressions.

Proposition A.1. The optimal allocation in Proposition 4.1 admits the representation

π̃∗n(d) =
1

γn

µazn (d)−Rn+1γn(µbzn (d)− µan(d)µazn (d))

µbz2n (d)− (µazn (d))2
, (A.1)

for any d ∈ Dn, where

µan(d) := En,d[an+1(Dn+1)], µazn (d) := En,d[an+1(Dn+1)Z̃n+1],

µbn(d) := En,d[bn+1(Dn+1)], µbzn (d) := En,d[bn+1(Dn+1)Z̃n+1], µbz
2

n (d) := En,d[bn+1(Dn+1)Z̃2
n+1].

(A.2)

The sequences (an(d))0≤n<T and (bn(d))0≤n<T satisfy the recursions

an(d) := En,d[(Rn+1 + Z̃n+1π̃
∗
n(d))an+1(Dn+1)],

bn(d) := En,d[(Rn+1 + Z̃n+1π̃
∗
n(d))2bn+1(Dn+1)],

(A.3)

with aT (d) = bT (d) = 1, for all d ∈ DT .

26This is also the case in the consumption-based asset pricing frameworks which generate countercyclical variation in risk
aversion, such as Campbell and Cochrane [1999]. In their framework, a worsening economic outlook leads to an increase in risk
aversion, and investors demand higher reward for carrying risk, which in turn leads to a fall in stock prices.

27Portfolio allocation under regime switching is widely studied. Related to our work, Tang and Whitelaw [2011] show how
simple market timing strategies can exploit the fact that Sharpe ratios are countercyclical, and Coudert and Gex [2008] show
that risk aversion indices published by financial institutions are good leading indicators of stock market crises. Kritzman et al.
[2012] show how a Markov switching model can be used to avoid large portfolio losses related to “event regimes”, during which
asset return dynamics start deviating from their past levels and the market risk premium is low.
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The quantities an(d) and bn(d) in Proposition A.1 are the first and second moments of the future value

of one dollar invested optimally between time n and the terminal date T , conditionally on Dn = d. That is,

an(d) := En,d[1 + rπ
∗

n,T ], bn(d) := En,d[(1 + rπ
∗

n,T )2], (A.4)

with the simple return rπ
∗

n,T defined in (3.6). Because both an(d) and bn(d) are independent of the wealth x

at time n, it follows from (3.8) that the value function at time n is also independent of x, and given by

Vn(x, d) = Vn(d) := an(d)− 1− γn(d)

2
(bn(d)− a2

n(d)). (A.5)

Finally, Proposition A.1 shows that the optimal proportion of wealth allocated to the risky asset, π̃∗n, is also

independent of the wealth variable.

The expected values in (A.2) admit integral representations, which in turn can be used to compute the

expected values in (A.3). Next, we provide such a representation for µazn (d), both in the general case and in

the specific case described in Section 5.1.

Lemma A.2. (a) Assume that given Dn = d, the random variable ε(n+1) admits a generalized probability

density function, fε(n+1)|d. Then,

µazn (d) =
∑
y′∈Y

Pyn,y′

∫
z′∈R

∫
ε′∈Rn+1

an+1(Dn+1)z̃′fZ|yn(z′)fε(n+1)|d(ε
′)dz′dε′,

where z̃′ := z′−r(yn), and Dn+1 = (Y(n+1), Z(n+1), τ(n+1), ξ(n+1)) ∈ Dn+1 is such that Y(n+1) = (y, y′),

Z(n+1) = (z, z′), τ(n+1) = (τ, τn+1), and ξ(n+1) = (ξ, ξn+1). The value of τn+1 is determined by the

triplet (Y(n+1), Z(n+1), ε(n+1)). If τn+1 = τn, then ξn+1 = ξn, while if τn+1 = n+ 1, ξn+1 is determined

by (Y(n+1), Z(n+1), ε(n+1)).

(b) For the model in Section 5.1, i.e., where the risk aversion process (γn)n≥0 is given by (5.3) and the

interaction times are of the form Tk = kφ, for some φ ≥ 1, we have

µazn (d) =

{ ∑
y′∈Y Pyn,y′

∫
z′∈R an+1(Dn+1)z̃′fZ|yn(z′)dz′, τn+1 < n+ 1,∑

y′∈Y Pyn,y′
∫
z′∈R

∫
ε′∈R an+1(Dn+1)z̃′fZ|yn(z′)f

(φ)
ε (ε′)dz′dε′, τn+1 = n+ 1,

(A.6)

where fZ|yn is the Gaussian probability density function with mean µ(yn) and variance σ2(yn), f
(φ)
ε is
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the φ-fold convolution of the generalized density function of the i.i.d. sequence (εn)n≥1, and28

Dn+1 =

{ (
(y, y′), (z, z′), (ξ, ξn)

)
, τn+1 < n+ 1,(

(y, y′), (z, z′), (ξ, ξn+1)
)
, τn+1 = n+ 1.

If τn+1 = n+ 1, then ξn+1 is given by an explicit function of ((y, y′), (z, z′), ξn, ε
′).

Equation (A.6) shows that two distinct cases need to be considered, depending on whether or not the

client’s risk preferences are solicited at time n. In both cases, the computation of µazn (d) involves a sum over

the distribution of the economic state Yn+1, and an integral with respect to the distribution of the market

return Zn+1. Additionally, if τn+1 = n+ 1, the client’s risk preferences are solicited at time n+ 1 and µazn (d)

involves an additional integral with respect to the distribution of the cumulative idiosyncratic risk aversion

shock
∑n
k=τn

εk+1. Hence, the probability distributions fZ|yn , Pyn,·, and f
(φ)
ε , link the optimal allocation at

time n to the optimal allocations at time n + 1. We observe that if τn+1 < n + 1, the dynamics are only

based on incoming market and economic information, modeled through Zn+1 and Yn+1, while, in the case

τn+1 = n+ 1, they also depend on information received from the client, given by
∑n
k=τn

εk+1.

Remark A.3. Equation (A.3) shows how the first two moments of 1 + rπ
∗

n,T can be computed recursively.

This can be extended to the m-th finite moment, µ
(m)
n (d) := En,d[(1 + rπ

∗

n,T )m], which satisfies the recursion

µ(m)
n (d) = En,d

[(
Rn+1 + Z̃n+1π̃

∗
n(d)

)m
µ

(m)
n+1(Dn+1)

]
.

Under mild conditions, a probability distribution with finite moments of all orders is uniquely determined

by its moments (see Billingsley [1995], Sec. 30). In that case, the distribution of the portfolio return rπ
∗

n,T

can be recovered from a finite set of moments µ
(1)
n , . . . , µ

(M)
n , for some M ≥ 1.

A.2 Computational Complexity of Optimal Investment Strategy

The optimal investment strategy in Proposition A.1 is computed using backward induction, which requires

discretization of the state variable Dn, for each n. This variable is high-dimensional, as it contains the history

of economic states, market returns, interaction times, and communicated risk aversion parameters. However,

the optimal investment strategy at time n can in general be written as a function of a lower-dimensional

random variable D̃n, which is measurable with respect to Dn. For instance, in the model of Section 5.1, the

28With a deterministic interaction schedule, we omit the interaction times τn from the state variable Dn.
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variable D̃n consists of four components:29

D̃n :=
(
ξn,

τn−1∑
k=τn−φ

(Zk+1 − µk+1),

n−1∑
k=τn

(
Zk+1 − µk+1

)
, Yn

)
∈ R+

0 × R2 × Y.

That is, D̃n consists of the most recently communicated risk aversion parameter, the sum of excess market

returns between the two most recent interaction times, the sum of excess market returns since the most

recent interaction time, and the current economic state. If a step size ∆γ is used to discretize the risk

aversion parameter, a step size ∆z is used for each of the return variables, and a general number |Y| ≥ 1 of

economic states is assumed, the number of points in the discretization grid is of order

T |Y|
∆γ∆z

( 1

∆z
1{φ>1} + 1{φ=1}

)
,

where each point requires numerical integration to compute each of the expected values in (A.2) (see (A.6)).

In the general case, one may use properties of the risk aversion process to reduce the computational

complexity. For example, to compute µazn in Lemma A.2, the numerical integration can be avoided by

evaluating Zn+1 at its expected value, µn+1. This leads to the approximation

µazn (d) = En,d[an+1(Dn+1)Z̃n+1|Zn+1 = µn+1] +O
(( T−1∑

k=n+1

E
[
(π̃∗k(γk)− π̃∗k(γ′k))2

])1/2)
.

In the above error term, (π̃∗(γ′k))T−1
k=n+1 are the future optimal allocations corresponding to (γ′k)T−1

k=n+1, which

is the risk aversion process resulting from setting Zn+1 = µn+1. In particular, if the future risk aversion

values are independent of Zn+1, then (γ′k)T−1
k=n+1 = (γk)T−1

k=n+1, and the error term vanishes. In general, the

effect of a single market return on the future risk aversion path is limited - either temporary, or quickly

diluted by the effect of future returns. For instance, in the risk aversion model of Section 5.1, the return

Zn+1 impacts the risk aversion process only in a time interval bounded by two consecutive interaction times.

The computational complexity can also be reduced by using properties of the economic state transition

matrix. In particular, for a single time step, the transition probability out of the current state is generally

small (see (5.12)). In the computation of µazn (d), this leads to the approximation

µazn (d) =
∑
y′∈Ỹ

Pyn,y′En,d
[
an+1(Dn+1)Z̃n+1

∣∣Yn+1 = y′
]

+O
(

1−
∑
y′∈Ỹ

Pyn,y′
)
,

29The functional Jn in (3.5) depends on d ∈ Dn. In this example, for a fixed d̃ ∈ R+
0 × R2 × Y, the value of Jn is the same

for any d ∈ Dn such that if Dn = d then D̃n = d̃.
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where Ỹ ⊆ Y. For instance, if Ỹ = {yn}, we condition on staying in the current economic state, while if

Ỹ = {yn − 1, yn, yn + 1}, we condition on staying in the current state or transitioning to neighboring states.

A.3 Investment Constraints

The dynamic optimization problem analyzed in Section 3 can be enhanced to handle portfolio constraints

typically imposed by robo-advising firms. For example, we may assume that the space of admissible strategies

is restricted to control laws π = (πn)0≤n<T such that the proportion of wealth invested in the risky asset,

denoted by π̃ = (π̃n)0≤n<T , satisfies

−∞ < πn ≤ π̃n ≤ π̄n <∞, (A.7)

where (πn)0≤n<T and (πn)0≤n<T are deterministic sequences. In particular, no short-selling and no borrow-

ing constraints correspond to π ≡ 0 and π ≡ 1, respectively.

In this case, the optimal allocation formula is given by a truncated version of the unconstrained optimal

allocation formula. Namely, in the unconstrained case, the proof of Proposition 4.1 shows that the optimal

allocation π̃∗n is obtained by maximizing a second order polynomial hn with a negative leading order coefficient

(see (B.9)). Under the above portfolio constraint, the optimal allocation is thus obtained by truncating the

outcome of the unconstrained allocation formula (A.1) from below by πn, and from above by πn.

We next consider the effect of truncating the optimal investment strategy π∗ to zero whenever the wealth

level is negative. This results in the investment strategy πo given by

πon(x, d) = π∗n(x, d)1{x≥0}. (A.8)

Hence, πo coincides with the optimal strategy π∗ if the wealth variable x is non-negative, but switches to

a risk-free portfolio when the wealth becomes negative. In the following lemma, we study the difference

between the strategies πo and π∗.

Lemma A.4. Let π∗ be the optimal strategy in Proposition 4.1 under the constraint (A.7) with π ≡ 0 and

π̄ ≡ 1. For x > 0 and d ∈ Dn, we have the following relations between the expectation and variance of the

portfolio return achieved under the strategy π∗ and the constrained strategy πo defined in (A.8):

En,x,d[1 + rπ
o

n,T ] = En,d[1 + rπ
∗

n,T ] +O(Pn,d(Z̃n+1 < −1)),

V arn,x,d[1 + rπ
o

n,T ] = V arn,d[1 + rπ
π∗

n,T ] +O(Pn,d(Z̃n+1 < −1)).
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Furthermore, for x > 0 and d ∈ Dn, the objective functional (3.5) evaluated at πo satisfies the relation

Jn(x, d, πo) = Vn(d) +O(Pn,d(Z̃n+1 < −1)),

where Vn(d) is the value function in (A.5).

Observe that in the previous lemma, the expectation and variance terms under πo do not depend on the

value of x, as long as x > 0. The same is true if x < 0, in which case they only depend on the risk-free rate

throughout the investment horizon, and can be written as

En,x,d[1 + rπ
o

n,T ] = En,d
[ T−1∏
k=n

Rk+1

]
, V arn,x,d[1 + rπ

o

n,T ] = V arn,d

[ T−1∏
k=n

Rk+1

]
.

The proof of the lemma shows that the constants in the O-terms admit explicit upper bounds depending

only on n and can thus be uniformly bounded for all 0 ≤ n < T . The order of the O-terms can also be

uniformly bounded by a constant independent of n and d, because

Pn,d(Z̃n+1 < −1) ≤ max
y∈Y

P(Z̃1 < −1|Y0 = y).

For reasonable parameter values, the above probability is very small. For example, standard annualized

parameter values for the mean and variance of Z̃1 are µ̃ = 0.1 and σ = 0.2. In that case, the event

{Z1 < −1} corresponds to a negative return whose magnitude exceeds five standard deviations. As the

discrete step size in the model gets smaller (e.g., monthly rather than annual), the probability becomes

smaller, and vanishes in the continuous-time limit. This can be seen explicitly for the model considered in

Section 5.1, where returns are conditionally Gaussian. In that case, we have the bound

P(Z̃n+1 < −1|Yn = y) ≤ σ(y)e
− 1

2σ2(y) ,

and the right-hand side converges to zero as σ(y) tends to zero.

B Proofs and Auxiliary Results for Section 4

We start by proving a lemma that will be used in the proof of Proposition 4.1.
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Lemma B.1. Let π = (πn)n≥0 be an admissible control law of the form

πn(x, d) = π̃n(d)x, (B.1)

for any x ∈ R, and d ∈ Dn. Then, the return moments

aπn(d) := En,d[1 + rπn,T ], bπn(d) := En,d[(1 + rπn,T )2],

satisfy the recursions in (A.3) with π∗ = π.

Proof of Lemma B.1: For n = T − 1, it follows from the wealth dynamics (3.1) that

En,d[1 + rπn,T ] = En,d[Rn+1 + Z̃n+1π̃n(d)] = Rn+1 + µ̃n+1π̃n(d).

Next, let n ∈ {0, 1, . . . , T − 2} and assume that the result holds for n+ 1, n+ 2, . . . , T − 1. Then,

En,d[1 + rπn,T ] = En,x,d
[
(Rn+1 + Z̃n+1π̃n(d))

T−1∏
k=n+1

(Rk+1 + Z̃k+1π̃k(Dk))
]

= En,x,d
[
(Rn+1 + Z̃n+1π̃n(d))En+1,Xπn+1,Dn+1

[ T−1∏
k=n+1

(Rk+1 + Z̃k+1π̃k(Dk))
]]

= En,x,d[(Rn+1 + Z̃n+1π̃n(d))aπn+1(Dn+1)]

= En,d[(Rn+1 + Z̃n+1π̃n(d))aπn+1(Dn+1)],

The assertion for the bn-sequence is shown in the same way.

Next, we derive the extended HJB system of equations necessarily satisfied by an optimal control law for

the optimization problem defined by (3.5)-(3.7). To simplify notation, we introduce the random variable

D̃n := (Xn, Dn) ∈ D̃n+1 := R0 ×Dn.

Furthermore, we write

D̃π
n+1 = (Xπ

n+1, Dn+1),

where Xπ
n+1 is obtained by applying the control law π to the wealth x at time n.

Proposition B.2. Assume that an optimal control law π∗ for the optimization problem (3.5)-(3.7) exists.
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Then, the value function (3.8) satisfies the recursive equation

Vn(d̃) = sup
π

{
En,d̃[Vn+1(D̃π

n+1)]−
(
En,d̃[fn+1,n+1(D̃π

n+1; D̃π
n+1)]− En,d̃[fn+1,n(D̃π

n+1; d̃)]
)

(B.2)

−
(
En,d̃

[γn+1(Dn+1)

2

(gn+1(D̃π
n+1)

Xπ
n+1

)2]
− γn(d)

2

(
En,d̃

[gn+1(D̃π
n+1)

x

])2)}
,

(B.3)

for 0 ≤ n < T and d̃ = (x, d) ∈ D̃n, with terminal condition

VT (d̃) = 0, d̃ ∈ D̃T .

Herein, for any fixed k = 0, 1, . . . , T and d̃′ = (x′, d′) ∈ D̃k, the function sequence (fn,k(·; d̃′))0≤n≤T , where

fn,k(·; d̃′) : D̃n 7→ R, is determined by the recursion

fn,k(d̃; d̃′) = En,d̃[fn+1,k(D̃π∗

n+1; d̃′)], d̃ ∈ D̃n, 0 ≤ n < T,

fT,k(d̃; d̃′) =
x

x′
− 1− γk(d′)

2

( x
x′

)2

, d̃ ∈ D̃T ,

and the function sequence (gn)0≤n≤T , where gn : D̃n 7→ R, is determined by the recursion

gn(d̃) = En,d̃[gn+1(D̃π∗

n+1)], d̃ ∈ D̃n, 0 ≤ n < T,

gT (d̃) = x, d̃ ∈ D̃T .

Furthermore, the function sequences admit the probabilistic representations

fn,k(d̃; d̃′) = En,d̃
[Xπ∗

T

x′
− 1− γk(d′)

2

(Xπ∗

T

x′

)2]
, gn(d̃) = En,d[Xπ∗

T ].

Proof of Proposition B.2: We write the objective functional at time n as

Jn(d̃;π) = En,d̃[Fn(d̃, Xπ
T )] +Gn(d̃,En,d̃[X

π
T ]),

where, for d̃ = (x, d) ∈ D̃n and y ∈ R,

Fn(d̃, y) :=
y

x
− 1− γn(d̃)

2

(y
x

)2

, Gn(d̃, y) :=
γn(d̃)

2

(y
x

)2

. (B.4)
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The proof now consists of two parts. First, we derive the recursive equation satisfied by the sequence of

objective functionals for any admissible control law π. Then, we derive the system of equations that an

optimal control law π∗ must satisfy.

Step 1: Recursion for Jn(d̃;π). For a given admissible control law π, and fixed 0 ≤ k ≤ T and d̃′ ∈ D̃k, we

define the function sequences

fπn,k(d̃; d̃′) := En,d̃[Fk(d̃′, Xπ
T )], d̃ ∈ D̃n, 0 ≤ n ≤ T,

gπn(d̃) := En,d̃[X
π
T ], d̃ ∈ D̃n, 0 ≤ n ≤ T,

and note that, by the law of iterated expectations,

fπn,k(d̃; d̃′) = En,d̃[f
π
n+1,k(D̃π

n+1; d̃′)], gπn(d̃) = En,d̃[g
π
n+1(D̃π

n+1)]. (B.5)

For D̃n+1 ∈ D̃n+1, the objective functional at time n+ 1 can then be written as

Jn+1(D̃n+1;π) = En+1,D̃n+1
[Fn+1(D̃n+1, X

π
T )] +Gn+1(D̃n+1,En+1,D̃n+1

[Xπ
T ])

= fπn+1,n+1(D̃n+1; D̃n+1) +Gn+1(D̃n+1, g
π
n+1(D̃n+1)).

Taking expectations with respect to Pn,d̃ and applying the control law π at time n yields

En,d̃[Jn+1(D̃π
n+1;π)] = En,d̃[f

π
n+1,n+1(D̃π

n+1; D̃π
n+1)] + En,d̃[Gn+1(D̃π

n+1, g
π
n+1(D̃π

n+1)].

Adding and subtracting Jn(d̃;π) gives

En,d̃[Jn+1(D̃π
n+1;π)] = Jn(d̃;π) + En,d̃[f

π
n+1,n+1(D̃π

n+1; D̃π
n+1)]− En,d̃[Fn(d̃, Xπ

T )]

+ En,d̃[Gn+1(D̃π
n+1, g

π
n+1(D̃π

n+1))]−Gn(d̃,En,d̃[X
π
T ]).

Using (B)-(B.5), we then obtain

Jn(d̃;π) = En,d̃[Jn+1(D̃π
n+1;π)]−

(
En,d̃[f

π
n+1,n+1(D̃π

n+1; D̃π
n+1)]− En,d̃[f

π
n+1,n(D̃π

n+1; d̃)]
)

−
(
En,d̃[Gn+1(D̃π

n+1, g
π
n+1(D̃π

n+1)]−Gn(d̃,En,d̃[g
π
n+1(D̃π

n+1)])
)
.

(B.6)

Step 2: Recursion for Vn(d̃). Assume the existence of an optimal control law π∗ and consider a control law
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π that coincides with π∗ after time n, i.e., πk ≡ π∗k, for k = n+ 1, . . . , T − 1. By definition, we then have

Jn(d̃;π) ≤ Vn(d̃) = Jn(d̃;π∗), d̃ ∈ D̃n.

Recall the definition of function sequences in (B). For the optimal control law π∗, let

fn,k(d̃; d̃′) := fπ
∗

n,k(d̃; d̃′), gn(d̃) := gπ
∗

n (d̃). (B.7)

Since π and π∗ coincide after time n, for any D̃n+1 ∈ D̃n+1 we have that

Jn+1(D̃n+1;π) = Vn+1(D̃n+1), fn+1,k(D̃n+1; d̃′) = fπn+1,k(D̃n+1; d̃′), gn+1(D̃n+1) = gπn+1(D̃n+1).

In turn, using the recursion (B.6) for Jn(d;π), we may write for d̃ ∈ D̃n,

Vn(d̃) = sup
π

{
En,d̃[Vn+1(D̃π

n+1)]−
(
En,d̃[fn+1,n+1(D̃π

n+1; D̃π
n+1)]− En,d̃[fn+1,n(D̃π

n+1; d̃)]
)

−
(
En,d̃[Gn+1(D̃π

n+1, gn+1(D̃π
n+1)]−Gn(d̃,En,d̃[gn+1(D̃π

n+1)])
)}
,

with the terminal condition VT (d̃) = 0, for d̃ ∈ DT . The recursions and probabilistic representations of

(fn,k(·; d̃′))0≤n≤T and (gn)0≤n≤T then follow from (B.4)-(B.5), and (B.7).

Proof of Proposition 4.1: Assuming the existence of an optimal control law π∗, the value function at

time n+ 1 satisfies

Vn+1(D̃n+1) = fn+1,n+1(D̃n+1; D̃n+1) +
γn+1(Dn+1)

2

(
gn+1(D̃n+1)

Xn+1

)2

.

Plugging the above expression into the HJB equation (B.2) gives

Vn(d̃) = sup
π

{
En,d̃[fn+1,n(D̃π

n+1; d̃)] +
γn(d)

2

(
En,d̃[gn+1(D̃π

n+1)]

x

)2 }
. (B.8)

Next, we look for a candidate optimal control law of form (B.1), i.e., πn(d̃) = π̃n(d)x. It then follows from

Lemma B.1, along with (B.4), (B), and (B.7) that, for this candidate optimal law,

fn+1,n(d̃; d̃′) = aπn+1(d)
x

x′
− 1− γn(d̃′)

2
bπn+1(d)

( x
x′

)2

,

gn+1(d̃) = aπn+1(d)x.
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Plugging the above expression into (B.8), using the wealth dynamics (3.1) and, for brevity, writing R for

Rn+1, π̃n for π̃n(d), aπn+1 for aπn+1(Dn+1), and bπn+1 for bπn+1(Dn+1), yields

Vn(d̃) = sup
π

{
En,d̃

[
aπn+1

Xπ
n+1

x
− 1− γn(d)

2
bπn+1

(Xπ
n+1

x

)2]
+
γn(d)

2

(
En,d̃

[
aπn+1

Xπ
n+1

x

])2}
(B.9)

= sup
π

{
En,d̃

[
aπn+1(R+ Z̃n+1π̃n)− 1− γn(d)

2
bπn+1(R+ Z̃n+1π̃n)2

]
+
γn(d)

2

(
En,d̃[a

π
n+1(R+ Z̃n+1π̃n)]

)2}
(B.10)

= sup
π

{
En,d̃

[
aπn+1(R+ Z̃n+1π̃n)− 1− γn(d)

2
bπn+1(R2 + 2Rπ̃nZ̃n+1 + π̃2

nZ̃
2
n+1)

]
(B.11)

+
γn(d)

2

(
R2(En,d̃[a

π
n+1])2 + 2Rπ̃nEn,d̃[a

π
n+1]En,d̃[a

π
n+1Z̃n+1] + π̃2

n(En,d̃[a
π
n+1Z̃n+1])2

)}
=: sup

π
hn(π̃n),

(B.12)

where hn is a second order polynomial with derivative

h′n(π̃n) = En,d̃[a
π
n+1Z̃n+1]−Rγn(d)

(
En,d̃[b

π
n+1Z̃n+1]− En,d̃[a

π
n+1]En,d̃[a

π
n+1Z̃n+1]

)
− γn(d)

(
En,d̃[b

π
n+1Z̃

2
n+1]− (En,d̃[a

π
n+1Z̃n+1])2

)
π̃n.

By Jensen’s inequality, En,d̃[b
π
n+1Z̃

2
n+1] − (En,d̃[a

π
n+1Z̃n+1])2 > 0, and solving for h′n(π̃n) = 0 yields the

formulation in Proposition 4.1. One can then easily check that this solves the HJB equation (B.2). To

obtain the allocation formula (4.1), we first use (A.3) and the law of iterated expectations to rewrite the

identities in (A.2),

µan(d) = En,d[En+1,Dn+1
[1 + rπ

∗

n+1,T ]] = En,d[1 + rπ
∗

n+1,T ],

µazn (d) = En,d[Z̃n+1En+1,Dn+1
[1 + rπ

∗

n+1,T ]] = En,d[Z̃n+1(1 + rπ
∗

n+1,T )],

µbzn (d) = En,d[Z̃n+1En+1,Dn+1
[(1 + rπ

∗

n+1,T )2]] = En,d[Z̃n+1(1 + rπ
∗

n+1,T )2],

µbz
2

n (d) = En,d[Z̃2
n+1En+1,Dn+1 [(1 + rπ

∗

n+1,T )2]] = En,d[Z̃2
n+1(1 + rπ

∗

n+1,T )2].

It then follows from the definition of variance and covariance that

µbz
2

n (d)− (µazn (d))2 = V arn,d[Z̃n+1(1 + rπ
∗

n+1,T )],

µbzn (d)− µan(d)µazn (d) = Covn,d[Z̃n+1(1 + rπ
∗

n+1,T ), 1 + rπ
∗

n+1,T ],

and (4.1) is obtained by plugging the above into formula (A.1).
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Proof of Proposition A.1: It follows directly from the proof of Proposition 4.1.

Proof of Lemma A.4: Observe that no short-selling and borrowing implies 0 ≤ π̃∗n(d) ≤ 1. Let

An(d) := {1 + Z̃n+1π̃
∗
n(d) < 0},

which, for any positive wealth level at time n, is the event of the wealth becoming negative at time n + 1.

Recall from (A.4) the return moments an(d) and bn(d) for the optimal strategy π∗, and, for x > 0, define

for πo the return moments

aon(d) := En,x,d[1 + rπ
o

n,T ], bon(d) := En,x,d
[
(1 + rπ

o

n,T )2
]
,

which are independent of the value of x. This is because the probability of the wealth becoming negative,

Pn,x,d
(
Xπo

k < 0 for some k ∈ {n+ 1, . . . , T − 1}
)
, is independent of the value of x > 0.

We use induction to show that, for any d ∈ Dn,

|aon(d)− an(d)| ≤ 2
(
T − (n+ 1)

)
KT−nPn,d

(
Z̃n+1 < −1

)
:= Kn.

where K := maxy∈Y
(
1 + r(y) + E

[∣∣Z̃1

∣∣|Y0 = y
])

is a constant. First, for n = T − 1, we have aon(d) = an(d).

Then, for a general n ∈ {0, 1, . . . , T − 2}, we have

aon(d) = En,d
[
(Rn+1 + Z̃n+1π̃

∗
n(d))aon+1(Dn+1)1Acn

]
+ En,d

[
(Rn+1 + Z̃n+1π̃

∗
n(d))aon+1(Dn+1)1An

]
= En,d

[
(Rn+1 + Z̃n+1π̃

∗
n(d))aon+1(Dn+1)

]
− En,d

[
(Rn+1 + Z̃n+1π̃

∗
n(d))aon+1(Dn+1)1An

]
+ En,d

[
(Rn+1 + Z̃n+1π̃

∗
n(d))

( T−1∏
k=n+1

Rk+1

)
1An

]
,

so, assuming the conjecture to hold for n + 1, and by using 0 ≤ π̃∗n ≤ 1, Rn+1 = 1 + rn+1, and that Z̃n+1
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has mean µn+1 − rn+1, we obtain

|aon(d)− an(d)| ≤ Kn+1En,d
[
|Rn+1 + Z̃n+1π̃

∗
n(d)|

]
+ En,d

[
|Rn+1 + Z̃n+1π̃

∗
n(d)|aon+1(Dn+1)1An

]
+ En,d

[
|Rn+1 + Z̃n+1π̃

∗
n(d)|

( T−1∏
k=n+1

Rk+1

)
1An

]
≤ Kn+1K + 2KT−nPn,d(Z̃n+1 < −1)

≤ 2(T − (n+ 2))KT−nPn,d(Z̃n+1 < −1) + 2KT−nPn,d(Z̃n+1 < −1)

= Kn.

A similar result can be derived for the second moment bo(d). The results for the variance and objective

functional then follow.

Proof of Lemma A.2: The formulas for µazn (d) follow directly from (A.2)-(A.3) and the definition of the

random variable Dn+1. In part (a), the value of τn+1 is determined by (Y(n+1), Z(n+1), ε(n+1)), because the

interaction schedule (Tk)k≥0 is adapted to the filtration (Fn)n≥0 in (3.2). Conditionally on τn+1 = n + 1,

the value of ξn+1 is determined by (Y(n+1), Z(n+1), ε(n+1)) for the same reason. In part (b), (5.1) and (5.2)

yield that if τn+1 = n+ 1, then

ξn+1 = eηn+1−ητn ξτne
∑n
k=τn

εk+1
γ̄n+1(Yn+1)

γ̄τn(Yτn)

γZn+1

γZτn
,

where γZn+1 and γZτn depend on {Yτn−φ, . . . , Yn} and {Zτn−φ+1, . . . , Zn+1}, and τn = φ− 1 is the interaction

time prior to n+ 1.

Proof of (4.3): The optimal allocation in Proposition 4.1 can be written as

π̃∗n(d) =
µ̃n+1

γnσ2
n+1

En,d
[
Z̃n+1

µ̃n+1
r̃π
∗

n+1,T

]
−Rn+1γn

(
En,d

[
Z̃n+1

µ̃n+1
(r̃π
∗

n+1,T )2
]
− En,d

[
Z̃n+1

µ̃n+1
r̃π
∗

n+1,T

]
En,d

[
r̃π
∗

n+1,T

])
En,d

[(
Z̃n+1

σn+1
r̃π
∗
n+1,T

)2]
−
(
En,d

[
Z̃n+1

σn+1
r̃π
∗
n+1,T

])2 .

This simplifies to formula (4.3) under the assumption of Corollary 4.2, in which case the expected values in

the previous formula factor into products of expectations.
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C Proofs and Auxiliary Results for Section 5

Proof of Proposition 5.1: From the definitions of γn and γCn , it follows that

R(φ, β) =
1

T

T−1∑
n=0

E
[∣∣∣ γidn
γidτnγ

Z
τn

− 1
∣∣∣]. (C.1)

Let Y0 = y0 and extend the probability space (Ω,F ,P) to include an independent sequence of random

variables (Zn)n≤0, such that Zn ∼ N (µ̃(y0), σ2(y0)). For a given n, define the event An := {Yτn−φ = · · · =

Yτn−1 = y0}, on which the economic state variable is fixed. We then have

E
[∣∣∣ γidn
γidτnγ

Z
τn

− 1
∣∣∣] = E

[∣∣∣eβ( 1
φ

∑τn−1
k=τn−φ

Zk+1−µk+1

)
+
∑n−1
k=τn

εk+1 − 1
∣∣∣An]+O

(
1− P τn−1

y0,y0

)
,

where P τn−1
y0,y0 := (P τn−1)y0,y0 is the probability of staying in state y0 from time zero to time τn − 1. For the

first term appearing in the exponent, we have

β
( 1

φ

τn−1∑
k=τn−φ

Zk+1 − µk+1

)∣∣∣An ∼ N(0,
β2σ2

0

φ

)
.

For the second term, we define the random variable J := |{τn ≤ k ≤ n − 1 : εk+1 6= 0}| ∼ Bin(n − τn, pε),

which is equal to the number of idiosyncratic risk aversion jumps between times τn and n. Hence,

n−1∑
k=τn

εk+1

∣∣∣{J = j} ∼ N
(
− j σ

2
ε

2
, jσ2

ε

)
.

For Z ∼ N (0, 1), a ∈ R, and b ≥ 0, we have E[|ea+bZ − 1|] = bE[|Z|] + O(|a|+ b2). Therefore, conditioning

on the value of J and using the absolute Gaussian moment formula gives

E
[∣∣∣ γidn
γidτnγ

Z
τn

− 1
∣∣∣] =

√
2

π

(
(1− pε)n−τn

βσ0√
φ

+ (n− τn)pε(1− pε)n−τn−1

√
β2σ2

0

φ
+ σ2

ε

)
+ Θ +O(1− P τn−1

y0,y0 ),

where we have denoted by Θ a term of order O(p2σ2
ε + β2). Next, plugging the above expression into (C.1),

and noting that the sum is the same for each interval bounded by consecutive times of interaction, we obtain

R(φ, β) ≥ Tφ
T

√
2

π

1

φ

(βσ0√
φ

φ−1∑
n=0

(1− pε)n +

√
β2σ2

0

φ
+ σ2

ε

φ−1∑
n=0

npε(1− pε)n−1
)

+ Θ +O(1− PT−φ−1
y0,y0 )

=
Tφ
T

√
2

π

1

φ

(βσ0√
φ

1− (1− pε)φ

pε
+

√
β2σ2

0

φ
+ σ2

ε

1− (1− pε)φ − φ(1− pε)φ−1pε
pε

)
+ Θ +O(1− PT−φ−1

y0,y0 )

=
Tφ
T
R̃(φ, β) + Θ +O(1− PT−1

y0,y0),
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where the final equality follows from using a third-order Taylor approximation for (1−pε)φ and the fact that

PT−φ−1
y0,y0 is increasing in φ ≥ 1. The upper bound in (5.5) follows from a symmetric argument.

Next, to show that there exists a unique minimizing φ for R̃(φ, β), we define the function

f(φ) :=

√
2

π
R̃(φ, β) =

βσ0√
φ

(
1− φ− 1

2
pε

)
+

√
β2σ2

0

φ
+ σ2

ε

φ− 1

2
pε.

Observe that f ≥ 0 and that if pε = 0 and β = 0, then f ≡ 0. If pε = 0 and β > 0, then f is strictly

decreasing for φ ≥ 1, and converges to zero as φ→∞. If β = 0 and pε > 0, then f is strictly increasing for

φ ≥ 1, and equal to zero for φ = 1. Furthermore,

f ′(φ) = −1

2

βσ0

φ3/2

(
1− φ− 1

2
pε

)
− βσ0√

φ

pε
2
− 1

2
√

β2σ2
0

φ + σ2
ε

β2σ2
0

φ2

φ− 1

2
pε +

√
β2σ2

0

φ
+ σ2

ε

pε
2

=
1

2

βσ0pε
φ2

(
−
√
φ

pε
+

1

2

(
1− 1√

1 +
σ2
εφ

β2σ2
0

)√
φ(φ− 1) +

(√
1 +

σ2
εφ

β2σ2
0

− 1
)
φ3/2

)
=:

1

2

βσ0p

φ2
g(φ),

and it follows that the derivative of f at φ = 1 satisfies

f ′(1) =
1

2
βσ0pε

(√
1 +

σ2
ε

β2σ2
0

− 1− 1

pε

)
≥ 0 ⇐⇒ pεσ

2
ε

β2σ2
0

≥ 2 +
1

pε
.

Observe that, since the value pε is in general small, we have

pεσ
2
ε

β2σ2
0

≥ 2 +
1

pε
⇐⇒ pεσε

βσ0
≥
√

1 + 2pε ≈ 1, (C.2)

which shows that pεσε/(βσ0) > 1 is, at this approximation level, a sufficient and necessary condition for

f ′(1) < 0. Furthermore,

g′(φ) = −1

2

φ−1/2

pε
+
[1

2

(
1− 1√

1 +
σ2
εφ

β2σ2
0

)√
φ(φ− 1)

]′
+

3

2

(√
1 +

σ2
εφ

β2σ2
0

− 1
)
φ1/2 +

1

2
√

1 +
σ2
εφ

β2σ2
0

σ2
ε

β2σ2
0

φ3/2

≥ 1

2
φ−1/2

(
− 1

pε
+
(√

1 +
σ2
ε

β2σ2
0

− 1
)
φ
)
≥ 1

2
φ−1/2g(1).

It then follows that if g(1) ≥ 0, then g′(φ) ≥ 0, for all φ ≥ 1. Hence, f ′(φ) ≥ 0 for all φ ≥ 1, and f is

minimized for φ = 1. If g(1) < 0, and thus f ′(1) < 0, it can be shown that g is strictly convex and g(φ)→∞,

as φ→∞. Hence, there exists a unique point where g(φ) = 0, and where f is minimized. Finally, from the

form of the function f , it is easy to see the sign of the derivatives of the optimal value of φ with respect to
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β, σ0, pε, and σε.

Proof of (5.7): For the two investment strategies we denote the coefficient µan(Dn) in (A.2) by µan(γn)

and µan(γCn ), and show inductively that

E[|µan(γn)− µan(γCn )|] = O((φ− 1)pεσ
2
ε ) +O

(β2σ2

φ2

)
.

Analogous identities can be obtained for µbn, µazn , µaz
2

n , and µbzn . One may, then, inductively show that

π̃∗n(γn) =
γCn
γn
π̃∗n(γCn ) +O((φ− 1)pεσ

2
ε ) +O

(β2σ2

φ2

)
,

and the result follows.

The following proposition shows that there exists a one-to-one relation between risk aversion processes

and investment strategies that depend only on time and the economic state. For such investment strategies,

the proof shows how the corresponding risk aversion process can be constructed using backward induction.

Proposition C.1. Fix a sequence (π̃n)0≤n<T , with π̃n : Y 7→ R+
0 . Then, there exists a unique risk aversion

process (γn)n≥0, with γn : Y 7→ R+
0 , such that (π̃n)0≤n<T is the optimal relative risky asset allocation

corresponding to (γn)0≤n<T .

Proof of Proposition C.1: We construct the process (γn)0≤n<T using backward induction. First, for

n = T − 1, we have γn(y) = µ̃(y)/(π̃n(y)σ2(y)). For n < T − 1, consider the function

h :
(

0,
1

R(y)

µan
µbn − (µan)2

)
7→ (−π̃n(y),∞), h(x) =

µ̃(y)

xσ2(y)

µan −R(y)x(µbn − (µan)2)

µbn +
(
µ̃(y)
σ(y)

)2

(µbn − (µan)2)
− π̃n(y),

where R(y) := 1 + r(y), µan = µan(y), and µbn = µbn(y). The function h is strictly decreasing on its domain,

and we set the value of γn(y) to be the unique root of h. Using Proposition A.1 and (4.3), it is simple to

check that (π̃n)0≤n<T is the optimal allocation corresponding to the constructed process (γn)0≤n<T .

In the following lemma, we compute the Sharpe ratio (5.9) for a strategy π of the form

π̃n = π̄(Yn). (C.3)

That is, at any time n, in economic state y ∈ Y, the proportion of wealth invested in the risky asset is given

by π̄(y), for some function π̄ : Y 7→ R+
0 . For brevity, we write π̄y for π̄(y). Additionally, we denote the mean
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µ̃(y) and standard deviation σ(y) of excess market returns by µ̃y and σy, respectively, and the stationary

distribution of the Markov chain (Yn)n≥0 by (λy)y∈Y .
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Lemma C.2.

(a) The Sharpe ratio (5.9) of the strategy π in (C.3) satisfies

sπ =
µ̃π

σπ
=

∑
y∈Y λyµ̃yπ̄y√∑

y∈Y λy
(
σ2
yπ̄

2
y + (µ̃yπ̄y − µ̃π)2

) . (C.4)

Moreover,

(i) sπ ≤ max
y∈Y

µ̃y
σy
, (ii) sπ −→ λy′√

λy′(1− λy′)2 + λ2
y′
∑
y 6=y′ λy

, if µ̃y′ →∞,

and the maximum in (i) is achieved if and only if |Y| = 1.

(b) If |Y| = 2 and π̄2 = π̄1(1 + δ), formula (C.4) can be written as

sπ
∗

=
1√

σ2(1)
µ̃2(1)

1−λ2+λ2b2(1+δ)2

(1+λ2(a(1+δ)−1))2 + 1−λ2+λ2a2(1+δ)2

(1+λ2(a(1+δ)−1))2 − 1
, (C.5)

where a := µ̃(2)/µ̃(1) and b := µ̃(2)/µ̃(1).

The previous lemma shows that the Sharpe ratio of π is bounded by the largest market Sharpe ratio,

and is equal to the market Sharpe ratio in the case of a single economic state. From (i) it also follows that

if all states have the same market Sharpe ratio θ > 0, then the Sharpe ratio of π is strictly smaller than θ.

This can be seen by looking at the contribution of state y to the variance in the Sharpe ratio formula (C.4),

which consists of a “within-state” variance term, σ2
yπ̄

2
y, and a “between-state” variance term, (µ̃yπ̄y − µ̃π)2,

where µ̃π =
∑
y∈Y λyµ̃yπ̄y is the mean excess return of the strategy. Without the between-state term, the

Sharpe ratio of π would be equal to θ.

The between-state variance term is also the reason why a larger expected return in a given economic

state does not always translate into a higher Sharpe ratio of π, as can be seen from the limit in (ii). More

concretely, if |Y| = 2, the Sharpe ratio converges to
√
λ2/λ1 if µ̃2 → ∞. Hence, if λ2 is small, i.e., if little

time is spent in state y = 2, then the Sharpe ratio effect of higher expected returns in this state is dominated

by the effect of increasing between-state variance. In Lemma C.3, we focus on the case of two economic

states, and study the sensitivity of the Sharpe ratio of π with respect to the model parameters.
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Proof of Lemma C.2: Using that the portfolio return rπn,n+1 is independent of the investment horizon T

and that Yn converges in distribution to a random variable with distribution (λy)y∈Y , we have

µ̃π = lim
n→∞

E[rπn,n+1 − rn+1] = E[rπ0,1 − r1|Y0 ∼ λ] =
∑
y∈Y

λyµ̃yπ̄y,

(σπ)2 = lim
n→∞

E[(rπn,n+1 − rn+1 − µ̃π)2] = E[(rπ0,1 − r1 − µ̃π)2|Y0 ∼ λ] =
∑
y∈Y

λy
(
σ2
yπ̄

2
y + (µ̃yπ̄y − µ̃π)2

)
.

By Jensen’s inequality we deduce

sπ ≤
∑
y∈Y λyµ̃yπ̄y√∑
y∈Y λyσ

2
yπ̄

2
y

≤
∑
y∈Y λyµ̃yπ̄y∑
y∈Y λyσyπ̄y

=
1∑

y∈Y
1

µ̃y/σy

λyµ̃yπ̄y∑
y′∈Y λyµ̃y′ π̄y′

≤ max
y∈Y

µ̃y
σy
.

If µ̃y′ →∞ for some y′ ∈ Y, then

sπ −→ λy′ π̄y′√
λy′(π̄y′ − λy′ π̄y′)2 +

∑
y 6=y′ λyλ

2
y′ π̄

2
y′

=
λy′√

λy′(1− λy′)2 + λ2
y′
∑
y 6=y′ λy

.

The special case in part (b) follows by simple calculations.

Lemma C.3. Let u := (σ(1)/µ̃(1))2. We have the following characterizations for the sensitivities of the

Sharpe ratio sπ
∗
(δ) defined in (C.5):

∂sπ
∗
(δ)

∂a
> 0 ⇐⇒ a <

1 + u

1 + δ
+

λ

1− λ
ub2(1 + δ),

∂sπ
∗
(δ)

∂b
< 0 ⇐⇒ b > 0,

∂sπ
∗
(δ)

∂λ
> 0 ⇐⇒ λ >

(a2 + ub2)(1 + δ)2 − (1 + u)(2a(1 + δ)− 1)

(a(1 + δ)− 1)((a2 + ub2)(1 + δ)2 − (1 + u))
,

∂sπ
∗
(δ)

∂δ
> 0 ⇐⇒ 1 + u > a

(
1 +

b2

a2
u
)

(1 + δ).

Furthermore,

lim
a→∞

sπ
∗
(δ) =

√
λ

1− λ
, lim

b→∞
sπ
∗
(δ) = 0, sπ

∗
(δ)
∣∣
λ=0

=
µ̃(1)

σ(1)
, sπ

∗
(δ)
∣∣
λ=1

=
µ̃(2)

σ(2)
.

The inequality conditions for the parameters in the previous lemma are not restrictive. For instance, let

us consider the values of the derivatives in the case δ = 0, which corresponds to equal market allocation in
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both states. First, for the a-derivative, we have

∂sπ
∗
(δ)

∂a

∣∣∣∣
δ=0

> 0 ⇐⇒ a < 1 + u+
λ

1− λ
ub2 < 1 + u,

which is trivially satisfied for realistic parameter values.30 Next, for the λ-derivative, we consider two cases:

∂sπ
∗
(δ)

∂λ

∣∣∣∣
δ=0

> 0 ⇐⇒ λ >
a2 + ub2 − (1 + u)(2a− 1)

(a− 1)(a2 + ub2 − (1 + u))
=


1
a+1 , b = a,

a−(1+u)
a(a+u)−(1+u) , b =

√
a.

First, in the case b = a, the market Sharpe ratio is the same in both states. The Sharpe ratio of π∗ is then

maximized for λ ∈ {0, 1}, in which case it is equal to the market Sharpe ratio, while for 0 < λ < 1 the Sharpe

ratio is strictly lower (see discussion following Lemma C.2), and it is minimized at λ = 1/(a + 1). We also

consider the case b =
√
a, and assume a > 1, leading to a higher market Sharpe ratio in the recessionary

state, consistent with empirical evidence. (The case a < 1 can be similarly analyzed.) The portfolio’s Sharpe

ratio is then increasing in λ for 0 < λ < 1, because, as mentioned above, the condition a < 1+u is in general

satisfied. Note that for the parameter values in (5.13), b ≈ a0.15 < a1/2, and the portfolio’s Sharpe ratio is

increasing for 0 < λ < 1.

Finally, for the δ-derivative, we assume that µ̃(1) < σ(1), which typically holds for stock market returns.

For a fixed value of b > 0, one can then show that the right-hand side of the inequality is decreasing in a for

0 < a < a0(b), with a0(b) := bσ(1)/µ̃(1), and is increasing in a, for a > a0(b). The inequality is clearly not

satisfied for a = b and is satisfied for a = a0(b) if and only if

1 + u > 2b
√
u.

The above inequality holds for standard parameter values, such as those in (5.13) with monthly portfolio

rebalancing. In other words, there exists a threshold a∗(b) > b that a needs to exceed for sπ
∗
(δ) to be

increasing at δ = 0. Notably, there also exists an upper threshold a∗∗(b) > a∗(b) such that if a ≥ a∗∗(b),

then the condition is no longer satisfied.31 These thresholds are due to the between-state variance of portfolio

returns, and we again refer to the discussion following Lemma C.2 for more details.

30For example, for the parameter values in (5.13) and monthly portfolio rebalancing, a ≈ 2.1 and u ≈ 66.2.
31For plausible values of the parameters, such as those in (5.13), the upper bound is very large and not exceeded.
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Proof of Lemma C.3: To show the result for the a-derivative, let

h(a, λ, δ) :=
(1− λ)(1 + u) + λ(a2 + ub2)(1 + δ)2

(1 + λ(a(1 + δ)− 1))2
=

(1− λ)(1 + u) + λub2(1 + δ)2 + λa2(1 + δ)2

(1− λ+ λa(1 + δ))2

=:
c0 + c1a

2

(d0 + d1a)2
,

and note that sπ
∗
(δ) in (C.5) is increasing in a if and only if h is decreasing in a. We then have

∂h(a, λ, δ)

∂a
=

2c1a(d0 + d1a)2 − 2(d0 + d1a)d1(c0 + c1a
2)

(d0 + d1a)4
=

2c1a(d0 + d1a)− 2d1(c0 + c1a
2)

(d0 + d1a)3
,

and the result is obtained by solving ∂h(a,λ,δ)
∂a < 0 for a. The results for the λ- and δ-derivatives are obtained

in the same way by noting that sπ
∗
(δ) is decreasing in λ and δ if and only if h is decreasing in λ and δ. The

rest of the lemma follows directly from the formula for sπ
∗
(δ).

Proof of (5.11): Let u := (σ(1)/µ̃2(1))2. The Sharpe ratio formula (C.5) can be written as

sπ
∗
(δ) =

1 + λ(a− 1) + λaδ√
(λ+ u)(1− λ) + λ

(
a2(1− λ) + ub2

)
(1 + δ)2 + 2aλ(λ− 1)(1 + δ)

=:
d0 + d1δ√

c0 + c1(1 + δ) + c2(1 + δ)2
.

Let κ(δ) :=
√
c0 + c1(1 + δ) + c2(1 + δ)2. Then simple calculations yield

∂sπ
∗
(δ)

∂δ
=
d1κ

2(δ)− 1
2 (d0 + d1δ)(c1 + 2c2(1 + δ))

κ3(δ)
,

and

∂2sπ
∗
(δ)

∂δ2
= −

(d0 + d1δ)
(
c2κ

2(δ)− 3
4 (c1 + 2c2(1 + δ))2

)
+ d1(c1 + 2c2(1 + δ))κ2(δ)

κ5(δ)
.

For δ = 0, we have

∂2sπ
∗
(δ)

∂δ2

∣∣∣∣
δ=0

= −
d0

(
c0c2 − 3

4c
2
1 − 2c1c2 − 2c22

)
+ d1(c1 + 2c2)(c0 + c1 + c2)

κ5(0)

=
(sπ∗(0)

d0

)5(
− (a2u+ b2u2)λ+O(λ2)

)
,

and the result follows.
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