
Hedging the Drift: Learning to Optimize under
Non-Stationarity

Wang Chi Cheung
Department of Industrial Systems Engineering and Management, National University of Singapore isecwc@nus.edu.sg

David Simchi-Levi
Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, dslevi@mit.edu

Ruihao Zhu
Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139, rzhu@mit.edu

We introduce data-driven decision-making algorithms that achieve state-of-the-art dynamic regret bounds

for a collection of non-stationary stochastic bandit settings. These settings capture applications such as

advertisement allocation, dynamic pricing, and traffic network routing in changing environments. We show

how the difficulty posed by the (unknown a priori and possibly adversarial) non-stationarity can be overcome

by an unconventional marriage between stochastic and adversarial bandit learning algorithms. Beginning

with the linear bandit setting, we design and analyze a sliding window-upper confidence bound algorithm

that achieves the optimal dynamic regret bound when the underlying variation budget is known. This budget

quantifies the total amount of temporal variation of the latent environments. Boosted by the novel Bandit-

over-Bandit framework that adapts to the latent changes, our algorithm can further enjoy nearly optimal

dynamic regret bounds in a (surprisingly) parameter-free manner. We extend our results to other related

bandit problems, namely the multi-armed bandit, generalized linear bandit, and combinatorial semi-bandit

settings, which model a variety of operations research applications. In addition to the classical exploration-

exploitation trade-off, our algorithms leverage the power of the “forgetting principle” in the learning pro-

cesses, which is vital in changing environments. Extensive numerical experiments with synthetic datasets

and a dataset of an online auto-loan company demonstrate that our proposed algorithms achieve superior

performance compared to existing algorithms.

Key words : data-driven decision-making, non-stationary bandit optimization, parameter-free algorithm

1. Introduction

Consider the following general decision-making framework: a decision-maker (DM) interacts with

a multi-armed bandit (MAB) system by picking actions one at a time sequentially. Upon selecting

an action, she instantly receives a reward drawn randomly from a probability distribution tied to

this action. The goal of the DM is to maximize her cumulative rewards. However, she faces the

following challenges:

• Uncertainty: the reward distribution of each action is initially not known to the DM. She has

to estimate the underlying reward distributions via interacting with the environment.

1

ar
X

iv
:1

90
3.

01
46

1v
4

 [
cs

.L
G

]
 1

7
M

ar
 2

02
1

2

• Non-Stationarity: the reward distributions can evolve over time.

• Partial/Bandit Feedback: the DM can only observe the random reward of the selected action

each time, while the rewards of the unchosen actions are not observed.

Many applications naturally fall into this non-stationary MAB framework. For instance, with a

linear reward model, which will also be the main focus of this paper, we can cast the problems

of dynamic pricing (Keskin and Zeevi 2014, 2016), advertisement allocation (Li et al. 2010, Chu

et al. 2011) in dynamic and evolving environments into the above decision-making framework. This

framework also finds applications in traffic network routing (Gai et al. 2012, Kveton et al. 2015).

Example 1 (Dynamic Pricing). In the classical setup of dynamic pricing (Keskin and Zeevi

2014, 2016), a seller decides dynamically the prices of a product for a sequence of incoming cus-

tomers with the hope to maximize the cumulative revenue. Beginning with an unknown demand

function that represents the customers’ sensitivity towards price changes, the DM only observes

the purchase decision (e.g., buy/not buy or purchase quantities) of each customer under the cor-

responding posted price. Moreover, the demand function can evolve over time due to unexpected

events. For example, after the announcement of the COVID-19 pandemic on 11 March 2020 (World

Health Organization (WHO) 2020), the demand for daily essentials and shelf-stable foods increased

suddenly (Becdach et al. 2020).

Example 2 (Advertisement Allocation). An online platform allocates advertisements (ads)

to a sequence of users. For each arriving user, the platform has to deliver an ad to her, and only

observes the response to her displayed ad. The platform has full access to the features of the ads and

the users. Following (Li et al. 2010, Chu et al. 2011), we could assume that a user’s click behavior

towards an ad, or simply the click through rate (CTR) of this ad by a particular user, follows a

probability distribution governed by a common, but initially unknown, response function of the

features. The platform’s goal is to maximize the total number of clicks. However, the unknown

response function can change over time. For instance, if it is around the time when Apple releases

a new iPhone model, one can expect that the popularity of an Apple’s ad grows.

Example 3 (Traffic Network Routing). A navigation service provider has to iteratively

offer route planning services to drivers from an origin to a destination through a traffic network

with initially unknown random delay on each road. For each driver, the provider could only see

the delays of the roads traversed by this driver, but not the other roads’. Moreover, the delay

distributions could change over time as the roads are also shared by other traffics (i.e., those not

using this navigation service). The provider wants to minimize the cumulative delays throughout

the course of vehicle routing.

Evidently, the DM faces a trilemma among exploration, exploitation as well as adaptation to

changes. On one hand, the DM wishes to exploit, and to select the action with the best historical

3

performances to earn as much reward as possible. On the other hand, she wants to explore other

actions to get a more accurate estimation of the reward distributions. The changing environment

makes the exploration-exploitation trade-off even more delicate. Indeed, past observations could

become obsolete due to the changes in the environment, and the DM needs to explore for changes

and refrain from exploiting possibly outdated observations.

We focus on resolving this trilemma in various MAB problems. Traditionally, most MAB prob-

lems are studied in the stochastic (Auer et al. 2002b) and adversarial (Auer et al. 2002a) envi-

ronments. In the former, the uncertain model is static, and each feedback is corrupted by a mean

zero random noise. The DM aims at estimating the latent static environment using historical data

and converging to the optimum, which is achieved by a static strategy that selects a single action

throughout. In the latter, the model is not only uncertain, but also dynamically changed by an

adversary. While the DM strives to hedge against the changes, it is generally impossible to achieve

the optimum. Hence, existing research also focuses on competing favorably in comparison to a

static strategy.

Unfortunately, strategies for the stochastic environments can quickly deteriorate under non-

stationarity as historical data might “expire”, while the permission of a confronting adversary

in the adversarial settings could be too pessimistic. Starting from (Besbes et al. 2014, 2015), a

stream of research works (see Section 2) focuses on MAB problems in a drifting environment,

which is a hybrid of a stochastic and an adversarial environment. Although the environment can be

dynamically and adversarially changed, the total changes (quantified by a suitable metric) in a T -

round problem is upper bounded by BT (= Θ(T ρ) for some ρ∈ (0,1)), the variation budget (Besbes

et al. 2014, 2015), and the feedback is corrupted by an additive mean zero random noise. The aim

is to minimize the dynamic regret (Besbes et al. 2014), which is the optimality gap compared to the

sequence of (possibly dynamically changing) optimal decisions, by simultaneously estimating the

current environment and hedging against future changes every round. The framework of (Besbes

et al. 2014, 2015) enable us to compete against the so-called dynamic comparator. Most of the

existing works for non-stationary bandits have focused on the the relatively ideal case in which BT

is known. In practice, however, BT is often not available ahead as it is a quantity that requires

knowledge of future information. Though some efforts have been made towards this direction

(Karnin and Anava 2016, Luo et al. 2018), the design of algorithms with low dynamic regret when

BT is unknown remains largely a challenging problem.

In this paper, we design and analyze a novel algorithmic framework for bandit problems in

drifting environments. We begin by demonstrating our results via the lens of the linear bandit

model, and then we demonstrate the generality of our framework on related MAB models. Our

main contributions can be summarized as follows.

4

• When the variation budget BT is known, we provide a lower bound on the dynamic regret

incurred by any non-anticipatory policy. In complement, we develop a tuned Sliding Window

Upper-Confidence-Bound (SW-UCB) algorithm with a matching dynamic regret upper bound, up to

multiplicative logarithmic factors.

• When BT is unknown, we propose a novel Bandit-over-Bandit (BOB) framework that tunes the

window size of the SW-UCB algorithm adaptively. When the amount of non-stationarity is above

a certain threshold (that depends on BT , T), the BOB algorithm achieves the optimal dynamic

regret bound. Otherwise, it still obtains a dynamic regret bound sublinear in T . While the optimal

dynamic regret bound is not achieved in the latter case, the resulting dynamic regret bound is

better than the state-of-the-art in prior literature.

• Our algorithm design and analysis shed light on the fine balance among exploration, exploita-

tion and adaptation to changes in dynamic learning environments. We rigorously incorporate the

“forgetting principle” (Garivier and Moulines 2011) into the Optimism-in-Face-of-Uncertainty prin-

ciple (Auer et al. 2002b, Abbasi-Yadkori et al. 2011), by demonstrating that the DM can enjoy

an optimal dynamic regret bound if she keeps disposing of sufficiently old observations. We also

provide a rate of disposal that leads to the optimality.

• Finally, we point out that a preliminary version of this paper appears in the 22nd Interna-

tional Conference on Artificial Intelligence and Statistics (AISTATS 2019) (Cheung et al. 2019),

and the current paper provides significant additional contributions in three directions. First, when

BT is unknown, the current version provides a substantially refined design and analysis of the

BOB algorithm for the linear bandit model, resulting in an improved dynamic regret bound (i.e.,

Theorem 4 of Section 7) compared to Theorem 4 of (Cheung et al. 2019). Second, unlike (Cheung

et al. 2019), which only focuses on the linear bandit model, in the current paper we extend our

approach, in Section 8, to several related bandit settings, including multi-armed bandits, gener-

alized linear bandits, and combinatorial semi-bandits. These extensions capture many important

operations research applications, such as the three examples highlighted in the introduction. Third,

we conduct numerical experiments using a new synthetic dataset to evaluate our algorithms in

piecewise-linear environments for both 2-armed bandit and linear bandit settings. We also study

the performances of our algorithms in a case of dynamic pricing under the SARS epidemic with

a real world auto-loan dataset. Both of these experiments extend significantly beyond the simple

drifting 2-armed bandit experiments in the AISTATS version.

The rest of the paper is organized as follows. In Section 2, we review existing MAB works in

stationary and non-stationary environments. In Section 3, we formulate the non-stationary linear

bandit model. In Section 4, we establish a minimax lower bound on the dynamic regret. In Section

5, we describe the sliding window estimator for parameter estimation under non-stationarity. In

5

Section 6, we develop the sliding window-upper confidence bound algorithm with optimal dynamic

regret (when the amount of non-stationarity is known ahead). In Section 7, we introduce the novel

Bandit-over-Bandit framework with nearly optimal dynamic regret. In Section 8, we demonstrate

the generality of the established results by applying them to related bandit settings, namely the

multi-armed bandit, generalized linear bandit, and combinatorial semi-bandit settings. In Section

9, we conduct extensive numerical experiments with both synthetic and CPRM-12-001: on-line

auto lending datasets to show the superior empirical performances of our algorithms. In Section

10, we conclude our paper.

2. Related Works
2.1. Stationary and Adversarial Bandits

MAB problems with stochastic and adversarial environments are extensively studied, as surveyed

in (Bubeck and Cesa-Bianchi 2012, Lattimore and Szepesvári 2018). To model inter-dependence

among different arms, models for linear bandits in stochastic environments have been studied.

In (Auer 2002, Dani et al. 2008, Rusmevichientong and Tsitsiklis 2010, Chu et al. 2011, Abbasi-

Yadkori et al. 2011), UCB type algorithms for stochastic linear bandits were studied, and the

authors of (Abbasi-Yadkori et al. 2011) provided the tightest regret analysis for algorithms of this

kind. The authors of (Russo and Van Roy 2014, Agrawal and Goyal 2013, Abeille and Lazaric

2017) proposed Thompson sampling algorithms for this setting to bypass the high computational

complexity of the UCB type algorithms.

2.2. Bandits in Drifting Environments

Departing from purely stochastic or adversarial settings, Besbes et al. (Besbes et al. 2014, 2015)

laid down the foundation of bandit in drifting environments, and considered the K-armed bandit

setting. They achieved the tight dynamic regret bound Õ((KBT)1/3T 2/3) by restarting the EXP3

algorithm (Auer et al. 2002a) periodically when BT is known. Wei et al. (2016) provided refined

regret bounds based on empirical variance estimation, assuming the knowledge of BT . Wei and

Srivastava (2018) analyzed the sliding window upper confidence bound algorithm for the K-armed

MAB with known BT setting. Subsequently, Karnin and Anava (2016) considered the setting

without knowing BT and K = 2, and achieved a dynamic regret bound of Õ(B
9/50
T T 41/50 +T 77/100)

with a change point detection type technique. In a recent work, Luo et al. (2018) generalized this

change point detection type technique to the K-armed contextual bandits in drifting environments,

and in particular demonstrated an improved bound Õ(KB
1/5
T T 4/5) for the K-armed bandit problem

in drifting environments when BT is not known. Keskin and Zeevi (2016) considered a dynamic

pricing problem in a drifting environment with 2-dimensional linear demands. Assuming a known

variation budget BT , they proved an Ω(B
1/3
T T 2/3) dynamic regret lower bound and proposed a

6

matching algorithm by properly discounting historical observations (this includes sliding-window

estimation as a special case). When BT is not known, their algorithm achieves Õ(BTT
2/3) dynamic

regret bound. Finally, various online problems with full feedback in drifting environments were

studied in (Chiang et al. 2012, Besbes et al. 2015, Jadbabaie et al. 2015).

Known BT Unknown BT

(Besbes et al. 2015) Õ
(
B

1/3
T T 2/3

)
Õ
(
BTT

2/3
)

(Karnin and Anava 2016) Õ
(
B

9/50
T T 41/50 +T 77/100

)
Õ
(
B

9/50
T T 41/50 +T 77/100

)
(Luo et al. 2018) Õ

(
B

1/3
T T 2/3

)
Õ
(
B

1/5
T T 4/5

)
The current work Õ

(
B

1/3
T T 2/3

)
Õ
(
B

1/3
T T 2/3 +T 3/4

)
Table 1 Comparisons between our results and prior works. Here, the dynamic regret bounds only show

dependence on BT and T. Õ(·) denotes the function growth, and omits the logarithmic factors.

2.3. Bandits in Piecewise Stationary/Switching Environments

Apart from drifting environments, numerous research works consider the piecewise station-

ary/switching environment, where the time horizon is partitioned into at most S intervals. The

expected reward for each arm remains constant in each interval, but it can vary across different

intervals. The partition is not known to the DM. Algorithms were designed for various bandit

settings, with knowledge of S (Auer et al. 2002a, Garivier and Moulines 2011, Liu et al. 2018, Luo

et al. 2018, Cao et al. 2019), or without knowing S (Karnin and Anava 2016, Luo et al. 2018).

Notably, the Sliding Window-UCB and the “forgetting principle” was first proposed by Garivier

and Moulines (Garivier and Moulines 2011). The algorithm was only analyzed under K-armed

switching environments. But we also have to emphasize that the S is a looser measure of non-

stationarity in the sense that every tiny change in the environment could be counted towards the

total number of switches. In other words, even if there are a total of T switches, the total variation

budget BT could still be far less than T. Hence, the drifting environment serves as a better proxy

for non-stationarity.

2.4. Further Contrasts to Existing Works

The main idea underpinning our Bandit-over-Bandit framework is to use a learning algorithm

to tune the underlying base learning algorithm’s parameters. While this shares similar spirit to

several existing works, such as the heuristic envelop policy (Besbes et al. 2018) and algorithms

for bandit corralling (see Agarwal et al. (2017), Luo et al. (2018) and references therein), our

design is different in the sense that rather than simultaneously maintaining multiple copies of

the base learning algorithm (as in Agarwal et al. (2017), Luo et al. (2018), Besbes et al. (2018)),

7

we treat the problem of selecting window size for the SW-UCB algorithm as another independent

adversarial bandit learning instance. To achieve this, we divide the time horizon into epochs,

and force the SW-UCB algorithm to restart at the beginning of each epoch. This critical difference

allows us to establish an improved and nearly optimal parameter-free dynamic regret bound of the

BOB algorithm when compared to prior research.

2.5. Follow-Up Works and Other Related Works

The results presented in Luo et al. (2018) were further improved to the optimal Õ(K1/3B
1/3
T T 2/3)

dynamic regret bound in Chen et al. (2019), but it is unclear how to generalize the techniques in

Chen et al. (2019) beyond the K-armed bandit setting. In Besson and Kaufmann (2019), Auer et al.

(2019), the authors presented optimal learning algorithms for the switching setting without knowing

the number of switches. In Zhou et al. (2020), the authors considered an environment where the

non-stationarity is governed by a finite-state Markov chain. In Chen et al. (2020), a periodically

changing environment was also studied. The design of parameter-free online learning algorithms

were also considered in other online learning settings, such as bandit convex optimization (Zhao

et al. 2019) and reinforcement learning (Cheung et al. 2020a,b). Another related but different line

of research is bandit learning with corrupted data, interested readers can refer to Lykouris et al.

(2018), Golrezaei et al. (2020) for more details.

3. Problem Formulation for Drifting Linear Bandits

We start by introducing the notations to be used and the model formulation. From the current

section to the end of Section 7, we focus on the drifting linear bandit problem, which serves

to illustrate our algorithmic framework. After that, we provide generalizations to other bandit

problems in drifting environments in Section 8.

3.1. Notation

Throughout the paper, all vectors are column vectors, unless specified otherwise. We define [n]

to be the set {1,2, . . . , n} for any positive integer n. We denote 〈x, y〉= x>y as the inner product

between x, y ∈Rd. For p∈ [1,∞], we use ‖x‖p to denote the p-norm of a vector x∈Rd. For a positive

definite matrix A ∈ Rd×d, we use ‖x‖A to denote
√
x>Ax of a vector x ∈ Rd. We denote x ∨ y

and x∧ y as the maximum and minimum between x, y ∈R, respectively. We adopt the asymptotic

notations O(·),Ω(·), and Θ(·) (Cormen et al. 2009). When logarithmic factors are omitted, we use

Õ(·), Ω̃(·), Θ̃(·), respectively. With some abuse, these notations are used when we try to avoid the

clutter of writing out constants explicitly.

8

3.2. Learning Protocol

In each round t ∈ [T], a decision set Dt ⊆ Rd is presented to the DM. Then, the DM chooses an

action Xt ∈Dt. Afterwards, the reward Yt = 〈Xt, θt〉+ηt is revealed to the DM as a whole. We allow

Dt to be chosen by an oblivious adversary, who chooses the decision sets {Dt}Tt=1 before the protocol

starts (Cesa-Bianchi and Lugosi 2006). The parameter vector θt ∈Rd is an unknown d-dimensional

vector, and ηt is a random noise drawn i.i.d. from an unknown sub-Gaussian distribution (Rigollet

and Hütter 2018) with variance proxy R. By definition, this means E [ηt] = 0, and ∀λ ∈ R we

have E [exp (ληt)]≤ exp(λ2R2/2). Following the convention of the existing linear bandit literature

(Abbasi-Yadkori et al. 2011, Agrawal and Goyal 2013), we assume there are positive constants L

and S, such that ‖X‖2 ≤ L for all X ∈Dt and all t ∈ [T], and ‖θt‖2 ≤ S holds for all t ∈ [T]. In

addition, the instance is normalized so that |〈X,θt〉| ≤ 1 for all X ∈Dt and t ∈ [T]. The constants

L,S are known to the DM.

We consider the drifting environment (Besbes et al. 2014), where θt can change over different t,

with the constraint that the sum of the Euclidean distances between consecutive θt’s is bounded

from above by the variation budget BT = Θ(T ρ) for some ρ∈ (0,1), i.e.,

T−1∑
t=1

‖θt+1− θt‖2 ≤BT . (1)

We allow θt’s to be chosen by an oblivious adversary. It is worth pointing out that the concepts

of a drift environment and variation budget were originally introduced in (Besbes et al. 2015) and

(Besbes et al. 2014, 2018) for the full information setting and the partial/bandit feedback setting,

respectively.

We define Ht = {Ds,Xs, Ys}t−1
s=1∪{Dt} as the available history information at round t∈ [T]. The

DM’s goal is to design a non-anticipatory policy π, which only uses the information Ht in each

round t, to maximize the cumulative reward. Equivalently, the goal is to minimize the dynamic

regret, which is the worst case cumulative regret against the optimal policy π∗, that has full knowl-

edge of θt’s. Denoting x∗t = arg maxx∈Dt〈x, θt〉, the dynamic regret of a non-anticipatory policy π is

mathematically expressed as RT (π) = E [RegretT (π)] = E
[∑T

t=1〈x∗t −Xt, θt〉
]
, where the expecta-

tion is taken with respect to the randomness of Xt and Ht as well as the (possible) randomness of

the policy.

Remark 1 (Comparison to Piecewise Stationary Environment). A related non-

stationary environment is the piecewise stationary environment (Garivier and Moulines 2011),

which allows θt’s to change at most S times throughout the time horizon. However, as discussed in

Section 2, this can be a looser measure of non-stationarity as a very tiny change in the environment

is still counted towards the total number of switches. That is to say, even if there are a total of T

switches, the total variation could grow in a sublinear rate in T.

9

4. Lower Bound

We first provide a lower bound on the the dynamic regret for the linear model.

Theorem 1. In the drifting linear bandit setting, for any T ≥ d and BT ∈ [dT−1/2,8d−2T], there

exists decision sets {Dt}Tt=1 and reward vectors {θt}Tt=1, such that for all t∈ [T] and all x∈Dt, we

have ‖x‖ ≤ 1, ‖θt‖ ≤ 1, and ‖〈x, θt〉‖ ≤ 1, and the dynamic regret for any non-anticipatory policy π

satisfies RT (π) = Ω
(
d2/3B

1/3
T T 2/3

)
.

Poof Sketch. The complete proof is presented in Section A of the appendix. The construction

of the lower bound instance is similar to the approach by (Besbes et al. 2014). The nature divides

the whole time horizon into dT/He blocks of equal length H = d(dT)2/3B
−2/3
T e (≤ T) rounds, and

the last block can possibly have less than H rounds. In each block, the nature initiates a new

stationary linear bandit instance with parameter vectors from the set {±
√
d/4H}d. We set up the

instance so that the parameter vector of a block cannot be learned using the observations from the

previous blocks. Consequently, every online policy must incur a regret of Ω(d
√
H) in each block,

by applying the regret lower bound for stationary linear bandits (for example, see Lattimore and

Szepesvári (2018)) on each block. Since there are at least bT/Hc blocks, the total dynamic regret

is Ω(dT/
√
H) = Ω(d2/3B

1/3
T T 2/3). �

5. Sliding Window Regularized Least Squares Estimator

As a preliminary, we introduce the sliding window regularized least squares estimator (SW-RLSE),

which is the key tool in estimating the unknown parameters {θt}Tt=1 online. The SW-RLSE gen-

eralizes the sliding window sample estimator proposed by (Garivier and Moulines 2011) for the

K-armed bandits in piecewise stationary environments. In addition, our SW-RLSE can be con-

structed for any sequence of arm pulls, which is different from (Keskin and Zeevi 2016), who require

each arm (in their setting a posted price) to be pulled equally often. Despite the underlying non-

stationarity in our model, we show that the estimation error of our SW-RLSE scales gracefully

with the variation of θt’s across time.

To motivate SW-RLSE, consider a round t, where the DM aims to estimate θt based on the

historical observations {(Xs, Ys)}t−1
s=1. The design of SW-RLSE is based on the forgetting principle

(Garivier and Moulines 2011), which argues the following: the DM could estimate θt using only

{(Xs, Ys)}t−1
s=1∨(t−w), the observation history during the time window (1∨ (t−w)) to (t−1), instead

of all prior observations. Here, w is the window size. The rationale is that, under non-stationarity,

the observations far in the past are obsolete, and they are not as informative for regressing θt.

The principle crucially hinges on w, which is a positive integer called the window size. Intuitively,

when the variation across θ1, . . . , θT increases, the window size w should be smaller, since the past

10

observations become obsolete at a faster rate. We treat w as a fixed parameter in this section, and

then shine lights on choosing w in subsequent sections.

The SW-RLSE θ̂t is the optimal solution to the following ridge regression problem with regular-

ization parameter λ> 0:

min
θ:θ∈Rd

λ‖θ‖22 +
t−1∑

s=1∨(t−w)

(X>s θ−Ys)2.

Define matrix Vt−1 := λI +
∑t−1

s=1∨(t−w)XsX
>
s . The SW-RLSE θ̂t can be explicitly expressed as

θ̂t = V −1
t−1

 t−1∑
s=1∨(t−w)

XsYs

= V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s θs +V −1

t−1

t−1∑
s=1∨(t−w)

ηsXs. (2)

Next, we demonstrate the accuracy of the SW-RLSE. Denoting

β :=R

√
d ln

(
1 +wL2/λ

δ

)
+
√
λS, (3)

we provide an error bound on estimating the latent reward, i.e., the confidence radius, of any action

x ∈Dt in a round t, under the following regularity assumption made in Faury et al. (2021) over

the decision sets Dt’s.

Assumption 1. There exists an orthonormal basis Ψ = (ψ1, . . . ,ψd) such that for any t ∈ [T]

and any X ∈Dt, there exists a number z ∈R and an i∈ [d] such that X = z ·ψi.

Remark 2. One can easily verify that this assumption holds in the multi-armed bandits case.

Of course, this assumption allows for more general models than the multi-armed bandits setting

as it still allows each of the time-varying Dt’s to have arbitrarily large number of actions.

In what follows, we analyze the linear bandit setting under Assumption 1. We also discuss how

to remove this assumption in Remark 4 of the forthcoming Section 7.

Theorem 2. For any t ∈ [T] and any δ ∈ [0,1], we have with probability at least 1 − δ,∣∣∣x>(θ̂t− θt)
∣∣∣≤L∑t−1

s=1∨(t−w) ‖θs− θs+1‖2 +β ‖x‖V−1
t−1

holds for all x∈Dt.

Proof Sketch. The complete proof is in Section B of the appendix. Note that θ̂t − θt =

V −1
t−1

∑t−1

s=1∨(t−w)XsX
>
s (θs− θt) + V −1

t−1

(∑t−1

s=1∨(t−w) ηsXs−λθt
)
, we first upper bound the first

term as
∥∥∥V −1

t−1

∑t−1

s=1∨(t−w)XsX
>
s (θs− θt)

∥∥∥
2
≤
∑t−1

s=1∨(t−w) ‖θs− θs+1‖2 , and then adopts Theorem

2 from (Abbasi-Yadkori et al. 2011) for the second term, i.e., with probability at least 1 − δ,∥∥∥∑t−1

s=1∨(t−w) ηsXs−λθt
∥∥∥
V−1
t−1

≤ β. Therefore, fixed any δ ∈ [0,1], we have that for any t ∈ [T] and

any x∈Dt,∣∣∣x>(θ̂t− θt)
∣∣∣=
∣∣∣∣∣∣x>

V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

+x>V −1
t−1

 t−1∑
s=1∨(t−w)

ηsXs−λθt

∣∣∣∣∣∣

11

≤‖x‖2 ·

∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∥∥∥∥∥∥
2

+ ‖x‖V−1
t−1

∥∥∥∥∥∥
t−1∑

s=1∨(t−w)

ηsXs−λθt

∥∥∥∥∥∥
V−1
t−1

(4)

≤L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 +β ‖x‖V−1
t−1

,

where we have applied the triangle inequality and the Cauchy-Schwarz inequality successively in

inequality (4). �

6. Sliding Window-Upper Confidence Bound (SW-UCB) Algorithm: An
Optimal Strategy with Known Variation Budgets

In this section, we describe the Sliding Window Upper Confidence Bound (SW-UCB) algorithm for

the linear model. When the variation budget BT is known, we show that SW-UCB algorithm with

a tuned window size achieves a dynamic regret bound which is optimal up to a multiplicative

logarithmic factor. When the variation budget BT is unknown, we show that SW-UCB algorithm can

still be implemented with a suitably chosen window size so that the regret dependency on T is

optimal, akin to that of (Keskin and Zeevi 2016).

6.1. Design Intuition and Design Details

In the stochastic environment where the reward function is stationary, the well known UCB algo-

rithm follows the principle of optimism in face of uncertainty (Auer et al. 2002b, Abbasi-Yadkori

et al. 2011). Under this principle, the DM selects an action that maximizes the UCB, which is the

value of “mean plus confidence radius” (Auer et al. 2002b) in each round. Following this principle, in

each round t, the SW-UCB algorithm first computes the estimate θ̂t for θt according to eq. (2) (one can

set λ= 1), and then constructs an UCB on the latent mean reward 〈x, θt〉 for each action x∈Dt. By

Theorem 2, the UCB of x∈Dt in each round t∈ [T] is 〈x, θ̂t〉+L
∑t−1

s=1∨(t−w) ‖θs− θs+1‖+β ‖x‖V−1
t−1

.

The SW-UCB algorithm then choose the action Xt with the highest UCB, i.e.,

Xt =arg max
x∈Dt

〈x, θ̂t〉+L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖+β ‖x‖V−1
t−1

= arg max
x∈Dt

{
〈x, θ̂t〉+β ‖x‖V−1

t−1

}
. (5)

Finally, the corresponding reward Yt is observed. The pseudo-code of the SW-UCB algorithm is

shown in Algorithm 1.

6.2. Dynamic Regret Analysis

We are now ready to formally state a dynamic regret upper bound of the SW-UCB algorithm for

drifting linear bandits.

Theorem 3. For the drifting linear bandit setting, the dynamic regret of the SW-UCB algorithm is

upper bounded as RT (SW-UCB algorithm) = Õ (wBT + dT/
√
w) . When BT is known, by taking

12

Algorithm 1 SW-UCB algorithm for drifting linear bandits

1: Input: Sliding window size w, dimension d, variance proxy of the noise terms R, upper bound

of all the actions’ Euclidean norms L, upper bound of all the θt’s Euclidean norms S, and

regularization constant λ.

2: Initialization: V0← λI.

3: for t= 1, . . . , T do

4: Update θ̂t← V −1
t−1

(∑t−1

s=1∨(t−w)XsYs

)
.

5: Xt← arg maxx∈Dt

{
x>θ̂t +β ‖x‖V−1

t−1

}
, where β is defined in (3).

6: Observe Yt = 〈Xt, θt〉+ ηt.

7: Update Vt← λI +
∑t

s=1∨(t−w+1)XsX
>
s .

8: end for

w = Θ
(

(dT)2/3B
−2/3
T

)
, the dynamic regret of the SW-UCB algorithm is RT (SW-UCB algorithm) =

Õ
(
d2/3B

1/3
T T 2/3

)
. When BT is unknown, by taking w = Θ

(
(dT)2/3

)
, the dynamic regret of the

SW-UCB algorithm is RT (SW-UCB algorithm) = Õ
(
d2/3BTT

2/3
)
.

Poof Sketch. The complete proof is in Section C of the appendix. Upon selecting Xt, we have

〈x∗t , θ̂t〉+L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 +β ‖x∗t‖V−1
t−1
≤〈Xt, θ̂t〉+L

t−1∑
s=1∨(t−w)

‖θs− θs+1‖2 +β ‖Xt‖V−1
t−1

(6)

by virtue of the UCB action selection rule. From Theorem 2, we further have with probability at

least 1− δ,

〈x∗t , θt〉 ≤ 〈x∗t , θ̂t〉+L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 +β ‖x∗t‖V−1
t−1

(7)

and

〈Xt, θ̂t〉+L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 +β ‖Xt‖V−1
t−1
≤ 〈Xt, θt〉+ 2L

t−1∑
s=1∨(t−w)

‖θs− θs+1‖2 + 2β ‖Xt‖V−1
t−1

.

(8)

Combining inequalities (6), (7), and (8), we establish the following high probability upper bound

for the expected per round regret, i.e., with probability 1− δ,

〈x∗t −Xt, θt〉 ≤ 2L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 + 2β ‖Xt‖V−1
t−1

. (9)

The regret upper bound of the SW-UCB algorithm is thus

2
∑
t∈[T]

L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 +β ‖Xt‖V−1
t−1

= Õ

(
wBT +

dT√
w

)
. (10)

13

If BT is known, the DM can set w = bd2/3T 2/3B
−2/3
T c and achieve a regret upper bound

Õ(d2/3B
1/3
T T 2/3). If BT is not known, which is often the case in practice, the DM can set w =

b(dT)2/3c to obtain a regret upper bound Õ(d2/3(BT + 1)T 2/3). �

Remark 3. When the variation budget BT is known, Theorem 3 recommends choosing the size

w of the sliding window to be decreasing with BT . The recommendation is in agreement with the

intuition that, when the learning environment becomes more volatile, the DM should focus on

more recent observations. Indeed, if the underlying learning environment is changing at a higher

rate, then the DM’s past observations become obsolete faster. Theorem 3 pins down the intuition

of forgetting past observation in face of drifting environments, by providing the mathematical

definition of the sliding window size w that yields the optimal dynamic regret bound.

7. Bandit-over-Bandit (BOB) Algorithm: Adapting to the Unknown
Variation Budget

When BT is not known, the DM can achieve the dynamic regret bound Õ
(
d2/3(BT + 1)T 2/3

)
for

the drifting linear bandit problem, by setting w= Θ((dT)2/3) (see Section 6). While the bound is

optimal in terms of T by Theorem 1, the bound becomes trivial when BT = Ω(T 1/3), since then

the resulting dynamic regret bound is linear in T .

To mitigate this issue, we make use of the SW-UCB algorithm as a sub-routine, and “hedge”

(Auer et al. 2002a, Audibert and Bubeck 2009) against the (possibly adversarial) changes of θt’s

to identify a reasonable fixed window size. Inspired by the heuristic envelop policy (Besbes et al.

2018) and the bandit corralling technique (Agarwal et al. 2017, Luo et al. 2018), we develop a novel

Bandit-over-Bandit (BOB) algorithm that achieves a nearly optimal dynamic regret bound without

knowing BT . Specifically, we show that the BOB algorithm has a dynamic regret sub-linear in T

even when BT = o(T) is not known, unlike the SW-UCB algorithm. Similar to the style of previous

sections, the discussion in this section focuses on linear model. Nevertheless, we emphasize that

the proposed framework applies to a variety of bandit models (see the forthcoming Section 8).

7.1. Design Intuition and Design Details

As illustrated in Fig. 1, the BOB algorithm divides the whole time horizon into dT/He blocks of equal

length H rounds (the last block can possibly have less than H rounds). In addition, the algorithm

specifies a set of candidate window sizes J . For each block i ∈ [dT/He], the BOB algorithm first

selects a window size wi ∈ J . Then, the BOB algorithm restarts the SW-UCB algorithm from scratch

(see Remark 7 for a discussion on the design of restarting) with the selected window size wi for H

rounds. On top of this, the BOB algorithm also maintains a separate bandit algorithm to determine

each window size wi based on the observed history in the previous i−1 blocks, and thus the name

Bandit-over-Bandit. The choice of wi is based on the EXP3 algorithm (Auer et al. 2002a), which

14

allows us to compete with the best window size in J (in the sense of minimizing dynamic regret),

even when the θt’s variation does not follow any pattern. The EXP3 algorithm is designed for

adversarial multi-armed bandits, where the underlying reward function is designed by an oblivious

adversary (Auer et al. 2002a, Audibert and Bubeck 2009). Finally, to properly apply the EXP3

algorithm, we note that the total reward during each block is normalized so that the normalized

reward lies in [0,1] with high probability.

Figure 1 Structure of the BOB algorithm

Algorithm 2 BOB algorithm for drifting linear bandits

1: Input: Time horizon T , the SW-UCB algorithm, parameters H,∆, J,Q (as defined in 11).

2: Initialize parameters γ,{sj,1}∆j=0 by eq. (12).

3: for i= 1,2, . . . , dT/He do

4: Define distribution (pj,i)
∆
j=0 by eq. (13), and set jt← j with probability pj,i.

5: Set the window size wi←
⌊
Hjt/∆

⌋
.

6: Restart the SW-UCB algorithm for H rounds with window size wi.

7: Update sji,i+1 according to eq. (14), and su,i+1← su,i ∀u 6= ji

8: end for

To this end, we describe the details of the BOB algorithm, displayed in Algorithm 2, for the linear

bandit model. Define the parameters (we justify these choices in Section 7.3)

H =
⌊
dT

1
2

⌋
,∆ = dlnHe, J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q= 2H + 4R

√
H ln(T/

√
H). (11)

The BOB algorithm first divides the time horizon T into dT/He blocks of length H rounds (except

for the last block, which can be less than H rounds), and then initiates the parameters

γ = min

{
1,

√
(∆ + 1) ln(∆ + 1)

(e− 1)dT/He

}
, sj,1 = 1 ∀j = 0,1, . . . ,∆. (12)

15

for the EXP3 algorithm (Auer et al. 2002a). At the beginning of each block i ∈ [dT/He] , the

BOB algorithm first sets

pj,i = (1− γ)
sj,i∑∆

u=0 su,i
+

γ

∆ + 1
∀j = 0,1, . . . ,∆, (13)

and then sets ji = j with probability pj,i for each j = 0,1, . . . ,∆. The selected window

size is then wi =
⌊
Hji/∆

⌋
. Afterwards, the BOB algorithm selects actions Xt by running the

SW-UCB algorithm with window size wi for each round t in block i, and the total collected reward

is
i·H∧T∑

t=(i−1)H+1

Yt =
i·H∧T∑

t=(i−1)H+1

〈Xt, θt〉+ ηt.

Finally, the total rewards is normalized by first dividing Q, and then added by 1/2 so that it lies

within [0,1] with high probability. The parameter sji,i+1 is set to

sji,i · exp

(
γ

(∆ + 1)pji,i

(
1

2
+

∑i·H∧T
t=(i−1)H+1 Yt

Q

))
; (14)

while su,i+1 is the same as su,i for all u 6= ji.

7.2. Dynamic Regret Analysis

We are now ready to present the dynamic regret bound for the BOB algorithm.

Proposition 1. For the drifting linear bandit setting, the dynamic regret of the BOB algorithm is

RT (BOB algorithm) = Õ

(
w†BT +

dT√
w†

+Q

√
|J |T
H

)
. (15)

Proof Sketch. The complete proof is presented in Section E of the appendix. The dynamic

regret bound (15) can be decomposed as

Õ

(
w†BT +

dT√
w†

)
︸ ︷︷ ︸

RT (SW-UCB algorithm) with w†

+ Õ

(
Q

√
|J |T
H

)
︸ ︷︷ ︸
Loss in learning w†

. (16)

The first term in (16) is due to the dynamic regret of the underlying SW-UCB algorithm under the

optimally tuned window size w†. More precisely, we can view each block as a new non-stationary

linear bandit instance, and the dynamic regret is due to the application of SW-UCB algorithm with

window size w† on each block. The second term in (16) is due to the loss by the EXP3 algorithm,

which essentially treat each of the window size in J as an expert, and compete with the best expert.

Here, we point out due to the design of restarting, any instance of the SW-UCB algorithm cannot

last for more than H rounds. As a consequence, even if the EXP3 algorithm selects a window

size wi >H for some block i, the effective window size is H. In other words, w∗ is not necessarily

attainable, i.e., by definition, w∗ =
⌊
(dT)2/3B

−2/3
T

⌋
might be larger than H when BT is small. We

thus have to denote the optimally (over J) tuned window size as w†. �

16

Theorem 4. With the parameters specified in Section 7.1, the dynamic regret of the

BOB algorithm for drifting linear bandit is RT (BOB algorithm) = Õ
(
d2/3B

1/3
T T 2/3 + d1/2T 3/4

)
.

The proof of Theorem 4 can be found in Section F of the appendix. In the next section, we discuss

the choice of parameters in (11) and discuss its relationship

7.3. Choices of Parameters and Justifications

We first justify the choice of Q in (11). Note that Q is used to perform normalization, we thus

prove high probability upper and lower bounds for the total rewards of each block (here, we prove

a slightly more general result by allowing maxt∈[T],x∈Dt |〈x, θt〉| to be in [−ν, ν] for some ν > 0).

Lemma 1. Suppose maxt∈[T],x∈Dt |〈x, θt〉| ∈ [−ν, ν] for some ν > 0 and denote Mi as the absolute

value of cumulative rewards for block i, then with probability at least 1− 2/T, Mi does not exceed

Hν+ 2R
√
H ln(T/

√
H) for all i, i.e., Pr

(
∀i∈ dT/He Mi ≤Hν+ 2R

√
H ln T√

H

)
≥ 1− 2

T
.

The complete proof of Lemma 1 is in Section D of the appendix. With Lemma 1 and the choice of

Q= 2H + 4R
√
H ln(T/

√
H) (note that ν = 1 by our model assumption in Section 3), it is evident

that
∑i·H∧T

t=(i−1)H+1 Yt/Q in eq. (14) lies in [−1/2,1/2] with probability at least 1− 2/T. Adding this

by 1/2, we normalize the total rewards of each block to [0,1] with probability at least 1− 2/T for

all the blocks.

To determine H,∆, and J , we consider the dynamic regret bound of the BOB algorithm as

stated in Proposition 1. Eq. (15) in Proposition 1 exhibits a similar structure to the regret of the

SW-UCB algorithm as stated in Theorem 3, and this immediately indicates a clear trade-off in the

design of the block length H :

• On one hand, H should be small to control the regret incurred by the EXP3 algorithm in

identifying w†, i.e., the third term in eq. (15).

• On the others, H should also be large enough to allow w† to get close to w∗ = b(dT)2/3B
−2/3
T c

so that the sum of the first two terms in eq. (15) is minimized.

A more careful inspection also reveals the tension in the design of J. Obviously, we hope that |J |
is small to minimize the third term in eq. (15), but we also wish J to be dense enough so that

it forms a cover to the set [H]. Otherwise, even if H is large enough that w† can approach w∗,

approximating w∗ with any element in J can cause a major loss.

These observations suggest the following choice of J.

J =
{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
(17)

for some positive integer ∆, and since the choice of H should not depend on BT , we can set H =

bdεTαc with some α∈ [0,1] and ε > 0 to be determined. We then distinguish two cases depending on

whether w∗ is smaller than H or not (or alternatively, whether BT is larger than d(2−3ε)/2T (2−3α)/2

or not).

17

Case 1: w∗ ≤H or BT ≥ d(2−3ε)/2T (2−3α)/2. Under this situation, w† can automatically adapt to

the nearly optimal window size clipJ (w∗) , where clipJ(x) finds the largest element in J that does

not exceed x. Notice that |J |= ∆ + 1, the dynamic regret of the BOB algorithm then becomes

RT (BOB algorithm) =Õ

(
w†BT +

dT√
w†

+
√
H|J |T

)
=Õ

(
w∗H

1
∆BT +

dT√
w∗H−1/∆

+
√
dεTα+1∆

)
=Õ

(
d

2
3 (BT + 1)

1
3 T

2
3H

1
∆ + d

ε
2T

α+1
2 ∆

1
2

)
. (18)

Case 2: w∗ >H or BT < d(2−3ε)/2T (2−3α)/2. Under this situation, w† equals to H, which is the

window size closest to w∗, the regret of the BOB algorithm then becomes

RT (BOB algorithm) =Õ

(
w†BT +

dT√
w†

+
√
H|J |T

)
=Õ

(
HBT +

dT√
H

+
√
H|J |T

)
=Õ

(
dε (BT + 1)Tα + d1− ε2T

2−α
2 + +d

ε
2T

α+1
2 ∆

1
2

)
=Õ

(
d1− ε2T

2−α
2 + d

ε
2T

α+1
2 ∆

1
2

)
, (19)

where we have make use of the fact that BT <d
(2−3ε)/2T (2−3α)/2 in the last step.

Now both eq. (18) and eq. (19) suggests that we should set ∆ = dlnHe, and eq. (19) further

reveals that we should take α= 1/2 and ε= 1. These then lead to the choice of parameters presented

in eq. (11), i.e., H =
⌊
dT

1
2

⌋
,∆ = dlnHe, J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
. Here we have to emphasize that

w†, α, and ε are used only in the analysis, while the only parameters that we need to decide are

H,∆, J, and Q, which clearly do not depend on BT .

7.4. Further Remarks Regarding the BOB algorithm

Remark 4 (Removing Assumption 1). To remove Assumption 1, one can apply a restart-

ing strategy (Besbes et al. 2018) together with an algorithm for adversarial linear bandit, e.g.,

Algorithm 15 of Lattimore and Szepesvári (2018). When BT is known and Dt’s are fixed, by an

argument similar to Theorem 2 of Besbes et al. (2018), one can show that this restarting strategy

can achieve the minimax-optimal dynamic regret bound Õ(d2/3B
1/3
T T 2/3); when BT is unknown, we

can apply the BOB algorithm to adaptively tune the restarting rate to achieve the dynamic regret

bound Õ(d2/3B
1/3
T T 2/3 + d1/2T 3/4).

Remark 5 (Algorithm’s Optimality). Compared with the lower bound of Theorem 1, the

dynamic regret bound presented in Theorem 4 is optimal when BT ≥ d−1/2T 1/4; while it also leaves

a small O(T 1/12) gap in the worst case i.e., when BT = Θ(1). This is because for the BOB algorithm,

the smaller the amount of non-stationarity (as quantified in the left hand side of (1)), the harder it

18

is for the EXP3 algorithm to detect the amount of non-stationarity, resulting in a worse dynamic

regret bound. Indeed, the worst possible case for our analysis is when BT = dT−1/2 according to

Theorem 1.

Remark 6 (Failure of Naive Learning of BT). Theorem 3 shows that running the

SW-UCB algorithm for T with window size w∗ =
⌊
(dT)2/3B

−2/3
T

⌋
leads to an optimal dynamic regret.

However, the choice of the window size w∗ requires the crucial knowledge of BT , which is not

available to the DM. A natural attempt would be to “learn” the unknown BT in order to properly

tune the window size w. In a more restrictive setting in which the differences between consecutive

θt’s follow some underlying stochastic process, one possible approach is to apply a suitable machine

learning technique to learn the underlying stochastic process and tune the parameter w accordingly.

However, under the general setting of drifting environments (1), the differences between consec-

utive θt’s need not follow any pattern, which challenges the use of statistical machine learning

algorithms for identifying the patterns on the underlying changes.

Remark 7 (Restarting Structure of the BOB algorithm). The block structure and

restarting the SW-UCB algorithm with a single window size for each block are essential for the cor-

rectness of the BOB algorithm. Otherwise, suppose the DM utilizes the EXP3 algorithm to select

the window size wt for each round t, and implements the SW-UCB algorithm with the selected win-

dow size without ever restarting it. Instead of eq. (60), the regret of the BOB algorithm is then

decomposed as

T∑
t=1

(
Reward of SW-UCB

({
w†
}t
τ=1

)
in round t−Reward of SW-UCB

(
{wτ}tτ=1

)
in round t

)
+

T∑
t=1

(
Optimal reward in round t−Reward of SW-UCB

({
w†
}t
τ=1

)
in round t

)
(20)

Here, with some abuse of notations, SW-UCB({w†}tτ=1) (respectively (SW-UCB({wτ}tτ=1)) refers to in

round t, the DM runs the SW-UCB algorithm with window size w† (respectively wt) and historical

data, e.g., (action, reward) pairs, generated by running the SW-UCB algorithm with window size w†

(respectively wτ) for rounds τ = 1, . . . , t−1. Same as before, the second term of eq. (20) can be upper

bounded as a result of Theorem 3. It is also tempting to apply results from the EXP3 algorithm

to upper bound the first term. Unfortunately, this is incorrect as it is required by the adversarial

bandits protocol (Auer et al. 2002a) that the DM and its competitor should receive the same

reward if they select the same action, i.e., the reward of SW-UCB
({
w†
}t−1

τ=1
,wt =w

)
in round t and

the reward of SW-UCB
(
{wτ}t−1

τ=1 ,wt =w†
)

in round t should be the same for every w. Nevertheless,

this is violated as running the SW-UCB algorithm with different window sizes for previous rounds

can generate different (action,reward) pairs, and this results in possibly different estimated θ̂t’s

19

for the two SW-UCB algorithms even if both of them use the same window size in round t. Hence,

the selected actions and the corresponding reward by these two instances might also be different.

By the careful design of blocks as well as the restarting scheme, the BOB algorithm decouples the

SW-UCB algorithm for a block from previous blocks, and thus fixes the above mentioned problem,

i.e., the regret of the BOB algorithm is decomposed as eq. (60).

Remark 8 (Applications). The Bandit-over-Bandit framework can go beyond the problem

of non-stationary bandit optimization. In a high level, it provides us a viable approach to automat-

ically optimize the performances of data-driven sequential decision-making algorithms. Although

not always optimal, it can be applied to bandit model selection (Foster et al. 2019) as well as online

meta-learning (Bastani et al. 2019), in which the DM is trying to optimize the performances of her

algorithms by selecting a correct model class or a set of proper parameters. Both of these are of

great importance in the operations of data-driven decision-making algorithms.

8. Extensions to Other Bandit Models

In this section, we demonstrate the generality of our established results. As illustrative examples,

we apply our technique to several bandit settings, including multi-armed bandits (Auer et al.

2002b), the generalized linear bandits (Filippi et al. 2010, Li et al. 2017), and the combinatorial

semi-bandits (Gai et al. 2012, Kveton et al. 2015). A preview of the results is shown in Table 2.

Note that for generalized linear bandits, we need to impose Assumption 1. On the other hand,

for multi-armed bandits, this assumption is always valid while for combinatorial semi-bandits, this

assumption is not required.

Known BT Unknown BT

d-armed bandit Õ
(
d1/3B

1/3
T T 2/3

)
Õ
(
d1/3B

1/3
T T 2/3 + d1/4T 3/4

)
Generalized linear bandit Õ

(
d2/3B

1/3
T T 2/3

)
Õ
(
d2/3B

1/3
T T 2/3 + d1/2T 3/4

)
Combinatorial semi-bandit Õ

(
d1/3m2/3B

1/3
T T 2/3

)
Õ
(
d1/3m2/3B

1/3
T T 2/3 + d1/4m3/4T 3/4

)
Table 2 Dynamic regret bounds of the SW-UCB algorithm and the BOB algorithm for different settings. Here m is

an upper bound for the 1-norm of all the actions in the combinatorial semi-bandit problem.

8.1. An Algorithmic Template

The SW-UCB algorithm and the BOB algorithm developed in the previous sections can be viewed as

an algorithmic template that allows us to extend the results from linear bandits to other bandit

settings. Given a bandit setting A, we leverage the forgetting principle (similar to Section 5), and

first modify the reward estimator used in the stationary setting to a sliding-window estimator. We

then incorporate it into the UCB algorithm to arrive at the corresponding SW-UCB algorithm for

20

the drifting environments. When the variation budget is known, we could optimally tune the

window size to enjoy an optimal dynamic regret bound. To achieve low dynamic regret when the

variation budget is unknown, we can proceed by plugging the SW-UCB algorithm for A into the

BOB algorithm, i.e., line 6 of Algorithm 2, and custom-tailor the parameters (as those listed in eq.

(11)) to accommodate the need of A.

We note that the power of this algorithmic template is indeed entailed by a salient property, i.e.,

the dynamic regret of the SW-UCB algorithm can be decomposed as “dynamic regret of drift” +

“dynamic regret of uncertainty” (or eq. (10)), that actually holds for a variety of bandit learning

models in addition to linear models. In what follows, we shall derive the SW-UCB algorithm as well

as the parameters required by the BOB algorithm, i.e., similar to those defined in eq. (11), for each

of the above mentioned settings.

8.2. d-Armed Bandits

The d-armed bandit problem in drifting environments was first studied by (Besbes et al. 2015),

who proposed Rexp3, an innovative and interesting variant of the EXP3 algorithm (2003Auer

et al. 2003). When the underlying variation budget is known, their algorithm achieves the optimal

dynamic regret bound. In this subsection, we provide an alternative derivation of the dynamic

regret bound by our framework.

In the d-armed bandits setting, every action set Dt is comprised of d actions e1, . . . , ed. The ith

action ei has coordinate i equals to 1 and all other coordinates equal to 0. Therefore, the reward

of choosing action Xt = eIt in round t is Yt = 〈Xt, θt〉 + ηt = θt(It) + ηt, where θt(It) is the Ith
t

coordinate of θt. We again assume |〈x, θt〉| ∈ [−1,1] for all x ∈Dt and all t ∈ [T]. Different than

the linear bandit setting, we follow (Besbes et al. 2015, 2018) to define the variation budget with

the infinity norm, i.e.,
∑T−1

t=1 ‖θt+1− θt‖∞ ≤ BT . For a window size w, we also define Nt−1(i) as

the number of times that action i is chosen within rounds (t−w), . . . , (t− 1), i.e., for all i ∈ [d],

Nt−1(i) =
∑t−1

s=1∧(t−w) 1[Xt = ei]. Here 1[·] is the indicator function. Similar to the procedure in

Section 5, we set the regularization parameter λ= 0, and compute the sliding window least squares

estimate θ̂t for θt in each round, i.e.,

θ̂t = V ∗t−1

 t−1∑
s=1∨(t−w)

XsYs

 , (21)

where V ∗t−1 is Moore-Penrose pseudo-inverse of Vt−1. We can also derive the error bound for the

latent expected reward of every action x∈Dt in any round t.

Theorem 5. For any t ∈ [T] and any i ∈ [d], we have with probability at least 1 − 1/T,∣∣∣e>i (θ̂t− θt)
∣∣∣≤∑t−1

s=1∨(t−w) ‖θs− θs+1‖∞+R
√

2 ln (2dT 2)‖ei‖V ∗t−1
. holds for all x∈Dt.

21

The complete proof is provided in Section G of the appendix. We can now follow the same principle

in Section 6 by choosing in each round the action Xt with the highest UCB, i.e.,

Xt =arg max
x∈Dt

{
〈x, θ̂t〉+R

√
2 ln (2dT 2)‖x‖V ∗t−1

}
, (22)

and arrive at the following regret upper bound for the SW-UCB algorithm.

Theorem 6. For the d-armed bandit setting, the dynamic regret of the SW-UCB algorithm is

upper bounded as RT (SW-UCB algorithm) = Õ
(
wBT +

√
dT/
√
w
)
. When BT (> 0) is

known, by taking w = Θ
(
d1/3T 2/3B

−2/3
T

)
, the dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm) = Õ
(
d1/3B

1/3
T T 2/3

)
. When BT is unknown, by taking w = Θ

(
d1/3T 2/3

)
,

the dynamic regret of the SW-UCB algorithm is RT (SW-UCB algorithm) = Õ
(
d1/3BTT

2/3
)
.

Proof Sketch. The proof of this theorem is very similar to that of Theorem 3, and is thus

omitted. The key difference is that β (defined in eq. (3) for the linear bandit setting) is now set to

R
√

2 ln (2dT 2), and this saves the extra
√
d factor presented in eq. (56). Hence the dynamic regret

bound can be obtained accordingly. �

Comparing the results obtained in Theorem 6 to the lower bound presented in (Besbes et al.

2015), we can easily see that the dynamic regret bound is optimal when BT is known. When BT

is unknown, we can implement the BOB algorithm with the following parameters:

H =
⌊
(dT)

1
2

⌋
,∆ = dlnHe, J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q= 2H + 4R

√
H ln(T/

√
H). (23)

The regret of the BOB algorithm for the MAB setting is characterized as follows.

Theorem 7. The dynamic regret of the BOB algorithm for the d-armed bandit setting is

RT (BOB algorithm) = Õ
(
d1/3B

1/3
T T 2/3 + d1/4T 3/4

)
.

The proof of the theorem is very similar to Theorem 4’s, and it is thus omitted.

8.3. Generalized Linear Bandits

For the generalized linear bandits model, we adopt the setup in (Filippi et al. 2010, Li et al. 2017):

it is essentially the same as the linear bandit setting except that the decision set is time invariant,

i.e., Dt =D for all t∈ [T], and the reward of choosing action Xt ∈D is Yt = µ (〈Xt, θt〉) + ηt.

Let µ̇(·) and µ̈(·) denote the first derivative and second derivative of µ(·), respectively, we follow

(Filippi et al. 2010) to make the following assumption.

Assumption 2. i) There exists a set of d actions a1, . . . , ad ∈D such that the minimal eigenvalue

of
∑d

i=1 aia
>
i is λ0 (> 0). ii) The link function µ(·) : R→ R is strictly increasing, continuously

differentiable, Lipschitz with constant kµ, and we define cµ = infx∈D,θ∈Rd:‖θ‖≤S µ̇ (〈x, θ〉) . iii) There

exists Ymax > 0 such that for any t∈ [T], Yt ∈ [0, Ymax] .

22

Similar to the procedure in Section 5, we compute the maximum quasi-likelihood estimate θ̂t for

θt in each round t∈ [T] by solving the equation

t−1∑
s=1∨(t−w)

(
Ys−µ

(〈
Xs, θ̂t

〉))
Xs = 0. (24)

Defining β = 2kµYmax

√
2d ln(w) ln(2dT 2) (3 + 2 ln (1 + 2L2/λ0))/cµ, we can also derive the deviation

inequality type bound for the latent expected reward of every action x∈Dt in any round t. Here,

as pointed out in Faury et al. (2021), we need to assume that ‖θ̂t‖ ≤ S holds for every t ∈ [T].

Otherwise, we need to perform a projection step similar to Filippi et al. (2010), Faury et al. (2021).

Theorem 8. For any t∈ [T], we have with probability at least 1− 1/T,
∣∣∣µ(x>θ̂t)−µ (x>θt)

∣∣∣≤
k2
µL

cµ

∑t−1

s=1∨(t−w) ‖θs− θs+1‖2 +β ‖x‖V−1
t−1

holds for all x∈Dt.

Proof Sketch. The proof is a consequence of Proposition 1 of (Filippi et al. 2010) and Theorem

2. Please refer to Section H of the appendix for the complete proof. �

We can now follow the same principle in Section 6 to design the SW-UCB algorithm. Note that in

order for Vt−1 to be invertible for all t, our algorithm should select the actions a1, . . . , ad every w

rounds for some window size w. For each of the remaining round t, it chooses the action Xt with

the highest UCB, i.e.,

Xt =arg max
x∈Dt

{
〈x, θ̂t〉+β ‖x‖V ∗t−1

}
, (25)

and arrive at the following regret upper bound.

Theorem 9. For the drifting generalized linear bandit setting, the dynamic regret of the

SW-UCB algorithm is upper bounded as RT (SW-UCB algorithm) = Õ (wBT + dT/
√
w) . When BT (>

0) is known, by taking w = Θ
(

(dT)2/3B
−2/3
T

)
, the dynamic regret of the SW-UCB algorithm is

RT (SW-UCB algorithm) = Õ
(
d2/3B

1/3
T T 2/3

)
. When BT is unknown, by taking w= Θ

(
(dT)2/3

)
, the

dynamic regret of the SW-UCB algorithm is RT (SW-UCB algorithm) = Õ
(
d2/3BTT

2/3
)
.

Proof Sketch. The proof of this theorem is similar to that of Theorem 3, and is thus omitted.

The only difference is that we need to include the regret contributed by selecting actions a1, . . . , ad

every w rounds. But these sums to Õ (dT/w) , which is dominated by the term Õ (dT/
√
w) . Hence

the dynamic regret bounds can be obtained similarly as the linear bandit setting. �

We can now implement the BOB algorithm with the same set of parameters as eq. (11), except that

Q is set to H ·Ymax, i.e.,

H =
⌊
(dT)

1
2

⌋
,∆ = dlnHe, J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q= 2H ·Ymax. (26)

This is because the total rewards of each block is deterministically bounded by [−H ·Ymax,H ·Ymax].

The dynamic regret bound when BT is unknown thus follows.

23

Theorem 10. The dynamic regret bound of the BOB algorithm for the drifting generalized linear

bandit setting is RT (BOB algorithm) = Õ
(
d2/3B

1/3
T T 2/3 + d1/2T 3/4

)
.

The proof of the theorem is similar to Theorem 4’s, and it is thus omitted.

8.4. Combinatorial Semi-Bandits

Finally, we consider the drifting combinatorial semi-bandit problem. For ease of presentation, we

use X(i) to denote the ith coordinate of a vector X. Following the setup in Kveton et al. (Kveton

et al. 2015), an instance of combinatorial semi-bandit is represented by the tuple (E,E ,{Pt}Tt=1),

where the ground set E consist of d items, and E is a family of indicator vectors of subsets of E.

Each Pt is a latent distribution on the reward vector Wt = (Wt(1), . . .Wt(d)) on each and every item

i∈E in round t∈ [T]. The DM only knows that Wt(i) belongs to [0,1] for each i∈ [d] and t∈ [T],

but she does not know θt(i) = E[Wt(i)] for any i∈ [d] and t∈ [T]. We can thus know from Lemma

1.8 of Rigollet and Hütter (Rigollet and Hütter 2018) that Wt(i)− θt(i) is R= 1/2 sub-Gaussian

for all t∈ [T] and i∈ [d]. The sequence {Pt}Tt=1 are generated by an oblivious adversary before the

online process begins.

In each round t, a reward vector Wt is sampled according to the latent distribution Pt. Then, the

DM pulls an action Xt ∈ Et, and earns a reward Yt = 〈Xt,Wt〉=
∑

i∈EXt(i)Wt(i) that corresponds

to the items indicated by Xt. Under the semi-bandit feedback model, the DM observes the realized

rewards {Wt(i) :Xt(i) = 1} for the indicated items, but she does not observeWt(i) forXt(i) = 0. The

DM desires to minimize the dynamic regret E
[∑T

t=1 maxx∗t∈E〈x
∗
t −Xt, θt〉

]
. Similar to the d-armed

bandit setting, we define the variation budget BT with the infinity norm:
∑T−1

t=1 ‖θt+1−θt‖∞ ≤BT .

For the subsequent discussion, we denote m= maxX∈E
∑

i∈EX(i) as the maximum arm size of the

underlying instance.

We first show a lower bound for this setting.

Theorem 11. Let (d,m,T,BT) be a tuple that satisfies inequalities d≥ 2m≥ 2, T ≥ 1, m/d≤

BT ≤ Tm/d. For any non-anticipatory policy, there exists a drifting combinatorial bandit instance

(E,E ,{Pt}Tt=1), with d items, maximum arm size m, and variation budget BT such that the dynamic

regret in T rounds is Ω(d1/3m2/3B
1/3
T T 2/3).

The complete proof is presented in Section I of the appendix. For a window size w, we define

Nt−1(i) as the number of times that coordinate i of the chosen action is set to 1 within rounds

(t−w), . . . , (t− 1), i.e., for all i ∈ [d], Nt−1(i) =
∑t−1

s=1∨(t−w) 1[Xs(i) = 1]. Here 1[·] is the indicator

function. In each round t, the DM also maintains the sliding-window estimates for each coordinate

i∈ [d] of θt:

θ̂t(i) =

∑t−1

s=1∨(t−w)Ws(i) ·1[Xs(i) = 1]

max{Ni,t−1,1}
.

24

Thanks to the semi-bandit feedback, the outcome Ws(i) is observed when Xs(i) = 1, so θ̂t,i can

be constructed from the observations in the previous w rounds. We can thus reuse the Theorem 5

derived for the d-armed bandit case:

Theorem 12. For all t ∈ [T] and all i ∈ [d], we have with probability at least 1 − 1/T,∣∣∣θ̂t(i)− θt(i)∣∣∣≤∑t−1

s=1∨(t−w) ‖θs− θs+1‖∞+ 4R
√

ln(2dT2)

Nt−1(i)+1
, holds for all x∈Dt.

The complete proof is presented in Section J. Following the rationale of UCB algorithm for stochas-

tic combinatorial semi-bandit (Kveton et al. 2015) as well as that of Section 6, we consider the

SW-UCB algorithm which selects a combinatorial action Xt with highest UCB in each round t, i.e.,

max
X∈Et

{∑
i∈E

X(i) ·

[
θ̂t,i + 4R

√
ln(2dT 2)

Nt−1(i) + 1

]}
.

Denoting m := maxt∈[T],X∈Et ‖X‖1, we can now arrive at the following regret upper bound.

Theorem 13. For any window size w ≥ d/m, the dynamic regret of the SW-UCB algorithm for

the drifting combinatorial semi-bandit setting is upper bounded as RT (SW-UCB algorithm) =

Õ
(
wmBT +

√
dmT/

√
w
)
. When BT <mT/d, is known, by taking w = Θ

(
d1/3m−1/3T 2/3B

−2/3
T

)
,

the dynamic regret of the SW-UCB algorithm is RT (SW-UCB algorithm) = Õ
(
d1/3m2/3B

1/3
T T 2/3

)
.

When BT is unknown, by taking w = Θ
(
d1/3m−1/3T 2/3

)
, the dynamic regret of the

SW-UCB algorithm is RT (SW-UCB algorithm) = Õ
(
d1/3m2/3BTT

2/3
)
.

The complete proof is presented in Section K of the appendix. When BT is unknown, we can

implement the BOB algorithm with the following parameters:

H =
⌊
(dT)

1
2 m−

1
2

⌋
,∆ = dlnHe, J =

{
H0,

⌊
H

1
∆

⌋
, . . . ,H

}
,Q= 2H ·m (27)

This is because the total rewards of each block is deterministically bounded by [−H ·m,H ·m].

The dynamic regret bound of the BOB algorithm for the combinatorial semi-bandit setting is char-

acterized as follows.

Theorem 14. The dynamic regret of the BOB algorithm for the drifting combinatorial semi-

bandit setting is RT (BOB algorithm) = Õ
(
d1/3m2/3B

1/3
T T 2/3 + d1/4m3/4T 3/4

)
.

The complete proof is presented in Section L.

9. Numerical Experiments

As a complement to our theoretical results, we conduct numerical experiments on synthetic datasets

and the CPRM-12-001: On-Line Auto Lending dataset provided by the Center for Pricing and

Revenue Management at Columbia University to compare the dynamic regret performances of the

SW-UCB algorithm and the BOB algorithm with several existing non-stationary bandit algorithms.

25

9.1. Experiments on Synthetic Dataset

For synthetic dataset, in Section 9.1.1, we first evaluate the growth of dynamic regret when T

increases. We follow the setup of (Besbes et al. 2018) for fair comparisons. Then, in Section 9.1.2,

we fix T = 105, and evaluate the behavior of the algorithms across rounds.

9.1.1. The Trend of Dynamic Regret with Varying T We consider a 2-armed bandit set-

ting, and we vary T from 3×104 to 2.4×105 with a step size of 3×104. We set θt to be the following

sinusoidal process, i.e., ∀t ∈ [T], θt =
(
0.5 + 0.3 sin (5BTπt/T) ,0.5 + 0.3 sin (π+ 5BTπt/T)

)>
. The

total variation of the θt’s across the whole time horizon is upper bounded by
√

2BT . We also use

i.i.d. normal distribution with R= 0.1 for the noise terms.

Known Constant Variation Budget. We start from the known constant variation budget case,

i.e., BT = 1, to measure the regret growth of the two optimal algorithms, i.e., the optimally tuned

(i.e., knowing BT) SW-UCB algorithm and the modified EXP3.S algorithm (Besbes et al. 2015), with

respect to the total number of rounds. The log-log plot is shown in Fig. 2(a). From the plot, we

can see that the regret of SW-UCB algorithm is only about 20% of the regret of EXP3.S algorithm.

Unknown Time-Dependent Variation Budget. We then turn to the more realistic time-dependent

variation budget case, i.e., BT = T 1/3. As the modified EXP3.S algorithm does not apply to

this setting, we compare the performances of the obliviously tuned (i.e., not knowing BT)

SW-UCB algorithm and the BOB algorithm. The log-log plot is shown in Fig. 2(b). From the results,

we verify that the slope of the regret growth of both algorithms roughly match the established

results, and the regret of BOB algorithm’s is much smaller than that of the SW-UCB algorithm’s.

10
4

10
5

Number of rounds

10
2

10
3

D
y

n
am

ic
 r

eg
re

t

SW-UCB-opt

Modified EXP3.S

(a) Log-log plot for known BT = O(1).

10
4

10
5

Number of rounds

10
3

10
4

D
y

n
am

ic
 r

eg
re

t

SW-UCB-obl

BOB

(b) Log-log plot for unknown BT = O(T 1/3).

Figure 2 Results for gradually change environment with 2 arms

26

9.1.2. A Further Study on the Algorithms’ Behavior We provide additional numerical

evaluation, by considering piecewise linear instances, where the reward vector θt ∈Rd is a randomly

generated piecewise linear function of t. To generate such an instance, we first set T = 105, and

then we randomly sample 30 time points in τ1, τ2, . . . , τ30 ∈ {2, . . . , T − 1} without replacement.

We further denote τ0 = 1, τ31 = T . After that, we randomly sample 32 random unit length vectors

v0, . . . , v31 ∈ Rd. Finally, for each t ∈ [T], we define θt as the linear interpolation between vs, vs+1,

where τs ≤ tτs+1. More precisely, we have θt = ((τs+1− t)vs+(t− τs)vs+1)/(τs+1− τs). Note that the

random reward in each period can be negative.

In what follows, we first evaluate the performance of the algorithms by (Besbes et al. 2018)

as well as our algorithms in a 2-armed bandit piece-wise linear instance. Then, we evaluate the

performance of our algorithms in a linear bandit piece-wise linear instance, where d= 5, and each

Dt is a random subset of 40 unit length vectors in Rd. We do not evaluate the algorithms by (Besbes

et al. 2018) in the second instance, since the algorithms by (Besbes et al. 2018) are only designed

for the non-stationary K-armed bandit setting. For each instance, each algorithm is evaluated 50

times.

Two armed bandits. We first evaluate the performance of the modified EXP.3S in (Besbes et al.

2018) as well as the performance of the SW-UCB algorithm, BOB algorithmin a randomly generated 2-

armed bandit instance. Fig 3(a) illustrates the average cumulative reward earned by each algorithm

in the 50 trials, and Fig 3(b) depicts the average dynamic regret incurred by each algorithm

in the 50 trials. In Figs 3(a), 3(b), shorthand SW-UCB-opt is the SW-UCB algorithm, where BT

is known and w = wopt is set to further optimized the log factors of the dynamic regret bound

(see Appendix M for the expression of wopt). Shorthand EXP3.S stands for the modified EXP3.S

algorithm by (Besbes et al. 2018), where BT is known and the window size is set to optimized the

dynamic regret bound. Shorthand BOB stands for the BOB algorithm. Shorthand SW-UCB-obl is

the SW-UCB algorithm, where BT is not known, and w=wobl is obliviously set (see Appendix M for

the expression of wobl). Finally, shorthand UCB stands for the UCB algorithm by (Abbasi-Yadkori

et al. 2011), which is applicable to the stationary K-armed bandit problem. Note that BT is known

to SW-UCB-opt, EXP3.S, but not to BOB, SW-UCB-obl, UCB.

Overall, we observe that SW-UCB-opt is the better performing algorithm when BT is known,

and BOB is the best performing when BT is not known. It is evident from Fig 3(a) that SW-

UCB-opt, EXP3.S and BOB are able to adapt to the change in the reward vector θt across time

t. We remark that BOB, which does not know BT , achieves a comparable amount of cumulative

reward to EXP3.S, which does know BT , across time. It is also interesting to note that UCB, which

is designed for the stationary setting, fails to converge (or even to achieve a non-negative total

reward) in the long run, signifying the need of an adaptive UCB algorithm in a non-stationary

setting.

27

0 20000 40000 60000 80000 100000
Number of rounds

−10000

0

10000

20000

30000

C
um

ul
at

iv
e

re
w

ar
d

optimum
SW-UCB-opt
EXP.3S
BOB
SW-UCB-obl
UCB

(a) Cumulative reward

104 105

Number of rounds

103

104

D
yn

am
ic

 re
gr

et

SW-UCB-opt
EXP.3S
BOB
SW-UCB-obl
UCB

(b) Dynamic regret

Figure 3 Results for piecewise linear environment with 2 arms

Linear bandits. Next, we move to the linear bandit case, and we consider the performance of SW-

UCB-opt, SW-UCB-obl, BOB and UCB, as illustrated in Figs 4(a), 4(b). While the performance

of the algorithms ranks similarly to the previous 2-armed bandit case, we witness that UCB, which

is designed for the stationary setting, has a much better performance in the current case than the

2-armed case. We surmise that the relatively larger size of the action space Dt here allows UCB to

choose an action that performs well even when the reward vector is changing.

0 20000 40000 60000 80000 100000
Number of rounds

0

20000

40000

60000

C
um

ul
at

iv
e

re
w

ar
d

optimum
SW-UCB-opt
BOB
SW-UCB-obl
UCB

(a) Cumulative reward

104 105

Number of rounds

104

D
yn

am
ic

 re
gr

et

SW-UCB-opt
BOB
SW-UCB-obl
UCB

(b) Dynamic Regret

Figure 4 Results for piecewise linear environment with linear action set.

9.2. Experiments on Online Auto-Lending Dataset

We now conduct experiments on the on-line auto lending dataset, which was first studied by

(Phillips et al. 2015), and subsequently used to evaluate dynamic pricing algorithms by (Ban and

Keskin 2018). The dataset records all auto loan applications received by a major online lender in

the United States from July 2002 through November 2004. Note that this was the time amid the

28

severe acute respiratory syndrome (SARS) epidemic period (World Health Organization (WHO)

2003), and one could thus expect high volatility in demand similar to the COVID-19 pandemic

period. Each datum consists of the borrower’s feature (e.g., date of an application, the term and

amount of loan requested, and some personal information), the lender’s decision (e.g., the monthly

payment for the borrower), and whether or not this offer is accepted by the borrower. Please refer to

Columbia University Center for Pricing and Revenue Management (Columbia 2015) for a detailed

description of the dataset.

Similar to Ban and Keskin (2018), we use the first T = 5 × 104 arrivals that span 276 days

for this experiment. We adopt the commonly used (Li et al. 2010, Besbes and Zeevi 2015) linear

regression model to interpolate the response of each customer: for the tth customer with feature xt,

if price pt is offered, she accepts the offer with “probability” 〈θt, [xt;ptxt]〉. Although the customers’

responses are binary, i.e., whether or not she accepts the loan, (Besbes and Zeevi 2015) theoretically

justified that the revenue loss caused by using this misspecified model is negligible. For the changing

environment, we consider a piecewise stationary environment. In particular, we assume that the

θt’s remain stationary in a single day period, but can change across days. We also use the feature

selection results in (Ban and Keskin 2018) to pick the FICO score, the term of contract, the loan

amount approved, prime rate, the type of car, and the competitor’s rate as the feature vector for

each customer.

Firstly, we recover the latent parameters θt’s from the dataset with linear regression method.

Since the lender’s decisions, i.e., the price for each customer, is not presented in the dataset, we

impute the price of a loan as the net present value of future payments (a function of the monthly

payment, customer rate, and term approved, please refer to (Columbia 2015, Ban and Keskin 2018)

for more details). The resulted BT is 1.9× 102 (≈ T 0.48) , which means we are in the moderately

non-stationary environment. Since the maximum of the imputed prices is ≈ 400, the range of price

in our experiment is thus set to [0,500] with a step size of 10.

We then run the experiment with the recovered parameters, and measure the dynamic regrets of

the SW-UCB algorithm (known BT and unknown BT), the BOB algorithm, the UCB algorithm, the

Moving Window (MW) algorithm (Keskin and Zeevi 2016) without knowing BT , as well as the com-

pany’s original decisions. Here, we note that the MW algorithm does not permit customer features,

and hence its dynamic regret should scale linearly in T . The results are shown in Fig. 5. The plot

shows that the SW-UCB algorithm with known BT (SW-UCB-opt) and the BOB algorithm have the

lowest dynamic regrets. Besides, the dynamic regret of the parameter-free BOB algorithm is ≥ 24%

less than those of the obliviously tuned SW-UCB algorithm (SW-UCB-obl) and the UCB algorithm.

It also saves ≥ 32% dynamic regret when compared to the MW algorithm and the company’s orig-

inal decisions. The results clearly indicate that the SW-UCB algorithm and the BOB algorithm can

29

0 1 2 3 4 5

Number of rounds 10
4

0

2

4

6

8

D
y

n
am

ic
 r

eg
re

t

10
6

BOB

SW-UCB-opt

SW-UCB-obl

UCB

MW-obl

Company

Figure 5 Results for the on-line auto lending dataset.

deal with the drift while the UCB algorithm fails to keep track of the dynamic environment. More

importantly, the results validate our theoretical findings regarding the parameter-free adaptation

of the BOB algorithm.

10. Conclusion

In this paper, we develop general data-driven decision-making algorithms with state-of-the-art

dynamic regret bounds in various non-stationary bandit settings. We characterize a minimax

dynamic regret lower bound, and present a tuned Sliding Window Upper-Confidence-Bound algo-

rithm with matching dynamic regret bounds. We further propose the parameter-free Bandit-over-

Bandit framework that automatically adapts to the unknown non-stationarity. Finally, we conduct

extensive numerical experiments on both synthetic and real-world datasets to validate our theo-

retical results.

Acknowledgments

The authors thank the department editor J.George Shanthikumar, the anonymous associate editor, and three

anonymous referees whose comments improved the manuscript. The previous version of the current paper

contains an error in the proof of Theorem 2. Fixing this requires Assumption 1, which was first introduced

by Faury et al. (2021). The authors would like to express sincere gratitude to Omar Besbes, Xi Chen, Dylan

Foster, Yonatan Gur, Yujia Jin, Akshay Krishnamurthy, Haipeng Luo, Sasha Rakhlin, Vincent Tan, Kuang

Xu, Assaf Zeevi, as well as various seminar attendees for helpful discussions and comments. The authors

also gratefully acknowledge Columbia University Center for Pricing and Revenue Management for providing

us the dataset on auto loans. This research is supported by the Ministry of Education, Singapore, under

its 2019 Academic Research Fund Tier 3 grant call (Award ref: MOE-2019-T3-1-010). The research is also

supported by the MIT Data Science Lab, a lab focused on the development of analytic techniques and tools

for improving decision making in environments that involve uncertainty and require statistical learning.

30

References

Abbasi-Yadkori, Yasin, David Pál, Csaba. Szepesvári. 2011. Improved algorithms for linear stochastic ban-

dits. NIPS .

Abeille, Marc, Alessandro Lazaric. 2017. Linear thompson sampling revisited. Proceedings of International

Conference on Artificial Intelligence and Statistics (AISTATS).

Agarwal, Alekh, Haipeng Luo, Behnam Neyshabur, Robert E Schapire. 2017. Corralling a band of bandit

algorithms. Proceedings of Annual Conference on Learning Theory (COLT).

Agrawal, Shipra, Navin Goyal. 2013. Thompson sampling for contextual bandits with linear payoffs. Pro-

ceedings of the 30th International Conference on Machine Learning (ICML).

Audibert, J.Y., S. Bubeck. 2009. Minimax policies for adversarial and stochastic bandits. Proceedings of

Annual Conference on Learning Theory (COLT).

Auer, P., N. Cesa-Bianchi, Y. Freund, R. Schapire. 2002a. The nonstochastic multiarmed bandit problem.

SIAM Journal on Computing, 2002, Vol. 32, No. 1 : pp. 48–77 .

Auer, Peter. 2002. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine

Learning Research, 3:397–422, 2002..

Auer, Peter, Nicolo Cesa-Bianchi, Paul Fischer. 2002b. Finite-time analysis of the multiarmed bandit prob-

lem. Machine learning, 47, 235–256 .

Auer, Peter, Nicolo Cesa-Bianchi, Yoav Freund, Robert Schapire. 2003. The non-stochastic multi-armed

bandit problem. SIAM Journal on Computing .

Auer, Peter, Pratik Gajane, Ronald Ortner. 2019. Adaptively tracking the best bandit arm with an unknown

number of distribution changes. Proceedings of the Thirty-Second Conference on Learning Theory

(COLT).

Ban, Gah-Yi, N. Bora Keskin. 2018. Personalized dynamic pricing with machine learning. Available at

SSRN: https://ssrn.com/abstract=2972985 or http://dx.doi.org/10.2139/ssrn.2972985 .

Bastani, Hamsa, David Simchi-Levi, Ruihao Zhu. 2019. Meta dynamic pricing: Learning across experiments.

https://arxiv.org/abs/1902.10918 .

Becdach, Camilo, Brandon Brown, Ford Halbardier, Brian Henstorf, Ryan Murphy. 2020.

Rapidly forecasting demand and adapting commercial plans in a pandemic. URL

https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/

rapidly-forecasting-demand-and-adapting-commercial-plans-in-a-pandemic#.

Besbes, Omar, Yonatan Gur, Assaf Zeevi. 2014. Stochastic multi-armed bandit with non-stationary rewards.

Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS).

Besbes, Omar, Yonatan Gur, Assaf Zeevi. 2015. Non-stationary stochastic optimization. Operations Research,

2015, 63 (5), 1227–1244 .

https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/rapidly-forecasting-demand-and-adapting-commercial-plans-in-a-pandemic#
https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/rapidly-forecasting-demand-and-adapting-commercial-plans-in-a-pandemic#

31

Besbes, Omar, Yonatan Gur, Assaf Zeevi. 2018. Optimal exploration-exploitation in a multi-armed-bandit

problem with non-stationary rewards. Forthcomming in Stochastic Systems.

Besbes, Omar, Assaf Zeevi. 2015. On the (surprising) sufficiency of linear models for dynamic pricing with

demand learning. Management Science 61(4):723–739 .

Besson, Lilian, Emilie Kaufmann. 2019. The generalized likelihood ratio test meets klucb: an improved

algorithm for piece-wise non-stationary bandits. https://arxiv.org/abs/1902.01575 .

Bubeck, S., N. Cesa-Bianchi. 2012. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit

Problems. Foundations and Trends in Machine Learning, 2012, Vol. 5, No. 1: pp. 1–122.

Cao, Yang, Zheng Wen, Branislav Kveton, Yao Xie. 2019. Nearly optimal adaptive procedure with change

detection for piecewise-stationary bandit. Proceedings of the 22nd International Conference on Artificial

Intelligence and Statistics (AISTATS).

Cesa-Bianchi, Nicolò, Gábor Lugosi. 2006. Prediction, Learning, and Games. Cambridge University Press.

Chen, Ningyuan, Chun Wang, Longlin Wang. 2020. Learning and optimization with seasonal patterns.

arXiv:2001.09390 .

Chen, Yifang, Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei. 2019. A new algorithm for non-stationary

contextual bandits: Efficient, optimal, and parameter-free. Proceedings of Conference on Learning

Theory (COLT).

Cheung, Wang Chi, David Simchi-Levi, Ruihao Zhu. 2019. Learning to optimize under non-stationarity.

Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS).

Cheung, Wang Chi, David Simchi-Levi, Ruihao Zhu. 2020a. Non-stationary reinforcement learning: The

blessing of (more) optimism. https://arxiv.org/abs/1906.02922 .

Cheung, Wang Chi, David Simchi-Levi, Ruihao Zhu. 2020b. Reinforcement learning for non-stationary

markov decision processes: The blessing of (more) optimism. Proceedings of the 37th International

Conference on Machine Learning (ICML).

Chiang, C., T. Yang, C. Lee, M. Mahdavi, C. Lu, R. Jin, S. Zhu. 2012. Online optimization with gradual

variations. Proceedings of Conference on Learning Theory (COLT).

Chu, Wei, Lihong Li, Lev Reyzin, Robert Schapire. 2011. Contextual bandits with linear payoff functions.

Proceedings of the the 14th International Conference on Artificial Intelligence and Statistics (AIS-

TATS).

Columbia. 2015. Center for pricing and revenue management datasets. URL https://www8.gsb.columbia.

edu/cprm/sites/cprm/files/files/CPRM_AutoLoan_Data%20dictionary%283%29.pdf.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. 2009. Introduction to algorithms.

MIT Press.

Dani, Varsha, Thomas Hayes, Sham Kakade. 2008. Stochastic linear optimization under bandit feedback.

Proceedings of the 21st Conference on Learning Theory (COLT).

https://www8.gsb.columbia.edu/cprm/sites/cprm/files/files/CPRM_AutoLoan_Data%20dictionary%283%29.pdf
https://www8.gsb.columbia.edu/cprm/sites/cprm/files/files/CPRM_AutoLoan_Data%20dictionary%283%29.pdf

32

Faury, Louis, Yoan Russac, Marc Abeille, Clement Calauzenes. 2021. Regret bounds for generalized linear

bandits under parameter drift. https://arxiv.org/abs/2103.05750 .

Filippi, Sarah, Olivier Cappe, Aurelien Garivier, Csaba Szepesvari. 2010. Parametric bandits: The generalized

linear case. Proceedings of Annual Conference on Neural Information Processing (NIPS).

Foster, Dylan J., Akshay Krishnamurthy, Haipeng Luo. 2019. Model selection for contextual bandits. Pro-

ceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS).

Gai, Yi, Bhaskar Krishnamachari, Rahul Jain. 2012. Combinatorial network optimization with unknown vari-

ables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions

on Networking .

Garivier, A., E. Moulines. 2011. On upper-confidence bound policies for switching bandit problems. Pro-

ceedings of International Conferenc on Algorithmic Learning Theory (ALT).

Golrezaei, Negin, Vahideh Manshadi, Jon Schneider, Shreyas Sekar. 2020. Learning product rankings robust

to fake users. ArXiv:2009.05138 [cs.LG] .

Jadbabaie, A., A. Rakhlin, S. Shahrampour, K. Sridharan. 2015. Online optimization : Competing with

dynamic comparators. Proceedings of International Conference on Artificial Intelligence and Statistics

(AISTATS).

Karnin, Z., O. Anava. 2016. Multi-armed bandits: Competing with optimal sequences. Procedding of Annual

Conference on Neural Information Processing Systems (NIPS).

Keskin, N., A. Zeevi. 2016. Chasing demand: Learning and earning in a changing environments. Mathematics

of Operations Research, 2016, 42(2), 277–307 .

Keskin, N. Bora, Assaf Zeevi. 2014. Dynamic pricing with an unknown demand model: Asymptotically

optimal semi-myopic policies. Operations Research 62(5):1142–1167 .

Kveton, Branislav, Zheng Wen, Azin Ashkan, Csaba Szepesvári. 2015. Tight regret bounds for stochastic

combinatorial semi-bandits. AISTATS .

Lattimore, T., C. Szepesvári. 2018. Bandit Algorithms. Cambridge University Press.

Li, Lihong, Wei Chu, John Langford, Robert Schapire. 2010. A contextual-bandit approach to personalized

news article recommendation. Proceedings of International conference on World wide web (WWW).

Li, Lihong, Yu Lu, Dengyong Zhou. 2017. Provably optimal algorithms for generalized linear contextual

bandits. Proceedings of International Conference on Machine Learning (ICML).

Liu, Fang, Joohyun Lee, Ness Shroff. 2018. A change-detection based framework for piecewise-stationary

multi-armed bandit problem. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-

gence (AAAI).

Luo, H., C. Wei, A. Agarwal, J. Langford. 2018. Efficient contextual bandits in non-stationary worlds.

Proceedings of Conference on Learning Theory (COLT).

33

Lykouris, Thodoris, Vahab Mirrokni, Renato Paes Leme. 2018. Stochastic bandits robust to adversarial

corruptions. Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing

(STOC).

Phillips, Robert, A. Serdar Simsek, Garrett van Ryzin. 2015. The effectiveness of field price discretion:

Empirical evidence from auto lending. Management Science 61(8):1741–1759 .

Rigollet, R., J. Hütter. 2018. High Dimensional Statistics. Lecture Notes.

Rusmevichientong, Paat, John N. Tsitsiklis. 2010. Linearly parameterized bandits. Mathematics of Opera-

tions Research 35(2):395–411..

Russo, Daniel, Benjamin Van Roy. 2014. Learning to optimize via posterior sampling. Mathematics of

Operations Research 39(4):1221–1243. https://doi.org/10.1287/moor.2014.0650 .

Wei, Chen-Yu, Yi-Te Hong, Chi-Jen Lu. 2016. Tracking the best expert in non-stationary stochastic envi-

ronments. Proceedings of Annual Conference on Neural Information Processing (NIPS).

Wei, Lai, Vaibhav Srivastava. 2018. On abruptly-changing and slowly-varying multiarmed bandit problems.

Proceedings of Annual American Control Conference (ACC).

World Health Organization (WHO). 2003. Severe acute respiratory syndrome (sars). URL https://www.

who.int/csr/sars/en/.

World Health Organization (WHO). 2020. Coronavirus disease (covid-19) pandemic. URL https://www.

who.int/emergencies/diseases/novel-coronavirus-2019.

Zhao, Peng, Guanghui Wang, Lijun Zhang, Zhi-Hua Zhou. 2019. Bandit convex optimization in non-

stationary environments. https://arxiv.org/abs/1907.12340 .

Zhou, Xiang, Ningyuan Chen, Xuefeng Gao, Yi Xiong. 2020. Regime switching bandits. arXiv:2001.09390 .

https://www.who.int/csr/sars/en/
https://www.who.int/csr/sars/en/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019

34

Appendix. Proofs

A. Proof of Theorem 1

First, let’s review the lower bound of the linear bandit setting, which is related to ours except that the θt’s

do not vary across rounds, and are equal to the same (unknown) θ, i.e., ∀t∈ [T] θt = θ.

Lemma 2 ((Lattimore and Szepesvári 2018)). For any T0 ≥
√
d/2 and let D = {x∈Rd : ‖x‖ ≤ 1} ,

then there exists a θ ∈
{
±
√
d/4T0

}d
, such that the worst case regret of any algorithm for linear bandits with

unknown parameter θ is Ω(d
√
T0).

Going back to the non-stationary environment, suppose nature divides the whole time horizon into dT/He
blocks of equal length H rounds (the last block can possibly have less than H rounds), and each block is a

decoupled linear bandit instance so that the knowledge of previous blocks cannot help the decision within

the current block. Following Lemma 2, we restrict the sequence of θt’s are drawn from the set
{
±
√
d/4H

}d
.

Moreover, θt’s remain fixed within a block, and can vary across different blocks, i.e.,

∀i∈
[⌈

T

H

⌉]
∀t1, t2 ∈ [(i− 1)H + 1, i ·H ∧T] θt1 = θt2 . (28)

We argue that even if the DM knows this additional information, it still incur a regret Ω(d2/3B1/3
T T 2/3). Note

that different blocks are completely decoupled, and information is thus not passed across blocks. Therefore,

the regret of each block is Ω
(
d
√
H
)
, and the total regret is at least(⌈
T

H

⌉
− 1

)
Ω
(
d
√
H
)

= Ω
(
dTH−

1
2

)
. (29)

Intuitively, if H, the number of length of each block, is smaller, the worst case regret lower bound becomes

larger. But too small a block length can result in a violation of the variation budget. So we work on the

total variation of θt’s to see how small can H be. The total variation of the θt’s can be seen as the total

variation across consecutive blocks as θt remains unchanged within a single block. Observe that for any pair

of θ, θ′ ∈
{
±
√
d/4H

}d
, the `2 difference between θ and θ′ is upper bounded as√√√√ d∑

i=1

4d

4H
=

d√
H

(30)

and there are at most bT/Hc changes across the whole time horizon, the total variation is at most

B =
T

H
· d√

H
= dTH−

3
2 . (31)

By definition, we require that B ≤BT , and this indicates that

H ≥ (dT)
2
3B
− 2

3
T . (32)

Taking H =
⌈
(dT)

2
3B
− 2

3
T

⌉
, the worst case regret is

Ω

(
dT
(

(dT)
2
3B
− 2

3
T

)− 1
2

)
= Ω

(
d

2
3B

1
3
T T

2
3

)
. (33)

Note that in order for H ≤ T, we require BT ≥ dT−1/2. Also, to make |〈x, θt〉| ≤ 1 for all t ∈ [T] and x ∈Dt,

we need ‖θt‖ ≤ 1, which means
√
d2/4H ≤ 1 or BT ≤ 8d−2T.

35

B. Proof of Theorem 2

The difference θ̂t− θt has the following expression:

V −1
t−1

 t−1∑
s=1∨(t−w)

XsX
>
s θs +

t−1∑
s=1∨(t−w)

ηsXs

− θt
=V −1

t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt) +V −1

t−1

 t−1∑
s=1∨(t−w)

ηsXs−λθt

 , (34)

The first term on the right hand side of eq. (34) is the estimation inaccuracy due to the non-stationarity;

while the second term is the estimation error due to random noise. We now upper bound the two terms

separately. We upper bound the first term under the Euclidean norm.

Lemma 3. For any t∈ [T], we have∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∥∥∥∥∥∥
2

≤
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 .

Poof. In the proof, we denote B(1) as the unit Euclidean ball, and λmax(M) as the maximum eigenvalue

of a square matrix M . In addition, recall the definition that Vt−1 = λI +
∑t−1

s=1∨(t−w)XsX
>
s We prove the

Lemma as follows:∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s

[
t−1∑
p=s

(θp− θp+1)

]∥∥∥∥∥∥
2

=

∥∥∥∥∥∥V −1
t−1

t−1∑
p=1∨(t−w)

p∑
s=1∨(t−w)

XsX
>
s (θp− θp+1)

∥∥∥∥∥∥
2

(35)

≤
t−1∑

p=1∨(t−w)

∥∥∥∥∥∥V −1
t−1

 p∑
s=1∨(t−w)

XsX
>
s

 (θp− θp+1)

∥∥∥∥∥∥
2

(36)

≤
t−1∑

p=1∨(t−w)

√√√√√λmax

 p∑
s=1∨(t−w)

XsX>s

V −2
t−1

 p∑
s=1∨(t−w)

XsX>s

‖θp− θp+1‖2 (37)

≤
t−1∑

p=1∨(t−w)

‖θp− θp+1‖2 . (38)

Equality (35) is by the observation that both sides of the equation is summing over the termsXsX
>
s (θp−θp+1)

with indexes (s, p) ranging over {(s, p) : 1∨(t−w)≤ s≤ p≤ t−1}. Inequality (36) is by the triangle inequality.

Inequality (37) is by the fact that, for any matrix M ∈ Rd×d with λmax(M) ≥ 0 and any vector y ∈ Rd,

we have ‖My‖2 ≤
√
λmax(M2)‖y‖2. Applying the above claim with M = V −1

t−1

(∑p

s=1∨(t−w)XsX
>
s

)
and

y= θp− θp+1 demonstrates inequality (37).

36

Finally, for inequality (38), we denote the corresponding basis for each Xs as ψi(s), i.e., Xs = zsψi(s) =

zsΨei(s), where ei is the ith standard orthonormal basis. Let A1 =
∑t−1

s=1∨(t−w) ei(s)e
>
i(s) + λI and A2 =∑p

s=1∨(t−w) ei(s)e
>
i(s), it is evident that Vt−1 = ΨA1Ψ> and

∑p

s=1∨(t−w)XsX
>
s = ΨA2Ψ>. Therefore, we have

λmax

 p∑
s=1∨(t−w)

XsX
>
s

V −2
t−1

 p∑
s=1∨(t−w)

XsX
>
s

= λmax

(
ΨA2Ψ>(ΨA1Ψ>)−2ΨA2Ψ>

)
= λmax

(
ΨA2A

−2
1 A2Ψ>

)
= λmax

(
A2A

−2
1 A2

)
≤ 1, (39)

where we have used the fact that both A1 and A2 are diagonal matrix in the last step. Altogether, the

Lemma is proved. �

Applying Theorem 2 of (Abbasi-Yadkori et al. 2011), we have the following upper bound for the second term

in eq. (2).

Lemma 4 ((Abbasi-Yadkori et al. 2011)). For any t∈ [T] and any δ ∈ [0,1], we have∥∥∥∥∥∥
t−1∑

s=1∨(t−w)

ηsXs−λθt

∥∥∥∥∥∥
V−1
t−1

≤R

√
d ln

(
1 +wL2/λ

δ

)
+
√
λS

holds with probability at least 1− δ.

Combining the above two lemmas: fixed any δ ∈ [0,1], we have that for any t∈ [T] and any x∈Dt,

∣∣∣x>(θ̂t− θt)
∣∣∣=
∣∣∣∣∣∣x>

V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

+x>V −1
t−1

 t−1∑
s=1∨(t−w)

ηsXs−λθt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣x>
V −1

t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∣∣∣∣∣∣+
∣∣∣∣∣∣x>V −1

t−1

 t−1∑
s=1∨(t−w)

ηsXs−λθt

∣∣∣∣∣∣ (40)

≤‖x‖2 ·

∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∥∥∥∥∥∥
2

+ ‖x‖
V−1
t−1

∥∥∥∥∥∥
t−1∑

s=1∨(t−w)

ηsXs−λθt

∥∥∥∥∥∥
V−1
t−1

(41)

≤L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 +β ‖x‖V−1
t−1

, (42)

where inequality (40) uses triangle inequality, inequality (41) follows from Cauchy-Schwarz inequality, and

inequality (42) are consequences of Lemmas 3, 4.

C. Proof of Theorem 3

In the proof, we choose λ so that β ≥ 1, for example by choosing λ≥ 1/S2. By virtue of UCB, the regret in

any round t∈ [T] is

〈x∗t −Xt, θt〉 ≤L
t−1∑

s=1∨(t−w)

‖θs− θs+1‖2 + 〈Xt, θ̂t〉+β ‖Xt‖V−1
t−1
−〈Xt, θt〉 (43)

≤ 2L

t−1∑
s=1∨(t−w)

‖θs− θs+1‖2 + 2β ‖Xt‖V−1
t−1

. (44)

37

Inequality (43) is by an application of our SW-UCB algorithm established in equation (9). Inequality (44) is by

an application of inequality (42), which bounds the difference |〈Xt, θ̂t− θt〉| from above. By the assumption

|〈X,θt〉| ≤ 1 in Section 3, it is evident that 〈Xt, θ̂t− θt〉 ≤ |〈Xt, θ̂t〉|+ |〈Xt,−θt〉| ≤ 2, and we have

〈x∗t −Xt, θt〉 ≤ 2L

t−1∑
s=1∨(t−w)

‖θs− θs+1‖2 + 2β
(
‖Xt‖V−1

t−1
∧ 1
)
. (45)

Summing equation (45) over 1≤ t≤ T , the regret of the SW-UCB algorithm is upper bounded as

E [RegretT (SW-UCB algorithm)] =E

∑
t∈[T]

〈x∗t −Xt, θt〉


≤2L

 T∑
t=1

t−1∑
s=1∨(t−w)

‖θs− θs+1‖2

+ 2β ·E

[
T∑
t=1

(
‖Xt‖V−1

t−1
∧ 1
)]

=2L

[
T∑
s=1

(s+w)∧T∑
t=s+1

‖θs− θs+1‖2

]
+ 2β ·E

[
T∑
t=1

(
‖Xt‖V−1

t−1
∧ 1
)]

≤2LwBT + 2β ·E

[
T∑
t=1

(
‖Xt‖V−1

t−1
∧ 1
)]

. (46)

What’s left is to upper bound the quantity 2β · E
[∑

t∈[T]

(
1∧‖Xt‖V−1

t−1

)]
. Following the trick intro-

duced by the authors of (Abbasi-Yadkori et al. 2011), we apply Cauchy-Schwarz inequality to the term∑
t∈[T]

(
1∧‖Xt‖V−1

t−1

)
. ∑

t∈[T]

(
1∧‖Xt‖V−1

t−1

)
≤
√
T

√∑
t∈[T]

1∧‖Xt‖2V−1
t−1
. (47)

By dividing the whole time horizon into consecutive pieces of length w, we have√∑
t∈[T]

1∧‖Xt‖2V−1
t−1
≤

√√√√dT/we−1∑
i=0

(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1
. (48)

While a similar quantity has been analyzed by Lemma 11 of (Abbasi-Yadkori et al. 2011), we note that due

to the fact that Vt’s are accumulated according to the sliding window principle, the key eq. (6) in Lemma

11’s proof breaks, and thus the analysis of (Abbasi-Yadkori et al. 2011) cannot be applied here. To this end,

we state a technical lemma based on the Sherman-Morrison formula.

Lemma 5. For any i≤ dT/we− 1,

(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1
≤

(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1

,

where

V t−1 =

t−1∑
s=i·w+1

XsX
>
s +λI. (49)

Proof of Lemma 5. For a fixed i≤ dT/we− 1,

(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1

=

(i+1)w∑
t=i·w+1

1∧X>t V −1
t−1Xt

38

=

(i+1)w∑
t=i·w+1

1∧X>t

 t−1∑
s=1∨(t−w)

XsX
>
s +λI

−1

Xt. (50)

Note that i ·w+ 1≥ 1 and i ·w+ 1≥ t−w ∀t≤ (i+ 1)w, we have

i ·w+ 1≥ 1∨ (t−w). (51)

Consider any d-by-d positive definite matrix A and d-dimensional vector y, then by the Sherman-Morrison

formula, the matrix

B =A−1−
(
A+ yy>

)−1
=A−1−A−1 +

A−1yy>A−1

1 + y>A−1y
=
A−1yy>A−1

1 + y>A−1y
(52)

is positive semi-definite. Therefore, for a given t, we can iteratively apply this fact to obtain

X>t

(
t−1∑

s=i·w+1

XsX
>
s +λI

)−1

Xt

=X>t

(
t−1∑
s=i·w

XsX
>
s +λI

)−1

Xt +X>t

(t−1∑
s=i·w+1

XsX
>
s +λI

)−1

−

(
t−1∑
s=i·w

XsX
>
s +λI

)−1
Xt

=X>t

(
t−1∑
s=i·w

XsX
>
s +λI

)−1

Xt +X>t

(t−1∑
s=i·w+1

XsX
>
s +λI

)−1

−

(
Xi·wX

>
i·w +

t−1∑
s=i·w+1

XsX
>
s +λI

)−1
Xt

≥X>t

(
t−1∑
s=i·w

XsX
>
s +λI

)−1

Xt

...

≥X>t

 t−1∑
s=1∨(t−w)

XsX
>
s +λI

−1

Xt. (53)

Plugging inequality (53) to (50), we have

(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1
≤

(i+1)w∑
t=i·w+1

1∧X>t

(
t−1∑

s=i·w+1

XsX
>
s +λI

)−1

Xt

≤
(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1

, (54)

which concludes the proof. �

From Lemma 5 and eq. (48), we know that

2β
∑
t∈[T]

(
1∧‖Xt‖V−1

t−1

)
≤2β
√
T ·

√√√√dT/we−1∑
i=0

(i+1)w∑
t=i·w+1

1∧‖Xt‖2V−1
t−1

≤2β
√
T ·

√√√√dT/we−1∑
i=0

2d ln

(
dλ+wL2

dλ

)
(55)

≤2βT

√
2d

w
ln

(
dλ+wL2

dλ

)
.

Here, eq. (55) follows from Lemma 11 of (Abbasi-Yadkori et al. 2011).

39

Now putting these two parts to eq. (46), we have

E [RegretT (SW-UCB algorithm)]

≤2LwBT + 2βT

√
2d

w
ln

(
dλ+wL2

dλ

)
+ 2Tδ

=2LwBT +
2T√
w

(
R

√
d ln

(
1 +wL2/λ

δ

)
+
√
λS

)√
2d ln

(
dλ+wL2

dλ

)
+ 2Tδ. (56)

Now if BT is known, we can take w= Θ
(

(dT)2/3B−2/3
t

)
and δ = 1/T, we have

E [RegretT (SW-UCB algorithm)] = Õ
(
d

2
3B

1
3
T T

2
3

)
;

while if BT is not unknown, taking w= Θ
(
(dT)2/3

)
and δ = 1/T, we have

E [RegretT (SW-UCB algorithm)] = Õ
(
d

2
3BTT

2
3

)
.

D. Proof of Lemma 1

For any block i, the absolute sum of rewards can be written as∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

〈Xt, θt〉+ ηt

∣∣∣∣∣∣≤
i·H∧T∑

t=(i−1)H+1

|〈Xt, θt〉|+

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣≤Hν+

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣ ,
where we have iteratively applied the triangle inequality as well as the fact that |〈Xt, θt〉| ≤ ν for all t.

Now by property of the R-sub-Gaussian (Rigollet and Hütter 2018), we have the absolute value of the

noise term ηt exceeds 2R
√

lnT for a fixed t with probability at most 1/T 2 i.e.,

Pr

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣≥ 2R

√
H ln

T√
H

≤ 2H

T 2
. (57)

Applying a simple union bound, we have

Pr

∃i∈ ⌈ T
H

⌉
:

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣≥ 2R

√
H ln

T√
H

≤ dT/He∑
i=1

Pr

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣≥ 2R

√
H ln

T√
H

≤ 2

T
. (58)

Therefore, we have

Pr

(
Q≥Hν+ 2R

√
H ln

T√
H

)
≤Pr

∃i∈ ⌈ T
H

⌉
:

∣∣∣∣∣∣
i·H∧T∑

t=(i−1)H+1

ηt

∣∣∣∣∣∣≥ 2R

√
H ln

T√
H

≤ 2

T
. (59)

The statement then follows.

E. Proof of Proposition 1

By design of the BOB algorithm, its dynamic regret can be decomposed as the regret of the

SW-UCB algorithm with the optimally tuned window size wi =w† for each block i plus the loss due to learning

the value w† with the EXP3 algorithm, i.e.,

E [RegretT (BOB algorithm)] =E

[
T∑
t=1

〈x∗t , θt〉−
T∑
t=1

〈Xt, θt〉

]

40

=E

 T∑
t=1

〈x∗t , θt〉−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
+ E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉

 . (60)

Here, eq. (60) holds as the BOB algorithm restarts the SW-UCB algorithm in each block, and for a round t in

block i, Xw
t refers to the action selected in round t by the SW-UCB algorithm with window size w∧ (t− (i−

1)H − 1) initiated at the beginning of block i.

By Theorem 3, the first expectation in eq. (60) can be upper bounded as

E

 T∑
t=1

〈x∗t , θt〉−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉=E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
x∗t −Xw†

t , θt

〉
=

dT/He∑
i=1

Õ

(
w†BT (i) +

dH√
w†

)
=Õ

(
w†BT +

dT√
w†

)
, (61)

where

BT (i) =

(i·H∧t)−1∑
t=(i−1)H+1

‖θt− θt+1‖2

is the total variation in block i.

We then turn to the second expectation in eq. (60). We can easily see that the number of rounds for the

EXP3 algorithm is dT/He and the number of possible values of wi’s is |J |. If the maximum absolute sum of

reward of any block does not exceed Q, the authors of (Auer et al. 2002a) gives the following regret bound.

E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
.−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉

∣∣∣∣∣∣∀i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≤Q/2


=Õ

(
Q

√
|J |T
H

)
. (62)

Note that the regret of our problem is at most T, eq. (62) can be further upper bounded as

E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉


≤Õ

(
Q

√
|J |T
H

)
×Pr

∀i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≤Q/2


+ E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉

∣∣∣∣∣∣∃i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≥Q/2


×Pr

∃i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≥Q/2


≤Õ

(√
H|J |T

)
+T · 2

T

=Õ
(√

H|J |T
)
. (63)

Combining eq. (60), (61), and (63), the statement follows.

41

F. Proof of Theorem 4

With Proposition 1 as well as the choices of H and J in eq. (11), the regret of the BOB algorithm is

RT (BOB algorithm) = Õ

(
w†BT +

dT√
w†

+
√
H|J |T

)
= Õ

(
w†BT +

dT√
w†

+ d
1
2T

3
4

)
. (64)

Therefore, we have that when BT ≥ d−1/2T 1/4, the BOB algorithm is able to converge to the optimal window

size, i.e., w† =w∗ (≤H), and the dynamic regret of the BOB algorithm is upper bounded as

RT (BOB algorithm) =Õ
(
d

2
3B

1
3
T T

2
3 + d

1
2T

3
4

)
; (65)

while if BT <d
−1/2T 1/4, the BOB algorithm converges to the window size w† =H, and the dynamic regret is

RT (BOB algorithm) =Õ
(
dBTT

1
2 + d

1
2T

3
4

)
= Õ

(
d

1
2T

3
4

)
. (66)

Combining the above two cases, we conclude the desired dynamic regret bound.

G. Proof of Theorem 5

Similar to eq. (34), we can rewrite the difference θ̂t− θt as

V ∗t−1

 t−1∑
s=1∨(t−w)

XsX
>
s θs +

t−1∑
s=1∨(t−w)

ηsXs

− θt
=V ∗t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt) +V ∗t−1

 t−1∑
s=1∨(t−w)

ηsXs

 . (67)

We then analyze the two terms in eq. (67) separately. For the first term,∥∥∥∥∥∥V ∗t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥V ∗t−1

t−1∑
s=1∨(t−w)

XsX
>
s

[
t−1∑
p=s

(θp− θp+1)

]∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
t−1∑

p=1∨(t−w)

V ∗t−1

p∑
s=1∨(t−w)

XsX
>
s (θp− θp+1)

∥∥∥∥∥∥
∞

≤
t−1∑

p=1∨(t−w)

∥∥∥∥∥∥V ∗t−1

p∑
s=1∨(t−w)

XsX
>
s (θp− θp+1)

∥∥∥∥∥∥
∞

≤
t−1∑

p=1∨(t−w)

‖θs− θs+1‖∞ . (68)

Here, almost all the steps follow exactly the same arguments as those of eq. (35)-(38), except that in inequality

(68), we make the direct observation that

V ∗t−1 =



1[Nt−1(1)>0]

Nt−1(1)
0 0

0
1[Nt−1(2)>0]

Nt−1(2)
0 0

0 0
. . . 0 . . . 0

...
...

...
. . .

. . .
...

0 0 0 . . .
1[Nt−1(d−1)>0]

Nt−1(d−1)
0

0 0 0 . . . 0
1[Nt−1(d)>0]

Nt−1(d)


(69)

42

and

p∑
s=1∨(t−w)

XsX
>
s =



N ′p(1) 0 0
0 N ′p(2) 0 0

0 0
. . . 0 . . . 0

...
...

...
. . .

. . .
...

0 0 0 . . . N ′p(d− 1) 0
0 0 0 . . . 0 N ′p(d)


, (70)

where N ′p(i) is the number of times that action ei is selected during rounds 1∨ (t−w), . . . , p for all i ∈ [d].

As p≤ t− 1, we have N ′p(i)≤Nt−1(i) for all i ∈ [d]. Now, V ∗t−1

∑p

s=1∨(t−w)XsX
>
s is a diagonal matrix with

all diagonal entries less than 1, and hence the argument.

For the second term of eq. (67), we consider for any fixed i∈ [d],∣∣∣∣∣∣e>i V ∗t−1

 t−1∑
s=1∨(t−w)

ηsXs

∣∣∣∣∣∣=1[Nt−1(i)> 0]

Nt−1(i)

∣∣∣∣∣∣e>i
 t−1∑
s=1∨(t−w)

ηsXs

∣∣∣∣∣∣
=

1[Nt−1(i)> 0]
(∑t−1

s=1∨(t−w) 1[Is = i]ηs

)
Nt−1(i)

, (71)

where the first step again use the definition of V ∗t−1 in eq. (69). Now if Nt−1(i) = 0, eq. (71) equals to 0; while

if Nt−1(i)> 0, we can apply the Corollary 1.7 of (Rigollet and Hütter 2018) to obtain that

Pr

∣∣∣∣∣∣
1[Nt−1(i)> 0]

(∑t−1
s=1∨(t−w) 1[Is = i]ηs

)
Nt−1(i)

∣∣∣∣∣∣≤R
√

2 ln (2dT 2)

Nt−1(i)

≥ 1− 1

dT 2
. (72)

Hence, with probability at least 1− 1/dT 2, for any fixed t∈ [T] and any fixed i∈ [d],∣∣∣e>i (θ̂t− θt)
∣∣∣=
∣∣∣∣∣∣e>i
V ∗t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

+ e>i V
∗
t−1

 t−1∑
s=1∨(t−w)

ηsXs−λθt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣e>i
V ∗t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∣∣∣∣∣∣+
∣∣∣∣∣∣e>i V ∗t−1

 t−1∑
s=1∨(t−w)

ηsXs−λθt

∣∣∣∣∣∣ (73)

≤‖ei‖1 ·

∥∥∥∥∥∥V ∗t−1

t−1∑
s=1∨(t−w)

XsX
>
s (θs− θt)

∥∥∥∥∥∥
∞

+R

√
2 ln (2dT 2)

Nt−1(i)
(74)

≤
t−1∑

s=1∨(t−w)

‖θs− θs+1‖∞+R

√
2 ln (2dT 2)

Nt−1(i)
, (75)

where inequality (73) applies the triangle inequality, inequality (74) follows from the Holder’s inequality as

well as inequality (71) and (72), and inequality (75) follows from inequality (68).

The statement of the theorem now follows immediately by applying union bound over the decision set and

the time horizon as well as the simple observation ‖ei‖V ∗
t−1

=
√

1/Nt−1(i).

H. Proof of Theorem 8

From the proof of Proposition 1 in Filippi et al. (2010), we know that for all x∈D∣∣∣µ (〈x, θt〉)−µ
(〈
x, θ̂t

〉)∣∣∣≤ kµ
∣∣∣∣∣∣x>G−1

t−1

 t−1∑
s=1∨(t−w)

(
µ (〈Xs, θt〉)−µ

(〈
Xs, θ̂t

〉))
Xs

∣∣∣∣∣∣ , (76)

43

where

Gt−1 =

∫ 1

0

 t−1∑
s=1∨(t−w)

XsX
>
s µ
(〈
Xs, s0θt + (1− s0)θ̂t

〉)ds0

By virtue of the maximum quasi-likelihood estimation, i.e., eq. (24) we have

t−1∑
s=1∨(t−w)

µ
(〈
Xs, θ̂t

〉)
Xs =

t−1∑
s=1∨(t−w)

YsXs =

t−1∑
s=1∨(t−w)

(µ (〈Xs, θs〉) + ηs)Xs, (77)

and (76) is

kµ

∣∣∣∣∣∣x>G−1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉)− ηs)Xs

∣∣∣∣∣∣
=kµ

∣∣∣∣∣∣x>G−1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉))Xs−x>G−1
t−1

t−1∑
s=1∨(t−w)

ηsXs

∣∣∣∣∣∣
≤kµ

∣∣∣∣∣∣x>G−1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉))Xs

∣∣∣∣∣∣+ kµ

∣∣∣∣∣∣x>G−1
t−1

t−1∑
s=1∨(t−w)

ηsXs

∣∣∣∣∣∣ (78)

≤kµ

∣∣∣∣∣∣x>G−1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉))Xs

∣∣∣∣∣∣+β‖x‖V−1
t−1

(79)

≤kµ ‖x‖2

∥∥∥∥∥∥G−1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉))Xs

∥∥∥∥∥∥
2

+β‖x‖V−1
t−1

(80)

≤kµL
cµ

∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉))Xs

∥∥∥∥∥∥
2

+β‖x‖V−1
t−1
.

Here, inequality (78) is a consequence of the triangle inequality, inequality (79) again follows from Proposition

1 of Filippi et al. (2010), inequality (80) is the Cauchy-Schwarz inequality, and the last step uses the fact

that Gt−1 � cµVt−1. For the firs quantity, we have∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

(µ (〈Xs, θt〉)−µ (〈Xs, θs〉))Xs

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥V −1
t−1

t−1∑
s=1∨(t−w)

Xs

t−1∑
p=s

(µ (〈Xs, θp+1〉)−µ (〈Xs, θp〉))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥V −1
t−1

t−1∑
p=1∨(t−w)

p∑
s=1∨(t−w)

Xs (µ (〈Xs, θp+1〉)−µ (〈Xs, θp〉))

∥∥∥∥∥∥
2

≤
t−1∑

p=1∨(t−w)

∥∥∥∥∥∥V −1
t−1

p∑
s=1∨(t−w)

Xs (µ (〈Xs, θp+1〉)−µ (〈Xs, θp〉))

∥∥∥∥∥∥
2

(81)

=

t−1∑
p=1∨(t−w)

∥∥∥∥∥∥V −1
t−1

p∑
s=1∨(t−w)

Xsµ̇
(〈
Xs, θ̃p

〉)
X>s (θp+1− θp)

∥∥∥∥∥∥
2

(82)

=

t−1∑
p=1∨(t−w)

∥∥∥∥∥∥V −1
t−1

p∑
s=1∨(t−w)

µ̇
(〈
Xs, θ̃p

〉)
XsX

>
s (θp+1− θp)

∥∥∥∥∥∥
2

44

=

t−1∑
p=1∨(t−w)

λmax

V −1
t−1

p∑
s=1∨(t−w)

µ̇
(〈
Xs, θ̃p

〉)
XsX

>
s

‖(θp+1− θp)‖2 (83)

≤kµ
t−1∑

p=1∨(t−w)

λmax

 p∑
s=1∨(t−w)

XsX
>
s

V −2
t−1

 p∑
s=1∨(t−w)

XsX
>
s

‖(θp+1− θp)‖2

≤kµ
t−1∑

p=1∨(t−w)

‖(θp+1− θp)‖2 , (84)

where inequality (81) is an immediate consequence of the triangle inequality, eq. (82) utilizes the mean value

theorem (with θ̃p being some certain linear combination of θp and θp+1 for all p), and inequalities (83) and

(84) follow from the same steps as the proof of Lemma 3 in Section B.

I. Proof of Theorem 11

We start with a regret lower bound result from (Besbes et al. 2018) on drifting K-armed bandits:

Theorem 15 (Besbes et al. (2018)). Consider the drifting K-armed bandit problem, where K ≥ 2, with

T ≥ 1 rounds. For any BT ∈ [1/K,T/K], there exists a finite class of reward distributions P̃ = {P̃ (`)}L`=1,

where P̃ (`) = {P̃ (`)
t,k }t∈[T],k∈[K], that satisfy the following:

• Each P̃
(`)
t,k represents the reward distribution of arm k in round t under distribution P̃ (`). For each

ell, t, k, the distribution P̃
(`)
t,k is a Bernoulli distribution, with the mean denoted θ̃

(`)
t,k .

• For every `∈ [L], the following variational budget inequality holds:

T−1∑
t=1

max
k∈[K]

{∣∣∣θ̃(`)
t+1(k)− θ̃(`)

t (k)
∣∣∣}≤BT .

• For any non-anticipatory policy π̃ , there exists `∈ [L] under which the dynamic regret is lower bounded:

T∑
t=1

{
max
k∈[K]

θ̃
(`)
t (k)−E[θ̃

(`)
t (It)]

}
≥ 1

4
√

2
(KBT)1/3T 2/3.

We denote the choice of arm under policy π̃ in round t as It, and the expectation is taken over the randomness

in the choice of It, which is caused by the previous outcomes and the policy’s internal randomness.

We prove the Theorem by modifying the class of instances P to suit the setting of drifting combinatorial semi-

bandits. The modification follows the style of Kveton et al. (Kveton et al. 2015). Let d,m be two integers,

where d is divisible by m W.L.O.G.. We define the ground set E = [d]. In addition, we define the action

set Et = {a1, . . . , ad/m} ⊂ {0,1}d, which contains d/m combinatorial arms and does not vary with t. Each

combinatorial arm ai belongs to {0,1}d. For each 1≤ i≤ d/m, we define ai(j) = 1 if (i− 1)m+ 1≤ j ≤ i ·m,

and ai(j) = 0 for other j.

Consider Theorem 15 when K = d/m≥ 2, and let P̃ = {P̃ (`)}L`=1 be the class of reward distributions for

the regret lower bound. For each P̃` = {P̃ (`)
t,k }t∈[T],k∈[K] (which is on the K = d/m-armed bandit instance), we

construct another reward distribution P` = {P (`)
t,j }t∈[T],j∈[d] that is defined on the combinatorial semi-bandit

instance. For each j ∈ [d], we identify the index i ∈ [d/m] such that (i− 1)m+ 1≤ j ≤ i ·m, and define P
(`)
t,j

to be the same distribution as P̃
(`)
t,i . That is, P

(`)
t,j is a Bernoulli distribution with mean θt(j) = θ̃t(i), where

45

i= dj/me. By the second property in Theorem 15, it is straightforward to check that BT is also a variation

budget for P (`) for each `, that is,

T−1∑
t=1

max
j∈[d]

{∣∣∣θ(`)
t+1(j)− θ(`)

t (j)
∣∣∣}≤BT .

For each 1≤ i≤ d/m, the random rewards Wt((i−1)m+ 1), . . . ,Wt(i ·m) for the items in combinatorial arm

i are identical Bernoulli random variables. That is, they simultaneously realize as all ones or all zeros.

Finally, to complete the proof, we relate the dynamic regret of any non-anticipatory policy π on the

drifting combinatorial semi-bandit instance to that of some non-anticipatory policy π̃ on the drifting K-armed

instance. For the combinatorial bandit instance, a non-anticipatory policy π is in fact a sequence of mappings

{πt}∞t=1, where πt maps the historical information Ht−1 = {Xs,{Ws(i)}i∈Xs
}t−1
s=1 from time 1 to t− 1 and a

random seed U to the combinatorial arm Xt to pull in time t, or more mathematically πt(Ht−1,U) = Xt.

Likewise is true for any non-anticipatory policy π̃ for a K-armed instance.

Given a non-anticipatory policy π for the combinatorial semi-bandit instance, we construct another non-

anticipatory policy π̃ for the K-armed bandit instance that mimics the behaviour of π. Suppose that

πt(H,U) =Xj for a realization of the history H = {Xs,{Ws(i)}i∈Xs
}t−1
s=1 and random seed U . To construct

π̃, we map the H to the historical information H̃ for the K-armed bandit instance, where H̃ = {X̃s, W̃s}t−1
s=1

is defined as follows: X̃s = i iff Xs = ai, and W̃s = 1
m

∑
i∈[d]Xs(i)Ws(i). It is clear that W̃s ∈ {0,1} for each

s, by our assumption on the correlations among {Wt(i)}i∈[d]. Finally, we define π̃t(H̃,U) = i if and only if

πt(H,U) = ai. It is evident from our construction that πt is well-defined, in the sense that it maps to a unique

arm for every possible realization of H̃,U . Importantly, for any 1≤ `≤L, we know that

Expected reward of π under P (`) =m×Expected reward of π̃ under P̃ (`),

Optimal expected reward under P (`) =m×Optimal expected reward under P̃ (`),

or more mathematically we have
∑T

t=1 maxai∈Et
∑

j:ai(j)=1 θ
(`)
t (j) =m×

∑T

t=1 maxk∈[K] θ̃
(`)
t (k). Consequently,

by the third property of Theorem 15, we know that for any non-anticipatory policy π, there is an index `

such that the dynamic regret of π under P (`) is at least m× (1
4
√

2
(d
m
BT)1/3T 2/3), which proves the theorem.

J. Proof of Theorem 12

Define

θ̄t,i =

∑t−1
s=1∨(t−w) θs(i) ·1[Xs(i) = 1]

max{Nt−1(i),1}
.

First, we claim that, with probability at least 1− δ, for all i∈ [d], t∈ T it holds that∣∣∣θ̄t,i− θ̂t,i∣∣∣≤ 2R

√
log(2dT/δ)

max{Nt−1(i),1}
≤ 4R

√
log(2dT/δ)

Nt−1(i) + 1
. (85)

The Claim is proved by applying the following inequality for each item i∈ [d]. Let Υ1, . . . ,ΥT be i.i.d R-sub-

Gaussian random variables with mean zero. For any δ ∈ (0,1), we have

Pr

(∣∣∣∣∣ 1

t− q+ 1

t∑
s=q

Υs

∣∣∣∣∣≤ 2R

√
log(2dT/δ)

t− q+ 1
for all 1≤ q≤ t≤ T

)
≥ 1− δ

d
, (86)

46

by Corollary 1.7 of Rigollet and Hütter (Rigollet and Hütter 2018) and a union bound over all (q, t) with

1≤ q ≤ t≤ T (We can alternatively use Lemma 6 in Abbasi-Yadkori et al. (Abbasi-Yadkori et al. 2011) for

a slightly worse bound, but holds for more general ηt).

Next, observe that for each i, t, for certain we have

∣∣θ̄t,i− θt,i∣∣≤ 1

max{Nt−1(i),1}

t−1∑
s=1∨(t−w)

1[Xs(i) = 1] · |θs(i)− θt(i)|

≤ 1

max{Nt−1(i),1}

t−1∑
s=1∨(t−w)

1[Xs(i) = 1] ·

(
t−1∑
q=s

|θq(i)− θq+1(i)|

)

≤
t−1∑

s=1∨(t−w)

|θs(i)− θs+1(i)| ≤
t−1∑

s=1∨(t−w)

‖θs− θs+1‖∞ . (87)

K. Proof of Theorem 13

Recall our notations on Nt−1(i) and θ̂t,i (Note that 1[Xs(i) = 1] =Xs(i)):

Nt−1(i) =

t−1∑
s=1∨(t−w)

1[Xs(i) = 1],

θ̂t,i =

∑t−1
s=1∨(t−w)Ws(i) ·1[Xs(i) = 1]

max{Nt−1(i),1}
. (88)

First, we claim that, with probability at least 1− δ, it holds that∣∣∣θ̂t,i− θt,i∣∣∣≤ 4R

√
log(2dT/δ)

Nt−1(i) + 1
+

t−1∑
s=1∨(t−w)

‖θs− θs+1‖∞ .

Consequently, the following UCB holds for each t with probability at least 1− δ:

θ>t Xt ≤max
x∈Et

{
θ>t x

}
≤max

x∈Et

∑
i∈E

θ̂t,i + 4R

√
log(2dT/δ)

Nt−1(i) + 1
+

t−1∑
s=1∨(t−w)

‖θs− θs+1‖∞

x(i)


=
∑
i∈E

θ̂t,i + 4R

√
log(2dT/δ)

Nt−1(i) + 1
+

t−1∑
s=1∨(t−w)

‖θs− θs+1‖∞

Xt(i). (89)

By summing (89) across t, we can bound the dynamic regret with probability at least 1− δ as

RT (SW-UCB algorithm for combinatorial semi-bandits)

≤
T∑
t=1

∑
i∈E

4R

√
log(2dT/δ)

Nt−1(i) + 1
·1[Xt(i) = 1]︸ ︷︷ ︸

(†SCB)

+m

T∑
t=1

t−1∑
s=1∨(t−w)

‖θs− θs+1‖∞︸ ︷︷ ︸
(‡SCB)

. (90)

To complete the proof on the regret bound, we bound each (†SCB, ‡SCB) from above.

Analysing (†SCB). Let’s first define the notation N̄i,t =
∑t−1

s=1+bt/wc·w 1[Xs(i) = 1]. We can understand

N̄i,t as follows, similarly to the derivation in the proof of Lemma 4. On one hand, the parameter Ni,t counts

the occurrences of Xs(i) = 1 in the w previous rounds (or t−1 previous rounds if t≤w). On the other hand,

for the parameter N̄i,t, we first divide the horizon into consecutive blocks of w rounds (with the last block

47

having T −bT/wc ·w rounds). Then, for a round t, we look at the block that t belongs to, and the parameter

N̄i,t counts the occurrences of Xs(i) = 1 for s < t in that block. Certainly, we have N̄i,t ≤Ni,t.

We next use N̄i,t to proceed with the bound:

T∑
t=1

∑
i∈E

√
1[Xt(i) = 1]

Ni,t + 1
≤

T∑
t=1

∑
i∈E

√
1[Xt(i) = 1]

N̄i,t + 1

=

dT/we∑
j=1

∑
i∈E

j·w∧T∑
t=(j−1)w+1

√
1[Xt(i) = 1]

N̄i,t + 1

≤
dT/we∑
j=1

∑
i∈E

j·w∧T∑
t=(j−1)w+1

√
1[Xt(i) = 1]

max{N̄i,t,1}

≤
dT/we∑
j=1

∑
i∈E

{
1 + 2

√
N̄i,j·w∧T

}
(91)

≤
dT/we∑
j=1

{
d+ 2

√
dmw

}
(92)

≤
dT/we∑
j=1

3
√
dmw≤ 6

√
dmT√
w

. (93)

Step (91) is by the observation that, when we enumerate the non-zero summands
√

1[Xt(i)=1]

max{N̄i,t,1}
from t =

(i− 1)w + 1 to t = i ·w ∧ T , the enumerated terms are 1/
√

1,1/
√

1,1/
√

2,1/
√

3, . . . ,1/
√

max{N̄i,j·w∧T ,1}.

The sum of these terms is upper bounded as 1 + 2
√
N̄i,j·w∧T . Step (92) is by the following calculation:

∑
i∈E

√
N̄i,j·w∧T ≤

√
d ·
∑
i∈E

N̄i,j·w∧T =

√√√√d ·
∑
i∈E

j·w∧T∑
t=(j−1)w+1

1[Xt(i) = 1]≤
√
dmw.

Finally, step (93) is by the Theorem’s assumption that (d/m)≤w≤ T .

Analysing (‡SCB). We note that

m

T∑
t=1

t−1∑
s=1∨(t−w)

‖θs− θs+1‖∞ =m

T−1∑
s=1

T∧(s+w)∑
t=s+1

‖θs− θs+1‖∞ ≤mwBT . (94)

L. Proof of Theorem 14

Similar to the proof of Proposition 1, the dynamic regret of the BOB algorithm can be decomposed as the

regret of the SW-UCB algorithm with the optimally tuned window size wi =w† (≥ d/m) for each block i plus

the loss due to learning the value w† with the EXP3 algorithm, i.e.,

E [RegretT (BOB algorithm)] =E

 T∑
t=1

〈x∗t , θt〉−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
+ E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉

 . (95)

Here, eq. (95) holds as the BOB algorithm restarts the SW-UCB algorithm in each block, and for a round t in

block i, Xw
t refers to the action selected in round t by the SW-UCB algorithm with window size w∧ (t− (i−

1)H − 1) initiated at the beginning of block i.

48

By Theorem 13, the first expectation in eq. (95) can be upper bounded as

E

 T∑
t=1

〈x∗t , θt〉−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉=E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
x∗t −Xw†

t , θt

〉
=

dT/He∑
i=1

Õ

(
w†mBT (i) +

√
dmH√
w†

)

=Õ

(
w†BT +

√
dmT√
w†

)
, (96)

where

BT (i) =

(i·H∧t)−1∑
t=(i−1)H+1

‖θt− θt+1‖∞

is the total variation in block i.

We then turn to the second expectation in eq. (95). We can easily see that the number of rounds for the

EXP3 algorithm is dT/He and the number of possible values of wi’s is |J |. If the maximum absolute sum of

reward of any block does not exceed Q, the authors of (Auer et al. 2002a) gives the following regret bound.

E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉

∣∣∣∣∣∣∀i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≤Q/2


=Õ

(
Q

√
|J |T
H

)
. (97)

Note that the regret of our problem is at most T, eq. (97) can be further upper bounded as

E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xwi
t , θt〉


≤Õ

(
Q

√
|J |T
H

)
×Pr

∀i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≤Q/2


+ E

dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈
Xw†

t , θt

〉
−
dT/He∑
i=1

i·H∧T∑
t=(i−1)H+1

〈Xt (wi) , θt〉

∣∣∣∣∣∣∃i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≥Q/2


×Pr

∃i∈ [dT/He]
i·H∧T∑

t=(i−1)H+1

Yt ≥Q/2


≤Õ

(
m
√
H|J |T

)
+T · 2

T

=Õ
(
m
√
H|J |T

)
. (98)

Combining eq. (95), (96), and (98), we have for any w† ∈ J and w† ≥ d/m,

E [RegretT (BOB algorithm)] = Õ

(
w†mBT (i) +

√
dmH√
w†

+m
√
H|J |T

)
= Õ

(
w†mBT +

√
dmT√
w†

+ d
1
4m

3
4T

3
4

)
.

where we have plugged in the choices of H and J in eq. (27). Therefore, we have that when BT ≥
d−1/4m1/4T 1/4, the BOB algorithm is able to converge to the optimal window size i.e., w† = w∗ (≤H), and

the dynamic regret of the BOB algorithm is upper bounded as

RT (BOB algorithm) =Õ
(
d

1
3m

2
3B

1
3
T T

2
3 + d

1
4m

3
4T

3
4

)
= Õ

(
d

1
3m

2
3B

1
3
T T

2
3

)
; (99)

49

while if BT < d−1/4m1/4T 1/4, the BOB algorithm converges to the window size w† = H, and the dynamic

regret is

RT (BOB algorithm) =Õ
(
d

1
2m

1
2BTT

1
2 + d

1
2T

3
4

)
= Õ

(
d

1
4m

3
4T

3
4

)
. (100)

Combining the above two cases, we conclude the desired dynamic regret bound.

M. Supplementary Details for Section 9

When BT is known , we select wopt that minimizes the explicit regret bound in (56), resulting in

wopt =

⌈
w̄

B2/3
T

⌉
, where w̄=

d1/3T 2/3

21/3L2/3

(
R
√
d ln (T +T 2L2/λ) +

√
λS
)2/3

log1/3

(
1 +

TL2

dλ2

)
. (101)

When BT is not known, we select wobl = dw̄e, which is independent of BT .

	1 Introduction
	2 Related Works
	2.1 Stationary and Adversarial Bandits
	2.2 Bandits in Drifting Environments
	2.3 Bandits in Piecewise Stationary/Switching Environments
	2.4 Further Contrasts to Existing Works
	2.5 Follow-Up Works and Other Related Works

	3 Problem Formulation for Drifting Linear Bandits
	3.1 Notation
	3.2 Learning Protocol

	4 Lower Bound
	5 Sliding Window Regularized Least Squares Estimator
	6 Sliding Window-Upper Confidence Bound (SW-UCB) Algorithm: An Optimal Strategy with Known Variation Budgets
	6.1 Design Intuition and Design Details
	6.2 Dynamic Regret Analysis

	7 Bandit-over-Bandit (BOB) Algorithm: Adapting to the Unknown Variation Budget
	7.1 Design Intuition and Design Details
	7.2 Dynamic Regret Analysis
	7.3 Choices of Parameters and Justifications
	7.4 Further Remarks Regarding the BOB algorithm

	8 Extensions to Other Bandit Models
	8.1 An Algorithmic Template
	8.2 d-Armed Bandits
	8.3 Generalized Linear Bandits
	8.4 Combinatorial Semi-Bandits

	9 Numerical Experiments
	9.1 Experiments on Synthetic Dataset
	9.1.1 The Trend of Dynamic Regret with Varying T
	9.1.2 A Further Study on the Algorithms' Behavior

	9.2 Experiments on Online Auto-Lending Dataset

	10 Conclusion
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 3
	D Proof of Lemma 1
	E Proof of Proposition 1

	F Proof of Theorem 4
	G Proof of Theorem 5
	H Proof of Theorem 8
	I Proof of Theorem 11
	J Proof of Theorem 12
	K Proof of Theorem 13

	L Proof of Theorem 14
	M Supplementary Details for Section 9

