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Abstract

Many innovative products are designed to satisfy the demand of specific target

consumers; thus, the innovators will inevitably compete with each other in the prod-

uct market. We investigate how a profit-maximizing principal should properly allo-

cate her limited resources to support the innovations of multiple potentially compet-

ing innovators. We find that, as the available resources increase, the optimal diver-

sification of investment may first increase and then decrease. This interesting non-

monotone pattern is driven by a trade-off between the risk of innovation failure and

rent dissipation due to competition. Using this framework, we also analyze a non-

profit principal seeking to maximize the total number of successful innovations, the

probability of at least one innovator succeeding, consumer surplus, and total social

welfare. A nonprofit principal tends to invest more diversely compared to a for-profit

counterpart.
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1 Introduction

Innovation plays an essential role in economic growth by creating new products, develop-
ing new business models, and improving production processes. Venture capitals (VCs),
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governments, and private enterprises invest billions of dollars and other resources every
year in R&D to foster innovation. Often, many innovators are targeting the demand of
the same group of consumers. For example, as smartphones become popular, many star-
tups develop similar ride-sharing apps targeting the same transportation market; to meet
the global demand of COVID-19 vaccines, numerous pharmaceutical companies started
over 100 vaccine development projects.1 In practice, we observe that innovation investors
may sometimes invest in multiple companies that are competitors in the product market.
For example, several VCs invested in both Uber and Lyft before their IPOs (Eldar et al.,
2020). Hong Kong government startup supporting funds invested in both Lalamove and
GoGoVan with the same business model of matching van drivers with consumers.2

In this paper, we consider a central question faced by innovation investors: how to in-
vest in potentially competing innovators. If the investor invests in only a small number of
startups, there is a risk of missing a unicorn company. However, investing in many simi-
lar R&D projects or startups with similar business ideas not only requires more resources
but also can intensify the competition in the product market. Igami (2017) characterizes an
example in the hard disk industry. When more firms decide to innovate and develop the
next generation of hard disks, each firm has a smaller market share and earns less profit.
In practice, a VC investing in direct product market competitors can lead to a dismal out-
come. For example, Grishin Robotics, a California-based VC, invest in two bike-sharing
service companies, OBike and Gobee, in Hong Kong in early 2017.3 The neck-and-neck
competition of bike-sharing services soon drove both companies out of business in late
2018 (Du, 2018).

Both private investors and public funding authorities must carefully consider the im-
plication of potential product market competition to the resource allocation decisions.
Kaplan and Strömberg (2004) analyze how VCs evaluate startup companies by studying
67 investment memoranda. The results indicate that VCs not only consider companies’
internal factors such as quality of management and performance to date but also external
factors such as market size and competition. Many memos have statements like “com-
pany is targeting a significant market segment”, “no competitors”, “there is more than
enough room for several competitors”, “price competition could drive down margins”.
Based on a survey of VCs in California, Tyebjee and Bruno (1984) also find that the barrier
to competitive entry is one major factor considered by VCs in the evaluation of investment

1See Le et al. (2020) and www.nytimes.com/interactive/2020/science/coronavirus-vaccine-

tracker.html.
2See www.jumpstartmag.com/a-race-to-the-top-gogox-vs-lalamove.
3See www.dealstreetasia.com/stories/singapore-obike-45m-series-b-grishin-robotics-80447

and www.dealstreetasia.com/stories/79496-79496.
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opportunities. In a study of U.S. Small Business Innovation Research (SBIR) programs,
Lerner (2000) writes that “awards in many cases led to substantial spillovers. At the same
time, the gains in employment and sales of the typical awardee could have come at the
expense of small losses for many competitors.”

In reality, we observe that investors adopt different investment strategies in different
industries. Take Sequoia Capital’s portfolio in China as an example.4 In 2011, Sequoia
invested $1.5 billion in JD.com, which soon became a leading e-commerce platform in
China. Sequoia exited in 2014 after the successful IPO of JD.com (JD:Nasdaq). In 2017
and 2018, Sequoia invested $1.58 billion in another e-commerce platform, Pinduoduo
(PDD:Nasdaq). Pinduoduo was a direct competitor to JD.com and later became China’s
largest e-commerce platform by the number of users in 2020.5 From this anecdotal evi-
dence, it seems that Sequoia intentionally avoided investing in multiple e-commerce star-
tups at the same time.6

However, Sequoia sometimes invested in several startups that were direct competitors
in the product market within the same period of time. Donald Valentine, founder of Se-
quoia Capital, said in an interview, “my position has always been, you find a great mar-
ket and you build multiple companies in that market.”7 For example, in 2015, Sequoia
invested in The ONE Smart Piano (www.1tai.com) and itan8 Pianist (www.itan8.com).
Both companies offered online piano education via mobile apps with almost the same
functions. In 2019, Sequoia invested in Mathplane (www.mathplanet.com) and Tongxing
School (www.tongxingschool.com), who were competitors in online early childhood ed-
ucation. In late 2020 and 2021, Sequoia invested in WeDoctor (www.guahao.com), Just
Health (www.justhealth.cn), Shanhu Health (www.shanhuhealth.com), Miaoshou (www.
miaoshou.net), and Shukun Technology (www.shukun.net). All these companies aimed
to apply information technology to health care and develop products for online health
services. Why Sequoia concentrated its investment in one company in some industry
but diversified in multiple startups in another industry? What are the factors affecting
investors’ adoption of different investment strategies?

These phenomena and questions motivate us to investigate the optimal resource allo-
4Sequoia Capital’s portfolio can be found at www.itjuzi.com/investfirm/1. ITJUZI (www.itjuzi.com)

is a database of VC investments and startups in China.
5See www.scmp.com/tech/big-tech/article/3125849/pinduoduo-founder-colin-huang-steps-

down-chairman.
6Softbank (9984:Tokyo) had a similar investment practice (www.itjuzi.com/investfirm/441). Softbank

invested in Alibaba with $20 million in 2000 and $82 million in 2004. After the IPO of Alibaba (BABA:NYSE)
in 2014, Softbank exited Alibaba and made several investments in e-commerce startups including Good-
baby, Snapdeal, MUSTIT, and YiKuYi. These e-commerce companies all had a competitive relationship with
Alibaba.

7See digitalassets.lib.berkeley.edu/roho/ucb/text/valentine_donald.pdf.
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cation strategy among competing innovators. We explore the investor’s (principal, she)
optimal resource allocation strategy among multiple innovators (agents, he), who are po-
tential competitors in the post-innovation product market. The principal, who owns the
essential resources for innovation, intends to maximize the investment returns from shar-
ing the profit with the agents. We consider a sequential game. The principal first decides
how to allocate her resources to competing agents. Then, given the resource allocation,
each agent decides how much effort to exert on innovative activity. The success rate of
innovation depends on both the amount of resources and effort levels. Agents who suc-
cessfully innovate will launch products in the product market. If more than one product
is launched, these products will compete with one another and affect the profit.

In equilibrium, the agent’s effort level first increases and then decreases in the amount
of resources allocated. This non-monotone relationship is rooted in the pattern of com-
plementarity between the resources and the agent’s effort in determining the success rate.
When there is only a very small amount of resources, they must be complemented by a
substantial amount of effort to achieve a reasonably high success rate. As a result, the
agent is reluctant to exert effort or even chooses not to participate if resources are in-
sufficient. However, when resources become excessively abundant, because of the sub-
stitutability between effort and resources, the agent tends to reduce his effort. Moreover,
there is a strong effort-reduction effect if the other agent also receives many resources and
actively innovates because the potential competition and rent dissipation in the product
market discourage the agent from exerting effort ex ante.

In terms of the principal’s resource allocation, we identify a key trade-off between the
risk of innovation failure and rent dissipation due to competition among agents. When
facing uncertainty in innovation, a profit-oriented principal can lower the risk of having
no successful product development by diversifying her investment to more agents. How-
ever, if multiple similar innovative products are successfully developed, the profit from
the product market will shrink. This trade-off, together with the agents’ strategic choices
of effort levels, leads to an interesting pattern in the optimal resource allocation strategy:
the diversification of investment may not be monotone in the amount of resources. When
the rent dissipation effect is at a moderate level, as the available resources increase, the
principal will first invest in one agent, then switch to investing in multiple agents and
finally switch back to investing in one agent.

When there is a shortage of resources, concentrating all of the resources to invest in one
agent will guarantee the agent’s active participation in his innovative project. Dividing
the resources could cause each agent to receive too little investment to be incentivized. As
the resources become more abundant, diverse investment can increase the overall success
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rate of innovation because each agent conducts innovation independently, and the prob-
ability of having at least one successful agent increases. However, diverse investment
also increases the probability of more than one agent launching products on the market,
causing a reduction in the total profit due to the business-stealing effect. As a result, the
principal tends to concentrate her investment to avoid ex post competition when resources
are abundant and the competition is intense.

We derive the main results of optimal resource allocation strategy in a baseline model
with two agents. These results are robust to the cases of an endogenous profit-sharing
rule, costly resources, two general classes of innovation success functions, and multi-
ple agents. However, the optimal resource allocation strategy does not exhibit the non-
monotone pattern if the principal is not profit oriented and aims at maximizing the num-
ber of successful innovations, the probability of at least one successful innovation, con-
sumer surplus, or total social welfare. Intuitively, diversifying investment is likely to lead
to more successful innovations, and having more innovative products always improves
consumer and social welfare. We also explore the case of competing investors. Because
of the rent dissipation problem (Choi, 1996) in the product market, introducing a new
investor could make both investors and agents worse off.

2 Literature Review

Since the groundbreaking work of Schumpeter (1942), a large body of literature has ex-
plored the relationship between innovation and competition. One central question is how
competition affects innovators’ incentives. The classical Schumpeterian view emphasizes
that the essential driving force of innovation is the monopoly rent. Aghion and Howitt
(1992) and Caballero and Jaffe (1993), among many others, have shown that excessive
competition discourages innovation. However, empirical studies, such as Nickell (1996)
and Blundell et al. (1999), find positive effects of competition on innovation, followed
by several theoretical works, such as Aghion et al. (2001). Aghion et al. (2005) combines
both theoretical and empirical analyses and shows that the relationship between com-
petition and innovation exhibits an inverted U-shape. Marshall and Parra (2019) argue
that competition can stimulate innovation if the profit gap between the leader and the
followers weakly increases with the number of firms. Most previous papers have focused
on how firms choose their innovation strategies under various market structures. This
paper emphasizes that ex ante innovation activities are affected by potential ex post mar-
ket competition, and the principal must anticipate this effect when making investment
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decisions.8

Our paper contributes to three strands of the literature. First, our study sheds light on
how financial resources affect operational outcomes.9 Nelson (1961) notes the importance
of parallel R&D efforts by multiple agents in uncertain innovation tasks. He suggests that
resource allocation should be gradually concentrated as more information becomes avail-
able. Schlapp et al. (2015) further investigate the interaction among agents in effort ex-
erting and information sharing. They show that the resource allocation decisions should
align the incentives of agents to pursue a common goal and reveal their findings. Chao
et al. (2009) show that resource allocation affects the incentives in pursuing incremental
versus radical innovation projects. Ning and Babich (2017) find that firms obtaining re-
sources by debt financing leads to risk shifting, resulting in more investment in high-risk
R&D projects (lower free-riding incentives). These examples demonstrate that the alloca-
tion of financial resources has strong impacts on various aspects of innovation outcomes.
Most previous studies in the literature have emphasized interaction among innovative
agents during the process of R&D, such as information sharing (Schlapp et al., 2015) and
free riding (Ning and Babich, 2017). In contrast, we consider the scenario in which agents
conduct independent R&D projects but their profits from the product market are corre-
lated. We provide a clear message to investors that the innovation outcomes depend not
only on the competition during R&D but also on the competition after R&D.

Second, our study is related to the patent race literature. In many industries, the latest
innovative product is protected by a patent. Agents compete by developing the next gen-
eration of products (Reinganum, 1985). In markets with patent races, competition affects
innovation and welfare in a complicated way. For example, Marshall and Parra (2019)
find that the pace of innovation critically depends on whether the profit advantage of
the market leader increases or decreases in the competitive intensity. Shapiro (2000) point
out that innovation carried out by multiple agents can lead to complementary technology,
which can cause patent thicket problems and excessively high royalty rates. Kitch (1977)
points out that the patent system allows the upstream patent owner to coordinate invest-
ment and information exchange in downstream patent races for follow-up innovation.
Branstetter and Sakakibara (2002) study a Japan innovation policy supporting research
consortia among innovative firms and conclude that “the design of consortium seems to
be more important than the level of resources expended.” In this paper, we emphasize

8This question is a popular operational problem faced by investors in reality. For example, Alibaba pro-
vides financial support to help retailers manage demand uncertainty. When making operational decisions,
the platform must consider the implications for competition intensity among retailers (Dong et al., 2018).

9Babich and Kouvelis (2018) provide a survey of studies that combines financial decisions with opera-
tions choices and risk management.
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the investor’s role in influencing the innovation success rate, the product market profit,
and welfare by her resource allocation strategy among competing agents.

Third, our model provides new insight into the literature on the design of innovation
contests. Contests are a widely used mechanism to stimulate research or procure innova-
tive products (Che and Gale, 2003). In a contest, agents exert costly effort to compete for
one or several prizes granted based on the ranking of their performance. Most previous
studies have focused on the design of the prize scheme (Terwiesch and Xu, 2008), infor-
mation disclosure policy (Zhang and Zhou, 2015; Bimpikis et al., 2019), or other contest
rules to induce agents to actively participate and exert effort. Typical objectives of the
contest designer (principal) include maximizing total effort (Moldovanu and Sela, 2001),
the highest or average performance outcomes (Hu and Wang, 2017; Ales et al., 2017; Kör-
peoğlu and Cho, 2018) and K-best outputs (Ales et al., 2014). In a contest, competition
occurs during the process of innovation, and agents receive monetary transfers after ex-
erting innovative effort. Our model is based on a scenario in which resources are first
allocated to agents, and then the agents conduct innovation and compete for the “prize”
from the product market. This setting suggests a new tool of contest design: the princi-
pal can divide her budget for post-innovation prizes and pre-innovation resources. The
pre-innovation resource allocation among agents can be used to handicap some advanta-
geous agents (Pérez-Castrillo and Wettstein, 2016), encourage participation, and maintain
a proper competitive intensity.

3 The Model

3.1 Model Setup

We consider a one-principal-two-agent model with a resource allocation stage followed
by an innovation stage. A principal has a finite amount of resources with capacity B > 0
that can be allocated to two agents indexed by i = 1, 2. The resources are key inputs for
innovation. In the resource allocation stage, the principal chooses a resource allocation,
(b1, b2), subject to the budget constraint b1 + b2 ≤ B with bi ≥ 0.

In the innovation stage, given (b1, b2), two agents simultaneously choose their effort
levels (x1, x2). Agent i incurs a cost xi by exerting effort xi ≥ 0. For each agent, the
outcome of innovation is binary: either success or failure. The success rate of agent i
follows the innovation success function:

(1) p(bi, xi) = 1 − e−bixi ,
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which is increasing and concave in both bi and xi. This functional form implies that hav-
ing more resources or exerting more effort will lead to a higher probability of successful
innovation, but their marginal effects are decreasing. The resource is essential for in-
novation. If an agent does not receive any resources, his probability of success is zero
regardless of how much effort he exerted.10 If the agent fails to innovate, his profit is
zero.

Once an agent successfully innovates, he launches a new product in the market. The
profit from the product market is shared between the agent and the principal. The agent
obtains a γ ∈ (0, 1) fraction of the profit. The profit-sharing rate γ is exogenously deter-
mined.11 The agent’s payoff is the expected profit from the innovative product market
less his effort cost. The principal receives the remaining 1 − γ fraction of the profit from
both agents.

We normalize the profit from one innovative product in the market without competi-
tors to 1. If both agents succeed, two competing products are launched. Let the profit of
each product be α ∈ [0, 1]. When α = 1, the two innovative products target two separate
groups of consumers and are not competing. However, when α < 1, the two products
are substitutes and compete for the same group of consumers. The parameter α measures
the intensity of competition and the strength of the business-stealing effect. Appendix A
demonstrates how values of α can be directly mapped to the institutional details regard-
ing product market competition.

Discussion of model assumptions

Innovation success function. The exponential functional form of (1) has been widely
used in the literature, for example, Reinganum (1982, 1983). It can be interpreted in a
dynamic way. Suppose that the innovation is conducted over a period of duration 1, and
the event of successful innovation follows a Poisson process with a rate of bixi. Then, at
the end of the period, the probability of success will be 1 − e−bixi . This exponential inno-
vation success function can also be treated as a static version of the Poisson bandit model
(Bergemann and Valimaki, 2006). Bergemann and Hege (2005) use the Poisson bandit
model to study the optimal flow of investment in financing an innovative entrepreneur.
The static simplification enables us to study the problem of investing in multiple agents.

10For example, many startups need financial investment from VCs to implement their innovative ideas.
Researchers conduct research projects conditional on receiving sufficient grants from funding authorities.
In the absence of sufficient resources, it is almost impossible for these projects to succeed.

11In reality, the profit-sharing rate is usually determined by the funding authority’s technology transfer
policy or the VC market. We endogenize the principal’s choice of γ in Section 4.1.
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In Appendix C.2, we expand our analysis under two large classes of innovation success
functions.

We restrict our attention to the case in which agents perform innovation activities in-
dependently. The interaction of two agents is purely driven by the possible competition
in the product market. In reality, agents also interact in the innovation stage in the form
of patent race (Marshall and Parra, 2019), research collaboration (Branstetter and Sakak-
ibara, 2002), or knowledge spillover (Bloom et al., 2013). Interaction during innovation
can be modeled by correlated success rates, but having two layers of interaction will sub-
stantially complicate the optimal resource allocation problem. In this paper, we focus on
the post-innovation interaction, which helps us simplify the analysis and clearly delineate
the key trade-off.

Principal’s objective function. It is reasonable to assume that the principal maximizes
returns from investment given a fixed budget and does not incur a marginal cost from
investing more resources. This setting resembles most VCs and public funding authori-
ties in reality. VCs typically collect funds in waves from institutional investors and high
net worth individuals. Given a fixed amount of funds, VC managers make decisions on
which startups to invest in and how much for the purpose of maximizing investment re-
turns.12 Public funding authorities typically obtain funds from government budgets and
donations, so allocating more funds does not directly incur costs. In Appendix C.1, we
show that having a positive marginal cost of investment does not qualitatively change
our results. In Section 4.3, we consider nonprofit principals with alternative objectives
such as number of successful innovations and consumer surplus.

Contract form. In this paper, we restrict the principal to adopting a simple profit-sharing
contract form. This setting resembles the practice of equity investment by VCs and many
technology transfer agreements by universities in reality. The investment contracts be-
tween the funding agencies and startups typically assign certain equity shares to the in-
vestors. We do not analyze more complicated contract forms for two reasons. First, it can
be extremely challenging to adopt the mechanism design framework to analyze an envi-
ronment with competing agents. For this reason, we do not consider a model in which
agents have private information. Second, if we grant the principal more authority or con-
trol rights, she can simply shut down one agent’s product when both agents succeed in

12VCs make most of their money based on the percentage of investment profits plus fund management
fees. VC managers care about returns from investment and do not face a marginal cost from investing more
money under their management (Gompers and Lerner, 1998).
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innovation. Then, the key trade-off between the risk of innovation failure and rent dissi-
pation would not exist.

3.2 Equilibrium Analysis of the Innovation Stage

The equilibrium analysis is conducted via backward induction. We divide the analysis
into two cases: the principal investing in only one agent and investing positive amounts
in both agents. In the latter case, the resources allocated to the two agents can be asym-
metric, although the two agents are ex ante symmetric.

One agent receiving resources

Suppose that the principal only invests in agent i with bi > 0. By (1), the other agent
lacking the essential resources has zero probability of success. If agent i successfully in-
novates, he receives a profit γ from the product market. Given bi, agent i chooses his
effort xi by maximizing his expected payoff γp(bi, xi) − xi. It is easy to show that the
equilibrium effort level is

(2) x∗i (bi) =

⎧⎨
⎩

0, γbi < 1
ln γbi

bi
, γbi ≥ 1.

The red solid line in Figure 1 illustrates x∗i (bi). The participation of the agent requires
that the expected payoff is positive, which implies that γbi > 1. When γbi ≤ 1, the profit
share and the allocated resources are too small to encourage the agent to exert costly effort
on innovation. When γbi > 1, the equilibrium effort level x∗ follows a hump shape in
bi.13 Intuitively, when a small amount of resources is allocated, the agent does not have a
strong incentive to exert effort because the success rate is low. However, when abundant
resources are allocated, the agent can rely on these resources and need not exert much
effort. x∗i (·) reaches its maximum at bi =

e
γ , which means that, if the agent’s profit share

γ is higher, the maximal effort can be induced by investing less resources.
Although the effort level is non-monotone in bi, the equilibrium success rate,

(3) pi(bi, x∗i (bi)) = 1 − e−bix∗i =

⎧⎨
⎩

0 γbi ≤ 1,

1 − 1
γbi

γbi > 1,

is increasing in bi. Therefore, investing more resources stimulates innovation.

13The hump shape is not essential to our main results. See Appendix C.2.
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Figure 1: Agent’s Equilibrium Effort Level x∗i with γ = 0.5.

Both agents receiving resources

Given b1 > 0 and b2 > 0, the equilibrium effort levels, (x∗1(b1, b2), x∗2(b1, b2)), are deter-
mined by a static game between two agents. Let yi ≡ 1 − p(bi, xi) denote the failure rate;
then, xi = − ln yi

bi
. Because there is a one-to-one correspondence between xi and yi, it is

equivalent to considering the agent choosing yi instead of xi. This transformation simpli-
fies the algebra in the equilibrium analysis. We restrict yi > 0 because achieving a zero
failure rate (yi = 0) requires an infinitely large effort. The boundary condition, yi = 1,
indicates that an agent exerts zero effort and thus has zero probability of success. Without
loss of generality, let b1 ≥ b2.

Given resources bi and the other agent’s failure rate y−i, agent i’s best response is
determined by solving the following problem:

Y(bi, y−i) := argmax
0<yi≤1

{γ(1 − yi)(α(1 − y−i) + y−i) +
ln yi

bi
}(4)

= argmax
0<yi≤1

{
1 − yi +

ln yi

γ[α(1 − y−i) + y−i]bi

}
.

We first consider the case of an interior solution in which both agents exert positive effort.
Lemma 1 characterizes the condition under which both agents exert positive effort.

Lemma 1. The sufficient and necessary condition for 0 < y∗1 ≤ y∗2 < 1 is

(5) γb2 > 1 and 1 ≤ b1

b2
< 1 + α(γb1 − 1).
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Under this condition, y∗1 and y∗2 are unique.

To encourage both agents to actively participate in innovation, the amount of re-
sources allocated to each agent cannot be too small (γb2 > 1). Moreover, the allocation
cannot be too imbalanced ( b1

b2
< 1 + α(γb1 − 1)). Otherwise, the business-stealing effect

will discourage the less resourceful agent from exerting any effort because the expected
profit generated from the product market cannot compensate for his effort cost.

Under condition (5), the equilibrium failure probabilities, y∗1 and y∗2, are determined
by the first-order conditions (FOC) of (4), which can be rearranged as

1
γb1

= α(1 − y∗2)y∗1 + y∗1y∗2 and
1

γb2
= α(1 − y∗1)y

∗
2 + y∗1y∗2.(6)

The solution, y∗1(b1, b2) and y∗2(b1, b2), exhibits the following comparative statics:

Lemma 2. Given condition (5), y∗i decreases in bi and increases in b−i.

There is a qualitative difference in the effort exertion pattern between the cases of
investing in one agent and investing in two agents. When investing in only one agent, a
larger amount of resources always leads to a higher probability of successful innovation.
However, in the latter case, increasing b−i will discourage agent i from exerting more
effort (lower y∗i ) because he is more likely to face competition in the product market. It
is possible that reducing the total allocated resources can weaken competition and better
incentivize the agents. Therefore, the principal must carefully consider the impact of
potential product market competition facing multiple agents.

3.3 The Optimal Resource Allocation Strategy

Given a resource capacity, B, how should the principal allocate her resources to the two
agents? Based on the equilibrium failure rate in (4), the principal’s optimization problem
is

Π(B) := max
b1≥0,b2≥0

(1 − γ)[2α(1 − y∗1)(1 − y∗2) + (1 − y∗1)y
∗
2 + (1 − y∗2)y∗1 ]

s.t. b1 + b2 ≤ B, y∗1 = Y(b1, y∗2), y∗2 = Y(b2, y∗1).
(7)

The term 2α(1 − y∗1)(1 − y∗2) is the total expected profit when both agents successfully
innovate. This total profit decreases in α.

We start the analysis by first fixing a total amount of investment B = b1 + b2 ≤ B
with b1 ≥ b2. Given B, the principal’s investment decision degenerates to being one
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dimensional. Without loss of generality, let b2 be the principal’s choice variable. The
principal’s problem can be rewritten as

max
b2∈[0, B

2 ]
Π̃(B − b2, b2) := (1 − γ)[2α(1 − y∗1)(1 − y∗2) + (1 − y∗1)y

∗
2 + (1 − y∗2)y∗1 ].

We can show that the solution satisfies the following proposition.

Proposition 1. The optimal resource allocation scheme must exhibit one of the following proper-
ties: either b∗2 = 0 or b∗1 = b∗2 .

Figure 2 plots the expected profit of each agent and the total profit of two agents as
functions of b2/B. From Panels (a) and (c), we see that Π̃(B − b2, b2) is quasiconvex on
the domain b2 ∈ [0, B

2 ]. The total profit reaches its maximum at either the left boundary
as in Panel (a) or at the right boundary as in Panel (c). Therefore, the principal will invest
an equal amount in two agents or invest in only one agent.

This prediction is consistent with the allocation of R&D grants in practice. For ex-
ample, the SBIR program assigns the same amount, $150,000, to successful applicants for
Phase-I R&D grants (Howell, 2017). Hong Kong Cyberport Creative Micro Fund allocates
HKD100,000 to each funded startup.14 In both examples, the funding authorities fund ap-
proximately 10% to 20% applicants among hundreds of them every year. Hence, an agent
either obtains a fixed amount of funding or does not receive any funding at all. Intuitively,
given a fixed amount of resources, the principal may not support all agents because she
must guarantee that funded agents have sufficient resources and actively participate.

Investing in one agent

Based on Proposition 1, we compute and compare the principal’s profits under the two
investment strategies. Given a total investment B > 0, let Πm(B) denote the profit from
investing in one agent. By (3), the principal’s profit is

(8) Πm(B) =

⎧⎨
⎩

0 γB ≤ 1,

(1 − γ)(1 − 1
γB ) γB > 1,

where the subscript m indicates that the resource allocation strategy induces a monopoly
product in the product market. Because Πm(B) increases in B, the principal will exhaust
her resources. We obtain the following result.

14See www.cyberport.hk/en/about_cyberport/cyberport_youth/cyberport_creative_micro_fund.
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Figure 2: Illustration of Proposition 1, where γ = 0.5 and α = 0.6.

Proposition 2. When the principal only invests in one agent, the principal chooses (b1, b2) =

(B, 0).

Accordingly, the principal’s expected payoff when investing in one agent is Πm(B)
and the expected payoff of the agent who receives investment is

(9) Um(B) =

⎧⎨
⎩

0 γB ≤ 1,

γ − 1+ln γB
B

γB > 1.

Um is also nondecreasing in B. Thus, both the principal and the agent who receives in-
vestment are always better off under a larger resource endowment.
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Investing in two agents

Given B ≤ B, by Proposition 1, b1 = b2 = B
2 . By Lemma 1, when γB > 2, each of the two

agents will exert positive effort. By (6), the equilibrium failure rate of each agent is

(10) y∗1 = y∗2 = y∗ :=
4

αBγ +
√

Bγ
√

8 − 8α + α2Bγ
.

Obviously, y∗ decreases in B, so investing more resources increases the failure rate of
both agents. The equilibrium effort level, x∗(B

2 ) = − lny∗
B/2 , exhibits a hump shape, which

is depicted by the dash lines in Figure 1. Note that it require more resources to reach
the peak of equilibrium effort when investing in two agents than that of one agent, and
the maximum of x∗i (

B
2 ) is also less than that of x∗i (B). These phenomena indicate that the

principal must devote more resources to incentivize competing agents under the potential
business-stealing effect.

The principal’s expected profit is

Πd(B) =(1 − γ)[2α(1 − y∗)2 + 2y∗(1 − y∗)]

=

⎧⎨
⎩

0, γB ≤ 2,

(1 − γ)(α − 4
γB +

√
γα2B−8α+8

γB ), γB > 2.
(11)

where the subscript d indicates that the resource allocation strategy can induce a duopoly
product market structure. The expected payoff of each agent is

Ud(B) =γ(1 − y∗)(α(1 − y∗) + y∗) + ln y∗

B/2

=

⎧⎪⎨
⎪⎩

0, γB ≤ 2,

1
2B

[
αBγ +

√
Bγ

√
γα2B − 8α + 8 + 4 ln 4

αBγ+
√

Bγ
√

8−8α+α2Bγ
− 4

]
, γB > 2.

(12)

The following lemma summarizes the properties of Πd(B), and Ud(B).

Lemma 3. If the principal adopts the equal investment strategy, b1 = b2 = B
2 , and γB > 2, then

(i) When α ≥ 1
2 , the principal’s profit Πd(·) always increases in B. When α < 1

2 , the principal’s
expected profit first increases and then decreases in B. It reaches the maximum at B =
8(1−α)

γ(1−2α)
.

(ii) The agent’s expected payoff, Ud(B), is always increasing in [ 2
γ , B∗

d ], where B∗
d = arg maxB Πd(B).
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Lemma 3-(i) considers two cases. When α ≥ 1
2 , the business-stealing effect is weak.

The total profit from the product market with two successful agents is larger than that
with only one successful agent (2α ≥ 1), so Πd(B) is always increasing in B. In contrast,
when α < 1

2 , rent dissipation occurs, so Πd(B) decreases in B when B becomes large. As a
result, investing too many resources can backfire for the principal, although the resources
are not costly per se.

Lemma 3-(ii) states that an agent’s expected payoff increases in B before reaching the
peak of Πd(B). Intuitively, the principal’s interest is aligned with those of the agents
under the proportional profit sharing rule, so it must be suboptimal for the principal to
adopt an investment strategy that hurts the agents.

Comparison between two strategies

Now, we compare the principal’s expected profit in (8) and (11) under the two investment
strategies. Because Πd(B) = 0 when γB < 2, we focus on the case in which γB > 2.

Proposition 3. Πm(B) and Πd(B) exhibit the following properties:

(i) max{Πm(B), Πd(B)} is increasing in B.

(ii) Πm(B)− Πd(B) is quasiconvex in B ∈ ( 2
γ , ∞).

Proposition 3-(i) implies that the principal will always exhaust her resources, i.e., b∗1 +
b∗2 = B. Note that as B → 2

γ , Πd(B) → 0, so when B is low, Πm(B) − Πd(B) > 0,
and the principal invests in only one agent. Proposition 3-(ii) implies that when B ≥ 2

γ ,
Πm(B) − Πd(B) may first decrease and become negative (depending on α and γ); thus,
investing in two agents might become optimal. The quasiconvexity implies that there
only exists at most one continuous region of B where investing in two agents is optimal.

Based on the results above, we obtain the optimal resource allocation strategy as fol-
lows.

Theorem 1. Given α, γ, and B, the optimal resource allocation strategy is as follows:

(i) If γB ≤ 1, the principal invests nothing and obtains zero profit, i.e., (b∗1, b∗2) = (0, 0).

(ii) If 1 < γB ≤ 2, the principal invests all of her resources in one agent, i.e., (b∗1, b∗2) = (B, 0).

(iii) If γB > 2, the principal uses all of her resources. As shown in Figure 3,

a. When α ≤ 6
√

2 − 8 (region a), the principal invests in one agent, i.e., (b∗1, b∗2) = (B, 0).

16



100

101

102

103

104

1−α−√
α2+16α−8

1−2α
1−α−√

α2+16α−8
1−2α

1−α+
√

α2+16α−8
1−2α

1−α+
√

α2+16α−8
1−2α

6
√

2 − 8 1/2

(a) (b) (c)(c)

(b∗1, b∗2) = (B, 0)(b∗1, b∗2) = (B, 0)

(b∗1, b∗2) = (0, 0)(b∗1, b∗2) = (0, 0)

(b∗1, b∗2) = (B
2 , B

2 )(b∗1, b∗2) = (B
2 , B

2 )

2

α

γ
B

Figure 3: Principal’s Optimal Resource Allocation Strategy

b. When 6
√

2 − 8 < α < 1
2 (region b), if γB ∈ [ 1−α−√

α2+16α−8
1−2α , 1−α+

√
α2+16α−8

1−2α ] (shaded
area), the principal invests equally in two agents, i.e., (b∗1, b∗2) = (B

2 , B
2 ); otherwise the

principal invests in one agent, i.e., (b∗1, b∗2) = (B, 0).

c. When α ≥ 1
2 (region c), if γB ≥ 1−α−√

α2+16α−8
1−2α (shaded area), the optimal allocation

strategy is (b∗1, b∗2) = (B
2 , B

2 ); otherwise, it should be (b∗1, b∗2) = (B, 0).

The term γB measures the abundance of resources from the agents’ perspective. In
Theorem 1-(i), the resources are scarce (γB ≤ 1). Even if an agent obtains all the available
resources, the effort cost still outweighs the expected profit. Hence, the agent will exert
zero effort; thus, the principal will hold her resources. When there are a slightly more
resources (1 < γB ≤ 2), Theorem 1-(ii) shows that the principal can earn a positive
profit by granting the resources to a single agent. The resources are still not sufficient
for diversification because investing in two agents will lead to insufficient resources to
incentivize either of them to exert effort (Lemma 1).

When the amount of resources is sufficiently large to incentivize two agents (γB > 2),
the key trade-off between the risk of innovation failure and rent dissipation emerges. The
strength of rent dissipation effect is determined by α. If the product market competition
is intense (small α), the principal is more inclined to invest in only one agent. Hence,
Figure 3 is divided into the left region and right region based on α, corresponding to
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investing in one agent and two agents, respectively.
Conversely, the risk of innovation failure is mainly determined by γB and invest-

ment strategy. Figure 4-(a) compares the innovation success rates under two invest-
ment strategies. y∗m is the failure rate of agent 1 given (b1, b2) = (B, 0). y∗d is the fail-
ure rate of one agent defined in (10) given (b1, b2) = (B/2, B/2). Panel (b) depicts
δ = 1 − (y∗d)

2 − (1 − y∗m), which is the difference between the probability of having at
least one successful agent under the equal investment strategy (1 − (y∗d)

2) and the suc-
cess rate of devoting all resources to one agent (1 − y∗m). δ is an important quantity that
measures the benefit of diverse investment in reducing the risk of innovation failure.

101 102

0.5

1

γB

Innovation success rate

1 − y∗m
1 − (y∗d)

2

(1 − y∗d)
2

2(1 − y∗d)y
∗
d

(a)
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0

γB

δ = 1 − (y∗d)
2 − (1 − y∗m)

(b)

Note: In Panel (a), 1 − y∗m indicate the success rate of agent 1 given (b1, b2) = (B, 0). The other three lines
are the probability that at least one agent succeeds (1 − (y∗d)

2), both agent succeed ((1 − y∗d)
2), and only one

agent succeeds (2(1− y∗d)y
∗
d), respectively, given (b1, b2) = ( B

2 , B
2 ). Panel (b) plots the probability that at least

one agent succeeds (b1, b2) = ( B
2 , B

2 ) minus the probability thzt agent 1 succeeds given (b1, b2) = (B, 0).

Figure 4: Innovation Success Rates and δ under Two Investment Strategies

Theorem 1-(iii)-a states that when the rent dissipation effect is strong (α ≤ 6
√

2 − 8),
the principal wants to avoid product market competition which leads to very low profits,
so she cares about the probability of inducing a monopoly product market. As shown in
Figure 4-(a), the probability of having exactly one successful agent is always higher when
investing in one agent than investing in two agents. Hence, the principal will devote all
resources to one agent.

Theorem 1-(iii)-c characterizes the case in which the total profits from two competing
agents are greater than the profit from one successful agent (α > 1

2). In this case, the most
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important thing for the principal is to avoid having no product in the market. Figure 4-
(b) shows that when γB is small, δ < 0, so devoting all resources to one agent leads to
a higher probability of having a successful agent; but when γB becomes large, δ > 0,
and dividing the resources between two agents yields benefits from lowering the risk of
innovation failure and also increases the total profit if both agents succeed. We find that
the threshold condition to justify diverse investment is γB ≥ 1−α−√

α2+16α−8
1−2α (red line in

Figure 3).
Theorem 1-(iii)-b demonstrates the most interesting case with an intermediate level

of α. Figure 4-(b) shows that, as γB increases, δ is initially negative, and then becomes
positive, but gradually converges to zero. Hence, when resources are limited, there is
no benefit from diverse investment, so the principal will concentrate her resources. With
more resources, δ becomes positive, and the principal invests in two agents as the benefit
from diverse investment outweighs the rent dissipation (α < 1

2). However, when γB
becomes sufficiently large, the benefit from diverse investment shrinks. Moreover, the
loss from rent dissipation becomes large, because the probability of having one successful
agent decreases, and the probability of having a competitive product market increases, as
illustrated by two blue dotted lines in Figure 4-(a). As a result, with abundant resources,
the small benefit from diverse investment in reducing the risk of innovation failure is
dominated by the loss from rent dissipation. In summary, as γB increases, and the optimal
resource allocation rule switches from investing in one agent to investing in two agents
and then back to investing in one agent.

The optimal investment strategy above is somewhat consistent with the example of
Sequoia’s portfolio in the introduction. Establishing a new e-commerce platform requires
a huge amount of investment (> $1.5 billion), and the competition between e-commerce
platforms can be very intense. Moreover, the uncertainty involved in developing the
product of an online platform is relatively low. In contrast, there was a great deal of
uncertainty in developing successful products in newly emerged markets of online edu-
cation and online health care, but the required amount of investment for each startup was
relatively small. That might be the reason that Sequoia only supported one e-commerce
platform at a time, but diversified its investment in several startups in online education
and health service.
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4 Extensions

In this section, we show that the main features of the optimal resources allocation strategy
are robust under an endogenous profit sharing rule and multiple agents. We also explore
the optimal investment strategy of a nonprofit principal. Appendix C covers other exten-
sions including costly resources, generalization of innovation success function, and the
case of competing investors.

4.1 Endogenous Profit Sharing

In the baseline model, we assume that the principal will charge an exogenously fixed
share 1 − γ of the profit. In addition, our analysis shows that given γ, when γB ≥ 1,
the principal should exhaust her resources by investing all of them in one agent or in-
vesting an equal amount in each of two agents. Because the resources are essential for
successful innovation, the principal might have the power to strategically determine the
profit-sharing rate γ.

Suppose that the principal can endogenously choose a profit-sharing rate γ in addition
to the resource allocation. Given any γ, the optimal resource allocation will still follow
Theorem 1. Similar to the analysis of the baseline model, we first separately investigate
the case of investing in one agent and the case of investing in two agents, and then we
compare the profits between these two cases to derive the optimal resource allocation
rule.

Based on Proposition 2, if the principal invests in only one agent, she should grant all
resources B to this agent as long as B ≥ 1

γ .15 The agent’s equilibrium failure rate y∗i is
determined by maximizing his expected payoff function with bi = B:

max
0<yi≤1

γ(1 − yi) +
ln yi

B
.

We can easily show that y∗i = min{ 1
γB

, 1}. The principal’s problem is

max
0<γ<1

(1 − γ)(1 − min{ 1
γB

, 1}).

Proposition 4. Given B > 1, when the principal only invests in one agent, the optimal profit-
sharing rate is γ∗ = 1√

B
. Accordingly, the principal’s profit is (1 − 1√

B
)2; the agent’s equilibrium

15If B̄ ≤ 1, then γB̄ ≤ 1 for all γ. By (2) and Theorem 1, it is optimal to allocate zero resources.
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effort is x∗(B) = ln(
√

B)
B

; and the agent’s payoff is 1√
B
− 1

B
+ 1

B
ln 1√

B
.

Note that the optimal profit-sharing rate γ∗ decreases in the total amount of available
resources B. Intuitively, the principal’s choice of γ reflects a balance between value cre-

ation (larger γ) and value capture (smaller γ). The agent’s effort, x∗(B) = ln(
√

B)
B

, reaches
the global maximum at B = e. With B > e, as B increases, the agent exerts less effort
and creates less value. As the agent relies more on the abundant resources to conduct
innovation, and the principal will capture a larger share of the total profit. As a result, in
Proposition 4, the agent’s payoff first increases and then decreases in B. This is different
from the case of exogenous profit sharing in which the agent’s payoff (9) always increases
in B.

Next, by Theorem 1, if the principal finds it optimal to invest in two agents, the re-
source allocation will be (B

2 , B
2 ). Applying a similar analysis as in Section 3.2, the equilib-

rium failure probabilities are

(13) y∗1 = y∗2 = y∗ =

⎧⎨
⎩

1, γB ≤ 2
4

αγB+
√

γB
√

8−8α+α2γB
, γB > 2.

(14) max
0<γ<1

(1 − γ)[2α(1 − y∗)2 + 2(1 − y∗)y∗].

When B ≤ 2, an agent is unwilling to exert positive effort. The innovation activity
fails for sure (y∗ = 1), and the principal always obtains a zero payoff independent of the
profit-sharing rule γ. When B > 2, (14) yields the following result.

Proposition 5. Given B > 2, when the principal invests equally in two agents, the principal’s
profit is quasiconcave in γ ∈ (0, 1). Therefore, the optimal sharing rule γ∗ uniquely exists, and
γ∗ decreases in B and increases in α.

Note that because γ∗ decreases in B, the principal will always use up her resources
under endogenous profit sharing when investing in two agents. This is different from
Lemma 3 under exogenous profit sharing in which the principal can retain some resources
to avoid fierce product competition. To understand this difference, note that the equilib-
rium failure rate y∗ in (13) is a function of γB. As long as γB is fixed, the agent’s equi-
librium effort and the total profit from the product market will not change. When the
available resources (B) increase, the principal can always increase her profit by reducing
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γ and increasing B to keep γB unchanged. Hence, it is optimal for the principal to exhaust
her resources under endogenous profit sharing.
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Exogenous profit sharing (γ = 1/2)

Note: The region of investing in none is not drawn. The shaded and non-shaded regions are the cases
where the investor invests in two agents and a single agent, respectively.

Figure 5: Optimal Resource Allocation with Endogenous and Exogenous γ.

Based on Propositions 4 and 5, we reach the following result:

Theorem 2. In the case of endogenous profit sharing, the optimal resource allocation rule is as
follows:

(i) When α ≤ 6
√

2 − 8, the principal always invests in one agent, i.e., (b∗1, b∗2) = (B, 0), and
the optimal sharing rule is γ∗ = 1√

B
.

(ii) When 6
√

2 − 8 < α < 1
2 , as B increases, the investor will switch from investing in one

agent to investing equally in two agents, and then back to investing in one.

(iii) When α ≥ 1
2 , as B increases, the investor will first invest in one agent and then invest

equally in two agents.

Therefore, when the principal has the power to determine the “tax” rate, the optimal
allocation rule is qualitatively similar to that under exogenous profit sharing.
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4.2 Multiple Agents

We relax the restriction of having only two agents. Suppose that there are a large or
infinite number of agents who can receive the principal’s resources and engage in inno-
vation. All of the agents are symmetric and share the same innovation success function
(1). A principal with limited resources B can choose to invest in n agents with a desired
total amount of B. If m ≤ n agents successfully innovate and launch their products on the
market, each agent obtains αm−1 profit with α ∈ (0, 1).16

We focus on the symmetric case in which the principal allocates a total amount of
resources B ≤ B evenly to n agents. Each agent receives resources b = B/n. Under the
resource allocation rule (b, b, ..., b), a generic agent chooses his failure rate by solving the
following problem.

y∗ = argmax
0<y≤1

{γ(1 − y)
n−1

∑
m=0

Cm
n−1(1 − y∗)m(y∗)n−1−mαm +

ln y
b

}

= argmax
0<y≤1

{γ(1 − y)(α + y∗ − αy∗)n−1 +
ln y

b
}.

Based on the FOC, we find that when n ≤ 	γB
, 1 > y∗, the investment decision
satisfies: γBy∗(α + y∗ − αy∗)n−1 = n, which implies that y∗ is unique and decreasing in
B. Since the profit for the principal is (1 − γ)n(1 − y∗)(α + y∗ − αy∗)n−1, the principal’s
optimization problem is

max
1≤n≤	γB


(1 − γ)n(1 − y∗)(α + y∗ − αy∗)n−1

s.t. γBy∗(α + y∗ − αy∗)n−1 = n and B ≤ B.

We solve the above problem numerically and obtain the optimal number of agents
receiving positive investment, n∗(α, γB). Figure 6-(a) illustrates n∗(α, γB) for a relatively
large α. We observe that as the product market becomes less competitive (or as α in-
creases), the principal tends to invest in more agents. Panel (b) displays a slice of n∗(α, γB)
at α = 0.95. It shows that for a large α, n∗ first increases and then decreases in B. This
pattern resembles Theorem 1, which states that with more resources, the principal may
want to reduce the number of invested agents. Therefore, the main results in the baseline
model with n capped at two are robust to removing the cap.

16This profit structure simplifies our analysis. A quantity competition model can provide the foundation
for this assumption. See Appendix A.
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Figure 6: Optimal Number of Agents with Positive Investment

4.3 Nonprofit Principal

Many research grants and entrepreneurship supporting funds are provided by govern-
ments and nonprofit organizations. These funding authorities may have objectives other
than profit maximization. Most public funding authorities and research institutes allo-
cate grants without acquiring any equity share of startups. The purpose of these grants
is mainly maximizing the number of successful innovations or the value of knowledge
spillover. For example, National Science Foundation (www.nsf.org) and the National In-
stitutes of Health (www.nih.gov) evaluate grants based on feasibility (success rate) and
quality (consumer surplus or social welfare) (Jacob and Lefgren, 2011; Azoulay and Li,
2020). For some important R&D projects such as COVID-19 vaccines or life-saving drugs
(Budish et al., 2015), public funding authorities may value having at least one successful
innovation. VCs established by a government or university technology transfer offices
typically own equity shares of funded startups (Rothaermel and Thursby, 2005). They
can be considered as targeting total social welfare because they care about the profitabil-
ity of funded startups and also want to achieve some social goals.

Because the principal is not profit-oriented, we set γ = 1 for simplicity. Based on
the baseline model, we consider four alternative objective functions. The expected total
number of successful innovations is

(15) N(B) := 1 − y∗1 + 1 − y∗2.
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The probability of having at least one successful innovation is

(16) P(B) := 1 − y∗1y∗2.

To compute consumer welfare, we adopt the quantity competition model in Appendix
A.1 for the product market. Let qi is the quantity supplied by agent i, and pi = A −
gq−i − qi is the equilibrium price of product i. If gent i fails at innovation, qi = 0, where
g ∈ (0, 1) measures the intensity of competition. By setting A = 2, the equilibrium profit
for a monopolistic product is 1, and for two successfully launched products, each agent
earns α = 4

(2+g)2 .

When the market has only one agent, the equilibrium quantity is A
2 = 1, the equilib-

rium price is 1, consumer surplus is 1
2 , and the total welfare (profit plus consumer surplus)

is 1 + 1
2 = 3

2 . When both agents successfully launch products, the equilibrium quantity of
each agent is A

2+g = 2
2+g , the equilibrium price is 2

2+g , the consumer surplus is 4(1+g)
(2+g)2 , and

the welfare is 2α + 4(1+g)
(2+g)2 = 4(3+g)

(2+g)2 . Hence, the expected consumer surplus is

(17) CS(B) :=
4(1 + g)
(2 + g)2 (1 − y∗1y∗2) +

1
2
[(1 − y∗1)y

∗
2 + (1 − y∗2)y∗1 ].

The expected total welfare is

(18) W(B) :=
4(3 + g)
(2 + g)2 (1 − y∗1y∗2) +

3
2
[(1 − y∗1)y

∗
2 + (1 − y∗2)y∗1 ].

Given a resource allocation (b1, b2) with b1 + b2 ≤ B, the innovation stage equilibrium
is characterized by y∗1 = Y(b1, y∗2) and y∗2 = Y(b2, y∗1). We solve the principal’s problem
using the objective functions (15)-(18). Here is the result.

Theorem 3. There exist threshold amounts of resources B#1(α), B#2(α), B#3(α), and B#4(α),
respectively, for the principal’s objective functions N(B), P(B), CS(B), and W(B). For ι =

1, 2, 3, 4, when B ≤ B#ι(α), the principal’s optimal resource allocation is (b∗1, b∗2) = (B, 0); when
B > B#ι(α), the principal’s optimal resource allocation is (b∗1, b∗2) = (B

2 , B
2 ). Moreover, B#1(α),

B#2(α), B#3(α), and B#4(α) all decrease in α.

Theorem 3 shows that, although the principal is not profit-oriented from the product
market, she will sometimes invest in only one agent under limited resources and intense
product market competition. The reason is that the agents are still profit-maximizing,
so the potential rent dissipation can discourage them from exerting effort. Unlike the
baseline model, we do not observe the non-monotone investment strategy. As the to-
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tal amount of resources becomes abundant, the principal’s investment strategy switches
from investing in one agent to two agents but does not switch back because, for all four
objectives above, the principal always prefers having two successful innovations more
than one. Rent dissipation is not a major concern, so the optimal resource allocation strat-
egy switches only once.
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Note: For each threshold, the region below represents that it is optimal to concentrate resources in one
agent. For consumer surplus (B#3(α)) and total social welfare (B#4(α)), because the quantity competition
model restricts that g ∈ [0, 1], we here only draw the region of α = 4

(2+g)2 ∈ [ 4
9 , 1]. The black dotted line is

the threshold obtained in Theorem 1 for a profit-oriented principal maximizing total profit.

Figure 7: Switching Thresholds under Different Principal’s Objectives

Figure 7 depicts the thresholds characterizing the optimal investment strategies under
different principal’s objectives derived in Theorems 3 and 1. Compared with the case of
a profit-oriented principal, a nonprofit principal tends to invest in a more diverse way.
Specifically, the nonprofit principal switches from investing in one agent to two agents
with less resources when she aims to maximize the total number of successful innovators
(N(B)), consumer surplus (CS(B)), or total welfare (W(B)). This is intuitive because a
nonprofit principal does not directly suffer from profit reduction in the product market.

Compared with other nonprofit objectives, the threshold is the highest for the proba-
bility of at least one innovator succeeding (P(B)). The objective of P(B) is special because
the principal does not benefit from having more than one successful innovations when
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maximizing P(B), but she does when maximizing N(B), CS(B), or W(B). Therefore, the
principal is more reluctant to invest in two agents with the objective function P(B).

Note that the threshold for P(B) intersects with the one for a profit-maximizing princi-
pal. When the product market competition is mild and the amount of resources is small, it
is possible that the for-profit principal chooses to invest in two agents while the nonprofit
principal invests in one agent. The reason is again that having two products benefits the
for-profit principal when α > 1

2 , but does not increase P(B). However, as rent dissipation
occurs (α < 1

2), the profit-maximizing principal is more likely to concentrate her resources
than the nonprofit principal.

In summary, a profit-oriented funding authority will generally invest resources in a
more concentrated way than a nonprofit counterpart. When resources are abundant, non-
profit funding authorities will induce more successful innovations and higher social sur-
plus but lower profits. Depending on the policymaker’s goal, some areas of innovation
should be directed by nonprofit funding authorities and others by private VCs. For ex-
ample, to develop COVID-19 vaccines, funding decisions should be made by nonprofit
entities because the importance of successful innovations and social welfare outweigh the
profit during the pandemic.

5 Conclusion

In this paper, we examine how the interplay between allocated resources and market com-
petition crafts an innovator’s strategy. Specifically, a downstream innovative agent will
exert effort and actively innovate only if he anticipates that the profit from the product
market can cover his costs, after considering the uncertainty of innovation. Thus, compe-
tition factors in agents’ strategic considerations, propagating to the upstream principal’s
resource arrangement.

We find that, when the product market competition is at the moderate level, the re-
source allocation strategy exhibits an interesting pattern: the optimal investment diversi-
fication first increases and then decreases in the amount of resources. When the amount
of resources is small, disseminating resources to multiple agents will discourage agents
from exerting effort in the innovation process due to lack of resources. As resources be-
come abundant, although investing in more agents increases the probability that at least
one agent successfully innovates, the product competition will erode profits when more
agents succeed. As a result, the optimal resource allocation strategy is non-monotone in
the resource capacity.
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In this regard, our analytical framework and results offer some important policy and
managerial implications to both profit-oriented investors and nonprofit funding author-
ities. Although the principal herself may not be profit-oriented, the principal must be
mindful of agents’ incentives because the ultimate success of innovation relies on their
efforts. The resource capacity subsequently dictates the number of agents that the princi-
pal can incentivize effectively. When resources are limited, some degree of concentration
is necessary to guarantee the overall success rate of innovation.

For various industries and different stages of R&D, diversifying innovation invest-
ment can lead to vastly different outcomes. As funding authorities devote more resources
to innovation, it is possible that funding more innovators will lead to worse outcomes in
innovation and knowledge transfer because too many similar startups enter the same
market. As Lerner (2012) said, “(government) subsidy will increase the profits of en-
trepreneurs and venture capitalists. But it may lure more entrepreneurs and venture cap-
italists into the market, so that, unless the supply of good ideas grows, more firms and
financiers are chasing after the same ideas. This competition may depress returns, and
ultimately discourage entrepreneurs and venture investors.”

In establishing innovation policy, the policymaker must carefully consider this possi-
bility. For example, China currently has at least 1,500 incubators supported by the Min-
istry of Science and Technology, funding approximately 80,000 companies. Most of these
companies are in several thrust areas such as advanced equipment manufacturing, new
materials, and new-energy vehicles. The product market competition intensity should
be an important factor in determining the resource distribution and investment diver-
sity in different areas. Concentrating resources in some areas while diversifying in others
may substantially improve the performance of these incubators. For innovation portfo-
lio managers, it is important to allocate resources with a proper level of diversification.
Henderson (1994) points out that “successful resource allocation is not simply a matter of
picking winners ... Portfolio diversity is the key to success. Increasingly diverse research
stimulate productivity, but only up to a point. As in any business, a company can spread
itself too thin.” From a dynamic perspective, the managers should diversify resources
at first to reduce the risk of failure of all projects and concentrate resources in the end
to avoid launching too many products onto the market. This strategy is supported by
empirical evidence in Klingebiel and Rammer (2014).

We also analyze the case of nonprofit principals. In general, a nonprofit principal
prefer more diverse investment portfolio than a for-profit principal because the former
cares more about the success of innovation and does not directly bear the loss from rent
dissipation. For different areas of innovation, the policymaker can let public authorities,
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private VCs, or public-private partnerships to be the main investors depending on the
policy goals.

For future research, we also plan to explore a complete model with multiple princi-
pals. In reality, the innovation activities are often funded by multiple funding authorities
including profit-oriented and nonprofit entities, like in the case of COVID-19 vaccine de-
velopment. This analysis will help the policymaker to compare different ways of stimu-
lating innovation and to evaluate how efficient the decentralized innovation investment
outcome is.
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Appendix
(For online publication)

A Product Market Competition

A.1 Quantity competition

Suppose that two successful agents engage in quantity competition. The price of agent i’s product

is determined by an inverse demand function (Vives, 1984), that is, Pi(qi, q−i) = A − gq−i − qi.

Here, A measures the size of the market, qi is the quantity produced by agent i, and g ∈ (0, 1)

characterizes the degree of substitution between two agents’ products. The consumer surplus of

the product market is

CS = A(q1 + q2)− (q2
1 + 2gq1q2 + q2

2)/2 − p1q1 − p2q2.

Note that an agent is able to launch and produce his product only when his innovation is

successful. If there is only one agent succeeding in innovation, he becomes a monopolist with the

profit

πm = max
qi

γ(A − qi)qi =
γA2

4
.

If both agents succeed in the innovation stage, it is straightforward to show that the equilibrium

quantities are q∗1 = q∗2 = A
2+g . The profit for each agent is

πd =
γA2

(2 + g)2

As a result, the ratio between the monopoly profit and the duopoly profit can be derived as

α =
πd

πm
=

4
(2 + g)2 .

One can show that when g ∈ (0, 1), quantity competition leads to α ∈ ( 4
9 , 1).

The quantity competition model can be easily generalized into the case with m competing

agents. When there are m agents succeeding in innovation, each will earn a profit γa2

(2+g(m−1))2 ,

where a is the market potential level and g measures the competition intensity among agents.

Specifically, g = 0 indicates that these m products are fully independent, and g = 1 indicates that

they are homogeneous.

In Section 4.2, we use αm−1 to capture the profit structure for successful agents. The main

results are consistent irrespective of using g or α to measure the competition intensity.
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A.2 Price competition

The product market can also be modeled as price competition based on a multinomial-logit (MNL)

discrete choice model (Gallego and Topaloglu, 2019). Suppose that two agents engage in innova-

tion to create a specified product for a market of size 1. Let the base quality of a product relative to

the outside option be v0. Apart from the base quality, consumers have heterogeneous preferences

for each agent or the outside option. The idiosyncratic random utility terms of consumers follow

the i.i.d. Gumbel distribution. When there are k products, consumers make a discrete choice based

on the MNL model. The choice probability of product i is ev0−pi

1+∑k
j=1 ev0−pj

.

When there is only one successful agent in the market, he chooses p by maximizing his profit.

The profit of the agent under the monopoly case can be derived as follows:

πm = max
p

γev0−p p
1 + ev0−p = γL(ev0−1),

where L(y) is the root of xex = y. However, when both agents successfully launch their products,

they must compete with each other on their prices. The optimal prices of the two agents are

symmetric, which satisfies the following condition:

p∗ = argmax
p

γev0−p p
1 + ev0−p∗ + ev0−p .

Then, we can obtain ev0 = ep∗ (p∗−1)
2−p∗ with 1 ≤ p∗ ≤ 2. Accordingly, the profit for each agent in the

competitive case is

πd =
γev0−p∗ p∗

1 + 2ev0−p∗ = γ(p∗ − 1).

As a result, the ratio between the monopoly profit and the duopoly profit is captured by:

α =
πd

πm
=

p∗ − 1

L( ep∗−1(p∗−1)
2−p∗ )

.

One can show that when v0 ∈ (−∞, ∞), namely, p∗ ∈ (1, 2), it leads to α ∈ (0, 1).

B Proofs

Proof of Lemma 1. By equation (6), for y∗1 > 0 and y∗2 > 0, we have

y∗1(2) =

√
4(1 − α)α2γb1b2

2 + (b2(α − 1) + b1(γα2b2 − α + 1))2 − α2γb1b2 ± (b2 − b1)(1 − α)

2α(1 − α)γb1b2
.

Then letting 0 < y∗1(2) < 1, we can yield the conditions shown in Lemma 1. �
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Proof of Lemma 2. Given b−i, differentiating equation (6) with respect to bi yields

[α(1 − y−i) + y−i]
dyi

dbi
+ (1 − α)yi

dy−i

dbi
= − 1

γb2
i

,

and

[α(1 − yi) + yi]
dy−i

dbi
+ (1 − α)y−i

dyi

dbi
= 0.

By solving the two equations above, we have

dyi

dbi
= − 1

αb2
i γ

α + (1 − α)yi

α + (1 − α)(y1 + y2)
< 0,

and
dy−i

dbi
=

1
αb2

i γ

(1 − α)y−i

α + (1 − α)(y1 + y2)
> 0.

�

Proof of Proposition 1. We divide the proof into several cases.

Case 1: γB ≤ 2

Note that when γB ≤ 2, then γb2 ≤ 1. Due to the insufficient amount of resources to incen-

tivize both agents, y∗2 = 1 for sure. Now, the profit of the principal only comes from a potentially

successful outcome from agent 1’s innovation. Similar to Proposition 2, Π̃(b2; B) is nonincreasing

in b2 ∈ [0, B
2 ].

Case 2: γB > 2

For γB > 2, we perform a special transformation to simplify the exposition of our proof: let

b2 = B
2 [1 −

√
1 − 1−α

z ] with z ∈ [1 − α, ∞). This guarantees b2 ≤ b1. Note that γb1 > 1 for sure.

If b1(z)
b2(z)

= 1 + α(γb1(z)− 1), then

16z2 + 4(α2Bγ − α2 + 4α − 4)z − (1 − α)α2B2γ2 = 0.

As 0 < α < 1, the two roots to the equation above satisfy that z1z2 = −(1 − a)α2B2γ2/16 < 0.

Hence, there is a unique non-negative root denoted as ẑ. It is easy to verify that ẑ ≥ 1 − α. In

addition, it can be verified that the condition in Lemma 1 holds only when z < ẑ.

Case 2.a: z ≥ ẑ
In this case, y∗2 = 1, and the profit of the principal will only come from a potentially successful

outcome from agent 1’s innovation. Then, the profit of the principal is increasing in z ∈ [ẑ, ∞) as

agent 1 obtains more resources.

Case 2.b: z ∈ [1 − α, ẑ)
Using the expressions of y∗1 and y∗2 in the proof of Lemma 1, the principal’s objective becomes
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as follows,

Π̃(z) = (1 − γ)(α − 4z
(1 − α)γB

+

√
α4B2γ2 + 8z(α2Bγ + 2α − 2) + 16z2

αBγ
).

Denote d(z) := α4B2γ2 + 8z(α2Bγ + 2α − 2) + 16z2. As γB > 2, z ≥ 1 − α and 0 < α < 1, we have

d(z) ≥ 0. Moreover, we obtain

Π̃′′(z)
1 − γ

=
64(1 − α)√

d3(z)αBγ
(α2Bγ + α − 1).

Case 2.b.1: α2Bγ + α − 1 ≥ 0

In this case, Π(z) is convex in z ∈ [1 − α, ẑ).
Case 2.b.2: α2Bγ + α − 1 < 0

Π̃(z) is concave in z ∈ [1 − α, ẑ). If Π̃(z) is maximized at z∗ with z∗ ∈ (1 − α, ẑ), by the FOC,

we have

0 =
Π̃′(z∗)
1 − γ

=
4

Bγ
[

1
α − 1

+
−2 + 2α + α2Bγ + 4z∗

α
√

d(z∗)
].

By rearranging the terms, we have

0 =− 4(1 − α)4 + 4(1 − α)3α2Bγ + (2α − 1)α4b2γ2

+ 8(2α − 1)(α2Bγ + 2α − 2)z∗ + (32α − 16)z2∗.

If there is a real solution of z∗, then

(8(2α − 1)(α2Bγ + 2α − 2))2

− 4(−4(1 − α)4 + 4(1 − α)3α2Bγ + (2α − 1)α4B2γ2)(32α − 16)

=256α2(1 − 3α + 2α2)(α2B + α − 1) ≥ 0,

which means that 1 > α ≥ 1
2 . However, together with α2Bγ + α − 1 < 0 and γB > 2, there is a

contradiction. Therefore Π̃(z) is monotone in z ∈ [1 − α, ẑ).
In summary, Π̃(z) is convex or monotone in z ∈ [1 − α, ẑ) and Π̃(z) is increasing in z ∈ [ẑ, ∞).

As a result, Π̃(z) is quasiconvex in z ∈ [1 − α, ∞), which implies the claim in the proposition. �

Proof of Lemma 3. We first show (i). Note that γB2Π′
d(B)

4(1−γ)
= 1 − (1−α)

√
γB√

8−8α+α2γB
, and results can be

easily derived.

For (ii), denote D̃(B) := B2 dUd(B)
dB = 1+ (α−2)

√
Bγ√

8−8α+α2Bγ
− 2 ln 4

αBγ+
√

Bγ
√

8−8a+a2Bγ
. Then Sign(D̃(B)) =
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Sign( dUd(B)
dB ). Moreover, D̃(B = 2

γ ) = 0, dD̃(B)
dB |B= 2

γ
= γ

(2−α)2 > 0 and

dD̃(B)
dB

=
1
B
(1 − 4(2 − 5α + 3α2)

√
Bγ − α3(Bγ)3/2

(8 − 8α + α2Bγ)3/2 ).

Solving dD̃(B)
dB = 0 directly provides two solutions as 1−α

2α3γ
[4− 12α− 3α2 ± (2− a)

√
(2 − α)(2 − 9α)].

Then we have the following findings:

(1) When α ≥ 2/9, there does not exist real solution of B satisfying dD̃(B)
dB = 0. Then as D̃(B =

2
γ ) = 0 and dD̃(B)

dB |B= 2
γ
> 0, Ud(B) is always increasing in B.

(2) When α < 2/9, the two solutions are real. Note that B∗
d = 8(1−α)

γ(1−2α)
is smaller than the larger

solution. Therefore when B ∈ [ 2
γ , B∗

d ] increases, as dD̃(B)
dB |B= 2

γ
> 0, dD̃(B)

dB is either a) first positive

and then negative; or b) always non-negative. Case b) leads to D̃(B) > 0, namely dUd(B)
dB > 0 for

all B ∈ [ 2
γ , B∗

d ]. For case a), when B ∈ [ 2
γ , B∗

d ] increases, D̃(B) first increases and then decreases.

As D̃(B = 2
γ ) = 0, D is always positive for the increasing part. If D̃(B) < 0 for some B ∈ [ 2

γ , B∗
d ],

we must have D̃(B∗
d) = D̃( 8(1−α)

γ(1−2α)
) = − 1

1−α + 2 ln 2(1−α)
1−2α < 0, leading to a contradiction when

α < 2/9. �

Proof of Proposition 3. For (i), as Πm(B) is always increasing in B, we need to show that Πd(B)
is increasing in B when Πd(B) > Πm(B).

(1) If α ≥ 1
2 , Πd(B) is increasing in B for sure by Lemma 3.

(2) If α < 1
2 , we need to consider two cases. The condition Πm(B) = Πd(B) implies

(1 − 2α)γ2B2 − 2(1 − 2α)γB + 9 = 0.(19)

When α < 6
√

2 − 8, there is no solution of γB > 2 to the equation above. Because Πm(
2
γ ) >

Πd(
2
γ ), for any given B, Πm(B) > Πd(B).
When 6

√
2 − 8 ≤ α < 1

2 , there are two solutions for (19). At optimality, Πd(B) ≥ Πm(B) if

and only if γB ∈ [ 1−α−√
α2+16α−8

1−2α , 1−α+
√

α2+16α−8
1−2α ]. Recalling Lemma 3 that Πd(B) is increasing in

B ∈ 1
γ [2, 8(1−α)

1−2α ]. Since 1−α+
√

α2+16α−8
1−2α < 8(1−α)

1−2α for α ∈ [6
√

2 − 8, 1
2 ], Πd(B) is increasing in B when

Πm(B) < Πd(B).
As a result, max{Πm(B), Πd(B)} is always increasing in B.

For (ii), let Δ(B) = Πm(B)−Πd(B)
1−γ = 1 − 1

γB − (α − 4
γB +

√
γα2B−8α+8

γB ). There is only one point

satisfying Δ′(B) = 0, which is B̃ = 72(1−α)
γ(7α2−32α+16) . As a result, Δ(B) is either quasiconvex or

quasiconcave. If Δ(B) is quasiconvex, the claim holds for sure. If Δ(B) is quasiconcave, as

Δ′(B)|B= 2
γ
= (2+α)γ

4(α−2) < 0, then Δ(B) is decreasing in B ∈ [ 2
γ , ∞), which also implies that it is

quasiconvex in B ∈ [ 2
γ , ∞). �
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Proof of Theorem 1. By Proposition 3, b∗1 + b∗2 = B. Applying similar analysis to that of

Proposition 3, we can easily derive the result. �

Proof of Proposition 5. At optimality, γ∗B > 2, otherwise y∗ = 1. Therefore, we focus on

γ ∈ ( 2
B , 1].

Step 0: Auxiliary functions.

Note that y∗ only depends on γB. We denote

π(x) := 2α(1 − y∗)2 + 2(1 − y∗)y∗|γB=x = α − 4
x
+

√
8 − 8α + α2x

x
,

where x > 2. It can be shown that π(2) = 0 and π′(2) = 1
2−a > 0.

Step 0.a: π(x) is quasiconcave in x ∈ [2, ∞).

Similar to Lemma 3, π(x) is increasing in x if α ≥ 1
2 ; π(x) is quasiconcave in x and maximized

at x = 8(1−α)
1−2α , when α < 1

2 .

Step 0.b: k(x) := π(x)
π′(x) + x is increasing in x ∈ [2, x∗), where

x∗ =

⎧⎨
⎩

8(1−α)
1−2α , 0 < α < 1

2

∞, 1 ≥ α ≥ 1
2 .

.

Solving k′(x) = 0 directly yields one solution as 18(1−α)
1−α−2α2 . We observe that when α ≥ 1

2 the

solution is negative; when 0 < α < 1
2 , 18(1−α)

1−α−2α2 > 8(1−α)
1−2α . Then, k′(x) �= 0 for all x ∈ [2, x∗). Then,

k′(2) > 0, and we have the claim.

Step 1: Πd(γ; B) is strictly quasiconcave in γ ∈ ( 2
B

, 1).

We can write the profit of the principal as follows,

Πd(γ, B) := (1 − γ)π(γB).

Step 1.a: Πd(γ; B) is strictly quasiconcave in γ ∈ ( 2
B

, x∗
B
), where x∗ is defined in Step 0.b.

Note that
Π′(γ; B)
π′(γB)

= −k(γB) + B,

where function k(·) is defined in Step 0.b. From Step 0.a, π′(x) > 0 when x < x∗. Then when

γ ∈ ( 2
B

, x∗
B
), sign(Π′(γ;B)

π′(γB)
) = sign(Π′(γ; B)). From Step 0.b, Π′(γ;B)

π′(γB)
is decreasing in γ ∈ ( 2

B
, x∗

B
); in

particular, Π′(γ;B)
π′(γB)

is first positive and then negative when γ increases. Therefore, Π(γ; B) is strictly

quasiconcave in γ ∈ ( 2
B

, x∗
B
), and there is a unique γ satisfying Π′(γ; B) = 0.

Step 1.b: Πd(γ; B) is decreasing in γ ∈ ( x∗
B

, 1), where x∗ is defined in Step 0.b.

From Step 0.a, π′(x) ≤ 0 when x ≥ x∗. Then, when γ ∈ ( 2
B

, 1), we have Π′(γ; B) = −π(γB) +
π′(γB)B(1 − γ) < 0.

39



Based on Step 1.a and Step 1.b, we conclude that Π(γ, B) is strictly quasiconcave in γ ∈ ( 2
B

, 1).

Step 2: Property of γ∗.

From Step 1, at optimality,

B = k(γ∗B).

By solving this equation above, we have

B =
(1 + γ∗ − αγ∗)

√
α2(2 − γ∗)2 + (1 + γ∗)2 − 2α(2 − γ∗ + (γ∗)2)

α2(γ∗)2

− 1 − 2α + 2(1 − α2)γ∗ + (1 − α)2(γ∗)2

α2(γ∗)2

As 0 < γ∗ < 1 and 0 < α < 1, and we can find that the RHS is nondecreasing in α and decreasing

in γ∗. Then we have the claim shown in Proposition 5. �

Proof of Theorem 2. Recall that

Π∗
m(B) = (1 − 1√

B
)2.

By setting z = Bγ, we have

Π∗
d(B) = max

2<z<B
{Πd(z; B) :=

B − z
Bz

(αz +
√

z
√

8 − 8α + α2z − 4)}.

Let z∗(B) = argmax
2<z<B

{Πd(z; B)}.17 Denote Δ(B) := Π∗
d(B)− Π∗

m(B). Then we obtain

Δ′(B) =
dΠ∗

d(z; B)
dB

|z=z∗ −
dΠ∗

m(B)
dB

=
−3 −√

B + αz∗ +
√

z∗
√

8 + α(−8 + αz∗)
B2 ,(20)

where, in the first equality, the envelop theorem is used. Note that when B → 2, due to 2 < z∗ < B,

z∗ → 2. Hence, we derive Δ′(2) = 1
4 (1 −

√
2) < 0 and Δ(2) = −Π∗

m(2) < 0.

Step 0: Auxiliary functions.

Define g(x) := 27+27
√

x−31x+9x3/2

16x(
√

x−1) with x ∈ [2, ∞). Then we have

g′(x) =
27 − 27

√
x − 27x + 11x3/2

16x2(
√

x − 1)2 .

Therefore, g(x) is decreasing in x ∈ [2, 9] and increasing in x ∈ (9, ∞). In addition, one can verify

that g(2) ≈ 2.16069 > 1, g(9) = 1
4 and limx→∞ g(x) = 9

16 . As a result, when solving g(x) = t, (1)

if t ≤ 1
4 , there do not exist solutions of x > 2; (2) if 1

4 < t < 9
16 , there exist two solutions of x > 2;

17In the proof, all z∗ will be a function of B. We omit “(B)” if there is no confusion.
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and (3) if 9
16 ≤ t ≤ 1, there only exists one solution of x > 2.

Step 1: Main results.

Assume that at B∗, Δ′(B∗) = 0. From (20), we have

z∗(B∗) =
−36 + 9α − 24

√
B∗ + 15α

√
B∗ − 4B∗ + 7αB∗ + αB3/2∗

−32 + 16α − 2α2 + 2α2B∗
.(21)

Moreover, z∗(B∗) satisfies the following condition,

0 =
dΠd(z; B)

dz
|z=z∗,B=B∗

=
4B∗(

√
8 + α(−8 + αz∗)−√

z∗ + α
√

z∗)− z3/2∗ (4 − 4α + α2z∗(B∗) + α
√

z∗
√

8 + α(−8 + αz∗))
B∗z2∗

√
8 + α(−8 + αz∗)

.

Substituting the expression of z∗ in (21) into the equation above, we can find that

α =
27 + 27

√
B∗ − 31B∗ + 9B3/2∗

16B∗(
√

B∗ − 1)
= g(B∗).(22)

where g(·) is defined in Step 0.

Step 1.a: There is at most one continuous region of B such that the principal invests in two agents.

From the result in Step 0, there is at most two points of B > 2, satisfying Δ′(B) = 0, namely (22).

Recall that Δ′(2) < 0 and Δ(2) < 0. Therefore there is at most one continuous region of B > 2

such that Δ(B) > 0.18

Step 1.b: α ≤ 1
4

When a ≤ 1
4 , from Step 0, there do not exist solutions of B > 2 satisfying Δ′(B) = 0. As

Δ′(2) < 0 and Δ(2) < 0, Δ(B) < 0 for all B > 2. Therefore when α ≤ 1
4 , at optimality, the principal

invests in one agent.

Step 1.c: α ≥ 1
2 .

For any fixed z > 2, we have

Πd(z; ∞) = lim
B→∞

Πd(z; B) = α +

√
z
√

8 − 8α + α2z − 4
z

.

Then, we obtain that limz→∞ Πd(z; ∞) = 2α ≥ limB→∞ Πm(B) = 1. Therefore, when B → ∞, at

optimality, the principal invests in two agents. Therefore, due to Step 1.a, when B increases, at

optimality, the principal first invests in one agent and then switches to investing in two agents.

18 For example, suppose that there are two points of B > 2, satisfying Δ′(B) = 0, which are denoted as
B1 < B2. Since Δ′(2) < 0, the sign of Δ′(B) for B ∈ (2, B1),(B1, B2),(B2, ∞) will be one of the four cases:
(−,−,−),(−,+,+), (−,−,+) or (−,+,−). As Δ(2) < 0, it is easy to find that (1) for the first case, Δ(B) < 0
for all B ∈ [2, ∞); (2) for the second and third cases, if Δ(B) > 0 for some B ∈ [2, ∞), then Δ(B̃) > 0 for all
B̃ ≥ B; and (3) for the fourth case, as Δ(B̃) < 0 for all B ∈ [2, B1) and Δ(B̃) is quasiconcave in B ∈ [B1, ∞),
and there is one continuous region of B satisfying Δ(B) > 0.
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Step 1.d: 1
2 > α > 1

4 .

From Step 0, there are two points satisfying Δ′(B) = 0 (namely (22)), which are denoted as B1

and B2. Note that B1 < 9 < B2.

Since limB→∞ Πm(B) = 1, and Πd(z; B) < 1 for sure.19 Then, when B → ∞, at optimality,

the principal invests in one agent. By Step 1.a, that is to say, the principal adopts the strategy of

investing in two agents only in a closed region of B > 2. Therefore, if Δ(B) > 0 for some B, the

sign of Δ′(B) for B ∈ (2, B1), (B1, B2) and (B2, ∞) must be (−,+,−). That is to say, Δ(B) must be

maximized at B2 when Δ(B) > 0 for some B. Based on the above discussion, to examine whether

Δ(B) > 0 for some B, we need only check whether Δ(B2) > 0.

Given α, B2(α) > 9 will be uniquely determined by (22), which is increasing in α. By (21) and

(22), we can replace α and z∗ by B2(α) in the expression of Δ(B2, α) and thus

Δ(B2; α) =
(
√

B2 − 1)(9 − 18
√

B2 + B2)

8(3 +
√

B2)B2
.

If Δ(B2; α) > 0, as B2 > 9, we have that

B2 > 9(17 + 12
√

2),

namely,

α > g(x)|x=9(17+12
√

2) = 6
√

2 − 8,

where the condition of α is due to (22). That is, when α ≤ 6
√

2 − 8, Δ(B) < 0 all B > 2. When
1
2 > α > 6

√
2 − 8, due to (22), B2(α) > 9(17 + 12

√
2), we obtain that Δ(B2; α) > 0. That is, when

1
2 > α > 6

√
2 − 8, in some regions, investing in two agents can be optimal.

In summary, we have the claim shown in Theorem 2. �

Proof of Theorem 3. Without loss of generality, let b1 ≥ b2.

Number of successful innovations

The principal’s problem is

N(B) := max
b1≥0,b2≥0

1 − y∗1 + 1 − y∗2

s.t. b1 + b2 ≤ B, y∗1 = Y(b1, y∗2), y∗2 = Y(b2, y∗1).

Step 1: At optimality, the principal invests in one or two equally.

We divide the proof into several cases given b1 + b2 = B.

Case 1: B ≤ 2

19When both agents succeed, the principal’s profit is not larger than 1 (i.e., 2α < 1); when only one agent
succeeds, the profit is 1.
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In this case, a potentially successful outcome only comes from agent 1’s innovation. As Nd(B−
b2, b2) = 1 − 1

B−b2
, we must allocate all resources to agent 1.

Case 2: B > 2

Similar to the proof of Proposition 1, we perform a special transformation to simplify the ex-

position of the proof: b2 = B
2 [1 −

√
1 − 1−α

z ] with z ∈ [1 − α, ∞). There is ẑ ≥ 1 − α such that

y2 < 1 only when z < ẑ.

Case 2.a: z ≥ ẑ
In this case, y∗2 = 1 and similar to case 1, Nd(z) := Nd(B − b2(z), b2(z)) is increasing in z ∈

[ẑ, ∞).

Case 2.b: z ∈ [1 − α, ẑ)
Using the expressions of y∗1 and y∗2 in the proof of Lemma 1, the principal’s objective becomes

Nd(z) =
2 − α

1 − α
−

√
d(z)

(1 − α)αB

where d(z) := α4B2 + 8z(α2B + 2α − 2) + 16z2. Note that

d′(z) = 8(2α + α2B + 4z − 2) ≥ 8(2α + 2α2 + 4(1 − α)− 2) = 16(α2 − α + 1) > 0,

where the first inequality is due to B ≥ 2 and z ≥ 1 − α. Then Nd(z) is decreasing in z ∈ [1 − α, ẑ).
In summary, Nd(z) is quasiconvex in z ∈ [1− α, ∞), which implies that the principal invests in

one or invests equally in two.

Step 2: Use up resources under two strategies.

If the principal invests equally in two agents with B = b1 + b2 > 2, the equilibrium failure rate

is given by (10), namely,

(23) y1 = y2 = y∗ =
4

αB +
√

B
√

8 − 8α + α2B
.

The principal’s objective is

Nd(B; α) = 1 − y∗1 + 1 − y∗2 =
(α − 2)B +

√
B(8 − 8α + α2B)

(α − 1)B
.

The expected number of successful innovations, Nd, is increasing in α and B as B > 2 and α ∈
(0, 1). Therefore, the principal will exhaust her resources if investing in two equally, i.e., (b∗1 , b∗2) =
(B/2, B/2).

If the principal invests in one agent with B > 1, by (2), the failure rate is y∗ = 1/B. The

principal chooses B by

max
B≤B

Nm(B) = 1 − y∗ = 1 − 1
B

.
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Obviously, Nm(B) increases in B, so (b∗1 , b∗2) = (B, 0) when the principal invests in one agent.

Step 3: Comparison between two strategies.

Next, to derive the globally optimal allocation strategy for the principal, we need to compare

Nd(B; α) and Nm(B). Given B ≥ 2, the difference between Nd(B; α) and Nm(B) is

ΔN(B; α) = Nd − Nm =
α − 1 − B +

√
B(8 − 8α + α2B)

(α − 1)B
.

One can show that ΔN(B; α) increases in B and α as B > 2 and α ∈ (0, 1), which implies the

proposition. Given B ≥ 2, if ΔN(B; α) = 0, B# = 3+
√

α2+8
1+α > 3, which is decreasing in α. �

Probability that at least one innovator succeeds

The principal’s problem is

P(B) := max
b1≥0,b2≥0

1 − y∗1y∗2

s.t. b1 + b2 ≤ B, y∗1 = Y(b1, y∗2), y∗2 = Y(b2, y∗1).

Step 1: At optimality, the principal invests in one or two equally.

We divide the proof into several cases given b1 + b2 = B.

Case 1: B ≤ 2

In this case, a potential successful outcome only comes from agent 1’s innovation. As Pd(B −
b2, b2) = 1 − 1

B−b2
, we must allocate all resources to agent 1.

Case 2: B > 2

Similar to the proof of Proposition 1, we perform a special transformation to simplify the ex-

position of the proof: b2 = B
2 [1 −

√
1 − 1−α

z ] with z ∈ [1 − α, ∞). There is ẑ ≥ 1 − α, such that

y2 < 1 only when z < ẑ.

Case 2.a: z ≥ ẑ
In this case, y∗2 = 1, and similar to case 1, Pd(z) := Pd(B − b2(z), b2(z)) is increasing in z ∈

[ẑ, ∞).

Case 2.b: z ∈ [1 − α, ẑ)
Using the expressions of y∗1 and y∗2 in the proof of Lemma 1, the principal’s objective becomes

as follows,

Pd(z) =
2 − 4α + α2

2(1 − α)2 +

√
d(z)− 4z

2(1 − α)2B

where d(z) := α4B2 + 8z(α2B + 2α − 2) + 16z2. By the FOC, one can verify that when 0 ≤ α < 1
2

and 2 < B ≤ 1−α
α2 ,

√
d(z)− 4z is nondecreasing in z > 1 − α; otherwise,

√
d(z)− 4z is nonincreas-

ing in z > 1 − α.
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In summary, Pd(z) is quasiconvex in z ∈ [1 − α, ∞), which implies that the principal invests in

one or invest in two equally.

Step 2: Use up resources under two strategies.

If investing in two equally with resource B > 2, the objective of the investor is

Pd(B; α) = 1 − y∗1y∗2 =
−4 − 4α(B − 1) + 2B + α2B + α

√
B(8 − 8α + α2B)

2(1 − α)2B
,

which can be shown that it is increasing in α and B as B > 2 and α ∈ (0, 1). Therefore the principal

will exhaust her resources if investing in two equally, i.e., (b∗1 , b∗2) = (B/2, B/2).

If investing in one with resource B > 1, the objective of the investor is

Pm(B) = 1 − 1
B

,

which is increasing in B > 1. So (b∗1 , b∗2) = (B, 0) when the principal invests in one agent.

Step 3: Comparison between two strategies.

Next, to derive the globally optimal allocation strategy for the principal, we need to compare

Pd(B; α) and Pm(B). If Pd(B#) = Pm(B#), B# = (1+α)2

α2 > 4, which is decreasing in α. Moreover,

d[Pd(B; α)− Pm(B)]
dB

|B=B#
=

α4

(3 − α)(1 + α)3 > 0.

Then it implies the proposition. �

Consumer surplus

Since α = 4
(2+g)2 and g ∈ (0, 1), we have α ∈ ( 4

9 , 1) and g = 2√
α
− 2. The principal’s problem is

CS(B) := max
b1≥0,b2≥0

4(1 + g)
(2 + g)2 (1 − y∗1y∗2) +

1
2
[(1 − y∗1)y

∗
2 + (1 − y∗2)y∗1 ]

s.t. b1 + b2 ≤ B, y∗1 = Y(b1, y∗2), y∗2 = Y(b2, y∗1).

Step 1: At optimality, the principal invests in one or two equally.

We divide the proof into several cases given b1 + b2 = B.

Case 1: B ≤ 2

A potentially successful outcome only comes from agent 1’s innovation. As CSd(B − b2, b2) =

(1 − 1
B−b2

)/2, we must allocate all resources to agent 1.

Case 2: B > 2

Similar to the proof of Proposition 1, we perform a special transformation to simplify the ex-

position of the proof: b2 = B
2 [1 −

√
1 − 1−α

z ] with z ∈ [1 − α, ∞). There is ẑ ≥ 1 − α such that
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y2 < 1, only when z < ẑ.

Case 2.a: z ≥ ẑ
In this case, y∗2 = 1, and similar to case 1, we obtain that CSd(z) := CSd(B − b2(z), b2(z)) is

increasing in z ∈ [ẑ, ∞).

Case 2.b: z ∈ [1 − α, ẑ)
Using the expressions of y∗1 and y∗2 in the proof of Lemma 1, the principal’s objective becomes

CSd(z) = −
√

α(4 +
√

α − 3α − α3/2 + α2)

2(α3/2 + α −√
α − 1)

− 2z
(1 +

√
α)2B

+
1 − 3

√
α − α + α3/2

2(1 −√
α)(1 +

√
α)2αB

√
d(z),

where d(z) := α4B2 + 8z(α2B + 2α − 2) + 16z2. The second term is decreasing z. Due to α ∈ ( 4
9 , 1),

we have 1−3
√

α−α+α3/2

2(1−√
α)(1+

√
α)2α

< 0, and as shown in Proposition ??, we have d′(z) > 0. As a result, the

third term is also decreasing z. Then, CSd(z) is decreasing in z ∈ [1 − α, ẑ).
In summary, CSd(z) is quasiconvex in z ∈ [1 − α, ∞), which implies that the principal invests

in one or invest equally in two.

Step 2: Use up resources under two strategies.

When the principal invests in one agent with resources B > 1, the expected consumer surplus

is

CSm(B) =
1
2
− 1

2B
,

which is increasing in B. Hence, when the principal only invests in one agent, the principal will

grant all available resources B to this agent, and the consumer surplus is CSm(B).
When the principal invests equally in two agents with resources B, the equilibrium failure rate

is given by (23). The expected consumer surplus is

CSd(B; g) = (1 − y∗)2 4(1 + g)
(2 + g)2 + (1 − y∗)y∗.

Note that fixing g, we have

∂Cd(B; g)
∂y∗

= −4 + 4g + g2(2y∗ − 1)
(2 + g)2 < −4 + 4g − g2

(2 + g)2 < 0.

Because CSd(B; g) decreases in y∗ and y∗ decreases in B, CSd(B; g) increases in B. Therefore, the

principal chooses (b∗1 , b∗2) = (B/2, B/2).

Also, note that fixing B, we have

dCSd(B; α)

dg
= −4g(1 − y∗)2

(2 + g)3 − 4 + 4g + g2(2y∗ − 1)
(2 + g)2

∂y∗

∂g
.

The first term is negative and the second term is also negative as y∗ decreases in α, or equivalently

increases in g. Then it implies that fixing B, CSd(B; g) is decreasing in g.
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Step 3: Comparison between two strategies.

Next, to derive the globally optimal allocation strategy for the principal, we need to compare

CSd(B; α) and CSm(B). If CSd(B#; α) = CSm(B#) and B# > 2, then B# is unique as below,

B# =
1
2
+

1
2 − 8

√
α + 4α

+
6
√

α

3
√

α + α + α3/2 − 1
+

(1 − 3
√

α − α + α3/2)
√

32
√

α − 16α + α2 − 8
(1 − 4

√
α + 2α)(3

√
α + α + α3/2 − 1)

.

Furthermore, note that limB→2 CSd(B; α) = 0 < limB→2 CSm(B) and limB→∞ CSd(B; α) =

(1 − y∗)2 4(1+g)
(2+g)2 + (1 − y∗)y∗|y∗=0 = 4(1+g)

(2+g)2 > limB→∞ CSm(B) = 1
2 . Combining it with CSd(B#) =

CSm(B#) yields a unique solution, we conclude that: when B > B#, CSd(B; α) > CSm(B); other-

wise, CSd(B; α) ≤ CSm(B). Moreover, since fixing B, CSm(B) does not depend on α and CSd(B; α)

is increasing in α (or equivalently decreasing in g). As a result, B# will be decreasing in α. �

Total welfare

The principal’s problem is

W(B) := max
b1≥0,b2≥0

4(3 + g)
(2 + g)2 (1 − y∗1y∗2) +

3
2
[(1 − y∗1)y

∗
2 + (1 − y∗2)y∗1 ]

s.t. b1 + b2 ≤ B, y∗1 = Y(b1, y∗2), y∗2 = Y(b2, y∗1).

Step 1: At optimality, the principal invests in one or two equally.

We divide the proof into several cases given b1 + b2 = B.

Case 1: B ≤ 2

Note that when B ≤ 2, then b2 ≤ 1. Due to the insufficient amount of resources to incen-

tivize both agents to innovate, y∗2 = 1 for sure. The profit of the principal will only come from

a potentially successful outcome from agent 1’s innovation. Similar to Proposition 2, W(b2; B) is

nonincreasing in b2 ∈ [0, B
2 ].

Case 2: B > 2

Similar to the proof of Proposition 1, we perform a special transformation to simplify the ex-

position of the proof: b2 = B
2 [1 −

√
1 − 1−α

z ] with z ∈ [1 − α, ∞). There is ẑ ≥ 1 − α such that

y2 < 1, only when z < ẑ.

Case 2.a: z ≥ ẑ
In this case, y∗2 = 1, and the profit of the principal will only come from a successful outcome

from agent 1’s innovation. Then the objective of the principal is increasing in z ∈ [ẑ, ∞) as agent 1

obtains more resources.

Case 2.b: z ∈ [1 − α, ẑ)
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Using the expressions of y∗1 and y∗2 in the proof of Lemma 1, the principal’s objective becomes

W(z) =
1

2(1 −√
α)(1 +

√
α)2αB

[−α3/2(−4 − 3
√

α + α + 3α3/2 + α2)B

− 4(3 +
√

α)αz + (3 −√
α(1 + 3

√
α + α))

√
d(z)],

where d(z) := α4B2 + 8z(α2B + 2α − 2) + 16z2 ≥ 0 and we have used g = 2√
α
− 2. Denote

w(z) := −4(3 +
√

α)αz + (3 −√
α(1 + 3

√
α + α))

√
d(z). Then the problem of the investor is same

as maximizing w(z). Note that

w′′(z) =
64(1 − α)√

d3(z)
(3 −√

α − 3α − α3/2)(α2B + α − 1).

Case 2.b.1: (3 −√
α − 3α − α3/2)(α2B + α − 1) ≥ 0

In this case, w(z) is convex in z ∈ [1 − α, ẑ).
Case 2.b.2: (3 −√

α − 3α − α3/2)(α2B + α − 1) < 0

w(z) is concave in z ∈ [1 − α, ẑ). If w′(z) = 0, we have two solutions z1 and z2 satisfying

z1 + z2 = 1 − α − α2B
2

,

and

z1 − z2 = − (3 +
√

α)α
√−(−9 + 24

√
α − 13α − 4α3/2 + 2α2)(−1 + α + α2B)

9 − 15
√

α − 2α + 2α3/2 .

We show that in Case 2.b.2, z1 and z2 cannot be real or larger than 1 − α.

To obtain a real solution, the following inequality should be satisfied:

−(−9 + 24
√

α − 13α − 4α3/2 + 2α2)(−1 + α + α2b) ≥ 0.

Combining with [3 −√
α(1 + 3

√
α + α)](α2B + α − 1) < 0, B > 2 and α ∈ ( 4

9 , 1), the inequality

above holds only when α ∈ ( 4
9 , 1

2 ) and B ∈ (2, 1−α
α2 ). Moreover, when α ∈ ( 4

9 , 1
2 ) and B ∈ (2, 1−α

α2 ),

it can be verified that z1, z2 < 1 − α. Therefore, w(z) is monotone in z ∈ [1 − α, ẑ).
In summary, W(z) is convex or monotone in z ∈ [1 − α, ẑ) and W(z) is increasing in z ∈

[ẑ, ∞). As a result, W(z) is quasiconvex in z ∈ [1 − α, ∞), which implies the claim shown in the

proposition.

Step 2: Use up resources under two strategies.

When the principal invests in one agent with resources B > 1, the expected welfare is

Wm(B) =
3
2
− 3

2B
,

which is increasing in B. Hence, when the principal only invests in one agent, the principal will
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grant all available resources B to this agent, and the consumer surplus is Wm(B).
When the principal invests equally in two agents with resources B, the equilibrium failure rate

is given by (23). The expected welfare is

Wd(B; g) = (1 − y∗)2 4(3 + g)
(2 + g)2 + 3(1 − y∗)y∗.

Note that fixing g,

∂Wd(B; g)
∂y∗

=
−12 + 4g + 3g2 − 16gy∗ − 6g2y∗

(2 + g)2 <
−12 + 4g + 3g2

(2 + g)2 < 0.

Because Wd(B; g) decreases in y∗ and y∗ decreases in B, and Wd(B; g) increases in B. Therefore, the

principal chooses (b∗1 , b∗2) = (B/2, B/2).

Also, note that fixing B, we have

dWd(B; α)

dg
= −4(4 + g)(1 − y∗)2

(2 + g)3 +
−12 + 4g + 3g2 − 16gy∗ − 6g2y∗

(2 + g)2
∂y∗

∂g
.

The first term is negative and the second term is also negative as y∗ decreases in α, or equivalently

increases in g. Then it implies that fixing B, Wd(B; g) is decreasing in g.

Step 3: Comparison between two strategies.

Next, to derive the globally optimal allocation strategy for the principal, we need to compare

Wd(B; α) and Wm(B).
Denote h = 4

αB+
√

B
√

8−8α+α2B
. As B ≥ 2, h ∈ (0, 1). Furthermore, B = −(2/(y(−a − y + ay))),

then there is a one-to-one correspondence between h and B. Hence, we obtain

Wd(B; α)− Wm(B) =
1
4
[(8

√
α + 4α − 6) + (12 − 16

√
α − 5α)h + (8

√
α + α − 9)h2].

The right hand is decreasing in h as α ∈ (4/9, 1), so Wd(B; α) − Wm(B) is increasing in B. Thus

there is a threshold B# such that when B > B#, Wd(B; α) > Wm(B); otherwise, Wd(B; α) ≤ Wm(B).
Moreover, since fixing B, Wm(B) does not depend on α, and Wd(B; α) is increasing in α (or equiva-

lently decreasing in g). Hence, B# will be decreasing in α. �

C Other Extensions

C.1 Costly Resources

Suppose that the principal incurs a marginal cost, c ∈ [0, 1], of allocating more resources. If the

principal allocates B = b1 + b2 ≤ B resources, she incurs a cost cB. For financial resources of VCs,

49



the cost can be risk-free returns from not investing in startups; For incubators, granting the right

to use office space and equipment could incur additional cost of maintenance and depreciation.

In this setting, the principal’s payoff becomes

(24) R(c) = max
b1≥0,b2≥0

{Π(b1, b2)− c(b1 + b2)} s.t. b1 + b2 ≤ B,

where Π(b1, b2) is given by (7). We can show the following result:

Proposition 6. As the cost parameter c increases, the optimal amount of total resources B∗ = b∗1 + b∗2
allocated to two agents decreases.

Proof.

R(k) = max
B≤B

{Π(B)− kB}

where Π(B) is the profit given total resources allocated being B. Clearly, R(k) is convex on k,

because it is a supreme of affine functions. Then, by the envelope theorem, we obtain dR(k)
dk =

−B∗(k), and it is increasing in k. �

Given the optimally allocated B∗, the resource allocation rule follows Theorem 1 by replacing

B by B∗. Hence, our main results hold in the case of costly resources.

C.2 General Innovation Success Function

In this section, we show that the qualitative results of the optimal resource allocation strategy are

robust under two general classes of innovation success functions. Given a fixed profit-sharing

rate, the principal makes resource allocation decisions by maximizing the total profit from the

product market. For simplicity, we set γ = 1.

Class 1: hump-shaped equilibrium effort

Let p(b, x) = 1 − e−ψ(b)x, where ψ is an increasing function with ψ(0) = 0 and ψ(∞) = ∞. The

innovate success function (1) is a special case with ψ(b) = b.

If the principal invests in a single agent with resources b, the failure rate is y = e−ψ(b)x. Given

b, the agent solves maxy
{

1 − y + ln y
ψ(b)

}
, and thus, y∗ = 1

ψ(b) for ψ(b) ≥ 1. The equilibrium effort

level, x∗(b) = ln ψ(b)
ψ(b) , exhibits the hump-shaped pattern shown in Figure 1. The profit from the

product market is Πm(ψ(b)) = 1 − 1
ψ(b) , which is increasing in b.

If the principal invests in two agents with the same amount b
2 , the failure rate is y = e−ψ( b

2 )x.

The equilibrium failure rate of one agent is

y∗ = argmax
0<y≤1

(1 − y)[α(1 − y∗) + y∗] +
ln y

ψ( b
2 )

for ψ(
b
2
) ≥ 1.
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The total product market profit is

Πd(ψ(
b
2
)) = 2α(1 − y∗)2 + 2y∗(1 − y∗) =

−2 + αψ( b
2 ) +

√
ψ( b

2 )
√

4 − 4α + α2ψ( b
2 )

ψ( b
2 )

.

Proposition 7. With p(b, x) = 1 − e−ψ(b)x, the principal will use up her resources (b1 + b2 = B̄). When
α < 1

2 and there exists a B such that ψ(B) ∈ (1, 1
1−2α ) and ψ( B

2 ) > 2ψ(B)
1+
√

ψ(B)
√

2(1−α)−(1−2α)ψ(B)
, the

optimal resource allocation strategy exhibits the following non-monotone pattern: when B is sufficiently
small or large, it only invests in one agent; when B is at some moderate level, it invests in two agents.

Proof. For expositional convenience, denote μ = ψ(b) and ν = ψ( b
2 ). The total profit from

investing in one agent is Πm(μ) = 1 − 1
μ . The total profit from investing in two agents equally is

Πd(ν) =
−2 + αν +

√
ν
√

4 − 4α + α2ν

ν
.

Step 1: We first show that max{Πm(ψ(b)), Πd(ψ(
b
2 ))} is increasing in b.

When 0 < α < 1
2 , Πd(ν) is maximized at ν∗ = 4−4α

1−2α with Πd(ν
∗) = 1

2−2α . Let b# = 2ψ−1(ν∗).
Then max{Πm(ψ(b)), Πd(ψ(

b
2 ))} is increasing in b ∈ [0, b#] by the envelope theorem. When b > b#,

Πm(ψ(b)) ≥ Πm(ψ(
b
2 )) ≥ Πm(ψ(b#/2)) = Πm(ν∗) = 3−2α

4(1−α)
≥ 1

2−2α = Πd(ν
∗) ≥ Πd(ψ(

b
2 )). Thus

when b ∈ [b#, ∞], max{Πm(ψ(b)), Πd(ψ(
b
2 ))} = Πm(ψ(b)), which is also increasing in b.

When α ≥ 1
2 , both Πm(ψ(b)) and Πd(ψ(

b
2 )) is increasing in b. Therefore, max{Πm(ψ(b)), Πd(ψ(

b
2 ))}

is increasing in b ∈ [0, b#] by the envelope theorem.

As a result, the principal will use up her resources.

Step 2: Conditions for non-monotone optimal resource allocation strategy.

Condition (1): When b → ∞, the investor invests in one agent.

As b → ∞, μ → ∞, Πm(μ) = 1; ν → ∞, Πd(ν) = 2α. Hence, it requires that α < 1
2 .

Condition (2): When b is small, the investor invests in one agent.

Clearly, when μ = 1, ν < 1. As μ → 1, Πm(μ) > 0 and Πd(ν) = 0. Therefore, if b ∈
[ψ−1(1), 2ψ−1(1)], Πm(μ) > Πd(ν), which requires that B > ψ−1(1).

Condition (3): When b is at an intermediate region, the investor will invest in two agents.

This condition requires that Πm(μ) < Πd(ν), namely 1 − 1
μ < −2+αν+

√
ν
√

4−4α+α2ν
ν .

These three conditions together require the conditions in the proposition. �

Class 2: monotone equilibrium effort

Let p(b, x) = φ(b)(1 − e−κx), where κ > 1 and φ is increasing in its support with φ(0) = 0 and

φ(∞) = 1. Denote y = e−κx.
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If the principal invests in a single agent with resource b, the agent solves maxy
{

φ(b)(1 − y) +
ln y

κ

}
, and thus y∗ = 1

κφ(b) for φ(b) ≥ 1
κ . The equilibrium effort level, x∗(b) = 1

κ [ln κ + ln φ(b)], is

monotonically increasing in b. The profit from the product market is Πm(φ(b)) = φ(b)− 1
κ , which

is increasing in b.

If the principal invests in two agents with the same amount b
2 , in equilibrium, we have that

y∗ = argmax
0<y≤1

φ(
b
2
)(1 − y)[αφ(

b
2
)(1 − y∗) + 1 − φ(

b
2
)(1 − y∗)] +

ln y
κ

for φ(
b
2
) ≥ 1

κ
.

The total product market profit is

Πd(ψ(
b
2
)) =2φ(

b
2
)(1 − y∗)[αφ(

b
2
)(1 − y∗) + 1 − φ(

b
2
)(1 − y∗)]

=
1
κ

{
κφ(

b
2
)(1 − φ(

b
2
) + αφ(

b
2
))− 2 + φ(

b
2
)
√

κ

√
4 − 4α + (1 − φ(

b
2
) + ακφ(

b
2
))2

}
.

Proposition 8. With p(b, x) = φ(b)(1 − e−κx), the principal will use up her resources (b1 + b2 =

B̄). When α < κ−1
2κ , and there exists a B satisfying φ(B) ∈ ( 1

κ , 1
4(1−α)

(1 +
√

8−8α+κ
κ )) and φ( B

2 ) >

κφ(B)+1
2(1−α)(κφ(B)−1) (1−

√
2−2α+κ−2κφ(B)+2ακφ(B)

κ ), the optimal resource allocation strategy exhibits the follow-
ing non-monotone pattern: when B is sufficiently small or large, it only invests in one agent; when B is at
some moderate level, it invests in two agents.

Proof. For expositional convenience, denote μ = φ(b) and ν = φ(b/2). The total profit from

investing in one agent is Πm(μ) = μ − 1
κ . The total profit from investing in two agents equally is

Πd(ν) =
−2 + ν(1 − ν + αν)κ + ν

√
κ
√

4 − 4α + (1 − ν + αν)2κ

κ
.

Step 1: We first show that max{Πm(φ(b)), Πd(φ(
b
2 ))} is increasing in b.

If κ > 4 and α ∈ [0, κ−4
2κ−4 ], Πd(ν) is maximized at ν∗ = 4+κ−4α

2(1−α)κ
∈ ( 1

κ , 1] with Πd(ν
∗) = 1

2−2α .

Let b# = 2φ−1(ν∗). Then max{Πm(φ(b)), Πd(φ(
b
2 ))} is increasing in b ∈ [0, b#] by the envelope

theorem. When b > b#, Πm(φ(b)) ≥ Πm(φ(
b
2 )) ≥ Πm(s(b#/2)) = Πm(ν∗) = 1

2−2α +
1
κ ≥ Πd(ν

∗) ≥
Πd(φ(

b
2 )). Thus when b ∈ [b#, ∞], max{Πm(φ(b)), Πd(φ(

b
2 ))} = Πm(φ(b)), which is also increas-

ing in b.

When κ ≤ 4 and α /∈ [0, κ−4
2κ−4 ], since both Πm(φ(b)) and Πd(φ(

b
2 )) are increasing in b, we have

max{Πm(φ(b)), Πd(φ(
b
2 ))} is increasing in b ∈ [0, b#] by the envelope theorem.

As a result, the principal will use up her resources.

Step 2: Conditions for non-monotone optimal resource allocation strategy.

Condition (1): When b → ∞, the investor invests in one agent.

Note that, when b → ∞, namely μ → 1, then Π0
m = 1 − 1

κ . When b → ∞, ν = 1, then
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Π0
d = −2+ακ+

√
κ
√

4−4α+α2k
κ Then the nontrivial result requires that Π0

m > Π0
d, namely 1 − 1

κ >
−2+αk+

√
κ
√

4−4α+α2k
κ .

Condition (2): When b is small, the investor invests in one agent.

Clearly when μ = 1
κ , ν < 1

κ . As μ → 1
κ , Πm(μ) > 0 and Πd(ν) = 0. Therefore, if b ∈

[φ−1( 1
κ ), 2φ−1( 1

κ )], Πm(μ) > Πd(ν), which requires that B > φ−1( 1
κ ).

Condition (3): When b is at an intermediate region, the investor will invest in two agents.

This condition requires that Πm < Πd, namely μ − 1
κ <

−2+ν(1−ν+αν)κ+ν
√

κ
√

4−4α+(1−ν+αν)2κ

κ .

These three conditions together require the conditions in the proposition. �

Note that the equilibrium effort depicted in Figure 8-(a) has a different shape from that in

Figure 1, but the equilibrium success rates depicted in Figure 8-(b) exhibit the same features as in

Figure 4. Hence, the intuition of Theorem 1 holds in this case.

(a) (b)

Figure 8: Equilibrium Effort and Success Rates with α = 0.5, φ(b) = b
1+b and κ = 10.

C.3 Competition between Principals

We study a simple case with competing principals in the resource allocation stage. Consider two

principals, a leader (L) and follower (F), with the same amount of resources BL
= BF

= B. The

leader chooses the resource allocation, (bL
1 , bL

2 ), first with bL
1 + bL

2 ≤ B. After observing (bL
1 , bL

2 ), the

follower chooses (bF
1 , bF

2 ) with bF
1 + bF

2 ≤ B. agent 1 receives resources b1 = bL
1 + bF

1 , and agent 2

receives resources b2 = bL
2 + bF

2 . Following the outcome of the resource allocation stage, (b1, b2),

two agents continue with the innovation stage and product market competition as described in
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the baseline model with innovation success rate (1) of each agent.

Let πi(b1, b2) = πi(bL
1 + bF

1 , bL
2 + bF

2 ) denote the expected profit of agent i. Agent i’s profit will

be shared by the two principals according to the proportion of their investment. Given (bL
1 , bL

2 ),

the follower chooses her resource allocation as

(
bF

1 (b
L
1 , bL

2 ), bF
2 (b

L
1 , bL

2 )
)
= argmax

bF
1≥0,bF

2≥0

2

∑
i=1

bF
i

bL
i + bF

i
πi(bL

1 + bF
1 , bL

2 + bF
2 ).

The optimal resource allocation strategy of the leader is as follows:

(bL∗
1 , bL∗

2 ) = argmax
bL

1≥0,bL
2≥0

2

∑
i=1

bL
i

bL
i + bF

i (b
L
1 , bL

2 )
πi
(
bL

1 + bF
1 (b

L
1 , bL

2 ), bL
2 + bF

2 (b
L
1 , bL

2 )
)
.

We numerically find the equilibrium, (bL∗
1 , bL∗

2 , bF
1 (b

L∗
1 , bL∗

2 ), bF
2 (b

L∗
1 , bL∗

2 )), of this leader-follower

resource allocation problem. Let Π∗(BL, BF
) denote the total profit of the product market in equi-

librium with BL and BF. Define Δ = Π∗(B, 0)/Π∗(B, B) as the ratio of the product market profit

with only the leading investor and the profit with both the leader and the follower. Figure 9

depicts the values of Δ over different B and α.

Figure 9: Ratio of the Total Market Profit between without and with an Additional In-
vestor: Δ.

When Δ < 1, introducing a new investor to fund innovation will increase the expected profit

of the product market (Π∗(B, 0) < Π∗(B, B)). Intuitively, because the total amount of resources
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is doubled with two principals, the success rate of product development will increase, like the

expected product market profit. However, this outcome is not always the case. In Figure 9, we

find a red region with Δ > 1, which means that having an additional investor will reduce the total

profit of the product market (Π∗(B, 0) > Π∗(B, B)).
This phenomenon occurs with α < 1

2 and B being sufficiently large. α < 1
2 indicates that

when both agents succeed, the business-stealing effect will cause rent dissipation. According to

Theorem 1, with α < 1
2 and a sufficiently large B, a single investor will only invest in one agent,

say agent 1. However, when there are two investors, the follower may support agent 2 because

she can obtain a larger share of agent 2’s profit than that of agent 1. Consequently, if both investors

have sufficient resources, the product market is more likely to end up with competition.

Hence, introducing new investors and funding can intensify the product market competition

and reduce the profits of investors and innovators. Many researchers have found that public

R&D funding program crowds out investment by private VCs. For example, Wallsten (2000) find

that SBIR grants crowd out private R&D spending dollar for dollar; Cumming and MacIntosh

(2006) show that the Labour Sponsored Venture Capital Corporation of the Canadian government

reduces the overall size of the VC pool in Canada. Our model is consistent with the empirical

evidence of crowding out. We leave the full analysis of competing principals for future research.
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