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Abstract

In a crisis, regulators and private investors can find it difficult, if not impossible, to tell whether

banks facing runs are insolvent or merely illiquid. We introduce such an information constraint

into a global-games-based bank run model with multiple banks and aggregate uncertainties. The

information constraint creates a vicious cycle between contagious bank runs and falling asset prices

and limits the effectiveness of traditional emergency liquidity assistance programs. We explain how

a regulator can set up committed liquidity support to contain contagion and stabilize asset prices even

without information on banks’ solvency, rationalizing some recent developments in policy practices.
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1 Introduction

The 2007-2009 financial crisis highlights a dual-illiquidity problem. During the crisis, market liq-

uidity evaporated, and asset prices dropped sharply. At the same time, funding liquidity dried up, and

even well-capitalized banks found it difficult to roll over their short-term debt. In response to the dual-

illiquidity problem, central banks were creative in providing facilities for liquidity support during the

crisis and have been experimenting with novel upfront liquidity arrangements afterward. Examples of

such arrangements include the asset pre-positioning program of the Bank of England and the committed

liquidity facility of the Reserve Bank of Australia. In this paper, we model the two-way feedback be-

tween distressed asset prices and contagious bank runs and show how upfront liquidity support can be

an effective response to the dual-illiquidity problem, rationalizing the recent policy developments.

Central to our model is the observation that it can be difficult — if not impossible — to distinguish

illiquid banks from insolvent ones in crisis times.1 We show that such an information constraint creates

a vicious cycle between falling asset prices and bank runs. When private asset buyers cannot distinguish

assets sold by illiquid banks from those sold by insolvent banks, the price they offer would reflect the

average asset quality. As a result, a solvent-but-illiquid bank would be unable to recoup a fair value for

its assets on sale. In a global-games framework, we show that creditors’ expectations of low asset prices

due to this information friction can deprive the solvent bank of its short-term funding. Each creditor,

anticipating the liquidation loss caused by other creditors’ early withdrawals from his bank, chooses to

join the run himself. However, it is the run and the forced liquidation — by pooling the illiquid bank

with insolvent ones — that lead to the decline in asset prices in the first place.2

In a two-bank setting, financial contagion and systemic crisis emerge once we introduce an aggregate

risk that affects both banks’ fundamentals. We analyze a global game with multiple groups of players

(i.e., two distinct groups of creditors for the two banks) and multi-dimensional signals (i.e., in addition

to private signals about their own bank’s fundamentals, creditors receiving a common signal about the
1The information constraint is recognized as one of the main challenges for central banks to provide emergency liquidity

assistance. See e.g., Goodhart (1999) and Freixas et al. (2004).
2Using historical data, Fohlin et al. (2016) empirically document the feedback between market and funding illiquidity,

providing evidence that information asymmetry on asset qualities contributes to the vicious cycle.
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other bank’s fundamentals as outsiders). We show that coordination failures occur not only among

creditors within a bank but also between creditors from different banks. The cross-bank coordination

failure is triggered by the expectation of falling asset prices: upon observing more bank runs, the asset

buyers’ beliefs about the aggregate state deteriorates, which reduces their bids for banks’ assets. The

lower asset prices, in turn, precipitate runs at more banks. We derive a unique equilibrium despite the

two-way feedback between collapsing asset prices and contagious bank runs. The equilibrium features

financial contagion: a bank is more likely to experience runs when its creditors perceive the other bank

to have weak fundamentals and expect that bank’s liquidation to depress asset prices.

The information constraint that creates financial fragility also limits the effectiveness of traditional

emergency liquidity assistance programs. An informationally constrained central bank cannot lend only

to the solvent-but-illiquid banks as suggested by the classic lender-of-last-resort (LoLR) principles of

Bagehot (1873). In particular, in tackling banks’ funding problems as runs happen, an informationally

constrained central bank would risk rescuing insolvent banks or making losses from the intervention.

We show that upfront liquidity support can contain contagious bank runs even if a central bank holds

no information on individual banks’ solvency. Intuitively, the central bank can support the price of

banks’ assets in a pre-committed arrangement, thereby breaking down the two-way feedback between

falling asset prices and contagious bank runs. We recommend an arrangement where a regulator and

banks mutually commit to an agreement for the regulator to purchase a bank’s assets for a pre-specified

price when banks experience runs. In making her offer before the aggregate risk is realized, the regu-

lator’s price support is neither conditional on an aggregate state nor on the knowledge about the banks’

solvency. The pre-specified price allows the regulator to contain the risk of contagion while breaking

even across possible posterior beliefs about the aggregate risk from an ex-ante perspective.

Our modeling of the committed liquidity support is broadly consistent with the suggestion of King

(2017) that a central bank should act as a ‘pawnbroker for all seasons (PFAS)’ and commit to providing

liquidity insurance to banks in times of crisis. Our theory suggests that liquidity support is the most

effective if banks also commit to raising liquidity from the central bank when experiencing runs. This
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suggested regulatory obligation is in line with King’s proposals that, for emergency liquidity assistance,

banks should be ‘required to take out insurance in the form of pre-positioned collateral with the central

bank’ and that the provision of liquidity insurance should be ‘mandatory and paid for upfront’.

The recent policy practices have indeed seen the implementations of such committed liquidity sup-

port. The Bank of England has implemented asset pre-positioning as a part of its sterling monetary

framework.3 Also, in the spirit of the proposals in King (2017), the Reserve Bank of Australia launched

the committed liquidity facility with an explicit requirement for banks to commit to the regime. To ben-

efit from the liquidity support of the facility, a bank needs to pay a premium of 15 basis points for the

amount of liquidity committed by the central bank. In return, the central bank contractually commits to

entering repo transactions with the participating bank, should runs happen to it.4

This paper makes three contributions. First, we introduce a relevant information constraint into

a global-games-based bank run model: it is difficult to distinguish illiquid banks from insolvent ones

during crisis times. We show that the information constraint not only results in a vicious cycle between

bank runs and distressed asset prices, but also makes traditional policy interventions ineffective. Second,

we analyze a novel global-games setting with multiple groups of players and multi-dimensional signals.

In addition to the coordination problem among creditors within a bank, our bank run game also features

strategic complementarities between creditors from different banks. Finally, from a policy perspective,

we show that committed liquidity support can make an effective intervention, providing a formal theory

to interpret some of the recent developments in central bank policy practices.

Related literature: Our paper contributes to the literature on public liquidity intervention and

global-games-based bank run models. Central bank liquidity injection in a global-games framework

was first studied by Rochet and Vives (2004). The authors consider a single-bank setup and derive a

unique threshold equilibrium where a solvent bank can be illiquid. The authors further assume that the

bank’s fundamentals are perfectly observable to a central bank and suggest that the central bank can act

3By the spring of 2015, £469 billion of bank assets had been pre-positioned with the central bank, with an average haircut
of 33%. Bank of England (2019) provides detailed guidelines for private institutions to pre-position their illiquid assets.

4See Reserve Bank of Australia (2018, 2019) for details. By the end of 2018, a total of AU$ 248 billion of central bank
liquidity support was committed through the facility to eligible banks.
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as a LoLR, by lending directly to the solvent-but-illiquid bank as suggested by Bagehot (1873). In a

two-bank setting, we generalize Rochet and Vives (2004) by introducing information constraints, en-

dogenous liquidation value, and aggregate uncertainty. We focus on systemic crises instead of runs on

individual banks and show that upfront liquidity support can mitigate system-wide financial fragility.

Our model predicts a vicious cycle between bank runs and falling asset prices, and strategic comple-

mentarities between creditors from different banks. These two features are most related to Liu (2016)

and Goldstein et al. (2020), respectively. Liu (2016) studies how limited participation in the interbank

market can lead to an interaction between bank runs and rising interbank market rates.5 Goldstein et al.

(2020) allow for cross-bank coordination failures to study the impact of bank heterogeneity on financial

stability.6 Both papers, however, assume that the external providers of liquidity — i.e., the lending banks

in Liu (2016) and the asset buyers in Goldstein et al. (2020) — can perfectly observe the distressed bank’

fundamentals. By contrast, we emphasize that both private investors and central banks face the informa-

tion constraint in telling whether creditors run on a bank due to its insolvency or mere illiquidity, and

that public liquidity intervention should be designed with the information constraint taken into account.7

Our paper also contributes to the debate on the design of emergency liquidity assistance programs.

Goodfriend and King (1988) and Freixas et al. (2004) argue that when it is hard to tell whether an

illiquid bank is solvent, it can be optimal for central banks to only provide liquidity in open market

operations and let the interbank market allocate the liquidity. The others question the view, arguing that

the asymmetric information about banks’ solvency can also interrupt the functioning of the interbank

market, which justifies central banks’ direct lending to banks (Flannery (1996), Heider et al. (2015), and

Choi et al. (2017)). We study a setting where neither central banks nor private investors possess precise

5In a non-bank setup without coordination failures, Brunnermeier and Pedersen (2009) highlights two-way feedback be-
tween market and funding illiquidity by emphasizing a margin constraint on a speculator who supplies liquidity. In their model,
asset prices are volatile because the selling and buying of assets are not synchronized. By contrast, we emphasize the funding
liquidity risk caused by equilibrium bank runs and that the lack of information on asset qualities causes asset illiquidity.

6In addition, Goldstein (2005) and Leonello (2018) also feature cross-entity coordination failures. Our approach differs
from all the three papers as we solve a model with multiple groups of players, each of whom receives multi-dimensional
signals. Also different from the focus of the current paper, Goldstein (2005) and Leonello (2018) examine how bank runs
interact with currency crisis and sovereign bond crisis, respectively.

7Liu (2016) also discusses a policy intervention, which is modeled as an ex-post net transfer from the central bank to
private institutions, conditional on the central bank’s observation of bad state. In contrast, we emphasize that the intervention
should be pre-emptive: the terms of the intervention should be announced before the realization of the aggregate risk, and such
an intervention can still be effective and at zero expected cost even if the central bank does not observe the aggregate state.
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information on the solvency of illiquid banks and suggest that setting up upfront liquidity support can

be more effective than providing ex-post emergency liquidity assistance as runs happen. We are also the

first to study this information constraint in a global-games framework, which is a natural setting since

the framework endogenously defines solvent-but-illiquid banks.

In terms of analyzing global games with multi-dimensional signals, our paper is most related to

Fujimoto (2014), who studies a game where one group of speculators learn private signals about multiple

countries and choose only one country’s currency to attack.8 Assuming a short-selling constraint for the

speculators, Fujimoto (2014) shows that the speculators’ attack at one country makes them less likely to

attack the other countries. By contrast, the multi-dimensional signals in our model with two groups of

players generate strategic complementarities between creditors from different banks.

The paper proceeds as follows. Section 2 lays out our model. Section 3 characterizes the model’s

equilibrium, showing how a vicious cycle between falling asset prices and contagious bank runs can

emerge in a laissez-faire market. We then show how committed liquidity support can mitigate such

financial fragility. We extend the policy discussion in Section 4 and conclude in Section 5.

2 Model setup

We consider a three-date (t = 0, 1, 2) economy with two banks (i = 1, 2). There are two types of

risk-neutral players: banks’ wholesale creditors and secondary-market asset buyers.

2.1 Banks

The two banks are identical at t = 0. Each of them holds a unit portfolio of long-term assets

and finances the portfolio with equity E, retail deposits F, and short-term wholesale debt 1 − E − F.

We consider banks as contractual arrangements among claim holders to fulfill the function of liquidity

transformation. Thus, banks in our model are passive, with given loan portfolios and liability structures.

8In their seminal work, Carlsson and Van Damme (1993) allow the state variables that affect players’ payoffs to be multi-
dimensional and players only observe noisy signals about the multi-dimensional state variables. Oury (2013) analyze when the
equilibrium selection does not depend on the distribution of players’ noises about the multi-dimensional state variables.
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A bank i’s assets generate a random cash flow θ̃i ∼ U(θs, θ). The realization of the cash flow is

not only affected by the bank’s idiosyncratic risk but also by a systematic risk factor s. The systematic

risk affects the distribution of both banks’ cash flows, particularly their lower bounds. There are two

possible aggregate states, s = G and s = B. With θG > θB > 0, the distribution of the cash flows in

State G first-order stochastic dominates that in State B. All players hold a prior belief that State G and B

occur with probabilities α and 1 − α, respectively. Note that the upper bound of the cash flows remains

the same across the two aggregate states, reflecting that banks hold mostly debt claims whose highest

payoffs are capped by their face values. Once the aggregate state s is realized, the two banks’ cash flows

are determined by their idiosyncratic risks and assumed to be independently and identically distributed.

On the liability side, we assume that each bank is financed by retail depositors and its pool of

wholesale creditors. The retail depositors are fully protected by deposit insurance, which is provided to

the bank free of charge. Therefore, retail depositors passively hold their claims to maturity and demand

only a gross risk-free rate that we normalize to 1. On the other hand, each bank’s wholesale debt is

risky, demandable, and raised from a distinct continuum of creditors of mass 1. Provided that the bank

does not fail, the wholesale debt pays a gross interest rate rD > 1 if a wholesale creditor waits till

t = 2, and qrD if the wholesale creditor withdraws early at t = 1. Here, q < 1 reflects the penalty

for the early withdrawal.9 For the ease of presentation, we denote by D1 ≡ (1 − E − F)qrD the total

amount of debt that a bank needs to repay at t = 1 if all of its wholesale creditors withdraw early, and

by D2 ≡ (1 − E − F)rD + F the total amount of debt that a bank needs to repay at t = 2 if none of its

wholesale creditors withdraws early. We make the following parametric assumptions.

D2 > θs (1)

F > D1 (2)

q >
1
2

+
θG

2D2
(3)

9Jin et al. (2019) and Capponi et al. (2020) consider the risk of runs in a setting of equity mutual funds and point out that
a more flexible contract such as swing pricing can mitigate the risk. The current paper focuses on financial institutions with
non-contingent liabilities, typically banks with demandable debt financing.
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Inequality (1) states that banks are not risk-free and face a positive probability of bankruptcy even in

State G. Inequality (2) suggests that banks’ retail debt exceeds their short-term wholesale debt, which

represents a realistic case and helps simplify the analysis of bank run games.10 Inequality (3) states that

the penalty for early withdrawal is only moderate.11 While we do not endogenize banks’ capital structure

(thus taking q, D1, and D2 as given), as long as the optimal capital structure satisfies the aforementioned

conditions, all of our results apply.

2.2 The bank run game

A bank run game of complete information can have multiple equilibria. To refine the multiplicity,

we take the global-games approach pioneered by Carlsson and Van Damme (1993) and assume that

creditors observe noisy signals of banks’ cash flows. We assume that a representative wholesale creditor

j in a bank i observes a private signal xi
j about his own bank’s fundamentals. Specifically, xi

j = θi + εi
j,

with the noise εi
j drawn from a uniform distribution of support [−ε, ε]. In addition, all creditors in the

bank i observe a signal y−i about the other bank’s fundamentals as outsiders. We assume y−i = θ−i + η−i,

with the noise η−i drawn from a uniform distribution of support [−η, η]. All noises are independent. We

focus on the case ε < η, so that creditors’ private signals about their own bank’s fundamentals are more

accurate than their signal about the other bank’s fundamentals.12

After receiving his signals (xi
j, y
−i), the creditor j from the bank i takes one of two possible actions:

to wait till t = 2, or to withdraw from his bank at t = 1. We focus on the following threshold strategy

that is symmetric across all wholesale creditors

(xi
j, y
−i) 7−→


withdraw xi

j < x(y−i)

wait xi
j ≥ x(y−i).

(4)

10Despite the rapid growth of wholesale funding, most commercial banks and bank holding companies are still financed
more by retail deposits than wholesale debt. For example, Cornett et al. (2011) document that the median core deposit to asset
ratio for US commercial banks was 67.88% over the period from 2006 to 2009.

11For example, when θG = θB = 0, the condition states that q > 1
2 . That is, by withdrawing early, a wholesale creditor will

not lose more than half of the face value of his claim. The moderate penalty for early withdrawal is in line with banks’ role as
liquidity providers as suggested by Diamond and Dybvig (1983).

12We show in the Online Appendix that assuming η ≥ ε does not change our model’s main results.
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That is, a wholesale creditor withdraws from his bank if and only if his private signal is below a threshold

x(y−i).13 Different from most global-games models, the threshold is not a constant but a function of the

signal y−i that the creditor receives as an outsider to the other bank. We assume the function x(y−i) to

be non-increasing so that the threshold strategy features two types of monotonicity: (1) the creditor’s

action is monotonic in his private signal, and (2) the threshold is monotonic in the signal that the creditor

receives as an outsider. Focusing on x(·) that is non-increasing implies that a creditor’s incentives to

withdraw from his own bank should not be lower when the other bank’s fundamentals become weaker.

A wholesale creditor’s payoff depends both on his withdrawal decision and on the bank’s solvency.

The creditor will receive D1, if he withdraws early and the bank does not fail at t = 1; he will receive

D1
q , if he waits and the bank stays solvent at t = 2. In the case of failure, a bank incurs a bankruptcy cost,

such as the legal cost of bankruptcy. We assume the cost to be sufficiently high, so that if a wholesale

creditor waits and the bank fails at either t = 1 or t = 2, the wholesale creditor will receive a zero payoff

and a senior deposit insurance company obtains the residual value of the bank.14 Finally, we assume that

the creditor can obtain an arbitrarily small reputational benefit by running on a bank that fails at t = 1.15

A wholesale creditor forms rational beliefs about the fraction of withdrawals in his own bank and

that in the other bank. We denote the two fractions by Li and L−i, respectively, and define the occurrence

of a bank run as any positive mass of wholesale creditors withdrawing funds from their bank at t = 1.16

By this definition, we have the number of bank runs M = 1 when Li > 0 and L−i = 0 or Li = 0 and

L−i > 0. Similarly, M = 2 when Li > 0 and L−i > 0.

13In the finance application of global games, the threshold equilibrium is of primary interest. For example, see Morris and
Shin (2004) and Liu (2016). Since creditors are ex-ante homogenous and banks are also assumed to have the same capital
structure and i.i.d. cash flows, there is no loss of generality to focus on symmetric strategies.

14As it will be clear from the analysis, this case is off the equilibrium path when the noises of the private signals diminish.
15The reputational benefit may come from the fact that the creditor makes a ‘right decision’. Rochet and Vives (2004) argue

that most of wholesale deposits are held by investment funds whose managers are compensated if they build a good reputation.
As we will show later, wholesale creditors receiving this small reputational payoff is also off the equilibrium path.

16Defining a bank run as a non-zero mass of withdrawals is an innocuous normalization. A run can be defined as the total
withdrawals exceeding an alternative positive threshold. All results will qualitatively hold.
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2.3 The secondary asset market

When facing withdrawals at t = 1, a bank has to liquidate its long-term assets in a secondary asset

market. As early liquidation destroys a bank’s value, we assume that a bank sells its assets if and only if

it faces a bank run,17 in which case, the bank sells its assets to the buyers who offer the highest price.

We assume that many identical, deep-pocketed buyers participate in the market and are called into

action only when a run happens. When no bank run occurs, the asset buyers will not have the opportunity

to move, and the game between wholesale creditors and asset buyers ends. The buyers observe neither

the aggregate state nor any signals about the banks’ cash flows. Thus, they cannot determine the exact

quality of assets on sale. They can, nevertheless, observe the outcome of creditors’ bank run game (i.e.,

the number of banks forced into liquidation) and infer the quality of assets on sale from the observation.18

An asset buyer bids according to the creditors’ optimal strategy and her observation of the number

of bank runs. When called upon to move as M bank runs happen, the buyer forms rational beliefs about

the aggregate state s and the quality of assets on sale. Her strategy is a price schedule (P1, P2) with

M 7−→ PM, M ∈ {1, 2}. (5)

We focus on symmetric strategies since the buyers are homogeneous and observe the same information.

A strategy (P1, P2) can be viewed as an inverse demand function for banks’ assets. When bidding com-

petitively to purchase banks’ assets in any contingency of M runs, the buyers break even in expectation.

2.4 The information structure and timing

The information structure of our model presumes players who are more closely linked to a bank

receiving more precise signals on the bank’s fundamentals,19 which we consider as a realistic scenario

17Diamond and Rajan (2011) provide an exposition of why banks protected by the limited liability prefer not to sell their
asset until runs happen, in which case the sale is too late and causes bank failures.

18For simplicity, we assume that asset buyers do not observe the precise size of runs if only a fraction of creditors withdraws
early. Such a partial run becomes a zero-probability event when the noises of creditors’ private signals approach zero.

19The information structure where different insiders and outsiders receive different signals is also prevalent in other finance
literature, such as papers studying corporate disclosure, e.g., Goldstein and Yang (2017, 2019) and Xiong and Yang (2021).
Semi-public signals — signals that are common knowledge only among a subset of players, such as y−i in our model — are
also featured in studies such as Morris and Shin (2007, 2018), in the context of central banks’ forward guidance.
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but is not analyzed in the global-games-based bank run literature. In particular, creditors who directly

lend to a bank are assumed to receive the most accurate private signals about the bank’s fundamentals,

whereas creditors who do not lend to that particular bank still obtain relevant information about it when

they lend to a bank of a similar business model.20 The asset buyers, on the other hand, have not dealt with

the banks until the occurrence of runs and are presumed to receive no informative signals in an equally

timely manner.21 Notably, a bank i’s creditors are assumed to receive no common signal about their

bank’s fundamentals, which serves only as a modelling shortcut to highlight the coordination problem

between creditors from different banks. Provided that the private information remains the most accurate,

assuming the alternative will not qualitatively change the results of our paper.22

The timing of the game is summarized below, with events at t = 1 taking place sequentially.

t = 0 t = 1 t = 2

Banks are established, with
their portfolios and liability
structures as given.

1. s and (θ1, θ2) are realized sequentially.
2. Each creditor receives the noisy signals and de-
cides whether to run on his own bank.
3. If any bank run occurs, buyers bid for and acquire
assets on sale according to the number of runs.

1. Bank assets pay off.
2. Remaining obligations are
settled.

3 Equilibrium bank runs and committed liquidity support

We solve the model using the concept of Perfect Bayesian Equilibrium.

Definition. A PBE of the dynamic game consists of an equilibrium strategy profile and a system of

beliefs. (i) Creditors play a symmetric threshold strategy: a representative creditor j from a bank

i withdraws if and only if his private signal xi
j falls below an equilibrium threshold x∗(y−i). Asset

buyers offer a price schedule (P∗1, P
∗
2) to purchase banks’ assets on sale when observing M bank runs,

M ∈ {1, 2}. (ii) Each creditor forms beliefs about the aggregate withdrawals in both banks based on his

information (xi
j, y
−i) and the equilibrium strategy profile described in (i). Asset buyers form beliefs about

20Compared to an average market participant, financiers often learn better information about the firms that they fund.
Botsch and Vanasco (2019) document evidence of ‘learning by lending’ in credit markets, showing that lenders are better able
to gauge borrowers’ creditworthiness as lending relationships progress.

21This assumption that the asset buyers receive no signals is equivalent to that they receive only very noisy signals, which
are less informative for the banks’ fundamentals as compared to the observed number of bank runs.

22In the Online Appendix, we analyze an alternative setting where all the bank i’s creditors also observe the signal yi in
addition to their private signals. While this will change the analysis of the global games, the results of our paper will remain
qualitatively the same as long as the private signal xi

j is more accurate than yi.
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the qualities of banks’ assets on sale and beliefs about the aggregate state based on their observation of

M bank runs and the equilibrium strategy profile described in (i). (iii) The strategy profile described in

(i) is sequentially rational, given the beliefs described in (ii).

For an equilibrium strategy and fundamentals (θ1, θ2), an equilibrium outcome in a laissez-faire

market can either be no bank run and no asset liquidation, or be summarized by a duplex (M, P∗M),

M ∈ {1, 2}.

3.1 Competitive bidding in the secondary asset market

We first solve the asset buyers’ bidding game. That is, given the creditors’ strategy, what would

be the secondary-market asset prices? Asset buyers observe neither fundamentals (θ1, θ2) nor the state

s. Nevertheless, they form rational beliefs about the quality of assets on sale according to creditors’

strategy and the observed number of runs M ∈ {1, 2}. In a subgame of competitive bidding, buyers who

believe creditors using a threshold strategy understand that creditors withdraw from a bank if and only

if their private signals are below a threshold signal x∗, and that given the creditors’ threshold strategy, a

bank run happens if and only if the bank’s cash flow is below a threshold fundamental θ̂. Asset buyers

also Bayesian update their beliefs about the aggregate state s. Since banks’ cash flows are i.i.d. after

the aggregate state is realized, more bank runs suggest State B being more likely. The buyers’ posterior

beliefs about the aggregate state s can be calculated as follows (details in the Online Appendix):

ωB
M

(
θ̂
)
≡ Prob(s = B|θ < θ̂,M) =

(
θ̂ − θB

)M(
θ̂ − θB

)M
+ κ

(
θ̂ − θG

)M , (6)

where κ ≡ α
1−α

(
θ−θB

θ−θG

)2
is a constant and M ∈ {1, 2}. Notably, buyers’ beliefs about s are endogenous to

their beliefs about the creditors’ equilibrium strategy.

When buyers bid competitively for banks’ assets on sale, the equilibrium of the secondary market

requires buyers’ bids to be equal to the expected asset quality. Specifically, when M bank runs occur, the

homogeneous buyers will offer P∗M = ωB
M

(
θ̂
)
· E

(
θ
∣∣∣θ < θ̂, s = B

)
+ωG

M

(
θ̂
)
· E

(
θ
∣∣∣θ < θ̂, s = G

)
. Since the

buyers perceive the average quality of the assets on sale to be E
(
θ
∣∣∣θ < θ̂, s) =

θs+θ̂

2 for a given aggregate

state s ∈ {B,G}, the competitive asset price can be written explicitly as:

P∗M = ωB
M

(
θ̂
)
·
θB + θ̂

2
+ ωG

M

(
θ̂
)
·
θG + θ̂

2
=

Es

(
θs|M

)
+ θ̂

2
. (7)
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Expression Es(θs|M) = ωB
M

(
θ̂
)
· θB + ωG

M

(
θ̂
)
· θG represents the expected lower bound of θ, based on M

observed runs and the belief that a bank is forced into liquidation when its cash flow falls below θ̂.23

Creditors’ strategy affects the secondary-market price in two ways. First, the critical signal x∗ (and

the resulting θ̂) directly determines the average quality of the assets on sale.24 Second, the creditors’

strategy affects buyers’ perception of the aggregate state. For a given number of runs, a more pessimistic

strategy on the creditors’ side (i.e., a higher x∗) is associated with a more optimistic perception of the

state s (i.e., a higher ωG
M). Both channels suggest a higher x∗ being associated with higher asset prices.

We show in Lemma 1 that any break-even price P offered by asset buyers must belong to interval

[P, qD2), with P ≡ θB+D2
2 .25 Intuitively, if the price P ≥ qD2, early liquidation will not hurt a bank’s

solvency so that its creditors would not run in the first place.26 On the other hand, since all fundamentally

insolvent banks (i.e., those with θ < D2) will be liquidated, the worst possible average asset quality is

θB+D2
2 . It follows that the equilibrium asset prices P∗M ∈ [P, qD2). This restriction on the range of

equilibrium asset prices will facilitate the solution of the bank run game in the next section.

Lemma 1. When asset buyers believe that creditors follow a symmetric threshold strategy and that a

bank fails if and only if its cash flow is lower than a threshold, the buyers’ break-even price P cannot be

greater than or equal to qD2, nor can it be smaller than P.

Proof. See Appendix B.1. �

Furthermore, it holds that P∗M ≥ P > D1,27 so that a bank can always repay its t = 1 liabilities and

does not fail on the intermediate date. A run, however, can result in the bank’s failure because liquidation

losses lead to bankruptcy at t = 2. Specifically, while a partial liquidation can generate sufficient cash to

23Note that our model does not feature asset fire sales. Since the buyers pay the expected payoff of the asset given their
information set, no welfare loss emerges due to the change of ownership of the asset. This differs from classic views of asset
fire sales, such as in Shleifer and Vishny (1992).

24We derive explicitly the relationship between θ̂ and x∗ in equation (16) when solving the creditors’ bank run game.
25Parametric assumption (3) guarantees qD2 > P, so that the set [P, qD2) is non-empty.
26For an asset price equal to qD2, one can show that any run will reduce a bank’s asset and liabilities by the same amount,

resulting in a neutral impact of runs on the solvency of the bank.
27Note that for q < 1, parametric assumption (2) implies D2 > 2D1, because D2 =

D1
q + F > D1 + F > 2D1.
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pay early withdrawals at t = 1, the cash flow from the residual portfolio will be insufficient to cover the

remaining liabilities at t = 2, making a bank that is otherwise solvent fail at t = 2.28

3.2 The bank run game

We solve the creditors’ bank run game by examining the strategy of a representative creditor j from

a bank i ∈ {1, 2}. We derive the creditor’s threshold strategy as the best response to other players’

equilibrium strategies x∗(·) and (P∗1, P
∗
2).

Facing a given asset price P ∈ [P, qD2), the representative creditor will withdraw if and only if the

aggregate withdrawal in his bank exceeds a critical level. To see this, note that when an Li fraction of

its creditors withdraw, the bank i faces a liquidity demand of LiD1 and needs to liquidate a λi =
LiD1

P

fraction of its assets, where λi ∈ (0, 1) because P > D1. After the partial liquidation, the bank will fail at

t = 2 if its remaining assets fall below its remaining liabilities, i.e., (1−λi)θi < F + (1−Li)(1−E−F)rD.

In other words, the bank fails at t = 2 if Li exceeds a critical value Lc:

Li >
P · (θi − D2)

D1 · (θi − P/q)
≡ Lc(θi, P). (8)

If the representative creditor withdraws, his payoff will be Wrun = D1 since the bank does not fail

at t = 1. If he waits instead, his payoff Wwait depends on Li, θi and P. He would receive D1
q if the

bank survives at t = 2, and 0 otherwise. Denote by DW(Li, θi, P) ≡ Wwait − Wrun the creditor’s payoff

difference from the two actions, we have

DW(Li, θi, P) =


(1 − q) D1

q Li ∈ [0, Lc(θi, P)]

−D1 Li ∈ (Lc(θi, P), 1].
(9)

The game features global strategic complementarities, with the creditor strictly preferring ‘wait’ (‘with-

draw’) if Li is lower (higher) than Lc(θi, P).

28Similar to Morris and Shin (2016), even if a bank survives t = 1 runs, it would be doomed to fail at t = 2. The funding
liquidity risk is captured by a higher ex-ante probability of bank failure and the fact that the survival threshold is higher than
the solvency threshold. This feature of no interim date failure also emerges in Ahnert et al. (2019).
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With incomplete information, the creditor cannot directly observe his bank’s cash flow θi or the

aggregate withdrawal Li. The asset price will also be endogenous to the number of runs. To determine

his optimal action, the creditor has to form beliefs about θi, Li, and P, given his information (xi
j, y
−i) and

the other players’ equilibrium strategies. We take a step-by-step approach to derive the equilibrium of

the incomplete information game: first analyzing a case without aggregate uncertainty for an illustrative

purpose (Section 3.2.1) and then the fully-fledged model with the aggregate uncertainty (Section 3.2.2).

3.2.1 Equilibrium without the aggregate uncertainty

Suppose that there is no aggregate uncertainty and θG = θB = θ. We solve the game backward,

starting with the asset market. As banks’ cash flows are independently distributed, creditors’ run in

one bank provides no information about the other bank’s fundamentals. The asset buyers thus offer a

single price P independent of the number of runs observed. In other words, their strategy features a

price schedule (P1, P2) = (P, P), which suggests the demand for banks’ assets to be perfectly elastic. A

candidate equilibrium price P∗ must satisfy the zero-profit condition (7). Without aggregate uncertainty,

Es(θs|M) degenerates to θ, and the condition becomes

P∗ =
θ + θ̂

2
. (10)

To solve the bank run game, we first establish the existence of lower and upper dominance regions.

When the representative creditor observes xi
j < xL ≡ D2 − ε and knows his bank’s fundamentals below

θL ≡ D2, it is a dominant strategy for him to withdraw early, independent of his beliefs about Li and for

any asset price P ∈ [P, qD2). Similarly, when the creditor observes xi
j > xU ≡ F

1−D1/P
+ ε and learns his

bank’s fundamentals above θU ≡ F
1−D1/P

, it is a dominant strategy for the creditor to wait, independent

of his beliefs about Li and for any asset price P ∈ [P, qD2) (details in Appendix A.1).29

For an intermediate private signal xi
j ∈ [xL, xU], the representative creditor’s optimal action depends

on the asset price P and his beliefs about the aggregate withdrawal in his bank, Li. When all other

29The upper dominance region is non-empty provided θ > F
1−D1/P

. The sufficiently high upper bound is also in line with the
global game literature with uniform and uninformative priors, e.g., Morris and Shin (1998) and Cong et al. (2020). We derive
the precise conditions for the uninformative prior in the Online Appendix.
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creditors in the bank i observe y−i and take x∗(y−i) as the critical signal, one can derive Li(θi, x∗(y−i)) as

the aggregate withdrawal faced by the bank i with a cash flow θi as follows (details in Appendix A.2):

Li(θi, x∗(y−i)) = max
{

min
{

x∗(y−i) − θi + ε

2ε
, 1

}
, 0

}
=


1 θi < x∗(y−i) − ε
x∗(y−i)−θi+ε

2ε x∗(y−i) − ε ≤ θi ≤ x∗(y−i) + ε

0 θi > x∗(y−i) + ε.

(11)

Li(θi, x∗(y−i)) increases in the critical signal x∗(y−i) and decreases in the bank’s cash flow θi. Based on

his private signal, the representative creditor forms a posterior belief θi|xi
j
∼ U(xi

j − ε, x
i
j + ε) about his

bank’s fundamentals and expects the following aggregate withdrawal from his bank:

Li(xi
j, y
−i) = E

[
Li(θi, x∗(y−i))

∣∣∣xi
j, y
−i
]

=

∫ xi
j+ε

xi
j−ε

Li(θi, x∗(y−i)) ·
1
2ε
· dθi. (12)

The creditor anticipates his bank to sell its assets at the price P∗ if runs happen. Let θ∗(y−i) denote the

critical fundamental below which the bank i fails. By condition (8), the creditor expects his bank with a

fundamental θ∗(y−i) to fail if and only if

Li > Lc(θ∗(y−i), P∗) =
P∗ · (θ∗(y−i) − D2)

D1 · (θ∗(y−i) − P∗/q)
. (13)

We now calculate the representative creditor’s expected payoff difference conditional on his signals,

E
[
DW(Li, θi, P)

∣∣∣(xi
j, y
−i)

]
, which can be reformulated with (12) and (13) as E

[
DW(Li(xi

j, y
−i), θ∗(y−i), P∗)

]
.

For a given y−i, we illustrate in Figure 1 the expected payoff difference as a function of xi
j. The represen-

tative creditor’s best response to the other creditors’ threshold strategy x∗(y−i) is also a threshold strategy:

to withdraw if and only if xi
j < x̂(y−i) = x∗(y−i) − 2ε · [Lc(θ∗(y−i), P∗) − q] (details in Appendix B.2).

Figure 1: Payoff differences and the decision to withdraw

xi
j

E[DW(Li(xi
j, y
−i), θ∗(y−i), P∗)]

0
x̂

(1 − q)D1/q

−D1

A symmetric threshold equilibrium requires x̂(y−i) = x∗(y−i). So the equilibrium critical cash flow

for the bank’s failure, θ∗(y−i), must satisfy Lc(θ∗(y−i), P∗) = q, which implies
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θ∗(y−i) =
D2 − D1

1 − qD1/P∗
. (14)

Furthermore, since the bank i with fundamentals θi = θ∗(y−i) is on the verge of bankruptcy, the aggregate

withdrawal Li(θ∗(y−i), x∗(y−i)) =
x∗(y−i)−θ∗(y−i)+ε

2ε must equal Lc(θ∗(y−i), P∗), which further equals q in the

equilibrium. This defines the equilibrium threshold signal:

x∗(y−i) = θ∗(y−i) + (2q − 1)ε. (15)

Note that θ∗(y−i), in principle, differs from the critical fundamental θ̂(y−i) that triggers runs, which is

characterized by Li(θ̂(y−i), x∗(y−i)) = 0 and can be explicitly expressed as

θ̂(y−i) ≡ x∗(y−i) + ε. (16)

While a fundamental θ < θ̂(y−i) triggers runs and forces a bank to (partially) liquidate its asset, the bank

will only fail when θ < θ∗(y−i).30 In line with the literature, we focus on θ∗(y−i) for the rest of the paper.

In a Perfect Bayesian equilibrium, asset buyers’ belief about the critical signal must be consistent

with the one associated with creditors’ equilibrium strategy. The following condition must hold:

x∗(y−i) = x∗. (17)

Expressions (15), (16) and (17) imply that the equilibrium critical cash flows θ∗(y−i), θ̂(y−i), and the equi-

librium critical signal x∗(y−i), if exist, are constants and do not depend on y−i. Proposition 1 establishes

the existence and the uniqueness of the equilibrium.

Proposition 1. Without aggregate uncertainty, the game has a unique equilibrium: a wholesale creditor

of a bank i’s withdraws if and only if his private signal falls below x∗, which is unique and independent

of y−i. The asset buyers offer a price P∗ to buy banks’ assets, independent of the number of runs.

Proof. See Appendix B.2 �

30It is straightforward to verify that θ̂(y−i) > θ∗(y−i). When θi ∈ (θ∗(y−i), θ̂(y−i)), the bank survives at t = 2 despite the run
and the partial asset liquidation at t = 1. θ̂(y−i) converges to θ∗(y−i) when the noises of creditors’ private signals approach zero.
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Our model predicts two-way feedback between bank runs and distressed asset prices even in the

absence of aggregate uncertainty. The equilibrium is unique and stable despite the two-way feedback.

Intuitively, if creditors take a more optimistic strategy than the equilibrium one, they rationally anticipate

the asset buyers to bid a lower price P∗ according to (10). The lower P∗, however, implies an aggravated

coordination problem by (14), which, in turn, restores the equilibrium threshold strategy.31

Our model differs from classic global-game-based bank run models such as Rochet and Vives (2004)

and Vives (2014) because the liquidation value of banks’ assets is endogenous: creditors in our model

are forward-looking and understand the impact of their decisions to run on asset prices. The two-way

feedback is related to Liu (2016) who studies the interaction between bank runs and rising interbank

market rates when there is a limited supply of cash. We show, however, that given the lack of information

on banks’ solvency, runs depress asset prices even if the supply of cash is perfectly elastic.

3.2.2 Equilibrium with the aggregate uncertainty

We now characterize the equilibrium of the fully-fledged model with both idiosyncratic and aggre-

gate risks. Different from the case without aggregate uncertainties, the equilibrium asset price P∗M now

depends on the number of runs M, which conveys information about the aggregate state s. In deciding

whether to run, a creditor needs to anticipate the would-be asset price if his bank is forced into liquida-

tion. To do that, the creditor needs to form rational expectations about the total withdrawals, not only in

his own bank but also in the other bank.

For a sufficiently low or high y−i, the representative creditor can tell whether the creditors in the

other bank receive private signals that fall into the dominance regions. For example, when y−i < yL ≡

xL − η − ε, the creditor knows that all creditors in the bank −i receive private signals lower than xL and

will withdraw. So the creditor expects L−i(xi
j, y
−i) = 1 independent of his private signal xi

j. Similarly,

for y−i > yU ≡ xU + η + ε, the representative creditor knows that all creditors in the bank −i receive

private signals in the upper dominance region, and expects L−i(xi
j, y
−i) = 0 independent of xi

j.

31It is worth noticing that the information asymmetry in our model does not generate standard adverse selection problems
where lower prices are associated with lower average qualities. Since banks in our model are forced into asset sales rather than
strategically choose to do so, a lower asset price is associated with a higher average quality.
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Lemma 2. When observing y−i < yL ≡ xL − η − ε, the representative creditor expects L−i(xi
j, y
−i) = 1,

independent of his private signal xi
j. When observing y−i > yU ≡ xU + η + ε, the creditor holds a belief

that L−i(xi
j, y
−i) = 0, independent of his private signal xi

j.

When observing y−i > yU , the representative creditor anticipates the asset price to be P∗1 if his own

bank is forced into liquidation because a run will not happen to the other bank. Similarly, upon observing

y−i < yL, the representative creditor anticipates a run on the other bank, so that his own bank will have

to sell assets for the price P∗2 if a run happens. With such expectations of asset prices, we can derive

the representative creditor’s best response following the same procedure as in Section 3.2.1, except that

the asset price is now given by equation (7) with M = 1 for y−i > yU , and with M = 2 for y−i < yL.

The asset price (P∗M), the bank i’s creditors’ threshold signal (x∗), and the bank’s critical cash flows that

trigger runs and failures (θ̂M and θ∗M respectively), solve the following system of equations:



P∗M = ωB
M(θ̂M) · θB+θ̂M

2 + ωG
M(θ̂M) · θG+θ̂M

2

x∗M = θ∗(y−i) + (2q − 1)ε = x∗(y−i)

θ∗M =
D2−D1

1−qD1/P∗M
= θ∗(y−i)

θ̂M = x∗(y−i) + ε ≡ θ̂(y−i)

with M =


1 if y−i > yU

2 if y−i < yL.

(18)

We establish in Lemma 3 the existence and uniqueness of P∗M, x∗M, and θ∗M, M ∈ {1, 2}, and show

that P∗1 > P∗2, x∗1 < x∗2, and θ∗1 < θ∗2. Intuitively, the asset buyers form more pessimistic beliefs about the

aggregate state s when observing more bank runs. As a result, they offer a lower price, which, in turn,

increases the creditors’ incentives to withdraw and the critical fundamental for banks to survive runs.

Lemma 3. When observing y−i > yU , a wholesale creditor in a bank i withdraws if and only if his

private signal falls below x∗1 and expects his bank to liquidate its assets for a price P∗1. The bank fails

if and only if its cash flow is below θ∗1, with P∗1, x∗1, and θ∗1 being the unique solution to the system of

equations (18) for M = 1. Similar, P∗2, x∗2, and θ∗2 jointly solve the system of equations for y−i < yL and

M = 2. It holds that P∗1 > P∗2, x∗1 < x∗2, and θ∗1 < θ
∗
2.

Proof. See Appendix B.3. �
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Lemma 3 implies that the creditors’ equilibrium threshold signal x∗(y−i) must be a step function with

only two possible values. Since the asset buyers can only observe the number of bank runs, M ∈ {1, 2},

and offer a corresponding price P∗M, the creditors will choose their threshold strategy in expectation

of one of the two equilibrium prices. We have established x∗1 and x∗2 as the two values of x∗(y−i), for

y−i > yU and y−i < yL respectively, so that the non-increasing function x∗(y−i) must be bounded between

x∗1 and x∗2. Furthermore, there must exist a point of discontinuity ŷ ∈ [yL, yU] such that x∗(y−i) = x∗1 for

y−i ≥ ŷ, and x∗(y−i) = x∗2 for y−i < ŷ. As y−i rises above the cutoff value ŷ, the creditor’s expected asset

price changes from P∗2 to P∗1.

To fully characterize the creditors’ equilibrium strategy, we now derive x∗(y−i) for y−i ∈ [yL, yU],

in which case creditors in the bank −i are no longer seen to have a dominant action. We establish in

Proposition 2 that a unique equilibrium exists for the game with aggregate uncertainty and illustrate the

creditors’ equilibrium threshold signal in Figure 2.

Proposition 2. With aggregate uncertainty, the game has a unique equilibrium: a wholesale creditor of

a bank i’s withdraws if and only if his private signal falls below x∗(y−i), with

x∗(y−i) =


x∗2 y−i < x∗2 + η + ε

x∗1 y−i ≥ x∗2 + η + ε.

(19)

The asset buyers offer price P∗M when observing M bank runs, M = 1, 2.

Proof. See Appendix B.4. �

Figure 2: The equilibrium threshold singal

y−i

x∗(y−i)

x∗1

x∗2

yL x∗1 − η + ε x∗2 + η + ε yU

L−i = 0L−i = 1 L−i ∈ (0, 1)

expecting P∗2 in liquidation expecting P∗1 in liquidation
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To establish Proposition 2, we first derive the representative creditor’s expectation of L−i for those

relatively high and low values of y−i in the intermediate range. In particular, the creditor expects

L−i(xi
j, y
−i) = 0 when observing y−i > x∗2 + η + ε, independent of his private signal. Indeed, such

an observation reveals that all creditors in the bank −i observe private signals no less than x∗2. Therefore,

none of those creditors will withdraw even if they follow the threshold signal x∗2. The representative

creditor then expects L−i = 0 and sets his threshold signal to x∗(y−i) = x∗1. Similarly, when observing

y−i < x∗1 − η + ε, the creditor knows that θ−i < x∗1 + ε must be true, and that a positive mass of creditors

in the bank −i will withdraw even if they follow the threshold signal x∗1. As a result, the representa-

tive creditor expects L−i > 0 and sets his threshold signal to x∗2. Therefore, we know that the point of

discontinuity must be in the range of [x∗1 − η + ε, x∗2 + η + ε].

We sketch here the proof for why the point of discontinuity must be x∗2 + η + ε, and provide the

full proof by contradiction in Appendix B.4. Suppose that there is an alternative discontinuity point

ŷ < x∗2 + η + ε. When observing a y−i ∈ (ŷ, x∗2 + η + ε), the bank i’s creditors would follow a threshold

signal x∗1, which must be rationalized by the expectation that their bank — when forced into liquidation

— will sell its assets for the price P∗1. In other words, the creditors must not expect a run to occur to

the bank −i. We can also make the following two observations. First, when a representative creditor

from the bank i expects runs on his own bank (e.g., when observing xi
j = x∗1), the creditor cannot

exclude the possibility that the bank −i’s creditors run according to the threshold x∗2. This is because the

representative creditor knows that θi < x∗1 + ε as long as he does not receive the lowest private signal

in his bank. Therefore, he cannot exclude the possibility that the bank −i’s creditors observe a signal

yi < x∗1 − η + ε, which implies those creditors following the threshold signal x∗2. Second, since the

representative creditor also receives the signal y−i < x∗2 + η + ε, he perceives with a positive probability

that θ−i < x∗2 + ε, in which case those lowest private signals in the bank −i would be lower than x∗2.

Combining these two observations, the representative creditor cannot exclude the possibility that a run

also happens to the bank −i. Such a possibility, however, contradicts the expectation of the price P∗1.
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Our fully-fledged model with two groups of creditors and two-dimensional signals features a unique

equilibrium despite the aggregate uncertainty. To gain some intuition for the uniqueness, note that the

signal y−i received by a bank i’s creditors is about the other bank’s fundamentals, which differs from the

classic models where both private and public signals are about the same bank’s cash flow.32 Therefore,

on top of the coordination game within each bank, the two groups of creditors in our model also play a

cross-bank coordination game on the number of runs. To form rational beliefs about whether a run would

happen to the bank −i, creditors in the bank i need to rely on both their private signals (to Bayesian update

the threshold signal x∗(yi) adopted by the bank −i’s creditors) and the signal y−i (to Bayesian update the

range of private signals received by the bank −i’s creditors). Since each creditor has its own posterior

about x∗(yi), there is a lack of common knowledge on whether a run will happen to the bank −i, which

results in the uniqueness of the equilibrium.

Figure 3 gives a complete characterization of how the equilibrium outcome depends on the banks’

fundamentals. Since the relative magnitude of η and ε does not affect any main results, we focus on a

limiting case where ε → 0 and η → 0.33 As the uncertainties about both banks’ fundamentals diminish,

we have the critical cash flows θ∗1 = limε→0x∗1 = limε→0θ̂1 and θ∗2 = limε→0x∗2 = limε→0θ̂2, which make a

unique partition of the set of bank fundamentals as shown in Figure 3.

Assumption. In the remaining of the paper, we focus on ε → 0 and η→ 0 unless otherwise stated.

Our model features strategic complementarities between creditors from the two banks. Observing

a low signal y−i about the bank −i’s cash flow, creditors in the bank i know that the bank −i’s creditors

are likely to run. Consequently, the bank i’s creditors expect their bank to face the price P∗2 if it is

forced into liquidation, which increases their incentives to withdraw. This creates financial contagion,

since the bank −i’s weak fundamentals reduce the bank i’s likelihood of survival. Note that a bank’s

liquidation depresses the asset price and generates contagion even though the cash is in perfectly elastic

32In models such as Morris and Shin (2001) and Hellwig (2002), the global-games refinement could fail to predict a
unique equilibrium as the public signal becomes increasingly precise as compared to the private signals, and the players again
coordinate on the public signal. In contrast, the uniqueness of the equilibrium of our model does not rely on the relative
magnitude between ε and η because creditors do not observe a common signal about their own bank’s fundamentals.

33For its tractability, it is common to study the limiting case in the literature: e.g., see Liu and Mello (2011).
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Figure 3: Bank fundamentals and the equilibrium outcomes
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supply. Rather, an informational channel is at play: when observing a bank run, asset buyers form

more pessimistic beliefs about s and lower their bids, which in turn results in strategic complementarity

between creditors across banks.34 The bank i’s exposure to the risk of contagion can be quantified

accordingly as the increase in its probability of failure when the other bank’s fundamentals weaken:

Prob(Bank i fails | θ−i < θ∗2) − Prob(Bank i fails | θ−i ≥ θ∗2) = Prob(θ∗1 < θ
i < θ∗2).

When both banks’ fundamentals fall below θ∗2, both of them will fail because of equilibrium bank

runs. In Figure 3, we depict the regions of fundamentals where both banks fail in grey, a scenario that

we dub as ‘systemic bank failures’ or ‘a systemic crisis’.

Corollary 1. Systemic bank failures happen when both banks’ fundamentals are below θ∗2.

Corollary 1 points out that a systemic crisis can emerge in a laissez-faire market, even if the fun-

damentals are strong, e.g., both banks’ cash flows only marginally below θ∗2. From an ex-ante per-

spective, the probability of such a crisis can be computed as SYS(θ∗2) ≡ Prob(θi ≤ θ∗2, θ
−i ≤ θ∗2) =

α ·
(
θ∗2−θG

θ−θG

)2
+ (1 − α) ·

(
θ∗2−θB

θ−θB

)2
. Since systemic bank failures are particularly detrimental for its costly

34This aspect of our model is in line with the literature of information contagion, e.g., Acharya and Thakor (2011) and Oh
(2012). Also in a global-games framework, Ahnert and Bertsch (2020) model how a bank failure serves as a ‘wake-up call’
and triggers information acquisition about other banks’ exposure to the aggregate risk. In contrast, we emphasize how the
information constraint faced by asset buyers leads to liquidation losses, and how such losses trigger runs from forward-looking
creditors who understand the price impact of bank asset liquidation.
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resolution and negative impacts on the broader economy,35 we consider liquidity interventions that would

reduce the range of fundamentals where systemic bank failures can happen.

3.3 Policy Intervention

We now analyze a risk-neutral regulator’s options for interventions when she strives to simultane-

ously achieve the following three desirable goals: (1) to mitigate systemic risks, (2) to make no loss in

the intervention, and (3) to save no insolvent bank. The regulator tries to avoid making losses, as such

losses would constitute a transfer to banks’ claim holders and make the policy politically unpopular.

It is also understood that the regulator should avoid using liquidity interventions to tackle insolvency

problems since assisting insolvent banks would create zombie lending and weaken ex-ante discipline.

To highlight the importance of information friction, we first analyze a case where the regulator holds

information on banks’ solvency. With such information, the regulator can offer to purchase assets only

from solvent banks for a price P ≥ qD2, which will costlessly reduce the critical cash flow for a bank’s

survival to D2. In other words, runs are confined to the lower dominance region and occur only to the

fundamentally insolvent banks.36 Intuitively, since a solvent bank’s assets are no longer pooled with

those of insolvent banks’, the increase in the price of the former will remove the first-mover advantage

for creditors who run on such a bank. As a result, knowing the regulator’s offer, no creditor would run

a solvent bank in the first place. The policy simultaneously achieves all three desirable goals. This

result echos how deposit insurance works in Diamond and Dybvig (1983): once a bank is known free of

insolvency risks, liquidity support can costlessly eliminate bank runs.

Once the regulator is informationally constrained, the ideal allocation θ∗ = D2 can no longer be

achieved. In particular, an ex-post arrangement, in which the regulator chooses a supporting asset price

PA,M after observing M bank runs, cannot improve on the market allocation.37 Intuitively, when the

35A systemic banking crisis can threaten essential payment services and cause system-wide disintermediation, e.g., a credit
crunch and the loss of soft information on borrowers. See Laeven et al. (2010) for the real and fiscal costs of systemic crises.

36To see this, note that even if all wholesale creditors withdraw from a solvent bank at t = 1, the bank only needs to sell a
λ =

D1
P fraction of its assets and can stay solvent at t = 2, because (1 − λ) θ ≥

(
1 − D1

qD2

)
· D2 = F.

37In our view, the ex-post intervention is more in line with the traditional last resort policy. While the traditional policy also
recommends the readiness of central bank liquidity support, the terms of lending are not specified beforehand. By contrast,
with the committed liquidity support that we will propose, the terms of lending/the price for asset purchase should be specified
before, and independent of, the occurrence of runs.
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regulator intervenes by purchasing banks’ assets after observing that bank runs have happened, she

cannot offer better prices than what private market participants are willing to pay — at least not without

incurring expected losses. The reason is that other than the coordination failure, the only friction in our

model is the lack of information on banks’ asset qualities, which applies to both the private asset buyers

and the regulator. If the regulator only moves after observing the number of runs M, the efficiency of

the policy intervention will be bounded by the market allocation.

By contrast, an ex-ante arrangement — with mutual commitments from the regulator and banks —

can still reduce the systemic risk.38 Formally, we assume that the regulator intervenes by committing to

purchasing banks’ assets for a price PA ≥ P∗2 in case any bank is forced into liquidation at t = 1, and that

the banks commit to raising liquidity by selling their assets to the regulator when experiencing runs.39

The support price PA is pre-emptive, in the sense that it is set up before the realization of the aggregate

and idiosyncratic risks, and therefore before the observation of any actual bank run. In line with the

three policy goals, we assume that the regulator solves the following program:

min
PA≥P∗2

SYS(PA)

s.t. VA(PA) ≥ 0 (20)

θ∗(PA) ≥ D2. (21)

The regulator’s objective is to minimize the probability of a systemic crisis SYS(PA) by setting the price

support PA. With VA(PA) denoting the regulator’s expected payoff from the intervention, constraint (20)

requires the regulator to make no losses or net transfers to banks. With θ∗(PA) denoting the equilibrium

threshold cash flow under the regulator’s intervention, constraint (21) states that the liquidity support

should not save any insolvent bank.40

38As we will show in Section 4.3, an ex-ante liquidity arrangement with the regulator’s unilateral commitment cannot
achieve all three goals simultaneously, and in particular, requires the regulator to bear losses from the intervention.

39We analyze in Section 4.4 the case where banks can raise liquidity from a regulator by borrowing against their assets
as collateral. We show that committed liquidity support in the form of purchasing banks’ assets can still be preferred by the
regulator to collateralized lending when she also pre-commits to the terms of lending in expectation of runs.

40Our modeling of the regulator’s objective function is in line with the theory literature, e.g., Vives (2014) and Morris and
Shin (2016). Both papers distinguish between a bank’s liquidity and insolvency risks and assume the regulator’s objective is
to contain the risks. In our paper, the liquidity intervention aims to reduce the risk of systemic crises by preventing contagious
bank runs while making no attempt to limit insolvency.
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Observing a committed price PA ≥ P∗2, creditors no longer need to consider the price impact of bank

runs. The bank run game can be solved as in Rochet and Vives (2004). In the limiting case where ε → 0

and η → 0, the creditors’ equilibrium threshold signal and the banks’ critical fundamentals that trigger

runs and failures converge: x∗(PA) = θ̂(PA) = θ∗(PA) =
D2−D1

1−qD1/PA
. The risk of systemic bank failures

under the intervention becomes SYS(PA) = α ·
(
θ∗(PA)−θG

θ−θG

)2
+ (1 − α) ·

(
θ∗(PA)−θB

θ−θB

)2
.

When choosing a PA at t = 0, the regulator needs to calculate her expected payoff VA(PA) by forming

rational expectations about the possible number of runs and their associated probabilities.

VA(PA) =
∑

s=G,B

Pr(s) ·

 2∑
M=1

Pr(θ < θ∗(PA)|s)M · Pr(θ > θ∗(PA)|s)2−M ·CM
2 · M ·

D1

PA
· π(PA|s)

 . (22)

Here π(PA|s) =
θs+θ

∗(PA)
2 − PA denotes the regulator’s expected payoff from purchasing a bank’s one

unit of assets for the price PA in a given aggregate state s. In the equilibrium, a bank with a cash flow

θ ∈ [θs, θ
∗(PA)) will experience runs and will have to sell a D1

PA
proportion of its portfolio to meet a D1

amount of withdrawals. Therefore, M · D1
PA
· π(PA|s) denotes the regulator’s total payoff of purchasing

assets from M banks, M ∈ {1, 2}. Since Pr(θ < θ∗(PA)|s)M · Pr(θ > θ∗(PA)|s)2−M is the probability that

M and only M banks are forced into liquidation in a given aggregate state s, the term in the parentheses

denotes the regulator’s expected payoff in the state s. We characterize the solution of the regulator’s

program in Proposition 3.

Proposition 3. There exists a unique P∗A ∈ (P∗2, P
∗
1) for VA(P∗A) = 0 such that the regulator can break

even by offering the price. With both SYS(PA) and VA(PA) monotonically decreasing in PA, the regulator

optimally commits to purchasing banks’ assets for the break-even P∗A and reduces the risk of systemic

bank failures from SYS(θ∗2) to SYS(P∗A).

Proof. See Appendix B.5. �

Offering the price P∗A ∈ (P∗2, P
∗
1) at t = 0 allows the regulator to break even across possible posterior

beliefs of the state s, whereas the private asset buyers who bid ex post at t = 1 have to break even

within a given belief of the state s. To highlight this difference, we define ΠM(P) as the expected payoff

from purchasing one unit of bank assets for a given price P ∈ (P∗2, qD2) in the contingency of M bank

26



runs. Denoting the corresponding critical cash flow by θ∗(P), we have ΠM(P) = ωB
M(θ∗(P)) · π(P|B) +

ωG
M(θ∗(P)) · π(P|G). Here, ωs

M(θ∗(P)) is the posterior belief about the state s upon the observation of M

bank runs when the bank’s assets are sold for a price P. One can verify that ΠM(P) strictly decreases in

P, and that the asset buyers’ equilibrium bid P∗M satisfies ΠM(P∗M) = 0, for M ∈ {1, 2}. In other words,

the buyers always break even for a realized M and the associated belief ωs
M(P∗M) about the state s. The

regulator, on the other hand, can offer the price P∗A to break even across different numbers of runs and

thereby across possible posterior beliefs about the aggregate state s. To see this, we use the definition of

ΠM(P) to re-arrange VA(PA) into the following form:

VA(PA) =

2∑
M=1

 ∑
s=G,B

Pr(s) · Pr(θ < θ∗(PA)|s)M · Pr(θ > θ∗(PA)|s)2−M

 ·CM
2 · M ·

D1

PA
· ΠM(PA). (23)

Importantly, the regulator does not require ΠM(P∗A) = 0 but instead VA(P∗A) = 0. In fact, the regulator

expects to make losses in the contingency of M = 2 and to profit in the contingency of M = 1. Since

Π1(P∗2) > 0 and Π2(P∗1) < 0, we know that VA(PA) > 0 for PA = P∗2 and that VA(PA) < 0 for PA = P∗1.

Since VA(PA) monotonically and continuously decreases in PA, there exists a unique P∗A ∈ (P∗2, P
∗
1) that

allows the regulator to break even in expectation.

Figure 4: The equilibrium outcomes under the committed liquidity support

Bank 1

Bank 2

θs θ∗1 θ∗A θ∗2

θ

θ∗1

θ∗A

θ∗2

θ

(2, P∗A) (2, P∗A) (1, P∗A) (1, P∗A)

(2, P∗A) (2, P∗A) (1, P∗A) (1, P∗A)

(1, P∗A) (1, P∗A) No Run No Run

(1, P∗A) (1, P∗A) No Run No Run

To appreciate the stability effect, suppose both banks’ fundamentals are marginally below θ∗2. We

know that the equilibrium outcome in a laissez-faire market is that both banks fail and the prevailing

asset price drops to P∗2. Under the policy intervention, however, systemic bank failures will no longer
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happen. Knowing that their banks can sell assets to the regulator at a pre-specified price P∗A > P∗2,

the creditors can no longer rationalize x∗2 as their threshold signal. In this case, promoting financial

stability does not involve the regulator purchasing banks’ assets. The regulator improves the allocation

by offering a support price to break down the feedback loop between contagious bank runs and asset

sales. The regulator can also reduce the risk of systemic bank failures when she actually purchases

assets from the banks. In particular, the regulator will prevent systemic crisis when one bank’s cash flow

is below θ∗A = θ∗(P∗A) while the other’s belongs to interval [θ∗A, θ
∗
2]. The regulator saves the bank that has

relatively strong fundamentals which would otherwise fail due to contagion. We illustrate the two cases

by the cross-hatched and single-hatched areas in Figure 4, respectively.

4 Further Policy Discussion

We now extend the policy discussion by showing that the regulator can induce banks’ voluntary

participation in the upfront liquidity arrangement (Section 4.1), discussing the regulator’s commitment

power (Section 4.2), analyzing how the possibility for the regulator to bear losses from her intervention

affects the effectiveness of the intervention (Section 4.3), and comparing the proposed intervention to

collateralized lending schemes (Section 4.4). We collect the relevant proofs in the Online Appendix.

4.1 Banks’ voluntary participation in the upfront liquidity arrangement

Under the mutually committed liquidity support, it is assumed that banks commit to raising liquidity

by selling their assets to the regulator even if private asset buyers may offer more. Interestingly, the

regulator does not have to command banks to participate in the upfront liquidity arrangement. We show

that the regulator can induce banks’ voluntary participation.

We analyze banks’ incentives for voluntary participation with the following extension of our model.

At t = 0, the regulator offers the two banks a price PA ∈ (P∗2, P
∗
1) at which it commits to purchasing

banks’ assets at t = 1 if runs happen. Banks’ managements then decide whether to take the regulator’s

offer. Once a bank joins the arrangement, it is obliged to sell its assets only to the regulator (e.g., assets
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are encumbered for this purpose). Otherwise, the bank sells its assets to private asset buyers. The banks’

managements simultaneously decide whether to accept the regulator’s offer. At t = 1, both the private

asset buyers and banks’ creditors observe PA and which bank has joined the arrangement. For simplicity,

a bank’s management is assumed to receive a constant compensation b conditional on his bank being

afloat and decides whether to take the regulator’s offer to maximize his expected compensation.

We establish in Proposition 4 a sufficient condition under which the regulator can induce banks’

voluntary participation. Intuitively, when only one bank enters the agreement and receives the regulatory

price support, observing a run on such a bank makes the private asset buyers particularly pessimistic

about the aggregate state.41 As a result, the bank that chooses not to participate in the program will face

an even lower asset price when forced into liquidation. This leads to an increased critical cash flow

for the latter bank to survive and gives its management incentives to join the program in the first place.

In other words, the bank that participates in the program exerts negative externalities on the bank that

chooses not to; and both banks participating in the program can emerge as a Nash equilibrium.

Proposition 4. There exists a unique critical PC
A ∈ (P∗2, P

∗
1), such that, when the regulator offers a

price PA > PC
A , it is a Nash equilibrium for both banks to accept the offer. When VA(PC

A) > 0, we

have P∗A > PC
A , and the regulator can induce banks’ voluntary participation in the upfront liquidity

arrangement with the supporting price P∗A.

4.2 The regulator’s commitment

While the regulator can induce voluntary participation from banks, the regulator’s commitment is

essential. In fact, in a crisis, it is usually harder for a regulator to refrain from intervening than to

provide rescues. The regulator’s tendency to provide rescues is the driving mechanism of the collective

moral hazard problem highlighted by Farhi and Tirole (2012). The tendency is empirically documented

by Brown and Dinç (2011): the regulators tend to be accommodative with distressed banks when the

41In terms of the policy intervention changing the informational environment, this result is related to Cong et al. (2020). In a
dynamic global-games framework, the authors suggest that the initial policy intervention affects the informational environment
of the subsequent interventions.
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banking sector as a whole is undercapitalized.42 To signal her commitment to providing liquidity support,

the regulator can deploy commitment devices, such as creating financial stability funds.43 The regulator

can also achieve commitment with rule-based interventions by publishing the policy rules before any

crisis.44 Alternatively, the regulator can secure the commitment with legal obligations. For example, in

providing its committed liquidity facility, the Reserve Bank of Australia enters binding agreements with

participating banks that require the central bank to inject liquidity when fundings are needed.

Regulators can also be in positions to offer higher prices than private entities can do. To start with,

regulators have different objective functions as compared to private entities. Negative externalities from

systemic bank failures are not taken into account by private asset buyers but are major concerns to regu-

lators.45 As we will show in the next section, a regulator may well want to avoid a systemic crisis at some

monetary losses. Moreover, regulators such as central banks are not subject to the same stark bankruptcy

constraint of private institutions and can sit on temporary losses. Similarly, central banks do not face

pressure to lower the bid for banks’ assets to increase the financial returns from their interventions,

which may not be the case if the committed liquidity support is privately provided.

The commitment pledged by the regulator can raise the concern of potential moral hazard from

banks. In fact, such moral hazard problems and information constraints are intertwined: the regulator’s

inability to distinguish an illiquid bank from an insolvent one can lead to blind intervention that will

benefit insolvent banks and compromise market discipline. Since any intervention that preserves some

equity value in the rescue of a troubled bank would raise such a concern, a more pressing question

is whether the proposed ex-ante intervention generates a less severe moral hazard problem than the

traditional (ex-post) interventions do. This can be true because the committed liquidity support is limited

to containing systemic crises and still allows banks with θ ∈ (D2, θ
∗
A) to fail. Those banks are still

42In the context of interbank lending with insolvency risk spillover, Bernard et al. (2017) highlight that it can be hard for
the regulator to commit to no intervention when the banking system features close interconnectedness.

43A similar observation can be made about deposit insurance. Most countries require banks to pay deposit insurance
premium ex-ante into a deposit insurance fund, which adds to the credibility of deposit insurance schemes.

44The Bank of England’s asset pre-positioning program provides a case in point. Bank of England (2019) publishes details
of the haircuts for different assets when they are pre-positioned with the central bank as collateral for emergency funding.

45Also highlighting externalities, David and Lehar (2019) show that private institutions may not provide efficient resolution
since they do not internalize positive externalities of the successful restructuring of a distressed bank’s debt.
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penalized for their mismanagement of risks, which would dampen risk-taking incentives. In contrast, the

classic LoLR policy, as suggested by Bagehot (1873), aims to avoid inefficient liquidation of individual

banks — aiming to save any bank with θ > D2, an ambitious goal that entails more bank rescues.

4.3 The possibility of public bail-outs

The policy intervention analyzed so far assumes no public bailouts, in the sense that the regulator

incurs no expected loss and makes no net transfer to banks’ claim holders. However, public authorities

can make net losses in their interventions (e.g., see Laeven et al. (2010) for the fiscal costs of banking

crises). So we relax this assumption to allow for (expected) losses from policy interventions.

We replace constraint (20) with VA(PA) ≥ −V , where V ≥ 0 indicates the regulator’s loss-bearing

capacity. When the regulator can bear a loss up to V > 0, she can optimally commit to purchasing banks’

assets at a price P∗∗A > P∗A and reduce the risk of systemic failures from SYS(P∗A) to SYS(P∗∗A ). Since both

the probability of systemic bank failures SYS(PA) and the regulator’s expected payoff VA(PA) decrease

in PA, the regulator can commit to a higher price P∗∗A such that VA(P∗∗A ) = −V once she is allowed to

make a loss up to V .46

The possibility for the regulator to take expected losses also broadens the set of policy tools that can

be used to promote financial stability. In particular, it is now possible for the regulator to unilaterally

commit to purchasing banks’ assets for a price PU ≥ P∗2 independently of the number of runs. When

PU ≥ P∗1, creditors expect banks to sell their assets only to the regulator in runs, and the analysis

resembles that in Section 3.3. The regulator’s expected payoff VU(PU) is identical to expression (22) for

PU ≥ P∗1, i.e., VU(PU) = VA(PU) . Complications arise for PU ∈ [P∗2, P
∗
1). A creditor now expects his

bank to sell its assets to the regulator at PU ≥ P∗2 only when both banks experience runs. In contrast,

the creditor expects his bank to sell its assets to the private asset buyers for P∗1 > PU when his bank is

the only one that experiences a run. The unilaterally committed liquidity support, therefore, can co-exist

with the private secondary market for banks’ assets. When offering a PU ∈ [P∗2, P
∗
1), the regulator’s

46In fact, when the loss-bear capacity is sufficiently large (V ≥ −VA(qD2)), constraint (21) becomes binding. The regulator
can offer a price of qD2 to completely eliminate funding liquidity risks. Since this corner case trivializes the analysis, we focus
on the interior case 0 < V < −VA(qD2).
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expected payoff becomes VU(PU) =
∑

s=G,B Pr(s) ·
(
Pr(θ < θ∗(PU)|s)2 · 2 · D1

PU
· π(PU |s)

)
, and any price

higher than P∗2 implies expected losses.47 The regulator, again, aims to minimize the risk of systemic

bank failures SYS(PU) = α ·
(
θ∗(PU )−θG

θ−θG

)2
+ (1− α) ·

(
θ∗(PU )−θB

θ−θB

)2
, subject to the constraint VU(PU) ≥ −V .

For VU(PU) decreases in PU , the regulator optimally commits to purchasing banks’ assets for a price

P∗∗U that satisfies VU(P∗∗U ) = −V .

Given a loss-bearing capacity V ≥ 0, we compare the stability effects of the arrangement with the

regulator’s unilateral commitment and that with the mutual commitments from the regulator and banks.

An arrangement achieves greater stability if it allows the regulator to offer a higher price for banks’

assets or, equivalently, if it generates a higher regulator’s payoff for the same price that she offers. We

establish in Proposition 5 that the ex-ante liquidity support with the mutual commitments dominates that

with the regulator’s unilateral commitment. Figure 5 illustrates the comparison.

Proposition 5. When the regulator’s loss-bearing capacity V < −VA(P∗1) = −VU(P∗1), the upfront liq-

uidity arrangement with the mutual commitments outperforms that with the regulator’s unilateral com-

mitment in terms of containing the systemic risk. The two arrangements are equally effective otherwise.

Figure 5: The regulator’s payoffs under mutual vs. unilateral commitments

P∗2 P∗∗U P∗A P∗∗A P∗1

P

expected payoff in $

VA(P)

VU (P)

−V

VA(P∗1)

When the regulator cannot make any expected loss, i.e., V = 0, the ex-ante liquidity support with

the mutual commitments strictly dominates that with the regulator’s unilateral commitment, since the

47In the equilibrium, creditors’ critical signal is as follows: x∗(y−i, PU ) = x∗(PU ) when y−i < x∗(PU )+η+ε, and x∗(y−i, PU ) =

x∗1 otherwise. A bank survives if its cash flow exceeds θ∗(PU ) =
D2−D1

1−qD1/PU
. The proof is provided in the Online Appendix.
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regulator can only offer P∗2 under the latter arrangement. The former arrangement also outperforms the

latter when the regulator has a loss-bearing capacity V ∈ (0,−VA(P∗1)). For such a moderate loss-bearing

capacity, the regulator can offer a price P∗∗A ∈ (P∗A, P
∗
1) under the mutual commitments. In contrast, she

can only offer a lower price P∗∗U ∈ (P∗2, P
∗∗
A ) with her unilateral commitment. Intuitively, the regulator

expects that she will purchase banks’ assets with a lower quality under the unilateral commitment, which

in turn, suggesting that she will offer a lower price P∗∗U . Lastly, when the regulator can make large losses,

i.e., V > −VA(P∗1), she would commit to a price greater than P∗1 and receive the same expected payoff

under both arrangements. Consequently, the two arrangements become equally effective.

We believe it is both reasonable and realistic to demand commitments from banks. From a normative

point of view, banks’ access to public liquidity support should be commensurate with their regulatory

obligations. Banks should take regulatory obligations (e.g., entering a binding agreement with the reg-

ulator) in exchange for public liquidity support during a crisis. Furthermore, it is feasible for banks to

make such commitments. For instance, banks can put assets in encumbrance and reserve these assets

exclusively for raising liquidity from central banks. Alternatively, banks can pay for public liquidity

support upfront. For example, the committed liquidity facility of the Reserve Bank of Australia requires

banks participating in the program to make ex-ante payments for the central bank’s liquidity insurance.

4.4 Committed liquidity support: asset purchase vs. collateralized lending

Having focused on an ex-ante asset purchase arrangement to demonstrate the benefits of committed

liquidity support, we now compare such an intervention to collateralized lending. In particular, we

consider an ex-ante liquidity intervention where the regulator commits to lending to banks at a pre-

specified interest rate. When lending happens at t = 1, the information-constrained regulator sets a

unified interest rate r and requires a borrowing bank to post up to β ∈ (0, 1) fraction of its assets as

collateral. The bank repays the regulator 1 + r on the amount borrowed if it is solvent at t = 2. If the

bank fails, the regulator seizes the collateral. For a fair comparison, we further assume that β =
D1
P∗A

, so

that the bank has at its disposal the same amount of assets either for sale or for use as collateral.
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In the limiting case where ε → 0 and η→ 0, the two types of interventions have the same impact on

financial stability. Indeed, any bank that requires liquidity assistance from the regulator at t = 1 would

fail at t = 2 because the critical cash flow θ̂ that triggers a run (i.e., L(θ̂, x∗) = 0) converges to the critical

cash flow θ∗ that triggers a bank failure (i.e., L(θ∗, x∗) = q). The regulator would seize the β units of

collateral at t = 2 if she lends to the bank and would acquire the same amount of assets if she purchases

assets from the bank. The level of systemic risk achievable under the two types of interventions will be

the same because the regulator expects the same payoff.

The two types of securities make a difference when we move away from the limiting case. We

now derive the interest rate r∗ that minimizes the risk of systemic bank failures when the regulator pre-

commits to lending to banks, and compare its stability effects with that when the regulator pre-commits

to purchasing assets at a price P∗A in Proposition 6.

Proposition 6. There exists a critical q̂ ∈ ( 1
2 , 1), such that for q > q̂, committing to purchasing banks’

assets on sale at a price P∗A achieves a strictly lower risk of systemic bank failures than committing to

lending to banks at an interest rate r∗ when ε > 0.

Provided that the committed lending and the committed asset purchase achieve the same critical

cash flow, lending is preferable to the regulator if θ ∈ (θ̂ − 2ε, θ∗), whereas purchasing bank assets is

preferred when θ ∈ [θ∗, θ̂). To gain the intuition of the result, note that a partial run happens for those

fundamentals, i.e., L ∈ (0, 1). In the former case, the bank fails despite the intervention since θ < θ∗.

The regulator would seize a D1
P∗A

amount of the bank’s assets at t = 2 due to the collateralization of her

lending. Instead, she would only acquire a L·D1
P∗A

amount of the bank’s assets at t = 1 when committing

to purchasing the bank’s assets. In the latter case, both the asset purchase and the lending save the bank

since θ ≥ θ∗, but purchasing the bank’s assets allows the regulator to access the upside of the cash flow,

while her return is bounded by the pre-specified interest rate when she lends to the bank. For q increases

to 1, the length of interval (θ̂ − 2ε, θ∗) diminishes to zero while the length of interval [θ∗, θ̂) expands to

2ε. Thus, for a sufficiently large q, the regulator’s expected payoff is higher with the committed asset

purchase, which in turn allows her to make better offers and to reduce the critical cash flow θ∗A.
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While the proposed asset purchase arrangement illustrates the benefits of ex-ante intervention, it

should not be understood as the only way to provide upfront liquidity support. As we just demonstrated,

whether the regulator can achieve greater financial stability with an ex-ante agreement on asset purchase

or collateralized lending depends on the level of q and the possibility of over-collateralization. Reg-

ulators also have policy tools beyond asset purchases or lending at their disposal. For example, it is

possible to provide liquidity via guarantees or even indirectly via recapitalization. While it is beyond the

scope of the current paper to make exhaustive comparisons between all possible interventions and their

combinations, we shall emphasize that — independent of the particular instrument that the regulator

deploys — an ex-ante intervention should be more effective than ex-post interventions in the presence

of the information constraint. The reason is that an ex-ante intervention allows the regulator to break the

vicious cycle with a break-even constraint across different aggregate states.48

5 Concluding remarks

In this paper, we revisit a classic issue of providing liquidity support for troubled banks. We em-

phasize that both private investors and central banks can face the information constraint that it can be

difficult — if not impossible — to distinguish illiquid banks from insolvent ones in crisis times. We

introduce such an information constraint into a global-games framework where the solvent-but-illiquid

banks are endogenously defined. We endogenize the liquidation value of banks’ assets under the in-

formation constraint and show how a bank’s funding illiquidity interacts with its asset illiquidity. In a

two-bank setting with aggregate uncertainties, a vicious cycle emerges between contagious bank runs

and falling asset prices. We analyze a global games model with multiple groups of players and multi-

dimensional signals to obtain a unique equilibrium for clear-cut policy analysis despite the two-way

feedback between distressed asset prices and contagious bank runs.

Our model illustrates how the lack of information on banks’ asset quality creates financial fragility

and simultaneously restricts the set of feasible policy tools: without granular information on individual
48We illustrate in the Online Appendix that ex-ante intervention dominates ex-post intervention for ε > 0, whether the

liquidity support is via asset purchase or collateralized lending. We also derive conditions under which the ex-ante asset
purchase arrangement dominates the ex-post collateralized lending.
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banks’ solvency, it is infeasible for central banks to target only solvent-but-illiquid banks as suggested

by Bagehot’s principles. Instead, we show that a regulator with information on neither the individual

banks’ solvency nor the aggregate risk factor can still break down the two-way feedback between failing

asset prices and contagious bank runs with upfront liquidity support. In particular, we recommend an

arrangement where a regulator and banks mutually commit to an agreement for the regulator to purchase

a bank’s assets for a pre-specified price to contain contagious bank runs. Our theory on committed

liquidity support helps rationalize some recent policy practices, such as the asset prepositioning program

of the Bank of England and the committed liquidity facility of the Reserve Bank of Australia.

Appendix A Preliminaries of the bank run game

Appendix A.1 Upper and Lower dominance regions

We show that θL ≡ D2 defines a lower dominance region [θs, θ
L), where it is a creditor’s dominant

strategy to withdraw early — independent of the other creditors’ actions and for any asset price P ∈

[P, qD2). Indeed, when the bank is fundamentally insolvent (i.e., θi < D2), the inequality (1 − λi)θi <

F + (1 − Li)(1 − E − F)rD will hold for Li = 0, and the creditor will always be better off to withdraw

than to wait. He will receive 0 by choosing to wait because of the bank failure but will receive D1 if he

withdraws early.49 Moreover, if the creditor’s private signal falls below D2 − ε, he is sure that θi < D2.

Similarly, θU ≡ F
1−D1/P

defines an upper dominance region (θU , θ], where it is a creditor’s dominant

strategy to wait – independent of other creditors’ actions and for any asset price P ∈ [P, qD2). Suppose

that all other creditors withdraw early (i.e., Li = 1) and that the asset price is the least favorable one

P. The bank can still repay its liabilities in full if its fundamentals exceed θU = θU(P). Therefore, the

creditor will receive D1 if he withdraws early but will receive D1
q if he waits. Provided that θ > F

1−D1/P

and that θU(P) decreases in P, the upper dominance region exists for any P > P. Additionally, when a

creditor’s private signal exceeds θU + ε, he will be sure that θi > θU .

49Recall from Lemma 1 that banks will not fail at t = 1, since an equilibrium asset price must be higher than P, which is
further higher than D1.
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Appendix A.2 The fraction of withdrawals in the bank i and the bank −i

We derive a bank i’s representative creditor j’s rational expectations on Li and L−i — given that all

other creditors take the equilibrium threshold strategy and that the creditor observes signals (xi
j, y
−i).

The fraction of early withdrawals in the bank i. Observing a signal y−i about θ−i, the represen-

tative creditor knows that all other creditors in the bank i withdraw if and only if their private signals

are below x∗(y−i). So Li is a function of the bank’s fundamentals θi and the critical signal x∗(y−i),

i.e., Li(θi, x∗(y−i)). We derive the function form of Li(θi, x∗(y−i)). For a realized θi, there can be three

cases. (i) When θi < x∗(y−i) − ε, all creditors withdraw early in the bank i and Li(θi, x∗(y−i)) = 1.

(ii) When θi > x∗(y−i) + ε, all creditors wait in the bank i and L(θi, x∗(y−i)) = 0. (iii) For θi ∈

[x∗(y−i) − ε, x∗(y−i) + ε], we denote by xi
k the private signal of another creditor k of the bank i. We

have: Li(θi, x∗(y−i)) = Prob
(
x̃i

k < x∗(y−i)
∣∣∣θi, y−i

)
= Prob

(
ε̃i

k < x∗(y−i) − θi
)

=
x∗(y−i)−θi+ε

2ε . Consequently,

Li(θi, x∗(y−i)) can be expressed as (11). The creditor j perceives Li(θi, x∗(y−i)) uncertain since he only

receives a noisy signal xi
j about θi. In particular, the representative creditor will form a posterior belief

θ̃i|xi
j
∼ U(xi

j − ε, x
i
j + ε) and rationally expect the total withdrawals Li(xi

j, y
−i) in the bank i to be given by

equation (12). It can be verified that Li(xi
j, y
−i) has the following functional form: Li(xi

j, y
−i) = 0 when

xi
j > x∗(y−i) + 2ε; Li(xi

j, y
−i) =

(x∗(y−i)−xi
j+2ε)2

8ε2 when xi
j ∈ (x∗(y−i), x∗(y−i) + 2ε]; Li(xi

j, y
−i) = 1

2 when

xi
j = x∗(y−i); Li(xi

j, y
−i) = 1

2 +
x∗(y−i)−xi

j
2ε −

(x∗(y−i)−xi
j)

2

8ε2 when xi
j ∈ [x∗(y−i)− 2ε, x∗(y−i)); and Li(xi

j, y
−i) = 1

when x j < x∗(y−i) − 2ε.

The fraction of early withdrawals in the bank −i. L−i is a function of θ−i and the bank −i’s

creditors’ critical signal x∗(yi), i.e., L−i(θ−i, x∗(yi)) = max
{
min

{
x∗(yi)−θ−i+ε

2ε , 1
}
, 0

}
. Note that yi is the

bank −i’s creditors’ signal about the bank i’s cash flow. The creditor j perceives the critical signal x∗(yi)

uncertain: he considers yi a random variable ỹi. To derive the creditor j’s rational expectations on L−i, we

first calculate his posterior belief about yi conditional on the private signal xi
j, i.e., the conditional density

f (yi|xi
j). Since η̃i ∼ U(−η, η), we have: Prob(ỹi ≤ yi|θi) = Prob(η̃i ≤ yi−θi) = max

{
min

{
yi−θi+η

2η , 1
}
, 0

}
.

The creditor also perceives Prob(ỹi ≤ yi|θi) uncertain since he only receives a noisy signal xi
j about

θi. We further have: Prob
(
ỹi ≤ yi

∣∣∣xi
j

)
=

∫ xi
j+ε

xi
j−ε

max
{
min

{
yi−θi+η

2η , 1
}
, 0

}
· 1

2ε · dθ
i. Take the first order

derivative of Prob
(
ỹi ≤ yi

∣∣∣xi
j

)
with respective to yi, we obtain the conditional density of ỹi as follows:
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f (yi|xi
j) =



yi−(xi
j−η−ε)

4ηε xi
j − η − ε < yi ≤ xi

j − η + ε

1
2η xi

j − η + ε < yi ≤ xi
j + η − ε

(xi
j+η+ε)−yi

4ηε xi
j + η − ε < yi ≤ xi

j + η + ε

0 otherwise.

(A.24)

f (yi|xi
j) is everywhere non-negative and strictly positive when yi ∈ (xi

j − η − ε, x
i
j + η + ε]. Additionally,

based on the signal y−i, the creditor j will form a posterior belief θ̃−i|y−i ∼ U(y−i − η, y−i + η) about θ−i.

Lastly, θ̃−i|y−i and ỹi|xi
j
are independently distributed because ε̃i

j, η̃
i and η̃−i are independently distributed.

The joint density function of θ̃−i|y−i and ỹi|xi
j

is 1
2η · f (yi|xi

j). Apply Fubini’s theorem, the representative

creditor j’s expectations on the total withdrawals L−i(xi
j, y
−i) in the bank −i is as follows:

L−i(xi
j, y
−i) = E

{
E

[
L−i(θ−i, x∗(yi))

∣∣∣y−i
] ∣∣∣xi

j

}
=

∫ xi
j+η+ε

xi
j−η−ε

∫ y−i+η

y−i−η

L−i(θ−i, x∗(yi)) ·
1
2η
· dθ−i · f (yi|xi

j) · dyi. (A.25)

Monotonicity of Li(xi
j, y
−i) and L−i(xi

j, y
−i). The monotonicity of Li(xi

j, y
−i) and L−i(xi

j, y
−i) can be

calculated as follows:
∂Li(xi

j,y
−i)

∂xi
j
≤ 0,

∂Li(xi
j,y
−i)

∂y−i ≤ 0,
∂L−i(xi

j,y
−i)

∂xi
j
≤ 0 and

∂L−i(xi
j,y
−i)

∂y−i ≤ 0. The details of the

derivations can be found in the Online Appendix.

Appendix B Proofs to lemmas and propositions

Appendix B.1 Proof of Lemma 1

Proof. Since buyers’ bid cannot be negative, an ex-post break-even price P after observing M runs,

M ∈ {1, 2}, if exits, must be in one of the three regions: [0, P), [P, qD2), or [qD2,+∞). We show that it

cannot be greater than or equal to qD2, nor can it be lower than P =
θB+D2

2 .

Suppose P ≥ qD2, then it is not sequentially rational for the wholesale creditors to withdraw from

a solvent bank, i.e., θi ≥ D2. To see this, one can take the perspective of a representative creditor j

of a bank i. Even when all other creditors withdraw, the bank needs to liquidate no more than D1
qD2

fraction of its asset, for P ≥ qD2. While the bank’s t = 2 liability drops to F, its residual cash flow is

(1 − D1
P ) · θi ≥

(
1 − D1

qD2

)
· D2 = F as θi ≥ D2. As a result, by running on the bank, creditor j will only

incur a penalty for early withdrawal. This implies that whenever a run happens when P ≥ qD2, the bank
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must be fundamentally insolvent with θi < D2. Therefore, buyers must expect asset quality to be lower

than D2+θG
2 , which is in turn lower than qD2 given our parametric assumption (3). Buyers would make a

loss by offering P ≥ qD2, a contradiction.

A break-even price P cannot be smaller than P either. Note that when a bank is insolvent with cash

flow θi < D2, it is a dominant strategy for its wholesale creditors to run independently of the asset price.

To see this, notice that if P ≥ D1 and the bank does not fail at t = 1, a creditor is better off to run and

receive D1 than to wait and receive 0.50 On the other hand, if P < D1, a creditor will receive a zero

payoff for his claim whether he runs or not, but can still obtain an arbitrarily small reputational benefit

by running on a bank that is doomed to fail. This implies that runs must happen to those banks with

θi < D2, and the expected quality of assets on sale is at least θB+D2
2 = P. As asset buyers break even with

their competitive bidding, the price they offer must be greater than or equal to P. �

Appendix B.2 Proof of Proposition 1

Proof. To start with, we present a bank i’s representative creditor j’s payoff difference function and de-

rive his best response to other players’ equilibrium strategy, i.e., x∗(·) and P∗. Rationally expecting a

price P∗ independent of the runs, the representative creditor’s payoff difference E
[
DW(Li(xi

j, y
−i), θ∗(y−i), P∗)

]
can be expressed as follows, with the expression of Lc(θ∗(y−i), P∗) given by (13):51

E
[
DW(Li(xi

j, y
−i), θ∗(y−i), P∗)

]
=



1−q
q D1 xi

j > x

D1
q [Lc(θ∗(y−i), P∗) − q] + D1

q
xi

j−x∗(y−i)
2ε xi

j ∈ (x∗(y−i), x]

D1
q [Lc(θ∗(y−i), P∗) − q] xi

j = x∗(y−i)

D1
q [Lc(θ∗(y−i), P∗) − q] − D1

q
x∗(y−i)−xi

j

2ε xi
j ∈ [x, x∗(y−i))

−D1 xi
j < x.

(B.26)

Observe the following results. First, the payoff difference function is linear in xi
j with a slope D1

2qε >

0 when xi
j ∈ [x, x] ⊂ [x∗(y−i) − 2ε, x∗(y−i) + 2ε]. Second, the payoff difference function equals a

constant (1 − q) D1
q > 0 when xi

j ≥ x and another constant −D1 < 0 when xi
j ≤ x. Therefore, there

50Note that the ex-post asset sale will never revive an insolvent bank as we prove that P ≥ qD2 could never happen.
51In (B.26), x ∈ (x∗(y−i), x∗(y−i) + 2ε] and x ∈ [x∗(y−i) − 2ε, x∗(y−i)) are two cutoffs of xi

j, which solve Lc(θ∗(y−i), P∗) =

1 − x−x∗(y−i)
2ε and Lc(θ∗(y−i), P∗) =

x∗(y−i)−x
2ε respectively. The derivation follows the standard global games approach. Details are

included in the Online Appendix.
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must exist a unique x̂ ∈ [x, x] such that E
[
DW(Li(x̂, y−i), θ∗(y−i), P∗)

]
= 0, ∀y−i ∈ [θs − η, θ + η].

This establishes a function x̂(y−i), ∀y−i ∈ [θs − η, θ + η]. The creditor j’s best response to the other

creditors’ threshold strategy (i.e., x∗(·)) is a threshold strategy: to withdraw if xi
j < x̂(y−i) and to wait

if xi
j > x̂(y−i), ∀y−i ∈ [θs − η, θ + η]. We have x̂(y−i) = x∗(y−i) − 2ε

[
Lc(θ∗(y−i), P∗) − q

]
by solving

E
[
DW(Li(x̂, y−i), θ∗(y−i), P∗)

]
= 0. In a symmetric equilibrium, x̂(y−i) = x∗(y−i) must be true. Therefore,

the critical cash flow must satisfy Lc(θ∗(y−i), P∗) = q, which gives the equilibrium condition (14).

As established, θ∗(y−i), θ̂(y−i) and x∗(y−i), if exist, are constants and do not depend on y−i. Let us

denote them as θ∗, θ̂ and x∗. We then show that there exists a unique combination (θ∗, x∗, P∗) jointly

solving the system of equations: θ∗ =
D2−D1

1−qD1/P∗
, x∗ = θ∗ + (2q − 1)ε, P∗ =

θ̂+θ

2 , and θ̂ ≡ x∗ + ε.

Let P∗ be the argument and express θ∗, x∗ and θ̂ as: θ∗ = θ∗(P∗) =
D2−D1

1−qD1/P∗
, x∗ = x∗(P∗) = θ∗(P∗) +

(2q−1)ε and θ̂ = θ̂(P∗) = θ∗(P∗)+2qε. Define a function Π(P) =
θ∗(P)+2qε+θ

2 −P = 1
2

(
D2−D1

1−qD1/P
+ 2qε + θ

)
−

P as the asset buyers’ expected profit from purchasing banks’ assets at a price P upon observing runs.

The equilibrium asset price P∗, if exists, must satisfy the zero-profit condition Π(P∗) = 0. Indeed, one

can verify that Π(P) monotonically decreases in P, Π(P) > 0, and Π(qD2) < 0 for small ε. Therefore, the

equilibrium asset price P∗ ∈ [P, qD2) exists and is unique. With the unique P∗, it is then straightforward

to verify that the associated θ∗ ∈ [θL, θU] and x∗ ∈ [xL, xU] exist and are unique. �

Appendix B.3 Proof of Lemma 3

Proof. Step 1: We prove the existence of (θ∗M, x
∗
M, P

∗
M) as a unique solution to the system of equations

(18), ∀M ∈ {1, 2}. Let P∗M be the argument and express θ∗M, x∗M and θ̂M as: θ∗M = θ∗(P∗M) =
D2−D1

1−qD1/P∗M
,

x∗M = x∗(P∗M) = θ∗(P∗M) + (2q − 1)ε and θ̂M = θ̂(P∗M) = θ∗(P∗M) + 2qε. Let ΠM(P) be the asset buyers’

expected profit function from purchasing banks’ assets at a price P when observing M runs. We have:

ΠM(P) = ωB
M

(
θ̂(P)

)
·

(
θB+θ̂(P)

2 − P
)

+ ωG
M

(
θ̂(P)

)
·

(
θG+θ̂(P)

2 − P
)
. Also define π(P|s) =

θs+θ̂(P)
2 − P as the

buyers’ payoff from purchasing one unit of assets in a given state s. Then, P∗M, if exists, must satisfy the

asset buyers’ break-even condition: ΠM(P∗M) = ωB
M

(
θ̂(P∗M)

)
·π(P∗M |B) +ωG

M

(
θ̂(P∗M)

)
·π(P∗M |G) = 0. One

can check that dΠM(P)
dP < 0, ΠM(P) > 0 and ΠM(qD2) < 0. Hence, there exists a unique P∗M ∈ [P, qD2)
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such that ΠM(P∗M) = 0, ∀M ∈ {1, 2}. The associated θ∗M ∈ [θL, θU] and x∗M ∈ [xL, xU] exist and are

unique.

Step 2: We prove θ∗2 > θ∗1, x∗2 > x∗1 and P∗2 < P∗1. For simplicity, let θ be the argument. Denote

P∗(θ) =
qD1θ

θ−(D2−D1) as the inverse of θ∗(P). We reformulate the asset buyers’ zero-profit condition as:

ΠM(θ̂M) = ωB
M(θ̂M) ·π(θ̂M |B) +ωG

2 (θ̂M) ·π(θ̂M |G) = 0. Here, π(θ|s) =
θs+θ

2 −P∗(θ). The proof then hinges

on the monotonicity of two ratios: ωB
M(θ)

ωG
M(θ)

=
(θ−θB)M

κ(θ−θG)M and π(θ|G)
π(θ|B) =

(θG+θ)/2−P∗(θ)
(θB+θ)/2−P∗(θ) for θ ∈ [θL, θU]. Observe

that dP∗(θ)
dθ < 0. Then, one can verify that both ratios strictly decrease in θ when θ > D2 > θs. Moreover,

ωB
1 (θ)

ωG
1 (θ)

<
ωB

2 (θ)
ωG

2 (θ)
must hold ∀θ > D2. Indeed, κ ·

ωB
1 (θ)

ωG
1 (θ)

=

(
θ−θB
θ−θG

)
<

(
θ−θB
θ−θG

)2
= κ ·

ωB
2 (θ)

ωG
2 (θ)

because θ−θB
θ−θG

> 1.

We then prove the result by contradiction. Suppose θ̂1 ≥ θ̂2. By the monotonicity of π(θ|G)
π(θ|B) , we have:

π(θ̂1 |G)
π(θ̂1 |B)

≤
π(θ̂2 |G)
π(θ̂2 |B)

. By the equilibrium condition ΠM(θ̂M) = 0 for M ∈ {1, 2}, we have: π(θ̂1 |G)
π(θ̂1 |B)

= −
ωB

1 (θ̂1)
ωG

1 (θ̂1)

and π(θ̂2 |G)
π(θ̂2 |B)

= −
ωB

2 (θ̂2)
ωG

2 (θ̂2)
. Therefore, we obtain:

ωB
2 (θ̂2)

ωG
2 (θ̂2)

≤
ωB

1 (θ̂1)
ωG

1 (θ̂1)
. By

ωB
1 (θ)

ωG
1 (θ)

<
ωB

2 (θ)
ωG

2 (θ)
∀θ > D2, we further have:

ωB
2 (θ̂2)

ωG
2 (θ̂2)

≤
ωB

1 (θ̂1)
ωG

1 (θ̂1)
<

ωB
2 (θ̂1)

ωG
2 (θ̂1)

. Apply the monotonicity of
ωB

2 (θ)
ωG

2 (θ)
, we obtain θ̂2 > θ̂1, a contraction. Therefore,

θ̂2 > θ̂1 must hold, which implies x∗2 > x∗1. Then, θ∗2 = x∗2 − (2q− 1)ε > x∗1 − (2q− 1)ε = θ∗1, and P∗2 < P∗1

follows directly from the monotonicity of P∗(θ). �

Appendix B.4 Proof of Proposition 2

Proof. Having established in the text that x∗(y−i) = x∗1 when y−i > ŷ and x∗(y−i) = x∗2 when y−i < ŷ,

where ŷ ∈ [yL, yU], we show here there exists a unique ŷ = x∗2 + η + ε. The proof hinges on deriv-

ing a bank i’s representative creditor j’s rational expectations on the fractions of withdrawals (i.e., Li

and L−i) based on his signals (xi
j, y
−i). We analyze whether L−i(xi

j, y
−i) is non-zero to determine the

creditor’s expectations on the number of runs M and the equilibrium asset price.52 Note L−i(xi
j, y
−i) =

E
{
E

[
L−i(θ−i, x∗(yi))

∣∣∣y−i
] ∣∣∣xi

j

}
is given by (A.25) in Appendix A.2.

Step 1: We prove that upon observing y−i ∈ [yL, x∗1 − η + ε] and y−i ∈ [x∗2 + η + ε, yU], the creditor

j expects L−i(xi
j, y
−i) > 0 and L−i(xi

j, y
−i) = 0, respectively, both independent of his private signal xi

j.

We derive the creditor j’s expectation of L−i(xi
j, y
−i) when he observes y−i = x∗1 − η + ε and has a

52To determine whether Li(xi
j, y
−i) is non-zero is less involving. In particular, the representative creditor knows that

Li(xi
j, y
−i) > 0 when xi

j ≤ x∗(y−i) + 2ε and Li(xi
j, y
−i) = 0 when xi

j > x∗(y−i) + 2ε from Appendix A.2.
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posterior θ−i
∣∣∣
y−i ∼ U(x∗1 − 2η + ε, x∗1 + ε). Note that the creditors in the bank −i can follow either x∗2 or

x∗1 as the critical signal depending on their signal yi. If those creditors withdraw according to x∗1 (i.e.,

x∗(yi) = x∗1), we can compute the expectation E
[
L−i(θ−i, x∗(yi))

∣∣∣y−i
]

in the expression of L−i(xi
j, y
−i) as:53

E
[
L−i(θ−i, x∗1)

∣∣∣x∗1 − η + ε
]

=
∫ x∗1−ε

x∗1−2η+ε 1 · 1
2ηdθ−i +

∫ x∗1+ε

x∗1−ε
x∗1−θ

−i+ε

2ε · 1
2ηdθ−i =

2η−ε
2η > 0. Instead, if they

withdraw according to x∗2, one can verify easily that L−i(θ−i, x∗2) = 1 and E
[
L−i(θ−i, x∗2)

∣∣∣x∗1 − η + ε
]

=∫ x∗1+ε

x∗1−2η+ε L−i(θ−i, x∗2) · 1
2η · dθ

−i = 1. Either way, the creditor j expects L−i(xi
j, y
−i) > 0, because f (yi|xi

j) is

everywhere non-negative, and it is strictly positive when yi ∈ [xi
j−η− ε, x

i
j +η+ ε]. By the monotonicity

of L−i(xi
j, y
−i) with respect to y−i, we establish that L−i(xi

j, y
−i) > 0 when y−i ∈ [yL, x∗1 − η + ε].

Consider the representative creditor j’s expectation of L−i(xi
j, y
−i) when observing y−i ≥ x∗2+η+ε. He

knows with certainty that the lowest possible private signal received by the bank −i’s creditors is higher

than x∗2. The representative creditor then expects L−i(xi
j, y
−i) = 0. Follow the same argument in Lemma

3, we can obtain x∗(y−i) = x∗2 when y−i ∈ [yL, x∗1 − η + ε] and x∗(y−i) = x∗1 when y−i ∈ [x∗2 + η + ε, yU].

Step 2: Given that all other creditors follow strategy (19), we prove that the creditor j expects

L−i(xi
j, y
−i) > 0 when observing y−i ∈ (x∗1 − η + ε, x∗2 + η + ε) and xi

j ≤ x∗2 + 2ε. We prove this result by

first establishing that it holds for xi
j = x∗2 + 2ε. Then by the monotonicity of L−i(xi

j, y
−i) in xi

j established

in Appendix A.2, we have L−i(xi
j, y
−i) > 0, ∀xi

j ≤ x∗2+2ε. Upon observing xi
j = x∗2+2ε, the representative

creditor forms beliefs about the signal yi received by the other bank’s creditors. He can calculate, by

(A.24), that yi has a positive conditional density f (yi|x∗2 + 2ε) on the interval [x∗2 − η + ε, x∗2 + η + 3ε].

f (yi|x∗2 + 2ε) =



yi−(x∗2−η+ε)
4ηε x∗2 − η + ε < yi ≤ x∗2 − η + 3ε

1
2η x∗2 − η + 3ε < yi ≤ x∗2 + η + ε

(x∗2+η+3ε)−yi

4ηε x∗2 + η + ε < yi ≤ x∗2 + η + 3ε

0 otherwise.

Following strategy (19), the bank −i’s creditors withdraw according to the critical signal x∗(yi) = x∗2

when they observe yi < x∗2 + η + ε and x∗(yi) = x∗1 when they observe yi ≥ x∗2 + η + ε. In particular,

the representative creditor expects that the creditors in the bank −i will follow x∗2 with a probability

Prob
(
x∗(yi) = x∗2|x

i
j = x∗2 + 2ε

)
=

∫ x∗2−η+3ε
x∗2−η+ε

yi−(x∗2−η+ε)
4ηε dyi +

∫ x∗2+η+ε

x∗2−η+3ε
1
2ηdyi =

2η−ε
2η > 0.

53Note that L−i(θ−i, x∗1) = 1 if x∗1 − 2η + ε < θ−i < x∗1 − ε and L−i(θ−i, x∗1) =
x∗1−θ

−i+ε

2ε if x∗1 − ε < θ
−i < x∗1 + ε.
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Conditional on that creditors from the bank −i actually follow the critical signal x∗2, the representative

creditor can calculate the aggregate withdrawal in the bank −i as E[L−i(θ−i, x∗2)|y−i] =
∫ y−i+η

y−i−η
L−i(θ−i, x∗2) ·

1
2η ·dθ

−i since θ̃−i|y−i ∼ U(y−i−η, y−i +η). When the representative creditor observes a signal x∗1−η+ ε <

y−i < x∗2 + η + ε, he knows that the expected aggregate withdrawal has a lower bound

E
[
L−i(θ−i, x∗2)

∣∣∣y−i
]
≥

∫ x∗2+ε

y−i−η

x∗2 − θ
−i + ε

2ε
·

1
2η
· dθ−i =

(x∗2 + η + ε − y−i)2

8ηε
> 0. (B.27)

The first inequality in (B.27) is true because E
[
L−i(θ−i, x∗2)

∣∣∣y−i
]

decreases in y−i and the functional form

of L−i(θ−i, x∗2) is
x∗2−θ

−i+ε

2ε if y−i − η ≤ θ−i < x∗2 + ε and 0 if x∗2 + ε ≤ θ−i ≤ y−i + η, conditional on y−i

slightly lower than x∗2 + η + ε (i.e., y−i ∈ (x∗2 + η − ε, x∗2 + η + ε)).

Upon observing xi
j = x∗2 + 2ε and y−i ∈ (x∗1 − η + ε, x∗2 + η + ε), the creditor j rationally expects:

L−i(x∗2 + 2ε, y−i) =

∫ x∗2+η+ε

x∗2−η+ε
E

[
L−i(θ−i, x∗2)

∣∣∣y−i
]
· f (yi|x∗2 + 2ε) · dyi +

∫ x∗2+η+3ε

x∗2+η+ε

E
[
L−i(θ−i, x∗1)

∣∣∣y−i
]
· f (yi|x∗2 + 2ε) · dyi

≥

∫ x∗2+η+ε

x∗2−η+ε

(x∗2 + η + ε − y−i)2

8ηε
· f (yi|x∗2 + 2ε) · dyi =

(x∗2 + η + ε − y−i)2

8ηε
· Prob

(
x∗(yi) = x∗2|x

i
j = x∗2 + 2ε

)
=

(x∗2 + η + ε − y−i)2

8ηε
·

2η − ε
2η

> 0

from (A.25). The inequality in the second line follows (B.27), the fact that E
[
L−i(θ−i, x∗1)

∣∣∣y−i
]
≥ 054, and

the density of yi being non-negative everywhere.

Step 3: We establish the existence of the equilibrium strategy (19) by analyzing the representative

creditor’s best response. We have already proved that x∗(y−i) = x∗2 for y−i ≤ x∗1 − η + ε and x∗(y−i) = x∗1

for y−i ≥ x∗2 + η + ε. Moreover, for y−i ∈ (x∗1 − η + ε, x∗2 + η + ε), given that all other creditors follow

strategy (19), the representative creditor expects Li(xi
j, y
−i) > 0 when xi

j ≤ x∗2 + 2ε, i.e., a positive mass

of withdrawals in his own bank. Therefore, for y−i ∈ (x∗1 − η + ε, x∗2 + η + ε) and xi
j ≤ x∗2 + 2ε, the

creditor expects the number of runs to be M = 2 and the asset price to be P∗2. Instead, when observing

xi
j > x∗2 + 2ε, he expects Li(xi

j, y
−i) = 0, i.e., no run in his own bank. We can follow the same procedure

in the proof of Proposition 1 and Lemma 3 to show that the creditor j optimally withdraws if and only

if xi
j < x̂(y−i), where x̂(y−i) = x∗2 − 2ε[Lc(θ∗(y−i), P∗2) − q]. A symmetric equilibrium, if exists, features

54The creditor j also expects that the creditors in the bank −i will follow x∗1 with a probability
∫ x∗2+η+3ε

x∗2+η+ε
f (yi|x∗2 + 2ε) · dyi

and calculates the expected aggregate withdrawal in the bank −i as E
[
L−i(θ−i, x∗1)

∣∣∣y−i
]

in that case.
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Lc(θ∗(y−i), P∗2) = q. The bank’s critical cash flow, the bank i’s creditors’ threshold signal, and the asset

price, jointly solve the system of equations (18) for M = 2, with the unique solution being
(
θ∗2, x

∗
2, P

∗
2

)
by Lemma 3. Therefore, we obtain x∗(y−i) = x∗2 for y−i ∈ (x∗1−η+ ε, x∗2 +η+ ε). When all other creditors

in the bank i and −i take strategy (19), the creditor j’s best response is to follow the same strategy.

Step 4: We prove the uniqueness by contradiction. Suppose that all other creditors follow an alterna-

tive symmetric threshold strategy with a discontinuity point x∗1−η+ε < ŷ < x∗2+η+ε, so that x∗(y−i) = x∗1

when y−i ∈ (ŷ, x∗2 + η + ε). Consider that the representative creditor j observes a private signal xi
j = x∗1.

Following the same procedure in Step 2, the probability that creditors in the bank −i following the critical

signal x∗2 is positive: Prob
(
x∗(yi) = x∗2|x

i
j = x∗1

)
=

∫ x∗1−η+ε
x∗1−η−ε

yi−(x∗1−η−ε)
4ηε · dyi = ε

2η > 0. Conditional on that

creditors from the bank −i follow the threshold signal x∗2 and that the representative creditor observes

y−i ∈ (ŷ, x∗2 + η + ε), the aggregate withdrawals again satisfy the inequality (B.27). The representative

creditor j rationally expects L−i(x∗1, y
−i) to be strictly positive. That is, L−i(x∗1, y

−i) ≥
(x∗2+η+ε−y−i)2

8ηε · ε2η > 0.

By monotonicity, the representative creditor expects M = 2 and the secondary market asset price to be

P∗2 when observing xi
j ≤ x∗1 and y−i ∈ (ŷ, x∗2 + η + ε). Consequently, the creditor j expects his own bank

(i.e., the bank i) to sell its assets for the price P∗2 when runs happen. The price P∗2, however, contradicts

the threshold signal x∗1 as dictated by the alternative threshold strategy. In particular, the creditor j is

not indifferent between waiting and withdrawing when observing xi
j = x∗1. As ŷ is arbitrary in interval

(x∗1 − η + ε, x∗2 + η + ε), we establish the result. �

Appendix B.5 Proof of Proposition 3

Proof. The proof for the existence of P∗A ∈ (P∗2, P
∗
1) is provided in the text, we focus on the uniqueness.

One can directly calculate VA(PA) in (22) as: VA(PA) =
∑

s=G,B Pr(s)·Pr(θ < θ∗(PA)|s)·
(
2 · D1

PA
· π(PA|s)

)
.

Combined with π(PA|s) =
θs+θ

∗(PA)
2 − PA, one can obtain the first order derivative of VA(PA) with respect

to PA as: dVA(PA)
dPA

=
∑

s=G,B
Pr(s)
(θ−θs)

· 2 ·
{

dθ∗(PA)
dPA

· (θ∗(PA) − PA) − (θ∗(PA)+θs)(θ∗(PA)−θs)
2PA

}
·

D1
PA
< 0. Notice that

the term inside the brace is negative because dθ∗(PA)
dPA

= d
dPA

(
D2−D1

1−qD1/PA

)
< 0 and θ∗(PA) > D2 > PA > θs

for PA ∈ [P, qD2). Therefore, there exists a unique P∗A ∈ (P∗2, P
∗
1) such that VA(P∗A) = 0.
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One can also verify the following: dSYS(PA)
dPA

=
∑

s=G,B
Pr(s)

(θ−θs)
2 · 2 ·

(
θ∗(PA) − θs

)
·

dθ∗(PA)
dPA

< 0. So the

regulator indeed chooses the unique P∗A such that VA(P∗A) = 0 to minimize the risk of systemic crises, i.e.,

constraint (20) is binding. Also, note that constraint (21) is slack at optimum because P∗A < P∗1 < qD2.

Lastly, it is easy to verify that SYS(P∗A) < SYS(θ∗2) as P∗A > P∗2 and θ∗A = θ∗(P∗A) < θ∗(P∗2) = θ∗2. �
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