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We study a single product pricing problem with demand censoring in an offline data-driven setting. In

this problem, a retailer has a finite amount of inventory, and faces a random demand that is price sensitive

in a linear fashion with unknown price sensitivity and base demand distribution. Any unsatisfied demand

that exceeds the inventory level is lost and unobservable. We assume that the retailer has access to an offline

dataset consisting of triples of historical price, inventory level and potentially censored sales quantity. The

retailer’s objective is to use the offline dataset to find an optimal price, maximizing her expected revenue with

finite inventories. Due to demand censoring in the offline data, we show that the existence of near-optimal

algorithms in a data-driven problem – which we call problem identifiability – is not always guaranteed.

We develop a necessary and sufficient condition for problem identifiability by comparing the solutions to

two distributionally robust optimization problems. We propose a novel data-driven algorithm that hedges

against the distributional uncertainty arising from censored data, with provable finite-sample performance

guarantees regardless of problem identifiability and offline data quality. Specifically, we prove that, for

identifiable problems, the proposed algorithm is near-optimal, and, for unidentifiable problems, its worst-

case revenue loss approaches the best-achievable minimax revenue loss that any data-driven algorithm must

incur. Numerical experiments demonstrate that our proposed algorithm is highly effective and significantly

improves both the expected and worst-case revenues compared with three regression-based algorithms.

Key words : price optimization, demand censoring, data-driven algorithm, offline learning, finite-sample

analysis

1. Introduction

For many businesses, the importance of a good pricing strategy cannot be overstated: the price

of a product has a direct influence on customers’ willingness to purchase, affecting the business’s

sales volumes, revenue figures, and the bottom line. Pricing is also an integral part of a business’s

operations, since the optimization of pricing decisions in practice is often conducted with many

other operational factors in consideration. For example, the presence of a brand strategy or a

government regulation may set a range for a product’s price, and the availability of inventory may
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put a hard limit on the sales volumes. In this paper, we distill such fundamental pricing problems

faced by businesses every day into a single-product pricing problem with finite inventory over a

price range.

For any price optimization model, the relationship between price and demand is an essential

input. In reality, such a relationship is hardly known exactly by the businesses. Nevertheless, with

the rapid advances in information technology, many businesses have been collecting large amounts

of historical pricing and sales data from past selling seasons, to help them learn the demand-price

relationship and make data-driven pricing decisions (Foxman 2013). One crucial challenge related

to historical sales data is that, when stock-out happens, customers whose demands are unsatisfied

may simply leave the system without any purchase records, and in this case, the retailer is unable

to observe the amount of lost-sales. This phenomenon is known as demand censoring, which could

happen in both brick-and-mortar and e-commerce settings. Therefore, when sales quantities are

capped by the levels of inventory available for sale, they become censored demand data. If demand

censoring is not accounted for properly – for example, simply ignoring this effect and treating sales

data as uncensored demand – it often leads to biased and inconsistent estimation on demand levels,

deluding businesses to make suboptimal pricing decisions. In this paper, we study algorithms that

are specially designed to handle historical censored demand data, and to make good data-driven

pricing decisions in the presence of finite inventories.

1.1. Model Overview and Research Question

We consider a retailer who wants to find an optimal price over a given price range for a single

product with a finite level of inventory. Any unsatisfied demand that exceeds the inventory level

is lost and unobservable. We assume the demand is random and price sensitive in a linear fashion,

which has been commonly adopted and studied in the literature (cf. den Boer 2015). Although the

retailer does not know the exact price sensitivity or the distribution of the random base demand,

she has access to a historical dataset collected from past selling seasons, called offline data, in

the format of (price, inventory, sales) triples, where the sales volumes are independent samples

from the random demands censored by the inventory levels. The retailer’s objective is to devise

an algorithm that uses offline data to help her make pricing decisions, maximizing her expected

revenue with finite inventories.

Ideally, we want to build data-driven algorithms that achieve small expected revenue loss com-

pared to the optimal expected revenue with high probability. We consider an algorithm near-

optimal, if it can guarantee an expected revenue loss to any infinitesimal level with arbitrarily high

probability, when given an offline dataset of sufficiently large size. However, due to different levels

of demand censoring, not all data have the same “quality”: a highly censored dataset contains
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little information about the true demand, making it extremely difficult and even intractable for

data-driven algorithms to be near-optimal. In this paper, we aim to address the following two

questions:

(1) How does demand censoring affect the existence of near-optimal algorithms in our data-

driven pricing problems?

(2) How to design a data-driven algorithm that can be applied practically regardless of data

qualities, with provable performance guarantees?

1.2. Key Challenges

In the presence of upper bounds on the observable sales quantities, some demand information that

is crucial to the optimization of pricing may be inevitably lost in a censored demand dataset.

To illustrate this, consider a deterministic linear demand model with given price sensitivity but

unknown base demand quantity. Suppose a retailer observes her entire inventory was sold out on

a certain day, i.e., the sales quantity equaled the inventory level. This suggests that her current

price may be too low, and the retailer could possibly get a higher revenue by raising the price.

However, such information from this censored demand observation is only directional, in that the

retailer is unable to compute the optimal price adjustment, since the actual demand level was

censored and not observable. For a random linear demand model, this means that demand censoring

completely blocks the distributional information about demand quantities above the inventory level,

inducing additional uncertainty that we need to pay extra attention to when designing data-driven

algorithms.

Intuitively, a dataset that reveals more distributional information about the random demand

is considered to have a better quality, and data-driven algorithms that take it as an input are

more likely to have good performance guarantees, while a dataset with little to none demand

information may disqualify all data-driven algorithms from being near-optimal. However, we must

point out that data quality is in fact a relative measure. In a problem with a smaller inventory

level or price range, the task of finding an optimal price may require less demand information, and

hence a dataset previously believed having insufficient information may turn out to be adequate

to empower near-optimal data-driven algorithms.

Overall, we believe that, not only is it important for us to study algorithms that perform well with

censored data of good quality, but it is also necessary to understand what performance guarantees

data-driven algorithms may and could obtain when given potentially low-quality datasets.

From the perspective of algorithmic design, there are three main challenges:

(1) Historical sales data are biased samples of the true demands due to demand censoring. Hence,

a naive application of linear regression typically leads to a biased and inconsistent estimate on
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the price sensitivity. Therefore, the first challenge is to design a procedure to form an unbiased

estimate of the price sensitivity in a linear demand model using censored demand samples.

(2) In our pricing problem, where sales volumes are capped by the available inventory level, an

optimal price that maximizes the expected revenue not only depends on the price sensitivity in

the demand function, but is also decided by the distribution of the random base demand and the

given inventory level. However, due to censored data, a portion of the distribution of random base

demand is always blocked, bringing uncertainty in computing the expected revenues. Hence, the

second challenge is to deal with the additional ambiguity of the base demand distribution.

(3) The third challenge is to build a data-driven algorithm that is “universal” and “robust”: it

is desired to be applied to all censored demand datasets and have provable performance guaran-

tees regardless of data qualities. We also require the algorithm to be completely agnostic to any

information that may be unrealistic to obtain in real business settings, for example, the support

and distribution family of the random base demand.

1.3. Main Results and Contributions

We summarize our main results and contributions as follows.

Ambiguity set and worst-case revenue loss. In this paper, we take a novel approach to

measure the performance of data-driven algorithms in the presence of demand censoring. We define

an ambiguity set of distributions, a concept borrowed from distributionally robust optimization

(DRO), to succinctly capture the distributional knowledge about the random base demand that

can be exploited from the offline data, as well as the uncertainty created by the information loss in

censored data. As no data-driven algorithms may further narrow down the ambiguity set without

additional information, we measure an algorithm’s performance by its worst-case revenue loss,

which is defined as the maximum gap between the expected revenues generated by the optimal

price and the algorithm’s price among all candidate distributions in the ambiguity set. We also

define a minimax revenue loss as the minimum worst-case revenue loss that any pricing policy

must incur.

Necessary and sufficient condition for problem identifiability. We distinguish between

two classes of data-driven problems: 1) identifiable problems, in which there exists a data-driven

algorithm whose worst-case revenue loss converges to zero as the size of offline data increases; 2)

unidentifiable problems, in which the worst-case revenue loss of any algorithm does not converge

to zero. We provide a necessary and sufficient condition for the problem identifiability, which states

that the data-driven problem is identifiable if and only if the solutions to two DRO problems are

identical. This condition is further decomposed into three different cases depending on the location

of the unconstrained maximizers of the two DRO problems. Moreover, we also show that there
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exists some threshold for a quality metric that we define for the offline censored data, referred to

as the observable boundary, such that the problem is identifiable when the observable boundary is

above that threshold.

Development of a data-driven algorithm. We design a data-driven algorithm that hedges

against the distributional uncertainty caused by censored data, and is robust to any possible dis-

tributions in the ambiguity set. The algorithm takes three major steps. First, we estimate the price

sensitivity based on the observation that the true price sensitivity is a solution to a quantile-based

linear regression problem. By focusing on the empirical quantiles of the random demands whose

left-hand parts are unlikely to be censored, we construct a consistent estimate for the price sensitiv-

ity with guaranteed finite-sample probability bound. Second, by leveraging the structural property

of the so-called optimistic and pessimistic revenues, we compute their empirical counterparts using

the sample average approximation (SAA) approach. Third, the algorithm suggests a price based

on our exact characterization on the worst-case revenue loss through the optimistic and pessimistic

revenues, and their empirical versions obtained from the second step.

Finite-sample probability bound. We provide theoretical performance guarantees of our

algorithm for both identifiable and unidentifiable problems. When the underlying problem is iden-

tifiable, we establish a finite-sample high probability bound for the worst-case revenue loss of our

algorithm being within any given small error, translating to the number of historical samples needed

to guarantee a pre-specified error of ε with a confidence level of 1−δ in the order of O(ε−2 log(δ−1)).

When the underlying problem is unidentifiable, we show that, although the worst-case revenue

loss for any algorithm is always positive, our algorithm is guaranteed to be close to the minimax

revenue loss within any small error, with the same high probability bound. Therefore, regardless

of the data quality, our algorithm attains the best-achievable performance up to any accuracy and

confidence levels. In the case of unidentifiable problems, we also prove that the algorithm can suc-

cessfully detect unidentifiability with high probability by comparing the solutions to two empirical

DRO problems.

Numerical study. The numerical results demonstrate that our proposed algorithm significantly

improves three baseline algorithms based on simple linear regression, with smaller relative optimal-

ity gap evaluated under the distribution we use to generate the data, smaller worst-case revenue

loss over the entire ambiguity set, and more accurate estimation on the price sensitivity. We also

compare our proposed algorithm with its modified version that applies the so-called KM estima-

tor, and find that the modified algorithm enjoys a slightly better empirical performance when the

data size is small, while performs almost identically to the original algorithm when the data size

becomes larger. Finally, we investigate the effects of the data quality and inventory level on the

empirical performance of our algorithm.
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1.4. Related Literature

The effect of demand censoring has been studied extensively for many pricing and inventory models

in online demand learning, where sales data are generated by the decision maker’s actions on the

fly. Some papers study the repeated newsvendor problem with censored demand, e.g., Huh and

Rusmevichientong (2009), Huh et al. (2011), Besbes and Muharremoglu (2013), Lugosi et al. (2017).

Later studies analyze more complicated multi-period inventory and pricing management problems

with censored demand, e.g., Huh et al. (2009), Zhang et al. (2018), Agrawal and Jia (2019), Zhang

et al. (2020), Yuan et al. (2019), Chen and Chao (2020), Chen and Shi (2019), Chen (2019), Chen

et al. (2020a), Chen et al. (2020b). Our paper differs from these works by considering an offline

data-driven problem, where the historical data are given exogenously. Moreover, in contrast with

the online setting where the demand distribution can be learned by adjusting pricing and inventory

decisions, in the offline setting, partial information are always lost due to censoring effect, and it is

not necessary that a near-optimal pricing policy can always be identified, leading to the dichotomy

of identifiable problems and unidentifiable problems.

This paper is also related to data-driven algorithms for pricing and inventory models in an

offline learning setting, where the entire dataset is available before the algorithm starts. Levi et al.

(2007) study both single-period and multi-period inventory problems, and propose algorithms by

approximating the true demand distribution with an empirical distribution based on the SAA

approach. They develop bounds on the number of required samples to guarantee that the expected

cost of their algorithm is arbitrarily close to the expected cost of the optimal policy. Levi et al.

(2015) improve the bound in Levi et al. (2007) for the newsvendor model. Cheung and Simchi-

Levi (2019) study the multi-period capacitated inventory system, and analyze the performance

of the SAA method by comparing the empirical dynamic program constructed from SAA with

the original dynamic program. Qin et al. (2019) study the data-driven joint inventory and pricing

model, and develop an algorithm with guaranteed sample complexity results. A recent work by Ban

and Rudin (2019) applies machine learning algorithms to the data-driven newsvendor with feature

information. Ban et al. (2020) compare across three different approaches for solving data-driven

newsvendor, and study the impact of model misspecification. However, all of the above papers

assume that demand samples can be fully observed, and there is no issue of demand censoring in

the historical data, while we consider the scenario that only the sales data are available to the

retailer, which are potentially censored due to limited inventories.

To the best of our knowledge, Ban (2020) is the only paper that studies offline learning with

censored demand in OR/MS literature. The author considers a multi-period inventory system with

fixed ordering cost and unknown demand distribution, and develops a nonparametric estimation
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procedure for the (S, s) policy which is consistent and asympotically normal. In this paper, we con-

sider a different context of a single-period pricing problem, and take a different angle to study this

data-driven pricing problem by investigating the effect of demand censoring on the identifiability

of a near-optimal algorithm.

In a recent paper by Feng and Shanthikumar (2018), the authors discuss how the relevant

concepts emerged with Big Data can be incorporated into demand management and manufacturing.

In particular, the authors suggest a new way of learning under demand censoring through the

data-integrated personalized demand model. As the first step to approach the problem of how to

conduct demand learning and pricing with censored data, in this paper, we do not consider the

more complicated personalized demand model with additional covariates information. Instead, we

focus on a simpler setting with a basic data structure consisting of the price, sales and inventory

information. Although simple, our model still fits into the scenarios, especially in brick-and-mortar

stores, where the retailer collects demand data in an aggregate way, and personalized pricing is

restricted due to the use of common price tags, fairness concern, etc. Under this base model,

this paper mainly addresses two theoretical questions proposed in Section 1.1, and also provides

practical guidance for the retailer regarding how to apply a DRO framework to make pricing

decisions with censored data. We leave the study for more complicated personalized demand models

as future research. See Section 7 for further discussions.

Censored regression models have been studied extensively in econometrics and statistics lit-

erature. Since the pioneering work by Tobin (1958), a variety of estimation methods have been

developed for both parametric and nonparametric models, see, e.g., Cox (1972), Miller (1976),

Buckley and James (1979), Koul et al. (1981), Powell (1984), Fernandez (1986), Lewbel and Linton

(2002). Under certain model assumptions, these works typically propose estimates for the regression

coefficients, and prove asymptotic properties, e.g., consistency and asymptotic normality. Although

we share a similar task of model parameter estimation as a part of our problem, the focus of this

paper is very different. Our work is oriented towards a revenue maximization problem with limited

inventory, for which the optimal price depends on both the price sensitivity and the distribution of

the random base demand. Therefore, our objective is to design a pricing algorithm that not only

estimates the unknown price sensitivity accurately, but also hedges against the extra distributional

uncertainty of base demand arising from demand censoring by leveraging the specific structural

property of the pricing problem. We also adapt one of the most commonly-used algorithms in

statistics proposed by Buckley and James (1979) to estimate the demand parameters and revenue

function in our setting, and numerically compare the performances of this algorithm with ours.

The numerical result shows that our algorithms perform consistently better than the benchmark

with more accurate estimate on the price sensitivity.
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1.5. Structure and Notations

This paper is organized as follows. In Section 2, we introduce the basic model and describe the

data-driven pricing problem with censored demand. In Section 3, we define the concept of problem

identifiability, and provide a necessary and sufficient condition for problem identifiability. Then we

develop a data-driven algorithm in Section 4 and present its theoretical performance in Section 5.

A numerical study is provided in Section 6, and we conclude the paper in Section 7. Most of the

technical proofs are presented in the online Appendix.

For any integer n ∈ N, we use [n] to denote the set {1,2, · · · , n}. For any event A, 1{A} is the

indicator function of A, which equals one if A holds, and equals zero if A does not hold. For two

non-negative functions f(x) and g(x) defined on R+, we use f(x) =O(g(x)) to represent that there

exists some constant C > 0 such that f(x) ≤ Cg(x) for any x > 0. The cumulative distribution

function of a random variable is abbreviated as “c.d.f.”. For any given discrete random variable

with c.d.f. G(·), its breakpoints are defined as those x0 ∈R such that limx↓x0 G(x)<G(x0).

2. Model Formulation

We consider a retailer who sells a single product in the face of a finite amount of inventory. The

amount of inventory available for sale, denoted by a nonnegative real number y ∈ R+, is given

exogenously as a pre-determined quantity to the retailer, and she charges a unit price p from

the feasible set ∈ [p, p]⊂ (0,∞) for each product sold, up to y units. We assume that the market

demand for the product with the price set to p is D(p) := a− bp+ η, where a is the deterministic

base demand, b is the price sensitivity belonging to the range [b, b]⊂ (0,∞), and η is the random

noise with mean zero. For convenience, we use ξ to denote the random base demand, i.e., ξ := a+η

and D(p) = ξ− bp, and let Fξ(·) denote the c.d.f. of ξ. In this paper, we focus on the linear demand

model since it is commonly used in practice. Moreover, the linear model is also shown to perform

considerably well in the literature under different problem contexts (e.g., Dawes 1979 in clinical

prediction, Besbes and Zeevi 2015 in dynamic pricing with online learning). We assume that D(p)

is nonnegative with probability one for any feasible price p∈ [p, p]. Any extra demands over y units

are lost and unobservable to the retailer, and the observed sales quantity is the minimum between

the market demand D(p) and the inventory level y. For any given inventory level y, the retailer’s

goal is to find an optimal price p∗ that maximizes the expected revenue R(p) := p ·E [min{D(p), y}],

i.e.,

p∗ :=max
{
argmax
p∈[p,p]

R(p)
}
. (1)

We also denote the unconstrained maximizer of the expected revenue by p†, i.e., p† :=

max
{
argmaxp∈RR(p;y)

}
. It is worth noting that R(p), p∗, and p† are all functions of the inventory

level y, but for simplicity, we drop their dependence on y in the notation.
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Suppose the retailer knows the price sensitivity b and the distribution of ξ, the optimal price

can be computed efficiently by solving a concave optimization problem according to the following

proposition. We call it the full-information problem.

Proposition 1. For any given inventory level y ≥ 0, the expected revenue R(p) is concave

in p ∈ [p, p], and the optimal price p∗ is the projection of p† to [p, p], i.e., p∗ = Proj(p†, [p, p]) =

min{max{p†, p}, p}.

In this paper, we do not assume the optimal price p∗ to be an interior point of the price interval

[p, p]; rather, it can be any price in [p, p], including the boundary {p, p}. In many business settings,

the price range is given to the pricing manager as a hard constraint and may not be adjusted arbi-

trarily, due to company policies, competitor’s pricing, or even government regulations. Therefore,

one cannot expand the range of feasible prices trying to make p∗ an interior point. Moreover, in

the presence of exogenous inventory constraints, it is possible that for some inventory level y, the

global maximizer p† does not belong to [p, p], and thus p∗ is obtained by projecting to the boundary

of [p, p]. Therefore, we believe the absence of such an interior-point assumption for the optimal

price is closer to the business practice.

Furthermore, we do not require the retailer to be able to distinguish between the case that the

demand is exactly the same as the inventory level and the case that the demand is censored by the

inventory level. This is because the sales quantities under both cases are the same, and without

additional information, it is impossible to know whether D(p) = y or D(p)> y. In other words, we

only require the retailer to be able to fully observe demand D(p) when it is strictly less than the

inventory level y.

2.1. Data-Driven Problem with Censored Demand

In reality, the retailer does not know b or the distribution of ξ. As a result, she would not be able

to compute the optimal price p∗. Fortunately, the retailer typically has access to some historical

data, also called offline data, to help her learn the demand model and make pricing decisions by

solving a data-driven problem.

2.1.1. Offline data with demand censoring. We assume that the retailer has experimented

K different historical prices pi ∈ [p, p], where K ≥ 2, each with a possibly different historical inven-

tory level yi. For each price-inventory pair (pi, yi), the retailer has Ni independent sales samples

S1
i ≤ S2

i ≤ . . .≤ SNi
i sorted in ascending order without loss of generality. Each Sj

i is generated by

the random demand at price pi, subject to demand censoring by the inventory level yi, i.e.,

Sj
i :=min{Dj

i , yi}=min{ξji − pi, yi},
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where each ξji is an independent sample of the random base demand ξ. Therefore, we can describe

the offline data using the set S = {(pi, yi, Sj
i ) : i ∈ [K], j ∈ [Ni]}, with each element consisting of

three components: unit price, inventory level, and sales quantity.

A data-driven algorithm A takes the offline dataset S and the known intervals, [p, p] and [b, b], as

inputs, and outputs a pricing policy in the form of a function pA(·) :R+ → [p, p] that maps a given

inventory level y to a feasible price pA(y) ∈ [p, p]. Again, for simplicity, we use the notation pA

instead of pA(y), as there is no ambiguity caused by dropping the dependence on y. The optimality

gap of the algorithm A is defined as the difference between the expected revenues generated by

the optimal price and by the algorithm’s price, i.e., R(p∗)−R(pA).

2.1.2. Data metrics. We introduce two important data metrics: one related to the “size” and

another related to the “quality” of the offline data. The first metric is N := min
i∈[K]

Ni, which we use

to denote the size of the dataset S. The second metric is λ := maxi∈[K]{yi + bpi}, which we call

the observable boundary of the distribution of ξ. Since a sample ξji of the random base demand

ξ is “theoretically observable” if and only if ξji − bpi < yi, the larger the value of yi + bpi is, the

more true samples of ξ we can observe. Therefore, the upper bound for the values of ξ that are

theoretically observable is given by λ :=maxi∈[K]{yi+ bpi}. Note that the second metric λ requires

the knowledge of the price sensitivity b and cannot be directly computed from the historical data.

We also define a quantity that is closely related to λ and concerns the degree to which historical

demands are censored by the associated inventory levels. For each i ∈ [K], let γi denote the prob-

ability that the random variable D(pi) is strictly less than yi, i.e., γi = P[ξ < yi + bpi]. We define

γ be the maximal value among all γi, i.e., γ = maxi∈[K] γi, or equivalently, γ = P[ξ < λ]. Again,

we point out that, like λ, γ and γi’s are not computable without knowing b and the underlying

demand distribution. Nevertheless, the empirical version of γi, defined by γ̂i :=
1
Ni

∑Ni
j=1 1{Sj

i <yi}
,

can be computed directly from the offline data. Note that γ̂i is an unbiased sample of γi, i.e.,

E[γ̂i] = γi. We assume that γ̂i > 0 for each i∈ [K], i.e., there exists at least one uncensored demand

observation for each price-inventory pair in the dataset, which can be easily verified from the data.

This also implicitly assumes that γi > 0 for each i∈ [K], and thus, γ > 0.

For the data-driven pricing problem defined above, we make the following assumption.

Assumption 1. We assume that on the left-hand side of λ, ξ is either a discrete random variable

with finite support {βi : i ∈ [M ]} for some M ∈ N+ and β1 < β2 < . . . < βM < λ, or a continuous

random variable with probability density distribution fξ(·). Besides, there exists some constant g > 0

such that if ξ is discrete in [0, λ),
Fξ(βk+1)−Fξ(βk)

βk+1−βk
≥ g for each k ∈ [M −1], and if ξ is continuous in

[0, λ), fξ(x)≥ g for all x∈ [0, λ).
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If ξ is discrete, the existence of g in Assumption 1 is automatically guaranteed by letting g :=

mink∈[M−1]
Fξ(βk+1)−Fξ(βk)

βk+1−βk
. If ξ is continuous, Assumption 1 imposes a lower bound on its probability

density function, which is satisfied by many commonly used continuous distributions, e.g., uniform

distribution, truncated normal distribution, and is also widely assumed in the literature, e.g., Chen

et al. (2019). Intuitively, g measures how flat the c.d.f. Fξ(·) is, and the smaller g is, the flatter Fξ(·)

will be. It can be easily verified that under Assumption 1, if ξ is discrete, Fξ(βj)−Fξ(βi)≥ g(βj−βi)

for any 1≤ i≤ j ≤M , and if ξ is continuous, Fξ(y)−Fξ(x)≥ g(y− x) for any 0≤ x≤ y < λ. This

property enables learning the price sensitivity and will be used in later analysis. It is also worth

noting that we do not impose any assumption on the distribution of ξ on the right-hand side of λ,

which is allowed to have an arbitrary shape instead.

3. Identifiability of Near-Optimal Data-Driven Algorithms

In this section, we introduce the concept of problem identifiability and characterize an exact con-

dition for problem identifiability. The necessity of introducing this concept is as follows. In our

censored-demand setting, the retailer’s ability to estimate the distribution of ξ heavily relies on the

observable boundary λ of the offline data. By definition, λ is the maximum values of ξ samples that

can be uncovered from the data, which implies that all samples of ξ that are greater than or equal

to λ are unobservable. Therefore, even with infinite number of samples, no data-driven algorithms

are able to learn the c.d.f. Fξ(·) of ξ over the region [λ,∞). As a result, this negatively affects the

retailer’s ability to find near-optimal prices to any accuracy and confidence levels through data-

driven algorithms, and encourages the discussion on the existence of near-optimal algorithms in

the data-driven problems – which we call problem identifiability.

3.1. Problem Identifiability and Ambiguity Set of Distributions

As described above, demand censoring brings a crucial challenge to the data-driven problems

regarding the problem identifiability. Due to demand censoring, the retailer is completely agnostic

about the c.d.f. Fξ(·) of ξ over the region [λ,∞), and she is not able to further reduce her uncertainty

about Fξ(·) than limiting all possible distributions to an ambiguity set of

F(λ,Fξ) =
{
F is a c.d.f.: F (x) = Fξ(x),∀x< λ

}
,

which includes all c.d.f.s that coincide with the true unknown c.d.f. Fξ(·) over the region (−∞, λ),

but may take arbitrary shapes over the region [λ,∞). In some sense, the ambiguity set F(λ,Fξ)

represents all the knowledge about the distribution of the random base demand ξ that a data-

driven algorithm can possibly learn from the censored offline dataset S. For notational ease, we

simply use F to denote F(λ,Fξ).
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We point out that the concept of ambiguity set was introduced in the literature on distributionally

robust optimization (DRO), and the DRO framework is designed to accommodate all possible

probability measures with the encoded available distributional information from historical data

(see, e.g., Rahimian and Mehrotra 2019 for a recent review on the studies of DRO). In this paper, we

borrow this terminology and construct a family of base demand distributions which are consistent

with the prior knowledge from the offline data, as well as to capture the information loss caused

by demand censoring.

3.1.1. Definition of problem identifiability. For any c.d.f. F ∈F , we define RF (p) as the

expected revenue with the expectation taken with respect to F (·), and p†F and p∗F as the optimal

price to RF (p) in R and [p, p] respectively. Similar to Proposition 1, p∗F =Proj(p†F , [p, p]). We now

formalize the definition of problem identifiability.

Definition 1. For any inventory level y, price range [p, p], and base demand distribution Fξ, the

data-driven problem (defined in Section 2.1) with a dataset S of parameter λ is called identifiable,

if there exists some algorithm A with the output price pA such that, for any ε > 0,

lim
N→∞

P
[
max
F∈F

{
RF (p

∗
F )−RF (p

A)
}
< ε
]
= 1. (2)

If no such algorithm exists, the data-driven problem in Section 2.1 is called unidentifiable.

In the above definition, we measure the performance of a data-driven algorithm by

maxF∈F{RF (p
∗
F )−RF (p

A)}, which is the maximum revenue loss among all possible c.d.f.s in the

ambiguity set F , and is referred to as the worst-case revenue loss. The reason why we choose this

measure is as follows. For any data-driven algorithm, without extra information, each F ∈ F is

equally likely to be the true c.d.f., and when faced with a potentially adversarial “nature” arbi-

trarily choosing a distribution F ∈ F , no algorithms may offer revenue loss guarantees that are

better than maxF∈F{RF (p
∗
F )−RF (p

A)}. An algorithm is called near-optimal if it satisfies (2). It’s

worth noting that since the ambiguity set F and the price sensitivity b are unknown, whether the

problem is identifiable is also unknown to the seller. Thus, the results developed in this section is

theoretical rather than practical in determining whether the problem is identifiable or not.

The worst-case framework is also borrowed from the DRO literature, in which any feasible

solution is evaluated under the worst-case expectation with respect to all possible distributions in

the ambiguity set. Similarly, the performance of a data-driven algorithm in our problem setting

is measured by the worst-case revenue loss. We also point out that since the algorithm pA is

data-dependent, when defining problem identifiability, the probability measure in (2) is taken over

the distribution of all the offline sales data {Sj
i : i ∈ [K], j ∈ [Ni]}, under the assumption that

{(pi, yi) : i∈ [K]} are fixed constants.
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3.1.2. Optimistic and pessimistic revenues. With the ambiguity set F , we can define the

optimistic revenue Rmax(p) and pessimistic revenue Rmin(p), by maximizing and minimizing the

expected revenue in the ambiguity set respectively. That is, for any p∈R,

Rmax(p) =max
F∈F

RF (p), Rmin(p) =min
F∈F

RF (p).

Furthermore, we define the optimistic price and pessimistic price as the maximizers of the optimistic

and pessimistic revenues: {
p∗max =max

{
argmaxp∈[p,p]Rmax(p)

}
p∗min =max

{
argmaxp∈[p,p]Rmin(p)

} .

Thus, p∗max and p∗min are the solutions to two distributionally robust optimization problems: the

maximax problem, and the maximin problem.

We also have the following closed-form expression for Rmax(·) and Rmin(·). Let p̃ := λ−y
b
.

Proposition 2. For any p∈ [p, p],

Rmax(p) = 1{p<p̃}RFξ
(p)+1{p≥p̃}R1(p),

Rmin(p) = 1{p<p̃}RFξ
(p)+1{p≥p̃}R2(p),

where R1(p) := p(−γbp+EFξ
[min{ξ,λ}] + (1− γ)(y−λ)) and R2(p) := p(−bp+EFξ

[min{ξ,λ}]).

It is worth noting that the construction of R1(·) and R2(·), as well as Rmax(·) and Rmin(·),

does not require distributional knowledge about the random base demand over the region [λ,∞).

This means that, with more data, it is possible for a data-driven algorithm to approximate the

optimistic and pessimistic revenues with higher accuracy. We defer the proof of Proposition 2 to

online Appendix C.1.

3.2. Necessary and Sufficient Condition

In this section, we present the first main result of this paper: a necessary and sufficient condition

for problem identifiability, in Theorem 1.

Theorem 1 (Necessary and sufficient condition for identifiability). For any inventory

level y, price range [p, p], and base demand distribution Fξ, a data-driven problem (defined in Sec-

tion 2.1) with a dataset S of parameter λ is identifiable if and only if

p∗max = p∗min. (3)

Theorem 1 states that, if the optimistic price p∗max is equal to the pessimistic price p∗min, the

data-driven problem is identifiable, i.e., there exists a data-driven algorithm that can guarantee
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near-optimal expected revenue to any accuracy and confidence levels, as the size metric N of the

offline data S increases; if p∗max ̸= p∗min, no such algorithms exist. To shed some light on the intuition

of Theorem 1, we present the following proposition that provides upper and lower bounds on the

optimal price p∗F for any c.d.f. F in the ambiguity set.

Proposition 3. For any F ∈F , the following inequality holds: p∗min ≤ p∗F ≤ p∗max.

Proposition 3 asserts that the optimal price p∗F according to any distribution F ∈F is between

the optimistic and pessimistic prices. This further implies that, although the true optimal price

p∗Fξ
cannot be directly estimated from data due to the distributional information loss from demand

censoring, we can estimate its upper and lower bounds, p∗max and p∗min, using only information that

is available in the offline data.

Therefore, when p∗max = p∗min, the optimal price p∗F must equal to p∗max and p∗min, regardless of

which distribution F ∈ F the optimal price corresponds to. As a result, as shown in Theorem 1,

the data-driven problem in this case is identifiable, i.e., it is possible for an algorithm to identify

a near-optimal price, since the estimation of p∗max and p∗min does not require information beyond

what the data may provide and it is expected to keep improving as data size grows. Nevertheless,

when p∗max ̸= p∗min, it is unfortunate that the uncertainty induced by demand censoring does not

allow algorithmic revenue guarantees to any accuracy and confidence levels, as the optimal price

p∗F could take many possible values ranging from p∗min to p∗max.

In the next proposition, we discuss in more details on when identifiability occurs (or equiv-

alently, when p∗max = p∗min by Theorem 1). Define p†max := maxargmaxp∈RRmax(p) and p†min :=

maxargmaxp∈RRmin(p).

Proposition 4. The condition p∗max = p∗min holds if and only if one of the following three cases

happens: (i) p†max = p†min ≤ p̃; (ii) p†max > p†min ≥ p̃ and p†max ≤ p; (iii) p†max > p†min ≥ p̃ and p†min ≥ p.

Proposition 4 describes the three cases for identifiability, which are also depicted in Figure 1. In

case (i) when p†max = p†min ≤ p̃, since Rmax(p) = R(p) = Rmin(p) when p≤ p̃ from Proposition 2, it

can be easily verified from concavity of R(·) that the three unconstrained maximizers p†max, p
† and

p†min are identical. Thus, the corresponding constrained optimal prices, p∗max, p
∗ and p∗min, obtained

by projecting p†max, p
†, and p†min onto the feasible price range [p, p] respectively, are also identical,

leading to an identifiable problem. In case (ii) and case (iii) when p†max > p†min ≥ p̃, although the

unconstrained maximizers exceed p̃, which may result in the relationship p†min < p† < p†max, the data-

driven problem can still be identifiable if p†max ≤ p or p†min ≥ p. This is because after projecting p†max,

p† and p†min onto [p, p], the constrained optimal prices p∗max, p
∗ and p∗min turn out to be identical

again. In fact, p∗max = p∗ = p∗min = p in case (ii), and p∗max = p∗ = p∗min = p in case (iii). Note that in
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Figure 1 Three cases for identifiability in Proposition 4.

this paper, for the reason explained after Proposition 1, we do not assume the optimal price p∗

is an interior point of [p, p]. The absence of this assumption makes cases (ii) and (iii) possible to

occur, and the data-driven problem identifiable under all the above three cases.

3.2.1. Relations to data quality metric. As the data quality metric, the observable bound-

ary λ governs the set of distributions to be included in the ambiguity set F , which determines the

values of the optimistic and pessimistic prices p∗max and p∗min. Therefore, λ has a direct impact on

the identifiability of data-driven problems, and we summarize it in Proposition 5.

Proposition 5. Consider two data-driven problems derived from the same underlying pricing

problem, but with two different offline datasets S and S ′, whose observable boundaries λ and λ′

satisfy λ< λ′. If the problem with dataset S is identifiable, then the problem with dataset S ′ is also

identifiable.

Proposition 5 indicates that the set of observable boundaries under which the data-driven prob-

lem is identifiable must be an interval. Therefore, there exists some threshold λ̃ such that if λ> λ̃,

the data-driven problem is identifiable, and if λ< λ̃, the data-driven problem is unidentifiable. In

other words, the identifiability of a data-driven problem corresponds to whether the observable

boundary λ of the offline data S is sufficiently large. The intuition is that, as λ becomes larger,

the retailer is able to observe a wider range of samples from the random base demand ξ, gaining

more information about the underlying demand model, and making it more likely to identify a

near-optimal price. We defer the proof of Proposition 5 to online Appendix C.5.

Proposition 5 also has the following implication for the retailer to set pricing and inventory

levels in the offline data-collection process. Recall that λ=maxi∈[K]{yi+bpi}, which combined with

Proposition 5, implies that to increase the chance of obtaining an identifiable data-driven pricing

problem, the retailer needs to set higher inventory levels as well as higher prices in the offline

data-collection stage. This is quite intuitive since under the same price, demands are less likely

to be censored with a higher inventory level, and under the same inventory level, the expected

demand is lower with a higher price and thus is more likely to be fully observed.
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3.3. Minimax Revenue Loss in Unidentifiable Problems

For the unidentifiable data-driven problems, it is certainly unfortunate to know that no near-

optimal algorithms can be found, i.e., no data-driven algorithms can guarantee expected revenue

to any accuracy and confidence levels. However, it is still important for the retailer to know what

levels of revenue loss that she may possibly get by applying a data-driven algorithm, and whether

“good” algorithms can be designed to limit such a revenue loss, albeit not to any accuracy levels.

We define the minimax revenue loss ∆ as the minimum expected revenue loss that any data-

driven algorithms must incur, when faced with an adversary deciding which distribution F ∈F to

choose, i.e.,

∆ := min
p∈[p,p]

max
F∈F

{RF (p
∗
F )−RF (p)}.

In Proposition 6, we provide a lower bound on ∆ when p∗max ̸= p∗min.

Proposition 6. Suppose p∗max ̸= p∗min. Then the minimax revenue loss ∆ is lower bounded by

∆≥ γb

(
√
γ+1)2

(
p∗max − p∗min

)2
. (4)

Recall that we assume γ > 0 in Section 2. Then Proposition 6 shows that when the problem

is unidentifiable, no data-driven algorithms may guarantee a lower expected revenue loss than a

positive constant γb
(
√
γ+1)2

(
p∗max− p∗min

)2
, thus disqualifying all algorithms from being near-optimal.

We also remark that the lower bound in the RHS of (4) is tight, in that there exists some instance

for the data-driven problem for which the minimax revenue loss ∆ equals γb
(
√
γ+1)2

(p∗max−p∗min)
2. In

fact, if p̃ < p†min, and the global maximizers of R1(·) and R2(·) are within the price range [p, p], we can

prove that p∗max = argmaxp∈RR1(p), p
∗
min = argmaxp∈RR2(p), leading to ∆= γb

(
√
γ+1)2

(p∗max − p∗min)
2.

The proof of Proposition 6 is provided in online Appendix C.6.

Nonetheless, we believe that the nonexistence of near-optimal algorithms in unidentifiable prob-

lems should not be interpreted as a discouragement of using data-driven algorithms in pricing

problems with demand censoring. Rather, it calls for more awareness and consideration of the

unique challenges brought by demand censoring, when designing and applying data-driven algo-

rithms in pricing problems.

4. Data-Driven Algorithm under Censored Demand

In this section, we present a Data-Driven Algorithm under Censored Demand (D2ACD) for the

price optimization problem with finite inventories.
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4.1. Algorithm Description

As discussed in Section 3, when demand observations are censored, some distributional information

is inevitably lost in the offline data, and Proposition 6 shows that, due to the information loss, it is

impossible to accurately estimate the value of the optimal price in some cases, resulting in a strictly

positive minimax revenue loss. D2ACD addresses this challenge by avoiding direct estimations of the

true revenue functions and the true optimal prices; instead, the algorithm estimates the optimistic

and pessimistic revenues, and suggests prices by leveraging the structural property of the worst-case

revenue loss in our pricing problem, and striking a balance between the two estimated revenues.

The description of D2ACD is presented in Algorithm 1, which consists of three major steps. In

terms of the notation, we use SAA(S) to denote the empirical c.d.f. constructed from sample average

approximation with the given samples S.

Although the steps in Algorithm 1 involve many details, the ideas are quite intuitive and can be

largely considered as a series of two general tasks: estimation and optimization. In the first task

(Step 1 and Step 2), D2ACD performs the estimation for price sensitivity as well as optimistic and

pessimistic revenues; in the second task (Step 3), price optimization is performed based on the

values of the estimated revenue functions. We next provide a detailed explanation on Steps 1-3 in

the following three subsections respectively and discuss some important properties guaranteed by

D2ACD.

4.2. Illustration for Step 1 in D2ACD

As mentioned earlier, a naive linear regression approach will lead to biased estimate for the price

sensitivity. To overcome this challenge, we make the following observation. For any u ∈ (0,1), let

F−1
i (u) and F−1

j (u) be the u-quantile for random demands ξ− bpi and ξ− bpj respectively. Then

the price sensitivity b is the solution to the following regression:

b= argmin
b′∈[b,b]

min
a′∈R

K∑
i=1

(
F−1

i (u)− (a′ − b′pi)
)2

. (5)

To see why (5) holds, we notice that for any i, j ∈ [K], ξ−bpi and ξ−bpj have two otherwise identical

distributions that are shifted b|pi − pj| from each other. Hence, b(pi − pj) =−(F−1
i (u)−F−1

j (u)).

By simple algebra, we can verify the following equation satisfied by b:

b
K∑
i=1

(pi −
1

K

K∑
j=1

pj)
2 =−

K∑
i=1

(pi −
1

K

K∑
j=1

pj) · (F−1
i (u)− 1

K

K∑
j=1

F−1
j (u)),

or equivalently, b satisfies (5). With this observation, the key idea is to replace the true quantile

F−1
i (u) in (5) with an empirical quantile below which the demand data are unlikely to be censored.

For each i∈ [K], we first construct an empirical c.d.f. F̂ SAA
i based on the sales data under price pi.

Then we define a quantile function F̂−1
i as the inverse of a piecewise linear approximation to F̂ SAA

i .
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Algorithm 1: Data-Driven Algorithm under Censored Demand (D2ACD)

1 Input: y, [p, p], [b, b],
{
(pi, yi, S

j
i ) : i∈ [K], j ∈ [Ni]

}
, γ̂min :=mini∈[K] γ̂i

2 Step 1: estimating price sensitivity b

3 for i∈ [K] do

4 F̂ SAA
i (·) := SAA({Sj

i : j ∈ [Ni]});

5 Sort the breakpoints of F̂ SAA
i (·) in an increasing order, and denote them by

β̂i,1 < β̂i,2 < · · ·< β̂i,M̂i
;

6 F̂−1
i (·): modified quantile function of F̂ SAA

i (·) defined as

F̂−1
i (x) :=


(
x−F̂SAA

i (β̂i,k)

)
·
(
β̂i,k+1−β̂i,k

)
F̂SAA
i (β̂i,k+1)−F̂SAA

i (β̂i,k)
+ β̂i,k, if x∈ (F̂ SAA

i (β̂i,k), F̂
SAA
i (β̂i,k+1)] for k ∈ [M̂i − 1];

β̂i,1, if x≤ F̂ SAA
i (β̂i,1);7

8 end for

9 Solve the linear regression: b̂= argminb′∈[b,b]mina′∈R
∑K

i=1

(
F̂−1

i (γ̂min)− (a′ − b′pi)
)2

;

10 Step 2: estimating optimistic and pessimistic revenues Rmax(·) and Rmin(·)

11 î∗ := argmaxi∈[K]{yi + b̂pi};

12 λ̂ := yî∗ + b̂pî∗ , γ̂ :=maxi∈[K] γ̂i;

13 R̂(p) := p · 1
N

î∗

∑N
î∗

j=1min{Sj

î∗
+ b̂pî∗ − b̂p, y};

14 R̂1(p) := p ·
(
− γ̂b̂p+ 1

N
î∗

∑N
î∗

j=1(S
j

î∗
+ b̂pî∗)+ (1− γ̂)(y− λ̂)

)
;

15 R̂2(p) := p ·
(
− b̂p+ 1

N
î∗

∑N
î∗

j=1(S
j

î∗
+ b̂pî∗)

)
;

16 ˆ̃p := (λ̂− y)/b̂;

17 R̂max(p) := 1{p< ˆ̃p}R̂(p)+1{p≥ ˆ̃p}R̂1(p);

18 R̂min(p) := 1{p< ˆ̃p}R̂(p)+1{p≥ ˆ̃p}R̂2(p);

19 Step 3: computing algorithm’s price pD2ACD

20 p̂∗max := argmaxp∈[p,p] R̂max(p), p̂∗min := argmaxp∈[p,p] R̂min(p);

21 Ŵmax(p) := R̂max(p̂
∗
max)− R̂max(p);

22 Ŵmin(p) := R̂min(p̂
∗
min)− R̂min(p);

23 pD2ACD = argminp∈[p,p]max
{
Ŵmax(p), Ŵmin(p)

}
;

24 Output: pD2ACD

This piecewise linear function is constructed by drawing straight lines joining any two consecutive

breakpoints of F̂ SAA
i . The reason for which we take the piecewise linear approximation as a bridge

is to guarantee F̂−1
i is uniquely defined on [β̂i,1, β̂i,M̂i

], which will facilitate our analysis. The figures

for F̂ SAA
i and F̂−1

i are depicted in the blue step function and the red piecewise linear function in

Figure 2 respectively. Since the demand data under pi are uncensored below yi, from the definition
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of γ̂min, the demand is also uncensored below the empirical γ̂min-quantile F̂−1
i (γ̂min). Therefore,

F̂−1
i (γ̂min) intuitively approximates the true quantile (after piecewise linear approximation to the

true c.d.f. of ξ− bpi) with high accuracy.

!𝜷𝒊,𝟏
!𝜷𝒊, !𝑴𝒊

= 𝒚𝒊

1

0 𝐦𝐢𝐧{𝝃 − 𝒃𝒑𝒊, 𝒚𝒊}

!𝑭𝒊𝑺𝑨𝑨
!𝑭𝒊5𝟏

6𝜸𝒎𝒊𝒏
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!𝜷𝒊,𝟐

6𝜸𝒊

Figure 2 Computation of the modified empirical quantile under price pi in Step 1 of D2ACD.

The following lemma establishes a finite-sample probability bound on the estimate b̂.

Lemma 1 (Convergence of price sensitivity). For any α> 0, |b̂− b| ≤ α with probability at

least 1− 2Ke−
1

9K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2Nα2

.

Lemma 1 guarantees that regardless of whether the data-driven problem is identifiable or not, b̂

is always consistent. This is ensured by taking advantage of the uncensored parts in the sales data

when constructing b̂. Besides, the probability bound in Lemma 1 increases in the price variance

1
K

∑K

i=1(pi−
1
K

∑K

j=1 pj)
2. This is intuitive since as the offline prices become more dispersive, i.e., the

variance of offline prices increases, the estimation for b is more accurate, and the probability bound

is closer to one. In addition, the bound in Lemma 1 also increases in g (defined in Assumption 1),

showing that as the true c.d.f. of random base demand ξ becomes steeper, the probability bound

gets closer to one.

To prove Lemma 1, we need to carefully bound the distance between the empirical γ̂min-quantile

and the true γ̂min-quantile of random demand ξ−bpi for each i∈ [K]. Suppose to the contrary, these

two quantiles are “far away” from each other. By leveraging the property guaranteed by g, we can

show that the empirical c.d.f. is also bounded away from the true c.d.f. at some uncensored point.

This leads to a contradiction with the so-called Dvoretzk-Kiefer-Wolfowitz (DKW) inequality,

which claims a uniform high-probability bound on the distance between the empirical c.d.f. and

the true c.d.f. for the uncensored part. The formal statement of DKW inequality and the proof of

Lemma 1 are provided in online Appendices A and D.1 respectively.
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4.3. Illustration for Step 2 in D2ACD

In Step 2, we estimate the empirical optimistic revenue R̂max(·) and pessimistic revenue R̂min(·).

According to Proposition 2, we need to compute the empirical revenue R̂(·) and two empirical

quadratic functions R̂1(·) and R̂2(·). To compute R̂(p), we replace the unknown expected sales

E[min{ξ−bp, y}] with its empirical counterpart 1
N

î∗

∑N
î∗

j=1min{Sj

î∗
+ b̂pî∗ − b̂p, y} by replacing b with

b̂ and adding back the estimated pricing effect b̂pi. To compute R̂1(·) and R̂2(·), we replace b, γ, λ

and E[min{ξ,λ}] in the expressions of R1(·) and R2(·) in Proposition 2 with their empirical version

b̂, γ̂, λ̂, and 1
N

î∗

∑N
î∗

j=1min{Sj

î∗
+ b̂pî∗ , λ̂}= 1

N
î∗

∑N
î∗

j=1(S
j

î∗
+ b̂pî∗), respectively.

We emphasize that since the price sensitivity is unknown and the sales data are censored, the

empirical revenue function R̂(p) we obtain from the above procedure converges to the true revenue

function R(p) only when p ≤ min{p̃, ˆ̃p}. However, since the optimistic and pessimistic revenues

depend on the distribution of ξ only through its left portion [0, λ), which can be estimated from

the historical data accurately when the data size becomes larger, we can then prove that R̂max(·)

and R̂min(·) converge to Rmax(·) and Rmin(·) respectively on the entire price range [p, p]. This

is formally stated in the following lemma, where we use the notations λ := maxi∈[K]{yi + bpi},

C1 := 5p2 + (2y+3bp+2λ)2

b2
, and C2 := p(y+λ+ pb).

Lemma 2 (Convergence of empirical optimistic and pessimistic revenues). For any

α > 0, supp∈[p,p]

∣∣∣R̂max(p)−Rmax(p)
∣∣∣ ≤ α and supp∈[p,p]

∣∣∣R̂min(p)−Rmin(p)
∣∣∣ ≤ α with probability at

least 1− 2Ke
− 1

36(y+bp)2p2
Nα2

− 2Ke
−

1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2

36C2
1

Nα2

− 2Ke
− 1

18C2
2

Nα2

− 2Ke
− 1

18p2λ
2 Nα2

.

Lemma 2 shows that with high probability, R̂max(·) converges to Rmax(·) and R̂min(·) converges to

Rmin(·) uniformly in range p∈ [p, p]. This property of uniform approximation will be crucial to the

analysis of the algorithm’s performance in Section 5. In particular, to prove this result, we invoke

a new concentration inequality established in Lemma 14 of Qin et al. (2019), which bounds the

probability P[supy∈Y | 1
n

∑n

i=1 f(Xi, y)−E[f(X1, y)]| ≤ α] for i.i.d. random variables X1,X2, . . . ,Xn,

and bounded monotone functions f(x, y) under any given accuracy level α> 0 (see Lemma A.3 in

online Appendix A). The proof of Lemma 2 is in online Appendix D.2.

Remark 1. When estimating Rmax(·) and Rmin(·), we only utilize the sales data from the single

pair (pî∗ , yî∗). The reason is that under the current SAA method, replacing î∗ with other indices

or pooling all the data together with potentially different censoring inventory levels leads to biased

estimate for the distribution of ξ. To fully use the historical data while still maintaining consistency,

one possible approach is to replace the SAA method with the so-called KM estimator introduced by

Kaplan and Meier (1958) to estimate the distribution of ξ. In Section 6, we propose a new algorithm

D2ACD-KM modified from D2ACD by using the KM estimator in Step 2, and compare its numerical
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performance with D2ACD. Since the theoretical analysis of D2ACD-KM in our problem context is

much more complicated and difficult than D2ACD, we still focus on D2ACD in the presentation

and analysis of the main results of this paper.

4.4. Illustration for Step 3 in D2ACD

In Step 3, we compute the algorithm’s price pD2ACD. The following proposition provides a crucial

foundation for achieving the goal of designing a robust algorithm that hedges against the distribu-

tional uncertainty.

Proposition 7. For any price p∈ [p, p], the worst-case revenue loss satisfies

max
F∈F

{RF (p
∗
F )−RF (p)}=max{Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)} . (6)

Proposition 7 provides a closed-form expression for the worst-case revenue loss for any pricing

decision p ∈ [p, p] through the optimistic revenue and pessimistic revenue. This indicates that to

evaluate the worst-case revenue loss within the ambiguity set, it suffices to consider the best-

possible distribution and the worst-possible distribution. In this case, the minimax revenue loss is

simplified to

∆= min
p∈[p,p]

max{Rmax(p
∗
max)−Rmax(p),Rmin(p

∗
min)−Rmin(p)}. (7)

Motivated from the above identity (7), we set the price pD2ACD to minimize the empirical counter-

part of the RHS in (7), i.e., max{R̂max(p̂
∗
max)− R̂max(p), R̂min(p̂

∗
min)− R̂min(p)}. Since the empirical

optimistic and pessimistic revenues R̂max(·) and R̂min(·) approximate the true revenues Rmax(·) and
Rmin(·) with high accuracy as guaranteed in Lemma 2, intuitively, the worst-case revenue loss of

the algorithm’s price could also be close to the minimax revenue loss with high probability.

5. Finite-Sample Probability Bound of D2ACD Algorithm

In this section, we present the theoretical probability bound of D2ACD, and we consider both cases

in terms of problem identifiability. Specifically, in Section 5.1, we show that when the optimistic

and pessimistic prices are equal, i.e., p∗max = p∗min, D2ACD is near-optimal. Moreover, in Section 5.2,

we study the case that p∗max ̸= p∗min, and show D2ACD can approach the best-achievable performance

within any accuracy and confidence levels.

5.1. Identifiable Problems

One of the main results of this paper is the development of an exact condition for problem identifia-

bility of the data-driven pricing problems with demand censoring. In Section 3, we show that there

exists a near-optimal algorithm if and only if p∗max = p∗min (Theorem 1). As the “only if” direction is

already proved in Proposition 6, we in this section show affirmatively that our proposed algorithm

D2ACD is near-optimal when p∗max = p∗min, closing the “if” direction in the proof of Theorem 1.
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Theorem 2 (Sample complexity for identifiable problems). Suppose p∗max = p∗min. For

any ε > 0 and δ ∈ (0,1), if N ≥N(ε, δ), then with probability at least 1− δ, the worst-case revenue

loss of D2ACD in Section 4 is no greater than ε, i.e.,

P
[
max
F∈F

{
RF (p

∗
F )−RF (p

D2ACD)
}
≤ ε
]
≥ 1− δ,

where N(ε, δ) =C 1
ε2
log 8K

δ
=O( 1

ε2
log 1

δ
) for some constant C.

Theorem 2 shows that when the level of confidence probability is 1− δ, the number of samples

needed to guarantee the worst-case revenue loss is within the error of ε, also referred to as the

sample complexity, is in the order of O( 1
ε2
log 1

δ
), which is quadratic in 1/ε and logarithmic in 1/δ.

Such a dependency of the sample complexity on ε and δ is consistent with the existing results of

Levi et al. (2015) in a different context of the data-driven newsvendor problem without censoring.

The result in Theorem 2 can also be equivalently stated as follows: for any given size metric N

and error level ε > 0, then P
[
maxF∈F

{
RF (p

∗
F )−RF (p

D2ACD)
}
≤ ε
]
≥ 1− 8K exp(−Nε2

C
), where the

resulting probability bound has an exponential rate in N . The exact expression of constant C can

be found in the proof of Theorem 2 in Appendix.

5.2. Unidentifiable Problems

When p∗max ̸= p∗min, it has been shown in Proposition 6 that no data-driven algorithm can achieve

a worst-case revenue loss less than the lower bound in inequality (4), and the minimax revenue

loss ∆ is strictly positive. Nevertheless, the revenue loss incurred by our algorithm is proven to

converge to the best-achievable revenue loss ∆ as the size metric N increases, with guaranteed

finite-sample probability bound. The result is stated as follows.

Theorem 3 (Sample complexity for unidentifiable problems). Suppose p∗max ̸= p∗min. For

any ε > 0 and δ ∈ (0,1), if N ≥N(ε, δ), then with probability at least 1− δ, the worst-case revenue

loss of D2ACD in Section 4 is within ε distance of the minimax revenue loss, i.e.,

P
[
max
F∈F

{
RF (p

∗
F )−RF (p

D2ACD)
}
−∆≤ ε

]
≥ 1− δ,

where N(ε, δ) is defined in Theorem 2.

Similar to the case of identifiable problems, for the unidentifiable problems, the sample com-

plexity to guarantee the gap between the worst-case revenue loss under D2ACD and the minimax

revenue loss ∆ is within the error of ε is also in the order of O
(

1
ε2
log 1

δ

)
. Correspondingly, the

convergence rate of the probability bound for event maxF∈F
{
RF (p

∗
F ) − RF (p

D2ACD)
}
−∆ ≤ ε is

also exponentially fast in the size metric N . Since ∆ is the best-possible revenue loss when one

has full knowledge about the ambiguity set, Theorem 3 demonstrates that even if in the case of
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unidentifiable problem, D2ACD achieves the near-best performance. The proof of Theorem 3 is

given in Appendix.

One related question the retailer may be faced with in practice is: when the underlying data-

driven problem is unidentifiable, can we apply the algorithm to detect it? This is answered in the

following proposition.

Proposition 8. Suppose p∗max ̸= p∗min. Then

P [p̂∗max ̸= p̂∗min]≥ 1− 2Ke
− 1

324(y+bp)2p2
Nα2

0 − 2Ke
−

1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2

324C2
1

Nα2
0

− 2Ke
− 1

162C2
2

Nα2
0 − 2Ke

− 1

162p2λ
2 Nα2

0
,

where C1 and C2 are constants defined in Lemma 2, and α0 =
γb

(
√
γ+1)2

(
p∗max − p∗min

)2
.

Proposition 8 shows that when the true data-driven problem is unidentifiable, by checking

whether p̂∗max and p̂∗min are different, the probability of the algorithm’s failure to detect unidenti-

fiability is very small as N increases. The intuition for this result is as follows. Recall that p∗max

and p∗min are solved from Rmax(·) and Rmin(·) respectively. According to Lemma 2, as N grows,

the empirical revenues R̂max(·) and R̂min(·) approximate Rmax(·) and Rmin(·) with higher accuracy

respectively. Intuitively, their maximizers p̂∗max and p̂∗min will also approximate p∗max and p∗min with

higher accuracy respectively. When the problem is unidentifiable, there is always a gap between

p∗max and p∗min, and thus, p̂∗max and p̂∗min are also bounded away from each other. The proof of

Proposition 8 can be found in online Appendix E.

Proposition 8 also provides some guidance for the retailer in pricing practice. Proposition 3 shows

that the interval [p∗min, p
∗
max] characterizes the location of the true optimal price. The smaller this

interval is, the closer the data-driven problem is to an identifiable problem. In practice, while the

retailer cannot compute p∗max or p∗min since she does not know the distribution of ξ or the price sen-

sitivity b, the empirical prices p̂∗max and p̂∗min can be computed based on Step 3 of Algorithm 1. Then

the empirical interval [p̂∗min, p̂
∗
max] can be seen as an approximation to the true interval [p∗min, p

∗
max],

which approximately captures the location of the true optimal price. Proposition 8 suggests that,

if the data size is sufficiently large, but the gap between p̂∗max and p̂∗min is large, the problem is

very likely to be unidentifiable, and the retailer should be very cautious when making the pricing

decisions using censored data. In this case, modeling the uncertainty of demand distribution and

solving the data-driven price optimization problem in a more robust way will be recommended.

6. Numerical Experiments

In this section, we conduct a numerical study on synthetic datasets to test the effectiveness of the

proposed D2ACD. We first describe the numerical design and introduce three baseline algorithms
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and a modified algorithm from D2ACD, referred to as D2ACD-KM in Section 6.1. Then we compare

D2ACD with the baseline algorithms and D2ACD-KM in Section 6.2. Finally, we discuss the effects

of the data quality and inventory level on the performance of D2ACD in Section 6.3.

6.1. Description of Experiments

6.1.1. Three baseline algorithms and D2ACD-KM. We first introduce the three baseline

algorithms that we compare D2ACD against in Section 6.2.

(1) The first algorithm LR-IncludeAll trains a linear regression model on all sales data, censored

or not, to estimate the parameters (a, b), naively treating all sales data as true demands and

completely ignoring the effect of demand censoring. After computing parameter estimates (â, b̂),

LR-IncludeAll constructs an empirical c.d.f. of η using the SAA approach based on the residual

samples {Sj
i −(â+ b̂pi) : i∈ [K], j ∈ [Ni]}, and outputs a price that maxmizes the empirical revenue.

(2) The second algorithm LR-ExcludeCensored is aware of the fact that the offline data are subject

to demand censoring when constructing a linear regression model, but it simply removes all the data

points when the observed sales equal the inventory levels. The empirical revenue and algorithm’s

price are calculated using a similar approach to that in LR-IncludeAll, but with all censored residual

samples excluded in the construction of the empirical c.d.f. of η.

(3) The third algorithm Buckley&James modified from Buckley and James (1979) is more intel-

ligent than the first two baseline algorithms. It applies the KM estimator to a linear regression

model by modifying the least squares normal equations when estimating the parameters (a, b). We

refer interested readers to Buckley and James (1979) for a detailed description of this algorithm.

The remaining steps for estimating the distribution of η, constructing the empirical revenue, and

computing the algorithm suggested price, proceed in a similar manner as that of LR-IncludeAll.

We also introduce a modified algorithm from D2ACD, referred to as D2ACD-KM. Similarly,

D2ACD-KM also proceeds in three major steps. The estimation for the price sensitivity in Step 1

and the procedure for computing the suggested price in Step 3 remain the same as D2ACD.

The only difference lies in estimating the optimistic and pessimistic revenues in Step 2, where

D2ACD-KM computes the empirical c.d.f. of ξ by applying a KM subroutine (see Algorithm 2 in

online Appendix F for a detailed description) that leverages the KM estimator and utilizes all the

historical data. This is in contrast to D2ACD that applies the SAA method and only uses the sales

data associated with (pî∗ , yî∗). We will also compare the two algorithms D2ACD and D2ACD-KM

in Section 6.2.

6.1.2. Problem setup and performance measures. We set the deterministic base demand

a = 100, price sensitivity b = 1, and random noise η as a centered Geometric random variable

with parameter 1/30. The inventory level and price range available to the retailer are y = 80 and
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[p, p] = [30,80], and the range of price sensitivity values is set to [b, b] = [0.1,3]. Each set of the

offline data is randomly sampled at K = 2 price-inventory pairs (p1, y1) and (p2, y2), which we set

to (40,70) and (60,20) in Section 6.2 and to seven different combinations in Section 6.3. For any

size metric N ∈ {20, · · · ,200} with increment of 1, we create a dataset SN with N samples from

(p1, y1) and N samples from (p2, y2).

For any algorithm A, let pA be the algorithm suggested price with SN , [b, b], y, and [p, p] given

as input to A. The algorithm performance on SN is measured by two metrics:

(1) The relative optimality gap under the true c.d.f. Fξ(·), defined as R(p∗)−R(pA)

R(p∗) × 100%;

(2) The worst-case revenue loss over the ambiguity set F , defined as maxF∈F{RF (p
∗
F )−RF (p

A)}.

6.2. Algorithm Performance Comparison

In this subsection, we first compare the performances of D2ACD with those of LR-IncludeAll,

LR-ExcludeCensored, and Buckley&James, averaged over 50 randomly generated problem instances

of the same setup with (p1, y1) = (40,70) and (p2, y2) = (60,20), for each data sizeN ∈ {20, · · · ,200}.

In this setting, by computing the values of p∗max and p∗min, the data-driven problem is verified to be

unidentifiable.

In Figure 3, we plot the relative optimality gaps of the baseline and proposed algorithms,

LR-IncludeAll, LR-ExcludeCensored, Buckley&James and D2ACD, as the percentages of revenue losses

with respect to the optimal revenue R(p∗). Figure 3 shows that D2ACD significantly improves over
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Figure 3 Relative optimality gaps of D2ACD and baseline algorithms with different values of N .

all three baseline algorithms, and, in this particular problem setup, it is able to keep the relative

optimality gap from < 2% when N = 20 to < 0.5% when N = 200. As the sizes of the datasets

get larger, D2ACD and Buckley&James enjoy smaller revenue losses, while the performances of

LR-IncludeAll and LR-ExcludeCensored remain the same as their estimation biases do not get reduced

with more data.
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In Figure 4, we plot the worst-case revenue losses of the proposed and baseline algorithms. It is

obvious that, among all four algorithms, D2ACD achieves the lowest worst-case revenue loss, which

gets closer to the minimax revenue loss as the data size gets larger. We point out that the revenue
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Figure 4 Worst-case revenue losses of D2ACD and baseline algorithms with different values of N .

losses are displayed in log-scale, and therefore the D2ACD’s improvement over other algorithms is

even more significant than the differences appearing on the chart. Figure 4 shows that the price

given by D2ACD is not only effective in the particular demand distribution that we use to generate

the offline datasets, but also highly robust to all possible distributions that may output the same

datasets.

We next offer explanations on the superior performance of D2ACD by demonstrating the accuracy

of D2ACD’s price sensitivity estimates compared with those of the baseline algorithms and by

illustrating D2ACD’s pricing mechanism that is designed to be robust. Figure 5 plots the price

sensitivity estimates b̂ of the baseline and proposed algorithms on datasets of different sizes, where

for each 20 ≤ N ≤ 200, we plot the estimate b̂ for each algorithm on one randomly generated

dataset. It is clear that D2ACD attains the most accurate estimators of price sensitivity among

all algorithms, and the results obtained from repeated experiments become more concentrated

around the true price sensitivity as the data sizes grow, agreeing with our theoretical result in

Lemma 1. The plots of the estimates of LR-IncludeAll and LR-ExcludeCensored show that ignoring

the censoring effect leads to biased estimates and simply removing censored data does not solve

the problem either. In particular, if dropping censored data, the selected samples for the linear

regression are restricted to those below the inventory level, and thus, LR-ExcludeCensored will

introduce additional bias to the regression model in an endogenous way. See more discussion on

such endogeneity in online Appendix G. The third baseline algorithm Buckley&James slightly

improves over the other two baseline algorithms, as its estimators sometimes do come very close
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Figure 5 Price sensitivity estimates b̂ of D2ACD and baseline algorithms with different values of N .

to the true price sensitivity. However, Buckley&James requires iteratively finding a fixed point of

a discontinuous piecewise linear function, which may have zero, one, or multiple fixed points, and

therefore its estimates are very susceptible to the choice of initial points. In the particular problem

instances that we test, we see from Figure 5 that the price sensitivity estimates of Buckley&James

tend to converge at fixed points that are lower than the true price sensitivity.

Figure 6 illustrates D2ACD’s pricing mechanism: the algorithm first narrows down the location of

the optimal price p∗ to the interval between its empirical optimistic price p̂∗max and pessimistic price

p̂∗min, and then, within the interval, it finds a price pD2ACD that minimizes the empirical worst-case

revenue loss, based on R̂max(·) and R̂min(·), D2ACD’s estimated upper and lower bounds of the true

revenue function R(·). The intuition is that, when the data size is large, the empirical optimistic
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Figure 6 Locations of the optimal price and D2ACD’s prices in a problem instance with N = 50.

and pessimistic prices are very close to the true optimistic and pessimistic prices respectively, which

are the boundaries of the interval that confines the optimal price p∗, as suggested by Proposition 3.

Therefore, with more data, the distance between pD2ACD and p∗ converges to a constant that is

no greater than |p∗max − p∗min| and leads to expected revenue loss of < 0.5% in the problem set



28 Bu, Simchi-Levi, and Wang: Offline Pricing with Censored Data

10 20 30 40 50
N

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%
re

la
tiv

e 
op

tim
al

ity
 g

ap

D2ACD
D2ACD-KM

10 20 30 40 50
N

0

20

40

60

w
or

st
-c

as
e 

re
ve

nu
e 

lo
ss

D2ACD
D2ACD-KM
minimax rev loss

Figure 7 Comparison between D2ACD and D2ACD-KM with K = 10.

that we use to generate Figure 3. Similarly, when the data size is large, R̂max(·) and R̂min(·) well

approximate Rmax(·) and Rmin(·) respectively, according to Proposition 2. Therefore, since pD2ACD is

set to minimize the empirical worst-case revenue loss based on R̂max(·) and R̂min(·), its true worst-

case revenue loss calculated based on Rmax(·) and Rmin(·) is also close to the minimax revenue loss

∆, as shown on Figure 4.

To end this subsection, we compare the performances of D2ACD and D2ACD-KM. Through our

experiments, we find that under the setting of two historical price-inventory pairs as in Figures 3

and 4, D2ACD achieves almost the same numerical performance as D2ACD-KM in terms of both the

relative optimality gap and worst-case revenue loss. To better distinguish between the performances

of the two algorithms, we consider the following ten pairs of historical pricing and inventory levels:

{(35,45), (45,35), (55,25), (65,15), (75,5), (30,80), (40,70), (50,60), (60,50), (70,40)}, each of which

is associated with N sales observations. In this case, D2ACD-KM utilizes much more historical

information than D2ACD for estimating the distribution of ξ in Step 2. The other parameters remain

the same as before. The relative optimality gap and the worst-case revenue loss incurred by D2ACD

and D2ACD-KM are plotted in Figure 7. When the data size N is small, e.g., N < 40, D2ACD-KM

performs slightly better than D2ACD under both measures of the relative optimality gap and the

worst-case revenue loss, although the improvement is not significant. When N exceeds 40, the

gap between D2ACD and D2ACD-KM is negligible, indicating the almost identical performance

of D2ACD and D2ACD-KM with larger N . These are mainly because under our assumed data

structure, the SAA method applied to the “best-quality” data {(pî∗ , yî∗ , S
j

î∗
) : j ∈ [Nî∗ ]} already

leads to an accurate estimation for the distribution of ξ even with small to moderate data size N .

6.3. Effects of Data Quality and Inventory Level

In Section 6.3, we investigate the effects of different data qualities and inventory levels on the

performance of the proposed D2ACD. As discussed in Section 2.1, the observable boundary λ is used

as the metric of data quality. In this subsection, we also include the absolute difference between the

two prices used to generate the offline dataset, denoted by ρ := |p1− p2|, as another metric of data

quality. In Table 1, we report the relative optimality gap of D2ACD under different combinations of
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Data quality Inventory level Data quality Inventory level

(ρ,λ) y= 20 y= 40 y= 60 y= 80 y= 100 (ρ,λ) y= 20 y= 40 y= 60 y= 80 y= 100

(10,105) 1.54% 2.02% 1.56% 1.90% 3.96% (20,90) 0.38% 0.57% 0.62% 2.59% 4.76%

(15,105) 0.76% 0.66% 1.01% 1.01% 2.13% (20,95) 0.65% 0.19% 0.45% 1.75% 3.49%

(20,105) 0.67% 0.41% 0.53% 0.86% 1.64% (20,100) 0.50% 0.33% 0.78% 1.45% 2.64%

(30,105) 0.36% 0.32% 0.48% 0.52% 1.51% (20,105) 0.50% 0.54% 0.61% 0.87% 1.41%

Table 1 Relative optimality gap of D2ACD under different (ρ,λ) and y with N = 100.

data quality metrics (ρ,λ) and inventory level y, averaged over 100 randomly generated datasets.

When the problem is identifiable with the given quality metrics (ρ,λ) and inventory level y, we

underline the relative optimality gap to differentiate it from the unidentifiable cases. Table 1 shows

that the values of λ and y affect the identifiability of the underlying data-driven problem, and the

values of ρ, λ and y also jointly influence the performance of D2ACD.

First, when λ and y are fixed, as ρ increases, the relative optimality gap of D2ACD decreases,

leading to a better performance. For example, when y= 20 and λ= 105, as ρ increases from 10 to

30, the relative optimality gap decreases from 1.54% to 0.36%. This is intuitive since ρ measures

how dispersive historical prices are, and as ρ becomes larger, the estimate b̂ for the price sensitivity

b becomes more accurate, and the algorithm is more likely to generate higher revenue.

Second, when y is fixed, as λ increases, an unidentifiable problem switches to an identifiable one.

For example, for fixed y= 40, the problem is unidentifiable when λ≤ 95, and becomes identifiable

when λ ≥ 100. This is also consistent with our Proposition 5, which shows that when λ exceeds

some threshold, the problem becomes identifiable. Moreover, for unidentifiable problems with a

relatively high inventory level y, the relative optimality gap decreases as the observable boundary

λ increases. For example, when y = 80, as λ increases from 90 to 105, the relative optimality gap

decreases from 2.59% to 0.87%. This is because a larger λ provides more information about the

unknown distribution of ξ, and therefore leads to a better performance of D2ACD. For identifiable

problems and unidentifiable problems with a relatively low inventory level y, the relative optimality

gaps are consistently close to zero under different values of λ.

Third, when λ is fixed, as y increases, an identifiable problem switches to an unidentifiable one.

For example, for λ= 105, the problem is identifiable when y≤ 40 and becomes unidentifiable when

y ≥ 60. Moreover, a higher inventory level y leads to a larger relative optimality gap and a worse

performance of D2ACD. This is because to evaluate the expected revenue under a fixed price p,

we need to know the distribution of ξ on the left-hand side of y+ bp. If y is very small, it is more

likely that y+ bp is within the observable boundary λ, and therefore, the problem is more likely
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to be identifiable. If y is extremely large, e.g., y =∞, the optimal price is close to a/(2b), which

makes the problem unidentifiable since with censored offline data, no algorithm is able to uncover

the exact value of a, let alone achieving an optimality gap close to zero.

7. Conclusion and Future Research

In this paper, we study a data-driven pricing problem with unknown demand model, for which

demand censoring brings a crucial challenge to the existence of near-optimal data-driven algo-

rithms. We define the notion of problem identifiability by constructing an ambiguity set of demand

distributions, and measuring the performance of a data-driven algorithm in terms of the worst-case

revenue loss. We provide an exact condition for a problem to be identifiable by comparing the

optimal solutions to two distributionally robust counterparts of the full-information pricing prob-

lem. Moreover, we develop a data-driven algorithm that can be applied for both identifiable and

unidentifiable problems, whose worst-case revenue loss converges to the best-achievable revenue

loss for both cases. Numerical experiments are conducted to demonstrate the effectiveness of our

proposed algorithms.

Demand censoring is widely observed in many business environments, especially in the retailing

industry. This paper, by studying a data-driven pricing problem with a simple linear demand

model, also aims to provide several important managerial insights. When businesses use offline

data to optimize pricing decisions, the effect of demand censoring cannot be simply ignored. In

a censored dataset, some partial distributional information is inevitably lost, creating additional

demand uncertainty for businesses to manage. As shown in the numerical experiments (Section 6),

naive treatments of censored data can lead to inaccurate demand estimation and suboptimal pricing

decisions. A holistic approach to modeling the additional uncertainty in the demand learning

process, for example, using an ambiguity set to capture all potential demand distributions as shown

in Section 3.1, and the ambiguous stochastic optimization approach, for example, using the worst-

case revenue loss to measure an algorithm’s performance, are crucial to allow businesses to practice

data-driven price optimization under uncertainty in a more robust manner.

This work also opens up several future research opportunities for offline demand learning and

pricing in the presence of censored data. First, nowadays, retailers especially in the online retail-

ing, have access to massive amount of covariates information about customers and demands, e.g.,

sales of substitutable products, customers’ historical purchase behavior, etc. By leveraging such

information, it is hopeful to make better inference about the lost-sales quantity, and build a less

conservative data-driven pricing problem with a refined ambiguity set. Second, our model assumes

the unknown demand curve belongs to the linear function class. It would be interesting to con-

sider other classes of demand functions, in which case, it is important to study how the demand
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ambiguity set should be modified accordingly and to understand how demand censoring affects the

problem identifiability under the new demand classes. Third, in this paper, we consider a data-

driven pricing problem with given inventory capacity. In practice, firms may want to coordinate

both pricing and inventory decisions to maximize the profit function pE[min{ξ−bp, y}]−cy. It will

be interesting to investigate how to extend the current framework and results to the joint pric-

ing and inventory management problem with censored data. One key challenge is that the profit

function is generally not jointly concave in the decision variable (p, y). The technique developed by

Feng et al. (2020) may be useful in dealing with such a non-concavity issue. Finally, it will also be

important to extend the current single-period model to multi-period dynamic pricing problem. In

such a model, we can still apply a similar worst-case framework with a properly defined ambiguity

set to capture the information loss and measure the performance of a data-driven algorithm. In

the analysis of a multi-period pricing model, the attention would be diverted to constructing a

tractable empirical dynamic program as well as analyzing its relationship with the full-information

dynamic program (see Cheung and Simchi-Levi 2019), which is more challenging than the current

single-period model is.

Acknowledgments: The authors are grateful to the department editor J. George Shanthikumar,

the associate editor and two referees for their constructive comments and suggestions which have

helped to significantly improve both the content and exposition of this paper.

Appendix. Proof of Theorems 2 and 3

In this appendix, we prove Theorems 2 and 3 based on Proposition 7 and Lemma 2. For notation

convenience, let p∗∆ = argminp∈[p,p]max{Rmax(p
∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)} and for any

α> 0, let B(α) be the following event:

B(α) =
{
|R̂max(p)−Rmax(p)| ≤ α, |R̂min(p)−Rmin(p)| ≤ α, ∀p∈ [p, p]

}
. (8)

Note that from Proposition 7, when p∗max = p∗min, we have

max
F∈F

{RF (p
∗
F )−RF (p

∗
max)}=max{Rmax(p

∗
max)−Rmax(p

∗
max), Rmin(p

∗
min)−Rmin(p

∗
min)}= 0,

which implies ∆= 0 for this case. Thus, to prove both Theorems 2 and 3, it suffices to show that

for any ε > 0 and δ ∈ (0,1), when N ≥N(ε, δ),

P
[
max
F∈F

{RF (p
∗
F )−RF (p

D2ACD)}−∆≤ ε
]
≥ 1− δ. (9)

Recall that pD2ACD = argminp∈[p,p]max
{
Ŵmax(p), Ŵmin(p)

}
. Suppose B(α) holds, then we obtain

max
F∈F

{RF (p
∗
F )−RF (p

D2ACD)}
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=max
{
Rmax(p

∗
max)−Rmax(p

D2ACD), Rmin(p
∗
min)−Rmin(p

D2ACD)
}

≤max
{
(R̂max(p

∗
max)+α)− (R̂max(p

D2ACD)−α), (R̂min(p
∗
min)+α)− (R̂min(p

D2ACD)−α)
}

≤max
{
R̂max(p̂

∗
max)− R̂max(p

D2ACD), R̂min(p̂
∗
min)− R̂min(p

D2ACD)
}
+2α

≤max
{
R̂max(p̂

∗
max)− R̂max(p

∗
∆), R̂min(p̂

∗
min)− R̂min(p

∗
∆)
}
+2α

≤max{(Rmax(p̂
∗
max)+α)− (Rmax(p

∗
∆)−α), (Rmin(p̂

∗
min)+α)− (Rmin(p

∗
∆)−α)}+2α

≤max{Rmax(p
∗
max)−Rmax(p

∗
∆), Rmin(p

∗
min)−Rmin(p

∗
∆)}+4α

=∆+4α, (10)

where the first identity follows from Proposition 7, the first inequality follows from (8), the second

inequality follows from the optimality of p̂∗max and p̂∗min, and p∗max, p
∗
min ∈ [p, p], the third inequality

follows from the optimality of pD2ACD and p∗∆ ∈ [p, p], the fourth inequality follows from (8), the last

inequality follows from the optimality of p∗max and p∗min, and p̂∗max, p̂
∗
min ∈ [p, p], and the last identity

follows from the definition of p∗∆.

For any ε > 0, from (10) and by letting α= 1
4
ε, we have

P
[
max
F∈F

{RF (p
∗
F )−RF (p

D2ACD)}−∆≤ ε
]

≥ P
[∣∣∣R̂max(p)−Rmax(p)

∣∣∣≤ 1

4
ε,
∣∣∣R̂min(p)−Rmin(p)

∣∣∣≤ 1

4
ε,∀p∈ [p, p]

]
≥ 1− 2Ke

− 1
576(y+bp)2p2

Nε2 − 2Ke
−

1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2

576C2
1

Nα2

− 2Ke
− 1

288C2
2

Nα2

− 2Ke
− 1

288p2λ
2 Nα2

,

where the last inequality follows from Proposition 2. Thus, when N ≥N(ε, δ) =C 1
ε2
log 8K

δ
, where

C := max

{
576(y+ bp)2p2,

576C2
1

1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2
, 288C2

2 , 288p
2λ

2
}
, event maxF∈F{RF (p

∗
F ) −

RF (p
D2ACD)}−∆≤ ε holds with probability lower bounded by 1− δ. □
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Online Appendix for “Offline Pricing and Demand Learning

with Censored Data”

Appendix A: Some Concentration Inequalities

Before providing the omitted proofs for the results in this paper, we first introduce several useful concentration

inequalities.

The following lemma presents the classic Hoeffding inequality for bounded random variables.

Lemma A.1 (Hoeffding inequality, Hoeffding 1994). Let X1, . . . ,Xn denote n i.i.d. samples of a

random variable with mean µ and bounded support [x,x]. Then, for any ε > 0,

P

[∣∣∣∣∣ 1n
n∑

i=1

Xi −µ

∣∣∣∣∣≤ ε

]
≥ 1− 2e

− 2nε2

(x−x)2 .

The next lemma quantifies how close an empirical distribution function constructed from i.i.d. samples is

to the true distribution function, which is proved in Massart (1990).

Lemma A.2 (Dvoretzk-Kiefer-Wolfowitz inequality, Massart 1990). Let F̂n(·) denote the empiri-

cal distribution function for n i.i.d. samples of a random variable with c.d.f. F (·). Then, for any ε > 0,

P
[
sup
x∈R

|F̂n(x)−F (x)| ≤ ε

]
≥ 1− 2e−2nε2 .

The following lemma is a generalization of the Dvoretzk-Kiefer-Wolfowitz inequality when the random

variable of interest is not necessarily an indicator function, but a general bounded and monotone function.

Lemma A.3 (Lemma 14 in Qin et al. 2019). Let X1,X2, . . . ,Xn be i.i.d. random variables, and

X ,Y ⊆ R. Suppose f(x, y) : X ×Y → [L,U ] is a measurable function and monotone in x ∈ X for any given

y ∈Y. Then, for any ε > 0,

P

[
sup
y∈Y

∣∣∣∣∣ 1n
n∑

i=1

f(Xi, y)−E[f(X1, y)]

∣∣∣∣∣≤ ε

]
≥ 1− 2e

− 2nε2

(U−L)2 .

Appendix B: Omitted Proof in Section 2

B.1. Proof of Proposition 1

Proof. Note that R(p;y) =E[min{p(ξ−bp), py}]. For any realization of ξ, p(ξ−bp) is concave in p as b > 0,

and in addition, py is linear and therefore is also concave in p. Thus, for any realization of ξ, min{p(ξ−bp), py}
is also concave in p, which implies concavity of R(p;y). From concavity, we have p∗ =min{max{p†, p}, p},
which completes the proof of Proposition 1. □

Appendix C: Omitted Proofs in Section 3

C.1. Proof of Proposition 2

Proof. For any F ∈F and any p≥ 0, we have

RF (p) = p ·EF [(−bp+ ξ) ·1{ξ<y+bp} + y ·1{ξ≥y+bp}]

= p ·
(
− bpPF [ξ < y+ bp] +EF [ξ ·1{ξ<y+bp}] + y · (1−PF [ξ < y+ bp])

)
. (C.1)
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Also, by the definition of F =
{
F is a c.d.f.: F (x) = Fξ(x),∀x< λ

}
, we have, for any F ∈F , and any x< λ,

PF [ξ < x] = PFξ
[ξ < x] , EF [ξ ·1{ξ<x}] =EFξ

[ξ ·1{ξ<x}] . (C.2)

Recall that p̃= λ−y

b
. We next consider two cases.

Case 1: p < p̃. In this case, y+ bp < λ. By (C.1) and (C.2), we have

RF (p) = p ·
(
− bpPFξ

[ξ < y+ bp] +EFξ
[ξ ·1{ξ<y+bp}] + y · (1−PFξ

[ξ < y+ bp])
)
=RFξ

(p).

Thus, Rmax(p) =Rmin(p) =RFξ
(p).

Case 2: p≥ p̃. In this case, we have y+ bp≥ λ. By (C.2), we have

PF [ξ < y+ bp] = PFξ
[ξ < λ] +PF [λ≤ ξ < y+ bp] = γ+PF [λ≤ ξ < y+ bp] ,

EF [ξ ·1{ξ<y+bp}] =EFξ
[ξ ·1{ξ<λ}] +EF [ξ ·1{λ≤ξ<y+bp}] = γEFξ

[ξ|ξ < λ] +EF [ξ ·1{λ≤ξ<y+bp}] .

Then, by (C.1), we have

RF (p) = p ·
(
− bp

(
γ+PF [λ≤ ξ < y+ bp]

)
+ γEFξ

[ξ|ξ < λ] +EF [ξ ·1{λ≤ξ<y+bp}] + y
(
1− γ−PF [λ≤ ξ < y+ bp]

))
= p ·

(
− γbp+ γEFξ

[ξ|ξ < λ] + (1− γ)y
)
+ p ·EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}] .

For different F ∈F , p ·
(
− γbp+ γEFξ

[ξ|ξ < λ] + (1− γ)y
)
is invariant. Thus, to optimize RF (p) over F ∈F ,

it is equivalent to optimizing p ·EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}]. Depending on the sign of p, it can be further

translated to optimizing EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}].

Note that by the definition of F , a distribution F ∈ F has fixed probability distribu-

tion over (−∞, λ), but has full freedom in assigning probability mass over [λ,∞). To solve

maxF∈F EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}], we observe that EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}]≤ 0. Hence, a distri-

bution F ∈F maximizes EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}] for F ∈F by setting PF [λ≤ ξ < y+ bp] = 0. Thus,

max
F∈F

{
EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}]

}
=EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}] = 0,

RF (p) = p ·
(
− γbp+EFξ

[min{ξ,λ}] + (1− γ)(y−λ)
)
] =R1(p).

To solve minF∈F EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}], we observe that EF [(−bp+ ξ − y) · 1{λ≤ξ<y+bp}] ≥ (−bp+

λ−y) · (1−γ). Hence, a distribution F ∈F minimizes EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}] for F ∈F by assigning

all remaining probability mass apart from γ to a single point λ, i.e, PF [ξ = λ] = 1− γ. Thus,

min
F∈F

{
EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}]

}
=EF [(−bp+ ξ− y) ·1{λ≤ξ<y+bp}] = (−bp+λ− y)(1− γ),

RF (p) = p ·
(
− bp+EFξ

[min{ξ,λ}]
)
=R2(p).

If p≥ 0, then Rmax(p) =RF (p) =R1(p) and Rmin(p) =RF (p) =R2(p). If p < 0, then Rmax(p) =RF (p) =

R2(p) and Rmin(p) = RF (p) = R1(p). Combining both cases of p ≥ 0 and p < 0, we have Rmax(p) =

max{R1(p),R2(p)} and Rmin(p) =min{R1(p),R2(p)} for any p≥ p̃.

Finally, combining both cases of p < p̃ and p≥ p̃, we have

Rmax(p) = 1{p<p̃}RFξ
(p)+1{p≥p̃}max

{
R1(p),R2(p)

}
,

Rmin(p) = 1{p<p̃}RFξ
(p)+1{p≥p̃}min

{
R1(p),R2(p)

}
,

which implies Proposition 2 since when p≥max{0, p̃}, R1(p)≥R2(p). □
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C.2. Proof of Theorem 1

Proof. When p∗
max = p∗

min, from the result in Theorem 2, the algorithm D2ACD proposed in Section 4

satisfies the following property: for any ε > 0,

lim
N→∞

P
[
max
F∈F

{RF (p
∗
F )−RF (p

A)} ≤ ε

]
= 0.

Thus, by definition, the data-driven problem is identifiable.

When p∗
max ̸= p∗

min, it follows from the result in Proposition 6, for any 0< ε< γb

(
√
γ+1)2

(p∗
max − p∗

min)
2, and

any data size N and data-driven algorithm A,

P
[
max
F∈F

{RF (p
∗
F )−RF (p

A)}> ε

]
= 1.

Therefore, there does not exist a data-driven algorithm satisfying identity (2). Thus, the problem is uniden-

tifiable. □

C.3. Proof of Proposition 3

Proof. Recall that p†
F =maxargmax

p∈R
RF (p) for F ∈ F , and p̃= λ−y

b
. We next divide the proof into two

cases, and we fix an arbitrary distribution F ∈F in our analysis.

Case 1: p†
min < p̃. We prove that p†

max = p†
F = p†

min.

Since p†
min is the maximal maximizer of Rmin(·), and Rmin(·) is concave from Proposition 1 and its defi-

nition, we know that Rmin(·) strictly decreases in (p†
min, p̃). Since RF (·) is concave and RF (p) =Rmin(p) for

p≤ p̃ from Proposition 1, we must have p†
F = p†

min. Then we have the following inequality:

Rmax(p
†
min)≥RF (p

†
min) =RF (p

†
F )>RF (p),∀p > p†

F = p†
min.

Since F can be arbitrary, the above inequality implies

Rmax(p
†
min)>Rmax(p),∀p > p†

F = p†
min,

which implies p†
min ≥ p†

max. However, since Rmax(p
†
min) ≥ RF (p

†
min) = RF (p

†
F ) ≥ RF (p) for any p ∈ R and

F ∈F , then we also have p†
max ≥ p†

min. Therefore, p
†
max = p†

min.

Case 2: p†
min ≥ p̃. In this case, we divide our proof into four steps.

Step 1: We prove that p†
F ≥ p̃ and p†

max ≥ p̃. Suppose to the contrary, p†
F < p̃, then p†

F < p†
min, and

RF (p
†
F ) =Rmin(p

†
F )≤Rmin(p

†
min)≤RF (p

†
min),

where the identity holds since p†
F < p̃ by assumption. This implies p†

min ∈ argmaxp∈RRF (p), which leads to

contradiction with p†
F < p†

min and the fact that p†
F is the maximal maximizer of RF (·). Similarly, we can

prove p†
max ≥ p̃.

Step 2: We prove that p†
min > 0.

If p̃ > 0, then obviously we have p†
min ≥ p̃ > 0. If p̃≤ 0, then λ− y ≤ 0. By Proposition 2, for any p≥ p̃,

Rmin(p) = min{R1(p),R2(p)}. Since R1(·), R2(·) are quadratic functions, we have p†
min = argmaxp∈RR1(p)

or p†
min = argmaxp∈RR2(p). It is easy to calculate that

argmax
p∈R

R1(p) =
EFξ

[min{ξ,λ}] + (1− γ)(y−λ)

2γb
> 0,

argmax
p∈R

R2(p) =
EFξ

[min{ξ,λ}]
2b

> 0.
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Thus, p†
min > 0.

Step 3: We prove that p†
F ≥ p†

min. If p
†
min = p̃, then the result follows directly from Step 1.

Then we only need to focus on p†
min > p̃. In this case, since Rmin(p) = R2(p) for p > max{p̃,0} from

Proposition 2 and R2(p) is quadratic, then Rmin(p) = R2(p) strictly increases in (max{p̃,0}, p†
min), and

decreases in (p†
min,∞). Then we must have p†

min = argmaxp∈RR2(p). In this case, for any p∈ [p̃, p†
min),

RF (p)−RF (p
†
min)

= (−bp2 + b(p†
min)

2)+ (p− p†
min) ·EF

[
ξ ·1{ξ<y+bp̃}

]
+
(
p− p†

min

)
EF

[
ξ ·1{y+bp̃≤ξ≤y+bp}

]
+
(
pEF

[
(y+ bp) ·1{y+bp<ξ≤y+bp

†
min

}

]
− p†

min ·EF

[
ξ ·1{y+bp<ξ≤y+bp

†
min

}

])
+
(
pEF

[
(y+ bp) ·1{ξ>y+bp

†
min

}

]
− p†

minEF

[
(y+ bp†

min) ·1{ξ>y+bp
†
min

}

])
≤ (−bp2 + b(p†

min)
2)+ (p− p†

min) ·EF

[
ξ ·1{ξ<y+bp̃}

]
+
(
p− p†

min

)
· (y+ bp̃) ·

(
F (y+ bp)− γ

)
+
(
p− p†

min

)
· (y+ bp) ·

(
F (y+ bp†

min)−F (y+ bp)
)
+
(
p− p†

min

)
· (y+ bp+ bp†

min) · (1−F (y+ bp†
min))

≤
(
− bp2 + b(p†

min)
2
)
+
(
p− p†

min

)
EF

[
ξ ·1{ξ<y+bp̃}

]
+
(
p− p†

min

)
· (y+ bp̃) · (1− γ)

=R2(p)−R2(p
†
min), (C.3)

where the first inequality follows from that p†
min > 0 in Step 2, and the second inequality follows from

y+bp+bp†
min ≥ y+bp≥ y+bp̃ > 0 and p−p†

min < 0. Note that R2(p)−R2(p
†
min) =R2(p)−maxp′∈R{R2(p

′)}<
0. Thus, RF (p)<RF (p

†
min) for any p∈ [p̃, p†

min), which implies p†
F ≥ p†

min.

Step 4: We prove that p†
F ≤ p†

max. If p
†
max = p̃, suppose p†

F > p†
max, then we have

Rmax(p
†
F )≥RF (p

†
F )≥RF (p

†
max) =RF (p̃) =Rmax(p̃) =Rmax(p

†
max),

which contradicts with p†
max =maxargmaxp∈RRmax(p). Thus, we must have p†

F ≤ p†
max.

Now we focus on p†
max > p̃. Note that it can be easily shown that ∃Fmax ∈F such that p†

max = p†
Fmax

, and

the result in Step 3 holds for any F ∈ F , then we must have p†
max = p†

Fmax
≥ p†

min > 0. In this case, since

Rmax(p) = R1(p) for p≥max{p̃,0} from Proposition 2, and p†
max >max{p̃,0}, it follows from concavity of

R1(·) that p†
max = argmaxp∈RR1(p). In this case, for any p > p†

max, we have

RF (p)−RF (p
†
max)

=
(
− bp2 + b(p†

max)
2
)
+(p− p†

max) ·EF

[
ξ ·1{ξ<y+bp̃}

]
+(p− p†

max) ·EF

[
ξ ·1{y+bp̃≤ξ≤y+bp

†
max}

]
+
(
pEF

[
ξ ·1{y+bp

†
max<ξ≤y+bp}

]
− p†

maxEF

[
(y+ bp†

max) ·1{y+bp
†
max<ξ≤y+bp}

])
+
(
pEF

[
(y+ bp) ·1{ξ>y+bp}

]
− p†

maxEF

[
(y+ bp†

max) ·1{ξ>y+bp}
])

≤
(
− bp2 + b(p†

max)
2
)
+
(
p− p†

max

)
EF

[
ξ ·1{ξ<y+bp̃}

]
+
(
p− p†

max

)(
y+ bp†

max

)(
F (y+ bp†

max)− γ
)

+
(
p− p†

max

)(
y+ bp+ bp†

max

)(
F (y+ bp)−F (y+ bp†

max)
)
+
(
p− p†

max

)(
y+ bp+ bp†

max

)(
1−F (y+ bp)

)
≤
(
− bp2 + b(p†

max)
2
)
+
(
p− p†

max

)
·EF

[
ξ ·1{ξ<y+bp̃}

]
+
(
p− p†

max

)
·
(
y+ bp+ bp†

max

)
· (1− γ)

=R1(p)−R1(p
†
max), (C.4)

where the first inequality follows from that p−p†
max > 0 and p > p†

max > 0, the second inequality follows from

that y + bp+ bp†
max ≥ y + bp and p− p†

max > 0. Note that R1(p)−R1(p
†
max) = R1(p)−maxp′∈RR1(p

′) < 0.

Thus, RF (p)<RF (p
†
max) for any p > p†

max, which implies p†
F ≤ p†

max.
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Combining Step 1 – Step 4, for Case 2 that p†
min ≥ p̃, we also have p†

min ≤ p†
F ≤ p†

max.

Since Rmin(p) is concave, it then follows p∗
min =Proj(p†

min, [p, p]). In addition, in both Case 1 and Case 2,

Rmax(p) increases when p ≤ p†
max and decreases when p > p†

max. Thus, p
∗
max = Proj(p†

max, [p, p]). Therefore,

p∗
min ≤ p∗

F ≤ p∗
max for any F ∈F . □

C.4. Proof of Proposition 4

Proof. We first show the “if” direction. The proof is divided into three cases.

(i) When p†
max = p†

min ≤ p̃ in Case (i) happens, from the proof of Proposition 3, we have p†
max = p†

min = p†
F

for any F ∈F , and thus, p∗
max = p∗

min.

(ii) When p†
max > p†

min ≥ p̃ and p†
max ≤ p in Case (ii) happen, it can be verified that Rmax(·) decreases in

[p, p], and therefore, from Proposition 3 and the definitions of p∗
max and p∗

min, p
∗
max = p∗

min = p.

(iii) When p†
max > p†

min ≥ p̃ and p†
min ≥ p in Case (iii) happen, it can be verified that Rmin(·) increases in

[p, p], and therefore, from Proposition 3 and the definitions of p∗
max and p∗

min, p
∗
max = p∗

min = p.

We next show the “only if” direction. Suppose all the three cases described in Proposition 4 fail to hold,

then it can be verified that we must have p†
max ̸= p†

min, p
†
min ≥ p̃, p†

max > p and p†
min < p. From the proof of

Proposition 3, we then have p†
max > p†

min, p
∗
max =Proj(p†

max, [p, p]), and p∗
min =Proj(p†

min, [p, p]). By discussing

the following four cases: p†
min ≤ p < p†

max ≤ p, p†
min ≤ p < p < p†

max, p < p†
min < p†

max ≤ p, and p < p†
min < p <

p†
max, we can verify that p∗

max ̸= p∗
min, which completes the proof of the “only if” direction. □

C.5. Proof of Proposition 5

Proof. For notation convenience, we define p†
i = argmaxp∈RRi(p), i= 1,2. In this proof, we add a super-

script ′ to the relevant quantities associated with the dataset S ′.

We first note that from Theorem 1 and the proof of Proposition 3, the following claim holds:

Claim 1. Any data-driven problem is identifiable if and only if one of the following conditions holds: (i)

p†
min = p†

max ∈ (p, p); (ii) p†
max ≤ p; (iii) p†

min ≥ p.

We next consider the above three cases for the problem with dataset S of parameter λ.

Case 1: p†
min = p†

max ∈ (p, p). In this case, from the proof of Proposition 3, we have p†
min = p† = p†

max ≤ p̃.

Since p̃′ = (λ′ − y)/b > (λ − y)/b = p̃ and p† = p†′ , we have p†′ < p̃′. In this case, it can be verified from

concavity that p†′
min = p†′ < p̃′. Then it follows from Case 1 in the proof of Proposition 3 that p†′

min = p†′
max

and p∗′
max = p∗′

min, which then implies from Theorem 1 that the problem with the dataset S ′ is identifiable.

Case 2: p†
max ≤ p. In this case, we can assume p†

min ≥ p̃. Otherwise, if p†
min < p̃, from Case 1 in the proof of

Proposition 3, we have p†
min = p†

max = p† < p̃, and the result can be obtained from similar arguments in Case

1. In addition, it also suffices to consider p†′
min ≥ p̃′, since otherwise, from Case 1 in the proof of Proposition 3,

p†′
min = p†′

max and p∗′
min = p∗′

max, then the problem with dataset S ′ is already identifiable.

Since p†
min ≥ p̃, from Case 2 in the proof of Proposition 3, we have either p†

min = p†
max = p̃, or p†

max = p†
1. If

the first case happens, then the result follows from similar arguments in Case 1. Similarly, since p†′
min ≥ p̃′, we

have either p†′
min = p†′

max = p̃, or p†′
max = p†′

1 . If the first case happens, the problem with dataset S ′ is already

identifiable. Thus, we only need to consider the case when both p†
max = p†

1 and p†′
max = p†′

1 hold. In this case,
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if we can prove p†′
1 ≤ p†

1, it then follows that p†′
max = p†′

1 ≤ p†
1 = p†

max ≤ p, which implies from Claim 1 that the

problem with S ′ is also identifiable. We now prove p†′
1 ≤ p†

1 as follows:

p†
1 − p†′

1 =
E[ξ ·1{ξ<λ}] + (1− γ)y

2γb
−

E[ξ ·1{ξ<λ′}] + (1− γ′)y

2γ′b

=
1

2bγγ′

(
E[ξ ·1{ξ<λ}] ·E[1{ξ<λ′}]−E[ξ ·1{ξ<λ′}] ·E[1{ξ<λ}] +E[1{λ≤ξ<λ′}]y

)
=

1

2bγγ′

(
E[ξ ·1{ξ<λ}] ·E[1{λ≤ξ<λ′}]−E[ξ ·1{λ≤ξ<λ′}] ·E[1{ξ<λ}] +E[1{λ≤ξ<λ′}]y

)
≥ 1

2bγγ′

(
E[ξ ·1{ξ<λ}] ·E[1{λ≤ξ<λ′}]−E[λ′ ·1{λ≤ξ<λ′}] ·E[1{ξ<λ}] +E[1{λ≤ξ<λ′}]y

)
≥ 1

2bγγ′

(
E[ξ ·1{ξ<λ}] ·E[1{λ≤ξ<λ′}]−E[(y+ bp†) ·1{λ≤ξ<λ′}] ·E[1{ξ<λ}] +E[1{λ≤ξ<λ′}]y

)
=

1

2bγγ′ ·E[1{λ≤ξ<λ′}] ·
(
y−E

[(
y+ bp† − ξ)

)
·1{ξ<λ}

])
≥ 1

2bγγ′ ·E[1{λ≤ξ<λ′}] ·
(
y−E

[(
y+ bp† − ξ

)
·1{ξ<y+bp†}

])
=

1

2bγγ′ ·E[1{λ≤ξ<λ′}] ·E
[
min{y, bp† − ξ}

]
≥ 0,

where the second identity follows from γ =E[1{ξ<λ}] and γ′ =E[1{ξ<λ′}], the second inequality holds because

p† ≥ p̃′ (from Case 2 – Step 1 in the proof of Proposition 3) and p̃′ = (λ′ − y)/b imply λ′ ≤ y+ bp†, the third

inequality holds since λ ≤ y + bp†, and ξ < λ implies y + bp† − ξ ≥ λ− ξ > 0, and the last inequality holds

since E[min{y, bp† − ξ}] is the expected sales at the maximizer p† and is therefore greater than zero. This

completes the proof of p†′
1 ≤ p†

1.

Case 3: p†
min ≥ p. In this case, similar to the reason in Case 2, it suffices to consider p†

min ≥ p̃, and p†′
min ≥ p̃′.

Then from Case 2 in the proof of Proposition 3, we have four different subcases: (i) p†
min = p̃ and p†′

min = p̃′;

(ii) p†
min = p̃ and p†′

min = p†′
2 ; (iii) p

†
min = p†

2, p
†′
min = p̃′; (iv) p†

min = p†
2 and p†′

min = p†′
2 .

In subcase (i), it follows from λ< λ′ that p†′
min = p̃′ > p̃= p†

min ≥ p. In subcase (ii), we have p†′
min ≥ p̃′ > p̃=

p†
min ≥ p. In subcase (iii), since

p†
2 =

E[min{ξ,λ}]
2b

≤ E[min{ξ,λ′}]
2b

= p†′
2 ,

we have p≤ p†
min = p†

2 ≤ p†′
2 ≤ p̃′ = p†′

min. In subcase (iv), as proved in case (iii), p†′
2 ≥ p†

2, then it follows that

p†′
min = p†′

2 ≥ p†
2 = p†

min ≥ p. Combining all the above four subcases, we have p†′
min ≥ p, which implies from

Claim 1 that the problem with S ′ is identifiable. □

C.6. Proof of Proposition 6

Proof. Similar to the proof of Proposition 5, for notation convenience, we define p†
i = argmaxp∈RRi(p),

i= 1,2.

Note that from Proposition 7, it suffices to derive the lower bound for minp∈[p,p]max
{
Rmax(p

∗
max) −

Rmax(p), Rmin(p
∗
min)−Rmin(p)}. We first prove that when p∗

max ̸= p∗
min,

min
p∈[p,p]

max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)}

= min
p∈[p∗

min
,p∗max]

max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)}. (C.5)
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Since p∗
max ̸= p∗

min, it can be verified from the proof of Proposition 3 that p†
2 ≤ p†

min ≤ p∗
min < p∗

max ≤ p†
max = p†

1.

In this case, we have

min
p∈[p,p],p≤p∗

min

max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)}

≥ min
p∈[p,p],p≤p∗

min

{Rmax(p
∗
max)−Rmax(p)}=Rmax(p

∗
max)−Rmax(p

∗
min)

=max{Rmax(p
∗
max)−Rmax(p

∗
min),Rmin(p

∗
min)−Rmin(p

∗
min}, (C.6)

where the identity holds since p∗
min < p∗

max ≤ p†
max and Rmax(p) increases when p≤ p†

max. Similarly,

min
p∈[p,p],p≥p∗max

max{Rmax(p
∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)}

≥ min
p∈[p,p],p≥p∗max

{Rmin(p
∗
min)−Rmin(p)}=Rmin(p

∗
min)−Rmin(p

∗
max)

=max{Rmax(p
∗
max)−Rmax(p

∗
max),Rmin(p

∗
min)−Rmin(p

∗
max)}. (C.7)

Combining inequalities (C.6) and (C.7), we know that the minimum value of the function max
{
Rmax(p

∗
max)−

Rmax(p),Rmin(p
∗
min)−Rmin(p)

}
must be taken at p∈ [p∗

min, p
∗
max], which gives identity (C.5).

With identity (C.5), it suffices to prove

min
p∈[p∗

min
,p∗max]

max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)

}
≥ γb

(
√
γ+1)2

(p∗
max − p∗

min)
2.

Since Rmax(p) = R1(p) and Rmin(p) = R2(p) for any p ≥ max{p̃,0}, and p∗
min ≥ p̃ (otherwise, it can be

easily verified that p∗
max = p∗

min, leading to contradiction with the assumption that p∗
max ̸= p∗

min), we have

Rmax(p) =R1(p) and Rmin(p) =R2(p) for all p∈ [p∗
min, p

∗
max]. Then for any p∈ [p∗

min, p
∗
max], we have

Rmax(p
∗
max)−Rmax(p) =R1(p

∗
max)−R1(p)≥R1(p

†
1)−R1(p

†
1 − (p∗

max − p)) = γb(p∗
max − p)2, (C.8)

where the inequality follows from concavity of R1(·) and p≤ p∗
max ≤ p†

max = p†
1, and the identity follows from

Taylor expansion of the quadratic function R1(p) at the minimizer p†
1. Similarly,

Rmin(p
∗
min)−Rmin(p) =R2(p

∗
min)−R2(p)≥R2(p

†
2)−R2(p

†
2 +(p− p∗

min)) = b(p− p∗
min)

2. (C.9)

Combining (C.8) and (C.9), we have

min
p∈[p∗

min
,p∗max]

max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)

}
≥ min

p∈[p∗
min

,p∗max]
max

{
γb(p∗

max − p)2, b(p− p∗
min)

2
}

=
γb

(
√
γ+1)2

(p∗
max − p∗

min)
2,

where the last identity follows from simple calculation. □

Appendix D: Omitted Proof in Section 4

D.1. Proof of Lemma 1

We prove Lemma 1 for both cases of continuous and discrete base demand distributions in the range [0, λ).

Recall that in Step 1 of D2ACD, for each i∈ [K], the breakpoints of the empirical c.d.f. F̂ SAA
i (·) are denoted

by β̂i,1 < β̂i,2 < . . . < β̂i,M̂i
. Let B :=∪i∈[K]{β̂i,j + bpi : j ∈ [M̂i−1]}. Note that we exclude the last breakpoint
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β̂i,M̂i
for each price pi to facilitate our later discussion. Besides, let M̂ be the cardinality of B, and β̂1 < β̂2 <

. . . < β̂M̂ be all the non-repetitive elements in B. Now we focus on an arbitrary and fixed i∈ [K].

Consider a censored random demand at price pi with the distribution identical to min{ξ−bpi, λ−bpi}, and
the c.d.f. is denoted by F cens

i (x). Since yi ≤ λ− bpi, then F cens
i (x) equals the true c.d.f. for min{ξ− bpi, yi}

when x< yi. Since F̂
SAA
i (·) is the empirical c.d.f. for min{ξ−bpi, yi}, from Lemma A.2, we get, for any α> 0,

the event

|F̂ SAA
i (x)−F cens

i (x)| ≤ α for all x< yi (D.1)

holds with probability at least 1− 2e−2Niα
2
.

The remaining proof consists of four major steps.

Step 1. Construct two modified quantile functions F̃−1
i and F̂−1

i . We first construct a piecewise

linear function F̃i(x) defined on x ∈ [β̂1 − bpi, β̂M̂ − bpi] based on the true c.d.f. F cens
i (x) and the set of

breakpoints B. Specifically, for any x ∈ [β̂k − bpi, β̂k+1 − bpi] and k ∈ [M̂ − 1], let F̃i(x) be a linear function

connecting (β̂k, F
cens
i (β̂k − bpi)) and (β̂k+1, F

cens
i (β̂k+1 − bpi)), i.e.,

F̃i(x) =
F cens

i (β̂k+1 − bpi)−F cens
i (β̂k − bpi)

β̂k+1 − β̂k

(
x− (β̂k − bpi)

)
+F cens

i (β̂k − bpi).

When ξ is continuous on [0, λ), F cens
i (·) is strictly increasing in its support, so F̃i(·) is also strictly increasing

on [β̂1 − bpi, β̂M̂ − bpi]. When ξ is discrete on [0, λ), for each j ∈ [K], the largest breakpoint β̂j,M̂j
under

price pj may appear due to the censoring effect but does not come from the true breakpoints of ξ − bpj ,

i.e., β̂j,M̂j
= yj but yj /∈ {β1 − bpj , β2 − bpj , . . . , βM − bpj} (recall from Assumption 1 that β1, β2, . . . , βM are

the breakpoints for the true c.d.f. of ξ on the left-hand side of λ). Therefore, in the definition of B, we
do not include {β̂j,M̂j

: j ∈ [K]}. With this construction, we can easily verify that the set {β̂k − bpi : k ∈
[M̂ ]} must belong to the whole set of breakpoints of the c.d.f. F cens

i (·). Thus, when ξ is discrete on [0, λ),

F cens
i (β̂1−bpi)<F cens

i (β̂2−bpi)< . . . < F cens
i (β̂M̂ −bpi) and F̃i(·) also strictly increases on [β̂1−bpi, β̂M̂ −bpi].

Then we let F̃−1
i (·) be the inverse function of F̃i(·) on [β̂1 − bpi, β̂M̂ − bpi]. For 0≤ x < F̃i(β̂1 − bpi), we set

F̃−1
i (x) = β̂1 − bpi, and for F̃i(β̂M̂ − bpi)< x≤ 1, we set F̃−1

i (x) = β̂M̂ − bpi. In this way, F̃−1
i is well defined

on [0,1]. Besides, it can be verified that for any x1, x2 ∈ [β̂1 − bpi, β̂M̂ − bpi] with x1 <x2,

F̃i(x2)≥ F̃i(x1)+ g(x2 −x1). (D.2)

To see this, when ξ is discrete on [0, λ), B ⊆ {β1, β2, . . . , βM}, and it follows from the definition of g and

construction of F̃i(·) that the slope of each piece in F̃i(·) is greater than g, which then implies (D.2). When ξ

is continuous on [0, λ), Assumption 1 implies F cens
i (x2)≥ F cens

i (x1)+g(x2−x1) for any 0≤ x1 <x2 <λ−bpi,

and since F̃i(x) = F cens
i (x) when x+ bpi ∈ B, the slope of each piece in F̃i(·) is also greater than g, which

also implies (D.2).

We then define a piecewise linear function F̂i(·) on [β̂i,1, β̂i,M̂i
] based on the empirical c.d.f. F̂ SAA

i (·) and
the set of breakpoints {β̂i,1, β̂i,2, . . . , β̂i,M̂i

}. For any x ∈ [β̂i,k, β̂i,k+1] and k ∈ [M̂i − 1], let F̂i(x) be a linear

function connecting the (β̂i,k, F̂
SAA
i (β̂i,k)) and (β̂i,k+1, F̂

SAA
i (β̂i,k+1)), i.e.,

F̂i(x) =
F̂ SAA

i (β̂i,k+1)− F̂ SAA
i (β̂i,k)

β̂i,k+1 − β̂i,k

(
x− β̂i,k

)
+ F̂ SAA

i (β̂i,k).
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With this construction, F̂−1
i (·) defined in Step 1 of D2ACD is the inverse of F̂i(x) when x ∈ [β̂i,1, β̂i,M̂i−1],

and equals β̂i,1 when 0≤ x< F̂ SAA
i (β̂i,1).

For each k ∈ [M̂i − 1], since β̂i,k + bpi ∈ B and F̃i(·) is identical to F cens
i (·) in the set {β̂1 − bpi, β̂2 −

bpi, . . . , β̂M̂ − bpi}, it follows that F̃i(β̂i,k) = F cens
i (β̂i,k). This, combined with F̂i(β̂i,k) = F̂ SAA

i (β̂i,k), β̂i,M̂i−1 <

yi and inequality (D.1), implies

|F̂i(β̂i,k)− F̃i(β̂i,k)| ≤ α for all k ∈ [M̂i − 1]. (D.3)

Step 2. Bound the range of the true γ̂min-quantile. Recall that γ̂min = mini∈[K] γ̂i. Define di :=

F̃−1
i (γ̂min) and d̂i := F̂−1

i (γ̂min). Since γ̂min ≤ γ̂i = F̂ SAA
i (β̂i,M̂i−1), we then have β̂i,1 ≤ d̂i ≤ β̂i,M̂i−1. Let

k ∈ [M̂i − 2] denote the index of breakpoint β̂i,k such that β̂i,k ≤ d̂i ≤ β̂i,k+1.

Conditioning on event (D.1), we bound the range of di by considering two cases.

Case 1: F̃i(β̂i,k)< γ̂min. In this case, since β̂i,k is also a breakpoint of F̃i and di = F̃−1
i (γ̂min), we must

have di > β̂i,k. For any x> β̂i,k +
(
γ̂min − F̂i(β̂i,k)+α

)
/g and x∈ [β̂1 − bpi, β̂M̂ − bpi], we have

F̃i(x)≥ F̃i(β̂i,k)+ g(x− β̂i,k)≥ F̂i(β̂i,k)−α+ g(x− β̂i,k)> γ̂min,

where the first inequality follows from (D.2) and β̂i,k ∈ [β̂1− bpi, β̂M̂ − bpi], and the second inequality follows

from (D.3). Hence, β̂i,k <di ≤ β̂i,k +
γ̂min−F̂i(β̂i,k)+α

g
.

Case 2: F̃i(β̂i,k)≥ γ̂min. In this case, if di = β̂i,1, since β̂i,k is also a breakpoint of F̃i, we have di ≤ β̂i,k.

If di > β̂i,1, then F̃i(di) = γ̂min ≤ F̃i(β̂i,k), then di ≤ β̂i,k. Again, due to inequalities (D.2) and (D.3), for any

x< β̂i,k −
(
F̂i(β̂i,k)+α− γ̂min

)
/g and x∈ [β̂1 − bpi, β̂M̂ − bpi], we have

F̃i(x)≤ F̃i(β̂i,k)− g(β̂i,k −x)≤ F̂i(β̂i,k)+α− g(β̂i,k −x)< γ̂min.

Hence, β̂i,k −
F̂i(β̂i,k)+α−γ̂min

g
≤ di ≤ β̂i,k.

Step 3. Bound the range of the empirical γ̂min-quantile. If γ̂min < F̂i(β̂i,1), then d̂i = β̂i,1. Other-

wise, we have β̂i,k ≤ d̂i ≤ β̂i,k+1 and F̂i(β̂i,k)≤ γ̂min ≤ F̂i(β̂i,k+1). For this case of γ̂min ≥ F̂i(β̂i,1), we consider

the following two cases to bound the range of d̂i conditioning on event (D.1).

Case 1: β̂i,k+1 ≤ β̂i,k +
(
γ̂min − F̂i(β̂i,k)+ 2α

)
/g. In this case, we have β̂i,k ≤ d̂i ≤ β̂i,k+1 ≤ β̂i,k +

γ̂min−F̂i(β̂i,k)+2α

g
. Therefore, d̂i ∈ [β̂i,k, β̂i,k +

γ̂min−F̂i(β̂i,k)+2α

g
].

Case 2: β̂i,k+1 > β̂i,k +
(
γ̂min − F̂i(β̂i,k)+ 2α

)
/g. In this case, we have, for any x ∈ (β̂i,k +

γ̂min−F̂i(β̂i,k)+2α

g
, β̂i,k+1]⊂ (β̂i,k, β̂i,k+1],

F̂i(x) = F̂i(β̂i,k)+
F̂i(β̂i,k+1)− F̂i(β̂i,k)

β̂i,k+1 − β̂i,k

· (x− β̂i,k)

> F̂i(β̂i,k)+
F̂i(β̂i,k+1)− F̂i(β̂i,k)

β̂i,k+1 − β̂i,k

· γ̂min − F̂i(β̂i,k)+ 2α

g
, (D.4)

where the identity holds since F̂i is linear in [β̂i,k, β̂i,k+1]. Moreover,

F̂i(β̂i,k+1)≥ F̃i(β̂i,k+1)−α≥ F̃i(β̂i,k)+ g(β̂i,k+1 − β̂i,k)−α≥ F̂i(β̂i,k)+ g(β̂i,k+1 − β̂i,k)− 2α, (D.5)
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where the first and last inequalities hold due to inequality (D.3) and k ∈ [M̂i − 2], and the second inequality

follows from inequality (D.2) and k ∈ [M̂i − 2]. Hence, combining inequalities (D.4) and (D.5), we have

F̂i(x)> F̂i(β̂i,k)+
g(β̂i,k+1 − β̂i,k)− 2α

β̂i,k+1 − β̂i,k

· γ̂min − F̂i(β̂i,k)+ 2α

g

= F̂i(β̂i,k)+ γ̂min − F̂i(β̂i,k)+ 2α

(
1− γ̂min − F̂i(β̂i,k)+ 2α

g(β̂i,k+1 − β̂i,k)

)

= γ̂min +2α

(
1− γ̂min − F̂i(β̂i,k)+ 2α

g(β̂i,k+1 − β̂i,k)

)
.

Since β̂i,k+1 − β̂i,k >
γ̂min−F̂i(β̂i,k)+2α

g
by assumption, 1 − γ̂min−F̂i(β̂i,k)+2α

g(β̂i,k+1−β̂i,k)
> 0 and F̂i(x) > γ̂min. Therefore,

d̂i ≤ β̂i,k +
γ̂min−F̂i(β̂i,k)+2α

g
.

Considering all the possible ranges of di in Step 2 and d̂i in Step 3, we have

|di − d̂i| ≤

(
β̂i,k +

γ̂min − F̂i(β̂i,k)+ 2α

g

)
−

(
β̂i,k −

F̂i(β̂i,k)+α− γ̂min

g

)
=

3α

g
. (D.6)

Step 4. Bound the estimation error |b− b̂|. Since for any 1≤ i < j ≤K, F̃i(·) and F̃j(·) are identical

except being shifted by a distance b|pi − pj | horizontally, and F̃−1
i (·) is the inverse of F̃i(·), it follows that

for any x∈ [0,1] and i, j ∈ [K], we have b(pi − pj) =−(F̃−1
i (x)− F̃−1

j (x)). This implies

b=−

∑K

i=1(pi − 1
K

∑K

j=1 pj) ·
(
di − 1

K

∑K

j=1 dj

)
∑K

i=1(pi − 1
K

∑K

j=1 pj)2
. (D.7)

In addition, since b† is the least-square solution to the linear regression defined in Step 1, it can be easily

verified from the optimality condition that

b† =−

∑K

i=1(pi − 1
K

∑K

j=1 pj) ·
(
d̂i − 1

K

∑K

j=1 d̂j

)
∑K

i=1(pi − 1
K

∑K

j=1 pj)2
. (D.8)

Therefore, when event (D.1) holds for any i∈ [K],

|b− b̂| ≤ 1∑K

i=1

(
pi − 1

K

∑K

j=1 pj

)2 ·

∣∣∣∣∣
K∑

i=1

(
pi −

1

K

K∑
j=1

pj

)
·

(
(di −

1

K

K∑
j=1

dj)− (d̂i −
1

K

K∑
j=1

d̂j)

)∣∣∣∣∣
=

1∑K

i=1

(
pi − 1

K

∑K

j=1 pj

)2 ·

∣∣∣∣∣
K∑

i=1

(
pi −

1

K

K∑
j=1

pj

)
· (di − d̂i)

∣∣∣∣∣
≤ 1∑K

i=1

(
pi − 1

K

∑K

j=1 pj

)2
√√√√ K∑

i=1

(
pi −

1

K

K∑
j=1

pj

)2
√√√√ K∑

i=1

(
di − d̂i

)2

≤ 1√∑K

i=1

(
pi − 1

K

∑K

j=1 pj

)2
√

K

(
3α

g

)2

=
1√

1
K

∑K

i=1

(
pi − 1

K

∑K

j=1 pj

)2 3αg ,

where the first inequality follows from identities (D.7), (D.8) and the definition of b̂, the second inequality

follows from Cauchy-Schwarz inequality, the third inequality follows from (D.6).
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Finally, by union bound, for any α > 0, event (D.1) holds for each i ∈ [K] with probability at least

1−
∑K

i=1 2e
−2Niα

2
. Since Ni ≥N for each i∈ [K], by rearranging the terms, we get

P
[
|b− b̂| ≤ α

]
≥ 1− 2Ke−

1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2

9
Nα2

for any α> 0. □

D.2. Proof of Lemma 2

Proof. To prove Lemma 2, we first need to establish the following two technical lemmas.

Lemma D.1 provides a probability bound on the difference between the empirical revenue R̂(p) and the

true revenue R(p) when p is in the range [0,max{min{ ˆ̃p, p̃, p},0}]. Lemma D.2 establishes a probability bound

on the difference between γ and γ̂, referred to as the true uncensored degree and empirical uncensored degree

respectively. The proofs of Lemma D.1 and Lemma D.2 can be found in Appendices D.4 and D.5 respectively.

Lemma D.1 (Convergence of empirical revenue). For any α > 0, with probability at least 1 −

2Ke
− Nα2

(y+bp)2p2 ,
∣∣∣R̂(p)−R(p)

∣∣∣≤ 3p2|b̂− b|+α for all 0≤ p≤max{min{ ˆ̃p, p̃, p},0}.

Lemma D.2 (Convergence of empirical uncensored degree). For any α > 0, with probability at

least 1− 2Ke−2Nα2
, |γ̂− γ| ≤ α.

Now we start to prove Lemma 2. Recall that î∗ = argmaxi∈[K]{yi + b̂pi}. For notation convenience, let

i∗ := argmaxi∈[K]{yi + bpi}. For any p∈ [p, p]⊂ (0,∞), from Proposition 2,

Rmax(p) =

{
R(p), if p < p̃,
R1(p), if p≥ p̃;

and Rmin(p) =

{
R(p), if p < p̃,
R2(p), if p≥ p̃.

In addition, from the construction of D2ACD, for p∈ [p, p]⊂ (0,∞),

R̂max(p) =

{
R̂(p), if p < ˆ̃p,

R̂1(p), if p≥ ˆ̃p;
and R̂min(p) =

{
R̂(p), if p < ˆ̃p,

R̂2(p), if p≥ ˆ̃p.

Our subsequent discussion is based on the assumption that the following four events hold:

(i)
∣∣∣R̂(p)−R(p)

∣∣∣≤ α0 for all 0≤ p≤max{min{ ˆ̃p, p̃, p},0},

(ii) |b̂− b| ≤ α1,

(iii) |γ̂− γ| ≤ α2,

(iv)
∣∣∣ 1
N

î∗

∑N
î∗

j=1min{ξj
î∗
, λ}−E[min{ξ,λ}]

∣∣∣≤ α3,

Without loss of generality, we can assume that [min{p̃, ˆ̃p},max{p̃, ˆ̃p}]⊆ [p, p]. Otherwise, we just focus on

the interaction of the two intervals [min{p̃, ˆ̃p},max{p̃, ˆ̃p}] and [p, p]. For any p∈ [p, p], we discuss the following

three cases: p <min{p̃, ˆ̃p}, p >max{p̃, ˆ̃p} and p∈ [min{p̃, ˆ̃p},max{p̃, ˆ̃p}].

Case 1: p <min{p̃, ˆ̃p}. In this case, we have

R̂max(p)−Rmax(p) = R̂(p)−R(p), and R̂min(p)−Rmin(p) = R̂(p)−R(p).

Since event (i) holds, then we have∣∣∣R̂max(p)−Rmax(p)
∣∣∣≤ α0 and

∣∣∣R̂min(p)−Rmin(p)
∣∣∣≤ α0.
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Case 2: p >max{p̃, ˆ̃p}. In this case, we have,

R̂max(p)−Rmax(p) = R̂1(p)−R1(p), and R̂min(p)−Rmin(p) = R̂2(p)−R2(p).

Since

R1(p) = p ·
(
− γbp+E[min{ξ, λ}] + (1− γ)(y−λ)

)
, and R2(p) = p ·

(
− bp+E[min{ξ, λ}]

)
,

and it follows from Sj

î∗
+ b̂pî∗ ≤ yî∗ + b̂pî∗ = λ̂ and the construction of R̂1(·) and R̂2(·) that

R̂1(p) = p ·
(
− γ̂b̂p+

1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}+(1− γ̂)(y− λ̂)

)
,

R̂2(p) = p ·
(
− b̂p+

1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}

)
,

we have

|R̂1(p)−R1(p)|

=
∣∣∣p((γb− γ̂b̂)p+

( 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}−E[min{ξ, λ}]

)
+
(
(1− γ̂)(y− λ̂)− (1− γ)(y−λ)

))∣∣∣
≤ p
(
p|γ̂b̂− γb|+

∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}−E[min{ξ, λ}]

∣∣∣+ |λ̂−λ|+ y|γ̂− γ|+ |γ̂λ̂− γλ|
)
,

and

|R̂2(p)−R2(p)|=
∣∣∣p((b− b̂)p+

( 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}−E[min{ξ, λ}]

))∣∣∣
≤ p
(
p|b̂− b|+

∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}−E[min{ξ, λ}]

∣∣∣).
To further bound |R̂1(p)−R1(p)| and |R̂2(p)−R2(p)|, we establish several inequalities as follows:

|γ̂b̂− γb| ≤ |γ̂b̂− γ̂b|+ |γ̂b− γb| ≤ |b̂− b|+ b|γ̂− γ|, (D.9)

|λ̂−λ| ≤ p|b̂− b|, (D.10)

|γ̂λ̂− γλ| ≤ |γ̂λ̂− γ̂λ|+ |γ̂λ− γλ| ≤ |λ̂−λ|+λ|γ̂− γ|, (D.11)

where inequality (D.10) holds since{
λ̂≥ yi∗ + b̂pi∗ = yi∗ + bpi∗ − (b− b̂)pi∗ ≥ λ− |b̂− b|p,
λ̂= yî∗ + bpî∗ +(b̂− b)pî∗ ≤ λ+ |b̂− b|p.

In addition, we also have∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂pî∗ , λ̂}−E[min{ξ,λ}]

∣∣∣
=
∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
+(b̂− b)pî∗ , λ̂}−E[min{ξ,λ}]

∣∣∣
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≤
∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
+(b̂− b)pî∗ , λ̂}−

1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ̂}
∣∣∣+ ∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ̂}− 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ}
∣∣∣

+
∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ}−E[min{ξ,λ}]

∣∣∣
≤ p · |b̂− b|+ |λ̂−λ|+

∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ}−E[min{ξ,λ}]

∣∣∣. (D.12)

Combining inequalities (D.9)-(D.12) and events (i)-(iv), we have for any p >max{p̃, ˆ̃p},∣∣∣R̂max(p)−Rmax(p)
∣∣∣= |R̂1(p)−R1(p)|

≤ 5p2|b̂− b|+ p(y+λ+ pb)|γ̂− γ|+ p
∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ}−E[min{ξ,λ}]

∣∣∣
≤ 5p2α1 + p(y+λ+ pb)α2 + pα3, (D.13)

and ∣∣∣R̂min(p)−Rmin(p)
∣∣∣= |R̂2(p)−R2(p)| ≤ 3p2α1 + pα3. (D.14)

Case 3: p∈ [min{p̃, ˆ̃p},max{p̃, ˆ̃p}]. In this case, we first note that

| ˆ̃p− p̃|=
∣∣∣ (λ− y)(b̂− b)+ b(λ− λ̂)

b̂b

∣∣∣≤ (λ+ y)|b̂− b|+ b|λ̂−λ|
b2

≤ λ+ y+ bp

b2
α1, (D.15)

where the last inequality follows from event (ii) and inequality (D.10).

Suppose p̃≤ ˆ̃p. Since p̃≤ p≤ ˆ̃p, we have R̂max(p) = R̂(p), Rmax(p) =R1(p), and thus,

|R̂max(p)−Rmax(p)|= |R̂(p)−R1(p)| ≤ |R̂(p)− R̂(ˆ̃p)|+ |R̂(ˆ̃p)−R1(ˆ̃p)|+ |R1(ˆ̃p)−R1(p)|

= |R̂(p)− R̂(ˆ̃p)|+ |R̂1(ˆ̃p)−R1(ˆ̃p)|+ |R1(ˆ̃p)−R1(p)|,

where the second identity follows from R̂(ˆ̃p) = R̂1(ˆ̃p). Since R̂(·) and R1(·) are both Lipschitz continuous in

[p, p] with Lipschitz constant y+ bp and y+2bp+2λ, respectively, with λ defined as maxi∈[K]{yi + bpi}, and

|p− ˆ̃p| ≤ | ˆ̃p− p̃|, we further have

|R̂max(p)−Rmax(p)| ≤ (2y+3bp+2λ)| ˆ̃p− p̃|+5p2α1 + p(y+λ+ pb)α2 + pα3

≤
( (2y+3bp+2λ)2

b
2 +5p2

)
α1 + p(y+λ+ pb)α2 + pα3,

where the second inequality follows from (D.15). Similarly, we have

|R̂min(p)−Rmin(p)|= |R̂(p)−R2(p)| ≤ |R̂(p)− R̂(ˆ̃p)|+ |R̂2(ˆ̃p)−R2(ˆ̃p)|+ |R2(ˆ̃p)−R2(p)|

≤ (y+3bp+λ)| ˆ̃p− p̃|+3p2α1 + pα3

≤
( (y+3bp+λ)2

b
2 +3p2

)
α1 + pα3,

where the second inequality holds since R̂(·) and R2(·) are Lipschitz continuous in [p, p] with Lipschitz

constant y+ bp and 2bp+λ respectively, and the last inequality follows from (D.15).
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Suppose p̃ > ˆ̃p. For any ˆ̃p≤ p≤ p̃, we have R̂max(p) = R̂1(p), Rmax(p) =R(p), and thus,

|R̂max(p)−Rmax(p)|= |R̂1(p)−R(p)| ≤ |R̂1(p)− R̂1(ˆ̃p)|+ |R̂1(ˆ̃p)−R(ˆ̃p)|+ |R(ˆ̃p)−R(p)|

= |R̂1(p)− R̂1(ˆ̃p)|+ |R̂(ˆ̃p)−R(ˆ̃p)|+ |R(ˆ̃p)−R(p)|

≤ α0 +(2y+3bp+λ)| ˆ̃p− p̃|

≤ α0 +
(2y+3bp+λ)2

b2
α1,

where the second inequality follows from event (i), and Lipschitz continuity of R̂1(·) and R(·) in [p, p].

Similarly, for any ˆ̃p≤ p≤ p̃, we have R̂min(p) = R̂2(p), Rmin(p) =R(p), and thus,

|R̂min(p)−Rmin(p)| ≤ |R̂2(p)− R̂2(ˆ̃p)|+ |R̂(ˆ̃p)−R(ˆ̃p)|+ |R(ˆ̃p)−R(p)|

≤ α0 +(y+3bp+λ)| ˆ̃p− p̃|

≤ α0 +
(y+3bp+λ)2

b2
α1,

where the second inequality follows from event (i) and Lipschitz continuity of R̂2(·) and R(·) in [p, p], and

the last inequality follows from (D.15).

Combining all the above three cases, conditioned on the four events (i)-(iv), we have

|R̂max(p)−Rmax(p)| ≤ α0 +
(
5p2 +

(2y+3bp+2λ)2

b2

)
α1 + p(y+λ+ pb)α2 + pα3,

|R̂min(p)−Rmin(p)| ≤ α0 +
(
5p2 +

(2y+3bp+2λ)2

b2

)
α1 + p(y+λ+ pb)α2 + pα3.

Recall that C1 = 5p2 + (2y+3bp+2λ)2

b2
and C2 = p(y + λ+ pb). Then for any α > 0, by letting α0 = α/6 +

3p2|b̂− b|, α1 = α/(2C1), α2 = α/(6C2) and α3 = α/(6p), we have

P
[∣∣∣R̂max(p)−Rmax(p)

∣∣∣≤ α,
∣∣∣R̂min(p)−Rmin(p)

∣∣∣≤ α,∀p∈ [p, p]
]

≥ 1−P
[
∃p∈ [0,max{min{ ˆ̃p, p̃, p}}],

∣∣∣R̂(p)−R(p)
∣∣∣> α

6
+3p2|b̂− b|

]
−P

[
|b̂− b|> α

2C1

]
−P

[
|γ̂− γ|> α

6C2

]

−P

∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, λ}−E[min{ξ,λ}]

∣∣∣> α

6p


≥ 1− 2Ke

− 1
36(y+bp)2p2

Nα2

− 2Ke
−

1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2

36C2
1

Nα2

− 2Ke
− 1

18C2
2

Nα2

− 2Ke
− 1

18p2λ2 Nα2

,

where the first inequality follows from the union bound, and the second inequality follows from Lemma 1,

Lemma D.1, Lemma D.2, and the Hoeffding inequality in Lemma A.1. □

D.3. Proof of Proposition 7

Proof. Similar to the proofs of Proposition 5 and Proposition 6, for notation convenience, we define

p†
max =maxargmaxp∈RRmax(p), p

†
min =maxargmaxp∈RRmin(p).

We first note that for any p∈ [p, p] such that p≤ p̃,

max
F∈F

{
RF (p

∗
F )−RF (p)

}
=max

F∈F
{RF (p

∗
F )}−Rmax(p) =Rmax(p

∗
max)−Rmax(p)

=max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)

}
,
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where the first identity holds since when p≤ p̃, RF (p) =Rmax(p) for any F ∈F , and the last identity holds

since Rmin(p
∗
min)≤Rmax(p

∗
max), and when p≤ p̃, Rmax(p) =Rmin(p). Thus, identity (6) holds for this case.

Then it suffices to prove (6) for p∈ [max{p̃, p}, p]. Note that here we can assume p̃ < p such that the interval

[max{p̃, p}, p] is nonempty, since otherwise, any p in the set [p, p] satisfies p ≤ p̃, and the result is already

proved from the above discussion. We next consider the following two cases: p∗
max ̸= p∗

min and p∗
max = p∗

min.

Case 1: p∗
max ̸= p∗

min. If p
∗
max ̸= p∗

min, it can be verified from the proof of Proposition 3 that for any F ∈F ,

p̃≤ p†
F . Since RF (p) is concave in p, then RF (p)≤RF (p̃) for all p < p̃. Hence, we have

max
F∈F

{
RF (p

∗
F )−RF (p)

}
=max

F∈F
max

p′∈[p,p]

{
RF (p

′)−RF (p)
}
=max

F∈F
max

p′∈[max{p,p̃},p]

{
RF (p

′)−RF (p)
}
. (D.16)

In what follows, we define l(p)≜maxF∈F maxp′∈[max{p,p̃},p]{RF (p
′)−RF (p)}. We next divide our proof into

two steps.

Step 1. In this step, we prove the following result: for any p∈ [max{p, p̃}, p],

l(p) =max
{

max
p′∈[max{p,p̃},p],p′≥p

{
Rmax(p

′)−Rmax(p)
}
, max
p′∈[max{p,p̃},p],p′≤p

{
Rmin(p

′)−Rmin(p)
}}

, (D.17)

To show (D.17), it suffices to prove the following two identities: for any p1, p2 ∈ [max{p, p̃}, p] with p1 ≤ p2,

max
F∈F

{
RF (p2)−RF (p1)

}
=Rmax(p2)−Rmax(p1), (D.18)

max
F∈F

{
RF (p1)−RF (p2)

}
=Rmin(p1)−Rmin(p2). (D.19)

To see (D.18), after replacing p†
max by p1 and p by p2 in inequality (C.4) in the proof of Proposition 3, we

can prove that: for any F ∈F , and max{p, p̃} ≤ p1 ≤ p2 ≤ p,

RF (p2)−RF (p1)≤R1(p2)−R1(p1) =Rmax(p2)−Rmax(p1).

Moreover, a distribution F ∈F defined as: F (x) = Fξ(x) for any x< λ, F (x) = γ for all λ≤ x< y+ bp2, and

F (x) = Fξ(x) for all x ≥ y + bp2, achieves the upper bound Rmax(p2)−Rmax(p1) and therefore maximizes

RF (p2)−RF (p1) over all F ∈ F . Thus, identity (D.18) holds. Similar arguments can be applied to prove

identity (D.19) by using inequality (C.3) in the proof of Proposition 3, and thus we omit the details.

Step 2. In this step, we use (D.17) from Step 1 to prove for any p∈ [max{p, p̃}, p],

l(p) =max{Rmax(p
∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)} . (D.20)

We first observe when p∗
max ̸= p∗

min, we have p̃≤ p†
min ≤ p∗

min < p∗
max ≤ p†

max. Then we consider three cases:

p≤ p∗
min, p > p∗

max and p∗
min ≤ p≤ p∗

max.

If p < p∗
min, it can be verified that p∗

min = p†
min. Otherwise, suppose p∗

min > p†
min, since Rmin(·) is concave,

we must have p∗
min = p > p†

min, leading to contradiction with p≤ p < p∗
min. In this case, Rmin(·) increases in

[max{p̃, p}, p]. Therefore, maxp′∈[max{p,p̃},p],p′≤p{Rmin(p
′)−Rmin(p)}= 0, and

l(p) = max
p′∈[max{p,p̃},p],p′≥p

{
Rmax(p

′)−Rmax(p)
}
=Rmax(p

∗
max)−Rmax(p)

=max{Rmax(p
∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)} , (D.21)
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where the second identity holds since p∗
max ∈ [max{p, p̃}, p] and p∗

max ≥ p, and the last identity holds due to

the following inequality:

Rmax(p
∗
max)−Rmax(p)≥Rmax(p

∗
min)−Rmax(p)≥Rmin(p

∗
min)−Rmin(p),

where the second inequality holds since R1(p)−R2(p) = b(1−γ)p(p− p̃) increases in p≥max{p̃,0}, Rmax(p) =

R1(p), Rmin(p) =R2(p) for p≥max{p̃,0}, and p, p∗
min ≥max{p̃,0}.

If p > p∗
max, we can similarly prove that p∗

max = p†
max, Rmax(·) decreases in (p,∞),

maxp′∈[max{p,p̃},p],p′≥p{Rmax(p
′)−Rmax(p)}= 0 and

l(p) =Rmin(p
∗
min)−Rmin(p) =max{Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)} . (D.22)

If p∗
min ≤ p ≤ p∗

max, it can be easily verified that maxp′∈[max{p,p̃},p],p′≥pRmax(p
′) = Rmax(p

∗
max) and

maxp′∈[max{p,p̃},p],p′≤pRmin(p
′) =Rmin(p

∗
min). Thus, we obtain identity (D.20) from identity (D.17).

Case 2: p∗
max = p∗

min. If p
∗
max = p∗

min, we will prove the result by considering two cases: p†
Fξ

< p̃ and p†
Fξ

≥ p̃.

Recall that Fξ(·) is the true c.d.f. for the distribution of ξ.

Subcase 1: p†
Fξ

< p̃. When p†
Fξ

< p̃, it is easy to see from the definitions of F and RF (·) that RF (·)

decreases in (p̃,∞), and p†
F = p†

Fξ
< p̃ for all F ∈F . Under this circumstance, we prove the result by consid-

ering two cases: p < p̃ and p≥ p̃.

If p < p̃, then we have p∗
F = p∗

max = p∗
min =max{p†

Fξ
, p}, and RF (p

∗
F ) =Rmax(p

∗
max) =Rmin(p

∗
min). Then,

max
F∈F

{
RF (p

∗
F )−RF (p)

}
=Rmin(p

∗
min)+ max

F∈F:p†
F
<p̃

{−RF (p)}

=Rmin(p
∗
min)−Rmin(p)

=max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)

}
,

where the last identity holds since Rmax(p
∗
max)−Rmax(p) =Rmin(p

∗
min)−Rmax(p)≤Rmin(p

∗
min)−Rmin(p).

If p≥ p̃, we have p∗
F = p∗

max = p∗
min = p for any F ∈F . In this case, p̃≤ p= p∗

F ≤ p≤ p, and we have

max
F∈F

{
RF (p

∗
F )−RF (p)

}
=Rmin(p)−Rmin(p)

=max{Rmax(p)−Rmax(p),Rmin(p)−Rmin(p)}

=max{Rmax(p
∗
max)−Rmax(p),Rmin(p

∗
min)−Rmin(p)},

where the first identity follows from (D.19), the second identity holds due to a similar reason to the last

identity in (D.21).

Subcase 2: p†
Fξ

≥ p̃. If p†
Fξ

≥ p̃, it is easily verified that p†
F ≥ p̃ for any F ∈ F . Moreover, if p∗

F0
< p̃ for

some F0 ∈ F , we must have p∗
min = p∗

max = p∗
F = p and Rmax(p

∗
max) = Rmin(p

∗
min) = RF (p

∗
F ) for all F ∈ F ,

which then implies

max
F∈F

{
RF (p

∗
F )−RF (p)

}
=R∗

min(p
∗
min)−Rmin(p) =max{Rmax(p

∗
max)−Rmax(p),Rmin(p

∗
min)−Rmin(p)}.

Thus, the result holds. Then we only need to focus on p∗
F ≥ p̃ for all F ∈ F . Under this circumstance, we

prove the result by considering two cases: p̃≤ p∗
min ≤ p, and p̃≤ p < p∗

min.
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When p̃≤ p∗
min ≤ p, we have

max
F∈F

{RF (p
∗
F )−RF (p)}=max

F∈F
{RF (p

∗
min)−RF (p)}=Rmin(p

∗
min)−Rmin(p)

=max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)

}
,

where the first identity holds since p∗
max = p∗

min implies p∗
F = p∗

min for any F ∈F , the second identity follows

from similar arguments to (D.19), and the last identity holds due to a similar reason to the last identity in

(D.21).

When p̃≤ p < p∗
min, we can similarly prove

max
F∈F

{RF (p
∗
F )−RF (p)}=max

F∈F
{RF (p

∗
max)−RF (p)}=Rmax(p

∗
max)−Rmax(p)

=max
{
Rmax(p

∗
max)−Rmax(p), Rmin(p

∗
min)−Rmin(p)

}
.

Combining Case 1 and Case 2, the proof of Proposition 7 is complete. □

D.4. Proof of Lemma D.1

Proof. If min{ ˆ̃p, p̃, p} ≤ 0, the range [0,max{min{ ˆ̃p, p̃, p},0}] becomes {0}, and the result is trivial since

|R̂(0)−R(0)|= 0. We next assume min{ ˆ̃p, p̃, p}> 0.

For any 0 ≤ p ≤ min{ ˆ̃p, p̃, p}, we define a random variable Xp = ξ + (b̂− b)pî∗ − b̂p, where ξ follows the

distribution of Fξ(·) and is independent of b̂. Then∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂(pî∗ − p), y}−Eξ

[
min{ξ− bp, y}

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂(pî∗ − p), y}−Eξ

[
min{Xp, y}

]∣∣∣∣∣∣+ ∣∣Eξ

[
min{Xp, y}

]
−Eξ

[
min{ξ− bp, y}

]∣∣ , (D.23)

where the subscript ξ is added to demonstrate that the expectation is taken with respect to the r.v. ξ with

c.d.f. Fξ(·).
We now bound the first term in (D.23). Note that when 0≤ p≤min{ ˆ̃p, p̃, p},∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{Sj

î∗
+ b̂(pî∗ − p), y}−Eξ

[
min{Xp, y}

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
− bpî∗ , y− b̂(pî∗ − p)}−Eξ

[
min{ξ− bpi, y− b̂(pi − p)}

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
− bpî∗ , y− b̂(pî∗ − p)}− 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
− bpî∗ , y− b(pî∗ − p)}

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
− bpî∗ , y− b(pî∗ − p)}−Eξ

[
min{ξ− bpî∗ , y− b(pî∗ − p)}

]∣∣∣∣∣∣
+
∣∣∣Eξ

[
min{ξ− bpî∗ , y− b(pî∗ − p)}

]
−Eξ

[
min{ξ− bpî∗ , y− b̂(pî∗ − p)}

]∣∣∣
≤ |b̂− b| · |pî∗ − p|+

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
− bp, y}−Eξ

[
min{ξ− bp, y}

]∣∣∣∣∣∣+ |b̂− b| · |pî∗ − p|

≤ 2p|b̂− b|+

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, y+ bp}−Eξ

[
min{ξ, y+ bp}

]∣∣∣∣∣∣ , (D.24)



Bu, Simchi-Levi, and Wang: Offline Pricing with Censored Data 53

where the first identity holds since when p ≤ ˆ̃p, min{Sj

î∗
+ b̂(pî∗ − p), y} = min{ξj

î∗
− bpî∗ , yî∗ , y − b̂(pî∗ −

p)}+ b̂(pî∗ −p) =min{ξj
î∗
− bpî∗ , y− b̂(pî∗ −p)}+ b̂(pî∗ −p), and min{Xp, y}=min{ξ− bpî∗ , y− b̂(pî∗ −p)}+

b̂(pî∗ − p), the second inequality holds since |min{x, y}−min{x, z}| ≤ |y− z| for any x, y, z ∈R, and the last

inequality follows from pi ≤ p and p≥ 0. To further bound the second term in the right-hand side of (D.24),

we apply Lemma A.3 by letting f(x,p) =min{x, y+ bp} for fixed y and b, X = [0, y+ bp] and Y = [0, p]. It is

easy to verify that f(·) is lower bounded by zero, upper bounded by y+ bp, and monotone in x for any given

p. Thus, from the union bound, Lemma A.3 and Ni ≥N for each i∈ [K], we have, for any given α> 0,

P

 sup
p∈[0,p̄]

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, y+ bp}−Eξ

[
min{ξ, y+ bp}

]∣∣∣∣∣∣≥ α

 (D.25)

= P

 sup
p∈[0,p̄]

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

f(ξj
î∗
, p)−Eξ[f(ξ, p)]

∣∣∣∣∣∣≥ α


≤

K∑
i=1

P

[
sup

p∈[0,p̄]

∣∣∣∣∣ 1Ni

Ni∑
j=1

f(ξji , p)−Eξ[f(ξ, p)]

∣∣∣∣∣≥ α

]

≤ 2Ke
− 2Nα2

(y+bp)2 . (D.26)

We next bound the second term in inequality (D.23). Note that Xp = ξ − bp+ (b̂− b)(pî∗ − p), then, for

0≤ p≤min{ ˆ̃p, p̃, p}, we have∣∣Eξ

[
min{Xp, y}

]
−Eξ

[
min{ξ− bp, y}

]∣∣
=
∣∣∣Eξ

[
min{ξ− bp+(b̂− b)(pî∗ − p), y}

]
−Eξ

[
min{ξ− bp, y}

]∣∣∣
≤ |b̂− b| · |pî∗ − p|

≤ p|b̂− b|. (D.27)

Therefore, combining inequalities (D.23), (D.24), (D.25) and (D.27), we conclude that

P

[
sup

0≤p≤max{min{ˆ̃p,p̃,p},0}

∣∣∣R̂(p)−R(p)
∣∣∣≤ 3p2|b̂− b|+α

]

≥ P

 sup
0≤p≤max{min{ˆ̃p,p̃,p},0}

∣∣∣∣∣∣ 1

Nî∗

N
î∗∑

j=1

min{ξj
î∗
, y+ bp}−Eξ

[
min{ξ, y+ bp}

]∣∣∣∣∣∣≤ α

p


≥ 1− 2Ke

− Nα2

(y+bp)2p2 ,

where the first inequality follows from inequalities (D.23), (D.24) and (D.27), and the second inequality

follows from inequality (D.25). □

D.5. Proof of Lemma D.2

Proof. By definition, γ̂ = maxi∈[K] γ̂i = maxi∈[K]
1
Ni

∑Ni

j=1 1{Sj
i
<yi}

= maxi∈[K]
1
Ni

∑Ni

j=1 1{ξj
i
<yi+bpi}

, and

γ =maxi∈[K] γi =maxi∈[K] P[ξ < yi + bpi] =maxi∈[K]E[1{ξ<yi+bpi}].

For each i ∈ [K], 1{ξj
i
<yi+bpi}

is an i.i.d. sample of the random variable 1{ξ<yi+bpi}. Therefore, by

Lemma A.1, we have |γ̂i − γi| ≤ α, with probability at least 1− 2e−2Niα
2
, for each i ∈ [K]. By applying the

union bound and using the fact that N ≤Ni for all i∈ [K], we have, with probability at least 1−2Ke−2Nα2
,
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that |γ̂i − γi| ≤ α holds for all i ∈ [K]. Given |γ̂i − γi| ≤ α for each i ∈ [K], we have γ̂ = maxi∈[K] γ̂i ≤

maxi∈[K] γi +α= γ+α, and γ̂ =maxi∈[K] γ̂i ≥maxi∈[K] γi −α= γ−α.

Hence, we have P[|γ̂− γ| ≤ α]≥ 1− 2Ke−2Nα2
. □

Appendix E: Proof of Proposition 8 in Section 5

Proof. Similar to the proofs of Theorems 2 and 3, let B(α) be the following event for any α> 0:

B(α) =
{
|R̂max(p)−Rmax(p)| ≤ α, |R̂min(p)−Rmin(p)| ≤ α, ∀p∈ [p, p]

}
.

Note that when p̂∗
max = p̂∗

min, we have pD2ACD = p̂∗
max = p̂∗

min, and from the second inequality of (10) in the

proof of Theorems 2 and 3, we have

P [p̂∗
max = p̂∗

min,B(α)]≤ P
[
max
F∈F

{RF (p
∗
F )−RF (p

A)} ≤ 2α

]
.

Thus, since when p∗
max ̸= p∗

min and ∆≥ α0, we must have P [p̂∗
max = p̂∗

min,B(α)] = 0 if α < 1
2
α0. Let α= 1

3
α0

and denote B(α) as the opposite event of B(α), then we have

P [p̂∗
max = p̂∗

min] = P [p̂∗
max = p̂∗

min,B(α)] +P
[
p̂∗
max = p̂∗

min,B(α)
]
= P

[
p̂∗
max = p̂∗

min,B(α)
]
≤ P

[
B(α)

]
≤ 2Ke

− 1
324(y+bp)2p2

Nα2
0 +2Ke

−
1
K

∑K
i=1(pi−

1
K

∑K
j=1 pj)

2g2

324C2
1

Nα2
0
+2Ke

− 1

162C2
2

Nα2
0
+2Ke

− 1

162p2λ2 Nα2
0 ,

where the second inequality follows from Lemma 2. □

Appendix F: Description of KM Subroutine

In this appendix, we describe the KM subroutine used in D2ACD-KM. See Algorithm 2. Specifically, the

Algorithm 2: The KM subroutine

1 Input:
{
(pi, S

j
i , yi) : i∈ [K], j ∈ [Ni]

}
, N[K] =

∑K

i=1Ni, b̂, λ̂, γ̂, p, y

2 Sort samples {(Sj
i + b̂pi,1{Sj

i <yi}
) : i∈ [K], j ∈ [Ni]} from smallest to largest according to

Sj
i + b̂pi; ties are broken by putting censored observations with 1{Sj

i <yi}
= 0 after

uncensored observations with 1{Sj
i <yi}

= 1; let the ordered observations be denoted as

{(W1, δ1), (W2, δ2), . . . , (WN[K]
, δN[K]

)};

3 Let F̂KM(x) be the empirical c.d.f. for ξ: F̂KM(x) = 1−
∏

1≤i≤N[K]:Wi≤x

(
N[K]−i

N[K]−i+1

)δi
;

4 R̂(p) := p ·Eξ∼F̂KM [min{ξ− b̂p, y}];

5 R̂1(p) := p ·
(
− γ̂b̂p+Eξ∼F̂KM [ξ] + (1− γ̂)(y− λ̂)

)
;

6 R̂2(p) := p ·
(
− b̂p+Eξ∼F̂KM [ξ]

)
;

7 ˆ̃p := (λ̂− y)/b̂;

8 R̂max(p) := 1{p< ˆ̃p}R̂(p)+1{p≥ ˆ̃p}R̂1(p);

9 R̂min(p) := 1{p< ˆ̃p}R̂(p)+1{p≥ ˆ̃p}R̂2(p);

10 Output:
(
R̂max(p), R̂min(p)

)



Bu, Simchi-Levi, and Wang: Offline Pricing with Censored Data 55

inputs of the KM subroutine include the whole offline datset, the number of total historical samples N[K],

the estimated price sensitivity b̂ from Step 1 of Algorithm 1, the empirical quantities λ̂ and γ̂ defined in

line 12 of Algorithm 1, any given price p, and the inventory level y in the data-driven problem (1). The

empirical c.d.f. F̂KM(·) in line 3 of Algorithm 2 is defined through the product-limit formula that is typically

used to compute the KM estimator. Note that the original product-limit formula uses the indicator function

1{Dj
i
≤yi}

, which, however, may not be available in practice. Thus, we approximate this quantity through

1{Sj
i
<yi}

, which can always be computed based on the available sales and inventory information. The output

of the KM subroutine is the estimated optimistic and pessimistic revenues at price p, which then serves as

the input of D2ACD-KM’s Step 3 for generating the suggested price.

Appendix G: Further Discussion on LR-ExcludeCensored

In this appendix, we further explain why linear regression on uncensored data, i.e., LR-ExcludeCensored,

fails to generate a consistent estimate for the price sensitivity. We present a simple numerical example.

Suppose the demand model is given by

D(p) = 100− p+ η, η∼Uniform(−10,10).

We assume that the offline dataset is given by {(pi, y,Si) : i∈ [N ]}, where historical prices p1, p2, . . . , pN are

independently drawn from a uniform distribution in [15,40], and the sales quantity Si given each price pi

is independently drawn from the above demand model after truncated by the constant censoring inventory

level y = 75. LR-ExcludeCensored computes the estimates of base demand and price sensitivity by solving

the following linear regression:

(â, b̂) = arg min
a′∈R,b′∈R

∑
1≤i≤N:Si<y

(Si − (a′ − b′pi))
2
. (G.1)

Figure 8 plots the result of LR-ExcludeCensored under a randomly generated dataset in the green line. To

see how much bias LR-ExcludeCensored may introduce, we also plot the true demand function in red, and

the fitted line of LR-WithoutCensoring in blue, which is obtained from linear regression on the full dataset

without information loss, i.e., {(pi,Di) : i∈ [N ]}.

Undoubtedly, LR-WithoutCensoring approximates the true demand function very well, since there is

no censoring issue in the data. By contrast, LR-ExcludeCensored leads to biased estimate for the price

sensitivity and base demand. This is because if dropping censored data, the selected samples for the linear

regression are restricted to the data points below the inventory level, i.e., those in orange, leading to the

issue of endogeneity. In fact, a sample (pi, Si) is selected for the linear regression if and only if 100− pi +

ηi < y (or equivalently, ηi < pi + y − 100). Thus, the underlying distribution of the selected noise samples

essentially follows Uniform(−10,min{p+y−100,10}), which is correlated with the explanatory variable p in

the regression model. Due to such endogeneity, the estimate of the regression coefficient in the above linear

regression (G.1) is biased.
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Figure 8 Biased estimation from LR-ExcludeCensored.
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